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Summary 

 

For the latest advancement of manufacturing systems, namely ‘Industry 4.0’ or 

Smart Manufacturing, large amounts of precise process data are required. However, the 

acquisition of sufficient data represents a challenge for many manufacturing plants. 

Developed metering frameworks from academia are often not applicable to real-world 

manufacturing processes due to monitoring gaps. These gaps result from missing and 

broken measuring devices of industrial systems and lead to an incomplete monitoring 

outcome that can prevent system optimisations. Therefore, this research focuses on the 

development of effective data gathering tools for complex industrial systems in order to 

provide a comprehensive process understanding. By considering industrial needs, the 

design and development of functional resource measurement methodologies and the study 

of predictive models with a reduced-order characteristic have been addressed to 

accelerate holistic data acquisition in industrial environments.    

Following from the investigations of two purified water and one steam system in 

an industrial case facility, a comprehensive metering strategy for detailed information 

gathering of technical building services has been developed. Although these systems 

require large shares of resources, holistic analysis methods are not comprehensively 

addressed in the literature. The novel four phase metering methodology in this research 

fills this gap by identifying available data sources, abstracting the central process steps, 

and mapping the resource flows within technical building services. In the last phase, the 

absence of functional online meters is surrogated by a basic proxy metering strategy that 

enables the approximation of missing parameters by combining related data sources in a 

regression model. This holistic strategy represents an effective data acquisition approach 

with high adaptability to existing conditions and constraints that has not been reported in 

the literature to date. 

The gathered process information from the holistic meter approach allowed the 

development of an automated calculation method for the total cost of technical building 

services. By focusing on the interactions of the identified resources and further added 

values, this cost index tracks the real value that is embedded in the analysed system. 

Compared to similar approaches in the literature, the cost calculation method in this 

research can be automated which enables the impact of system changes to be studied.   
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Based on the potential of basic proxy metering devices (PMDs) for estimating 

missing process data and the industrial need for simpler implementation strategies, the 

development of comprehensive PMD modelling methodologies has been successfully 

addressed in the second part of this research. For the common case of small datasets, the 

regression performance of PMD algorithms for diverse dataset regression complexities 

has been analysed. As well as the complexity characterisation of five small datasets from 

an experimental rig, the estimation accuracies of the most common linear and non-linear 

PMD algorithms have been studied, including the impact of training sample 

manipulations with bootstrap and artificial noise injection. The results of this comparison 

highlight which PMD algorithm and training sample manipulation technique is 

appropriate, depending on the regression complexity of the dataset and the number of 

training samples. With this novel methodology, industrial users can select a targeted and 

straightforward PMD development approach based on their specific regression 

complexity and use case. 
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1 Introduction 

Chapter 1 

Introduction 

1.1 Energy and resource sustainability in the manufacturing sector  

Since the first industrial revolution, the industrial sector has continued to be a key 

driver for welfare and prosperity within society, accounting for nearly one-quarter of all 

jobs globally to date [1]. Not only does industry provide employment, it is also decisive 

for global presence and economic strength of industrialised nations. Due to these 

significant global impacts, the industrial sector plays a leading role in technological, 

economical, political, and societal advancement. The downside of industrial processes is 

the direct and indirect contribution to the depletion of natural resources and the resulting 

environmental burdens that are affecting humanity and the eco-system [2]. According to 

the International Energy Agency (IEA) [3], the industrial sector accounted for 37% of 

global energy use in 2017, with an average increase of 1% per year for the period from 

2010 until 2017. As depicted in Figure 1.1 [a], a further year-on-year energy consumption 

increase for the industrial sector was predicted until 2025. 

 

Figure 1.1: Global industrial energy consumption [a] and direct CO2 emissions [b]; 

adapted from [3]
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However, current developments in light of the Coronavirus pandemic have demonstrated 

that unforeseeable occurrences can have a major impact on the industrial energy 

consumption and production rates. A first IEA publication on the impact of the pandemic 

[4] indicates that the worldwide industrial production will decrease significantly 2020 

which may lead to the largest year-on-year reduction of industrial energy demand to date. 

For example, the natural gas consumption of the industrial sector is expected to decrease 

by 5% compared to the year 2019. Nonetheless, the industrial production rates and energy 

consumptions are expected to return to pre-pandemic levels and increase further in the 

long term.  

Besides energy, further resources, such as water, are required for industrial 

production. Industrial facilities require 19% of the global water demand [5]. On the 

emission side, 8.5 Gt of CO2 emissions, equivalent to 24% of the global CO2 output, came 

directly from industrial activities in 2017 [3], see Figure 1.1 [b]. The majority of these 

consumptions and emissions relate to the manufacturing sector, a subset of the industrial 

sector which involves the fabrication or assembly of raw materials and components into 

discrete finished products through the systematic division of labour [2]. Manufacturing 

processes are responsible for 90% of the industrial sectors energy consumption and 84% 

of the industrial sectors energy-related CO2 emissions [6]. This high consumption of 

resources and the emission of pollutants has led to a rising awareness and need for 

sustainability within manufacturing companies. Stark et al. [2] show that the use of 

current industrial technologies to meet future economic growth expectations will result 

in a resource consumption that exceeds every accountable environmental, economic and 

social boundary. Sustainable manufacturing is seen as the practice of creating 

manufactured products by using processes that minimise negative environmental impacts, 

conserve energy and natural resources, are safe for employees, communities, and are 

economically sound [7]. Besides the scarcity of numerous natural resources and high 

emissions, the efforts towards sustainable manufacturing are pushed further by stricter 

governmental regulations and taxes that foster environmentally benign manufacturing 

and by an increasing demand from society for products with minimal environmental 

impact [8].  

To save energy and resources in manufacturing, Herrmann et al. [9] pointed out 

that a reduction of production activities is not seen as a feasible solution. Instead, the 

improvement of energy and resource consumption in complex manufacturing processes 

is needed. The IEA have estimated that energy savings of up to 29% are realisable in the 
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manufacturing sector if all proven technologies and best practice guidelines are 

implemented [10]. Further energy savings are achievable but will require global 

cooperation and innovation to develop highly sustainable production systems [11]. A 

fundamental requirement and first step towards optimising these systems is the 

measurement and processing of performance data [12], [13]. Process monitoring systems 

provide these measures by combining manufacturing system information and enabling 

process control.  

 

1.2 Monitoring of manufacturing processes 

A process monitoring system is a build-up of measuring instruments that utilise 

sensors as the primary elements for signal acquisition [14]. These signals are subject to 

analogue and digital conditioning and processing. According to Teti et al. [15], the aim 

of monitoring systems is to generate functional signals that can be correlated to process 

conditions. For manufacturing systems, the signals being acquired and their processing is 

dependent on the process itself and the desired output parameter(s), e.g. temperature, 

power, vibration etc. [14]. For the majority of modern monitoring instruments, the sensor 

output-signal is in an electric form which simplifies signal transmitting, processing, and 

storing. Once the signal is acquired, various process and data analysing steps are carried 

out to extract useful information. These steps can include filtering, amplification, and 

segmentation [15]. In many measuring instruments the required parameter can only be 

attained through an indirect measurement. In these cases, the actual quantity is inferred 

by a relation between sensor signals and physical variations in the form of a mathematical 

model, i.e. transfer function. This function may be of linear or nonlinear form.  

To monitor and control a manufacturing system, a multitude of measuring 

instruments are used to collect process information. Typically, a process or facility-wide 

monitoring system is implemented that acquires data from the metering devices and offers 

data visualisation for operators through human-machine interfaces (HMIs) [16], 

displayed in Figure 1.2. From this information, the process state is determined by 

operators and/or unmanned decision making support systems [17]. If a process anomaly 

is detected, control actions are carried out to manipulate process variables in order to 

regulate or stop the process [18]. 
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Figure 1.2: Process monitoring feedback-control system; adapted from [15], [19] 

 

1.3 The increased need for process data 

Modern industrial facilities require numerous measuring instruments for the 

monitoring and storing of process information. This represents an enormous increase in 

process data compared to the early days of manufacturing. As Tao et al. [20] described, 

the manufacturing data that was available during the handicraft and machine age was 

limited and the performance of work was mainly based on experience (Figure 1.3). This 

changed with the development and integration of information technology (IT) within 

manufacturing. Automated and computer-based systems were introduced, exposing the 

manufacturing sector to a more data-rich environment. 

 

 

Figure 1.3: Evolution of data in manufacturing environments; adapted from [20] 
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In terms of the current development of manufacturing systems towards smart and 

interconnected systems, known as Industry 4.0 and Smart Manufacturing, a further 

exponential increase of process information is required to provide the data needs of these 

new advancements [21]. This increased amount of real-time process data aims to convert 

current manufacturing lines into intelligent process systems that yield positive impacts on 

many aspects of manufacturing [22]. These impacts include improved process control and 

flexibility to realise individual customer demands [23], increased production rates, and 

decreased energy and resource requirements [24]. While these opportunities are desirable 

for many manufacturers, several challenges exist when looking to implement currently 

available smart manufacturing concepts. The increased need for accurate and real-time 

process data is seen as one of these key challenges for upgrading manufacturing processes 

to intelligent systems, as reported by Kusiak [25]. As Gontarz et al. pointed out [21], this 

need leads to complex monitoring architectures and additional sensor requirements to 

enhance data collection, processing and storage in many manufacturing plants. However, 

this data requirement cannot easily be met, especially by small- to medium-sized 

enterprises (SMEs) whose capabilities tend to be more limited. These facilities are 

confronted with the trade-off between reliability, accuracy, and cost for monitoring 

systems. Ultimately, companies that do not gather sufficient data to enable smart 

manufacturing developments face the risk of losing competitiveness in the near future 

[25].  

Several approaches have been developed within academia to help manufacturers 

meet the requirements for increased data acquisition. However, many of these concepts 

have limited or no application for manufacturing systems whose variables are not already 

accurately metered [26]. To close this gap, several authors [25]–[27] outlined a need for 

more process monitoring and data gathering frameworks that have evolved from the 

cooperation between industry professionals and researchers.  

 

1.4 Research aims and objectives 

With a focus on manufacturing processes, the goal of the present research is to 

demonstrate that basic metering tools are able to provide detailed insights into complex 

industrial system. The hypothesis of this research is that the use of reduced-order 

predictive models coupled with functional measurement strategies can enable advanced 
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data gathering and comprehensive process understanding of resources in industrial 

systems. 

The research objectives are: 

1. Definition and development of a methodological framework for metering resource 

flows and consumptions in industrial processes. This framework must be applicable 

to various system setups and consider the restrictions imposed by the industrial 

process environment. 

2. Characterisation of resource interactions within industrial systems to reveal the 

embedded value. This objective investigates the need of considering 

interrelationships of multiple resources within an industrial system. 

3. Development of universal methodologies for the implementation of reduced-order 

models that aim to approximate data gaps in industrial processes. This objective 

completes the previously defined metering framework by providing easy to adopt 

algorithms and effective model development steps for the estimation of missing 

parameters.  

 

Contribution to the existing research 

The first stage of this research focused on the generation and distribution of 

purified water and steam within a manufacturing facility. Purified water and steam were 

selected as two widely used technical building services (TBS) in manufacturing 

surroundings that use significant amounts of energy and water. Although these systems 

require large shares of resources, detailed metering guidelines are not comprehensively 

addressed in the literature. A metering strategy for these two subsystems was developed 

during an industrial case study in a large multinational life science company located in 

Ireland. By approaching the metering framework from an industrial perspective, this work 

bridges the gap between academic research and engineering application by considering 

industrial needs and constraints. Through the application of the developed metering 

strategy in the case facility, sufficient process data was collected to demonstrate the 

necessity to consider purified water and steam systems as interconnected energy and 

resource structures. This interconnection was demonstrated by an automated calculation 

methodology for the total cost of purified water and steam generation.  

The second major component of this research focused on the development of 

virtual meters, i.e. proxy metering devices (PMDs), as a technique to estimate data gaps 
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during industrial monitoring activities. This has been addressed due to the industrial 

demand and literature gap for simpler PMD implementation methods. Stemming from 

five diverse datasets generated from a constructed experimental rig, various PMDs were 

tested in order to develop the modelling framework presented within this work. This 

framework bears in mind the often limited size of industrial datasets and the needed 

effortlessness to be adaptable to diverse industrial scenarios. This novel methodology 

provides industrial users an effective development approach of PMD models with a 

reduced-order characteristic that has not been reported in the literature to date. In the 

context of this work, the term reduced-order model describes a model type that can be 

developed with low efforts and high transparency.   

 

Thesis layout 

A summary of the thesis layout is presented in the following figure. 

 

 

Figure 1.4: Thesis chapter layout and methodology 
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2 Literature review 

Chapter 2 

Literature review 

2.1 Smart Manufacturing and Industry 4.0 

The aim of Smart Manufacturing and Industry 4.0 is to integrate product systems 

both vertically and horizontally [23]. Vertical integration promises to revolutionise all 

production steps – from order processing and resource management through to product 

manufacturing and delivery [28]. Horizontal integration allows the linking of different 

companies within the value chain. The result is smart factories that provide higher 

flexibility in the fulfilment of individual customer requirements. 

Smart Manufacturing and Industry 4.0 are similar concepts that have originated 

from global policymakers. While the terminologies differ, they share the same 

overarching vision of implementing digitalised and data-driven smart factories. Smart 

Manufacturing originates from the U.S. Department of Energy. The Smart Manufacturing 

Leadership Coalition [24], a coalition of companies, universities, manufacturing 

consortia, and consultants, defines Smart Manufacturing as “the intensified application 

of advanced intelligence systems to enable rapid manufacturing of new products, dynamic 

response to product demand, and real-time optimization of manufacturing production and 

supply chain networks”. Industry 4.0 originated as a flagship program from the German 

government and has had an increasing impact on European policy.  Industry 4.0 was first 

announced in 2011 and is seen as the fourth industrial revolution [29]. Three previous 

revolutions have led to significant changes in manufacturing surroundings (Figure 2.1): 

The first industrial revolution brought water and steam power to production areas, the 

second revolution led to mass production through assembly lines, and the third revolution 

increased the automation through use of robots and information technology (IT). The 

introduction of communication systems in manufacturing companies is seen as the fourth 

industrial revolution that will lead to interconnected machines and production processes 

that communicate with each other [28]. In contrast to Smart Manufacturing, according to 

Culot et al. [30], no agreed definition for Industry 4.0 currently exists. The authors outline 

that this lack of definition is due to the complexity and multidisciplinary nature of 

Industry 4.0 as well as the ongoing developments of the “announced revolution” [30]. 
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Figure 2.1: Four industrial revolutions in manufacturing systems, taken from [23],with 

PLC: Programmable logic controller, CPS: Cyber-Physical system  

 

Both schemes (Smart Manufacturing and Industry 4.0) are expected to change 

current automated manufacturing systems towards intelligent manufacturing systems. In 

the following paragraphs, solely the term smart manufacturing is used in reference to the 

Smart Manufacturing and Industry 4.0 scheme. 

Important principles that enable communication between machinery are the 

Internet of Things (IoT) alongside Cyber-Physical systems [31]. By using these, physical 

units are equipped with intelligent sensors, radio-frequency identifications, and 

microprocessors to allow automated data collection, data evaluation and processing, and 

data exchange with other units or systems. The product under manufacture is, therefore, 

able to control its own production process. The increased data volume is feeding enhanced 

process analytics as well, e.g. in the form of machine learning or the wider field of 

artificial intelligence. Besides, digital manufacturing is enabling more precise predictions 

and control through the simulation of the entire manufacturing process [32]. A general 

concept of a smart manufacturing enterprise is depicted in Figure 2.2 [33]. The system in 

Figure 2.2 is comprised of two basic layers; the manufacturing equipment layer and the 

cyber layer. Both are linked through an interface. Data is sent from the manufacturing 

equipment to the central cyber layer where it is analysed. Based on this data flow, 

production decisions are sent back from the cyberspace or made locally by the 

manufacturing equipment through use of artificial intelligence. 
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Figure 2.2: General concept of a smart manufacturing facility, adapted from [33] 

 

The possibilities of intelligent manufacturing processes are extensive. Increased 

monitoring leads to the availability of all relevant information in real-time, shorter 

reaction times during failures, and optimal usage of resources in all process areas [34]. 

Due to the deep fusion between IT and manufacturing, an increased amount of process 

data has to be collected and analysed, as reported by Tao et al. [20]. This huge volume of 

data progressively elevates the degree of manufacturing smartness in the form of 

improved process control and flexibility. Furthermore, the increased digitalisation of 

manufacturing lines will be used by data-driven modelling approaches to further optimise 

production [33]. This will allow quicker responses to changing product requirements and 

raw material supply. Thereby, facilitating the fulfilment of individual customer demands 

with small production numbers or one-off items. In Figure 2.3 the relationship between 

variety and volume per model is displayed for the different manufacturing paradigms. 

Smaller volumes per model and increased variety are realisable with decoupled, fully 

flexible and highly integrated smart manufacturing lines [8], [35]. Together with a 

decrease in product defects, the increased variety in manufacturing leads to rising 

customer satisfaction. Besides the possibility of individual production units, the overall 

production rate can be increased in a smart manufacturing production line. It has been 

shown that productivity increases of up to 50% have been achieved in companies that 

introduced smart manufacturing [36]. The benefits of smart manufacturing processes are 

not solely limited to production lines. Kagermann et al. [29] expect that a wide range of  
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Figure 2.3: Volume per model to variety relationship in maufacturing paradigm [a], 

adapted from [8]; Manufacturing assembly paradigm [b], adapted from [35]   
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in increased technologically induced unemployment of workers and a loss of production 

control. This might go hand-in-hand with an advancement of capital concentration and 

monopolisation since the adoption of smart manufacturing approaches requires huge 

investments that cannot be afforded by many small and medium-sized enterprises 

(SMEs). 

From a company viewpoint, there are numerous challenges when it comes to the 

practical implementation of smart manufacturing concepts. In many cases, companies 

have difficulties in adapting to the new technologies and finding the right specifications 

for their use [39]. As a prerequisite, smart manufacturing requires the collection of 

sufficient process data [40]. Yet companies often struggle even at this initial stage, not 

knowing what to measure or when [25]. Accordingly, manufacturers need support in 

terms of what type of data should be measured, with which sensor and where to install 

these sensors. Li and Kara [41] reported that there are not sufficient measuring concepts 

readily available to assist manufacturers. Besides the impediments to smart 

manufacturing outlined above, a recent survey between researchers and industrial 

professionals showed that the absence of practical metering guidelines also inhibits the 

move towards sustainable manufacturing [42]. Kusiak [43] stated that even when 

sufficient data can be collected from a process, many companies do not know how to 

interpret the gathered data and how to use it to identify process and product 

improvements. A big volume of data does not lead directly to knowledge gain, rather the 

correct analysis of this data is important to obtain hidden information. Experts see the 

manufacturing industry unprepared for the coming changes [44]. The following five 

necessities have been identified for the adoption of smart manufacturing philosophies 

[25]: 

• Adopt strategies for data gathering and sensor placement 

• Improve data collection, use and sharing concepts 

• Design predictive models that show the feasibility and advantages of new 

machining technologies 

• Study general predictive models that are able to handle uncertainties or data errors  

• Connect factories and control processes through open interfaces and universal 

standards to guarantee a more dynamic and open manufacturing environment 
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To meet these requirements, closer collaboration between academia and industry 

is needed. In many cases, technological improvements are made in a lab-scale 

environment by academics without the consideration of how they can be integrated into 

an industrial environment [15], [25]. Future development of assessment frameworks for 

manufacturing processes should be evolved cooperatively between industry professionals 

and researchers, as reported by Bhanot et al. [27]. To enhance the collaboration between 

academia and industry, one possible solution could be online platforms where companies 

upload their problems to find suitable experts for solving them. Additionally, more 

governmental support for smart manufacturing is needed. This could be in the form of 

smart manufacturing working groups to bring together representatives from government, 

academic, and industry [22]. Another form could be the financial support of companies, 

i.e. by giving an investment tax credit for updating machinery or offering training courses 

for manufacturing staff [45]. 

If companies do not overcome the challenges in adopting smart manufacturing 

processes, they face the risk of falling behind the technological progress worldwide and 

might lose competitive ability [28]. 

2.1.2 Adoption concepts for smart manufacturing 

This section outlines a number of approaches for adopting smart manufacturing 

concepts through the exploration of four example publications that focus on monitoring 

within smart manufacturing environments. 

An integrated solution for sensor affixed machines, data acquisition modelling, 

and data analytics is presented by Balaji et al. [46]. The objective of this approach is to 

improve monitoring and to infer insights on the efficiency in the shop floor area. The 

presented framework is divided into different layers that include sensor measuring at shop 

floor level, progressing the signals through a data communication node, and transferring 

the data to analytic and visualisation tools. During data processing, harmful machinery 

situations are automatically detected and actions taken to prevent damages. The shop 

floor operators and managers are notified via optical or mobile information. The data 

analysis tool allows the comparison of different trends and calculates key performance 

indicators like the overall equipment effectiveness (OEE). While the framework by Balaji 

et al. seems useful to visualise and monitor relevant process parameters, it is similar to a 

variety of commercially available energy management software e.g. eSight Energy [47]. 
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Li and Kara [41] presented an alternative approach to monitoring in a smart 

manufacturing surrounding by using wireless sensor networks. The concept enables the 

connection of multiple hardware and software platforms by first designing the system 

architecture and determining the selection criteria for each component. Similar to the 

previous approach by Balaji et al., the system layout is based on four layers that include 

data acquisition and transmission, data processing, cloud storage and analytics, and 

visualisation (Figure 2.4). For the selection of different components in each layer, the 

authors give decision support by summarising the relevant criteria for suitable products 

and services. A case study for metering and monitoring of temperature in an office 

environment shows a possible use case. This publication is an example of bridging the 

gap between academic research and easy-to-adopt methodologies for the industry. By 

explaining the system layout and providing decision support in every layer the 

architecture is valuable for manufacturing companies attempting to set up an advanced 

monitoring system. 

 

 

Figure 2.4: Wireless Sensor Networks architecture for manufacturing environments, 

taken from [41] 
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A further contribution to monitoring in smart manufacturing facilities is presented 

by O’Donovan et al. [22]. The authors illustrate a strategy for utilising industrial data 

analytics applied to equipment maintenance. The proposed methodology uses an open 

and extendable system architecture that interacts with smart devices on automation 

networks and offers analytics based on the process data. Stemming from the requirements 

of the architecture layout, the proposed system features high resilience to failure, dynamic 

scalability, and uses open standards to promote data accessibility. The methodology is 

built up of six stages, as indicated below and in Figure 2.5: 

1. A cloud-based site management program acts as a central repository of metadata.  

2. Ingestion software agents ingest data from maintenance equipment applications, 

such as sensors, and store it in the cloud when instructed by the management 

program.  

3. The raw data in the cloud is buffered in a message queue until it is handled by data 

processing components.  

4. The notification and handling of newly available datasets between the message 

queue and the data processing components is controlled by the subscription service.  

5. Raw datasets are then processed by components to transfer the time series data into 

a suitable format for analysis.  

6. Finally, the data access stage provides an open interface to the processed data to be 

analysable by suitable tools. 

 

Figure 2.5: System architecture for smart monitoring of equipment maintenance, taken 

from [22] 
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The methodology for setting up a smart monitoring system that is presented in the 

publication by O’Donovan et al. represents a further approach for transferring production 

facilities into a smart manufacturing system. Due to the structures that are used in the 

system architecture, it is particularly suitable for large sites that have to deal with large 

data volumes. 

Yen et al. [48] presented another framework for smart monitoring and diagnosis 

of manufacturing systems. The idea behind the methodology is to provide software as a 

service to manufacturing facilities to support and standardise the monitoring and fault 

diagnosing process. The software contains different modules, such as a process 

knowledge database, data processing service, diagnostics, data storage management, and 

end-to-end security. Input by the manufacturer is needed in the form of sensor data and 

metadata. The raw data is then sent to the cloud where it is processed by different 

modules. A range of different tools are available for analysing of the received data, e.g. 

anomaly detection, pattern mining, and periodicity analysis. Additionally, image and 

video files can be analysed for fault detection. The used algorithms are first trained on a 

sample set of data to be able to detect abnormalities during the later monitoring task. The 

presented framework shows a possible solution for superior monitoring activities in a 

smart manufacturing environment. In particular, SMEs can benefit from this service as 

they often have limited experience / knowledge in analysing gathered data [49]. However, 

the authors state that the correct identification of abnormalities decreases in accuracy with 

increasing system complexity. Additionally, companies might hesitate to give away 

sensitive process data to external service providers due to data protection issues.  

To conclude, an increasing number of monitoring concepts for smart 

manufacturing environments can be found in the literature. As demonstrated in the chosen 

case studies, the application of a suitable framework can improve industrial process data 

gathering and systematic analytics. Nevertheless, the application by industrial users has 

to prove if the available frameworks are also transferable to a variety of system 

configurations with different technical conditions. 

2.1.3 Industrial state-of-the-art monitoring systems 

The latest generation of commercially available monitoring systems for 

manufacturing plants already incorporates some of the technologies required for a smart 

manufacturing environment, e.g. these systems are capable of gathering large quantities 
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of data in real time while providing advanced process control [50]. The implementation 

of these state-of-the-art monitoring systems can provide a high level of transparency and 

process understanding that is typically only available in research labs. As outlined by 

O'Driscoll and O'Donnell [51], a general plant-wide metering system for monitoring 

energy and resource flows is build up by three different levels of metering devices. At the 

facility level, meters are installed to monitor the energy and resource consumption of the 

entire facility. These meters are typically used to obtain aggregated utilisation data with 

low sampling rates and allow high-level analysis, such as the query of monthly bills. The 

second level enables the monitoring of process / value streams by applying metering 

devices with a higher sampling rate compared to the facility level measurements. These 

meters enable measurement of a process line's energy and resource consumption and 

provide detailed information that can be used to optimise production procedures towards 

higher sustainability or to facilitate benchmarking against other production areas. The 

third level of metering devices monitor the energy and resource consumption of a single 

machine / process step. Typically, metering devices at this level show high accuracy and 

resolution to facilitate performance optimisation, ascertain consumed resources per 

produced part, or to investigate equipment malfunctions. 

The data from all metering devices is then gathered in a process or facility-wide 

monitoring system. There are two types of commercially available monitoring systems; 

supervisory control and data acquisition (SCADA) system and distributed control system 

(DCS). According to Karnouskos and Colombo [16], both systems enable process 

monitoring and control activities and are set up by a communication structure that can 

connect remote terminal units (RTUs), programmable logic controllers (PLCs), 

computers, and human-machine interfaces (HMIs). Although SCADA and DCS are 

composed of similar components for process monitoring and control, they differ in their 

intended use cases [52]. SCADA systems are orientated towards data acquisition, are 

mostly event-driven, and have been designed to monitor and control large process 

facilities. DCS are more process control orientated, run sequentially, and are more 

suitable for smaller-scale monitoring. Nonetheless, authors in the field see an increasing 

integration between SCADA and DCS in current and future developments [16], [53]. 

Both systems, in a separate or united form, will be a key component in a smart 

manufacturing environment. Future SCADA / DCS systems will have to cope with 

significantly higher amounts of diverse data and information in real-time, facilitate 



2. Literature review  

 

19 

human-machine interactions from anywhere at any time, and provide improved 

scalability of the monitoring system [52].  

The latest developments of commercially available SCADA / DCS systems 

already incorporate some aspects of future needs. Siemens AG released a DCS labelled 

Siemens SIMATIC PCS neo in 2019 [50]. The IT structure of this system is entirely web-

based to allow immediate and secure access for monitoring and control of plants which 

can be distributed all over the globe. It incorporates a high degree of flexibility through a 

freely scalable architecture that permits plug-and-produce integration of automation 

packages. A SCADA system with comparable features has been released by Honeywell 

International Inc, labelled as Honeywell Experion Elevate [54]. As a cloud-enabled 

system, remote access is possible in addition to improved scalability and data analysing 

techniques. Similar systems have been developed by ABB [55] and Yokogawa [56].  

The integrated features of the latest SCADA / DCS systems pave the way towards 

a new generation of process monitoring and control. Nonetheless, further developments 

of these systems are required to provide all the needs of smart manufacturing. Karnouskos 

and Colombo [16] envision that the next generation SCADA / DCS will be entirely cloud-

based with a flat hierarchical structure that includes further information from other 

systems such as enterprise resource planning (ERP) and manufacturing execution system 

(MES), outlined in Figure 2.6. This will enable the collaboration of people, devices, and 

processes in the monitoring and control of manufacturing systems with an unprecedented 

scale of process performance assessment, evaluation of alternatives, and adjustment of 

resources. 

 

 

Figure 2.6: Vision of the next generation SCADA/DCS system, adapted from [16], [52]  
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2.2 Industrial resource metering  

Industrial activities rely heavily on energy and natural resources, such as water, 

gas, and oil. This section underlines the importance of water and energy for 

manufacturing facilities by focusing on purified water (PW) and steam systems. 

Additionally, a holistic investigation method for water and energy is presented in form of 

the water-energy nexus. Finally, existing metering audit strategies for capturing the 

resource consumption of industrial systems are explained. 

For clarification, the term ‘industry’ used throughout this research refers 

specifically to the manufacturing industry.  

2.2.1 Water in manufacturing systems 

The industrial sector is heavily dependent on water. The sector accounts for 19% 

of the globe's total water usage [5] which makes it the second highest consumer of water 

[57]. Water consumption by the industrial sector varies significantly within different 

regions. In Europe, the industrial sector consumes close to 40% of the total water 

extracted [58]. The current and estimated freshwater consumption of different sectors is 

depicted in Figure 2.7 [59]. These numbers account for water withdrawn from natural 

sources, such as lakes or groundwater, and do not include water reuse.  

 

 

Figure 2.7: Estimated increase in freshwater demand by sector, adapted from [59] 
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A report from the Organisation for Economic Co-operation and Development (OECD) 

[59] highlighted that the demand for water of the manufacturing sector will increase 

further as more countries become industrialised and due to an increasing need for 

manufactured products. A water consumption increase of 400% is expected within the 

manufacturing sector on a global scale between 2000 and 2050, as shown in Figure 2.7. 

This is the highest growth compared to other sectors. The current usage and projected 

increase in water consumption shows the importance in raising awareness within 

manufacturing companies to place more importance on water efficiency. This is further 

driven by reasons that include [1], [60]; a rising water shortage in many countries due to 

climate change, stricter regulations on water use and drainage by governments 

worldwide, and competitive economic advantages due to the conservation of water and 

energy. According to Herrmann et al. [8], this need is being further strengthened from a 

growing consumer demand for products with minimal environmental impact.  

The increasing importance to minimise water consumption in manufacturing 

systems is seen in the research field as well. A variety of different approaches have been 

published to decrease water consumption and increase the efficiency of manufacturing 

processes and technical building services (TBS) [61]–[63].  

Hesselbach et al. [64] refer to TBS as equipment that is responsible for providing 

necessary utilities to the manufacturing processes to fulfil their designated process, e.g. 

steam and PW. This includes the generation, circuitry, and conditioning of the essential 

utilities. Accordingly, TBS ensure that production environment conditions are achieved 

and maintained [65]. The operation of TBS itself requires resources and energy, e.g. 

mains water, electricity, and natural gas. Figure 2.8 illustrates examples of TBS for a 

manufacturing environment.  

In manufacturing systems, water is required at various locations. The majority of 

water is not directly used during production, but for TBS [66]. Therefore, the work 

presented within this thesis is focusing on two TBS that require large amounts of water 

in manufacturing facilities: PW and steam system. The following two sections outline 

these systems in more detail.  
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Figure 2.8: Example of interconnections between energy and resources, TBS, and 

manufacturing systems, data taken from [64]  

 

Purified water systems 

Water purification is a treatment process to guarantee high-quality water and is 

common for the manufacture of medical, healthcare and semiconductor products [67]. 

The term PW stands for a water quality category where almost all chemicals and 

contaminations have been removed. The requirements for the PW classification are 

subject to published standards that are regulated by regional organisations, i.e. by the 

European Pharmacopoeia Commission for member states of the European Union [68]. 

Depending on the source, water contains biological and inorganic matter in 

suspended, colloidal, and / or dissolved forms [69]. Membrane-based technologies 

remove particulate, organic, ionic and gaseous contaminants economically without the 

requirement of hazardous chemicals. Most of the industrial water purification processes 

are build up as hybrid systems that integrate one or more membrane processes in addition 

to chemical and electromagnetic radiation units. A typical layout may use microfiltration, 

ultrafiltration, and / or reverse osmosis as membrane processes in combination with water 

softeners and electromagnetic radiation, i.e. ultraviolet (UV) light. An example setup is 

shown in Figure 2.9. The characterisation of the single units in addition to the required 

operating conditions and maintenance is given in Table 2.1.  
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Figure 2.9: Common schematic of industrial PW systems, inspired by [70] 

 

Table 2.1: Common water treatment units in PW systems, taken from [69], [71] 

 Water treatment unit 
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Steam systems 

Steam systems are part of many industrial plants. Within the manufacturing 

sector, the largest amount of steam is used for process heating, HVAC (heating, 

ventilation, and air conditioning) systems, and to drive machinery [72]. The common 

usage of steam is due to its many advantages such as high heat capacity, high heat transfer 

efficiency, easy distribution, non-toxicity, and ability to provide heat at a constant 

temperature, as outlined by Nieuwlaar et al. [73]. Although sizes of steam systems in 

industrial facilities vary greatly, the design of these systems generally follows an overall 

pattern as depicted in Figure 2.10. Pre-heated water is fed to the boiler, where it is heated 
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to form steam [74]. The steam travels along the distribution pipes to various processes 

where the released heat from steam condensation is used. If lower steam pressures are 

required, pressure reduction valves are implemented before the steam using processes. 

The condensate is collected in a condensate tank and recirculated to the boiler. An 

implemented economiser preheats the boiler feed water by capturing waste heat from the 

burned flue gases. To make up steam and condensate losses, water is added to the 

condensate tank (known as makeup water). Chemical treatment is required for the 

makeup water to remove impurities. Since some impurities remain despite the chemical 

treatment, the boiler is drained periodically in a process known as blowdown. This 

prevents the agglomeration of the leftover impurities which can otherwise affect the boiler 

operation. 

 

 

Figure 2.10: Common schematic of industrial steam systems, inspired by [74], [75] 

 

The efficiency of steam systems  

Boilers account for the vast majority of energy consumption within a steam 

system and hold a large share of the total energy consumption of a manufacturing plant. 

The energy efficiency for gas-fired boilers varies from 76% to 81 % (higher heating 

value) [76]. However, poor maintenance of the steam boilers can lead to an efficiency 

loss of up to 30% [74]. In general, periodical metering audits are seen as an important 
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element to maintain the constant performance of the steam boiler. According to Barma et 

al. [77], this is not done on a routine basis in many places.  

When looking at improving the efficiency of steam systems, many publications 

focus solely on the boiler due to its large amount of energy consumption [78], [79]. 

However, additional benefits and increased efficiency can be achieved when the entire 

system is considered. Hasanbeigi et al. [80] evaluated the possible efficiency 

improvements of steam systems that operate in industrial plants in China. Based on 

questioning experts and analysing the potential improvements and their cost-

effectiveness, the authors concluded that 23% of coal energy could be saved in industrial 

steam systems in China. A key takeaway from this study is that existing steam systems 

offer a high potential for improved efficiency that is as yet unrealised. In a publication by 

Bhatt [81], the efficiency of various industrial steam systems was analysed. The author 

demonstrates that the highest inefficiencies are not coming from the steam boiler but from 

the heat losses in the steam distribution lines and unrecovered condensate. These 

segments of steam systems offer the highest scope for energy recovery and fuel savings. 

A single steam system of a potato starch production was studied by Bujak [79] with the 

goal of minimising energy losses. While calculating the energy losses of different steam 

system components, the author demonstrated that a significant efficiency improvement 

of the system could be achieved by preventing secondary evaporation through use of a 

pressurised condensate return. By applying this change to the analysed steam system, 

energy savings of up to 6% were achievable. Even greater were the savings on the makeup 

water where the introduction of the pressurised condensate tank reduced the added water 

required by up to 90%. In contrast to focusing on a single steam system, Therkelsen and 

McKane [82] looked at implementing the suggested efficiency improvements derived 

from more than 100 steam metering audits performed in US industrial facilities. The most 

common suggestions for improvements were to increase the amount of condensate return 

and to change the air-to-fuel ratio in the steam boiler. Re-auditing the plants after 24 

months revealed that the majority of suggested improvements were not implemented. 

Cost concerns were cited as the primary reason for this; either the expenses were viewed 

as too high or the return-on-investment was too long.  

In addition to large amounts of energy, steam systems require a supply of water. 

Although a vast amount of the condensate is typically reused in steam systems, the 

operation still demands substantial volumes of water. An analysis of the water usage of 

steam systems based on former steam metering audits in the U.S. has been presented by 
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Masanet and Walker [83]. From the results, the authors estimated that the amount of 

makeup water required to run U.S. steam systems is 376 million gallons per day, a similar 

amount to that required by the city of Los Angeles. In addition, a second publication by 

Walker et al. [84] modelled the water losses for different steam system components. The 

highest losses occurred due to direct steam injection, boiler blowdowns, secondary 

evaporation, and leaks. Although these approaches provide an insight into steam systems 

water usage, one major drawback is the lack of credible data and the resulting inaccuracies 

caused by estimations. According to Walker et al. [84], this is the reason for the small 

number of studies on the water use of steam systems. This absence leads to a high 

unawareness in the sector and excessive water consumption.  

2.2.2 Water-energy nexus 

To improve the water and energy consumption of manufacturing facilities, recent 

approaches are focusing on gaining a holistic understanding of industrial systems [61]. 

An important role herewith is the consideration of the water and energy relationship.  

According to the U.S. Department of Energy [85], the two resources are interdependent. 

All water system functions, apart from storage, are dependent on energy input, displayed 

in Figure 2.11.  

 

 

Figure 2.11: Water and energy relationship, adapted from [62] 

 

Conversely, water is indispensable for energy production and transport needs. This 
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consumption: close to 7% of the energy produced worldwide is used by pumps for water 

distribution [86].   

Historically, the two resources have been developed and optimised independently. 

