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Abstract

The rise in energy demand around the globe can only be met with sustainable and

long-term reliance on alternative renewable energy sources. In this context, the goal

of this thesis is to conceive a method through which two-dimensional materials and

heterostructures thereof can be ranked in terms of their photoabsorption. Firstly we

have explored the theoretical limitations of realistic predictions for the photocon-

version efficiency obtained with ab-initio methods such as density functional theory.

We have studied silicon and methyl ammonium lead iodide and have found that the

efficiency is largely affected by the inherent level of disorder in the system. This

rendered the efficiency study intractable from an ab-initio perspective. However, the

short circuit current density, Jsc, has been proven to be reliably determined within

our model even in the absence of an empirical treatment. We have designated the

short circuit current density at 95% of its maximum saturation value as our ab-initio

photovoltaic descriptor, together with the corresponding active layer thickness. This

effectively allowed us to rank materials according to their absorption ability.

Next we have looked at the HfS2/PtS2 heterostructure, a system with a type II

band alignment, in order to identify unique peaks that could be associated with in-

terlayer transitions. We have decomposed the dielectric function into its constituting

intra-layer, inter-layer and mixed components. We have found that the inter-layer

absorption was much smaller in amplitude than the other components. However,

compressing the two layers resulted in the creation of a valence impurity band, which

led to the formation of a well-isolated peak at the absorption edge. This new feature

of the absorption spectrum was associated with inter-layer transitions.

In the last part of our work, we have studied the process of "band nesting" in tran-

sitional metal dichalcogenides and transitional metal halides. We have performed
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several classifications of the compounds based on the gradient of the energy dif-

ference between the top valence and bottom conduction band mapped onto the

irreducible Brillouin zone. We have found similar human discernible patterns in the

resulting groups, which justified the emerging groups. Moreover, we investigated

the joint density of states in two-dimensional transitional metal dichalcogenides and

halides. We have noticed the roughly linear relation between the joint density of

states and the imaginary part of the dielectric function spectra, especially for the

in-plane component of the imaginary part of the dielectric function, ε||2. Based on

this approximation, we have calculated the absorption coefficient and its integrated

value over the energy range of the solar spectrum. We have ranked all materials

according to the unapproximated and approximated absorption coefficient integral

values and found that the two rankings matched extremely well. We have concluded

that the joint density of states is a good descriptor for photovoltaic absorption in

transitional metal dichalcogenides and transitional metal halides.
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Additional information

The results from Chapter 4 of this thesis have been published in 2019 in Physical

Review Materials. The article entitled "Interlayer dielectric function of a type II

van der Waals semiconductor: the HfS2/PtS2 bilayer" was co-authored with Dr.

Sabine Körbel, Dr. Carlo Motta, Professor Fadwa El-Mellouhi and Professor Ste-

fano Sanvito.

Moreover, some of the density functional theory calculations presented in Chapter

5 have been performed by Dr. Rui Dong. I used this data to construct the gradi-

ents with respect to the conduction and valence bands of 29 distinct 2D transition

metal dichalcogenides. These were employed for the classification of the materials as

potential photovoltaic absorbers using a clustering method. Additionally, the elec-

tronic structure calculations provided by Dr. Rui Dong were used to further derive

the joint density of states spectra for all the investigated 2D compounds. These

spectra allowed for a ranking of the materials in terms of the short-circuit current

density, an important photovoltaic descriptor.
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1 Introduction

1.1 Global solar power resources

Several research studies have been dedicated over the past years to demonstrate

that a significant drop in green-house gas emissions can only be achieved through a

supply of carbon-free energy and improvements in energy efficiency [1, 2, 3]. Various

renewable resources will be employed to this end, although they are expected to play

different roles [3]. For instance, wind power is already close to reach fossil-fuel-based

capacity in terms of its competitiveness, despite its particular regional constraints.

Compared to wind power, solar-based energy solutions such as photovoltaics (PV)

and concentrating solar power (CSP), are more advantageous alternatives thanks

to their greater potential, despite their relatively higher generation costs [3]. CSP

only employs direct sunlight, i.e. solar radiation that travels in a straight line to the

surface of the earth. This beam radiation is concentrated by mirrors onto a receiver

in which a fluid is heated to produce steam. The produced thermal energy is then

converted to electricity in a steam turbine [4]. Hence, CSP is a better solution

for thermal energy storage compared to electricity storage. Also, the potential of

CSP is limited to arid and semi-arid regions [3, 4]. In contrast, PV make use of

the photovoltaic effect emerging in semiconductors, whereby both diffuse and direct

solar radiation is absorbed and transformed directly into electricity [3]. PV are

more appropriate for use in areas with a larger fraction of diffuse radiation such

as those at higher latitudes [3]. In Fig. 1.1, courtesy of Ref. [5], the horizontal

solar irradiation as recorded in 2019 is illustrated across the globe. It is clear that

the ideal places for deploying solar-based resources are the Southeastern Sahara,

the Southwestern USA, the Arabian peninsula, Northern Argentina, Oceania and
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Figure 1.1: Daily and yearly average values of the global horizontal irradiation
measured around the world using atmospheric and satellite data with 10, 15, 30-
minute time step based on the region. This map and the modelled data herein were
produced by Solargis Ref.[5].

Mongolia. Both CSP and PV compete for the same solar resources [3]. However, in

terms of cost, CSP is expected to have a higher competitive advantage over PV in

the first three locations that exhibit a higher fraction of direct sunlight, while PV

will have a higher one in eastern USA, Europe, the Amazon region, Equatorial Africa

and monsoon India [3]. Modelling the land use and competition of PV and CSP for

the year 2050 under current policies, it is estimated that the combined global CSP

and PV potential will be of approximately 135000 TWh/year at a projected cost

of around $0.11/kWh. To put this into perspective, in 2010 the total world power

consumption was recorded at approximately 18000 TWh/year. [3].