Minimisation of energy has been a concern for manufacturing companies for many years 

because of energy’s non-renewable status [87]. Until recently, many manufacturers were 

not concerned about the amount of water intake in their facility. Gleick [88] was the first 

to described the water-energy nexus for the industrial sector in 1993. Since then the topic 

has gained increasing attention and industrial relevance [89]. In various studies, it has 

been shown that industrial processes associated with water are one of the main 

contributors to the total energy demand of process chains [62]. To demonstrate this 

relationship, the impact of water conservation approaches on energy consumption has 

been displayed in a three-phase model by Novotny [90]. Figure 2.12 displays this model 

and highlights the required complexities and involved staff to achieve the water savings.  

 

 

Figure 2.12: Three-phase model for water-energy demand reduction, adapted from [90] 

 

Novotny suggests within the first phase of the model that the reduction of high water 

usage goes hand-in-hand with a proportional reduction in energy consumption. Further 

water demand reductions can be achieved in the second phase by using additional sources, 

such as rainwater. This leads to water conservations, although there will be less significant 

energy savings due to the need for additional treatment processes. In the third phase, 
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advanced water treatment options, such as reverse osmosis units, have to be applied for 

an additional water demand reduction. As these technologies are energy-intensive, the 

overall energy demand increases. 

Concerning the water-energy nexus in the manufacturing industry, a limited 

number of publications are available that explore this topic in a production setting, e.g. in 

[62], [89], [91]–[93]. Several approaches are based on modelling the water and energy 

relationship to pursue two objectives; decreasing water and energy consumption by 

considering the interactions between both resources and increasing the awareness of the 

water-energy nexus. The following section presents five recent publications that focus on 

water-energy simulations. 

 

Modelling the water-energy nexus 

Schlei-Peters et al. [91] used process functions and process factors to simulate the 

water and energy flow. For each process step, functions for process input and process 

output are determined and subsequently integrated into a dynamic system to create a 

material flow network. In contrast, two publications by Mousavi et al. [92], [93] identified 

that a more holistic approach is needed to improve the water and energy efficiencies in 

manufacturing facilities. By using a hierarchical classification with three levels (machine 

tool, process chain, and whole factory) similar to the one presented by Duflou et al. [1], 

the framework distinguishes five modules within these levels:  

1. Process module 

2. Steam generation module  

3. Compressed air module  

4. Production planning and control module  

5. Integration and evaluation module (supervisory role in the simulation for 

coordinating activities, calculations and visualisation of the entire factory)  

 

For validation of the introduced framework, a case study by Mousavi et al. [92] revealed 

the direct relationship between throughput, energy, and water consumption in a 

pharmaceutical plant. Different production parameters were considered for the concurrent 

minimisation of energy and water that resulted in resource savings of up to 6%. 

A similar contribution to the simultaneous modelling of energy and water in a 

manufacturing plant was presented by Thiede et al. [62]. After identifying that most 

publications focus on one system-level only, the authors introduced five modules that are 
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attached to three hierarchical levels. The modules exchange input and output data with 

each other, as depicted in Figure 2.13. To allow data exchange between the modules, the 

authors reviewed different coupling methods that are suitable for manufacturing 

environments, such as offline and direct coupling. The presented case study demonstrated 

the feasibility of the methodology by simulating the water and energy consumption of a 

manufacturing company. In the example, the base case scenario confirmed the importance 

of the water-energy nexus by showing that 69% of the total energy demand was used in 

the interaction of these two resources. Three improvement scenarios in the case study 

showed that energy and water demand can be reduced simultaneously. However, the 

results indicate amplifying and attenuating effects when several improvements are 

applied to the system. 

 

 

Figure 2.13: Framework for multi-level models to simulate the water-energy nexus, taken 

from [62] 

 

By referring to the fact that transferable and systematic analysis methods are 

missing in modelling the water-energy nexus in manufacturing, Thiede et al. [89] made a 

second contribution to the research area. In contrast to the previous approach, the modules 

of the factory were situated on the same hierarchical level which simplified the coupling 

of the modules. Additionally, the transferability of the framework was improved by 

relying on common process components (pipes, pumps, heating, cooling, and wastewater 

treatment plant). In the selected case study, energy and water savings of up to 27% and 

55% respectively were realisable in specific process scenarios. 
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In summary, a scant number of approaches for modelling the water-energy nexus 

of manufacturing systems can be found in the literature. Several authors, including Thiede 

et al. [62], Mousavi et al. [92], and Sachidananda and Rahimifard [94], point out that due 

to the importance of the topic and the savings that are possible through simulation, there 

is a need for more contributions in this area.   

 

Critique on the water-energy nexus 

While the water-energy nexus has developed into an important approach in the 

industrial sector, some researchers do not share the need for increased awareness. 

Williams et al. [95] argue that the enhanced focus on the water-energy nexus is mainly 

coming from an economical perspective with a view on business opportunity. While new 

technologies around the water-energy nexus promise continued growth, the nexus should 

lead to a fundamental change in thinking about the use of resources. Furthermore, the 

principle of integration within the nexus is seen as a panacea. Castree et al. [96] criticise 

this 'single concept of integrated knowledge' since this method is neither possible nor 

desirable for complex systems. Cairns and Krzywoszynska [97] see the nexus as a 

buzzword with the absence of a real definition and a strong belief by the users in the 

ultimate benefits of the approach. Buzzwords lead to narrow-minded views by 

influencing what is thinkable and doable. This often applies to academic research where 

publications follow existing policy approaches to secure funding and increase attention 

instead of being critical, challenging or innovative [98]. For the water-energy nexus, a 

risk exists that the significance of the term contributes to ‘creative rebranding’ of existing 

research with little novelty. The present dominance of the nexus in terms of business 

opportunities and knowledge integration is seen as worrying indications towards this 

narrow-minded trend [97]. To improve the current development of the water-energy 

nexus, Williams et al. [95] identified a need to integrate social sciences. Critical social 

concepts can reduce the dominance of the technocratic approaches by insisting on 

discrepancy and politicising the nexus. Likewise, Cairns and Krzywoszynska [97] 

recommend the integration of social science to question social and environmental justice 

and to support alternative practices and understanding.  
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2.2.3 Hidden costs of technical building services 

The total cost of water 

A further trend that incorporates the water-energy nexus is the evaluation of the 

hidden costs of water systems. The available approaches are aiming to raise awareness of 

the real cost of industrial water usage. From an economical perspective, water is known 

to be underpriced in many industrial environments [69]. A lack of understanding of the 

embodied costs for water processing and treatment exists in many places. According to 

Kurle et al. [99], this is due to the fact that water is often an invisible resource in 

manufacturing facilities, similar to electricity or compressed air. A knowledge gap exists 

about the functionality and the operation of many water systems [100], resulting in 

underestimated costs and over utilisation [60]. It is common practice to relate the water 

usage only to the water supply cost while neglecting the further resources and additional 

values that are necessary. However, water systems require more resources than water 

alone. Electrical energy is needed in various stages of the system as demonstrated by the 

previously outlined water-energy nexus. In addition to these resources, ‘further added 

values’ are necessary to operate the water system, as indicated in Table 2.1. Further added 

values are individual for every system, such as maintenance, drain flow treatment, or 

monitoring of water quality.  

To date, the number of publications that address the total costs that result from the 

required resources and added values of industrial water is limited. Walsh et al. presented 

in three publications [100]–[102] a framework for addressing the total cost of water in an 

industrial facility. To raise awareness of the amount of water usage, the authors provide 

a structured guideline to analyse an industrial water system. First, major water flows are 

identified including water treatment and preparation steps. Second, every added variable 

is allocated a certain value that represents its cost per unit volume. An example of this 

value-added-table is shown in Table 2.2, where the shown variables represent the cost of 

the specific treatment per unit volume. The presented results illustrate that the total cost 

of the highest-value water flow inside a case facility is 14.05 times the amount of the raw 

water supply cost. This high value leads to a significant change when calculating the 

payback time of water optimisation approaches. Improvements to the water system would 

be profitable in a shorter time when referring to all water added values than just referring 

to the raw water supply cost [99]. 
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Table 2.2: Example of a value-added table, adapted from [100] 

 Value-added (€/m3) 

Utility 

Mains 

water or 

Overhead 

Chemical 

treatment 

Processing 

treatment 

Energy 

consumed 

Sampling/ 

Monitoring 

System 

main-

tenance 

Equipment 

depre-

ciation 

Drinking 

water 
M   Ed Sd SMd Dd 

De-ionised 

water  
M  Pdi Edi Sdi SMdi Ddi 

Chilled 

water 
M Tch Pch Ech Sch SMch Dch 

Hot water  M Thw Phw Ehw Shw SMhw Dhw 

 

A similar framework is shown by Leusder [103] which fixes on the expenses of 

an industrial water system. This work focuses on a water treatment system of a 

Singaporean brewery and illustrates how each individual driver affects the total cost of 

water. The main cost drivers in the case study were energy and capital investments. 

Compared to the entire operating costs, the total cost of water is within 0.4 - 0.5% which 

is negligibly low. The author concluded that the total cost of water offers the potential to 

function as an index parameter that allows easy comparison of industrial water systems 

and represents a facilities’ dependence on water. 

The publications by Walsh [100]–[102] and Leusder [103] can be seen as the first 

methodological contributions towards calculating the total cost of industrial water. Their 

work indicates that the total cost of industrial water is dependent on the required treatment 

steps and volumes. The total cost of industrial water can be further improved by providing 

a continuous cost calculation. This would represent an automated benchmark index that 

can show how the cost is changing over time and how system modifications influence 

this cost.  

 

Hidden costs of steam systems 

In parallel to water systems, resources and further added values are required for 

the operation of industrial steam systems as well. Steam is generated in a boiler by the 

combustion of energy carriers. Vast amounts of energy are required. In the USA up to 

37% of the total fossil fuel consumption is used to produce steam [77]. Within the 

manufacturing sector, steam systems are the largest consumer of energy (single units). 

On a global scale, steam systems account for approximately 30% of the energy used in 

manufacturing facilities, as reported by Yang and Dixon [104]. 
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 Within Europe, the most common energy source for steam boilers whose size 

exceeds 1 MWth was natural gas with a share of 70%, followed by oil (15%) and electricity 

(10%), according to a publication by the European Commission from 2016 [75].  

In addition to thermal energy, varying amounts of water are required (makeup 

water) to replace steam or water losses and to produce directly injected steam [83]. 

Furthermore, electrical energy is needed in various stages of the system, e.g. to run pumps 

and boiler fans. Besides these resources, steam systems require further added values for 

operation, such as maintenance or makeup water treatment [84].  

Similar to the total cost of water, the U.S. Department of Energy published a 

technical brief outlining a methodological approach for calculating the total cost of steam 

[105]. The department sees the evaluation of the total steam cost as a key parameter for 

the optimisation of steam systems which serves as an important driver for efficiency 

improvements as it visualises the real value that is embedded in steam [45]. For the 

calculation of the total steam cost, the required resources and further added values are 

incorporated. On the resource side, boiler fuel, feed water, and electricity are considered. 

As further added values, several expenses are added that include chemical treatment of 

the boiler feed water, system maintenance, and labour cost. When the methodology was 

applied in a case study, more than 90% of the total steam cost resulted from the boiler 

fuel, followed by electricity (3%), boiler feed water (2%), and wastewater treatment 

(<1%). As a conclusion, the authors point out that the steam generation rate can have a 

considerable influence on the steam cost. By considering resources and further added 

values for steam systems, this publication is an important approach for displaying the 

embedded value of steam. As a drawback, this method is designed for a single calculation 

of the steam cost by manual measurements. This impedes the monitoring of the cost over 

a longer period.   

 

Internal and external costs 

The added values to water and steam described in the previous section initiate the 

question of which costs industrial companies consider within their accounting. In general, 

costs for production facilities can be divided into internal and external costs [106]. 

Internal costs are directly monetisable for a product and include expenses such as 

resources, labour, or maintenance. In contrast, external costs, also referred to as 

environmental externalities, are effects that are not directly linked to the production or 

consumption of a good or service [107]. They represent the price of the business' impact 
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on the environment and society [108]. In many cases, neither the market nor regulations 

assign external costs to the responsible companies, as depicted in Figure 2.14. The price 

for these costs is paid by society, e.g. by natural resources, losses in environmental 

quality, and / or global warming. Monetarising external costs is difficult since they are 

non-transparent [109]. However, with life cycle assessment a technique exists that strives 

to incorporate the environmental effects of products. Linke et al. [110] describe process 

life cycle assessment as a methodology that investigates the input and output streams of 

a product at different stages of it's life. In recent years, a shift in attitudes towards 

environmental protection increased the recognition of external costs that are revealed by 

life cycle assessments. Nonetheless, more effort is needed in recognising and reducing 

externalities since a failure to address these impacts today would lead to even higher costs 

for humanity in the future [111]. Besides higher costs, the inclusion of environmental 

externalities can lead to positive effects for companies. Regardless of regulatory 

mandatories, Shapiro [108] described that society and stakeholders appreciate businesses 

that consider and disclose environmental costs nowadays. Besides, international 

competitiveness can be increased by considering environmental impacts. New global 

regulations are often based on the highest environmental standards. Staying ahead of 

existing standards prevents companies from retrofitting designs and processes. However, 

many companies are still primarily focusing on minimising production costs and ignoring 

the external costs unless they are reflected in taxes [112]. 

 

 

Figure 2.14: External vs. internal costs of a product 
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When considering the full cost of water in industrial surroundings, the external 

costs, such as any damage caused to return water, have to be included [113]. Similar to 

other resources, the monetarisation of the environmental impacts is difficult for water 

since the value of water is depending on the timing and reliability of water supplies. 

Rogers et al. [112] stated that many water prices nowadays do not even cover the full cost 

of supply nor do they take the external costs into account. This leads to inefficiencies and 

overuse of water in industrial facilities. 

For steam systems, the fuel that is combusted in the boiler is the most required 

resource. In general, studies demonstrate that the combustion of natural gas, the most 

common energy carrier for steam boilers in the European Union, results in lower external 

costs compared to oil or coal [114]. Nonetheless, natural gas combustion still emits 

significant amounts of air pollutants that impact the surrounding society and environment 

in areas such as human health, crop yield, and climate change [111].   

2.2.4 Benchmarking 

Industrial water system benchmarks 

To reveal the potential for optimisation within a water system, benchmarking 

measurements allow a simple comparison of water consumption within certain industrial 

sectors [115]. According to Hon [12], benchmarking is the continuous process of 

evaluating the performance of a system compared to the best in class performance of 

similar systems. For water systems, the detailed analysis of water intake in each process 

step gives comparative values of the water quantity used. Hereby, performance goals can 

be set and inefficient process steps can be identified and addressed in a subsequent 

optimisation approach. 

To conduct a water benchmarking measurement, different approaches are 

available. In 2014 the International Organization for Standardization (ISO) presented a 

standardised framework for benchmarking the water consumption of a product during its 

lifetime in the form of the Water Footprint (ISO 14046) [116]. The concept has been 

applied by several authors in the form of life cycle analysis in manufacturing 

surroundings. Chen et al. [117] presented a methodology for assessing the water footprint 

of a machine tool. The authors concluded that the water footprint of a machine tool is 

dominated by the usage stage relative to the material for assembly, the manufacturing 

process, and the transport of the machine tool. Mousavi et al. [66] published a model to 
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simulate the water footprint in manufacturing systems. The model is capable of taking 

both direct and indirect water usage into account and can differentiate between the 

different forms of virtual water. Figure 2.15 represents the used scheme for a generic 

manufacturing facility.  

 

 

Figure 2.15: Schematic representation of an industrial water footprint, taken from [66] 

 

In Figure 2.15, direct water stands for the amount of water that is directly used in 

the facility and indirect water encapsulates the total volume of water entering the factory 

through other inputs. The colours blue and green are referring to the origin of the used 

water; blue stands for fresh surface and groundwater, and green for water that is collected 

from rainfall. The colours grey and black stand for the volume of water needed to dilute 

pollutants to meet water quality standards, grey corresponds to mild pollution; black to 

heavy pollution. An application of the model in a pharmaceutical environment showed 

that only 22% of the water intake is converted to product, while the remainder is turned 

out as wastewater. A similar approach by Pham et al. [118] quantified water flows in 

industrial parks based on mass balances. Data is acquired through a questionnaire survey 

conducted in industrial parks in Vietnam. A water balance framework classified water 

flows in companies by withdrawal, effluent discharge, losses, use for production, and use 

for domestic. The results show the water consumption of nine different industry sectors 

and indicate that the textile and leather industry use and discharge by far the most water. 

The manufacturing sector is ranked fifth in terms of water intake and wastewater 
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discharge. While the water usage characteristics are shown by the authors, one major 

drawback of this publication is that the water flows are not related to production outputs. 

It is not clear if high water consumption corresponds to large production rates or if they 

indicate inefficient water usage.   

Besides the Water Footprint Standard, a variety of other benchmarks exist that are 

more specific to different manufacturing sectors. One example is the ‘Water Usage 

Effectiveness’ that measures the water used for cooling activities in data centres [119]. 

Another example of benchmarking water and energy usage within a manufacturing 

facility when considering the water-energy nexus was presented by Thiede et al. [89] in 

the form of the ‘Water-Energy intensity’. The benchmark describes the adopted energy 

content of water (in terms of thermal, kinetic, potential and chemical energy) compared 

to the total inserted amount of energy (embodied energy). The benchmark can be used for 

performance comparisons between factories or individual modules. 

 

Industrial steam system benchmarks  

For industrial steam systems, fewer benchmarks can be found in the literature 

compared to water systems. Up to now, no ISO standard exists for steam systems that is 

comparable to the Water Footprint presented in the previous section. The U.S. 

Department of Energy [120] advises calculating the fuel cost per generated amount of 

steam. According to the publication, this represents an effective way to assess the 

efficiency of steam systems. The parameter is dependent on the fuel type, fuel cost, boiler 

efficiency, feedwater temperature, and steam pressure. A similar ratio is presented by 

Bhatt [81] in the form of the steam to fuel ratio. This benchmark differs from the fuel cost 

per generated amount of steam parameter in that the cost of fuel for the boiler is not taken 

into account. Both parameters are an example of an effective way of characterising the 

performance of a steam generation system. However, they are limited in reflecting the 

performance of the entire steam system since the steam consumption side is not 

considered. To reflect the overall performance of a steam system, the total cost of steam 

parameter [105], outlined in section 2.2.3, is more suitable since it incorporates both 

steam generation and consumption. 
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2.2.5 Metering audits 

A metering audit represents a cost-effective way to visualise resource flows and 

to identify inefficiencies by recording and quantifying the usage within a manufacturing 

facility [121]. For a detailed metering audit, all resources and further added values of the 

examined system must be recorded. The representation of the data in reports and graphs 

enables the identification of use patterns. For an enhanced visualisation of resource flows, 

Sankey diagrams represent a valuable tool by connecting related processes and indicating 

the quantitative information by line width [122]. Deviations from standard patterns can 

then be easily spotted and further investigated [87]. Benchmarks and Key Performance 

Indicators (KPIs) are useful during audits as reference points, for the control of activities, 

and to schedule maintenance procedures. 

A key element for a successful metering audit is the gathering of sufficient process 

data from the examined system. According to Sachidananda and Rahimifard [94] three 

different methods exist for collecting data from an industrial process, summarised in 

Figure 2.16:  

 

1. Empirical methods 

Empirical methods are the most accurate and most common technique for data 

acquisition. Metering devices are installed in the process to measure the required 

parameter. Many meter technologies have evolved to cover a vast number of applications 

by directly or indirectly measuring the required process parameter. Common principals 

for measuring water flows are positive displacement flowmeters, variable area 

flowmeters, and electromagnetic flowmeters [123]. For steam flowrates, differential 

pressure and vortex flowmeters are widely used. Despite the high accuracy, empirical 

methods are costly, labour-intensive during meter installation and maintenance, and 

might require invasive access to the process.  

 

2. Theoretical methods 

By estimating flow rates and further parameters based on process knowledge and 

mathematical models (e.g. estimating the water volume in a tank by the tanks’ 

dimension), theoretical methods are an alternative option in the absence of a physical 

measuring device. As a drawback, this method requires process knowledge and in some 

cases several assumptions which can result in inaccuracies. 
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3. Statistical methods based on literature data  

The third method uses statistical calculations based on literature data (e.g. surveys 

for domestic water use). Their use in industrial systems is unusual and only applied if 

empirical or theoretical methods are not possible. Due to their generic character, they 

show high inaccuracies.  

 

 

Figure 2.16: Data collection methods from industrial processes 

 

In many industrial sites, the application of the three data acquisition methods is 

limited. This leads to a lack of data which is a barrier for metering audits, prevents process 

understanding, and system optimisation approaches.  

Most manufacturing water systems are capable of measuring input and output 

flowrates at a factory level but do not provide an in-depth breakdown of water usage at 

process levels [94], [99]. Similar applies to steam systems, where detailed data about the 

steam generation and in particular steam consumption throughout an industrial plant are 

often missing. Several authors have identified this data gap as one of the key barriers to 

optimisation efforts for water systems [94], [99], [124], [125] and steam systems [45], 

[80]. Due to this knowledge gap operators do not know the potential for optimisation 

within their system or the corresponding cost saving, which leads to difficulties in 

identifying a starting point for resource minimisation efforts.  
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Even when enough metering devices are in place, continuous maintenance is 

necessary to guarantee accurate monitoring of the measured parameters and to replace 

broken instruments, as stated by Liu et al. [126]. Although new metering devices are 

becoming increasingly smart, e.g. with the ability for self-checks [127] or the correction 

of the instrument output when influenced by environmental variations, continuous 

maintenance is still required [14]. This maintenance is not done to the full extent in many 

industrial facilities due to the required effort and cost [128]. Missing and broken 

measuring devices prevent the accomplishment of metering audits and continuous 

monitoring of the process. Therefore, more practical metering strategies are needed from 

academia that take into account data gaps of industrial systems, as reported by Bunse et 

al. [26]. To date, research has been mainly focused around the efficiency and metering of 

energy [1], in particular of electrical energy, as outlined below. More attention is required 

to include all other resource streams of manufacturing processes [110]. 

For metering electrical energy consumption during production processes, several 

approaches have been published that take existing conditions in manufacturing sites into 

account. This can be achieved by different means including detailed methodologies for 

industrial implementation of an energy metering system [129], [130] and the analysis of 

consumed electricity of manufacturing machines during different modes [131]. Balogun 

and Mativenga [132] developed a three-phase model that provides a generic and robust 

estimation of the electricity consumption of a machining process. A more comprehensive 

metering strategy in the form of a two-step approach for life cycle analysis of machine 

equipment was presented by Kellens et al. [133], [134]. First, an initial screening, based 

on available process data and calculations, provides an insight into machining processes 

in terms of energy use, material, and possible system improvements. As second step, the 

gained knowledge is used to guide an in-depth metering approach to obtain accurate data 

and identify possible energy improvements. This is achieved by a time, power (energy), 

and consumables (materials, components, etc.) study. Within the scope definition of the 

in-depth approach, the authors outline the importance of defining clear system boundaries 

for the metering audit. These boundaries determine which unit processes and sub-

processes (level of detail) are investigated, as depicted in Figure 2.17. The interaction 

with the surrounding technosphere, in terms of input and output flows to the selected 

system, have to be incorporated unless they do not significantly change the overall 

conclusion of the metering campaign. The functioning of the machining process is then 

isolated from the other elements of the general production system. The focus of the 
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metering audit is on normal working conditions solely and neglects exceptional events. 

Nevertheless, the selection of suitable system boundaries can be challenging.  

 

 

Figure 2.17: System boundaries of a unit process, adapted from [133] 

 

Rajemi et al. [135] demonstrated in their energy optimisation approach for machine tools 

the impact of different system boundaries on the optimum energy parameters. This study 

shows that a consensus for system boundaries is needed to avoid conflicting outcomes.  

Similar to the life cycle analysis approach by Kellens et al. [133], [134] and the 

available methods for quantifying electrical energy in manufacturing processes, 

transferable metering frameworks are needed for industrial water and steam systems that 

overcome the challenges of limited numbers of installed metering devices [94].  

 

Benefits of a metering audit 

The application of a metering audit offers great advantages for water and steam 

systems and industrial processes in general. The gained data forms the foundation for 

deeper process understanding that can be used in a variety of procedures such as further 

process analysis or strategic investments at management level [136]. Furthermore, it can 

be used to identify the weak spots of a facility’s monitoring system. It has been shown 

that a well-operating monitoring system can lead to a system performance improvement 
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of up to 30% due to adequate guidelines and increased awareness [21]. Another goal can 

be to identify the most suitable location for installing new metering devices into a system. 

Rao et al. [137] presented a strategy on how to use temporary meters during an audit to 

find the best position for the installation of permanent electrical meters. The location and 

frequency at which data is collected is a challenge, particularly for SMEs that cannot 

afford to install a huge number of permanent meters. The methodology presented by the 

authors suggests the collection of data from existing meters at the beginning of the audit 

in order to identify data gaps that can be filled by temporary submeters. After analysing 

the collected data of all meters, the need for permanent measuring devices is evaluated 

along with measuring location and frequency. A further benefit of a metering audit is 

pointed out by Sturman et al. [121]. Due to the depletion and shortages of many natural 

resources worldwide, stricter usage regulations are expected in the near future. Therefore, 

it is desirable to gain an increased knowledge about saving potentials within industrial 

systems through regular metering audits. This enables a company to react quickly to 

restrictions and supply shortages that may arise in the future.   
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2.3 Proxy measurements 

Data gaps due to missing or broken measuring devices are a common problem in 

industrial metering systems, as outlined in section 2.2.5. To overcome this barrier, 

additional measuring devices can be installed. However, this results in high costs, 

increased labour-intensity during installation, and frequently invasive access to the 

process [138]. Due to these drawbacks, additional installation of measurement devices is 

often avoided if it is not crucial for the process. 

An alternative to the use of physical measuring devices are proxy metering 

strategies. A proxy meter device (PMD) combines empirical and theoretical methods to 

estimate an operating parameter by one or more correlated and measurable system 

parameters in combination with statistical techniques [139]. A schematic example of the 

PMD method is shown in Figure 2.18.  

 

 

Figure 2.18: Schematic example of proxy metering 

 

When using a PMD, no permanent physical meter device has to be integrated into the 

process to approximate the missing data. By relying on the existing infrastructure, PMDs 

follow the idea of using (relatively) easy accessible online data for the estimation of either 

difficult to measure, inaccessible, or offline process parameters [140]. Models dedicated 

to the estimation of other variables are known as proxy meters, soft sensors, or virtual 

sensors [126]. In this work, the term proxy meter device (PMD) is used instead of the 

frequently used term soft sensor. This choice has been made as most of the publications 

that include the term soft sensor represent a virtual meter device that comes from a 

mathematical perspective and focuses on ever advancing mathematical solutions, e.g. in 
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[141]–[145]. A PMD in the scope of this work is interpreted as a more basic form of 

virtual meters that comes from an engineering perspective and focuses on minimal 

modelling needs.  

Fortuna et al. [138] and Doraiswami et al. [146] showed that PMDs offer promising 

advantages in comparison to physical measuring devices due to their dependence on 

existing infrastructure. These advantages include: 

• Simplified process implementation: Integration of a PMD is possible while the 

process is running. There is no invasive access needed. 

• Lower implementation cost: No further physical measuring device has to be 

purchased and implemented. Nowadays, the wide availability of digital monitoring 

systems often provides enough data for designing PMDs based on available data 

sources. However, depending on the complexity of the model, the development can 

be time intensive.  

• Real-time data estimation: Data from offline measuring devices and hardware 

sensors with low sampling frequencies can be integrated into an online monitoring 

system by using PMDs.  

 

Since the prediction of a PMD is based on a model in combination with physical 

metering devices, there is an error associated with using it as a predictor. According to 

Boiarkina et al. [147], this error is dependent on a variety of factors, e.g. the chosen 

model, the complexity of the underlying physical process, and the availability of related 

measuring devices. For the development of a PMD model, three categories exist that are 

dependent on the used approach. Figure 2.19 shows an alignment of the different models 

in comparison to their complexity and required process knowledge.  

 

 

Figure 2.19: Modelling types for PMDs, inspired by [138] 
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The three different model types are explained in more detail below [144], [145]: 

• Model-driven: Full phenomenological knowledge about the process is used for this 

type of model. This model is commonly derived from fundamental chemical or 

physical laws that describe the principles of the process. Deep knowledge of the 

process is needed which is not always available. In the literature, they are also 

known as white-box models. 

• Data-driven: Empirical correlations are used for data-driven models. In contrast to 

the model-driven type, small knowledge of the process is needed. The process 

description is based on empirical observations. In the literature, data-driven models 

are also known as black-box models.  

• Hybrid-models: This type of model combines model- and data-driven approaches. 

A combination of physical and empirical modelling is used to estimate the output 

of an unmeasured process. In the literature, hybrid-models are also known as grey-

box models. 

 

Nowadays, higher availability of process data has led to PMDs being 

predominantly modelled by data-driven models [148]. Since data-driven models are the 

most common type of PMDs in industrial applications to date, the following study in this 

research focuses on data-driven models only. When suitable data is available, data-driven 

models represent a straightforward method to assist plant operators in diagnostic, 

prognostic, and decision support. 

2.3.1 Proxy meter development and maintenance  

The general schematic for the development and operation of a data-driven PMD 

is depicted in Figure 2.20. The following paragraphs explain in detail the development of 

new PMDs for industrial applications and outline maintenance procedures required to 

ensure higher accuracy during operation.  
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Figure 2.20: Proxy meter development and operation: PMD development method [a], 

Overall layout for the operation of PMDs [b], adapted from [145], [149] 

 

A variety of approaches can be found in the literature that describe the 

development of PMDs in industrial environments [141], [145], [150]. Referring to 

Luttmann et al. [140], the modelling of a PMD consists of two main components; the 

selection of related measurement devices and the mathematical process. Once data gaps 

(target variable(s)) are identified, related online meters have to be found. Previously 

gained process knowledge assists in the selection of suitable, related measuring devices. 

In the case that there are no measuring devices associated with the target variable, an 

additional physical meter has to be integrated into the system. If related devices are 

available, the PMD development for data-driven models can start according to the generic 

framework shown in Figure 2.20 [a].  

 

First data inspection 

Within the first phase of this framework, an overview of the data structure is 

gained to identify preliminary issues within the data structure [145] e.g. locked variables 

that show a constant value. In addition, the initial data inspection provides insights into 

possible models that could be used in the later model selection phase.  

 

Selection of historical data 

Next, historical data records are selected from the related measurement devices 
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of model complexity is achievable when only stationary parts of the data are used. 

Furthermore, only data from normal operating conditions should be considered within 

this phase, ignoring seldom occurring events.  

 

Data pre-processing 

Data pre-processing is a crucial phase in the development of a PMD. Although 

the pre-processing requires high efforts, it is of great importance as the developed models 

are only as good as the accuracy of the input data [151]. When data is collected from 

industrial applications it contains inconsistencies such as diverting sampling time, 

missing data, and outliers. In the data pre-processing step these problems are addressed 

to enable more effective modelling. In a case application of a PMD for estimating nitrogen 

oxide emissions in the automotive industry, Khachane et al. [152] demonstrated the 

benefits of including graphical tools in the data pre-processing stage as well. In this 

publication, scatter plots have proven to be a valuable tool to visually present the relation 

and inconsistencies between two variables.  

Divergent sampling times of variables are common in industrial settings when 

different online monitoring systems are in place. Additionally, to reduce data size, some 

monitoring systems are set up to only record a new data sample if the parameter changes 

more than a pre-defined threshold. In such cases, the sampling time between each 

recorded reading varies. As stated by Souza et al. [141], the synchronisation of the 

selected variables is essential before their use in a PMD model. The most common 

approach to achieving this is the down-sampling method. This method excludes the 

values of the more frequently measured variable that do not have a corresponding value 

with their less frequent counterpart. However, this method can lead to inaccurate models 

due to information loss if the less frequent variable is scarcely sampled. As a more 

complex alternative, a finite impulse response model can be used. This method estimates 

values of the less frequent variable by using weighted sums of previous measurements in 

a window of finite length [149]. 

Missing values result from various causes, most commonly from hardware 

failures, abrasion effects, or data transmission problems. In general, there are two 

approaches to deal with missing data sections [145]. First, if the number of missing values 

is small, listwise deletion can be performed to remove the data gaps. Second, if larger 

sections of missing data exist, an alternative method for filling the missing values has to 

be applied to prevent information loss. A simple technique is to use the mean or median 
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of the non-missing values for that variable (multiple imputations). The use of the 

maximum likelihood method represents a more complex approach to filling data gaps, 

whereby a model is assumed for the data distribution of the variable. It has been shown 

by Souza et al. [141] that significant improvement in the estimation of larger amounts of 

missing values is possible by using the maximum likelihood method instead of mean / 

median substitution. 

The third common problem in collected datasets from industrial processes is data 

outliers. Lin et al. [150] considered values as outliers when they are not consistent with 

the majority of data and deviate significantly from normal values. Typical causes of 

outliers are sensor malfunction, communication errors, or sensor degradation. Outlier 

detection constitutes an essential step as the model may otherwise misrepresent the 

system. To start, obvious outliers that do not satisfy the technological limitations of 

physical meters can be easily identified and removed [148]. Based on statistical 

techniques, the simplest method for detecting an outlier in measurements is based on the 

3σ rule (equation (2.1)) which assumes that the values follow a Gaussian distribution 

[153]. 

 

 

where 𝜇(𝑥) is the mean value, 3 is the threshold, and 𝜎(𝑥) is the standard deviation of the 

variable 𝑥. A data point will be labelled as an outlier if the value is three or more standard 

deviations from the mean value. When data is affected by many outliers, the 3σ rule is 

insufficient because the outliers inflate the variance estimation. A more robust version of 

the 3σ rule is the Hampel identifier [154], equation (2.2). Here, the mean value is replaced 

by the median value and the median absolute deviation (MAD) replaces the standard 

deviation. 

 

 

where 𝑥∗ is the median of the data sequence. The factor 1.4826 is chosen to make the 

expected value of the MAD scale equal to the standard deviation 𝜎(𝑥) for Gaussian data 

sequences. Pearson [155] demonstrated that the use of the Hampel identifier within a 

moving window filter with a defined window size is favourable for identifying outliers in 

larger measurement samples.  

    𝑂𝑢𝑡𝑙𝑖𝑒𝑟 (𝑥) =  𝜇(𝑥) ± 3𝜎(𝑥)   (2.1) 

   𝑀𝐴𝐷 =  1.4826 𝑚𝑒𝑑𝑖𝑎𝑛 {|𝑥𝑖 − 𝑥∗|}   (2.2) 
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As a necessity, the 3σ rule and the Hampel identifier assume that outliers follow 

a Gaussian normal distribution. However, for industrial measurements, this is not always 

the case. An example is the measurement of low absolute pressures. From physical 

limitations, measurements can never be negative. In these circumstances, the 

measurement distribution can be heavily skewed or restricted on one or two sides, which 

is known as truncated normal distribution. For these cases, the 3σ rule and Hampel 

identifier cannot be applied. Though, a logarithmic transformation allows changing the 

skewed data into or equal to a normal distribution [156]. For datasets with a variety of 

variables, univariate outlier detection approaches are limited in their function. In these 

cases, multivariate outlier detection approaches have to be considered that take the 

interaction among variables into account. Principal Component Analysis (PCA) and 

Partial Least Squares method are effective techniques that project and reduce the data 

dimension by finding an alternate set of coordinates [157]. For outlier detection within a 

PMD model, Fortuna et al. [138] used three statistical parameters, known as the Jolliffe 

parameters. These parameters are applied to the decomposed data from PCA and can 

identify outliers that do not conform to the correlation structure of the data or inflate the 

data variance. A more comprehensive description of the Partial Least Squares method is 

outlined in the subsequent section.  

 

Model selection, training, and validation 

Before a suitable model for a PMD is selected, a reduction in the number of input 

variables might be necessary when the number of available input variables is high. Fewer 

numbers of input variables simplify the modelling process due to fewer pre-processing 

needs, less computational demand, better interpretation, and a smaller risk of overfitting 

(for an explanation of overfitting please refer to section 2.3.3) [158]. Unsupervised and 

supervised variable selection methods can be applied to reduce the input dimension. As 

an unsupervised method, multivariate approaches like PCA are common to identify the 

variables with the highest variances. O’Driscoll et al. [159] presented a methodology to 

identify the variables with the highest influences for a machine tool by using pattern 

recognition in combination with PCA. A similar approach can be used within the 

modelling stage of a PMD when the number of input variables is large. As a supervised 

variable selection method, the choice of input variables is guided with the goal to attain 

the highest possible model accuracy [141]. To start, a subset of input variables is chosen. 

Kadlec and Gabrys [160] outlined in their review of industrial PMD development that 
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process knowledge is crucial to facilitate the selection of input variables that have a high 

impact on the target variable. This subset is then used for training the PMD model. At a 

later stage, the trained model is validated with a suitable performance measure to judge 

the accuracy compared to other models that have been trained with different subsets. At 

the end of the PMD development, the subset with the highest model accuracy is selected. 

Andersen and Bro [158] outlined a similar variable strategy in their review of variable 

selection methods for regression algorithms, known as forward selection. In this method, 

the variable with the lowest predicted error is selected initially. Subsequently, the variable 

that shows the best performance in combination with the first variable is added to the 

model. This procedure is continued until the predictions no longer improve by adding 

new variables. To identify the relevance of single input variables in relation to the target 

variable, Andersen and Bro [158] recommend the use of the correlation to the target 

variable or the selectivity ratio. This ratio is defined by the explained variance divided by 

the residual variance and is calculated for every input variable. The explained variance is 

expressed by the Coefficient of Determination (R2). For the residual variance, a linear 

regression model is first developed with the analysed input variable and the variance of 

the residuals are calculated subsequently. Higher correlations to the target variable and 

selectivity ratios indicate good predictive performance of the selected input variable. 

A suitable PMD model is selected based on the pre-processed data and expert 

knowledge. The choice of the model depends on the application of the PMD, process 

layout, nature of data, and experience of the model developer. Kadlec et al. [145] point 

out that no unified theoretical approach exists for the selection of a PMD model. In the 

literature, Wolpert and Macready defined this limitation as the ‘no free lunch’ theorem 

[161]. The authors state that “if an algorithm performs well on a certain class of problems 

then it necessarily pays for that with degraded performance on the set of all remaining 

problems”. Thus, it is often required to use several approaches and base conclusions on a 

combination of analysis results [162]. For the model selection of a PMD, it is 

recommended to start with a simple model and gradually increase the complexity as long 

as significant improvements can be observed in the model’s performance [151]. 