Throughout this thesis, we focus only on PV technology. In the following, we shall

describe the working-principles of a solar cell as well as the different existing types

of PV technologies.
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1.2 Principles of a solar cell

This section will be loosely based on the chapter "Fundamentals of Solar cell" from

the publication entitled "Nanostructured Materials for Solar Energy Conversion"

referenced in [6]. The standard architecture of a solar cell consists of a p-n junction,

which is an interface of positively (p) and negatively (n) doped semiconductor layers.

The latter can be created by adding group-V atoms such as phosphorus to a silicon

lattice. P will create covalent bonds with 4 neighboring Si atoms. The fifth electron

will be a weakly bound electron and thus, becomes conducting. In this situation, Si

is the n-type semiconductor and the impurity atom represented by the negatively-

charged phosphorus is called the donor. Conversely, when doping Si with group-

III impurity atoms such as boron, the latter forms covalent bonds with the four

neighboring atoms. As a result, a conduction hole with positive charge is produced.

Then the semiconductor is p-type and the boron impurity atom is an acceptor. Due

to the difference in polarity between these two sides of the junction, a nonzero charge

concentration gradient emerges, which will in turn produce an electric potential. As

a result, electrons will diffuse across the junction into the p-type layer and holes

will move across the junction into the n-type layer. These simultaneous migrations

leave behind static positive and negative charges, respectively. Due to the electron

and hole diffusions, a region that is increasingly depleted of its charge carriers will

form [6]. This leads to the depletion region being charged by the ionized donor and

acceptor ions, while the regions far from the interface will remain charge neutral as

depicted in Fig. 1.2a).

The oppositely charged parts of the depletion layer give rise to an electric field,

which opposes the diffusion of charge carriers across the junction. Eventually, the

corresponding drift current is offset by the diffusion current across the interface, at

which point the Fermi levels of the p- and n-type semiconductor are matched as

depicted in Fig. 1.2b). The built-in potential, Vb, is defined as the difference in

the electrostatic potential or in the work function between the p-type and n-type

3



Figure 1.2: a) Pictorial representation of a p-n junction. The dashes and the unfilled
circles in the p-part of the junction signify donor atoms and holes, respectively. The
crosses and the filled circles in the n-side denote acceptor atoms and electrons. b)
The energy band diagrams in thermal equilibrium. This image is originally from
Ref. [6].

semiconductors forming the junctions in thermal equilibrium. Its expression is:

Vb = kT

q
ln
NAND

n2
i

, (1.1)

where k is Boltzmann’s constant, T is temperature of the junction, NA, ND are

the acceptor and donor concentrations in the p-type and n-type semiconductor, re-

spectively and lastly, ni is the intrinsic carrier concentration. For an ideal intrinsic

semiconductor, ni is given by the number of holes p in the valence band which

is equal to that of electrons n in the conduction band at room temperature i.e.

ni=p=n. In a p-type semiconductor at equilibrium, p ≈ NA and similarly, in a

n-type semiconductor, n ≈ ND. In any case, the charge concentrations are related

as n · p = n2
i .

The main process that underpins the operation of any solar PV system is the pho-

tovoltaic effect, through which absorbed radiation gets transformed into electricity.

This process is not environmentally harmful, since it does not involve any carbon-

dioxide emission [7]. When a p-n junction is exposed to solar radiation, photons

with energies larger than the band gap excite electrons, thus forming electron-hole
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pairs called excitons. The light intensity and the number of excitons follow a linear

relation [6]. The electric field produced by the ionized impurity atoms in the deple-

tion region causes the excited electrons to drift towards the n-side and the associated

holes towards the p-side. As a result, a current starts to flow from the n- to the

p-side of the junction when the device is short-circuited as in Fig. 1.3.

Figure 1.3: Pictorial illustration of current flow in an irradiated p-n junction under
short-circuit conditions. Image taken from Ref. [6].

The current is called the short-circuit current, Isc, and it is equivalent to the photo-

generated current, IL, in the case of no resistance. At the same time, the migration

of the carriers yields a potential which, under open circuit conditions, is called open

circuit potential, Voc. Solar illumination to the junction yields a forward bias or a

reverse bias voltage, which reduces or increases, respectively the electrostatic poten-

tial in the depletion region. Basically, depending on the polarity of the bias voltage,

the drift current is either reduced or increased, which implies that the diffusion of

the charge carriers is either increased or suppressed, respectively. The increased

diffusion leads to a surplus of carriers called "minority" carriers migrating to the

opposite sides of the junction. In other words, electrons are injected on the p-side

at a diffusion length, Ln, from the depletion region. Similarly, holes are injected

in the n-layer at a length, Lp, from the depletion region. Electron-hole pairs that

are within the diffusion length from the edge of the depletion region contribute to

the photocurrent too, as seen in Fig. 1.3. The energy band diagrams for the p-n

junction short-circuit and open-circuit conditions are shown in Fig. 1.4a) and 1.4b).

Certainly the number of processes involving the generation and recombination of

carriers in the depletion region is not negligible in a real p-n junction. Electron-hole

generation and recombination occur at the energy gap in the reverse and forward

5



Figure 1.4: a) Energy band diagrams for an irradiated p-n junction where the flowing
current is a) short-circuited and b) open-circuited, respectively. Image from Ref. [6].

bias condition, respectively. It can be further shown that the net current under a

forward bias, V , is given by

I = Isc − I0(e
qV
kT − 1) , (1.2)

where I0 is the reverse saturation current for the case where no voltage is externally

applied. I0 is caused by the diffusion of minority carriers from the neutral regions,

where no voltage was externally applied to the depletion one. We shall later provide

an exact expression for I0 in the context of the Shockley-Queisser model. In the case

of an open-circuit, there is no net current, which implies that the voltage is:

Voc = kT

q
ln
(Isc
I0

+ 1
)

. (1.3)

It can be observed that the higher the recombination current I0, the lower will be