Significant performance differences can be evaluated with the statistical t-test. A key 

influence on model performance is the complexity within the training and validation 

dataset. The relationship between regression algorithms and dataset complexity is 

outlined in more detail later on in this section. In general, there are two choices at the 

beginning of the model selection: a linear or a nonlinear model. For model simplicity, it 
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is recommended to start with a linear model. According to the PMD developing 

experience of Fortuna et al. [138], linear models are still able to show acceptable 

performance in many industrial processes when non-linearity is only slightly present and 

processes are almost steady-state. If a linear model does not provide satisfactory results, 

the use of a nonlinear model can be considered. The most popular models for linear 

relationships in data-driven PMDs are the Multiple Linear regression (MLR) and Partial 

Least Squares regression (PLSR) models [149]. For nonlinear behaviours, Neural 

Networks (NN) and Fuzzy logic systems are frequently used. The functional principle of 

MLR, PLSR, and NN are outlined in further detail below. A combination of different 

models can be employed to improve functionality. This is adopted by the ensemble 

approach, whereby a set of base models is trained and their responses are combined to 

obtain a more accurate prediction compared to the use of a single model [163]. Successful 

implementations generate a diverse range of base models by varying initial conditions, 

manipulations of the training dataset, and / or using different learning algorithms. 

Moreover, the combination of these models is crucial. Common response combinations 

are achieved by using the mean value, a weighted average, or a NN according to Soares 

et al. [164].  

In the training phase of a PMD, the model is tuned on the pre-processed dataset 

which includes all common operation states of the process. In most industrial processes, 

multiple operating modes exist [141]. Regularly training the model might be required if 

the system state changes frequently e.g. when the system is highly sensitive to external 

disturbances, such as changes in feedstock or ambient temperature. To evaluate the 

model’s performance, it is tested on a new set of data. Therefore, it is common practice 

to split the historical dataset of the input variables into a training and validation set at the 

beginning of PMD development, known as holdout validation [165]. Once a model has 

been developed with the training set, it can be validated by using it on the validation set. 

The objective of this validation is to assess the performance of the trained model on new 

data samples. For performance metrics, the Mean Squared Error (MSE), the more 

intuitive Root Mean Squared Error (RMSE), or the Pearson Correlation Coefficient (CC) 

are generally used [145]. The MSE measures the average square distance between the 

predicted and the correct values [166], according to equation (2.3): 
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where 𝑓(𝑥𝑖) is the prediction that the trained model gives for the 𝑖-th observation, 𝑛 is the 

number of all observations, and 𝑦 is the predicted value. The MSE shows a small value 

if the predictions are very close to the true responses. It is a simple and common measure 

for learning algorithms. However, the interpretation of this parameter can be difficult due 

to the squaring. As an alternative, the RMSE is defined as the square root of the MSE. 

This simplifies the understanding of the error measure since it has the same unit as the 

original values [167]. In contrast to MSE and RMSE, the CC measures the correlation 

between two variables 𝑥 and 𝑦 [168], equation (2.4). The value of CC lies between -1 and 

1. A value of 1 indicates that the data points lie on a straight line with a positive slope, 

with x and y increasing together. A value of -1 indicates a straight line with a negative 

slope. The CC is independent of the magnitude of the slope. A value near 0 implies no 

correlation between x and y.   

 

 

where �̅� is the mean of the 𝑥-values and �̅� is the mean of the 𝑦-values. For PMD 

validation, the CC is a valuable measure of the correlation between actual and predicted 

target variable when the model is applied during validation. It has been used in several 

PMD use cases that can be found in the literature [169]–[171]. CC values closer to one 

imply high estimation capabilities [171]. Though, Maciel et al. [172] advise that some 

caution must be taken since correlation can also be observed at random and outliers can 

strongly influence the correlation result.  

Besides the application of numerical performance evaluation, graphical tools can 

be very powerful for validation [138]. An example of the visual inspection of recorded 

and estimated values are scatter, residual distribution, and normal probability plots.  

 

Dataset complexity evaluation  

The complexity of datasets is decisive for the performance of different regression 

algorithms. To characterise data complexity, meta-learning approaches can be used. 

Thereby, model inputs and output(s) of a dataset are analysed to predict the performance 

   𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛

𝑖=1

   (2.3) 

   𝑟 =  
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1  √∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1

   (2.4) 
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of learning algorithms as shown by Brazidal et al. [173]. Meta-learning follows the aim 

to aid users in selecting a suitable predictive model for their application case. To date, 

meta-learning approaches for characterising datasets have been mainly focused on 

classification problems [172]. For the classification domain, measures exist that give 

recommendations for the selection of suitable algorithms based on the data complexity 

[174]. For regression problems, Lorena et al. [175] recently presented a set of measures 

that can be applied for regression problems of varying complexity. These measures are 

intended to characterise regression complexity from different perspectives by including 

the following categories; inputs correlation to the target variable, linearity, smoothness, 

and data geometry, topology, and density. Table 2.3 depicts and describes the regression 

complexity measures. In the last column of Table 2.3, the symbol ↑ denotes that higher 

values of the specific parameter indicate more complex regression datasets, whereas the 

symbol ↓ denotes the opposite. For further explanations and calculations of the shown 

measures, please refer to Appendix A .  

 

Table 2.3: Dataset complexity measures for regression models, adapted from [175] 

Object Label Measuring feature Parameter relying on Complexity 

Correlation 

C1 
Maximum inputs correlation 

to target variable 

Single inputs-target 

correlations 
↓ 

C2 
Average inputs correlation to 

target variable 

Average inputs-target 

correlation 
↓ 

C3 Collective input efficiency Correlation + linear fit + 

residual error  
↑ 

Linearity 
L1 Mean absolute error Multiple linear regression ↑ 

L2 Residual variance Multiple linear regression ↑ 

Smoothness 

S1 Inputs distribution Euclidean distance ↑ 

S2 
Error of nearest neighbour 

regressor 

Nearest neighbour 

regression 
↑ 

Geometry, 

topology, and 

density 

L3 
Non-linearity of linear 

regressor 
Interpolation + linear fit ↑ 

S3 
Non-linearity of nearest 

neighbour regressor 

Interpolation + nearest 

neighbour regression 
↑ 

T1 
Average number of samples 

per dimension 
Samples + input variables ↓ 

 

The application of the measures in a case study outlined the need to use several 

measures instead of a single parameter to get a better characterisation of regression 

complexity [175]. In addition, dataset normalisation between [0,1] is recommended 
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before the complexity measures are applied (except for parameter T1 in Table 2.3). This 

allows a simpler complexity comparison for different datasets. Variables in a dataset are 

normalised according to: 

 

Maintenance of PMDs 

After the implementation and launch of a PMD within a monitoring system, 

Kadlec and Gabrys [160] reported that a gradual deterioration of the performance can be 

observed in most cases. The appearance of new operation states that have not been 

included in the historic dataset can cause lower performance. In addition, effects such as 

varying quality of input materials, abrasion of mechanical materials, and external 

environment changes can lead to data drifting over time. To maintain a high PMD 

accuracy during operation, Fortuna et al. [138] suggested the monitoring of the system 

inputs and to compare the PMD performance to suitable thresholds that are set by the 

operators. The maintenance procedure is based on three facets of information; online data, 

expert knowledge, and performance feedback. If the performance reaches unacceptable 

levels, the model has to be retrained or in the worst case rebuild from scratch. In 

addressing the issue of degrading PMD performance, most concepts in the literature do 

not provide any automated maintenance mechanism [145]. This leads to the requirement 

of manual quality control and maintenance of the PMD which can be a significant cost 

factor if process characteristics change promptly [176]. Nevertheless, some adaptive 

maintenance approaches have been published. Moving average windows are applied by 

several authors as a continuous self-update tool of the model [141]. The samples inside a 

time window are used to retrain / update the model, while samples outside of the window 

are discarded. Crucial for successful implementation of this approach is the chosen 

window size. A study of different window sizes has been presented by Kuncheva and 

Žliobait [177]. The authors conclude that a too small window can see the model adapting 

to noise while a too large window can limit the adaption capability. A different strategy 

to overcome data drifting is the use of sample weighting, as shown by Kadlec et al. [149]. 

The samples are weighted according to their age which causes a sample's importance to 

decrease with time. The model is periodically retrained with the weighted samples. Old 

samples are either discarded or tagged with low weights. Kaneko and Funatsu [178] 

presented a further approach for PMD model updating by considering time differences 

   𝑥′ =  
𝑥 − min (𝑥)

max(𝑥) − min(𝑥)
   (2.5) 
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between objective and explanatory variables to compensate for data drifts and gradual 

changes over time.  

While the number of publications that focus on automatic PMD maintenance is 

growing, some industrial engineers are hesitant to use these features. Kano and Nakagawa 

[179] reported concerns from engineers towards automatic adaptions as they might cause 

serious damage to the process. Therefore, automatic maintenance strategies have to be 

transparent and easily comprehensible to ensure industrial adoption. 

 

Linear algorithms for PMDs 

As stated above, the most common linear algorithms for PMDs are MLR and 

PLSR. In this subsection, these two regression models are explained in more detail. The 

main characteristics of these algorithms are summarised in Table 2.4. 

 

Multiple Linear regression (MLR) 

MLR is used to model the relationship between two or more input variables and 

one response variable by fitting a linear equation to the observed data [166]. It is an 

extension to simple linear regression to accommodate multiple predictors. The MLR 

model takes the general form:  

 

 

where 𝑥𝑝 represents the 𝑝-th predictor with the according regression coefficient 𝛽𝑝. 𝛽0 is 

the constant term of the model, 𝜖 represents the noise term / random error. The regression 

coefficients are estimated by the least square approach. This is achieved in mathematical 

software packages by a gradient descent algorithm that finds the optimal regression 

coefficients by minimising the sum of squared residuals. 

 

Partial Least Squares regression (PLSR) 

While MLR is an easy to adopt regression model that is suitable for a few input 

variables that are not significantly redundant (collinear), it shows unsatisfactory 

performance if the number of input variables is large or if the training and validation 

dataset is small. When limited data is available, it is common to derive a well-performing 

MLR model from the training dataset. However, the performance of the MLR model 

during validation decreases sharply. This is known as overfitting (for further explanation 

   𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝 + 𝜖   (2.6) 
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of overfitting please refer to section 2.3.3). As Tobias [180] proved on a spectrometric 

calibration example, Partial Least Squares regression (PLSR) represents a suitable 

alternative. This algorithm uses a smaller number of latent variables for the regression 

model compared to MLR, resulting in increased performance in the case of collinear, 

noisy, or small datasets. The principal of PLSR is based on finding latent variables that 

capture the underlying phenomena of the investigated data. This is well suited for 

industrial processes as many are data rich but information poor [181]. Figure 2.21 depicts 

the functioning of PLSR graphically. Latent variables (also referred as Partial Least 

Square components) are composed of linear combinations to maximise the covariance 

between input and target variables, as stated in a review for PMD development by Lahiri 

[151]. More precisely, the information of the dataset is distilled into a smaller number of 

orthogonal latent vectors for 𝑛 samples according to:  

 

 

 

where 𝑋 is an 𝑛 ×  𝑁 matrix of input variables, 𝑌 is an 𝑛 ×  𝑀 matrix of target variables, 

𝑆 and 𝑈 are 𝑛 ×  𝑝 score vectors, 𝑃 (𝑁 ×  𝑝) and 𝑄 (𝑀 ×  𝑝) represent matrices of 

loadings, 𝐸 (𝑛 ×  𝑁) and 𝐹 (𝑛 ×  𝑀) are the matrices of residuals. The matrices 𝑋 and 

𝑌 are decomposed to maximise the covariance between the score vectors in 𝑆 and 𝑈 [182]. 

This is achieved by rotating the loadings in matrices 𝑃 and 𝑄 in order to maximise 

correlation between each set of 𝑋-scores (𝑆 matrix) and 𝑌-scores (𝑈 matrix), depicted in 

Figure 2.21. The loadings are arranged to ensure that the first latent variable explains the 

largest variance of the target variable(s). When plotting the loadings for two latent 

variables, the relation of PLSR input variables can be analysed [158]. In this plot 

arrangement, input variables that are located close to each other indicate similarity. 

Additionally, relatively high loadings of a certain input variable imply high relevance to 

the target variable. The main aim of PLSR is to reduce the number of variables that are 

required for predicting the target variable(s). Therefore, only a few latent variables are 

used for modelling in most cases, defined in the PLSR training stage. Wold et al. [182] 

reported that this is commonly achieved by training PLSR models with different numbers 

of latent variables and validating the performance on a new set of data or by using cross-

validation. Graphical support for this selection is a Y-variance plot which displays the 

  𝑋 = 𝑆𝑃𝑇 + 𝐸   (2.7) 

  𝑌 = 𝑈𝑄𝑇 + 𝐹   (2.8) 
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explained variance of the target variable for different latent variables. Once the PLSR 

model has been trained on a historical dataset, predictions of the target variable(s) are 

performed by first extracting the 𝑋-scores 𝑆 from the input variables with the X-loadings 

𝑃, which have been predefined during the training stage of the model [180]. The 𝑌-scores 

𝑈 are predicted through a previously trained MLR model and then the predefined 𝑌-

loadings 𝑄 are used to predict the target variable(s). A frequently used iterative method 

for PLSR in mathematical software is the NIPALS (Nonlinear Iterative Partial Least 

Squares) algorithm [182]. The algorithm has two main advantages; it can handle missing 

data and the calculation steps are easy to understand since it calculates the components 

sequentially, starting with the first component (direction of greatest variance).  

 

 

Figure 2.21: Schematic depiction of PLSR and MLR, inspired from [180], [183] 

 

Neural Networks for PMDs 

In a PMD developing review by Kadlec et al. [149], the authors identified Neural 

Networks (NNs) as the most commonly applied non-linear PMD algorithm. This section 

explains the functioning of NNs, the main characteristics are shown in Table 2.4. 

Lahiri [151] sees NNs, also referred to as Artificial Neural Networks, as an 

attractive tool for non-linear process modelling since prior knowledge about the 

relationship between the process parameters is not required. NNs represent a computer 

modelling approach that learns through iterations. This means that the models can adapt 

to changing environments and are capable of dealing with uncertainties and noisy data. 
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Due to its model-free approximations, NNs have gained increasing popularity lately 

within manufacturing applications and beyond.  

In a review of sensor signal processing strategies, Dornfeld and Lee [184] describe 

the structure of NNs as a build-up of a collection of simple, interconnected nodes which 

operate in parallel and store information in the node connections. This structure is inspired 

by the layout and functionality of the human brain. The central idea is based on extracting 

linear combinations of the inputs as derived features and using these to model the target 

of nonlinear functions [163]. A multilayer perception (MLP) NN is most widely used for 

industrial cases. This NN typically consists of three layers, as reported by Lahiri [151] 

and shown in Figure 2.22. 

 

 

Figure 2.22: Neural Network architecture, adapted from [151] 

 

These layers include an input layer consisting of the network inputs (input nodes), one 

hidden layer which is a build-up of a variable number of neurons (hidden layer nodes), 

and an output layer (output nodes). This structure can be used for approximating nonlinear 

relationships between input variables and target variable(s). Each node of the input layer 

is connected to the neurons of the hidden layer by using weighted connections. Likewise, 

all neurons of the hidden layer are connected to the output layer nodes with corresponding 

weights. The number of input nodes (N in Figure 2.22) equals the number of model input 

variables. Similarly, the number of output nodes (K in Figure 2.22) corresponds to the 

number of target variables, which for regression problems typically equals one. In 

contrast, the number of hidden neurons (L in Figure 2.22) is adjustable and defined by 

factors, such as desired generalisation and approximation capabilities. Furthermore, a bias 

is associated with every hidden and output layer node. In an MLP structure, this bias 
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shows a fixed value of +1 and provides further adjustable weights for model fitting. The 

nodes of the hidden and output layer receive inputs from the previous layer and multiply 

them by their corresponding weights [185]. The resulting values are summed up and an 

activation function is applied to produce an output. As an example, the following equation 

shows the calculation of a neuron in the hidden layer: 

 

 

where 𝑔ℎ𝑖𝑑𝑑𝑒𝑛 is the transfer function, 𝑥𝑗
𝑖𝑛 is the 𝑗-th variable of the input sample, 

𝜔𝑗,𝑖
ℎ𝑖𝑑𝑑𝑒𝑛is the weight between the 𝑗-th input node and 𝑖-th hidden neuron, and 𝑥𝑖

ℎ𝑖𝑑𝑑𝑒𝑛 is 

the output of the 𝑖-th hidden neuron. Non-linearity is introduced to the model structure 

by the activation function, which are commonly sigmoid functions with output values 

between [0,1]. The following equation is an example of the sigmoid activation function 

of a neuron in the hidden layer:  

 

 

While most of the applications of NNs are based on nonlinear behaviours, Dornfeld and 

Lee [184] point out that linear NNs are realisable by setting the activation function to a 

linear function.  

During an iterative procedure known as network training, the weights are adjusted 

to accurately generate outputs according to the model inputs within a training dataset. 

This training involves the minimisation of an error function that may show several local 

minima. Therefore, several training runs are necessary to find the global or the lowest 

local minima. The generic approach for finding the minima is by gradient descent, which 

in the case of NNs is most commonly achieved through use of a back-propagation 

algorithm [185]. Here, all weights are adjusted by forward and backward movements over 

the network to minimise the following error function 𝐸:   

 

 

  𝑥𝑖
ℎ𝑖𝑑𝑑𝑒𝑛 = 𝑔ℎ𝑖𝑑𝑑𝑒𝑛 (∑ 𝜔𝑗,𝑖

ℎ𝑖𝑑𝑑𝑒𝑛𝑥𝑗
𝑖𝑛

𝑗

)   (2.9) 

  𝑔ℎ𝑖𝑑𝑑𝑒𝑛 =
1

1 + exp(−𝑥)
   (2.10) 

𝜔𝑛𝑒𝑤 = 𝜔𝑜𝑙𝑑 + ∆𝜔      with ∆𝜔 =  −𝜂
𝜕𝐸

𝜕𝜔
        (2.11) 

𝐸 =
1

2
∑ (𝑥𝑖

𝑜𝑢𝑡 − 𝑦𝑖)
2𝑛

𝑖=1         (2.12) 
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where 𝜂 is the learning rate of the algorithm, 𝜔 are the weights between the nodes, and 𝐸 

is the quadratic error calculated of the training samples. For the application in industrial 

systems, Yu and Wilamowski [186] see the Levenberg-Marquardt algorithm as a popular 

variation of the back-propagation algorithm. The authors in [186] view the Levenberg-

Marquardt algorithm as one of the most efficient training algorithms, particularly for 

small size NNs. Once the model is trained, it can be applied with the fixed weights to 

generate outputs from new input samples.   

The selection of several parameters has to be included during the training of a NN, 

such as the number of hidden layers, number of hidden neurons, activation function, 

initial values of weights, and the number of optimisation cycles. Hastie et al. [163] advise 

that the need for these selections and the nonconvex optimisation problem in non-linear 

NN applications can cause several issues during model training and validation. These 

issues include inconstant performances of several trained NNs due to the selection of 

initial weights and the possibility of various local minima of the error function. A further 

concern is the choice of suitable numbers of hidden neurons. When too few hidden 

neurons are selected, the model might not have enough flexibility to capture the 

nonlinearity of the dataset. However, too many hidden neurons can result in too many 

adjustable weights that lead to overfitting of the model. In particular, for small training 

datasets, NNs are prone to overfitting.  

The following table summarises the main characteristics of MLR, PLSR, and NN:  

 

Table 2.4: Main characteristics of MLR, PLSR, and NN, adapted from [151], [187] 

 Multiple Linear 

Regression 

(MLR) 

Partial Least 

Square Regression 

(PLSR) 

Neural Network 

(NN) 

Method Linear Linear Non-linear / (linear) 

Loss of training error Least-squares Least-squares Least-squares 

Solution Unique Unique Local minima possible 

Recommended training 

samples size 
Medium Low High 

Required 

meta-parameters 
- 

Number of latent 

variables 

Number of hidden layers, 

Number of hidden 

neurons 

Required 

additional parameters 
- - 

Activation function, 

Initial value of weights, 

Optimisation cycles 
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2.3.2 Application areas of PMDs  

Nowadays, the wide availability of digital manufacturing systems allows the 

application of PMDs in many industrial areas. Fortuna et al. [138] and Liu et al. [126] see 

the benefits of a PMD in four application areas: 

• Back-up for physical meters: Some physical meters are installed in very harsh 

working environments. These conditions can frequently cause faults that require 

regular hardware substitutions. To overcome the down period required for physical 

meter maintenance / replacement, a PMD can substitute unavailable measurement 

instruments to avoid plant performance degradation and rising costs.  

• Reducing measuring hardware requirements: PMDs are commonly implemented 

instead of a permanent measuring hardware device. In many scenarios, this solution 

is seen as a source of possible budget savings. For development of the PMD, 

measurements of the target variable have to be available for model training and 

validation. Therefore, the use of a temporary physical meter may be necessary, e.g. 

in the form of a clamp-on meter for flow rate measurements. When PMDs replace 

a physical meter permanently, increased attention should be paid to the model 

validation. High model performances are required in these cases due to the lack of 

any redundancy. Periodical PMD maintenance and retuning is crucial to guarantee 

consistent accuracy.  

• Real-time estimation for offline meters and delayed measurements: A further 

application area for PMDs is the real-time estimation of system variables from 

offline / local physical meters or when the measurement is performed at a later 

stage. Time delays for measurements can be significant due to the execution time 

of the metering instrument, e.g. in gas chromatographs, or if high costs are 

associated with the measurement and therefore performed infrequently. In this 

application area, a PMD can infer system parameters in real-time to give operators 

enhanced process insights. Previous offline and delayed measurements can be used 

for the development and maintenance of the PMD without the necessity for a 

temporary installation of a physical meter.     

• Fault detection and predictive maintenance: Fault detection and diagnosis are part 

of modern industrial control systems. Advanced techniques are used in control 

systems to perform early detection of faults and to provide decision support for 

maintenance and repair. This field has gained increased attention recently and is 
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known in the literature as predictive maintenance [188]. Liu et al. [189] see PMDs 

as an effective tool for predictive maintenance as they can combine physical 

measurement signals to detect process conditions and faults at an early stage.   

  

PMDs are well suited for use in industrial processes that include water and steam 

systems. Concerning the replacement of physical flow meters, PMDs are commonly used 

in the oil and gas industry where the use of physical meters in wells is expensive and 

problematic (commonly referred to as a virtual flow meter in the oil and gas sector). The 

use of PMDs for metering multiphase flows (gas, oil, and water) from wells has been 

shown by Wang et al. [190]. Pressure and temperatures are used within the model in 

combination with mass and energy balances to estimate the mass flow rate of the target 

value. To verify the PMD model, it is compared to a physical flow meter. The results 

demonstrate that the PMD has lower accuracy (maximum deviation is 10%), but greater 

reliability, higher availability, and lower lifecycle costs. A similar but more complex 

PMD for measuring multiphase flows has been presented by Al-Qutami et al. [143]. The 

authors use available temperature and pressure measurements in combination with NNs 

to model the virtual flow. During validation, the developed PMD resulted in less than 

10% deviation to the actual well flow data.   

Several authors have considered PMDs within the water sector. Mass balances 

together with lift height and motor frequency of pumps were used by Äijälä and Lumley 

[191] to implement a variety of PMDs for flow metering in a wastewater treatment plant. 

Several PMDs were developed as a backup to physical meter devices. The examined 

wastewater treatment plant in the case study was experiencing failures with their installed 

physical metering devices when unexpected high flowrates occurred, e.g. after heavy 

rainfalls. An alarm was triggered if a deviation between the outputs of a physical meter 

and an equivalent PMD remained over a defined time period. Figure 2.23 shows an 

example of the measured and calculated (via PMD) bypass flow that includes a period of 

increasing deviation, marked by the red rectangle. In the real use scenario, the PMD took 

over control during the high deviation until the physical meter returned to normal. 
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Figure 2.23: Flowrate deviation between measurement and estimation (by PMD), 

adapted from [191] 

 

A further example on the use of a PMD in the water sector is presented by 

Juntunen et al. [192]. In this paper, the turbidity in drinking water was estimated based 

on dynamic and static linear regression. Due to the high amount of available input 

variables for the model in the presented case study, the most significant variables were 

identified by the forward selection method. With the reduced subset of input variables, 

different PMDs were developed that estimated the turbidity of drinking water with CCs 

of up to 0.86. 

For industrial steam systems, the application of PMDs that can be found in the 

literature is limited. Xie et al. [193] developed a PMD for online measurement of steam 

quality in once-through steam generators. The presented model is based on first principles 

and encompasses an online updating mechanism that reduces the error between predicted 

and observed values. In two case studies from an oil sand extraction facility, the 

developed PMD achieved high prediction accuracy while showing a low computational 

cost. However, the modelling of the PMD requires deep process knowledge and is time-

consuming due to the first principle approach. A further publication is presented by Shakil 

et al. [142] and focuses on inferring nitrogen oxide and oxygen emissions from steam 

boilers. In this approach, PCA is applied to reduce the number of temperature 

measurements. Subsequently, NNs are trained with the acquired principal components. 

Due to long measurement delays within the system, a modified NN that incorporated the 

system dynamics showed the highest performance.   
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2.3.3 Small datasets and proxy metering 

In many industrial sites, only small datasets are available for modelling PMDs 

from related measuring devices. Fortuna et al. [171] reported that dataset limitations from 

industrial applications are often due to sampling cost, the requirement of a temporary 

physical meter, or low sampling rates, e.g. measured offline through laboratory analysis. 

Small datasets represent a challenge for use in PMDs as standard identification, 

modelling, and validation techniques have to be adapted [194]. This section outlines the 

required adaptions for PMD development on small datasets. 

In the context of proxy metering strategies, Tsai and Li [195] classified small 

datasets as datasets that do not provide enough information to regression methods for a 

stable learning accuracy. Compared to big data, several authors have reported on the 

advantages of small datasets which include easier handling [196], higher uncertainty 

awareness by the user [197], and simplified visualisation capabilities [198]. Nevertheless, 

Di Bella et al. [199] pointed out that the main concern for small data usage in PMD 

development is the overfitting risk during model training. Overfitting describes the 

phenomena of a model that adjusts to specific random features of the training data that 

have no causal relation to the target function [164]. This results in high performance on 

the training dataset while the performance on unseen data during validation becomes 

worse. Additionally, small datasets might not include all run modes or operation stages 

of the process. The performance of a PMD model can be low when estimating unseen 

process run modes that have not been included during the training phase. As a rule of 

thumb, Babyak [200] suggested the inclusion of at least 10 to 15 observations per 

predictor variable in order to minimise the risk of overfitting in regression models. To 

avoid overfitting, different strategies can be applied to a small dataset before the data is 

used for model training. These are explained in further detail in the next subsection. Aside 

from the model training, the PMD validation can be challenging if the small dataset has 

to be used for model training and testing. Suitable validation techniques for these cases 

are K-fold cross-validation and leave-one-out-cross-validation, clarified in further detail 

below.  

 

Small dataset manipulation techniques 

A technique that aims to increase data diversity and improves the generalisation 

capabilities within a small dataset before being used for model training is referred to as 

bootstrap [171]. Since in practical applications dataset sizes are often limited, original 
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data populations are unknown. To overcome this limitation, the bootstrap method 

replicates an original dataset 𝑥 number of times by drawing random samples with 

replacement from the original dataset [168], Figure 2.24. Due to the replacement of the 

samples, the original dataset is not regenerated each time. Instead, datasets with a random 

fraction of duplicated original samples are created. James et al. [166] demonstrated that 

the bootstrap approach can be used to effectively estimate the true population of a dataset 

by replicating a limited number of the data points. The new distribution that is created 

with the resampling is referred to as bootstrap distribution and includes a larger number 

of samples than the original dataset. This increased sample number can be used for PMD 

model training in order to reduce the risk of overfitting, as shown by Napoli et al. [170]. 

However, the improvement is depending on the original dataset size and how well the 

chosen samples represent the underlying distribution [168]. In the case of very small 

datasets, the samples might not represent the underlying distribution correctly. When 

replicating these samples by the bootstrap method, the resulting output datasets represent 

the wrong distribution. 

 

 

Figure 2.24: Bootstrap resampling technique: [a] original dataset; [b] resampled 

datasets, adapted from [201] 

 

In addition to bootstrap, artificial noise injection (ANI) is another common 

methodology to reduce overfitting in small sample regression models. Andrijić et al. [202] 

added artificial data to the training samples of a PMD model which increased the diversity 

in the small dataset and proved that ANI can be an effective approach to improve learning 

accuracy and model robustness. Generally speaking, noise is seen as a drawback for 

model-based applications. Nevertheless, recent publications suggest that the addition of 

noise with zero-mean can have a positive effect on the generalisation performance of 

trained models [170], [202]. In the literature, two different methods for introducing ANI 

[a]     

[b]     
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into a PMD training set are outlined: Soares et al. [164] injected noise with a Gaussian 

fixed-variance, 𝜎2, independent of the signal amplitude whereas Di Bella et al. [169] 

added the noise with a Gaussian fixed-variance, 𝜎2, dependent on the signal amplitude of 

the selected variable. The mean of the noise in both methods is set to zero. In general, the 

level of added noise has to be small enough to not significantly affect the relationship 

between input and target variables, as demonstrated by Fortuna et al. [171]. Though, if 

the noise level is too low it may not introduce enough diversity into datasets. For fixed-

variance noise addition, a variance, 𝜎2, of 0.02 is generally considered as a suitable choice 

[164], [169], [171]. Besides its variance, the location of the injected noise is important as 

noise can be added to the input variables, to the target variables, or to both. The impact 

of noise location will be discussed in the subsequent section. 

 

Small dataset validation 

K-fold cross-validation and leave-one-out-cross-validation are two techniques 

used to optimise the use of small datasets during training and validation [203]. For K-fold 

cross-validation, the training set is randomly split into K exclusive subsets (the folds) of 

approximately similar size. The model training is performed on the K-1 folds while the 

remaining fold is used for validation [204]. This process is repeated, each time with a 

different partition, until all folds have been left out once for validation. The performance 

for the overall model is calculated by averaging the outcome of the K fold models. As a 

special case of K-fold cross-validation, leave-one-out-cross-validation leaves one single 

sample out for validation while the other samples are being used for model training. This 

process is repeated, until all samples have been left out once for validation. Arlot and 

Celisse stated [205] that leave-one-out-cross-validation is equivalent to K-fold cross-

validation where the number of K-folds is equal to the number of samples. 

 

Applications of small datasets in PMDs 

Only a limited number of publications are focusing on using PMDs on small 

datasets in the literature. In publications by authors Napoli and Xibilia [170], Fortuna et 

al. [171], Caponetto et al. [206], and Di Bella et al. [169], [199], a variety of PMDs were 

developed based on small datasets from a thermal cracking unit. In the approach presented 

by Napoli and Xibilia [170], a small dataset was used for building a PMD model by 

applying NNs. For pre-modelling manipulation, bootstrap replications (BR) and ANI 

(noise added to the model target) were applied. Several NNs were trained and the best 
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performing networks were aggregated by an ensemble approach (for further details on 

model ensemble please refer to section 2.3.1). The results showed that the applied pre- 

(BR and ANI) and post- (ensemble) modifications led to a performance improvement of 

up to 20% compared to a NN that was trained on the original small dataset. In a similar 

publication by Fortuna et al. [171], the influence of injected noise was analysed in further 

detail. The authors trained NNs on small datasets and varied the variance of the added 

noise before the data was used for model training. As a result, ANI improved the 

performance of trained NNs. A variance, 𝜎2, of 0.02 showed the best outcome, similar to 

the suggested variance by Caponetto et al. [206]. The position of the noise addition (input, 

target, or input and target variables) did not significantly affect the improvement. 

Furthermore, the dependency of the added noise on the signal amplitude did not change 

the results significantly. In contrast, Soares et al. [164] showed that the target variable is 

the best location for noise addition to a training dataset for PMDs. The performance of 

BR and ANI combined was better than without any dataset manipulation technique, but 

shown to be worse than ANI by itself. Taken together, the diverse results for optimal 

locations of ANI suggest that the impact of dataset modification techniques is dependent 

on additional factors like model complexity, sample size, and process behaviour. The 

impact of small sample sizes on NNs was studied by Tsai and Li [195]. The authors varied 

the number of samples that were used for NNs training between 5-35. The accuracy of 

the model increased greatly with each incremental change when using a smaller number 

of training samples. However, this incremental increase declined to a more moderate level 

for higher sample numbers. Similar to the previous publications, the application of 

bootstrap resampling increased the NN performance, especially for NNs trained on very 

small sample sizes (less than 10 samples). This result corroborates the findings reported 

by Andrijić et al. [202]. Besides the effect of bootstrapping for NNs, the authors analysed 

the performance of three different PMD algorithms on small datasets. MLR and 

multivariable adaptive regression splines (a particular form of step wise regression) 

models resulted in similarly satisfactory results while a NN achieved even better 

performance. In the presented case study, the small dataset replication by bootstrapping 

did not improve the performance of the linear model but had a positive influence on the 

multivariable adaptive regression splines and NN. 

In summary, the limited number of publications that consider the validity of 

PMDs with small datasets demonstrate that sufficient accuracy can be achieved for the 

use of PMDs as industrial meters even in the processes with limited sample sizes. 
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However, most of the shown applications are only focusing on using NNs as regression 

algorithms.  

2.3.4 Current challenges for PMDs 

To date, the development of a PMD is a time and cost-intensive task for many 

industrial sites which limits the usage of these models, as reported by Kadlec and Gabrys 

[160]. In particular, for cases where the application of a PMD is only temporary, such as 

metering audits, the high development efforts needed do not justify its implementation. 

This corresponds to the outcome of a current status report on soft sensing by Luttmann et 

al. [140] where the need for simpler PMD implementation methods and increased 

knowledge transfer between academia and industrial facilities on PMD development were 

identified. Most of the existing approaches for PMDs in the literature are coming from a 

mathematical perspective with the focus on ever advancing mathematical solutions. 

However, many engineers and operators do not wish to implement complex statistical 

models in industrial systems, as these methods are not transparent [179]. Therefore, the 

lack of simplified PMD development approaches impedes an enhanced PMD application 

in industry. The status report by Luttmann et al. [140] advises that a key step towards 

simpler PMD development strategies would be to benchmark model performances from 

a variety of industrial use cases. This would assist future users in the selection of a suitable 

model for their particular case of application. Important hereby is to include meta-

learning approaches in order to categorise the required model complexity (an explanation 

of meta-learning is shown in section 2.3.1). Another major issue up to now is the iterative 

execution of the PMD development to accommodate the knock on effect of a decision at 

the different development stages [160]. According to Kadlec et al. [145], after optimising 

one part of the model, the influence on the other parts has to be checked and might include 

retuning of the effected parts. Depending on the process knowledge and the developer 

expertise, a lot of effort might be required until a satisfactory model is built. One possible 

solution to this problem is an automated selection of the most appropriate algorithm from 

a pool of available algorithms within the PMD model. This leads to a model complexity 

increase but can transfer parts of the model development burden from the developer to 

the model. For automating the selection of a suitable model, meta-learning approaches 

are crucial along with standardised model development and implementation methods. 
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Standardised development is seen as a general need for simplifying and accelerating PMD 

usage in industry [140].  

While the problem of small dataset sizes is common in industrial applications 

[187], the number of publications that address this issue during PMD development is 

limited. Furthermore, the majority of the available publications for small dataset PMDs 

are solely using NNs. The limited number of studies and the focus on NNs impede the 

development of PMDs on small datasets and represent a barrier for widespread adoption 

in industrial processes. This corresponds to the general view that small datasets are an 

important future research area for learning algorithms [207].   
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2.4 Summary 

The current advancements of manufacturing processes, coined as ‘Industry 4.0’ 

or Smart Manufacturing, aim to integrate production systems for increased flexibility, 

customisation, and process control. An overlooked fact in many smart manufacturing 

studies is that converting existing industrial plants with often limited IT structures so that 

they can take advantage of smarter process solutions is not a trivial task. Kusiak [25] 

indicated that one of the issues for smart manufacturing solutions in industrial systems is 

a lack of sufficient process data. A research opportunity is present within the development 

of holistic and transferable monitoring frameworks that are adaptable to real-world 

processes where the possibility of accurate metering of every parameter is not given [94].  

The importance of this need can be demonstrated within purified water and steam 

systems as relevant technical building services of manufacturing facilities. Although 

these systems require large shares of water and energy within an industrial facility, partly 

due to the water-energy nexus, detailed metering strategies are not comprehensively 

addressed in the literature. According to Walker et al. [84], this absence of in-depth 

process knowledge leads to a high unawareness resulting in excessive water and energy 

consumption. Authors, such as Thiede et al. [62], are calling for more research 

contributions that demonstrate the relationship between water and energy within 

industrial systems.  

To complete the data acquisition from industrial processes, proxy metering 

devices (PMDs) enable the estimation of parameters that are not attained by a physical 

meter. A PMD acts as an inferential estimator by combining available process data in a 

regression model. The application of this type of virtual sensor requires significant effort 

since several development steps are needed, including data pre-processing, model 

selection, and validation. Due to this effort and the focus in the literature of ever 

advancing mathematical PMD solutions, the number of applied PMDs in industrial places 

is limited to date. Luttmann et al. [140] pointed out that more simplified implementation 

strategies for PMDs are needed for industrial application. In addition, small dataset sizes, 

which are common in the industry, represent a further constraint for current PMD 

modelling and require the application of adjusted development strategies [171]. A 

research opportunity is available in the presentation of targeted and straightforward PMD 

development steps for industrial applications that can account for the additional 

requirements and complexity of small datasets.  
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3.1 Case study system description 

The objective of the industrial case study was to develop a metering framework 

for complex technical building services (TBS) from an industrial perspective. Three TBS, 

two purified water (PW) and one steam system have been selected for the in-depth study 

and framework development. The selected systems were part of a life science company 

located in the south of Ireland. The facility was one of the biggest single water consumers 

in the country, with an average water intake of 700 m3/day. A large proportion of this 

incoming water was running through purification systems to remove undesirable 

contaminations from water. Once purified, the water was used in several production 

processes, mostly for solvent extracting and cleaning purposes. The remaining smaller 

proportion of the incoming water was used for cooling towers, steam boilers, and facility 

utilities (toilets, showers, canteen, and drinking water). A water assessment report from
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2015 analysed the water quantities that have been used in the company for a one year 

period (11/2014 – 11/2015). Figure 3.1 [a] and [b] show the result of the report in the 

form of a proportional water usage distribution. As pointed out in Figure 3.1 [a], more 

than two-thirds of the total mains water intake was purified and subsequently used by the 

production. The second graph [b] in Figure 3.1 divides the proportional distribution of 

the PW into the single production lines. In the case facility, every production line had its 

own water purification system. IC2 and IC1, the two largest production lines in the case 

facility, used 71% of the total PW and 49% of the total mains water. Due to their large 

water intake, these two PW systems have been selected for an in-depth study based on 

the metering methodology which is introduced in section 3.2.  

 

 

Figure 3.1: Proportions of water and natural gas usage in industrial case facility: mains 

water intake [a], PW for production processes [b]  
SMF, CPG, and Aircast were further production lines within the case facility 

 

In addition to mains water, the facility consumed 11,870 m3 (126 MWh) of natural 

gas on a daily average in 2016. A majority of this gas was consumed to generate steam. 

Due to the high energy consumption, the later presented TBS metering methodology in 

section 3.2 has been applied additionally to the facility's steam system.  

3.1.1 Purified water system layout in case facility 

Water purification process  

Due to process requirements and governmental restrictions the incoming mains 

water, supplied from the municipal utilities, had to be purified before usage in the 
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production lines of IC2 and IC1. As outlined in the literature review in section 2.2.1, 

purification is a water treatment process that is applied in life science and pharmaceutical 

facilities to ensure high-quality water. In the case facility, the water purification process 

for IC2 and IC1 consisted of a series of water purification devices (WPDs) that are listed 

below.  

1. A preliminary filter with a mesh size of 25 µm to remove coarse particles.  

2.  Two water softeners in parallel mode to lower the hardness of incoming mains 

water (calcium, magnesium, and other metal cations). 

3. An activated carbon filter to remove chemicals, particularly organic compounds. 

4. Reverse osmosis unit with semipermeable membranes to remove nanoparticles and 

ions from water. 

5a. First ultrafiltration unit (blending-ultrafiltration) to remove small particles.  

5b. Second ultrafiltration unit (polishing-ultrafiltration) as an additional membrane 

filtration process. 

 

Figure 3.2 depicts the process layout of the water purification system with the referring 

labels for IC2. The process layout for IC1 differs slightly to the IC2 layout and is shown 

in the appendix in Figure D.1. 

 

 

Figure 3.2: IC2 WPDs in case facility 
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In addition to the WPDs, different buffer tanks were installed within each system 

which served as intermediate storage and allowed periodic run intervals. Due to product-

specific requirements, the blending-ultrafiltration unit and the reverse osmosis unit were 

set up in parallel.  

Within each system, metering devices were installed to measure flowrates and 

further parameters, such as temperature and conductivity. Figure 3.3 illustrates the block 

flow diagram (BFD) with all WPDs, and the main flow (FI) and level indicators (LI) 

including their location for IC2 (appendix for IC1: Figure D.2). All flow meters were 

offline devices apart from one online flow transmitter (FT1), which recorded the passed 

volume of mains water and was linked to the company’s supervisory control and data 

acquisition (SCADA) system. Three level meters were used for the monitoring of the 

tanks filling levels for IC2, two offline level indicators (LI1 and LI2) and one online level 

transmitter (LT3). Furthermore, temperature sensors and water quality meters were 

installed at different locations throughout the system. 

 

 

Figure 3.3: BFD of IC2 water purification process including flow and level indicators / 

transmitters  

 

Purified water usage in industrial case facility 
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distribution system with all PW intake locations and the installed flow and level indicators 

(appendix for IC1: Figure D.3). The PW was flowing in a loop, while the unused PW was 

returned to the PW tank. This layout guaranteed constant PW movement to prevent 

biological contamination. 

 

 

Figure 3.4: BFD of IC2 PW distribution including flow and level transmitters  

 

The installed measuring devices within the PW distribution for IC2 were all online meters 

and attached to the company’s SCADA system. For IC1, most of the flow indicators were 

analogue meters, not attached to the SCADA-system (Figure D.3 in the appendix for IC1).  
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and flow rate indicators as well as transmitters were implemented throughout the system, 

as shown in Figure 3.5.  

 

 

Figure 3.5: BFD of the steam generation system in case facility 
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3.2 Methodological metering framework 

The proposed framework for TBS metering campaigns has been developed during 

the investigations of the PW and steam systems in the case facility. This approach was 

chosen to consider circumstances and constraints of real industrial processes and to ensure 

the feasibility of the developed steps to a variety of industrial systems. The segmentation 

of the single metering phases is based on the in-depth approach for process life-cycle 

inventories introduced by Kellens et al. [133], [134]. In the first phase of the presented 

methodology by Kellens et al. a goal and scope definition sets system boundaries and 

identifies functional units, Figure 2.17. The next phase consists of a detailed energy, 

consumables, and emission study of manufacturing equipment. In correspondence to this 

metering strategy, this research proposes a metering framework for industrial TBS 

systems, subdivided into four steps as depicted in Figure 3.6. 

 

 

Figure 3.6: Structured framework for TBS metering audits 
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Phase 1: System overview 

The first phase of the framework for industrial TBS metering audits is designed 

to obtain a general overview of the selected system. As a first step, a goal of the metering 

audit has to be defined, e.g. to identify energy saving potentials or to acquire data to 

analyse the system from a life cycle perspective. At the end of the audit, the results 

determine if the goal has been reached or if the scope of the metering campaign needs 

further expansion. 

Every TBS system needs electrical energy and other resources, for example, water 

and natural gas. In addition, further added values are indispensable for operation, which 

are individual for every system. Within the first phase of the methodology, all of these 

input and output flows for the TBS system have to be analysed. This first system 

screening leads to an increased understanding of the process which is further enhanced 

by the use of Piping and Instrumentation Diagrams (P&IDs) in connection with operating 

staff. The process knowledge gained enables to identify the main process steps and system 

architecture. The operating phase of the TBS system is then isolated by applying suitable 

system boundaries, disregarding the further processes that are attached. 

 

Phase 2: Available data sources 

Within the second phase, available data sources are identified. Three different data 

sources are typically available in a manufacturing context: existing data from former 

records (e.g. former metering audits or economic data from utility bills), constantly 

measured data that is available through an online monitoring system (for example 

SCADA), and data from offline measuring devices that are not connected to the online 

monitoring system. All three sources are used for the data collection and analysis in the 

following phase. To be functional in the metering audit, all recorded or measured 

parameters must be quantified with their specific unit. Furthermore, the location and 

functionality of installed metering devices have to be checked to identify if all relevant 

data can be recorded or if data gaps exist. 

 

Phase 3: Data collection and analysis 

To ensure an efficient data collection from complex TBS in the third phase of the 

metering framework, the complex system is abstracted in a simplified version where only 

relevant process steps and flows are included as depicted in Figure 3.7. The identification 
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of relevant process steps and flows is based on the former system understanding of phase 

one. For information capture, a flow diagram of the abstracted system is complied.  

 

 

Figure 3.7: Metering framework phase 3: Data collection and analysis 

 

Subsequently, the system is observed over a time period to identify different run 

modes and run times of the devices, while taking readings of all available metering 

devices. The duration of the observation typically ranges between 1 to 10 weeks and 

depends on the system dynamic, number of different run modes, and system size. To 

decrease the required observation time for complex systems, only working conditions 

with high shares of the covered period are considered. In general, the focus during the 

data collection phase is on normal working conditions, rare events are not recorded within 

the metering audit. 
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Indicators (KPIs). The direction of the analysis depends on the goal of the metering audit 
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by an expansion of the metering scope. However, if the data gaps result from missing, 

broken, or only offline available measuring devices, proxy metering can close this gap in 

the next phase, described in further detail in section 3.3. 

3.2.1 Application to the purified water systems of the case facility 

The metering strategy, as described above, was applied to the IC2 and IC1 water 

systems in the industrial case facility to gain a detailed water map for each system. The 

systems required water and electrical energy as main resources, natural gas was not 

consumed. 

 

Phase 1: Purified water system overview  

This metering campaign aimed to analyse the performance of the system, to 

identify saving potentials, and to collect data for the subsequent calculation of the total 

cost for water purification. Following from the metering framework in Figure 3.6, 

technical and economical requirements were initially checked. System boundaries were 

introduced to isolate the PW generation and distribution at the production machines, as 

shown in Figure 3.8. The functionalities of the processes were analysed in consistency 

with P&IDs and consultation with operating staff. Former water bills were used as an 

economic basis and showed the dynamic of the water intake in the past. 

 

 

Figure 3.8: Boundaries of PW system investigation 
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were recorded daily by the facility’s staff. These recordings have been used to analyse 

the dynamic of the parameters and their correlation to different ambient conditions. 

Performance analyses of each unit in the PW generation systems were carried out every 

6 months. The results of these investigations have been archived in reports. Besides these 

existing data records, measuring devices within the systems have been used for data 

gathering. Online meters were available through the company’s SCADA system. 

Additionally, offline flow meters were manually observed and demonstrated the current 

value of the measured parameter. 

 

Phase 3: Data collection within the purified water systems 

The data collection phase was carried out for the PW generation systems and the 

subsequent usage in the production lines of IC2 and IC1. The procedure for collecting the 

data followed the pattern of Figure 3.7. The process familiarisation led to a more complete 

process layout of the PW generation and subsequent usage including all flows, for IC2 

shown below in Figure 3.9 and for IC1 in Figure D.4 in the appendix. In the first step of 

phase three, the main WPDs and water flows were analysed. The WPDs, apart from the 

polishing-ultrafiltration unit, were running occasionally depending on the filling level in 

the PW tank. The polishing-ultrafiltration unit was running constantly and the permeate 

was looped back to the treated water tank, once the other devices were in standby mode. 

The softener and blending-ultrafiltration units showed an additional run mode, in the form 

of a backwash, which was activated depending on the passed volume or run time (Figure 

3.9, Figure D.4). During normal operation of the blending-ultrafiltration within IC2, the 

drainage flow was reused in the feed water tank. In IC1, the drainage flow of the 

polishing-ultrafiltration unit was reused in the feed water tank. 

The used PW from the production line was sent as drainage flow to the wastewater 

treatment plant. Furthermore, the reverse osmosis and polishing-ultrafiltration unit were 

sending a fraction of the incoming water with a high concentration of salinity to drain. In 

IC2, part of the reverse osmosis drainage flow was recycled in a second, recovery reverse 

osmosis unit. The permeate of this unit was reused in the facility’s cooling towers to save 

mains water. The recovery reverse osmosis unit was not a relevant step for generating 

PW, however, it was taken into account for the electrical energy consumption since the 

unit was attached to the single energy meter of the WPDs.   
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Figure 3.9: BFD of IC2 water system including sub-flows and measuring instruments 

 

To accelerate the data collection process, abstracted versions of the complex water 

systems were developed, including the main process steps and water flows. Figure 3.10 

depicts this abstracted BFD including electricity consumers and further added values for 

IC2, Figure D.5 for IC1. This step ensured less monitoring was necessary while all the 

relevant process steps of the water system were still taken into account.  
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Figure 3.10: Abstracted BFD for IC2 water system including electrical energy 

consumers and further added values 

 

The process control element within the PW systems controlled the standby and 

running times for the process units (except the polishing-ultrafiltration unit which was 

running constantly). Figure 3.11 depicts the control layout for the IC2 PW generation. 
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minutes was reached. The backwash of this unit lasted for about one minute, the other 

devices kept running during this time and the overall PW production decreased about 

25% while the backwash was active. For IC1, the start and stop of the blending-

Feed 

water 

tank

Mains 

water 2x Softener

PW 

tank

Extraction tank 

1

Extraction tank 

2

Extraction tank 

1

Extraction tank 

2

Machine 1Machine 2

Backwash

Backwash

DrainDrainDrainDrain

PW loop

PW generation

Production line – PW consumption

Formation bath

Drain

Drain

Buffer 

tank

Reuse

Drain

Cooling 
towers

Drain

P1

P2

P3

P5

P6

P4

P7bP7a

alternating 

running

Backwash 

triggered by 

volume

Backwash 

triggered by 

run time

Main control 

unit

Electricity consumer Further added value

+ Resin

+

+ Membranes

+ Membranes

Reverse 
osmosis

Blending 
ultrafiltration

Recovery 

Reverse osmosis

+ Membranes

Polishing 
ultrafiltration

+ Membranes

+ 2x year 

chemical cleaning

+ Monitoring of PW quality



3. Resource measurement strategy for TBS  

 

84 

ultrafiltration unit were controlled by the conductivity in the PW tank. When the 

conductivity was rising above 75 µS/m3 the unit stopped until the value dropped below 

this threshold again (appendix for IC1: Figure D.6). 

 

 

Figure 3.11: Process control layout for IC2 water system 

 

Besides the water flows and process control, the electrical energy consumptions 

of the water systems were monitored. The largest component of electrical energy was 

consumed by pumps. Membrane filtering units, such as reverse osmosis, require high 

pressure flows for their operation, as outlined in Table 2.1. To provide the required 

pressure, eight pumps of different sizes were implemented in the IC2 PW generation and 

distribution system, Figure 3.10. In addition to these pumps, the energy was consumed 

by further smaller devices, such as control units and switch boxes. For IC2, the electrical 

power of the PW generation system was monitored by one local offline metering device. 

Additionally, a further offline meter device measured the power that was supplied to the 

two pumps in the PW loop. 

In the IC1 water system, seven pumps have been installed, the location of these 

pumps is shown in the appendix in Figure D.5. The consumption of energy for the entire 

IC1 water system (PW generation and distribution) was recorded by an online metering 

device with a sample rate of 15 minutes. The energy consumed by the blending-

Filling level 

(Purified water 

tank)

<60%

yes

Reverse 

osmosis

>90%

Turn on

yes

Turn off

 V passed =

134.5 m3

Softener
internal

yes

Backwash of one 

softener  (~70mins) ;

other softener kept 

running

Blending-

ultrafiltration
internal

yes

Backwash 

(~1 min) 

 t passed =

120 mins



3. Resource measurement strategy for TBS  

 

85 

ultrafiltration device was not attached to this meter. No energy meter was available for 

this device. 

 

Results achieved through the implemented metering framework 

Results for the IC2 water system 

 The IC2 water system was observed and data collected over a period of three 

months (February to April 2017). During this monitoring period, one product campaign 

was running in the production line (labelled as campaign A). The system was constructed 

for a second product campaign, which can lead to a varying PW intake of machines 1 and 

2. Due to a limited time in the industrial case facility, the monitoring of the second 

campaign was not possible. The top part of Table 3.1 presents the results in terms of 

average flow rates and WPDs run times of the PW generation system.  

 

Table 3.1: Water flow measurement results for IC2 water system, Campaign A, with 

standard deviation values in blue and estimations for unrecorded flows in orange, three 

month observation period 

IC2 PW generation 

Mains water intake [m3/h]: 6.9 ±1.1 

 Permeate 

[m3/h] 

Drain / Reuse in 

feed water tank* 

[m3/h] 

Backwash [m3/h] 
Run time per hour 

[min] 

Softener 6.7 ±0.7 - 0.3 31 ±2.4 

Blending-ultrafiltration  0.9 ±0.1 0.1* ±0.0 0.1 31 ±2.4 

Reverse osmosis 3.2 ±0.3 2.2 ±0.2 
 

- 31 ±2.4 

Polishing-ultrafiltration 

3.3 

(9.0 incl. 

loop) 

0.8 ±0.0 - 60 ±0.0 

IC2 PW intake at the production line 

 Formation bath 

[m3/h] 

Extraction tank 1 

[m3/h] 

Extraction tank 2 

[m3/h] 

Machine 1 0.5 ±0.2 0.6 ±0.1 1.4 ±0.1 

Machine 2 - 0.8 ±0.5 0.1 ±0.0 

 

In the top part of Table 3.1, three flow rates (backwash of softener and blending-

ultrafiltration; permeate of polishing-ultrafiltration) had to be estimated based on former 

reports due to missing flow meters. The calculated standard deviations indicate the 
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dynamic of the single flows. For all water flows, it could be observed that the dynamic 

was small once the WPDs were running. However, due to the occasional run 

characteristics of most WPDs, the varying run time increased the dynamic of the flows 

per hour. The run time depended on the PW usage at the production line. The metering 

results of this PW usage at machine 1 and 2 is presented in the second part of Table 3.1. 

During normal operating conditions, the PW intake of machine 1 and 2 showed small 

fluctuations due to the regulation via PID-controllers. Increased dynamic behaviour was 

seen when production was not running normally e.g. for change over or cleaning 

purposes. To visualise the obtained results, Figure 3.12 depicts the average flow rates of 

the IC2 PW generation system. 

 

 

 

Figure 3.12: Sankey diagram for average flow rates of IC2 PW generation  in m3/h, with 

BUF: Blending-ultrafiltration, PUF: Polishing-ultrafiltration, due to rounded values the 

sum may not equal 100% 

 

The results of the electrical power metering of the IC2 PW system are depicted in 

Table 3.2. The supplied electrical power varied depending on the run mode of the WPDs. 

While the polishing-ultrafiltration unit and small consumers (control units and 

switchboards) were running constantly with a steady power supply, other units 

demonstrated two different power levels depending on running or in standby mode. The 

electrical power was monitored by taking into account which WPDs were running at the 

recording time. Due to the rare occasion of the softeners backwash, no power metering 

was recorded for this specific run mode. The second part of Table 3.2 presents the energy 
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consumption of the PW loop at the production line. The consistent flow rate in the loop 

was provided by two pumps that were running in an alternating mode.  

With the average flow rates and run times of the WPDs from Table 3.1, the entire 

IC2 water system required an average power of 16.9 kW during the observation period of 

three months. When the recovery reverse osmosis unit was excluded, the average power 

decreased to 13.1 kW. 

 

Table 3.2: Electrical power measurement results for IC2 water system; with standard 

deviation values in blue, three month observation period 

IC2 PW generation 

 

Polishing-

ultrafiltration 

Softener + 

reverse osmosis + 

blending ultrafiltration 

Recovery 

reverse 

osmosis 

Small consumers 

(control units, 

switchboards) 

Electrical power 

[kW] 

Run mode 

✓ ✓ ✓ ✓ 18.2 ±0.2 

✓ ✓ X ✓ 10.9 ±0.5 

✓ X ✓ ✓ 11.2 ±0.2 

✓ X X ✓ 3.3 ±0.3 

IC2 PW intake at the production line 

 Pump 7a Pump 7b 
Electrical power  

[kW] 

Run mode  

✓ X 5.7 ±0.1 

X ✓ 6.0 ±0.1 

 

Results for IC1 water system 

Equivalent to IC2, the IC1 PW system was observed for a period of 3 months 

(February to April 2017). During this time one product campaign was running in the 

production line (labelled as campaign B). The results for the IC1 water system are shown 

in Table 3.3. Due to the continuous failure of the mains water flow meter throughout the 

observation period, the mains water intake for IC1 had to be estimated. Similar to the IC2 

water system, the flow rates showed small fluctuations once the WPDs were running. 

Though, this dynamic increased due to the occasional run and standby characteristics of 

most WPDs, influenced by the PW intake at the production line. In contrast to the IC2 

PW distribution, the PW intake of machine 1 and 2 was set manually by operators in the 

IC1 production line. For visualisation, Figure 3.13 presents the average flows as a Sankey 

diagram. 
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Table 3.3: Water flow measurement results for IC1 water system, Campaign B, with 

standard deviation values in blue and estimations for unrecorded flows in orange, three 

month observation period 

IC1 PW generation 

Mains water intake [m3/h]: 4.1 

 Permeate 

[m3/h] 

Drain / Reuse in 

feed water tank* 

[m3/h] 

Backwash [m3/h] 
Run time per hour 

[min] 

Softener 3.8 ±0.4 - 0.2 ±0.0 43 ±4.1 

Blending-ultrafiltration  0.8 ±0.1 0.2 ±0.0 0.1 43 ±4.1 

Reverse osmosis 2.1 ±0.2 0.7 ±0.1 
 

- 31 ±3.0 

Polishing-ultrafiltration 

2.8 

(5.5 incl. 

loop) 

0.3* ±0.0 - 60 ±0.0 

IC1 PW intake at the production line 

 
Formation bath / 

Extraction tank 3 

[m3/h] 

Extraction tank 1 

[m3/h] 

Extraction tank 2 

[m3/h] 

Machine 1 0.1 ±0.0 0.3 ±0.1 0.9 ±0.1 

Machine 2 0.4 ±0.2 0.8 ±0.3 0.3 ±0.1 

 

 

Figure 3.13: Sankey diagram for average flow rates of IC1 PW generation in m3/h, with 

BUF: Blending-ultrafiltration, PUF: Polishing-ultrafiltration, due to rounded values the 

sum may not equal 100% 

 

The consumed electrical energy for the IC1 water system is presented in Table 

3.4. In accordance with the results for IC2, the electrical energy has been monitored for 
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power metering was recorded for this specific run mode. As a metering device for the 

blending-ultrafiltration unit was missing, the energy consumption had to be estimated for 

this device based on the manufacturers’ technical datasheet. 

With the average flow rates and run times of the WPDs from Table 3.3, the entire 

IC1 water system showed an average power of 13.6 kW during the observation period of 

three months. 

 

Table 3.4: Electrical power measurement results for IC1 water system, with standard 

deviation values in blue and estimations for unrecorded values in green, three month 

observation period 

 IC1 PW generation and usage at the production line 

 

Polishing-

ultrafiltration 

Reverse 

osmosis 

Blending-

ultrafiltration 
PW pump 

Small 

consumers 

(Control units, 

switchboards) 

Electrical 

power 

[kW] 

Run 

mode 

✓ ✓ ✓ ✓ ✓ 19.6 ±1.3 

✓ X ✓ ✓ ✓ 9.1 ±0.8 

✓ X X ✓ ✓ 6.1 ±0.8 

 

With the obtained data from the IC2 and IC1 PW systems, performance indexes 

were calculated. Table 3.5 shows KPIs that are used by the case facility for system 

characterisation and benchmarking. The significant difference of the PW generation 

efficiencies for IC2 and IC1 are discussed in section 3.2.3.  

 

Table 3.5: KPIs for IC2 and IC1 PW system, Campaign A for IC2 and campaign B for 

IC1, three month observation period 

KPI IC2 IC1 

PW generation efficiency  

(PW / Mains water intake)  
48 % 68 % 

Backwash ratio  

(Backwash / Mains water intake)  
8 % 6 % 

Drainage ratio  

(Drain flow / Mains water intake)  
43 % 20 % 

Electrical energy per m3 PW  5.1/4.0* kWh/m3 5.0 kWh/m3 

*: Electrical energy per m3 PW calculated excluding the electricity                 

requirement of the recovery reverse osmosis unit 
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3.2.2 Application to the steam system of the case facility  

Additionally to the PW systems, the metering strategy has been applied to the steam 

system of the case facility. A major focus during this investigation was the steam 

generation of boiler 1, since this device generated the vast majority of steam and 

accounted for a high proportion of the facility's natural gas consumption.  

 

Phase 1: Steam system overview  

This metering campaign aimed to acquire data to show the interconnection 

between different resources for steam generation systems and to identify the main steam 

consuming production areas. The boundaries of the metering campaign were set to only 

include the steam generation, distribution, and condensate return system, as presented in 

Figure 3.14. The further attached processes were excluded. The functionality of the 

system was studied with P&IDs and the help of operating staff. 

 

 

Figure 3.14: Boundaries of steam system investigation 

 

Phase 2: Sources of available data for the steam system 

Similar to the PW systems, several existing data sources were available for the 

steam system: A former steam metering audit has been conducted in 2014 and focused 

on the steam boilers and steam consumption. Several offline and online meters (linked to 

the companies SCADA-system) were distributed throughout the system. Figure 3.5 

depicts these metering devices within the steam generation process. 

 

Phase 3: Data collection within the steam system 

The steam system was observed and data collected to characterise the 

performance and dynamics of different devices and flows. In the first step of phase three, 
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the main devices in the steam generation system and the main steam consumers were 

analysed. An abstracted BFD of the system was compiled and is presented in Figure 3.15.  

 

 

Figure 3.15: Abstracted BFD for the steam system, including electrical energy 

consumers and further added values 

 

During the observation period, steam boiler 1 was running continuously, consuming the 
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company’s facility team was informed about the misleading information displayed in 

their SCADA system. To make up for steam and condensate losses, softened mains water 

was added to the condensate tank. This water addition was controlled by the filling level 

Feedwater 

tank

P1

Condensate

tank

Mains water

Water 

softeners

P2

P3

P4

Deaerator

Economiser

Boiler 1Boiler 2

(mainly standby)

Boiler 3

(mainly standby)

P5

P6

Flue 

gas

Natural gas
Natural gas

Main control 

unit

Condensate return

Condensate

Steam

+ Softener salt

+ Monitoirng boiler liquid

SMF Bio 

tools

Media 

plant

IC2
- Solvent recovery unit

- Process dryer machine 2

- Further consumers machine 1 and 2

IC1
- Solvent recovery unit

- Machine 1

- Machine 2

Aircast
- Machine 1

- Machine 2

- Machine 3

Steam generation

Steam consumption at production areas

Electricity consumer Further added value+

alternating 
running

alternating 
running alternating 

running

Steam header ~13bar



3. Resource measurement strategy for TBS  

 

92 

of the condensate tank and activated as soon as the filling level dropped under a fixed 

threshold. No online meter was in place to measure the intake of mains water, therefore, 

it had to be estimated with a PMD (further described in section 3.3.2). Furthermore, 

electrical energy was consumed at various stages throughout the steam generation unit, 

mainly for pumps and boiler fans. Six pumps were installed in the system, whereby only 

three pumps were running at the same time due to alternating run modes. Only the status 

of the pumps was monitored via the companies SCADA system. Therefore, the electricity 

consumption of the steam generation system had to be estimated based on the states of 

the single units and the electricity consumption from component manuals. Besides these 

resources, further added values were required in the form of salt for the water softeners 

and periodical monitoring of the boiler liquid. 

The generated steam was consumed in six production areas. The main consuming 

units were distillation columns in solvent recovery units, process dryer units, and air 

handling units. Within most steam consumption processes, the steam was condensed and 

the condensate returned to the feedwater tank. Only in one distillation column, steam was 

directly injected into the column body. To measure the consumed amount of steam by the 

different facility areas, online flow meters and local pressure indicators were available. 

Similar to boiler 2 and 3, comparisons between the consumed amount of steam that was 

shown in the company's SCADA system and the locally displayed values for some of the 

flow meters resulted in deviations. Therefore, local readings of the accumulated amount 

of steam for these devices have been used for the subsequent results. In addition, some 

steam pressure indicators were broken. For these devices, the pressure was estimated 

based on archived pressure levels and surrounding pressure indictors.  

 

Results from the implemented metering framework 

The steam system was observed and data collected over a period of 10 weeks. Figure 3.16 

presents the results for steam generation and steam consumption. The table shown in 

Figure 3.16 [a] represents the resource and energy intake of the steam generation system 

and the efficiency of the steam system. On the steam generation side, on average 471 

m3/h of natural gas, 2.7 m3/h of mains water, and 62 kWh of electricity were consumed 

per hour. Boiler 1 generated the vast majority of steam (96%) during the observation time. 

Boiler 2 and 3 remained mainly in standby mode, contributing 2% each to the steam 

generation. The overall fuel to steam efficiency, calculated according to equation (3.1) 

(steam enthalpy divided by supplied natural gas energy) was 72%. 
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Figure 3.16: Results of the steam metering audit in the case facility: table of steam 

generation and steam consumption efficiency (estimations for not measured values in 

orange) [a], steam consumption of different production areas [b], Boiler 1 performance 

analysis [c], natural gas consumption distribution [d] 
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The second part of the table in Figure 3.16 [a] demonstrates the efficiency of the steam 

distribution system, on average 92%. This value is calculated according to equation (3.2), 

where the generated and consumed amount of steam is first multiplied with the saturated 

steam enthalpy at the corresponding pressure level and subsequently divided by each 

other. The average value of 92% is slightly higher than efficiency values that can be found 

for steam distribution lines in the literature. Bhatt [81] suggested an efficiency of up to 

90% for steam distribution lines. One reason for the calculated efficiency of 92% is the 

assumption of saturated steam at the consumer side. Due to missing temperature 

measurement devices, it could not be verified if the steam was saturated at each 

consumption point. 

 Figure 3.16 [b] provides a division of the steam at the consumer side during the 

observation period. The largest single consumer was a set of distillation columns inside 

the IC2 solvent recovery unit (SRU) that accounted on average for 27% of the total steam 

consumption, followed by the Aircast machine 1. A more detailed analysis of the natural 

gas consumption, steam generation and resulting fuel to steam efficiency for boiler 1 is 

shown in Figure 3.16 [c] for a time extract of 30 days. The calculated efficiency shows 

only small fluctuations during this period with a standard deviation of 2%. Steam 

generation and the corresponding natural gas consumption show higher fluctuations with 

standard deviations of 602 kg/h and 32 m3 respectively. Figure 3.16 [d] depicts the natural 

gas distribution of the case facility for the entire observation period of 10 weeks. On 

average, 13,145 m3 of natural gas were consumed per day. The steam system accounted 

for 85% of the total gas consumption, boiler 1 showed the highest consumption with 79%. 

Besides the steam system, this graph displays further gas consumers in the form of two 

thermal oxidisers and two hot water (HW) boilers. 

As an additional representation of the results, Figure 3.17 presents the results of 

the steam metering audit in the case facility in the form of a Sankey diagram. This figure 

also includes the distribution of natural gas as well as some of the results from the 

metering audit of the PW systems IC2 and IC1 that were presented in section 3.2.1. 
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Figure 3.17: Sankey diagram for natural gas and steam distribution of case facility, 

including PW systems of IC2 and IC1, values for mains water and natural gas intake 

based on average values of metering campaign, due to rounded values the sum may not 

equal 100% 

 

3.2.3 Discussion of metering framework application 

The application of the metering methodology within the PW and steam systems 

of the case facility revealed the main energy and resource flows. Due to a high number of 

offline measuring devices in the analysed systems, the implementation of the metering 

campaign required repeated readings of the local measuring devices. This was a time-

intensive procedure that inhibited a quick data gathering and limited the analysis of 

system dynamics.  

Nonetheless, the results of the metering audits led to a deeper insight into the 

operation which was not possible before the implementation of this audit due to a lack of 

information. For the PW systems, the KPIs indicated a higher efficiency in the PW 

generation of IC1 compared to IC2. Based on the gathered data, it could be identified that 

this difference was mainly due to divergent performances of the reverse osmosis and 
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polishing-ultrafiltration units. This result was used by the operators as the first approach 

for possible water-saving opportunities. Further optimisation possibilities were identified, 

most of them demonstrated an easy to adapt characteristic resulting in a quick and 

inexpensive implementation. One example was to review if the PW intake could be turned 

off in the production machines during a production stop. The PW metering campaign 

revealed that PW was frequently used, although both machines in the production line 

were stopped for several hours. An example is shown in Figure 3.18, where 

approximately 45 m3 of PW could have been saved in the presented time frame of 48 

hours within the IC2 production line if the intake would have been turned off. 

Furthermore, Figure D.7 in the appendix reinforces the assumption of steady PW intake 

within the IC2 production line independent of the production activity of machine 1 and 

2.  

 

 

Figure 3.18: Example of IC2 PW saving possibility during production stop of machines 

1 and 2 

 

Likewise, the analysis of the data from the steam metering campaign revealed 

energy saving potentials in the form of steam losses and system reconfigurations. As an 

example, the receiver vessel of the blowdown from boiler 1 showed a continuous steam 

discharge. Operators were informed to discuss if the high blowdown rate of boiler 1 is 

necessary and if the lost steam could be condensed and reused as feedwater in the boiler.  
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Additionally, the data from both systems can be used for early identification of 

malfunctions by comparing flow rates and device performances to expected values that 

were gained during these metering campaigns. Further benefits are the possibility of risk 

analysis studies. As an example, the operators of the PW systems are now able to assess 

the maximum production run time that would be left in case one of the PW generation 

systems would break down. 

In terms of metering system limitations, the question arises relating to how 

detailed the metering campaign has to be. The case studies revealed that not every flow 

and power supply within the systems was measured by a metering device. Furthermore, 

not every available meter was working correctly or attached to the online monitoring 

system. As a consequence, the presented metering approach is suitable for basic 

estimations over a longer time interval. To allow an overall and automated metering 

system that enables a more precise study of system dynamics, these data gaps have to be 

filled. Proxy metering can be a possible method for filling these gaps effortlessly and 

inexpensively. To improve the accuracy and to allow temporary insights of missing 

parameters, proxy models have been applied to the estimated values of the IC2 water 

system and the steam system, presented in the next section. The use of a proxy model for 

the IC1 water system was not possible due to too many missing and broken online 

metering devices. 
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3.3 Simplified proxy metering approach 

The fourth phase of the developed metering framework (Figure 3.6) addresses 

data gaps by the implementation of a PMD. If the data collection of the previous phase 

three did not show any relevant data gaps, this phase can be neglected. This section 

presents a simplified proxy metering approach that can be realised with minor efforts 

within a metering audit. A more comprehensive approach for PMDs is presented in 

chapter 4. 

The proposed methodology for implementing a PMD as part of a metering audit 

is based on the general steps for proxy meter development that were introduced in chapter 

2.3. Figure 3.19 illustrates the methodology for proxy meter development in the scope of 

this research. 

 

 

Figure 3.19: Proxy meter development framework as part of a metering audit 
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Pre-development steps 

According to the previously introduced framework for metering audits for TBS 

(Figure 3.6), three different data sources are combined: existing data records, online 

available data, and offline data. For the implementation of a PMD, only online data 

sources are considered.  

Once data gaps (target variables) are detected in the third phase of the metering 

audit, related online meters are identified as possible PMDs. The selection of suitable 

related metering devices is based on the process knowledge that was gained from the 

previous steps of the TBS metering audit. For the case that no online measuring device 

relates to the target variable, an additional physical meter has to be implemented in the 

system. If related devices are identified, the data from these devices is pre-processed in 

the following phase.  

 

Data pre-processing 

When data from related measuring devices are used for a proxy meter model, it 

has to be guaranteed that no inconsistencies are present within these datasets. Therefore, 

diverting sampling time, missing data, and outliers are addressed in the pre-processing 

step. 

Missing data is handled either by the listwise deletion method for small missing 

sections or by filling these gaps with the median or maximum likelihood estimation. Data 

outliers are identified either by the univariate Hampel identifier or by the multivariate 

Principal Component Analysis. 

If only one variable is selected as being relevant, the pre-processed data can be 

directly used within a model to estimate the target variable. 

If more than one variable is selected, further pre-processing steps are necessary. 

These include the examination for diverting sampling time between the devices and if 

necessary their adjustment using the down-sampling method. Furthermore, diverging 

positions of related meter devices can result in measurement delays due to the required 

run time through the process. Commonly, these measurement delays vary. As an example, 

water treatment devices within a PW system run occasionally in many setups, depending 

on filling levels of buffer tanks. These measurement delays are compensated by 

synchronisation based on process knowledge. Depending on the process, these issues can 

lead to an insufficient performance of the PMD which is only solved by installing a further 

physical meter.  
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PMD training, tuning, and validation 

Subsequently, a model for the PMD is chosen with regard to the process layout 

and the number of related measuring devices. For cases with a high number of related 

measuring devices, multivariate approaches like Principal Component Analysis can be 

used to identify the variables with the highest variance. As previously outlined in the 

literature section 2.3, Kadlec et al. [145] reported that no unified theoretical approach is 

available for the selection of a PMD model. Since the focus of this research is on 

simplified models of PMDs, it is recommended to start with a simple model type. If 

sufficient process knowledge is available and the variation of the target variable can be 

attributed to a small number of measurable variables, a linear regression model can be 

used initially. Once a model is selected, it is trained and tuned based on the pre-processed 

dataset. The validation on a new set of data shows the performance of the chosen model. 

To evaluate the accuracy, two validation parameters are applied: the Root Mean Squared 

Error (RMSE) and the Correlation Coefficient (CC).  

3.3.1 Application to one purified water system of the case facility 

The simplified proxy metering approach has been applied to the IC2 water system 

of the industrial case facility. As shown in Table 3.1 in section 3.2.1, three flowrates could 

not be measured due to missing metering devices. To increase the accuracy of the 

estimated values that are shown in Table 3.1, two PMDs have been developed. The first 

PMD was developed to detect the backwash mode of the water softener devices. 

Additionally, a second PMD was developed to track the run time of the WPDs and to 

infer the flow between the polishing-ultrafiltration unit and the PW tank.  

The implementation procedure for the two PMDs followed the methodology 

outlined above and depicted in Figure 3.19. For the two PMDs, the same pre-processing 

steps have been applied to the datasets of the related measuring devices. Small sections 

of data were missing due to recording errors of the SCADA system, captured as non-

numerical data points. These error values were identified by the models and removed by 

the listwise deletion method. Furthermore, data outliers were present, many of them could 

be clearly identified as they were outside the sensors measuring range. The Hampel 

identifier was applied in the models for identifying and deleting outliers. 
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First PMD: Backwash of water softeners 

For regenerative purposes, one of the two water softener devices in the IC2 PW 

system was entering a backwash mode after the treatment of a certain volume of water. 

A PMD was developed to detect this backwash mode, Figure 3.20 [a]. 

 

 

Figure 3.20: PMD for detection of water softener mode in IC2 water system: development 

methodology [a], characteristics of PMD training data [b], example of PW generation 

efficiency in relation to PW intake at machine 1 and 2 [c] 
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identified as suitable related measuring devices. These online devices were attached to 

two parallel running SCADA-systems in the case facility. FT1 showed data records with 

a timestamp of 15 minutes in between each record, whereas recordings from FT9-13 were 

available with a timestamp of 1 minute. To achieve synchronisation, the down-sampling 

was applied, composing the data from the more frequent variables (FT9-13) to the 15 
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Unit Average Standard 

deviation 

FT1                                         
(Mains water  
intake ) 

m3/h 
      6.9 
min.  0 
max. 12.0 

1.1 
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m3/h 
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minute time interval of the less frequent variable FT1. The characteristics of the PMD 

model input data is displayed in the table shown in Figure 3.20 [b]. The model to detect 

when one of the softeners was in backwash mode dependent on the diverting efficiency 

of the PW system:  

 

 

During normal operation, 48-54% of the mains water was converted into PW, equation 

(3.3). This efficiency margin resulted from performance changes of the reverse osmosis 

unit due to different mains water temperatures during the year. When one softener entered 

the backwash mode, the efficiency decreased below 36%. This efficiency deviation was 

used as an indicator within the PMD model. 