Voc. Hence, Voc is a measure of the recombination occurring in a device. Another

useful quantity in solar PV is the fill factor, which is a measure of the quality of a

solar cell. It is defined as the maximum output power divided by the open circuit

voltage and the short circuit current

FF = VmIm
VocIsc

, (1.4)

where Vm and Im are the voltage and current that produce the maximum output

6



power. The photoconversion efficiency η or PCE is conventionally defined as the

ratio of the maximum generated power to the incident irradiation Pin:

η = VmIm
Pin

= VocIscFF

Pin
. (1.5)

The standard measurement conditions to characterize the efficiency of a solar cell are

the ASTM G173-03 standard solar photon flux density as tabulated by the American

Society for Testing and Materials standard [8]. This standard solar photon flux

spectrum is called the air mass (AM) 1.5G and it represents the solar photon flux

that illuminates a surface inclined at a 37◦ tilt towards the equator [8]. Integrating

over the solar energy range yields the solar incident power density Pin and it is

approximately 1000 W/m2. The other two standard test conditions are a solar cell

set at approximately 25◦C and a minimum cell area of 1 cm2 [6, 9].

1.3 Classification of solar cells

The following classification is guided by a systematic PV overview written by Simya

et al., which appeared as Chapter 41.1 in Ref.[7]. Solar cells can be broadly catego-

rized into four groups based on the active materials that are employed in their pro-

duction as well as the generation they belong to. Currently the most commercially

accessible and wide-spread PV technology is still composed of first-generation solar

cells, namely single and polycristalline silicon cells. The second generation emerged

in order to reduce the thickness of the light-absorbing materials, thereby reducing

the total thickness to a minimum of a few nanometers. Other directions of research

that comprise the third generation include dye-sensitized solar cells (DSSC), organic

cells, quantum dots and perovskites. The last generation of solar cells consists of

composites [7]. We shall briefly describe some representative device architectures

belonging to each generation before we focus on 2D material-based photovoltaics in

more detail.
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1.3.1 Single-crystalline Si (c-Si) cells

Single crystalline Si (c-Si) cells are composed of a single continuous Si crystal grown

along a direction and sliced into wafers. The production cost and the efficiencies of

these cells are very high [7]. One of the highest PCE recorded by a single crystalline

Si (c-Si) solar cell was recorded at 25% [10]. A Si heterojunction (SHJ) architecture

is conventionally adopted in order to reduce the non-radiative recombination at the

surface occurring due to the contacts in c-Si cells. This heterostructure is char-

acterized by a thin film of intrinsic hydrogenated amorphous Si (a-Si) sandwiched

between the absorber c-Si layer and an either n-doped or p-doped a-Si layer. a-Si

is silicon in its non-crystalline form and it is typically arranged in thin layers that

have good capability to absorb light [7]. The design of the heterostructure is meant

to decouple passivation from charge collection [11]. A drawback of this device is

that the gaps between the electrodes can lead to photocurrent loss as light can pass

through instead of being reflected back into the layer. Hence, reflective dielectric

materials can be used in the gaps. In such a SHJ structure with p- and n- contacts

on both sides of the cell, a Voc of 750 mV [12] has been measured. The architecture

of the respective device is sketched in Fig.1.5. In general, there is a difference of up

to one order of magnitude between the PCE of commercially produced Si wafers

and high-quality flat zone c-Si materials that are integrated in this type of architec-

ture. That is due to the intrinsic indirect gap of Si which, in the form used in these

commercial devices, cannot be modified. This leads to a low absorption coefficient

that can be increased by employing a thicker Si absorption layer. Besides requiring

a considerably larger volume of absorbing material than other PV compounds, the

long carrier lifetimes imply a higher susceptibility to low levels of defects. [11]. Even

taking all these specific features of c-Si into account, the maximum theoretical PCE

is 29.4% [13].

1.3.2 Polycrystalline Si cells

An alternative to single-crystalline Si cells that is cheaper to manufacture are poly-

crystalline Si or multicrystalline Si (mc-Si) [7]. These cells consist of multiple small

8



Figure 1.5: Silicon heterojunction (SHJ) cell constituted by a film of intrinsic amor-
phous Si (a-Si). The p- and n- heterojunctions are embedded near the front and
back surfaces, respectively. The transparent conducting oxide layers function as an
electrode and as anti-reflective coating. Image taken from [11].

Si crystals which have been recrystallized and therefore, they exhibit grain bound-

aries and dislocations. Compared to c-Si, this leads to overall smaller values of

Voc [11]. Compared to c-Si cells, the efficiency ranges of mc-Si are lower too [7].

Hence, there have been growing efforts in developing high performance mc-Si with

a reduced number of structural defects [14]. Certain high performing mc-Si devices

have higher minority carriers in the n-part than in the p- one since the most preva-

lent impurity in Si, namely Fe, acts as an effective electron scattering agent [15].

The best performing mc-Si technology employs a diffused boron front emitter [16]

and its PCE is similar to that of c-Si cells and larger than any other polycristalline

device. Nevertheless, the losses are greater than those of single-crystal employing

technologies [11].

1.3.3 Single-crystalline GaAs cells

The highest PCE ever observed for a single-junction cell was 29.1% for a single-

crystalline gallium-arsenide (GaAs) solar cell [17]. The production method is epi-

taxial lift-off whereby highly reflective back contacts are employed. The highly

reflective back contact and the suppression of non-radiative recombination are fac-

tors that prevents photons from escaping the cell from the front surface as shown in

Fig.1.6. The very sharp absorption onset of GaAs and the almost complete lack of

non-radiative recombinations lead to an external radiative efficiency (ERE) close to

9



unity, where ERE is defined as the ratio of the number of charge carriers in the solar

cell to the number of photons of a certain energy shining on the solar cell [11].

Figure 1.6: Architecture of a single-crystalline GaAs cell consists of of n-type and
p-type GaAs, heavily doped n-type and p-type AlGaAs and p-type GaAs. Image
taken from Ref. [7].