 

Results for the first PMD for the IC2 water system 

For the detection of the softener backwash, the PMD showed insufficient 

performance during the model training and tuning phase. The efficiency of the PW 

generation system, which was used for the detection of the backwash mode, showed a 

dynamic behaviour. Four main rationales were identified that led to changing efficiencies: 

• Due to the position of the related measuring devices, at the mains water intake in 

the PW generation system (FT1) and the PW intake in machines 1 and 2 at the 

production line (FT9-13), a time offset of up to 35 minutes emerged. Additionally, 

this time offset varied, depending on the filling level of the integrated buffer tanks.  

• The intake of PW at the production line changed frequently due to the halting of 

production machines, run mode changes, cleaning purposes, and oscillating 

behaviour of flow controllers. Due to the time offset between the related measuring 

devices, these changes were not immediately visible at the mains water intake 

(FT1). 

• The smallest sampling time of 15 minutes did not allow a timely exact identification 

of the backwash beginning and end, the softener backwash lasted for 70 minutes. 

• Within the production line, operators could take out PW from taps for manually 

cleaning operations. The usage of these taps was not monitored by a measuring 

device. 

 

  𝜂𝑃𝑊_𝑠𝑦𝑠𝑡𝑒𝑚 =  
𝐹𝑇1

Σ𝑖=9
13  𝐹𝑇(𝑖)

   (3.3) 
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Figure 3.20 [c] depicts an example of the efficiency of the IC2 PW system 

(equation (3.3)) for 48 hours. After approximately 20 hours, one of the water softeners 

entered the backwash mode. According to the graph in Figure 3.20 [c], a clearly lower 

PW efficiency is not distinguishable during the backwash mode. After 27 hours, the 

performance decreased significantly for six hours while no PW was used in machine 1. 

A possible explanation for the low efficiency during the specific time frame is the usage 

of PW from un-monitored taps in the production line for cleaning purposes by operators.  

 

Second PMD: Run time of WPDs and flow rate to PW tank 

A second PMD was developed to track the run time of the WPDs and to infer the 

PW flow between the polishing-ultrafiltration unit and the PW tank, Figure 3.21 [a]. As 

related measuring devices, the level transmitter of the PW tank (LT3 in Figure 3.9) and 

the temperature transmitter of the PW loop (TT1 in Figure 3.9) were selected. Both 

devices were available through the facility’s SCADA system with a sampling interval of 

1 minute. The characteristics of these two model input data sources are displayed in the 

table shown in Figure 3.21 [b].  

 

Figure 3.21: PMD development to estimate IC2 WPDs run time and generated PW: PMD 

development methodology [a], characteristics of PMD training data [b] 
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Unit Average Standard 

deviation 
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% 
      29.1 
min.  27.0 
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Low and high-level setpoints controlled the filling of the PW tank. Within the model of 

the PMD, a data filter was applied to detect the start time and duration of this filling 

process based on the available data from LT3. The WPDs (except the polishing-

ultrafiltration unit) ran with a time delay to the filling process due to an additional buffer 

tank, equation (3.4). 

 

 

The flow rate to the PW tank was determined based on the devices run time, 

equation (3.5). The two ultrafiltration units (BUF and PUF in equation (3.5)) showed a 

consistent permeate flow rate while running. For the reverse osmosis (RO) unit in 

equation (3.5), the permeate flow rate depended on the water temperature. Since no online 

temperature transmitter was available within the PW generation system, the PW loop 

temperature TT1 was applied to estimate the reverse osmosis permeate flow.  

 

 

Results for the second PMD for the IC2 water system 

After developing and tuning the model for the second PMD, the device was 

validated on a new set of data. To verify the estimated run time of the WPDs, a dataset of 

21 run cycles was applied. The limited number of validation cycles resulted from the 

requirement of manually tracking the run time in the case facility. The model identified 

18 run cycles correctly, as shown in the top part of the table in Figure 3.22 [a] and the 

graph of Figure 3.22 [b]. Some of the run cycles were not identified due to intermediate 

run modes that appeared when no PW was consumed at the production line for a period 

longer than 30 minutes. Overall, the PMD showed a RMSE of 1 minute 43 seconds and 

a CC of 0.79 for the 21 run cycles.  

The PMD’s calculated flow rate between the polishing ultrafiltration unit and the 

PW tank was validated by comparing the daily volume to the PW intake at the production 

line (FT9-13 in Figure 3.9). A dataset for 30 days was applied. Due to the limitation of 

available meters, PW that was manually taken out by operators at the production line was 

not considered in the validation measures. The validation results are depicted in the lower 

  𝛥𝑡𝑊𝑃𝐷𝑠 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 = (𝑡𝐿𝑇3,𝑓𝑢𝑙𝑙 + 𝑡𝑒𝑛𝑑_𝑑𝑒𝑙𝑎𝑦) − (𝑡𝐿𝑇3,𝑒𝑚𝑝𝑡𝑦 + 𝑡𝑠𝑡𝑎𝑟𝑡_𝑑𝑒𝑙𝑎𝑦)   (3.4) 

  𝑄𝑝𝑒𝑟𝑚.  𝑡𝑜 𝑃𝑊 𝑡𝑎𝑛𝑘 =  𝛥𝑡𝑊𝑃𝐷𝑠 𝑟𝑢𝑛 𝑡𝑖𝑚𝑒 ∗ (𝑄𝑅𝑂_𝑝𝑒𝑟𝑚. + 𝑄𝐵𝑈𝐹_𝑝𝑒𝑟𝑚.) − 𝑄𝑃𝑈𝐹_𝑑𝑟𝑎𝑖𝑛   (3.5) 

             𝑤𝑖𝑡ℎ  𝑄𝑅𝑂_𝑝𝑒𝑟𝑚. = 𝑓(𝑇𝑇1)  
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part of the table in Figure 3.22 [a] and the graph of Figure 3.22 [c]. The PMD 

demonstrated a high accuracy with a RMSE of 5.6 m3/d and a CC of 0.93.  

 

 

Figure 3.22: Validation results for second PMD within the IC2 water system: table of 

validation parameters [a], extract of run times inferred by PMD and manually tracked [b], 

extract of daily estimated PW flow rate by PMD and measured at the production line [c] 

3.3.2 Application to the steam system of the case facility 

Additionally to the two PMDs for the IC2 water system, one further PMD was 

developed for the estimation of the added mains water within the facility’s steam system. 

The missing data of the added mains water was identified as being relevant for an 

automated ongoing total cost of steam calculation in the subsequent step.  

Mains water was added to the condensate tank to makeup system losses of steam and 

returning condensate, Figure 3.23. The amount of added mains water was regulated by a 

local control valve linked to the condensate tank filling level (LC-1). To reduce the 

hardness of the added mains water, it was first passed through two water softener units, 

set up in parallel. Each unit consisted of two softener columns that were running in 

alternating modes, switching over once a specified volume of water had been softened. 

Within each water softener unit, an offline flow meter measured the volume of softened 

water (FI6 and FI7 in Figure 3.23). 
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3. Resource measurement strategy for TBS  

 

106 

 

Figure 3.23: Process layout for condensate tank of case facility’s steam system including 

relevant meter devices and target variable of developed PMD in green 

 

For the PMD development, the flow temperature after the condensate tank (TT3 

in Figure 3.23) and the run modes of the feedwater transfer pumps P1 and P2 (XMC1 and 

XMC2 in Figure 3.23) were determined as suitable related online measuring devices for 

the estimation of the added mains water. The data for these devices was available through 

the facility’s SCADA system with a sampling interval of 30 seconds. Similar to the 

developed PMDs for the IC2 PW system, data gaps were addressed by the listwise 

deletion method and data outliers identified and deleted via the Hampel identifier. In 

addition to the available online data, locally conducted recordings of the offline available 

target variables (FI6 and FI7) were integrated into the model. On average, the adding 

cycle of mains water was activated every 31 minutes and 30 seconds with a cycle time of 

12 minutes and 10 seconds and an added water volume of 1.30 m3. The characteristics of 

the available input data for the model are displayed in the table shown in Figure 3.24 [b]. 

As a key relation, a linear model was developed that used the temperature drop measured 

after the condensate tank (TT3) that appeared once mains water was added, Figure 3.24 

[c] and [d]. A data filter detected and quantified these temperature drops in the recorded 

data from TT3, Figure 3.24 [a]. The run mode signal of the feedwater transfer pumps (P1 

and P2) provided an additional parameter to indicate if feedwater was added during an 

identified temperature drop.  
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Figure 3.24: Steam system PMD development: PMD development methodology [a], 

characteristics of PMD training data [b], temperature after condensate tank (TT3) [c], 

mains water addition to condensate tank [d] 

 

Results for the steam system PMD 

For validation, the developed PMD for the estimation of the added mains water 

has been applied to a new set of data to analyse the performance. During testing, a dataset 
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resulted from the requirement of manually tracking the mains water adding cycles in the 

case facility. The model identified 12 mains water adding cycles correctly, as depicted in 

the table shown in Figure 3.25 [a]. The PMD’s calculated amount of added mains water 

to the condensate tank was verified by comparing the volume to locally conducted 

recordings for the 14 cycles. On average, the inferred amount by the PMD was accurate 

within 15% of the added volume of mains water, Figure 3.25 [a]. For the validation cycles, 

the PMD showed a RMSE of 0.30 m3 and a CC of 0.80. Furthermore, the performance of 

the PMD is depicted in Figure 3.25 [b] in the form of the resulting residuals for every 
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Unit Average 
Standard 
deviation 

TT3                    
(Temp. drop when 
mains water added) 

°C 
     6.0  
min. 2.8  

max. 8.8 
1.8 

FI6 / FI7      
(Volume of added 
mains water) 
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mm:ss 
   12:10  
min. 7:25  

max. 15:40 
02:40 

P1 / P2      
(Average run 
times) 

mm:ss 
   07:15 
min. 6:00  

max. 09:30 
00:50 
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cycle, i.e. estimated amount of added water by PMD minus locally recorded amount. 

Most of the residuals that are shown in the graph have a value greater than 0. This 

deviation is attributed to varying condensate tank temperatures that resulted from the 

amount of injected steam (V1 in Figure 3.23) and fluctuating condensate return flows. 

Figure D.8 in the appendix shows schematically the average condensate tank 

temperatures for a period of 14 days. Varying condensate tank temperatures influenced 

the performance of the PMD since the model is based on the temperature drop after the 

condensate tank that appeared once mains water was added. 

 

 

Figure 3.25: Validation results for the steam system PMD: table of validation parameters 

[a], residuals for the estimated mains water addition [b] 

3.3.3 Discussion of simplified proxy metering application  

The application of the proxy meter development framework in the three case 

scenarios led to diverging results. Within the first application, the backwash mode of the 

water softener could not be tracked with sufficient accuracy during the PMD training 

phase. This case demonstrates the importance of suitable sample time for the 

identification of events in the PMD target as well as the influence of large time offsets 

between related measuring devices, due to the run time through the process. For similar 

cases, the inclusion of further measuring devices related to the target variable and a more 

complex model type could increase the performance. However, since no other related 

online measuring device was available in the analysed system, the PMD could not be 

further improved in reliability and a further physical meter would be needed to track the 

backwash mode.  

[a]     

[b]     

 Manually 

tracked 

PMD 

classified 
Error 

Mains water adding 

cycles 
14 12 -14.3% 

Mean volume of added 

mains water per cycle 
1.02 m3 1.17 m3 +14.7% 

Total volume of added 

mains water during 

validation 

14.26 m3 14.05 m3 +5.4% 

Validation coefficients RMSE= 0.30 m3 CC= 0.80 
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The second PMD that was developed for the IC2 PW system and the PMD for the 

steam system demonstrated better performances with CC of 0.79/0.93 and 0.80 

respectively during validation. These accuracies lack reliability for the monitoring of a 

critical parameter, however, they are acceptable for the quantification process of a 

metering audit. The models were developed in a short time due to the previously gained 

process knowledge and the first-order characteristics of the model. The required 

development effort of the model can increase for more complex systems where a first-

order approach is not sufficient. The required training and validation datasets for the two 

PMDs had to be recorded manually during the metering campaigns. Therefore, the size 

of these datasets was small. In particular for more complex regression algorithms, the 

dataset limitation can result in insufficient model accuracies. Nonetheless, different 

training sample modifications are possible for the PMD development with small datasets 

which aim to increase the accuracy. Since this is not comprehensively addressed in the 

literature, as outlined in the literature review in section 2.3, further investigations of the 

impact of small datasets on different regression algorithms for PMD development and 

possible sample modifications are examined in chapter 4.   

In some industrial applications of PMDs, no measurements of the target variable 

are present from the system under investigation. This absence leads to failure of PMD 

development and the need to implement a physical meter device if no target data can be 

acquired through an alternate method. An alternative way of collecting data from the 

target variable for PMD model training and validation can be the implementation of a 

temporary meter device, for example in the form of an ultrasonic flowmeter attached to 

the pipe exterior. Furthermore, an alternative PMD validation method can be applied to 

enhance the confidence of the model for cases of inadequate availability of target variable 

data. An example of an alternative validation method is to check for states of the target 

variable when the outcome is clear, for instance when a system is shut down. Likewise, 

the use of a temporary meter device and alternative validation methods are options for 

PMD development when insufficient performances result from small datasets.  
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3.4 Methodology to calculate the total cost of TBS 

This section presents a calculation to investigate the total costs related to TBS in 

industrial facilities, as depicted in Figure 3.26. It is not directly part of the previously 

presented TBS metering methodology. However, it is based on the results of the metering 

audit and demonstrates the value of the gathered data. The total cost calculation of a TBS 

is a method to express the interconnection of different resources and further added values 

which can be used to monitor their impact. In the context of this work, the term total cost 

considers the variable costs of a TBS such as the required resources and further added 

values but does not include the fixed costs such as the equipment depreciations or labour 

costs.  

 

 

Figure 3.26: Methodology for calculating the total cost of TBS 
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The cost of all required resources and further added values are combined for the 

calculation of the total TBS generation cost. The individual resource cost is provided from 

economic data (for instance utility bills) which were gathered during phase two of the 

metering methodology. This cost needs to be specified per unit to be attributed to the 

measured consumptions, i.e. for natural gas and water per cubic meter (𝑐𝑔𝑎𝑠;  𝑐𝑤𝑎𝑡𝑒𝑟) and 

for electrical energy per kilowatt-hour (𝑐𝑒𝑙𝑒𝑐.). This allows the multiplication of the 

measured resource consumptions with the equivalent cost for a certain time interval (𝑡2 −

𝑡1), as presented in equation (3.6). Subsequently, the sum is divided by the total mass / 

volume of TBS that was generated during the same period. The following equation 

displays an example for the calculation of natural gas, water, and electricity as consumed 

resources of a TBS system:  

 

  

Additionally, an equivalent cost is allocated to the further added values that have 

been identified during the previous metering campaign. This cost is assigned for every 

mass / volume unit of generated TBS, as presented in equation (3.7). Hence, the cost of 

the single added value (𝐶𝑎𝑑𝑑𝑒𝑑 𝑣𝑎𝑙𝑢𝑒,𝑖) for a certain time frame (𝑡2 − 𝑡1) is selected and 

divided by the total mass / volume of generated TBS in the same period. 

 

 

Finally, the cost for the measured resources and the sum of all further added values 

(𝑛) is added up, as seen in equation (3.8). This results in the total cost that is required for 

generating one mass / volume unit of TBS in the analysed system. 

 

 

For some TBS distribution systems, significant losses can be observed during TBS 

transmission to different consumer locations. One example are the steam systems, where 

it is common that part of the steam is lost due to steam leaks and condensation in the 

𝑐𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 =  
∫ 𝑉𝑔𝑎𝑠

𝑡2

𝑡1
∗ 𝑐𝑔𝑎𝑠 +  ∫ 𝑉𝑤𝑎𝑡𝑒𝑟

𝑡2

𝑡1
∗ 𝑐𝑤𝑎𝑡𝑒𝑟 + ∫ 𝐸𝑒𝑙𝑒𝑐.

𝑡2

𝑡1
∗ 𝑐𝑒𝑙𝑒𝑐. 

∫ 𝑚𝑇𝐵𝑆 𝑜𝑟 𝑉𝑇𝐵𝑆
𝑡2

𝑡1

   (3.6) 

𝑐𝑎𝑑𝑑𝑒𝑑 𝑣𝑎𝑙𝑢𝑒,𝑖 =  
[𝐶𝑎𝑑𝑑𝑒𝑑 𝑣𝑎𝑙𝑢𝑒,𝑖 ]𝑡1

𝑡2

∫ 𝑚𝑇𝐵𝑆 𝑜𝑟 𝑉𝑇𝐵𝑆
𝑡2

𝑡1

   (3.7) 

𝑐𝑇𝐵𝑆_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =  𝑐𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 + ∑ 𝑐𝑎𝑑𝑑𝑒𝑑 𝑣𝑎𝑙𝑢𝑒,𝑖 

𝑛

𝑖=1
   (3.8) 
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distribution pipes. This can result in higher costs of the TBS on the consumer side. If 

sufficient data has been collected during the metering campaign and the distribution 

losses appear to be significant, the consumption cost of the TBS distribution system can 

be calculated by taking the distribution efficiency into account, according to the following 

equation:  

 

 

The total TBS cost calculation can be automated in case the data for resource 

consumption and TBS generation is based on online measuring devices and / or PMDs. 

When an automated calculation procedure is implemented, the TBS system has to be 

observed regularly to verify that the list of further added values and their corresponding 

costs, as well as the resource costs, are up to date. The advantages of an automated TBS 

cost calculation process are diverse. This cost accumulation can be used as an index for 

tracking system performances over a certain period and for identifying run modes that 

result in high costs. Also, the cost index can function as a measure of impact for system 

changes within the TBS generation and it can be used as a benchmark for comparisons to 

similar systems.   

3.4.1 Application to one purified water system of the case facility 

The methodology for the total cost calculation has been applied to the IC2 PW 

system of the industrial case facility. The TBS metering campaign from section 3.2 and 

the developed PMD from section 3.3 were applied as data sources.  

As the main resources for the IC2 PW generation system, mains water and 

electrical energy were used. The facility’s water and electricity cost per cubic meter / 

kilowatt hour have been identified from former bills during the economic data gathering, 

as displayed in Table 3.6. The mains water intake for the system was measured by FT1 

(Figure 3.9). For the determination of the WPDs run time, the developed PMD from 

section 3.3.1 has been applied due to a lack of online measuring devices. Also, this PMD 

allowed to estimate the amount of PW that was generated. To calculate the electrical 

energy consumption in the PW generation of IC2, the estimated run time of the WPDs 

was used in addition to the measured energy consumption during the water metering 

campaign. By applying the PMD to detect how long the units that ran occasionally 

𝑐𝑇𝐵𝑆_𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  
 𝑐𝑇𝐵𝑆_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝜂𝑇𝐵𝑆_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
   (3.9) 
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(softener, reverse-osmosis, blending-ultrafiltration, and recovery reverse-osmosis) are 

active per hour, the electrical energy consumption was determined more accurately than 

by using an overall average value.  

On the further added values side, system maintenance, chemical cleaning, and 

monitoring of PW quality have been identified as significant cost parameters for the 

operation of the system during the metering campaign. The cost for each expense is 

displayed in Table 3.6. 

 

Table 3.6: Resource and further added value costs for the IC2 PW system within the case 

facility 

Resource Cost 

Mains water         (𝑐𝑚.𝑤𝑎𝑡𝑒𝑟)         2.13 €/m3 

Electrical energy  (𝑐𝑒𝑙𝑒𝑐.)  0.10 €/kWh   

Further added values Cost per year 

Maintenance of softeners 2,667 €/year 

Maintenance of membrane units 24,067 €/year 

Sanitisation + Chemicals 10,000 €/year 

Monitoring of PW quality 49,494 €/year 

Total cost further added values 

(𝐶𝑎𝑑𝑑𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠,𝑦𝑒𝑎𝑟) 
86,228 €/year 

 

With the gathered data, the total cost of PW was calculated according to the following 

equation: 

 

 

where (𝑡2 − 𝑡1) represents a selected time interval, �̅�𝑆_𝑢𝑛𝑖𝑡𝑠 is the locally recorded 

electricity consumption of the purification system depending on the states of the single 

units. The PMD from section 3.3.1 infers the unit’s states as well as the yearly amount of 

generated PW 𝑄𝑃𝑊,𝑦𝑒𝑎𝑟. The costs for mains water (𝑐𝑚.𝑤𝑎𝑡𝑒𝑟), electricity (𝑐𝑒𝑙𝑒𝑐.) and 

further added values per year (𝐶𝑎𝑑𝑑𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠,𝑦𝑒𝑎𝑟) are displayed in Table 3.6. 

 

 

 

𝑐𝑃𝑊 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 =
∫ 𝐹𝑇1̇

𝑡2

𝑡1
∗ 𝑐𝑚.𝑤𝑎𝑡𝑒𝑟 + ∫ (�̅�𝑆_𝑢𝑛𝑖𝑡𝑠) ∗ 𝑐𝑒𝑙𝑒𝑐.

𝑡2

𝑡1
+

𝐶𝑎𝑑𝑑𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠,𝑦𝑒𝑎𝑟

𝑄 𝑃𝑊,𝑦𝑒𝑎𝑟

∫ 𝑄𝑃𝑊
𝑡2

𝑡1

   (3.10) 
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Results for the total cost of PW 

The total cost of PW within the IC2 system has been analysed for one year. Figure 

3.27 [a] depicts the resulting cost, calculated per hour. On average, the cost for generating 

one cubic meter of PW was 7.14 €/m3, which is 3.4 times higher than the company’s 

mains water supply cost of 2.13 €/m3. 

 

 

Figure 3.27: Results of the total cost analysis for the IC2 PW system: total cost of PW 

water hourly including moving average filter (red) and mains water supply cost (orange) 

[a], daily PW cost depending on machine 1 and 2 productivity [b], PW cost allocation [c], 

cost allocation of further added values [d], cost allocation for individual PW generation 

steps [e] 

 

 

[c]     [d]     

[b]     [a]     

[e]     
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A significant difference in Figure 3.27 [a] is the total PW cost between the first 

half (January until June) and the second half (July to December) of the chosen year. On 

average, the cost for the first half was 7.39 €/m3 whereas the second half showed an 

average cost of 6.77 €/m3. This difference is attributed to a membrane replacement at the 

first reverse osmosis unit in June. The new membranes increased the efficiency of this 

unit and therefore reduced the amount of required mains water. In addition, the 

temperature of the water influenced the permeate flow of the reverse osmosis unit.  

In Figure 3.27 [b] the daily cost of PW generation of machine 1 and 2 is displayed 

in dependency on the daily production activity. From this graph, no trend is observable 

between PW cost and low or high production rates.  

When considering the entire year, more than half of the total costs resulted from 

the mains water intake (4.22 €/m3), followed by the costs for further added values 

(2.53 €/m3), and electricity (0.41 €/m3). Figure 3.27 [c] displays this cost distribution. The 

major share of the further added value cost (57%) emanated from the monitoring of the 

PW quality, Figure 3.27 [d]. Daily conducted laboratory analyses were performed to 

ensure the generated PW met predefined standards. Figure 3.27 [e] illustrates the cost of 

the different process steps involved in the generation of PW. 

As an additional result representation, Table 3.7 shows the average total cost for 

generating 1 cubic meter of PW in the IC2 water system every month and the weighted 

average for the entire year (days per month considered). The listed value-added factor is 

a parameter that indicates the additional cost in relation to the mains water supply cost 

and is calculated according to the following equation:  

 

 

Table 3.7: Total cost of PW and value-added factor per month for IC2 water system 
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Average   

total cost 

PW[€/m3] 

7.62 7.71 7.79 7.71 7.54 6.98 6.60 6.67 7.07 6.78 6.65 6.56 7.14 

Value-

added factor 
3.6 3.6 3.7 3.6 3.5 3.3 3.1 3.1 3.3 3.2 3.1 3.1 3.4 

𝑉𝑎𝑙𝑢𝑒 𝑎𝑑𝑑𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑐 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑃𝑊

𝑐𝑚.𝑤𝑎𝑡𝑒𝑟

   (3.11) 
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3.4.2 Application to the steam system of the case facility 

The methodology of the total cost approach for TBS has been applied additionally 

to the steam system of the case facility. Based on the collected data from the steam 

metering campaign and the developed PMD for the estimation of the added mains water, 

the total steam generation cost of boiler 1 was analysed. Boiler 2 and 3 were not taken 

into account due to their low share of the total amount of generated steam. The previously 

conducted data gathering identified the required economic data, in the form of natural 

gas, water, electricity, and further added value costs, as presented in Table 3.8. 

 

Table 3.8: Resource and further added value costs for case facility’s steam system  

Resource Cost 

Natural gas           (𝑐𝑔𝑎𝑠) 0.31 €/m3 

Mains water         (𝑐𝑚.𝑤𝑎𝑡𝑒𝑟)        2.13 €/m3 

Electrical energy  (𝑐𝑒𝑙𝑒𝑐.) 0.10 €/kWh   

Further added values Cost per month 

Water softener salt 144 €/month 

Monitoring of boiler liquid 373 €/month 

Total cost further added values 

(𝐶𝑎𝑑𝑑𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠,𝑚𝑜𝑛𝑡ℎ) 
517 €/month 

 

With the gathered data, the total cost of steam generation for boiler 1 was calculated 

according to the following equation: 

 

 

where (𝑡2 − 𝑡1) is a chosen time interval, 𝑃𝑀𝐷𝑚.𝑤𝑎𝑡𝑒𝑟 is the inferred volume of added 

mains water by the PMD, and �̅�𝑆_𝑢𝑛𝑖𝑡𝑠 is the electrical energy required by the single 

consumers in the steam generation system. This electricity consumption was estimated 

based on the operation states of the single units which were available through the facility’s 

SCADA system. 

 

 

𝑐𝑠𝑡𝑒𝑎𝑚 𝑔𝑒𝑛.  𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 

 

=
∫ 𝑉𝑔𝑎𝑠

𝑡2

𝑡1
∗ 𝑐𝑔𝑎𝑠 + ∫ 𝑃𝑀𝐷𝑚.𝑤𝑎𝑡𝑒𝑟

𝑡2

𝑡1
∗ 𝑐𝑚.𝑤𝑎𝑡𝑒𝑟 + ∫ (�̅�𝑆_𝑢𝑛𝑖𝑡𝑠) ∗ 𝑐𝑒𝑙𝑒𝑐.

𝑡2

𝑡1
+

𝐶𝑎𝑑𝑑𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠,𝑚𝑜𝑛𝑡ℎ

𝑚𝑠𝑡𝑒𝑎𝑚 𝑔𝑒𝑛.,𝑚𝑜𝑛𝑡ℎ

 ∫ �̇�𝑠𝑡𝑒𝑎𝑚 𝑔𝑒𝑛.
𝑡2

𝑡1
 

 

(3.12) 
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Results for the total cost of steam 

The total cost of steam generation within the case facility was analysed for 35 

days. Due to a limited availability of data from the SCADA system, the analysing period 

of the total cost of steam had to be limited to this time frame. The specific cost per tonne 

of generated steam was calculated on an hourly basis. For the available time, the total 

steam generation cost was 26.48 €/t on average, Figure 3.28 [a]. The main driver in this 

cost accumulation was natural gas at 24.28 €/t, followed by electrical energy at 1.07 €/t, 

and mains water at 0.98 €/t. Further added values showed the lowest contribution to the 

total cost at 0.15 €/t. The cost distribution for the single resources and further added values 

as well as the single process steps are depicted in Figure 3.28 [c] and [d]. 

 

 

Figure 3.28: Results of the total cost of steam analysis in the case facility: total cost of 

steam generation hourly [a], operating cost for boiler 1 [b], cost allocation for the 

generation of steam [c], cost allocation for individual steam generation steps [d] 

 

Figure 3.28 [b] reveals the relationship between the amount of generated steam 

per hour and the resulting operation cost for boiler 1. This graph illustrates that the 
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operation costs were increasing linearly with higher rates of steam generation within the 

interval between 3 and 7 t/h of generated steam. 

By taking into account the previously analysed steam distribution efficiency 

(92%; Figure 3.16 [a]), the steam consumption cost was calculated according to equation 

(3.9). This cost was on average 28.78 €/t for the analysed steam system. 

3.4.3 Discussion of the total cost of TBS methodology  

The results from the two applications of the total cost methodology for TBS in the 

case facility revealed how each individual driver affected the total cost of PW / steam 

generation. The presented cost accumulation underlines the real value that is embedded 

in TBS by focusing on the interaction of multiple resources. In particular for the PW 

system, the results showed that the added value was on average 3.4 times higher than the 

mains water supply cost. Walsh et al. [100] showed that a value-added factor for PW can 

be up to 14 times higher than the mains water supply cost when more PW generation 

steps are involved and the mains water is supplied with lower costs.  

For the analysed steam system, natural gas was by far the main cost driver, 

followed by electrical energy. These cost allocations and their magnitudes are in 

accordance with values for steam generation systems given by Masanet and Walker [83] 

and Hasanbeigi et al. [80].  

Compared to similar total cost models that can be found in the literature [100], 

[103], [105], the developed methodology in this research has the novelty that it is based 

on online / PMD meters. This allows an automated benchmark with the possibility of 

small step analyses and live tracking. The automation enables the tracking of system 

changes and displays their impact on the total cost, as seen in the PW system in the form 

of membrane replacements in the first reverse osmosis unit (Figure 3.27 [a]).  

The gained data and insights are used by the facility to justify improvements of 

their systems by providing a shorter payback time based on the now available total cost. 

Moreover, the revealed total cost enhances the awareness of the value within the 

generated PW / steam system and led to an increased effort to realise saving opportunities. 

When striving for system savings, the total cost benchmark offers the potential to function 

as a KPI and can be part of a companywide energy and resource management system.  

The accuracy of the presented total cost methodology can be limited, mainly when 

many further added values are involved or when each value has to be estimated due to 
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limited data availability. Nonetheless, the purpose of this methodology is to raise 

awareness of the real value that is involved in TBS as well as to express the 

interconnection of different resources rather than the calculation of an accurate total cost.  
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3.5 Summary 

This chapter focused on the development and application of a holistic metering 

strategy for detailed information gathering of TBS. A fundamental requirement for this 

task was to take existing conditions and constraints of industrial environments into 

account [94]. To ensure applicability for industrial users, the assessment framework has 

been developed and applied with the study of two PW and one steam system in a case 

facility.  

To start a TBS investigation, the first two phases of the presented metering 

framework focus on a system familiarisation, identification of available data sources, and 

abstraction of the main process steps. The third phase involves a targeted collection and 

analysis of process data towards a previously set metering goal. By mapping the required 

resources and studying the performance of single devices of the three TBS systems in the 

case facility, operators gained an increased system understanding including energy and 

resource-saving opportunities. Although the high number of offline and missing 

measuring devices in these case systems led to increased metering efforts and limited the 

study of system dynamics.  

The solution to the absence of functional online meters is represented in the fourth 

phase of the metering framework by the integration of a simplified proxy metering 

strategy. Data from related online measuring devices are first pre-processed and 

subsequently applied in a regression model. The higher inaccuracies of these models 

compared to a physical meter device are acceptable due to the benefits in the form of cost 

and time savings. Within the case applications of the PW and steam systems, three PMDs 

have been developed to infer missing process parameters. During the model training stage 

for one of the PMDs, inadequate sampling times and diverse positions of related 

measuring devices resulted in poor accuracy. The other two PMDs were developed with 

sufficient accuracy and improved the system understanding within the metering 

campaign. A constraint for all three PMD approaches were the small modelling datasets 

which resulted from the necessity of manual data acquisition. 

The information emanating from the metering framework can then be utilised to 

calculate the total cost of TBS. This cost index is based on the required resources and 

further added values. The total cost demonstrates the interaction of multiple resources and 

visualises the value that is embedded in the investigated system. In comparison to similar 

approaches that can be found in the literature [100], [103], [105], the presented cost 

calculation methodology in this research relies on online measuring devices and PMDs 
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and can therefore be automated. This novelty enables the tracking of the effectiveness of 

system modifications, as seen in the case of the investigated PW system where a 

membrane change in one of the units reduced the PW generation cost by approximately 

9%. 

Overall, the developed metering framework introduces a data acquisition and 

characterisation strategy for TBS that has not been reported to this extent in the literature 

to date. This research accelerates the move towards sustainable TBS by unfolding energy 

and resource-saving opportunities and showing their magnitudes in the form of the total 

TBS cost. 

To further improve data visibility when functional online measuring devices are 

absent, more applicable guidelines from the research are needed for PMDs that have to 

be developed on small datasets. An in-depth study of PMD behaviour depending on the 

complexity of small datasets and concluding modelling methodologies are analysed in 

chapter 4.
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The research in this chapter presents an analysis of three different proxy meter 

device (PMD) algorithms that were applied on five small datasets. These datasets have 

been acquired from an experimental rig. As an initial step of the testing methodology, a 

set of complexity measures was applied to classify the regression complexity of each 

dataset. Subsequently, the datasets were used in PMD regression models and the 

estimation was studied. For further improvement, the influences of pre-modelling 

modifications in the form of bootstrap replications (BR) and artificial noise injection 

(ANI) was investigated. In total, the presented analysis provides a comprehensive PMD 

development strategy for industrial users that is applicable to small datasets and suitable 

to individual process complexity. This straightforward approach presents necessary 

guidance to enhance the use of PMDs in industrial facilities [140].
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4.1 Experimental rig 

To investigate the performance of PMDs, an experimental rig was developed that 

enabled the collection of small datasets with varying complexity. The experimental rig 

process layout, depicted in Figure 4.1, was designed by following the arrangement of the 

condensate tank setup of the previously analysed case facility’s steam system in section 

3.3.2 (Figure 3.23). 

 

 

Figure 4.1: Experimental rig layout for PMD development: process layout [a], photo of 

the entire experimental rig [b], 3D model of experimental rig (layout for setup A) [c] 
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A high degree of flexibility to enable different process setups was important for the 

experimental rig design. Water was circulated between three tanks within the 

experimental rig, which were located with a height difference (∆h1 in Figure 4.1 [a]) of 

105 cm between each other to reduce the number of required pumps. Flexible tubes with 

an internal diameter of 1 cm were used for the tank connections. The three tanks were 

similar in size, with an internal volume of 24 litre and an internal cross-sectional area of 

28.5 x 23 cm. Mains water could be added to tank 1 or 3 and excessive water was drained 

at various locations. In tank 3, a heating coil was implemented to raise the water 

temperature. This coil was connected to an external heating device by an independent 

water loop. The water flows within the experimental rig were set by manual ball valves 

(V2; V3_2; V4) and two automated solenoid valves (V1 and V3). Throughout the process, 

different measuring devices were installed that recorded temperatures (TT; type K- 

thermocouples), flow rates (FT), and pH value (pHT) with a sample rate of 1 Hz. These 

measurement devices, as well as the solenoid valves V1 and V3, were connected to a 

compactDAQ (cDAQ-9178) from National Instruments, a data acquisition and control 

platform. The compactDAQ was operated by the National Instrument programming 

language LabVIEW 2018. As additional measuring devices, three analogue bypass level 

indicators (LI) showed the filling level of tanks 1, 2, and 3. These devices indicated the 

filling levels of each tank in proportional to the tank height. The external heating device 

which was connected to the heating coil of tank 3 had its own control system with the 

option to set constant water temperatures at the heater output. Tank 1 represents the link 

of the experimental rig design to the earlier mentioned condensate tank setup of the case 

facility’s steam system. In this tank, water flows can be added with different temperatures 

and flow rates. The adjusting temperature within the tank is measured at the tank exit. 

This setup is similar to the functionality of the condensate tank within the analysed steam 

system, shown in Figure 3.23. 

 

Calibration of measuring devices 

The implemented measuring devices were calibrated according to their operating 

conditions in the experimental rig. A detailed description of the calibration and validation 

procedure for the single measuring devices is shown in the appendix section B. The 

following table displays the outcome of the calibration process in the form of uncertainty 

parameters which were obtained during the subsequent device validation.  

 



4. Proxy measurements in small dataset scenarios  

 

126 

Table 4.1: Calibration results for the measuring devices of the experimental rig 

Measuring device Calibration range Measuring principle 
Uncertainty parameters  

Max. deviation Mean deviation  

TT1 

18-78°C K-type thermocouple 

0.13 °C 0.06 °C 

TT2 0.19 °C 0.13 °C 

TT3 0.15 °C 0.07 °C 

TT4 0.19 °C 0.15 °C 

TT5 0.09 °C 0.05 °C 

FT1 

0.5-2.0 l/min Hall effect flow sensor 

0.03 l/min 0.01 l/min 

FT2 0.04 l/min 0.02 l/min 

FT3 0.03 l/min 0.01 l/min 

FT4 0.04 l/min 0.02 l/min 

pHT1 
pH 2.5-10.5 

Glass and reference 

electrode 

pH 0.09 pH 0.04 

pHT2 pH 0.11 pH 0.07 

  

Limitations of the experimental rig 

Although the experimental rig has been designed according to the condensate tank 

setup of the previously analysed case facility’s steam system in section 3.3.2, the small 

scale of the rig can impact the PMD performance study. The small dimensions of the 

pipes and tanks of the experimental rig and the abstracted design led to divergent flow 

behaviours and measurement phenomena compared to larger scale real world industrial 

processes. This limits the transferability of the PMD development methodology which is 

outlined in the following sections. Nonetheless, the advantage of the experimental rig 

compared to a real world industrial system, is a higher level of process control and 

flexibility: Various measuring cycles that are outlined in the following section could be 

repeated several times in a short time period which would not have been possible in most 

real world industrial processes due to ongoing manufacturing activities. In addition, the 

implemented measuring devices, with a sample rate of 1 Hz, allowed a detailed PMD 

performance study. In many industrial setups, a similar study extent would not have been 

possible due to missing online measuring devices and / or low sample rates, as seen for 

the developed PMDs of the case facility in chapter 3.3.  

In summary, the experimental rig enables a comprehensive PMD performance 

study that would not have been possible in the same time period within an industrial setup. 