1.3.4 Thin-film solar cells

The defining feature of this generation of solar cells is that they are produced by

depositing heterojunction layers between two contact sheets. The benefit of this

architecture is the high absorption coefficient yielded for a layer thickness of about

2.5 µm, compared to Si solar cells that require absorption thickness of up to two

orders of magnitude greater [18]. The copper indium gallium selenide (CIGS)-based

solar cells is composed of glass, metal and polymer foil. CIGS and cadmium sulfide

are the typical p- and n-type semiconductor materials, sandwiched between the

molybdenum positive electrical back contact and the negative transparent oxide

contact [7].

1.3.5 Dye-sensitized solar cells

This generation of solar cells distinguishes itself from the rest as it does not employ

p-n junctions to separate the light generated carriers [7]. A dye-sensitized solar cell

is a photochemical system, in which a monolayer of charge-transfer dye is placed

between the anode and the electrolyte. The anode is made of nanometer-sized

TiO2 that have been sintered together in order to enable electron conduction [19].
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Figure 1.7: Schematic structure of a thin-film solar cell consisting of several layers
such as glass, positive and negative contacts composed of molybdenum and zinc
oxide and two p- and n-doped semiconductors- CIGS and CdS, respectively. Image
from Ref. [7].

This type of oxide has the advantage of being stable and nontoxic [7]. When the

dye is excited by incoming light, it releases an electron in the conduction band of

TiO2. Then the dye returns to its original state after receiving an electron from

the redox mediator as a result of a redox reaction taking place in its constituting

organic solvent. The redox system is in turn replenished at the counter electrode by

the electrons passing through the load. The open-circuit voltage in this circuit is

dictated by the difference between the redox potential of the electrolyte (or mediator)

and the Fermi level of the electrons in the semiconductor TiO2 film [19]. A diagram

depicting the key elements of a dye-sensitized solar cells is shown in Fig.1.8.

1.3.6 Tandem solar cells

The fourth generation solar cells consist of composites made out of polymers mixed

with nanoparticles that behave as an absorbing layer. They are convenient as they

can be stacked to form a heterostructure that can absorb solar radiation of various

wavelengths. Such a device is characterized by an upper and a lower solar cell. In

between them, there is a buffer layer through which the photocurrent passes, before

the charge carrier are extracted at the electrodes [7]. Stacked cells exceed single

cells in terms of their efficiency. [17].

After having reviewed some of the PV technologies that are associated with each
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Figure 1.8: Diagram describing the general operation of a dye-sensitized nanocrys-
talline solar cell. A photon is absorbed by a dye which gets excited from state S to
state S∗. The electron is released into the conduction band of TiO2 and then trans-
ported through the sintered particles to the contact, while the hole gets injected into
the electrolyte. The dye returns to its ground state after receiving electrons from a
redox mediator. The oxidated mediator diffuses towards the electrodes. This image
is from Ref. [19].

solar cell generation, we present in Fig.1.9 the progress that has been made in

the past 27 years in terms of the PCE of single cell devices. The Shockley-Queisser

theoretical limit, which we will review in the upcoming sections, is taken as a bench-

mark.

Figure 1.9: The PCE for various technologies over the past 27 years compiled at
air mass 1.5G and cell area > 1 cm2. The efficiencies in this picture were compiled
and collated in this diagram by the authors of Ref. [17].
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1.4 2D materials in photovoltaics

The herein overview of 2D materials employed in PV technologies will be following

the comprehensive review published in 2019 by Das et al. [20].

Two-dimensional atomic sheets are layered crystalline solids of atomic thickness,

which exhibit covalent bonds between in-plane atoms and van der Waals bonds

between the out-of-plane atoms [21]. Several types of 2D materials have been syn-

thesized and intensely studied. Few notable examples include graphene [22], [23],

[24], diatomic hexagonal boron nitride (h-BN) [25] and transition metal dichalco-

genides (TMDs) [26], [27]. A comprehensive study of all the different classes of 2D

compounds can be found in the work of Miró et al. [28].

We shall provide an overview of the three main uses that 2D materials have in

various PV technologies. Firstly, we briefly discuss the role 2D materials play as

key elements in the architecture of a solar cell that either has a non-2D compound

acting as an absorbing material or which is a mixed heterojunction that is composed

of a 2D crystal in conjunction with a non-2D compound.

The motivation behind developing the second generation solar cells was driven by

the need to reduce the active absorber thickness of silicon [29, 30, 31, 32]. Despite

the existing technological predictions regarding the production of high efficiency

Si layers of only 25 µm by 2024, it seems that industrial technological solutions

involving the increase of absorption efficiency of thin Si cells are not yet tangible

[33]. Nevertheless, due to their intrinsically high conductivity, transparency and

flexibility, 2D materials will likely be integrated in the next generation of flexible

silicon solar cells as bendable substrates [20]. The potential contribution of 2D

crystals to the emerging field of flexible nanoelectronics that comprise smart tablets,

smart phones, smart watches and smart fabrics is already highly promising [21].

Moreover, hybrid organic-inorganic perovskites have been drawing a lot of interest as

PV materials, since they are cheap light-harvesting materials with low temperature

production conditions and with longer carrier diffusion lengths than silicon [35, 36,

37]. This last condition ultimately might be the reason for their superior PCE

values [20]. However, their poor stability under normal humidity conditions has

proven to be an obstacle in their large-scale production [38]. Having said that, 2D
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materials have also been used as stabilizer materials for perovskite solar cells [20].

Furthermore, WS2 and MoS2 have each been employed in perovskite PV devices as

an electron-extraction layer [39].

Secondly, we will focus on the prospect of 2D materials, with a special emphasis on

transition metal dichalcogenides (TMD), as future flexible, light-absorbing media for

thin, lightweight solar cells. Their applicability to solar cell devices is attributed to

their bandgaps that have energies matching the visible to near-infrared part of the

solar spectrum. Fig.1.10, taken from Ref. [40], indicates the large range of band gaps

that various 2D semiconductor materials possess, along with the band gap range that

each 2D semiconductor can achieve by altering the number of layers, by alloying or

straining. The wide array of band gaps, spanning from 0 to 8 eV implies that 2D

materials can be employed in a large variety of optoelectronic applications, such as

photovoltaics, light-detectors, fiber optics communications and displays [20].