However, the developed PMD methodology needs to be applied to a real world industrial 

process to prove its validity for larger scale systems.
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4.2 Proxy meter developments 

Based on the built experimental rig, five PMDs were developed to approximate 

one of the measured process parameters. In a real industrial system, this PMD 

arrangement would represent a back-up for physical meters and can be used to identify 

abnormal deviations between physical and virtual meters, similar to the PMD use case 

presented by Äijälä and Lumley [191] in section 2.3.2. For the developed experimental 

rig, the physical meters allowed an in-depth performance comparison between PMD 

models and actual measured parameters by providing the required data. This data enabled 

the training and validation of different PMD regression models and allowed further study 

of the influence of small dataset manipulation techniques.  

4.2.1 PMD experimental rig setups 

 Depending on the flow arrangement of the experimental rig, different target and  

input variable relationships were selected for each of the five PMDs, labelled by the letters 

A to E. Table 4.2 depicts an overview of the target and input variables for each PMD 

setup. In addition, the following list presents a summary of each PMD setup and Figure 

4.2 presents the respective flow path within the experimental rig.  

• Setup A: Water was looped between tanks 1, 2, and 3. The external heater was 

active to increase the water temperature within tank 3. Mains water was added 

occasionally to tank 1, start and stop of the mains water addition was controlled by 

the filling level of tank 1. The flow rates of the incoming and exiting flows to tank 

1 and the external heater temperature were varied in between the mains water 

addition cycles. The amount of added mains water (FT1) during one cycle was 

selected as the target variable for the PMD in setup A. This experimental rig setup 

is similar to the conditions of the developed PMD within the case facility’s steam 

system, shown in section 3.3.2. Figure 4.2 [a] displays the flow path within the 

experimental rig for setup A. 

• Setup B: The empty tank 1 was filled with water from tanks 2, 3, and the mains. 

The adding flows showed diverse temperatures and flow rates and were varied in 

between the filling cycles. The temperature of tank 1 (TT2) that resulted after each 

filling cycle was chosen as the target variable for the PMD in setup B. Figure 4.2 

[b] displays the flow path within the experimental rig for setup B. 
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• Setup C: Similar to setup B, water flows with different flow rates and temperatures 

were mixed in tank 1. The pH-Value (pHT1) of tank 1 that resulted after mixing of 

these flows has been selected as the target variable for PMD setup C. According to 

Barron et al. [208], pH-values decrease with an increase in the liquid temperature. 

To reinforce the change of pH-values in tank 1, sodium carbonate (increase of pH 

value) or sodium bisulfate (decrease of pH value) was added to tank 2 and 

subsequently pumped to tank 1 where it was mixed with mains water and water 

from tank 3. Figure 4.2 [c] displays the flow path within the experimental rig for 

setup C. 

• Setup D: The filling level of tank 1 (LI1) after a running time of 10 minutes 

(t_predict in Table 4.2) was selected as the target variable of the PMD in setup D. 

In this setup, water was added to tank 1 from tank 3 and the mains. To increase the 

model complexity, the mains water flow (V1) was controlled by using a 2-position 

controller with a set target filling level for tank 2. In addition, the water flow rate 

from tank 3 (FT4) was changed once at a random time point during the data 

recording (t_change_FT4 in Table 4.2). The filling levels of tank 1 and tank 2 were 

randomly selected at the start. In contrast to the previous setups, the dataset for this 

process scenario has been simulated based on physical relations. A more detailed 

explanation of this simulation is presented below and in the appendix section C. 

Figure 4.2 [d] displays the flow path within the experimental rig for setup D. 

• Setup E: Setup E is similar to setup D, except that the water flow from tank 3 (FT4) 

was continuously decreasing from a randomly chosen filling height at the 

beginning. As in setup D, the filling level of tank 1 (LI1) after a running time of 10 

minutes (t_predict in Table 4.2) was selected as the target variable of PMD setup 

E. The dataset has been simulated based on physical relations, a more detailed 

explanation of the simulation is presented below and in the appendix in section C. 

Figure 4.2 [d] displays the flow path within the experimental rig for setup E.  
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Table 4.2: Input and target variables for PMDs developed from the experimental rig 

 PMD-setup 

 A B C D E 

Target 

variable 

 
FT1 (added 

mains water to 

tank 1) 

TT2 (temp. in 

tank 1 after 

mixing flows) 

pHT1 (pH value 

in tank 1 after 

mixing flows) 

LI1 (filling level 

in tank 1 at time 

t_predict) 

LI1 (filling level 

in tank 1 at time 

t_predict) 

median 4.3 litres 33.2 °C pH 7.8 0.17 m 0.22 m 

Std. 1.1 litres 3.9 °C pH 0.7 0.04 m 0.04 m 

min. 2.8 litres 25.3 °C pH 6.4 0.09 m 0.13 m 

max. 7.3 litres 44.5 °C pH 9.6 0.26 m 0.29 m 

Input variables 

FT2 FT1 FT1 FT4_1* LI1* 

FT4 FT3 FT3 
FT4_2 (after 

t_change_FT4) 
LI2* 

TT2 (dT 

dropping + t of 

dT dropping) 
FT4 FT4 LI1* LI3* 

TT1 TT1 TT1 LI2* FT3 

TT4 TT2* TT3 t_change_FT4  

TT5 TT3 TT4   

 TT4 TT5   

 TT5 pHT2*   

  pHT1*   

Total # of input 

variables 
7 8 9 5 4 

Note    
Based on 

simulation 

Based on 

simulation 

*: measured value at t_start 
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Figure 4.2: Process layout for experimental rig for PMDs cases A-E; including target 

variables (green) and relevant input variables: setup A [a], setup B [b], setup C [c], setup 

D and E [d] 
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since the implemented level indicators within the experimental rig (LI1, LI2, and LI3) 

were offline devices and could not be connected to the compactDAQ data acquisition 

system. In the model, tank 1 is filled by inputs from tank 3 (FT4/LI3) and the mains water 

and the tank 1 output is filling tank 2. To increase the setup complexity, the filling level 

of tank 2 was used as a target parameter of a 2-position controller that regulated the 

amount of mains water addition with the solenoid valve V1. For setups D and E, a fixed 

tank 2 filling level (LI2) of 0.2 m was used as a target for the 2-position controller. Within 

setup D, the added water from tank 3 to tank 1 (FT4) was set to two constant flow rates 

which changed at a random time point (t_change_FT4) during the simulation time of 10 

minutes. For setup E, the added water from tank 3 to tank 1 was continuously decreasing 

according to the filling level of tank 3 which was set to a random start level at the 

beginning of the simulation.  

As a modelling environment, MATLAB Simulink has been used. All parameters 

of the simulation, such as the maximum and minimum tank filling levels and flowrates, 

matched the conditions of the real experimental rig. The simulation of setup D and E was 

running for a duration of 10 minutes and the filling level of tank 1 (LI1) at the end of this 

time was used as the target value for the PMD estimation. Further detail in the form of 

the model derivation and validation is presented in the appendix section C. Figure 4.3 

depicts example simulation results of the tank filling levels and flow rates, in [a] for setup 

D and in [b] for setup E. The simulations were conducted 80 times to generate the required 

datasets for PMD model training and validation.   
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Figure 4.3: Example of simulated experimental rig filling levels and flow rates for 

setups D [a] and E [b] 

4.2.2 Data pre-processing, model training and validation 

For each of the five developed PMDs, three different regression algorithms were 

applied: Multiple linear regression (MLR), Partial Least Square regression (PLSR), and 

Neural Network (NN). According to Kadlec et al. [149], these algorithms are most 

frequently used for linear and non-linear PMD development (further details in section 

2.3.1). The characteristics of MLR, PLSR, and NN were presented in Table 2.4.  
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is presented in the experimental results section, was developed with the MATLAB 2018 

software environment. Initially, data from the input and target variables were collected 
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the diversity of sampling times between measured variables did not occur. Each set of 

data records for the setups A, B, and C included multiple cycles of the measured 

phenomena, e.g. mains water additions to tank 1 for setup A. Therefore, data filters were 

used after the data pre-processing to extract the relevant values of the input and target 

variables that are displayed in Table 4.2. One cycle of the measured phenomena 

represented one sample for the PMD development. Between 85 and 100 samples were 

recorded for setups A, B, and C. For setups D and E, the required data was provided by 

the simulation model. To have an equal number of samples for each setup, the dataset 

size was limited to 80 samples (referred as original dataset below). 

 

 

Figure 4.4: PMD development methodology for acquired datasets from the experimental 

rig 
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Subsequently, each dataset was analysed in terms of dataset complexity. 

Therefore, the complexity measures for regression models that were introduced by Lorena 

et al. [175] have been applied, described in further detail in the literature section 2.3.1 and 

in the appendix section A. For the complexity evaluation, the datasets were normalised 

between [0,1] to allow an easier complexity comparison between multiple datasets.   

For PMD model training, the number of training samples varied between 9 and 

70. These samples were randomly selected from the original dataset (80 samples) for each 

setup (also referred as random subsampling). For validation, the developed MATLAB 

code selected 10 random samples that were not included in the model training set. This 

form of validation is referred to as holdout validation in the literature [165]. Holdout 

validation was suitable in this scenario as enough validation samples were left out of the 

training set. As a further benefit, the computational demand for holdout validation is 

lower compared to K-fold cross-validation which decreased the model validation time. 

This was an important aspect as the random selection of training samples, model training 

and validation was repeated 100 times for every training sample size to introduce 

diversity. This resampling procedure is suggested in the literature by several authors, e.g. 

Japkowicz and Shah [209] and James et al. [166]. The set number of 100 repetitions is 

reported in the publication by Martens and Dardenne [210] as an adequate number for 

sufficient precision when dealing with small dataset regression models.  

In addition to the training and validation with the original datasets, bootstrap 

replications (BR) and artificial noise injection (ANI) were applied to the training data and 

the influence on the model performance was analysed for the regression algorithms. For 

bootstrap, the effect of different BR of the original small training datasets in terms of 

model performance was studied. For ANI, the influence of different noise variances, 𝜎2, 

on the model performance was analysed. The noise was added either to the input, target, 

or input and target variables of the training samples. In addition, BR and ANI were 

applied in combination. Here, the original training dataset was first resampled by BR 𝑥 

number of times. Artificial noise was then injected into the BR. 

To evaluate the estimation capabilities of the trained PMDs for the 10 left-over 

validation samples, the developed MATLAB code calculated the RMSE and CC between 

the measured / simulated target variable and the estimated target variable by the PMD. In 

the results section below, the average (median) RMSE and CC from the 100 repetitions 

for each algorithm and training sample size are shown for validation. The increasing 

number of training samples allowed to study the effect of training sample size towards 
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the model performance and resulted in a learning curve [165]. Besides the average 

performance, the performance variation of the 100 training repetitions was analysed and 

are presented below. Similar to the procedure in the publication by Tange et al. [187], 

boxplots are used to display the performance variation for the regression algorithms for 

selected training sample sizes. Boxplots are valuable tools for the comparison of model 

performances and display the following information [211] (additionally pointed out in the 

boxplot in Figure 4.4): 

• Horizontal line inside the boxes: median value 

• Upper / lower edge of the box: upper / lower quartile 

• Upper / lower end of the whisker: 1.5-times interquartile range 

• Points above / below the whiskers: outliers 

 

Furthermore, the residuals between the estimated target variable by the PMD and 

measured / simulated target variable were analysed to study the model fit. As shown in 

the Figure 4.4, the scatter plot of the residuals was used to analyse if a residual pattern is 

visible from the fitted values. In two addition plots, the residual distribution was studied: 

With the help of a superimposed normal density function, the residuals were examined 

for being distributed normally. Any departure from normality was also made visible with 

the help of a normal probability plot.  

Significance tests to identify performance differences between regression 

algorithms or between different training sample sizes of the same algorithm were not 

conducted. Several authors [209], [212], [213] reported that resampling procedures of 

datasets violate the assumption of sample independence which is vital for ordinary 

significance tests such as paired t-test and ANOVA. Dietterich [212] demonstrated that 

for paired t-tests, the violation of sample independence due to resampled data leads to a 

high probability of incorrectly detecting a difference when no difference exists (type one 

error). According to Japkowicz and Shah [209], this leads to a gravely affected t-test result 

with limited validity. To overcome this limitation, modified significance tests have been 

suggested in the literature; the corrected resampled t-test [214], and the 5x2 cross-

validated t-test [212]. Though, these tests cannot be applied to test different training 

sample sizes of the same algorithm nor for very small sample sizes. Due to these 

limitations of significance tests and in accordance to publications with similar testing 
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procedures of regression algorithms [171], [187], [202], significance tests were not 

implemented in the result sections.  

In general, the research shown in this chapter is not focusing on demonstrating a 

significant difference in algorithm performances in a specific use case. Instead, this 

research aims to provide general guidance for the selection of a suitable modelling 

strategy for PMDs in small dataset scenarios for industrial users.  

4.2.3 Input variable reduction and model parameters 

For the PMD setups A-E, the model input variables were selected based on 

process knowledge. To increase the performance of the trained algorithms, in particular 

for smaller datasets, it is important to reduce the number of input variables. As outlined 

by Andersen and Bro [158], fewer numbers of input variables decrease the risk of 

overfitting and require less computational demand. In particular, for MLR and NN, the 

reduction of input variables can have a considerable effect on model performance. 

However, if too few input variables are selected, the model performance decreases. In 

order to identify a suitable subset of input variables for setups A-E, the single input 

variables were analysed in relation to their relevance towards the target variable. This 

identification was based on the variable selection strategies that were recommended by 

Andersen and Bro [158] (section 2.3.1): Input variable correlation to target variable and 

the selectivity ratio. Based on the procedure of forward selection, the subset with the 

highest performance was identified.  

 Compared to MLR and NN, the reduction of input variables is less significant for 

PLSR since the algorithm is based on latent variables (further explained in section 2.3.1). 

Nonetheless, the number of latent variables for the most accurate PLSR performance must 

be identified. For the PMD setups below, various numbers of latent variables were tested 

during PLSR training and validation. Subsequently, the number of latent variables that 

resulted in the most accurate PLSR performance was selected.  

A similar approach was applied to the training of NNs. All NNs for setups A-E 

were developed with the MATLAB Neural Network Toolbox. An example of a NN layout 

architecture for the developed PMDs in setups A-E is presented in Figure 4.5. 
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Figure 4.5: Example of developed NN architecture for PMDs setups A-E 

 

According to the outlined literature in section 2.3.1, several model parameters of NNs 

have to be set during the model training stage. To keep the structure of the trained NNs 

for the setups A-E small, one hidden layer has been applied. As activation function for 

the neurons, the sigmoid function was used. The NNs were trained by the Levenberg-

Marquardt algorithm since this algorithm provides a high training efficiency for small 

size NNs according to Yu and Wilamowski [186]. The initial value of weights for the 

connections between the neurons was chosen randomly. The maximum number of 

optimisation cycles was set to 1000. However, the number of optimisation cycles was 

usually much smaller than 1000, since the used NN training algorithm incorporated an 

automated stop function, which was activated when the internal error parameter did not 

decrease any further for six iterations in a row. To identify the optimum number of hidden 

neurons within the hidden layer, several NNs were trained with varying numbers of 

hidden neurons for each setup. The number of hidden neurons that resulted in the highest 

performance was then selected. This selection approach for the number of hidden neurons 

has been applied in various publications in the literature [138], [163], [201], [202]. 
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4.3 Experimental results 

The goal of this investigation was to analyse the performance of different 

regression algorithms on small datasets with varying complexity for use as a PMD. This 

section outlines the results that were obtained for the five PMDs that were developed 

based on the experimental rig system described in Figure 4.1. First, the results of the 

dataset complexity evaluation for setups A-E is shown. The subsequent section presents 

the results for the PMDs that were developed on the original datasets. Next, the impact of 

input variable reduction on the model performances is analysed for each setup. Finally, 

the effect of training sample modification with BR and ANI is studied for the PMD 

algorithms that resulted in the highest performance of each setup. The results of the PMD 

performance studies are discussed separately in each subsection. 

4.3.1 Dataset complexity evaluation for setups A-E 

To assess the regression complexity of the available datasets, the measures from 

Table 2.3 were used. Table 4.3 presents the results for the setups A-E. The upwards arrow 

↑ denotes that higher values of the specific parameter indicate more complex regression 

problems, whereas the downwards arrow ↓ denotes the opposite. The measures have 

been applied to the entire, original datasets (80 samples). As a graphical illustration, 

Figure 4.6 depicts the result of the complexity measures for setup A-E in the form of a 

radar chart. In this chart, the coloured lines represent the setups and each vertex is related 

to a different regression complexity measure.  
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Table 4.3: Regression complexity measures for experimental PMD setups, values for 

entire datasets (80 samples) 

 Correlation Linearity Smoothness 
Geometry, topology, and 

density 

 C1↓ C2↓ C3↑ L1↑ L2↑ S1↑ S2↑ L3↑ S3↑ T1↓ 

Setup A 0.81 0.44 0.08 0.06 0.01 0.62 0.02 0.004 0.005 11.4 

Setup B 0.82 0.29 0.09 0.04 0.01 0.71 0.01 0.002 0.003 10.0 

Setup C 0.95 0.27 0.08 0.06 0.01 0.69 0.01 0.004 0.001 8.9 

Setup D 0.61 0.33 0.34 0.11 0.02 0.76 0.02 0.012 0.004 16.0 

Setup E 0.52 0.23 0.60 0.18 0.05 0.64 0.03 0.031 0.021 20.0 

Complexity measure explanation (according to Table 2.3 and appendix A) 

 Measuring feature Parameter relying on 

C1 Maximum inputs correlation to target variable  Single inputs-target correlations  

C2 Average inputs correlation to target variable  Average inputs-target correlation  

C3 Collective input efficiency  Correlation + linear fit + residual error  

L1 Mean absolute error  Multiple linear regression 

L2 Residual variance  Multiple linear regression 

S1 Inputs distribution  Euclidean distance  

S2 Error of nearest neighbour regressor  Nearest neighbour regression  

L3 Non-linearity of linear regressor  Interpolation + linear fit  

S3 Non-linearity of nearest neighbour regressor  Interpolation + nearest neighbour regression  

T1 Average number of samples per dimension  Samples + input variables  

   

 

 

Figure 4.6: Radar charts of regression complexity measures for setups A-E, logarithmic 

scaling: complexity measures indicating increasing complexity by higher values [a], 

complexity measures indicating increasing complexity by lower values [b] 
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From Table 4.3 and the graphs in Figure 4.6 it can be observed that PMD-setups 

A, B, and C are showing similar results in all four complexity areas: correlation (C1, C2, 

and C3), linearity (L1 and L2), smoothness (S1 and S2), and geometry, topology, density 

(L3, S3, T1). In Figure 4.6 [a] and [b], setups A, B, and C cannot be clearly distinguished 

from one another. When compared with examples given by Lorena et al. [175], the values 

for setups A, B, and C indicate simple regression problems. In particular, the high values 

for the parameter of maximum input correlation to the target variable C1 and the low 

values of the linearity measures L1 and L2 imply that linear PMD algorithms can be 

suitable to estimate the target variable with sufficient accuracy. PMD-setup D differs in 

most of the measurements from the previous three. Lower correlation and higher values 

for linearity, smoothness, and geometry values (except for S3 and T1) suggest a more 

complex regression problem. In Figure 4.6 [a], setup D can be clearly distinguished from 

the other setups, except for the parameter of the input distribution S1 and the non-linearity 

of the nearest neighbour regressor S3. For PMD-setup E, the values of the measures are 

even higher than the values of PMD-setup D. This implies that the dataset of PMD-setup 

E shows the highest complexity of all five setups. The low value of the measure for 

maximum input correlation to the target variable C1 and the high values of the linearity 

complexity measures L1 and L2 indicate that linear PMD algorithms might fail to 

estimate the target variable accurately. Similar to setup D, setup E can be clearly 

distinguished in the radar chart of Figure 4.6 [a] from the other setups, except for the 

parameter of the input distribution S1.  

4.3.2 PMDs trained on original datasets with all input variables 

Setup A 

The developed PMD in setup A estimates the mains water that was added to tank 

1. According to Table 4.2, seven input variables were identified from the process 

knowledge as being relevant to the target variable FT1. In this section, the three PMD 

algorithms were trained and validated on the original, pre-processed dataset without any 

modifications. The training of MLR, PLSR, and NN included the variation of sample 

numbers between 9 and 70. For each training set size, 100 repetitions were conducted 

with randomly drawn samples. Figure 4.7 and Figure 4.8 present the results for setup A. 

In Figure 4.7, [a] and [b] show the average performance for the increasing sample number 

for the three algorithms in terms of CC and RMSE. For all figures that show the average 
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performance within this experimental results section, moving average filters were applied 

to improve the visual representation of the performance over several training samples. 

Furthermore, these plots show various results for NNs and PLSR. NNs were trained with 

different numbers of hidden neurons in one hidden layer. The number of applied hidden 

neurons is shown in the performance figures by the attached number in the legend, e.g. 

NN_5 represents the performance of a NN that was trained with five hidden neurons. The 

figures below display the NN with the number of hidden neurons that resulted in the 

highest performance as well as one further NN with a different number of hidden neurons 

to allow a comparison. For each setup, the performance of NNs with a further variety of 

hidden neurons is presented in the appendix, for setup A in Figure D.9. This figure 

arrangement was used to identify the optimum number of hidden neurons for the trained 

NNs, for setup A, NNs with two to four hidden neurons resulted in the highest 

performance. To decrease the NN algorithm complexity, the lowest number of hidden 

neurons was chosen for similar performing NNs, therefore, for setup A two hidden 

neurons were selected as the NN with the highest performance.  

For the shown PLSR algorithms in the performance plots below, different 

numbers of latent variables are shown that resulted in high performances. Similar to the 

NNs, the attached number behind PLSR in the legend indicates the number of latent 

variables for the specific PLSR algorithm, e.g. PLSR_5 represents the performance of a 

PLSR algorithm that was trained with five latent variables.  

 

 

Figure 4.7: Setup A: average regression performance, all input variables: RMSE (Root 

mean squared error) [a] and CC (Correlation coefficient) [b] performance for different 

regression algorithms with increasing training samples 

 

[a]     

        

[b]     
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For setup A, the presented results in Figure 4.7 reveal that the average 

performance of MLR and PLSR is higher than the NN with the highest accuracy (two 

hidden neurons: NN_2) over the entire training sample range, in particular for small 

training samples. The almost constant performance of MLR and PLSR for training 

samples larger than approximately 30 suggests that the models have approached their 

minimal model error. This contrasts with the performance of NNs, where the performance 

is increasing over the range of training samples, in particular for smaller training samples. 

This suggests that more than 70 training samples might result in a further NN performance 

increase. For PLSR, the performance with the highest accuracy is obtained for six latent 

variables. Between MLR and PLSR_6, a slightly lower RMSE and higher CC can be seen 

for PLSR_6 when very small training samples are applied. 

In addition to the average performance, Figure 4.8 [a], [b], and [c] present the 

RMSE performance variation of the three algorithms for the 100 training and validation 

repetitions. The corresponding CC performance variation for the same algorithms are 

displayed in the appendix in Figure D.9 for setup A. The boxplots in Figure 4.8 [a], [b], 

and [c] display the performance variation for training sample sizes 10, 20, 40, and 70 for 

MLR and the best-performing algorithms of PLSR (PLSR_6) and NNs (NN_2). In 

addition, Figure 4.8 [d] presents  an example of the residuals that were obtained from an 

MLR model which was trained with 40 training samples. 
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Figure 4.8: Setup A: RMSE variation and residual plots, all input variables: box plots for 

performance variations of algorithms MLR [a], PLSR_6 [b], and NN_2 [c], example of 

residual analysis for MLR algorithm trained with 40 samples [d] 

 

The boxplots in Figure 4.8 reveal that all three algorithms show a similar influence 

of training sample size on the model performance: With the increasing number of training 

samples, the performance variation decreases. For NN_2, the variation of the performance 

is higher throughout the displayed number of training samples compared to MLR and 

PLSR_6. Similar performance variations can be seen for MLR and PLSR_6.  

The plots in Figure 4.8 [d] demonstrate that the residuals for an MLR algorithm 

trained with 40 samples are randomly distributed along with the fitted values. No pattern 

can be observed. The two lower plots in [d] show that the residuals are approximately 

normally distributed. 

 

Setup B 

The developed PMD in setup B estimates the water temperature of tank 1 after the 

mixing of several flows. According to Table 4.2, eight input variables were identified 

from the process knowledge as being relevant to the target variable TT2. Similar to the 

[d]     [c]     
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results of setup A, the average performance over an increasing number of training samples 

for MLR, PLSR, and NNs are presented for setup B in Figure 4.9 and the RMSE 

performance variation and residual plots are displayed in Figure 4.10. The corresponding 

CC performance variation is shown in the appendix in Figure D.11. 

 

 

Figure 4.9: Setup B: average regression performance, all input variables: RMSE [a] and 

CC [b] performance for different regression algorithms with increasing training samples 

 

The results for setup B are comparable to the results obtained for setup A: MLR 

and PLSR perform better than the trained NNs over the entire training sample range. 

According to Figure D.11 in the appendix, NNs with two and three hidden neurons 

resulted in comparable performances for setup B. MLR and PLSR show almost constant 

performances from a training sample size of 30 onwards, whereas, the NNs performance 

is increasing over the range of training samples, in particular for smaller training samples. 

For PLSR, the utilisation of five or six latent variables resulted in comparable 

performances. Between MLR and PLSR_5/ PLSR_6, a slightly higher CC and lower 

RMSE can be seen for PLSR when very small training samples are applied (<15 training 

samples). This corresponds to the shown performance variations for the three algorithms 

in the boxplots of Figure 4.10: in [a] and [b] of this figure, a lower variation and higher 

median performance can be observed for PLSR_5 compared to MLR when 10 training 

samples are applied. For 20 and more training samples, this difference disappears. The 

performance variation of NN_2 in [c] of Figure 4.10 is higher for all training samples 

compared to MLR and PLSR_5. Figure 4.10 [d] presents the residuals for PLSR_5 trained 

with 40 training samples. No pattern can be observed. The two lower plots in [d] show 

that the residuals are approximately normally distributed. 
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Figure 4.10: Setup B: RMSE variation and residual plots, all input variables: box plots 

for performance variations of algorithms MLR [a], PLSR_5 [b], and NN_2 [c], example 

of residual analysis for PLSR_5 algorithm trained with 40 samples [d] 

 

Setup C 

The developed PMD in setup C estimates the pH value of tank 1 after the mixing 

of several flows. According to Table 4.2, nine input variables were identified from the 

process knowledge as being relevant to the target variable pHT1. Similar to the previous 

setups, the average performance for MLR, PLSR, and NN over an increasing number of 

training samples is presented for setup C in Figure 4.11. The RMSE performance 

variation and residual plots are displayed in Figure 4.12 and the corresponding CC 

performance variation is shown in the appendix in Figure D.13. 
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Figure 4.11: Setup C: average regression performance, all input variables: RMSE [a] and 

CC [b] performance for different regression algorithms with increasing training samples 

 

For the shown average performance of setup C in Figure 4.11, MLR and PLSR 

outperform NN for small training samples. However, when the training sample size 

exceeds approximately 50 training samples, the shown NNs result in slightly higher 

performances. Although, the applied complexity measures of Table 4.3 resulted in 

comparable values for setups A, B, and C, this outperforming behaviour of NNs compared 

to MLR and PLSR for higher training samples was not seen in setups A and B. A potential 

explanation for these differences is that the applied complexity measures do not represent 

the entire regression complexity of the datasets. As a result, slightly different model 

performances are observed for datasets with similar regression complexity. For setup C, 

the best result for PLSR was achieved with five latent variables and for NNs with five to 

six hidden neurons (Figure D.13 in the appendix). When the training sample size is very 

small (smaller than approximately 20), PLSR_5 shows a higher average performance and 

lower performance variation compared to MLR as displayed in Figure 4.11 and Figure 

4.12 [a] and [b]. According to setups A and B, the best performing NN (NN_5) within 

setup C showed a higher performance variation for training samples 10, 20, and 40, 

however, for 70 training samples a similar variation was achieved compared to MLR and 

PLSR_5 (Figure 4.12 and Figure D.13). Figure 4.12 [d] shows that no pattern and 

approximately normal distribution can be observed for the residuals that resulted from a 

trained PLSR_5 model with 40 training samples. 
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Figure 4.12: Setup C: RMSE variation and residual plots, all input variables: box plots 

for performance variations of algorithms MLR [a], PLSR_5 [b], and NN_5 [c], example 

of residual analysis for PLSR_5 algorithm trained with 40 samples [d] 

 

Setup D 

The developed PMD in setup D estimates the filling level of tank 1 which depends 

on the addition of mains water and the transition from tank 3 as well as the outflow to 

tank 2. According to Table 4.2, five input variables were identified from the process 

knowledge as being relevant to the target variable LI1. Similar to the previous setups, the 

average performance for MLR, PLSR, and NNs over an increasing number of training 

samples is presented for setup D in Figure 4.13. The RMSE performance variation and 

residual plots are displayed in Figure 4.14 and the corresponding CC performance 

variation is shown in the appendix in Figure D.15. 
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Figure 4.13: Setup D: average regression performance, all input variables: RMSE [a] and 

CC [b] performance for different regression algorithms with increasing training samples 

 

The results for the trained PMDs for setup D indicate that NNs outperform MLR 

and PLSR for training samples larger than approximately 50. In particular, for five to 

seven hidden neurons (shown in Figure D.15 in the appendix), higher average 

performances and lower performance variations are obtained for NNs when the training 

sample size exceeds 50, as displayed in Figure 4.13 and Figure 4.14. From the setup D 

complexity measures in Table 4.3, higher NNs performances were expected compared to 

MLR and PLSR. Though, for training samples lower than 50, MLR and PLSR_4 result 

in higher average performances and lower performance variations. For PLSR, the 

addition of one further latent variable (PLSR_4 compared to PLSR_3) results in a clear 

performance increase. For MLR and PLSR_4, nearly similar performance variation can 

be seen in Figure 4.14 [a] and [b].  Similar to the results from the previous setups A-C, 

MLR and PLSR_4 show almost constant performances from 40 training samples 

onwards, whereas, the performance of NN_5 is continuously improving throughout the 

training sample range and the trend suggests that even better performances can be 

achieved with larger training samples. The presented residual analysis plots for a NN with 

five hidden neurons and 40 training samples in Figure 4.14 [d] does not show any residual 

pattern and confirms that the residuals are approximately normally distributed.  
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Figure 4.14: Setup D: RMSE variation and residual plots, all input variables: box plots 

for performance variations of algorithms MLR [a], PLSR_4 [b], and NN_5 [c], example 

of residual analysis for NN_5 algorithm trained with 40 samples [d] 

 

Setup E 

The developed PMD in setup E estimates the filling level of tank 1, which depends 

on the addition of mains water and the transition from tank 3 as well as the outflow to 

tank 2. According to Table 4.2, four input variables were identified from the process 

knowledge as being relevant to the target variable LI1. The average performance for 

MLR, PLSR, and NNs over an increasing number of training samples is presented for 

setup E in Figure 4.15. The RMSE performance variation and residual plots are displayed 

in Figure 4.16 and the corresponding CC performance variation is shown in the appendix 

in Figure D.17. 
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Figure 4.15: Setup E: average regression performance, all input variables: RMSE [a] and 

CC [b] performance for different regression algorithms with increasing training samples 

 

From the complexity measurements displayed in Table 4.3, the dataset of setup E 

resulted in the highest complexity for most of the applied measures. This high dataset 

complexity and in particular the high values of the linearity measures L1 and L2 explain 

the distinct outperformance of the non-linear NNs compared to the linear algorithms MLR 

and PLSR for training samples larger than 20 in Figure 4.15 and Figure 4.16. According 

to Figure D.17 in the appendix, five to eight hidden neurons resulted in the best NN 

performance for setup E. MLR and the best performing PLSR (PLSR_3) failed to 

accurately estimate the target variable. The only exception from this can be seen for 

training samples lower than 20, where MLR and PLSR_3 resulted in slightly higher 

average performances and lower performance variations compared to NN_5. As a NN 

with five hidden neurons proved to be a suitable model for setup E, the residuals for this 

algorithm are displayed in Figure 4.16 [d] for 40 training samples. These residuals display 

a random pattern and are in line with a normal distribution. 
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Figure 4.16: Setup E: RMSE variation and residual plots, all input variables: box plots 

for performance variations of algorithms MLR [a], PLSR_3 [b], and NN_5 [c], example 

of residual analysis for NN_5 algorithm trained with 40 samples [d] 

 

Discussion of PMDs trained on original datasets with all input variables 

The training and validation of the PMDs for setups A-E resulted in diverse 

outcomes. As already expected from the recommendations for regression algorithms in 

Table 2.4, MLR and PLSR are well suited to infer target variables when the complexity 

measures suggest a regression problem with high correlation and linearity, as seen for 

setups A, B, and C. Nonetheless, for setup C the NNs slightly outperformed MLR and 

PLSR for training samples between 50 and 70. One possible explanation is that the 

complexity measures do not represent the entire complexity of a dataset. Further 

investigations are needed to test this hypothesis and to analyse the reasons for algorithm 

performance variations when being applied to datasets with similar regression 

complexity. For very small training sample sizes, the results demonstrated that for all 

setups, independent of the dataset complexity, linear regression algorithms MLR and 

PLSR revealed higher performances compared to NNs. Hence, MLR and PLSR are less 

affected by very small training sample sizes than NNs. From the two linear algorithms, 

PLSR, with the optimal number of latent variables, showed higher average performances 
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[a]     [b]     



4. Proxy measurements in small dataset scenarios  

 

152 

and smaller performance variations for very small training samples compared to MLR, in 

particular when many input variables were applied (setup C). This result corresponds to 

recommendations that were reported by Tange et al. [187] and in Table 2.4 which state 

that PLSR is less effected by small training samples in comparison to MLR and NN. Since 

PLSR is the least flexible model out of the three, it is less prone to overfitting and hence 

less sensitive to small training samples [187]. NNs were the applied algorithm with the 

highest flexibility and therefore resulted in the greatest overfitting for very small training 

samples. However, with increasing dataset complexity of setups D and E, NNs 

outperformed MLR and PLSR when enough training samples were available. The nearly 

constant performance of all trained MLR and PLSR algorithms for larger training samples 

suggests that the models have approached their minimal model error for all setups. In 

contrast to this, the trained NNs for all setups (in particular for setups C, D, and E)  

showed a steady increase in performance, which suggests that larger training samples 

might lead to further performance improvement.  

All shown residual plots for the selected algorithms of the different setups resulted 

in a random pattern and the residuals were approximately normally distributed. These 

outcomes indicate that the examined algorithms were suitable for explaining the 

predictive information of the target variables. 

Since various input variables were used in the setups, the next section analyses 

the possible model improvements that are achievable when the number of input variables 

for setups A-E is reduced.  

4.3.3 PMDs trained on original datasets with reduced input variables 

In this section, the influence of the number of input variables for the PMD models 

of setups A-E is analysed. The aim is to identify the most relevant input variables in 

relation to the target variables in order to remove the input variables with less influence 

to reduce the risk of overfitting. According to Andersen and Bro [158], the risk of 

overfitting increases for regression models with larger input variables to samples ratio. 

The authors state that input variable selection is an iterative process that identifies the 

best variable combination. As outlined in section 4.2.3, the input variable correlation to 

the target variable and the selectivity ratio were used to identify the relevance of the single 

input variables. The parameter for the input variable correlation to the target variable is 

identical to the complexity measure C1 in Table 4.3. High values of correlation and 
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selectivity ratio indicate that the analysed input variable has high relevance for the 

estimation of the target variable. The information of both measures was used in the 

subsequent step, where subsets of input variables were trained with 10, 20, 40 and 70 

training samples. Following the forward selection method, the most relevant input 

variable was selected first and further input variables were added. Different subset 

combinations have been trained and the performance of the PMD was analysed for the 

selected training samples. According to this procedure, the subset with the highest 

performance was identified. 

 

Setup A 

Within setup A, seven input variables were identified as being relevant to the 

target variable FT1 and have been applied in the PMD model within section 4.3.2. Table 

4.4 presents the values of the correlation to the target variable as well as the selectivity 

ratio for each of the seven input variables. 

 

Table 4.4: Setup A: Relevance of single input variables to the target variable  

 FT2 FT4 TT1 TT2∆Temp TT2∆time TT4 TT5 

Correlation to 

target variable 
0.81 0.33 0.45 0.38 0.72 0.09 0.29 

Selectivity 

ratio 
2.85 0.21 0.22 0.16 1.49 0.04 0.07 

 

The results show, that a wide range of relevance can be seen throughout the input 

variables. Both measures identify FT2 as the most relevant input variable to the target 

variable FT1. Therefore, this variable is selected and used in a simple linear regression 

(SLR) model. The performance of this model, as well as an extract of further subset 

performances of input variables, are presented in Table 4.5. In this table, the average 

performance and the performance variation (in form of the standard deviation) are shown 

for an MLR (SLR for one input variable) model and the training sample sizes 10, 20, and 

70. The set of input variables with the highest accuracy is shown in bold, three input 

variables for setup A according to Table 4.5.  
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Table 4.5: Setup A: Regression performance of selected input variable subsets, subset 

with the highest accuracy highlighted in bold 

  

Training 

samples 

CC RMSE 

Input variable(s) SLR/MLR SLR/MLR 

Number Name Average Std Average Std 

1 FT2  

10 0.89 0.13 0.53 0.16 

20 0.88 0.12 0.54 0.13 

70 0.89 0.11 0.51 0.13 

3 
FT2; TT2∆time; 

FT4  

10 0.90 0.12 0.51 0.20 

20 0.92 0.11 0.42 0.15 

70 0.94 0.09 0.36 0.11 

7 

(all) 

FT2; TT2∆time; 

FT4; TT1; TT5; 

TT4; TT2∆Temp 

10 0.85 0.24 0.79 0.83 

20 0.90 0.12 0.52 0.16 

70 0.94 0.09 0.37 0.11 

 

In Figure 4.17, the average RMSE performance, as well as the RMSE 

performance variation of a MLR model trained with the most accurate subset of input 

variables for setup A, are shown. This model was trained with the three input variables 

that were highlighted in bold in Table 4.5. In addition, Figure 4.17 displays the RMSE 

performance of the previously trained PMD for setup A from section 4.3.2 which included 

all input variables. When all input variables were used, a PLSR_6 model showed the 

highest performance. Figure D.10 in the appendix presents the corresponding results for 

the CC. The comparison of the two models in Figure 4.17 and Figure D.10 demonstrates 

that higher performances are achievable with the reduced number of input variables for 

very small training samples. When 40 and more training samples are used, the PMDs 

trained on all input variables and the reduced subset result in similar outcomes. 