Figure 1.10: Visual representation of the band gap values and crystal structures
of various families of 2D materials. The gray bars represent the range of band gap
values that can be obtained by altering the number of layers, by alloying or straining.
This image is taken from Ref. [40].

It may seem that creating a solar cell only with 2D materials would have low ab-

sorption capabilities due to their atomic thickness; however, that is not necessarily
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the case. In theory, a single TMD monolayer with an active layer of less than 1

nm can absorb as much sunlight as 50 nm of Si or 15 nm GaAs, hence generating

electric currents of up to 4.5 mA·cm−2 [41]. The absorbance is a physical quantity

that indicates the percentage of incident light that is absorbed through a material

and it has been recorded for MoS2, MoSe2, and WS2, graphene, along with the solar

flux, where all monolayers had a layer thickness of L=1 nm. The graph shown in

Fig.1.11 together with the compilation of its results were produced by Bernardi et

al. [41].

Figure 1.11: Absorbance of three TMD monolayers and graphene, along with the
incident AM1.5G solar flux. This picture is the work of Bernardi et al. [41].

Also, in the case of monolayers such as MoS2 and WS2, there are close to no nonra-

diative recombination losses due to their direct band gaps [20]. Nevertheless, despite

exhibiting large values of absorption coefficient, a typical monolayer of TMD only

absorbs approximately 10% of the solar spectrum [20].

This brings us to the third application of 2D materials, namely as building blocks of

heterojunctions commonly referred to as 2D or van der Waals heterostructures [42].

By combining multiple 2D layered materials with distinct bandgaps, the efficiency of

the resulting van der Waals heterostructure is thought to be improved compared to

that of the constituting individual layers [20]. Hence, developing light-trapping de-

signs [43, 44] as well as exploring the possibilities of producing novel heterogeneous

van der Waals cells of only a few layers [45] will lie at the foundation of the emergent

field of "all 2D" solar cells. Fig. 1.12a), taken from Ref. [20], pictorially describes a
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vertical van der Waals heterojunction composed of two sheets of 2D crystals. Such

a device is a bilayer van der Waals heterostructure. Fig. 1.12b) depicts a type-II

diagram that corresponds to the bilayer heterostructure which enables separation of

charges. In this example, excitons with sufficiently long lifetimes can diffuse through

the 2D/2D interface and can get dissociated.

Figure 1.12: a) Illustration of an "all 2D" heterojunction acting as a solar device. b)
Diagram of a type II 2D-heterojunction. Here the valence and conductions bands of
layers A and B are represented relative to the vacuum level E0. Image taken from
Ref.[20]

.

The probability of electron–hole recombinations in "all 2D" heterostructures is very

low since the carriers are separated due to the atomically sharp interfaces and the

absence of a depletion region in between the 2D films [20]. Note that despite the

low probabilty of interlayer recombination, the overall absorption of photons can

be strong as the exciton could be generated in one layer and then it could go

through several other processes before recombining between the two layers. Car-

rier extraction has been thus ensured for several heterogeneous van der Waals cells

[46, 47, 48, 49]. Nevertheless, as a cause of the built-in potential across the inter-

face, the probability of interlayer tunnelling recombination is not negligible [47, 48].

Despite the fact that "all 2D" heterostructures exhibit reduced densities of inter-

face trap states [46], the requirement to employ large-area 2D materials, which are

scarce, is an inherent limitation [20]. We shall now enumerate notable examples

of promising PV "all 2D" heterostructures. Vertically stacking a p-type monolayer

WSe2 and n-type few-layer MoS2 results in an atomically thin p-n heterojunction

that exhibits an open circuit voltage Voc of ≈ 0.27 V under a laser illumination of

514 nm and 5 µW [50]. The measured open circuit voltage associated to this few-
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nanometer thick heterostructure is high considering that one of the most optimized

c-Si heterojunctions of approximately 100-µm thickness has attained a Voc of 0.75

V and a PCE of 24.7% [51]. Another interesting example of the great potential

that 2D junctions exhibit in terms of PV application is demonstrated by a n- and

p-doped, respectively, MoS2/MoS2 bilayer junction. Under UV-ozone plasma treat-

ment, it turns out that n-type MoS2 nanosheets are converted to p-type nanosheets

[52]. Moreover, a recent study demonstrated an external radiative efficiency higher

than 50% and absorbance exceeding 90% in a 12 nm thick WSe2/MoS2 bilayer het-

erojunction [53]. Despite the promising prospect of combining in a Lego-type fashion

all the possible TMDs, the growth of such "all 2D" heterostructures is possible for

only a few chalcogenides [20]. However, the idea of building 3D heterostructures

using 2D materials for the efficient light collection and charge transfer needed for

the photovoltaic effect has been proposed by Novoselov et al. [54]. Constructing

heterostructure by stacking one layer at a time typically involves first mechanically

and chemically exfoliating the 2D materials from their bulk crystals. These are then

manually stacked into vdW heterostructures [55]. The shortcoming of heterostruc-

tures produced with these methods is that they can present low quality interfaces

that contain trapped chemicals or solvents used during the exfoliation, that are

necessary for the transfer [55]. Therefore, an alternative process that can be im-

plemented for large-scale production consists of growing 2D materials. The direct

synthesis of 2D heterojunctions results in better optimized interfaces as well as more

precise control over the location and number of layers [55]. We will conclude this

section dedicated to solar cells by highlighting the outline of the present thesis.