 

 

Figure 4.17: Setup A: RMSE all input variables and reduced input variable subset: 

average performance [a], performance variation for PLSR_6 trained on all input variables 

[b], performance variation for MLR trained on most accurate input variable subset [c] 

 

[a]     

[b]     

[c]     
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Setup B 

For setup B, eight relevant input variables were identified and applied in the first 

PMD in section 4.3.2. The relevance of the single input variables for setup B is shown in 

Table 4.6. High correlations to the target variable and selectivity ratios can be seen for 

FT4 and FT1. According to this information, different subsets of input variables were 

tested on their performance and a selection of these are displayed in Table 4.7. The best 

outcome was seen for a subset with six input variables, highlighted in bold in Table 4.7. 

 

Table 4.6: Setup B: Relevance of single input variables to target variable 

 FT1 FT3 FT4 TT1 TT2* TT3 TT4 TT5 

Correlation to 

target variable 
0.59 0.14 0.82 0.10 0.12 0.15 0.31 0.13 

Selectivity 

ratio 
0.039 5*10-5 0.150 0.001 2*10-4 4*10-4 0.008 3*10-4 

*: TT2 at t_start 

 

Table 4.7: Setup B: Regression performance of selected input variable subsets, subset 

with the highest accuracy highlighted in bold 

  
Training 

samples 

CC RMSE 

Input variable(s) SLR/MLR SLR/MLR 

Number Name Average Std Average Std 

1 FT4 

10 0.85 0.12 2.37 0.69 

20 0.86 0.13 2.29 0.58 

70 0.84 0.12 2.21 0.41 

6 
FT4; FT1; TT4; 

TT3; TT2*, FT3 

10 0.94 0.09 1.69 0.79 

20 0.96 0.04 1.17 0.39 

70 0.97 0.03 1.03 0.26 

 FT4; FT1; TT4; 

TT3; TT2*, FT3; 

TT5; TT1 

10 0.88 0.22 2.33 5.48 

8 20 0.95 0.05 1.22 0.44 

(all) 70 0.97 0.03 1.11 0.25 

        *: TT2 at t_start 

 

Further investigations into the subset of six input variables for setup B revealed 

that for these input variables, a PLSR model with five latent variables was the most 

effective algorithm. For all input variables, the same model arrangement (PLSR_5) 

showed the highest accuracy as analysed in section 4.3.2. In Figure 4.18, the RMSE model 

performance for these two PLSR_5 models is compared, one trained on the most accurate 

subset of input variables and the other on all input variables. The corresponding results 

for the CC are displayed in Figure D.12 in the appendix. 
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Figure 4.18: Setup B: RMSE all input variables and reduced input variable subset: 

average performance [a], performance variation for PLSR_5 trained on all input variables 

[b], performance variation for PLSR_5 trained on most accurate input variable subset [c] 

  

According to Figure 4.18 [a], lower average performances are seen for the model with the 

subset of six input variables. In Figure 4.18 [b] and [c], slightly lower performance 

variations are seen for the subset of six input variables.  

 

Setup C 

For Setup C, the highest number of input variables has been selected based on the 

process knowledge. In total, nine input variables were chosen as being relevant to the 

target variable pHT1. To identify the input variables with the highest relevance, Table 4.8 

presents the results for the relevance measures. The high values for the variable pHT2 

(pH at t_start) are a notable finding. A correlation value of 0.95 and a selectivity ratio of 

13.1 express a very high relevance towards the target variable. This result corresponds to 

the outcome of analysed performances of different input variable subsets, shown in in 

Table 4.9 for setup C. An SLR model with pHT2 (pH at t_start) as input variable resulted 

in the highest average performance and lowest performance variation throughout the 

analysed number of training samples.  

 

Table 4.8: Setup C: Relevance of single input variables to the target variable 

 FT1 FT3 FT4 TT1 TT3 TT4 TT5 pHT2* pHT1* 

Correlation to 

target variable 
0.04 0.09 0.02 0.09 0.08 0.21 0.08 0.95 0.83 

Selectivity 

ratio 
0.001 0.016 0.013 0.002 0.020 0.023 0.006 13.1 2.65 

*: pH value at t_start 

 

[a]     

[b]     

[c]     
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Table 4.9: Setup C: Regression performance of selected input variables subsets, subset 

with the highest accuracy highlighted in bold 

  

Training 

samples 

CC RMSE 

Input variable(s) SLR/MLR SLR/MLR NN (5. h. neurons) 

Number Name Average Std Average Std Average Std 

1 pHT2* 

10 0.95 0.04 0.26 0.09 - - 

20 0.95 0.04 0.25 0.08 - - 

70 0.95 0.04 0.25 0.08 - - 

3 
pHT2*; TT4; 

pHT1* 

10 0.93 0.09 0.31 0.12 0.57 0.27 

20 0.94 0.05 0.29 0.10 0.44 0.19 

70 0.95 0.04 0.23 0.08 0.26 0.10 

9 

(all) 

pHT2*; TT4; 

pHT1*; TT1; 
FT3; TT3; TT5; 

FT1; FT4 

10 0.63 0.22 0.90 2.40 0.72 0.37 

20 0.89 0.10 0.34 0.11 0.49 0.26 

70 0.94 0.05 0.31 0.08 0.22 0.94 

*: pH value at t_start 

 

The study of performance differences between the SLR model with pHT2 (pH at 

t_start) as an input variable and the best performing model with all input variables from 

section 4.3.2 (PLSR_5) is presented for the RMSE in Figure 4.19 and for the CC in Figure 

D.14. As expected, the SLR shows only very small variations of the average performance 

with increasing training sample number and correspondingly small boxes and whiskers 

for the performance variations in Figure 4.19 [c]. The PLSR_5 model trained with all 

input variables resulted in higher average performances throughout the entire sample 

range and higher performance variations for small training samples. 

 

 

Figure 4.19: Setup C: RMSE all input variables and reduced input variable subset: 

average performance [a], performance variation for PLSR_5 trained on all input variables 

[b], performance variation for SLR with pHT2 (pH at t_start) [c] 

 

 

 

[a]     

[b]     

[c]     
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Setup D 

Within the original dataset of setup D, five input variables were identified as being 

relevant to the target variable LI1. As presented in Table 4.10, the maximum correlation 

between the single input variables and the target variable is 0.61. Compared to the 

previous setups A, B, and C, this maximum correlation value is lower which partly 

explains why the dataset of setup D shows a higher complexity and better performance 

of NNs with higher training samples. For setup D, an SLR model with the most relevant 

variable LI2 (at t_start) did not provide an accurate estimation, as displayed in Table 4.11. 

The analysis of different subsets of input variables revealed that the highest accuracy is 

seen for a subset of four input variables, highlighted in bold in Table 4.11. Nonetheless, 

the performance is approximately similar to the PMD that was trained with all input 

variables. 

 

Table 4.10: Setup D: Relevance of single input variables to target variable 

 FT4_1 FT4_2 LI1* LI2* t_change_FT4 

Correlation to 

target variable 
0.24 0.53 0.15 0.61 0.10 

Selectivity 

ratio 
33 278 15 366 10 

*:at t_start 

 

Table 4.11: Setup D: Regression performance of selected input variables subsets; subset 

with the highest accuracy highlighted in bold 

  

Training 

samples 

CC RMSE 

Input variable SLR/MLR SLR/MLR NN (5. h. neurons) 

Number Name Average Std Average Std Average Std 

1 LI2* 

10 0.63 0.18 0.034 0.007 - - 

20 0.64 0.17 0.032 0.007 - - 

70 0.64 0.18 0.031 0.005 - - 

4 
LI2*; FT4_2; 

FT4_1; LI1* 

10 0.74 0.20 0.033 0.011 0.042 0.015 

20 0.75 0.15 0.029 0.009 0.034 0.013 

70 0.81 0.12 0.024 0.005 0.024 0.008 

 LI2*; FT4_2; 

FT4_1; LI1*; 

t_change_FT4 

10 0.72 0.21 0.033 0.013 0.039 0.015 

5 20 0.75 0.17 0.029 0.007 0.033 0.011 

(all) 70 0.83 0.12 0.023 0.004 0.021 0.006 

     *:at t_start 

 

The comparable performances of the most accurate subset of input variables and 

all input variables for setup D can be seen in the plots of Figure 4.20 for the RMSE and 

in Figure D.16 in the appendix for the CC.  
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Figure 4.20: Setup D: RMSE all input variables and reduced input variable subset: 

average performance [a], performance variation for NN_5 trained on all input variables 

[b], performance variation for NN_4 trained on most accurate input variable subset [c] 

 

For the subset of four input variables, PLSR_3 and NN_4 showed the most accurate 

performance for smaller and larger training samples, whereas, PLSR_4 and NN_5 were 

the highest performing models when all input variables were used (as seen in section 

4.3.2). Figure 4.20 [a] shows that the average performances of the PLSR and NN models 

between the two sets of input variables are approximately similar, except for higher 

number of training samples where the NN_5 model (with all input variables) slightly 

outperforms the NN_4 model (with the subset of input variables). The performance 

variation plots for the NNs in Figure 4.20 [b] and [c] confirm this outcome.   

 

Setup E 

For setup E, four relevant input variables were identified and used in the first PMD 

in section 4.3.2. Table 4.12 displays the relevance of the single input variables. Both 

relevance measures identified LI1 (at t_start) as the most relevant input variable. 

However, compared to the previous setups, the lowest maximum correlation to the target 

variable is seen for the input variables of setup E. 

 

Table 4.12: Setup E: Relevance of single input variables to the target variable 

 FT3 LI1* LI2* LI3* 

Correlation to 

target variable 
0.16 0.52 0.17 0.06 

Selectivity 

ratio 
21 220 16 2 

 *:at t_start 

[a]     

[b]     

[c]     
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Table 4.13: Setup E: Regression performance of selected input variables subsets, subset 

with the highest accuracy highlighted in bold 

  

Training 

samples 

CC RMSE 

Input variable(s) 
SLR (for 1 input variable)/ 

NN (5 h. neurons) 

SLR (for 1 input variable)/ 

NN (5 h. neurons) 

Number Name Average Std Average Std 

1 LI1* 

10 0.51 0.21 0.039 0.008 

20 0.53 0.22 0.037 0.008 

70 0.54 0.24 0.036 0.006 

3 LI1*; LI2*; FT3 

10 0.46 0.23 0.043 0.019 

20 0.70 0.23 0.032 0.013 

70 0.86 0.16 0.023 0.008 

 
LI1*; LI2*; FT3; 

LI3*; 

10 0.37 0.24 0.050 0.020 

4 20 0.59 0.23 0.040 0.018 

(all) 70 0.84 0.16 0.024 0.008 

 

A selection of different input variable subsets including their performance is presented in 

Table 4.13. Three input variables, highlighted in bold, resulted in the most accurate 

performance of all the analysed subsets.  

The improved estimation performance of a PMD trained on the most accurate 

subset of input variables compared to the performance of the PMD trained with all input 

variables (as seen in section 4.3.2) can be seen for the RMSE in Figure 4.21 and for the 

CC in Figure D.18. For both sets of input variables, a NN with five hidden neurons 

showed the lowest estimation error. The comparison of the two PMDs in the three graphs 

of Figure 4.21 indicates that higher performances are achievable with the reduced number 

of input variables throughout the training sample range. 

 

 

Figure 4.21: Setup E: RMSE all input variables and reduced input variable subset: average 

performance [a], performance variation for NN_5 trained on all input variables [b], 

performance variation for NN_5 trained on most accurate input variable subset [c] 

 

 

[a]     

[b]     

[c]     
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Discussion of PMDs trained on original datasets with reduced input variables 

The study of the performance influence for input variable reduction revealed that 

improvements were achievable in four out of the five setups. The results demonstrate that, 

especially for very small training samples, fewer input variables result in less overfitting 

during model training and therefore show a higher accuracy during validation. The input 

variable reduction in setup C to only one input variable demonstrates this behaviour 

clearly. Furthermore, this behaviour agrees to findings from the literature, i.e. by 

Andersen and Bro [158]. As Souza et al. [141] reported, input variable reduction becomes 

indispensable for PMDs that are trained with small samples and many input variables.  

The reduction of input variables must be controlled through a suitable strategy in order to 

identify a well-performing subset of input variables. The applied forward selection 

procedure enabled to find well-performing subsets of input variables with small effort. 

The used parameters for analysing the relevance of the single input variables (correlation 

to target variable and selectivity ratio) identified the input variable with the highest 

relevance for each setup. In addition, these parameters identified further input variables 

with high relevance to the target variable that were suitable for the combination within 

well-performing input variable subsets. However, setups A and B showed that the input 

variables in the most accurate subsets did not always follow the sequence of the identified 

input variable relevance. An explanation for this deviation is that the parameters of input 

variable relevance do not consider the combined effects of several input variables.   

4.3.4 PMD training set manipulation through bootstrap 

As the first manipulation method, the small training datasets were replicated by 

bootstrap. The number of BR was varied, up to 20 replications have been applied for the 

different setups. Similarly to the results of the previous sections, the performance of the 

algorithms was studied in terms of average (median) performance from 100 repetitions 

and performance variation after the training samples were modified by BR. The size of 

the training samples was increased from 9 to 70. With bootstrap, the training samples 

were replicated by drawing random samples with replacement from the original set of 

training samples. For validation, 10 random samples were applied that were not used in 

the training sample set nor replicated by bootstrap.  
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For each setup, the influence of BR has been studied with the best performing 

algorithm and the number of input variables that resulted in the lowest estimation error 

following the results from sections 4.3.2 and 4.3.3.  

 

Setups A, B, and C 

For setup A, B, and C, the following linear regression algorithms with a reduced 

set of input variables resulted in the highest performance according to sections 4.3.2 and 

4.3.3: an MLR model with three input variables for setup A; a PLSR_5 model with six 

input variables for setup B; and for setup C, a SLR model with pHT2 (pH at t_start) as an 

input variable. Based on these model arrangements, up to 10 BR were applied to the 

training samples. Figure 4.22 presents the outcome of the training set modification with 

BR. In Figure 4.22, [a], [b], and [c] display the RMSE average performance and 

performance variation (for 10 and 40 training samples) for setup A, [d], [e], and [f] for 

setup B, and [g], [h], and [i] for setup C. In these graphs, boots 1 represents the 

performances of the algorithms without any modification. Figure D.19 in the appendix 

presents the corresponding results for the CC.  

As the graphs display, similar results are obtained for the three linear algorithms 

of setups A, B, and C: No improvement can be seen for the average performances nor for 

the performance variations throughout the range of training samples. When the number 

of BR is increased, the algorithm performance is comparable to the non-modified training 

samples.  
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Figure 4.22: Setups A, B, C: BR influence on MLR, PLSR, and SLR; RMSE validation: 

average performances [a], [d], [g], setup A MLR performance variation for training 

samples 10 [b] and 40 [c], setup B PLSR_5 performance variation for training samples 

10 [e] and 40 [f], setup C SLR performance variation for training samples 10 [h] and 40 

[i] 

 

Setups D and E 

According to sections 4.3.2 and 4.3.3, NNs showed the lowest estimation errors 

when higher numbers of training samples were used for the more complex datasets of 

setups D and E. For setup D, the optimum performance was obtained with an NN_5 model 

trained with all five input variables, whereas, an NN_5 model with the reduced set of 

[b]     

[c]     

[a]     

[e]     

[f]     

[h]     

[i]     

[g]     

Model A (3 input variables):

Model B (6 input variables):

[d]     

Model C (1 input variable):



4. Proxy measurements in small dataset scenarios  

 

164 

three input variables showed the highest performance for setup E. The influence of up to 

20 BR of the training samples was analysed for the two setups. In Figure 4.23, [a] shows 

the RMSE average performance for the bootstrap training sample manipulation of setup 

D and [b], [c] display the performance variations (for 10 and 70 training samples) for 

setup D. In the same figure, the equivalent plot arrangements are shown in [d], [e], and 

[f] for setup E. In the displayed graphs, boots 1 represents the performance of the 

algorithm without any modification. Figure D.20 in the appendix presents the 

corresponding results for the CC.  

 

 

Figure 4.23: Setups D, E: BR influence on NN; RMSE validation: average performances 

[a], [d], setup D NN_5 performance variation for training samples 10 [b] and 70 [c], setup 

E NN_5 performance variation for training samples 10 [e] and 70 [f] 

 

For both setups, a lower average performance can be seen for BR in the case of 

very small (~<15) and large (~>50) training samples. For training samples of the middle 

range (20-50), no clear improvement is recognisable. The boxplots representing the 

performance variations of setups D and E indicate that estimation improvements are 

possible by bootstrap modifications for the trained NN_5 models. When focusing on the 

[a]     

[d]     

[e]     

[f]     

Model E (3 input variables):

Model D (5 input variables):

[b]     

[c]     
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impact of the number of BR, five replications indicate the highest estimation accuracy. 

BR higher than five, do not indicate a further performance improvement.      

 

Discussion of PMD training set manipulation through BR 

The applied bootstrap modification technique demonstrated diverse results for the 

regression algorithms. For MLR / SLR and PLSR, bootstrap does not improve the 

performance. For the more complex NN algorithm, a performance improvement could be 

seen for very small and large training samples with BR. These findings correspond to 

results presented by Andrijić et al. [202] where the authors showed that BR did not 

improve linear PMD models, whereas NNs resulted in increased accuracy when the 

training samples where bootstrapped. Similar outcomes for NNs in combination with 

bootstrap were reported by Napoli and Xibilia [170], Soares [164], and Tsai and Li [195] 

as presented in the literature section 2.3.3. The increased performance of NNs with BR is 

attributable to the higher number of training samples. Since NNs show the highest 

complexity and flexibility out of the three tested algorithms, the increased number of 

training samples lowers the risk of overfitting and therefore increases the PMD estimation 

performance in the small data scenarios [170].  

An additional study for the linear algorithms MLR and PLSR revealed that the 

dataset complexity does not influence the outcome of training sample replications with 

bootstrap: for the more complex datasets D and E, no performance improvement was 

detectable for MLR and PLSR with bootstrap replicated training samples. To demonstrate 

this result, Figure 4.24 depicts the bootstrapped performance of MLR for setup E. 

 

 

Figure 4.24: Setup E: BR influence on MLR for reduced input variables (3 variables): 

RMSE average performance [a], MLR performance variation for training samples 10 [b] 

and 70 [c] 

[a]     

[b]     

[c]     
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4.3.5 PMD training set manipulation through artificial noise injection 

As the second manipulation technique, the training datasets were changed by 

injecting artificial noise with zero mean to the training samples. Various noise levels were 

added with fixed Gaussian variances, 𝜎2, from 0.01 to 0.1, the noise was added 

independently of the signal amplitude. Additionally, the location of the noise injection 

was alternated. The noise addition was executed within the MATLAB code by generating 

normally distributed random numbers that showed a certain variance 𝜎2 and a zero mean. 

These values were then added to the training samples, according to the selected noise 

adding location. Similarly to the above performance studies, the PMD estimation 

accuracy was analysed in terms of average (median) performance from 100 repetitions 

and performance variation after the training samples were modified by ANI. The training 

samples were varied between 9 and 70. For validation, 10 random samples were applied 

that were not used in the training sample set nor affected by the ANI. 

 

Setups A, B, and C 

For setups A, B, and C, the noise was added to the linear regression algorithms 

with a reduced set of input variables that resulted in the highest performance according 

to sections 4.3.2 and 4.3.3. These were the same base models that have been applied in 

the previous manipulation through bootstrap. The results of the noise modifications are 

displayed in Figure 4.25. In this figure, [a], [b], and [c] display the RMSE average 

performance and performance variation (for 10 and 40 training samples) for setup A, [d], 

[e], and [f] for setup B, and [g], [h], and [i] for setup C. In these plots, variance 0 (𝜎2= 0) 

represents the performances of the algorithms without any modification. Figure D.22 in 

the appendix presents the corresponding results for the CC.  

For all three setups, the location of the artificial noise addition was varied and the 

influence of three different locations was studied: Noise added to the input variables, 

noise added to the target variable, and noise added to the input and target variables. For 

the three setups, noise addition to the input variables resulted in the lowest estimation 

error. Thus, Figure 4.25 depicts the outcomes for noise addition to the input variables. To 

compare the influence of the noise addition to the two other locations, Figure D.21 in the 

appendix presents the results exemplarily for setup A.  
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Figure 4.25: Setups A, B, C: ANI influence on MLR, PLSR, and SLR; RMSE validation: 

average performances [a], [d], [g], setup A MLR performance variation for training 

samples 10 [b] and 40 [c], setup B PLSR_5 performance variation for training samples 

10 [e] and 40 [f], setup C SLR performance variation for training samples 10 [h] and 40 

[i] 

 

As depicted in Figure 4.25, the addition of artificial noise with different variances 

does not improve the average performance nor the performance variation of the three 

models compared to the training samples that were not manipulated by noise addition 

(𝜎2= 0). For the entire training sample range, the accuracy difference between noise-

manipulated and non-manipulated linear models decreases distinctly with growing noise 

[g]     

[f]     

[e]     

[b]     

[c]     

[h]     

[i]     

[d]     

Model C (1 input variable) / Location of added noise: input variables

[a]     

Model B (6 input variables) / Location of added noise: input variables

Model A (3 input variables) / Location of added noise: input variables

Artificial noise injection variance σ
2

Artificial noise injection variance σ
2

Artificial noise injection variance σ
2
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variance. When the artificial noise was added to the target or input and target variables, 

e.g. displayed in Figure D.21 in the appendix for setup A, the results showed worse 

performances than compared to the outcomes presented in Figure 4.25. 

 

Setups D and E 

Artificial noise was added to the training datasets of the NNs with the highest 

accuracy from setup D and E. Following from the results in sections 4.3.2 and 4.3.3, the 

highest NN performance for setup D was obtained with an NN_5 model trained with all 

five input variables and an NN_5 model with the reduced set of three input variables for 

setup E. Similar to the artificial noise addition for setups A, B, and C, the analysis of 

different noise adding locations for setups D and E revealed that the highest accuracy 

resulted when noise was added to the input variables. A comparison for the influence of 

noise adding location is presented in the appendix for setup D in Figure D.23. The 

outcomes for the noise addition to the input variables for setups D and E are displayed in 

Figure 4.26. In this figure, [a], [b], and [c] display the RMSE average performance and 

performance variation (for 10 and 40 training samples) for setup D and [d], [e], and [f] 

for setup E. Variance 0 (𝜎2= 0) represents the performance of the models without any 

modification. Figure D.24 in the appendix displays the corresponding results for the CC.  

The results for setup D and E demonstrate that the added noise leads to lower 

average performances and performance variations than compared to the training samples 

that were not manipulated by noise addition (𝜎2=0). The estimation difference between 

noise manipulated and non-manipulated NNs decreases distinctly with growing noise 

variance and with increasing training samples.  

 



4. Proxy measurements in small dataset scenarios  

 

169 

 

Figure 4.26: Setups D, E: ANI influence on NN; RMSE validation: average performances 

[a], [d], setup D NN_5 performance variation for training samples 10 [b] and 40 [c], setup 

E NN_5 performance variation for training samples 10 [e] and 40 [f] 

 

Discussion of PMD training set manipulation through ANI 

The results for the ANI of the training samples demonstrate that the addition of 

artificial noise did not improve the estimation accuracy for the linear algorithms MLR / 

SLR and PLSR nor the non-linear NNs. The dataset complexity did not influence this 

result. For all setups, the noise added to the input variables showed higher estimation 

accuracies than the addition to the target or input and target variables. The decreased 

performance through noise addition does not correspond to various literature 

recommendations, where noise addition increased model performances, i.e. reported by 

Soares [164], Fortuna [171], and Caponetto [206]. For the optimum location of noise 

addition, the literature review in section 2.3.3 revealed that diverse locations are 

suggested in different publications [164], [170], [171], [202]. 

  For the setups D and E, the accuracy difference between noise manipulated and 

non-manipulated NNs increased with higher training sample numbers. This behaviour 

can be explained by the high complexity / flexibility of the NNs and the risk of overfitting: 

[a]     

[d]     

[e]     

[f]     

Model E (3 input variables) / Location of added noise: input variables

Model 5 (5 input variables) / Location of added noise: input variables

[b]     

[c]     

Artificial noise injection variance σ
2
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When the training samples are very small, the additional noise can reduce the overfitting 

during the training phase. As the training sample size increases, the NN model can 

generalise better from training data to unseen data and the additional noise prevents higher 

performances. This observation leads to the hypothesis that if the noise levels in the 

original datasets of setups D and E would be higher than the ones present, the artificial 

noise manipulation for NNs might lead to higher estimation accuracies compared to NNs 

trained with non-manipulated training samples. To test this hypothesis, an additional 

study focused on the performance changes for ANI when higher noise levels would be 

present in the original datasets of setups A and E. To increase the noise of the original 

datasets, artificial noise was added to input and target variables. Similarly to the noise 

addition for the training sets, this noise showed a fixed Gaussian variance, 𝜎2, of 0.015 

and was added independently of the signal amplitude. After this step, the PMD models 

were trained with linear (MLR for setup A) and non-linear (NN for setup E) algorithms 

following the same artificial noise manipulation of the training set as described above. 

Figure 4.27 depicts the outcomes.  

 

Figure 4.27: Setup A, E: ANI influence when higher noise levels present in original 

datasets: RMSE average performances [a], [c], setup A MLR performance variation for 

training samples 10 [b] and 40 [c], setup E NN_5 performance variation for training 

samples 10 [e] and 40 [f] 
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Model A (3 input variables) / Location of added noise: input variables

Model E (3 input variables) / Location of added noise: input variables

[d]     

Boots replications (b) + artificial noise variance σ2 (n)

Boots replications (b) + artificial noise variance σ2 (n)
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For the MLR algorithm of setup A, the artificial noise manipulation does not lead 

to increased accuracy for the analysed case of higher noise levels in the original dataset. 

Nonetheless, the average performance difference between no training sample  

manipulation and the manipulation with increasing noise variances is smaller than 

compared to the noise manipulations in the original dataset (Figure 4.25 [a]). In the lower 

part of Figure 4.27, the results for the NN of setup E are depicted. Here, the noise 

manipulation of the training samples shows similar, in some parts better, outcomes 

compared to the non-manipulated samples (𝜎2= 0). In comparison with the original 

dataset of Figure 4.26 [d], an improved performance for noise manipulated training 

samples of the NN can be seen when the noise level is increased in the original dataset.  

Taken together, the study of the higher noise levels in the original datasets of 

setups A and E suggests that the impact of ANI is dependent on the noise level in the 

original dataset. This would explain why the described noise addition in the literature, i.e. 

in [164], [171], [206], has led to positive impacts while the noise addition in this research 

did not lead to a PMD performance improvement. However, a more in-depth analysis of 

the relation between dataset noise levels and the influence of ANI is needed to prove this 

hypothesis. 

Another aspect that can be observed from the results of the ANI is the misleading 

accuracy given by the CC for setup C. In Figure D.22 [g] in the appendix, the average CC 

performances for different ANIs to the SLR training set show similar results, independent 

of the noise variance. However, the RMSE performances for the same graph layout in 

Figure 4.25 [g] demonstrate that the average performance is continuously decreasing with 

increasing noise variance. For this case, the correlation between the estimated variable by 

the SLR and the target variable (expressed by the CC) does not change when noise is 

artificially added to the input variable. Though, the estimation accuracy is changing as 

the RMSE confirms. This case shows that the CC can be a misleading parameter of 

accuracy for potential PMD users, as already reported Maciel et al. [172].  

4.3.6 PMD training set manipulation through bootstrap and artificial noise 

injection 

As the third and last training set manipulation technique, bootstrap and ANI were 

applied in combination. Based on the outcomes of the two previous sections, the small 

datasets were first replicated by bootstrap up to 20 times before zero-mean noise was 
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added to the input variables with variances, 𝜎2, between 0.01 and 0.1. The noise was 

added independently from the signal amplitude. The training samples were varied 

between 9 and 70. The PMD estimation accuracy was studied in terms of average 

(median) performance from 100 repetitions and performance variation. For validation, 10 

random samples were applied that were not used in the training sample set nor affected 

by the BR or ANI. 

 

Setups A, B, and C 

For setups A, B, and C, the bootstrap and noise manipulation was applied to the 

linear regression algorithms with a reduced set of input variables that resulted in the 

highest performance according to sections 4.3.2 and 4.3.3. These were the same base 

models that were applied in the previous single manipulation through BR and ANI. The 

results for the combined training set manipulation through BR and ANI are presented in 

Figure 4.28. In this figure, [a], [b], and [c] display the RMSE average performance and 

performance variation (for 10 and 40 training samples) for setup A, [d], [e], and [f] for 

setup B, and [g], [h], and [i] for setup C. In these graphs, boots 1 together with variance 

0 (𝜎2=0) represent the performances of the algorithms without any modification. Figure 

D.25 in the appendix presents the corresponding results for the CC.  

As the graphs of Figure 4.28 reveal, no performance improvement is observable 

for the three setups through the combined manipulation with BR and noise injection: For 

all three linear algorithms (MLR, PLSR, and SLR) the average performance, as well as 

the performance variation of the non-modified training samples, display the highest 

accuracies. The applied noise variance has a higher influence than the number of boots 

replications: The largest applied noise variance of 𝜎2=0.1 leads to poorer performances 

than the smaller variance of 𝜎2=0.02. The magnitude of the decrease in accuracy with 

increasing noise variance is similar to the training set modification through noise injection 

on its own, as displayed in the previous section. For MLR and PLSR, slightly better 

performance is visible for 10 BR compared to two BR when the same noise variance is 

applied.  
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Figure 4.28: Setups A, B, C: BR and ANI influence on MLR, PLSR, and SLR; RMSE 

validation: average performances [a], [d], [g], setup A MLR performance variation for 

training samples 10 [b] and 40 [c], setup B PLSR_5 performance variation for training 

samples 10 [e] and 40 [f], setup C SLR performance variation for training samples 10 [h] 

and 40 [i] 

 

Setups D and E 

For setups D and E, the influence of BR together with ANI was analysed for the 

NNs that resulted in the highest accuracy from sections 4.3.2 and 4.3.3: for setup D an 

NN_5 model trained with all five input variables and for setup E an NN_5 model with the 

reduced set of three input variables. These were the same base models that have been 

applied in the previous single manipulation through BR and ANI. In Figure 4.29, [a], [b], 
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Model A (3 input variables) / Location of added noise: input variables

Model B (6 input variables) / Location of added noise: input variables
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Model C (1 input variable) / Location of added noise: input variable

Boots replications (b) + artificial noise variance σ2 (n)

Boots replications (b) + artificial noise variance σ2 (n)

Boots replications (b) + artificial noise variance σ2 (n)
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and [c] display the RMSE average performance and performance variation (for 10 and 40 

training samples) for setup D and [d], [e], and [f] for setup E. In these graphs, boots 1 

together with variance 0 (𝜎2=0) represents the performance of the algorithm without any 

modification. Figure D.26 in the appendix presents the corresponding results for the CC.  

 

 

Figure 4.29: Setups D, E: BR and ANI influence on NN; RMSE validation: average 

performances [a], [d], setup D NN_5 performance variation for training samples 10 [b] 

and 40 [c], setup E NN_5 performance variation for training samples 10 [e] and 40 [f] 

 

For both setups, improved performance can be seen for the manipulation of BR 

together with ANI. The results for setup D reveal that for very small training samples, 

noise injections with a high variance together with high numbers of BR result in better 

performances. When the training sample size exceeds 20, smaller noise variances together 

with higher numbers of BR demonstrated the best performance. Throughout the entire 

range of training samples, the average performance of the NNs that were modified by 

high numbers of BR and small noise variances resulted in better performances than the 

NN that was trained without any modification. The outcomes for setup E differ slightly 

to the results from setup D: Only NNs modified by small noise variances in combination 
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Model E (3 input variables) / Location of added noise: input variables

Model D (5 input variables) / Location of added noise: input variables
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with larger numbers of BR provide higher accuracies than the NN that was trained without 

any modification.  

As seen in [b], [c], [e], [f] of Figure 4.29, the NN training set modification through 

higher numbers of BR in combination with lower noise variances decreases the NN 

performance variations for both setups compared to the non-modified training samples.  

 

Discussion of PMD training set manipulation through BR and ANI 

The combined training set modification through BR and ANI did not improve the 

performance of the linear algorithms of setups A, B, and C. In contrast to the findings for 

the linear algorithms, the estimation accuracy for the NNs of setups D and E increased 

through the BR and ANI modification. Small noise variances combined with higher 

numbers of BR led to the smallest estimation errors throughout the entire training sample 

range. For the analysed NNs of setups D and E, the modification with BR and ANI 

resulted in higher accuracies than compared to the modification by BR on its own (shown 

in section 4.3.4). This outcome suggests that for training sample manipulations of NNs, 

BR in combination with ANI are the first choice when dealing with small datasets.  

Similarly to the discussion in the previous section, the impact of BR in 

combination with ANI was additionally analysed for the assumption that higher noise 

levels would be present in the original datasets of setups A and E. As before, artificial 

noise was added to the input and target variables by a fixed Gaussian variance, 𝜎2, of 

0.015. Subsequently, the PMD models were trained following the procedure outlined 

above by the manipulation of the training samples with BR and ANI. Figure 4.30 presents 

the outcome for MLR (setup A) and NNs (setup E).  
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Figure 4.30: Setup A, E: BR and ANI influence when higher noise levels present in 

original dataset: RMSE average performances [a], [d], setup A MLR performance 

variation for training samples 10 [b] and 40 [c], setup E NN_5 performance variation for 

training samples 10 [e] and 40 [f] 

 

Figure 4.30 demonstrates that for the scenario of increased noise levels in the 

original dataset, no improved performance is observable for MLR of setup A when the 

training samples are manipulated by BR and ANI. For setup E, the performance enhances 

throughout the entire range of training samples when bootstrap and artificial noise 

manipulation are applied for increased noise levels in the original dataset. This suggests 

that independent of the noise levels in the original datasets, the performance of NNs can 

be increased by modifying training samples with BR and ANI.  

Furthermore, the CC results for the average performances of BR and ANI 

manipulations for setup C, displayed in Figure D.25, show a misleading information of 

consistent accuracies regardless of the BR and noise variances. As mentioned in the 

previous section 4.3.5, this information does not correspond with the RMSE result and 

can lead to incorrect confidence by potential PMD developers.  
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4.4 Summary 

As the use of PMDs is currently limited in industrial processes [140], the research 

in this chapter provides a comprehensive PMD development methodology for small 

dataset scenarios. Based on five datasets with varying regression complexity, the 

estimation accuracy of three regression algorithms was studied, including the impact of 

training sample manipulation with bootstrap replications (BR) and artificial noise 

injection (ANI).  

Inspired by the layout of the analysed steam system in the previous chapter, an 

experimental water loop rig was built to generate datasets for PMD development. The 

integrated measuring devices and flexible design of the experimental rig enabled the 

collection of process-related data. To further increase the flexibility and data sourcing, a 

simulation model was developed which represented the flow behaviour of the 

experimental rig. 

Based on the acquired data from the experimental rig, five small datasets were 

selected with diverse input and target variable relationships and varying regression 

complexities. In an initial step, the datasets were categorised by complexity measures that 

were introduced by Lorena et al. [175] and focused on linearity, correlation to the target 

variable, smoothness of the data distribution, and geometry / topology. Subsequently, the 

classified datasets were applied for PMD training and validation. According to the most 

popular PMD algorithms [149], the performance of two linear (MLR and PLSR) and one 

non-linear (NNs) algorithm were studied for each of the five small datasets. For an 

increasing number of training samples from 9 to 70, the average performance from 100 

training and validation repetitions and the variation of the performance throughout these 

repetitions, demonstrated how the algorithms cope with varying training sample sizes and 

dataset complexities. Furthermore, the training samples of the five datasets were 

manipulated by BR and ANI to evaluate the influence on the PMD estimation error for 

the three algorithms.  

To conclude the findings of the PMD study with the five datasets (also referred as 

setups A-E according to the experimental rig layouts), Table 4.14 displays the main 

outcomes in terms of algorithm and training sample manipulation suitability.  
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Table 4.14: Summary of PMD performance analysis for setups A-E 

  PMD-setup (datasets) 

  A B C D E 

Complexity measures 
Correlation, linearity, 

smoothness: 
high  high 

high (max correlation 

C1 very high) 
medium low 

  Performance study: 

Original t.s.;  

all input variables 

Input variables: 7 8 9 5 4 

MLR: ● ● 
◐ (medium + large 

t.s.) 

◐ (small + medium 

t.s.) 
◐ (very small t.s.) 

PLSR: ●  ●  ●  ◐ (small + medium 

t.s.) ◐ (very small t.s.) 

NN: ○ ○ ◐ (large t.s.) ◐ (medium + large 

t.s.) ● 

Original t.s.;  

reduced input variables 

Performance 

improvement: ● ● ● ○ ● 
Input variables for 

most accurate subset: 
3 6 1 - 3 

Most accurate 

algorithm: 
MLR PLSR_5 SLR NN_5 (all input 

variables) NN_5 
  t.s. manipulation: applied to best algorithm + best subset of input variables (for setup D: all input variables): 

t.s. manipulation with BR Performance 

improvement: ○ ○ ○ 
◐ (very small + 

large t.s.) 

◐ (very small + 

large t.s.) 

t.s. manipulation with ANI Performance 

improvement: ○ ○ ○ ○ ○ 
t.s. manipulation with   

BR+ ANI 

Performance 

improvement: ○ ○ ○ ● ● 
Highest accuracy:    many BR + small 𝜎2 many BR + small 𝜎2 

t.s.: training samples;  ●: suitable / improvement;  ◐: suitable under certain conditions;  ○: not suitable / no improvement    
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From the research presented in this chapter, the following conclusions can be 

drawn for the development of PMDs with small datasets, additionally depicted in Figure 

4.31: 

• The applied complexity measures enabled the classification of the five datasets 

according to their regression difficulty. Almost all of the 10 measures for the 

regression complexity areas including correlation, linearity, smoothness, and 

geometry / topology indicated a clear separation between datasets requiring a 

simple or more complex regression approach. Nonetheless, for datasets of similar 

regression complexity, varying performances were observed for the same 

algorithm. Therefore, further work is needed to analyse the cause of algorithm 

performance variation and to identify if all aspects of regression complexity are 

captured by the applied measures. 

• Regardless of whether a linear or non-linear algorithm is used, input variable 

reduction can significantly improve the PMD performance for the analysed scenario 

of small training datasets. The applied strategy of input variable reduction, 

consisting of single input variable relevance (correlation to target variable and 

selectivity ratio) and forward selection method, identified a well-performing subset 

with little effort. In four of the five setups, algorithms with a smaller number of 

input variables showed improved performance, especially when very small training 

samples were used. 

• The two linear algorithms MLR and PLSR led to small estimation errors when the 

complexity measures of a dataset showed high correlation and linearity. The 

application of pre-modelling modification techniques BR and / or ANI did not show 

any performance improvement. PLSR should be applied for very small training 

samples.    

• For datasets with high regression complexities, NNs with a small number of hidden 

neurons outperformed the linear algorithms, except for the scenario of very small 

training data in which PLSR should be preferred. This result is consistent with 

several publications that challenge the dogmatic perception of NN requiring a large 

number of training samples to perform well [187], [195]. 

The manipulation of small training datasets with BR improved the NN 

performances. When BR were applied in combination with ANI, the highest 

performance enhancement was detectable for NNs. For this combined 
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manipulation, high BR should be applied in combination with small noise variances 

added to the input variables. 

• For the analysed multiple training and validation repetitions per training sample 

number, the average performance increased and the performance variation 

decreased for all three algorithms with an increasing number of training samples. 

Independent of the dataset complexity, NNs showed the highest performance 

variation for very small training samples, followed by MLR and PLSR.   

• For PMD validation, the RMSE should be used against the CC. In two cases, the 

correlation between the estimated and measured target variable led to misleading 

validation results.  

 

 

Figure 4.31: Summarising PMD development methodology for small datasets
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5 Summary and Conclusions 

Chapter 5 

Summary and Conclusions  

5.1 Summary  

For the latest advancement of manufacturing systems, named as ‘Industry 4.0’ or 

Smart Manufacturing, large amounts of precise process data are required. However, the 

acquisition of sufficient data represents a challenge for many manufacturing plants, as 

reported by Kusiak [25]. Developed metering frameworks from academia are often not 

applicable in real-world manufacturing processes due to monitoring gaps [94]. Therefore, 

this research focused on the development of effective data gathering tools for complex 

industrial systems in order to provide a comprehensive process understanding. By 

considering industrial needs, the design and development of functional resource 

measurement methodologies and the study of predictive models with a reduced-order 

characteristic have been addressed in this work to accelerate a holistic data acquisition in 

industrial environments.  

Following from the investigations of two purified water (PW) and one steam 

system in an industrial case facility, a comprehensive metering strategy for detailed 

information gathering of technical building services (TBS) has been developed. Although 

TBS require large shares of resources, holistic analysis methods are not comprehensively 

addressed in the literature [62]. The novel four phase metering methodology in this 

research fills this gap by identifying available data sources, abstracting the central process 

steps, and mapping the resource flows within TBS. In the last phase, the absence of 

functional online meters is surrogated by a basic proxy metering strategy that enables the 

approximation of missing parameters by combining related data sources in a regression 

model.   

The gathered process information from the holistic meter approach allowed the 

development of an automated calculation methodology for the total cost of TBS. By 

focusing on the interactions of identified resources and further added values, this 

automated cost index tracks the real value that is embedded in the analysed system. 

Based on the potential of basic proxy metering devices (PMDs) for estimating 

missing process data and the industrial need for simpler implementation strategies [140],
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the development of comprehensive PMD modelling methodologies has been successfully 

addressed in the second part of this research. For the common case of small datasets, the 

regression performance of PMD algorithms for diverse dataset regression complexities 

has been analysed. As well as the complexity classification of five small datasets from an 

experimental rig, the estimation accuracies of the most common linear and non-linear 

PMD algorithms have been studied, including the impact of training sample 

manipulations with bootstrap and artificial noise injection.  

 

5.2 Conclusions 

5.2.1 Resource measurement strategy for technical building services 

An industrial case study was undertaken with the aim of developing a detailed 

metering methodology for TBS. A novel four-phase metering framework was developed 

following the investigations of two PW and one steam system within a case facility. For 

each analysed system, the framework identified the required resources, visualised the 

system internal flow patterns, and revealed further added values that are required for the 

TBS operation. 

 Following the highlighted importance of applicable metering strategies for 

industrial systems from several researchers [26], [27], [33], [45], the developed metering 

methodology for TBS within this research represents a novel data acquisition approach 

with adaptability to existing industrial conditions and constraints that has not been 

previously reported to this extent in the literature.    

Based on the information obtained from the application of the TBS metering 

framework for the two PW systems of the case facility, key performance indicators 

showed that 48% and 68% of the incoming mains water were converted into PW. The 

data gathered through the metering framework identified that the significant efficiency 

difference of the analysed PW systems was mainly due to divergent performances of the 

reverse osmosis and polishing-ultrafiltration units. For the analysed steam system of the 

case facility, a fuel to steam efficiency of 72% on average was calculated for the three 

implemented boilers. Steam losses throughout the distribution lines reduced the amount 

of received steam at the consumer side by an average of 8%. In addition, the gathered 

information enabled the identification of possible system optimisations with an easy to 

adopt characteristic for all three analysed TBS. For example, in both PW systems, 
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significant amounts of resources could be saved if the PW intakes were turned off during 

temporary production stops.  

Following from these results it can be concluded that the strategic measuring 

methodology developed in this work enabled a holistic resource flow transparency of the 

investigated TBS, which led to an increased understanding of resource interactions and 

the disclosure of system optimisation possibilities. 

To enable automated data acquisition from offline or broken measuring devices, 

the fourth phase of the TBS metering framework incorporated a basic PMD developing 

strategy. Following these modelling steps, three PMDs were developed for the 

investigated TBS of the case facility. Two of the PMDs estimated the target variable with 

sufficient accuracy, while the third PMD resulted in poor performances due to unsuitable 

sampling times and large time offsets between the related measuring devices. In all three 

models, small datasets resulting from manual recordings were a limitation. These results 

demonstrate that first-order PMDs can be a useful choice for estimating missing data of 

industrial systems. However, the application of the three PMDs has also demonstrated 

that appropriate conditions of the related measuring devices are needed for a successful 

PMD implementation.  

The integration of the gained data in an automated calculation of the total TBS 

cost revealed the actual value that is embedded in the system by showing the contribution 

of each cost factor. For the analysed PW system of the case facility, the investigation of 

the total cost over one year showed that the costs of the purified water were on average 

3.4 times higher than the company’s mains water supply cost, with mains water and 

further added values being the central cost factors. For the steam system, natural gas was 

by far the main cost factor, followed by electrical energy. Up to now, similar cost models 

that can be found in the literature [100], [103], [105] rely on manual data acquisition. The 

developed methodology in this research incorporates for the first time an automated cost 

calculation based on online meters / PMDs. The case application demonstrated that this 

automation enables the tracking of the effectiveness of system modifications, as seen in 

the investigated PW system, where a membrane change in one of the units reduced the 

PW cost by an average of 9%.  

Following from the results of the metering framework applications, it can be 

concluded that even with basic tools in the form of a strategic measurement methodology; 

the functionality, flow patterns, and cost factors of complex TBS can be broken down and 

a holistic data acquisition is possible. For data acquisition extension, even simple 
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structured PMDs infer data gaps of missing parameters with acceptable accuracy and 

provide a valuable alternative to the installation of an additional physical measuring 

device when the conditions of the related measuring devices are appropriate. 

5.2.2 Proxy measurements in small dataset scenarios 

The potential of basic PMDs from the applications in the case facility has 

motivated the development of comprehensive modelling methodologies to accelerate the 

use in industry. One key challenge for the currently limited application of PMDs in 

industrial systems is the academic focus of ever advancing mathematical PMD solutions 

which require time and cost-intensive development [140]. Furthermore, many PMD 

modelling datasets from industrial environments are of small size which represents an 

additional barrier [171]. To overcome these limitations, this work focused on testing and 

validating different PMD model algorithms and data manipulation techniques for varying 

regression complexities in order to provide targeted and straightforward PMD 

development steps for industrial application.  

As a foundation for the PMD testing, small datasets with simple regression 

complexity were successfully acquired from an experimental water loop rig. The data 

from the implemented measuring devices of the experimental rig provided an effective 

resource for building a variety of PMD regression models with diverse input and target 

variable relationships. Further datasets with increased regression complexity were 

generated by a simulation model that represented the flow behaviour of the experimental 

rig. 

With the recently presented set of regression complexity measures by Lorena et 

al. [175], five small datasets from the experimental rig were successfully characterised in 

terms of their regression complexity. Based on this classification, the performance of 

various PMD configurations has been tested and the following main conclusions were 

drawn for the development of PMDs on small datasets:  

• Within this work, a first-time application of complexity measures for PMD dataset 

characterisation has proven that insights into the regression complexity of a dataset 

are possible when the applied measures focus on correlation, linearity, smoothness, 

and geometry / topology. 

• This work presented a comprehensive sensitivity analysis focusing on the impact 

of input variable reduction for regression models and concludes that the 
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identification of the most significant variables is essential to increase the PMD 

performance. 

• Following from the novel application of the regression complexity measures, 

multiple linear regression and Partial Least Squares regression resulted in low 

estimation errors for regression problems with high correlation and linearity. 

• In the age of increased usage of artificial intelligence approaches, this work 

concludes that in contrary to other publications, Neural Networks can be a suitable 

choice for small datasets, however, they should only be applied if the analysed 

regression complexity is high. 

• If Neural Networks are applied, this work demonstrated through a comprehensive 

study of training data manipulation methodologies that training sample replications 

with bootstrap improve the model performance. Highest Neural Network 

performance enhancement was detected for bootstrap in combination with small 

additions of artificial noise to the input variables.  

For linear models, no performance improvement was observed when the training 

data was manipulated with bootstrap and / or artificial noise injection. 

• In conclusion for all analysed models, in particular for Neural Networks; higher 

numbers of training samples increased the model accuracies and decreased the 

performance variations. 

 

Following from the investigation outcomes, it can be concluded that unique 

merit / novelty in this work can be seen in a first-time summary of development 

methodologies for basic PMDs in dependence of the existing regression complexity. This 

work has demonstrated that basic models trained on small datasets can enable 

approximations with high accuracies when the appropriate model and training data 

manipulation strategy is used. This initiates the question whether the additional 

development effort for a more complex model approach with a high-end solution is worth 

the potential model accuracy increase. This decision, in addition to the general complexity 

demand of an industrial monitoring system, is in the hands of the engineers. This work 

has proven that basic metering strategies and comprehensive PMD modelling 

methodologies can enable detailed insights and approximations of complex industrial 

systems.  
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5.3 Recommendations for future work 

There are several areas where this work could be expanded and developed further. 

For example: 

1. Development of further resource measurement strategies  

There is an opportunity for developing further data acquisition frameworks for 

manufacturing systems that focus on industrial implementation. Similarly to the 

presented methodology in this research and corresponding to the requirements 

outlined in the literature, these frameworks need to be developed in close 

collaboration between academia and industry to ensure applicability. In addition, 

the frameworks should aim for a holistic approach that considers multiple resources 

within a system in order to support the study and characterisation of resource 

interdependencies. The focus of these frameworks can range from specific 

manufacturing process steps to larger sub-systems of a manufacturing facility, 

similar to TBS.  

2. PMD performance study with further regression datasets, algorithms, and industrial 

systems  

While this work shows a novel comparison of PMD performances as a function of 

regression complexity, limitations exist due to the small number of studied cases 

and applied algorithms as well as the experimental rig data for PMD modelling. To 

further simplify the application of PMDs in industry, additional studies of PMD 

behaviours should be conducted for a variety of regression complexities to expand 

the presented developing methodologies. This expansion could comprise the 

analysis of PMD performances of further regression algorithms, i.e. support vector 

regression as an additional algorithm for datasets with higher regression 

complexities, and the inclusion of further datasets with a variety of regression 

complexities for PMD behaviour analysis. As the PMD development methodology 

is based on data from an experimental rig, the methodology needs to be validated 

on larger scale industrial setups to prove its applicability.   

3. Measurement noise and uncertainty impact on the PMD performance 

When using a metering device, every process measurement is affected by noise. For 

the input and target variables of a PMD, the noise levels of each online measuring 

device can have a high impact on the PMD performance. In particular, complex 
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regression models with high flexibility, such as NNs, can be strongly influenced by 

high levels of measurement noise. This can lead to increasing PMD uncertainty. An 

in-depth study between measurement noise and PMD performance is needed to 

further analyse this dependency. In this context, the relationship between dataset 

noise levels and the artificial noise injection as a training manipulation strategy 

should be studied in further detail, in addition to the location of artificial noise 

addition. 

4. Further analysis of the dataset regression complexity   

The applied complexity measures from Lorena et al. [175] enabled the classification 

of datasets into simpler and more complex regression problems. Nonetheless, for 

datasets with similar regression complexity, varying performances were observed 

for the same algorithm. Therefore, further investigation is needed to analyse what 

causes algorithm performance variations when applied to datasets with similar 

regression complexity and how well the characteristics of regression complexity is 

represented in the used measures.   

5. Preventing information overload of monitoring systems with PMDs 

With the rapid increase of monitoring data from industrial processes, facilities can 

be confronted with a data overload, affecting the optimal process control. To 

increase the transparency of a monitoring system, the concept of proxy metering 

could be adopted. Instead of estimating an unknown process parameter or function 

as a backup for an online meter, the proxy meter concept could be developed further 

with the target of reducing / condensing the information output from a complex 

monitoring system for operators. For example, a PMD could be developed to 

estimate the state of a process section based on a variety of online meters or the 

information of these devices could only show up if certain events occur. With this 

methodology, engineers would gain an effortless tool to summarise the relevant 

information of their monitoring systems, similar to the approaches in the field of 

condition monitoring. 
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Appendices 

Appendix A: Dataset complexity measures 

This section outlines the applied dataset complexity measures for regression 

models that were introduced by Lorena et al. [175]. The measures are presented in Table 

2.3. Datasets normalisation between [0,1] has been performed before the measures were 

applied (except for measure T1). 

 

Correlation measures: 

C1: Maximum inputs correlation to target variable: This measure identifies 

the maximum correlation value between each input variable and the target variable: 

 

 

The Spearman correlation 𝜌 is used as it is non-parametric and does not assume a 

particular distribution between the input variables and the target variable from the dataset. 

The absolute value of the correlation is used as both extreme values [-1,1] indicate a 

strong correlation.  

Higher values of C1 indicate simpler regression problems meaning there is at least one 

input variable strongly correlated to the target variable.  

 

C2: Average inputs correlation to target variable: This parameter measures the 

average correlation of all input variables to the target variable:  

 

 

Similar to C1, this measure uses the Spearman correlation 𝜌 and the absolute value. 

Higher values of C2 indicate a simpler regression problem. 

 

 

 

   C1 = max|𝜌(𝑥𝑗 , 𝑦)|
𝑗=1,…,𝑑

   (A.1) 

   C2 = ∑
|𝜌(𝑥𝑗 , 𝑦)|

𝑑

𝑑

𝑗=1

   (A.2) 
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C3: Input efficiency: This measure examines if a SLR with a certain input 

variable can explain the relationship to the target variable well. First, the input variable 

with the highest correlation to the target variable is selected. Second, a linear fit between 

the selected input variable (highest correlation) and the target variable is performed. 

Third, all samples of the input variable that show a residual error of less than 0.1 

(|𝜖𝑖| ≤ 0.1) are removed from the dataset. Afterwards, the most correlated input variable 

to the remaining samples is identified and the previous steps are repeated. This process is 

iterated until all input variables are analysed or the input dataset X becomes empty. C3 

expresses the ratio of samples for which the residuals error of the linear fit is larger than 

the threshold of 0.1.  

 

 

where the numerator gives the number of samples that remain in the dataset at the end. 𝑇𝑙 

is the dataset from which this number is calculated, 𝑙 indicates the number of iterations 

that are executed by the algorithm. 𝑛 is the number of samples in the original dataset. 

Higher values for C3 indicate more complex problems.  

 

Linearity measures: 

L1: Mean absolute error: This parameter uses an MLR between input and target 

variables. The mean absolute error of this linear fit is expressed by L1: 

 

 

Lower values of L1 indicate simpler (linear) problems.  

 

L2: Residual variance: Similar to L1, an MLR between input and target variables 

is first performed for L2. Afterwards, the residual values are squared and the average is 

calculated according to:  

 

Lower values of L2 indicate simpler (linear) problems.  

   C3 =  
# {𝑥𝑖||𝜖𝑖| > 0.1}𝑇𝑙

𝑛
   (A.3) 

   𝐿1 = ∑
|𝜖𝑖|

𝑛

𝑛

𝑖=1

   (A.4) 

   𝐿2 = ∑
𝜖𝑖

2

𝑛

𝑛

𝑖=1

   (A.5) 
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Smoothness measures: 

S1: Inputs distribution: For this measure, the data samples are first arranged 

according to the ascending order of the target values yi. Subsequently, the Euclidean 

distance is computed between neighbouring samples. Finally, the Euclidean distances of 

all pairs are summarised and divided by the total number of samples: 

 

   

 

Lower values of S1 indicate simpler problems (similar points in the input space share 

similar target values).  

 

S2: Error of nearest neighbour regressor: This measure is applied to identify 

how close the samples lie together. First, a distance matrix for the sample inputs in X is 

calculated. Subsequently, the target value of each input sample 𝑥𝑖 is predicted by the 

nearest neighbour input sample 𝑁𝑁𝑅(𝑥𝑖). The Mean Squared Error (MSE) for a 1-nearest 

neighbour regressor (NNR) expresses the accuracy. Finally, all MSEs are summarised 

and divided by the number of samples: 

 

 

where 𝑁𝑁𝑅(𝑥𝑖) represents the 1-nearest neighbour prediction for 𝑥𝑖. 

Lower values of S2 indicate simpler problems.  

 

Geometry, topology, and density measures: 

L3: Non-linearity of linear regressor: This measure first selects pairs of samples 

with similar target outputs and then creates a new test point by randomly interpolating 

within the pair. Simultaneously, a linear regression model is trained on the original dataset 

and applied to the new, interpolated points. By using the MSE, L3 measures how sensitive 

the regression model is to the interpolated points:    

 

   𝑆1 =
1

𝑛
∑‖𝑥𝑖 − 𝑥𝑖−1‖2

𝑛

𝑖=2

   (A.6) 

   𝑆2 =
1

𝑛
∑(𝑁𝑁𝑅(𝑥𝑖) − 𝑦𝑖)2

𝑛

𝑖=1

   (A.7) 
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where 𝑙 is the number of interpolated input samples 𝑥𝑖
′ and target samples 𝑦𝑖

′.  

Lower values of L3 indicate simpler problems, indicating that the training samples are 

distributed smoothly. 

 

S3: Non-linearity of nearest neighbour regressor: This parameter applies the 

same calculation pattern as in L3, however, this time a Nearest Neighbour regressor 

(NNR) is trained on the original dataset instead of a linear regression model:  

 

 

where 𝑙 is the number of interpolated input samples 𝑥𝑖
′ and target samples 𝑦𝑖

′.  

Lower values of S3 indicate simpler problems, indicating that the training samples are 

distributed smoothly. 

 

T1: Average number of samples per dimension: This measure expresses the 

average number of samples per dimension and gives an indicative on data sparsity:  

 

 

Lower values of T1 indicate more complex problems. 

   𝐿3 =
1

𝑙
∑(𝑓(𝑥𝑖

′) − 𝑦𝑖
′)2

𝑙

𝑖=1

   (A.8) 

   𝑆3 =
1

𝑙
∑(𝑁𝑁𝑅(𝑥𝑖

′) − 𝑦𝑖
′)2

𝑙

𝑖=1

   (A.9) 

   𝑇1 =
𝑛

𝑑
   (A.10) 
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Appendix B: Calibration of experimental rig measuring 

devices 

Before the experimental rig was set into operation, the temperature, flow rate, and 

pH sensors were calibrated to ensure high accuracy of the measurements. The calibration 

and validation procedure for these measuring devices is explained below.  

 

Thermocouples 

To measure the water and air temperature in and around the experimental rig, K-

type thermocouples have been applied. These devices were connected to a thermocouple 

module (NI-9213) within the compact DAQ which included cold-junction compensation 

and enabled the temperature acquisition through the LabVIEW environment. To assure 

high accuracy, the thermocouples were calibrated for a fixed temperature range within a 

calibration bath. A master temperature device (Stanford Research Systems calibrated 

thermistor probe) has been used in the calibration bath as a reference sensor. The 

thermocouples were calibrated between 18°C and 78°C by using six different 

temperatures within this range. As soon as constant temperatures were reached for each 

setpoint, 10 values of the reference temperature from the master probe and the according 

temperatures from the thermocouples were recorded. Subsequently, the average 

deviations between the master probe and the thermocouples were determined and each 

thermocouple has been corrected according to the respective deviation by using linear 

regression.   

Finally, the calibrated thermocouples were validated to determine the 

measurement uncertainty. Six validation temperatures within the range of 18°C to 78°C 

were approached in the calibration bath and the values of the thermocouples and the 

master probe were recorded and compared. The absolute deviations for each validation 

temperature setpoint are displayed in Table B.1. 
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Table B.1: Validation deviations (absolute) for the thermocouples of the experimental rig 

Measuring 

device 

Validation temperatures 

21°C 30°C 35°C 40°C 50°C 60°C 

TT1 [°C] 0.01 0.00 0.05 0.06 0.11 0.13 

TT2 [°C] 0.08 0.09 0.08 0.14 0.17 0.19 

TT3 [°C] 0.05 0.02 0.06 0.05 0.08 0.15 

TT4 [°C] 0.09 0.10 0.16 0.15 0.18 0.19 

TT5 [°C] 0.09 0.06 0.07 0.03 0.01 0.00 

  

Flow meters:  

Three flow sensors (RS Pro Beverage Flow Meter) were implemented within the 

experimental rig to measure the water flow rates at various locations. For signal 

acquisition, a voltage input module (NI-9205) has been used in the compact DAQ which 

enabled to correlate the signal frequency to the corresponding flow rate within the 

LabView environment. The single flow meters were calibrated by manually recording the 

past volume within a certain time interval when constant flow conditions were present. 

Subsequently, the signal frequencies were related to the manual flow rate recordings by 

linear relationships. The devices were calibrated by five setpoints within a flow range of 

0.5 l/min to 2.0 l/min. The validation of the flow devices followed the same methodology 

as the calibration, manual recordings of the passed water volume were compared to the 

measured volumes by the flow meters. The following table presents the determined 

validation parameters.  

 

Table B.2: Validation deviations (absolute) for the flow meters of the experimental rig 

Measuring 

device 

Validation flow rates 

0.5 l/min 0.7 l/min 0.9 l/min 1.0 l/min 1.4 l/min 2.0 l/min 

FT1 [l/min] 0.00 0.01 0.01 0.01 0.02 0.03 

FT2 [l/min] 0.01 0.01 0.02 0.02 0.03 0.04 

FT3 [l/min] 0.00 0.00 0.01 0.02 0.02 0.03 

FT4 [l/min] 0.01 0.02 0.01 0.02 0.03 0.04 

 

pH meters:  

Two pH meters (DF Robot SEN0161) were implemented in the experimental rig 

to measure the pH value of the water in tank 1 and 2. The output voltage of these devices 

was changing according to the measured pH value and was recorded by a voltage input 

module (NI-9205) within the compactDAQ. To calibrate both meters, the pH value of 
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water within a beaker was alternated by the addition of sodium carbonate (to increase the 

pH value) or sodium bisulfate (to decrease the pH value). Similar to the calibration of the 

thermocouples, a master pH meter (Mettler Toledo FiveEasy Plus) was used as a 

reference pH meter within the beaker. The pH meters were calibrated between pH 2.5 and 

pH 10.5 by applying five different pH setpoints within this range. As soon as constant pH 

values were reached at each setpoint, 10 values of the master pH meter and the indicated 

voltages from the pH meters were recorded. Subsequently, the average voltages for each 

setpoint were related to the average master pH value by a linear relationship. To validate 

the pH meters, five validation setpoints in the range of pH 2.5 to pH 10.5 were approached 

in the beaker and the values of the pH meters and the master probe were compared. The 

absolute deviations for each setpoint are shown in the following table. 

 

Table B.3: Validation deviations (absolute) for pH meters of the experimental rig 

Measuring 

device 

Validation pH values 

2.5 2.7 7.3 8.0 10.5 

pHT1 [pH] 0.02 0.01 0.03 0.03 0.07 

pHT2 [pH] 0.06 0.08 0.04 0.11 0.09 
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Appendix C: Experimental rig simulation model for setup D 

and E 

C.1 Model derivation  

The model for the experimental rig setups D and E has been simulated based on 

equations which relate the tank filling levels to the tank exit flow rates. An example 

tank with the associate parameters is shown in Figure C.1. 

 

 

Figure C.1: Example tank of the experimental rig including model parameters  

 

To derivate a model relating the tank filling level with the exit flow rate, a volume 

balance is defined for the example tank of Figure C.1 as a first step:  

 

 

To determine the volume flow rates at the tank exit, the outlet speed can be calculated 

according to the Bernoulli equation:  

 

 

Since the tank is an open system, the pressure term in equation (C.2) can be neglected. 

Additionally, the hydrostatic pressure at the tank exit is very small in this setup and was 

therefore neglected as well. Thus equation (C.2) can be reduced to: 

 

 

h=0

h1

p1,atm.

v1

A1

A2
p2,atm.

Water level

V0

V2
v2,id

ℎ1 ∗ 𝐴1 = ℎ1_𝑠𝑡𝑎𝑟𝑡 ∗ 𝐴1 + �̇�0 ∗ 𝑡 − �̇�2 ∗ 𝑡   (C.1) 

𝑝1,𝑎𝑡𝑚 + 𝜌 ∗ 𝑔 ∗ ℎ1 +
𝜌

2
∗ 𝑣1

2 = 𝑝2,𝑎𝑡𝑚 + 𝜌 ∗ 𝑔 ∗ ℎ2 +
𝜌

2
∗ 𝑣2,𝑖𝑑

2    (C.2) 
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With the equation of continuity (equation (C.4)) and the inclusion of the coefficient of 

discharge (equation (C.5)), the speed at the tank exit is calculated according to equation 

(C.6) and the outlet volume flow rate is calculated with equation (C.7). The coefficient of 

discharge 𝜇 has been assumed according to the tank nozzle geometry [215]. 

 

 

Following from this, the change of the filling level in the example tank of Figure C.1 can 

be calculated with equation (C.1):  

 

 

Correspondingly, the filling levels of the experimental rig tanks 1, 2, and 3 were 

calculated according to the following differential equation within the developed 

MATLAB Simulink model: 

 

The block diagram of the Simulink model for setup D is displayed in Figure C.2. 

At the start of the simulation, an initial filling level, randomly selected, was provided for 

the integrators of tank 1 and 2. The difference of the tank filling levels was given with the 

unit m/s. This unit has been applied as the standard unit throughout the Simulink block 

diagram. Therefore, the volume flow rates were divided by the corresponding area.  

𝜌 ∗ 𝑔 ∗ ℎ1 +
𝜌

2
∗ 𝑣1

2 =
𝜌

2
∗ 𝑣2,𝑖𝑑

2    (C.3) 

𝑣1 ∗ 𝐴1 = 𝑣2,𝑖𝑑 ∗ 𝐴2   (C.4) 

𝑣2,𝑟𝑒𝑎𝑙 = 𝑣2,𝑖𝑑 ∗ 𝜇   (C.5) 

𝑣2,𝑟𝑒𝑎𝑙 =
√

2 ∗ 𝑔 ∗ ℎ1

(
1
𝜇)

2

− (
𝐴2

𝐴1 ∗ 𝜇)
2 

  (C.6) 

�̇�2 = 𝑣2,𝑟𝑒𝑎𝑙 ∗ 𝐴2   (C.7) 

ℎ1 = ℎ1_𝑠𝑡𝑎𝑟𝑡 +
�̇�0 ∗ 𝑡

𝐴1
−

�̇�2 ∗ 𝑡

𝐴1
   (C.8) 

𝑑ℎ1

𝑑𝑡
=

�̇�0

𝐴1
−

�̇�2

𝐴1
   (C.9) 
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Within setups D and E, the outflow of tank 1 was flowing into tank 2 and the 

outflow of tank 2 was flowing to the drain. Tank 1 was filled by mains water (dependent 

on the 2-position controller) and by the outflow of tank 3 (FT4). Within setup D, two 

constant flow rates were assumed for FT4, changing once at a random time during the 

simulation period. Within setup E, tank 3 was added to the Simulink block diagram and 

the flow rate FT4 was continuously decreasing from a randomly chosen filling height at 

the simulation start. 

The implemented 2-position controller identified through a loop function if the 

filling level in tank 2 was above or below the set target filling level of 0.2 m and opened 

or closed the mains water addition to tank 1 through valve V1 correspondingly.  

 

 

Figure C.2: Block diagram of the Simulink model for setup D 

 

C.2 Model validation  

To validate the simulation model of setup D and E, the models’ differential 

equation (C.9) has been integrated to compare the simulated filling levels to the 

simulation time. To enable this comparison, a steady inflow (�̇�0) has been assumed for 
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the example tank shown in Figure C.1. Initially, equations (C.6), and (C.7) were 

substituted into equation (C.9) and two new variables (𝑃 and 𝑄) were introduced to 

simplify the integration:  

with:   

 

Rearranging equation (C.10):  

with 𝑥 = √ℎ1 and 𝑑𝑥 =
𝑑ℎ1

2√ℎ1
 , equation (C.13) is integrated: 

 

Replacing 𝑥(𝑡) = √ℎ1(𝑡),  𝑥(0) = √ℎ1(0): 

 

After resubstituting 𝑃 according to equation (C.11) and 𝑄 according to equation (C.12), 

equation (C.16) has been used to validate the simulation model. For this validation 

process, the following parameters were used: 

 

ℎ1_𝑠𝑡𝑎𝑟𝑡 = 0.2 𝑚;  𝐴1 = 0.0674 𝑚2;  𝐴2 = 0.785 𝑐𝑚2;    �̇�0 = 2.0 
𝑙

𝑚𝑖𝑛
   

𝜇 = 0.6 (assumed according to the nozzle geometry [215]) 

𝑑ℎ1

𝑑𝑡
=

�̇�0

𝐴1
−

𝐴2

𝐴1 √

2𝑔

(
1
𝜇)

2

− (
𝐴2

𝐴1 ∗ 𝜇)
2 √ℎ1 = 𝑃 − 𝑄√ℎ1 

  (C.10) 

𝑃 =
�̇�0

𝐴1
   (C.11) 

𝑄 =
𝐴2

𝐴1 √

2𝑔

(
1
𝜇

)
2

− (
𝐴2

𝐴1 ∗ 𝜇
)

2 
  (C.12) 

𝑑ℎ1

𝑃 − 𝑄√ℎ1

= 𝑑𝑡 

 

  (C.13) 

∫ 𝑃 𝑑𝑡
𝑡

0

= ∫
2 ∗ 𝑥

1 −
𝑄
𝑃  𝑥

 𝑑𝑥
𝑥(𝑡)

𝑥(0)

    (C.14) 

𝑡 = −
2

𝑄
[𝑥(𝑡) − 𝑥(0) +

𝑃

𝑄
∗ log (

𝑃 − 𝑄 ∗ 𝑥(𝑡)

𝑃 − 𝑄 ∗ 𝑥(0)
)]   (C.15) 

𝑡 = −
2

𝑄
[√ℎ1(𝑡) − √ℎ1(0) +

𝑃

𝑄
∗ log (

𝑃 − 𝑄 ∗ √ℎ1(𝑡)

𝑃 − 𝑄 ∗ √ℎ1(0)
)]   (C.16) 
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For these validation parameters, Figure C.3 [a] presents the Simulink simulation results 

of the example tanks’ filling level ℎ1. The graph shows that the filling level is decreasing 

for a duration of approximately 10 minutes and staying constant for the further simulation 

time. Subsequently, the resulting values of the simulated filling level ℎ1 have been applied 

in equation (C.16) in order to calculate the corresponding time, the results are shown in 

Figure C.3 [b]. Similar to the Figure C.3 [a], the graph of Figure C.3[b] shows that the 

filling level ℎ1 decreases until approximately 10 minutes and shows a constant level 

afterwards. As the graphs of Figure C.3 demonstrate, the simulated filling level ℎ1 

coincides with the calculated time of equation (C.16). As an example, the filling level of 

0.05 m corresponds to the simulation time of five minutes. This comparison indicates that 

the simulation model is capable of correctly calculating the tanks’ exit flow.   

 

 

Figure C.3: Validation of simulation model: Simulation of filling level h1 based on 

validation parameters [a], integration of simulated filling level h1 according to equation 

(C.16) [b] 

[a]     [b]     
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Appendix D: Supplementary figures  

This section provides additional figures for the presented research of chapter 3 

and 4.  

D.1 Additional figures for the case facility’s IC1 water system  

 

 

Figure D.1: WPDs within the IC1 water system of the case facility 
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Figure D.2: BFD of the IC1 water purification process including flow and level indicators 

 

 

 

Figure D.3: BFD of the IC1 PW distribution including flow and level indicators 
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Figure D.4: BFD of the IC1 water system including sub-flows and measuring instruments 
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Figure D.5: Abstracted BFD for the IC1 water system, including electrical energy 

consumers and further added values 
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Figure D.6: Process control layout for the IC1 water system 

 

 

Figure D.7: IC2 PW generation vs. machine production activity including production 

campaigns: daily generated PW (estimated by PMD from section 3.3.1) [a], production 

activity from machine 1 and 2 [b] 
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D.2 Additional figure for the simplified proxy metering approach 

 

 

Figure D.8: Condensate tank temperature of the case facility’s steam system: light blue: 

condensate tank temperature with a sample interval of 30 seconds, red: moving average 

filter for condensate tank temperature 
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D.3 Additional figures for small dataset PMD performances 

 

Figure D.9: Setup A: CC variation and NN hidden neurons, all input variables: box plots 

for the performance variation of algorithms MLR [a], PLSR_6 [b], and NN_2 [c], NN 

average performance for variety of hidden neurons [d] 

 

 

 

Figure D.10: Setup A: CC all input variables and reduced input variable subset: average 

performance [a], performance variation for PLSR_6 trained on all input variables [b], 

performance variation for MLR trained on most accurate input variable subset [c] 
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Figure D.11: Setup B: CC variation and NN hidden neurons, all input variables: box plots 

for the performance variations of MLR [a], PLSR_5 [b], and NN_2 [c]; NN average 

performance for a variety of hidden neurons [d] 

 

 

 

Figure D.12: Setup B: CC all input variables and reduced input variable subset: average 

performance [a], performance variation for PLSR_5 trained on all input variables [b], 

performance variation for PLSR_5 trained on most accurate input variable subset [c]  
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Figure D.13: Setup C: CC variation and NN hidden neurons, all input variables: box plots 

for the performance variation of algorithms MLR [a], PLSR_5 [b], and NN_5 [c], NN 

average performance for variety of hidden neurons [d] 

 

 

 

Figure D.14: Setup C: CC all input variables and reduced input variable subset: average 

performance [a], performance variation for PLSR_5 trained on all input variables [b], 

performance variation for SLR with pHT2 (pH at t_start) [c] 
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Figure D.15: Setup D: CC variation and NN hidden neurons, all input variables: box plots 

for the performance variation of algorithms MLR [a], PLSR_4 [b], and NN_5 [c], NN 

average performance for variety of hidden neurons [d] 

 

 

 

Figure D.16: Setup D: CC all input variables and reduced input variable subset: average 

performance [a], performance variation for NN_5 trained on all input variables [b], 

performance variation for NN_4 trained on most accurate input variable subset [c] 
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Figure D.17: Setup E: CC variation and NN hidden neurons, all input variables: box plots 

for the performance variation of MLR [a], PLSR_3 [b], and NN_5 [c]; NN average 

performance for variety of hidden neurons [d] 

 

 

 

Figure D.18: Setup E: CC all input variables and reduced input variable subset: average 

performance [a], performance variation for NN_5 trained on all input variables [b], 

performance variation for NN_5 trained on most accurate input variable subset [c] 
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Figure D.19: Setups A, B, C: BR influence on MLR, PLSR, and SLR; CC validation: 

average performances [a], [d], [g], setup A MLR performance variation for training 

samples 10 [b] and 40 [c], setup B PLSR_5 performance variation for training samples 

10 [e] and 40 [f], setup C SLR performance variation for training samples 10 [h] and 40 
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Figure D.20: Setups D, E: BR influence on NN; CC validation: average performances [a], 

[d], setup D NN_5 performance variation for training samples 10 [b] and 70 [c], setup E 

NN_5 performance variation for training samples 10 [e] and 70 [f] 

 

 

 

Figure D.21: Setup A: Influence of ANI location: RMSE average performances for 

artificial noise injected to target variable [a] or input and target variables [b]  
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Figure D.22: Setups A, B, C: ANI influence on MLR, PLSR, and SLR; CC validation: 

CC average performances [a], [d], [g], setup A MLR performance variation for training 

samples 10 [b] and 40 [c], setup B PLSR_5 performance variation for training samples 

10 [e] and 40 [f], setup C SLR performance variation for training samples 10 [h] and 40 
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Figure D.23: Setup D: Influence of ANI location: RMSE average performances for 

artificial noise injected to target variable [a] or input and target variables [b] 

 

 

 

Figure D.24: Setups D, E: ANI influence on NN; CC validation: average performances 

[a], [d], setup D NN_5 performance variation for training samples 10 [b] and 40 [c], setup 

E NN_5 performance variation for training samples 10 [e] and 40 [f] 
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Figure D.25: Setups A, B, C: BR and ANI influence on MLR, PLSR, and SLR; CC 

validation: average performances [a], [d], [g], setup A MLR performance variation for 

training samples 10 [b] and 40 [c], setup B PLSR_5 performance variation for training 

samples 10 [e] and 40 [f], setup C SLR performance variation for training samples 10 [h] 

and 40 [i] 
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Figure D.26: Setups D, E: BR and ANI influence on NN; CC validation: average 

performances [a], [d], setup D NN_5 performance variation for training samples 10 [b] 

and 40 [c], setup E NN_5 performance variation for training samples 10 [e] and 40 [f] 
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