The overarching goal of the project is to screen materials for photovoltaic applica-

tions. Therefore, in the remainder of this chapter, we shall discuss three existing

theoretical models that were proposed in literature to help determine the photo-

voltaic efficiency of devices. In Chapter 2 we shall present the theoretical framework

i.e. density functional theory, which was employed throughout this PhD to obtain

the electronic structure of various compounds together with its limitations regarding

the determination of the band gap. Then we go on to discuss the details regarding

the chosen quantum chemistry code and the exchange-correlation functional that

was used most extensively. Moreover, we will briefly indicate the steps involved in
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the derivation of the central quantity of this thesis, the dielectric function. Lastly,

we shall mention the basic principles behind the k-means clustering method and its

use for classifying materials.

In Chapter 3 we present our method for obtaining the photoconversion efficiency of

standard seminconductors used in solar cells, solely through ab-inio methods. The

efficiencies and other relevant descriptors of silicon and methylammonium lead io-

dide will be shown. Moreover, we shall examine the interplay between the pre-edge

absorption spectrum of a material and its photoconversion efficiency. The objective

will be to determine whether a full ab-initio treatment of the pre-edge absorption

coefficient is attainable. We will introduce a more robust descriptor to describe the

performance of photovoltaic materials in terms of their absorption. This quantify

defined as 95% of the saturated Jsc and its corresponding characteristic material

thickness will be used to rank a total of 6 compounds.

Chapter 4 will be dedicated to an investigation of the dielectric function in vertically

stacked TMD monolayers. We aim to observe whether the interlayer transitions in

heterostructures with type II band alignment can be associated with clear, distin-

guishable peaks in the dielectric function spectrum. Once we will decompose the

total dielectric function into its three constituting terms ( intra-layer, inter-layer

and mixed components), we will analyze the amplitude of the inter-layer component

relative to the intra-layer one. We shall also look into the effects of gradually com-

pressing the two layers together on the band structure and the dielectic function

spectra.

In Chapter 5 we plan to study the absorption in 2D materials, in particular in tran-

sition metal dichalcogenides, by investigating its relationship to the regions in recip-

rocal space where band-nesting arises. To this end, we will consider the gradients

of the energy difference between the the top valence and bottom conduction bands,

i.e. |∇k(Ec1 − Ev1)| mapped onto the irreducible Brillouin zone of 29 compounds.

We aim to classify these compounds based on the mentioned quantity, both in their

monolayer and bulk form, using statistical algorithms such as "k-means". We plan

to also consider the solar flux in the expression of the quantity over which we shall

classify the compounds. This will be done in order to study transitions occurring

through band-nesting at energies matching with the strong solar flux. Separately, we
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plan to examine the relationship between the spectrum of the joint density of states

and that of the imaginary part of the dielectric function. Assuming an almost linear

relation between the two spectra, the goal is to be able to use the joint density of

states in order to determine the absorption coefficient and the short-circuit current

density. These two macroscopic quantities will serve as the quantitative criteria for

ranking the studied 2D compounds and hence, will aid in the screening of potential

photovoltaic compounds.

In Chapter 6 we will briefly go through the findings and results of this thesis. The

future work and goals will also be mentioned.

As a last note, the physical quantities expressed throughout this thesis are in S.I.

units. An exception is made for the expressions of the dielectric function in Chap-

ters 2 and 5 where atomic units were employed instead. This was done in order to

simplify the notation.

1.5 Theoretical models for solar cells

Obtaining reliable photoconversion efficiency measurements is an intricate process

that needs to account for many factors such as the varying composition of sunlight

through the atmosphere, the changing parameters for temperature and light inten-

sity, the correct calibration of the reference device and the exact determination of

the cell area [10]. In the face of all these challenges, there have been considerable

efforts made over the past 60 years to devise models that accurately predict solar

efficiency. Such models are immensely helpful as they guide the selection of the

appropriate materials for photovoltaic applications. Thus, photovoltaic models pro-

vide a set of physical quantities that define materials as suitable or not for solar

cell devices. These key quantities are termed "descriptors" and they can vary from

model to model. The most well-established model that has introduced the so-called

"radiative efficiency limit" in physics is the Shockley-Queisser (SQ) model [56]. The

SQ limit is a benchmark for maximum solar energy conversion efficiency by which

new emerging photovoltaic devices are assessed [57]. It stands out as a model that is

not material specific but which provides an upper-bound estimate of the number of

quantities of interest in any solar device. We will dedicate this section to discussing
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the assumptions that underlie this important model. To this end, we will provide a

broad overview of the physical processes and the descriptors typically used for solar

devices. These are the short-circuit current density Jsc, the open-circuit voltage

Voc and the photoconversion efficiency PCE or equivalently, η. Further on, we will

briefly introduce two more recent models: the "multiple parameter" model [58] and

the "spectrally limited maximum efficiency" (SLME) model [59]. We will end by

discussing the goals of these models and their inherent limitations. The following

comparative overview will serve as the foundation for developing our own model

that will be presented in Chapter 3.

1.5.1 Shockley-Queisser model

One of the earliest purely theoretical investigations of the maximum efficiency of

a solar cell dates back to 1961 and it is attributed to William Shockley and Hans-

Joachim Queisser. The upper limit for the efficiency that is derived in this model

does not rely on material-dependent values, but rather on the "nature of atomic

processes required by the basic laws of physics", specifically the principle of detailed

balance [56]. We shall base our brief explanations of this model on the original paper

by Shockley and Queisser referenced in Ref.[56]. The model examines a typical p-

n junction cell from a thermodynamic perspective. The great advantage of this

approach is that the efficiency depends on very few parameters. Therefore, the SQ

efficiency limit significantly exceeds semiempirically determined ones that are based

on experimental parameters such as carrier lifetimes [60]. The far-reaching scope of

this model is justified as it sets the upper limit for device efficiency, thus it helps

in understanding the room for improvements that can be achieved in real devices.

The basic assumptions and quantities mentioned here will prove relevant for our

own work presented in Chapters 3 and 5. The analysis is based on the following

assumptions:

1. the only recombination between electrons and holes is radiative

2. the absorption is an energy-dependent step-function

3. the solar cell and the sun emit radiation whose spectra can be approximated
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by the emission of two black bodies, one with a surface temperature of Tc=300

K and the other with Ts=6000 K, respectively.

The radiative recombination determines the efficiency based on the principle of de-

tailed balance, whereby in equilibrium, each elementary process is balanced by its

reverse process [61]. The most important portion of the radiative recombination is

assumed to be between free holes and electrons and it is proportional to the product

of their densities. Moreover, the fact that radiation energies higher than the band

gap energy yield complete absorption is motivated by the goal to study the theoret-

ical photoconversion limit, which entails the complete omission of material specific

features besides the band gap. Finally, the thermodynamic framework, in which the

absorption and recombination processes are studied, requires the treatment of the

solar cell and of the main radiating source (e.g. the sun) as ideal black bodies [56].

In the following, the quantities involved in the SQ model will be illustrated. The

photon flux Φsun is generally defined as the number of sun-generated photons hitting

the cell per unit time, area and energy. In the SQ model, the solar photon flux is

determined based on the irradiance of a black body that corresponds to the sun

surface with a temperature of Ts = 6000 K measured at the Sun–Earth distance [9].

Therefore, the maximum photogenerated current density, Jmax, for an illumination

with a photon flux Φsun is:

Jmax = q

∫ ∞
0

Φsun(E)a(E)dE = q

∫ ∞
Eg

Φsun(E)dE (1.6)

where E is the photon energy and q is the elementary charge. Here a(E) is the

absorbance of the material and in the SQ model it is 0 for energy values lower than

the bandgap Eg and unity for those higher. This comes from the second assumption,

namely that only the incident photons with energies equal or higher than Eg will

get absorbed, and in turn- each of these will generate an electron-hole pair, thus

leading to an absorption efficiency that is effectively 100%.

The reverse process has to be considered as well, namely the case where an electron

and a hole meet and recombine, emitting a photon and thus reducing the efficiency of

the cell. Note once more that in the model here, the steady state is when the cell is in

thermal equilibrium with its surrounding black body environment at temperature Tc.
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In this case, Kirchhoff’s law of thermal radiation, a particular case of the principle

of detailed balance, dictates that the rate of absorption and the rate of emission of

photons have to be exactly equal. This condition implies that the rate of electron-

hole pairs that are generated from absorbing photons emitted by the surrounding

black-body at temperature Tc is equal to the rate of photons that are emitted from

the cell as a result of electron-hole recombinations. Let this aforementioned rate that

describes the thermal equilibrium state be Fc0 . Inside the cell, the rate of purely

radiative recombinations is:

Fc(V ) = Fc0e
V/V c , (1.7)

where V is the potential across the illuminated cell, equivalent to the difference

between the quasi-Fermi levels of the holes and electrons, Tc is the solar cell temper-

ature and Vc = kTc/q is the so-called "thermal voltage". In the SQ model, Planck’s

law is generalized such that the rate of radiative recombination current density is

essentially dictated by the blackbody emitted photon flux of energy equal or higher

than the band gap times the exponential factor containing the ratio V/Vc. Thus,

the emitted photon flux Φe can be described as a function of the photon energy E

and the voltage V :

Φe(E, V ) = 2πE2

h3c2 e
qV
kTc

1
e

E
kTc − 1

, (1.8)

where h is Planck’s constant, c is the speed of light and k is Boltzmann’s constant.

However, it was shown by the groups of De Vos et al. [62] and Ruppel et al. [63]

that a more accurate expression for the blackbody emitted radiation is:

Φe(E, V ) = 2πE2

h3c2
1

e
E−qV

kTc − 1
. (1.9)

Integrating the emitted flux expressed in Eq. (1.9) over the energy range gives the

radiative recombination current density Jr:

Jr(Eg, V ) = fg · q
∫ ∞
Eg

2πE2

h3c2
1

e
E−qV
kBTc − 1

dE , (1.10)

where fg is a geometrical factor. In the SQ model, fg = 2 since the radiation is

emitted from both sides of the cell, top and bottom. For simplicity, we will omit
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writing the current densities as functions of bandgap energies, i.e. Jr(Eg, V ) =

Jr(V ). At steady state the final external current density, Jext, has to coincide with

the sum of the individual current densities emerging in the cell [9] :

Jext = Jmax − Jr(V ) + Jnr(0)− Jnr(V ) . (1.11)

Here Jnr(0) represents the current density that results for reasons different from the

photogeneration. This is the nonradiative recombination current that is engendered

by Auger or thermal effects that occur under a certain bias in the cell. Now one can

rewrite this equation as:

Jext = Jmax − Jr(0) + [Jr(0)− Jr(V ) + Jnr(0)− Jnr(V )] . (1.12)

Here the square bracket is the net current in a solar cell that is completely surrounded

by a black body at temperature Tc. It shows that at zero bias there is radiative and

non-radiative generation of electron-hole pairs and at a finite applied voltage there

are losses in the form of radiative and nonradiative recombinations [9, 56].

The short circuit current density is defined as the illumination current due to so-

lar flux, Jmax, from which the radiative recombination current at zero-bias is sub-

stracted:

Jsc = Jmax − Jr(0) . (1.13)

Furthermore, an additional parameter, f , is introduced in the idealized case of the

cell being in contact with a black body of the same temperature, Tc. It is defined

as the fraction of current that is equal to the difference between the radiatively

generated current and the radiatively lost one, respectively,

Jr(0)− Jr(V ) = f [Jr(0)− Jr(V ) + Jnr(0)− Jnr(V )] . (1.14)

In the Shockley-Queisser model, f = 1 since Jnr(V ) and Jnr(0) are neglected. This

implies that

Jext = Jmax − Jr(V ) . (1.15)

For the case where Jext = 0, the open-circuit voltage Voc is given by the associated
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voltage:

Voc = min
V

[Jext(V )] . (1.16)

The power density is defined as the product of the the total external current density

and the voltage:

P = V · Jext(V ) . (1.17)

Having said that, we now introduce the maximum power point voltage as the voltage

that maximizes the power density:

Vmpp = max
V

[Jext(V ) · V ] . (1.18)

The corresponding current density is then:

Jmpp = Jmax − Jr(Vmpp) . (1.19)

The ratio between the maximum obtained power density and the product of the

short circuit current density and the open circuit voltage gives the fill factor (FF ).

Its expression is:

FF = Vmpp · Jmpp
Voc · Jsc

. (1.20)

Finally, these quantities enable the calculation of the PCE, which is found to be

the ratio between the maximum obtained power density and the total incident solar

power density:

η = Pmax
Pin

= Vmpp · Jmpp
Pin

= FF · Voc · Jsc
Pin

, (1.21)

where Pin is the power density produced by integrating the solar flux φsun over the

solar spectrum energy range. With all these considerations taken into account, it

was shown that the maximum efficiency for a junction with an energy band gap of

1.1 eV is 30%. Note that the descriptors in this model are functions only of the band

gap, which is in fact the only system-dependent employed variable. The strength of

this canonical model lies in its potential to establish a theoretical upper limit for the

photoconversion efficiency. This can serve as a further benchmark for more accurate

theoretical and experimental efficiency estimations.

In the work of Sven Rühle [9], a comprehensive analysis of the SQ model was used
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to determine the key descriptors for a series of various PV materials with different

band gaps under standard solar test conditions. The SQ model did not assume

standard testing conditions as it considered a solar cell temperature of 300 K and

a solar spectrum coinciding with the radiation emission spectrum of a black body

at a temperature of 6000 K. Therefore, in this work, one of the main distinctions

from the SQ model resides in employing the true solar ASTM G173-03 solar photon

flux [8] instead of the theoretical black body emission radiation. Both of the two

standard solar irradiance distributions are considered, namely at ’direct normal’ and

at ’hemispheral on 37◦ tilted surface’, respectively. These spectral distributions are

conventionally termed "AM1.5D" and "AM1.5G" [8]. Hence, in Eq. (1.6) which

defines Jmax, the spectral photon flux φsun is:

φsun = qλ

hc
AM1.5G , (1.22)

where λ is the photon wavelength. In Eq.(1.6), the integration range is between the

band gap Eg and the highest solar photon energy reported in the ASTM G173-03

standard, which is in the UV range at 4.43 eV. The other distinction from the SQ

model is that the cell is set at the standard testing temperature, i.e. Tc = 298.15K.

Implementing a slightly modified version of the SQ model, the short circuit current

density, the open circuit voltage and the efficiency values are predicted for a range

of different solar devices, some of which were mentioned in our overview of existing

solar cell technologies. The highest certified experimental values for Jsc, Voc and η

are identified for a series of lab solar cells by Green et al. [64] and are presented as

percentages relative to the detailed balance limit ones in Fig.1.13a), b) and c). This

enables a comparison between the state-of-the-art parameters and the theoretically

predicted ones in the detailed balance limit. As can be seen, laboratory-tested thin

film GaAs solar cells have the highest relative efficiency, reaching more than 80%

of the detailed balance limit one. This makes them the best optimized solar cell.

Relative to the theoretically predicted values, the Jsc and Voc of GaAs calculated by

Rühle are also very high, reaching values of approximately 90% and almost 100%,

respectively. The second best optimized device is based on crystalline Si, an indi-

rect band gap semiconductor. The short circuit current density and the open circuit

voltage are also very close to their detailed balance limit values, i.e. reaching more
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Figure 1.13: The ratios presented as percentages of the photoconversion efficiency a),
the short circuit current density b) and the open circuit voltage c) parameters of solar
cells with highest recorded empirical efficiencies [64] relative to the corresponding
values calculated in the detailed balance limit in [9]. All the quantities are shown
as a function of the band gap. The best performing devices are presented, namely
homojunctions (circles), heterojunction devices (squares) with indirect band gap
(empty symbols) and absorbers with direct optical transitions (full symbols). Image
taken from the work of Rühle [9].
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than 80% for both parameters. The fact that Si is an indirect gap semiconductor is

not accounted for here although clearly this would influence its absorption spectrum

[9].

Unlike in the case of highly optimized homojuctions, it is claimed that heterojunc-

tions can currently reach only up to 68% of the efficiency obtained in the detailed

balance limit. Their lower optimization levels are attributed to the voltage losses

due to band edge discontinuities or non-optimized energy levels at the junction. Es-

pecially in dye sensitized solar cells and organic solar cells, the relatively low Voc,

reaching approximately 60% of is theoretical value, limits the photoconversion due

to the non-optimized energy levels of the dye [9].

In contrast, organo-metal halide perovskite solar cells are highly optimized solar

cells that present efficiencies above 80% of their theoretical limit. Of course, there

are other factors unaccounted for that could substantially reduce the efficiency.

Nevertheless, a more realistic treatment of the efficiency that accounts, for instance,

for the stability of the pervoskite under fluctuating levels of humidity, is beyond the

scope of the analysis of Rühle.

1.5.2 Multiple parameter model

The SQ assumed that all the photons with an energy higher than Eg are absorbed

and then some are extracted as current, which is a clear simplification. To improve

upon the limitation of the SQ model, Alharbi et al. [58] propose an efficient descrip-

tor model that takes into account the inhomogeneity of the absorption spectrum.

In addition, this model considers the charge carrier diffusion length, Ld, in order to

account for the carrier transport ignored in the SQ model. Ld is the mean distance

that an excited carrier travels through diffusion before recombining [58]. Since ex-

pensive calculations would be required to obtain this quantity, the model employs

four different values for Ld, namely of 200 µm, 10 µm, 0.6 µm and 0.1 µm. Each

of these values are chosen in this order as characteristic for indirect-gap semicon-

ductors, direct-gap semiconductors, organometallic semiconductors such as hybrid

perovkites and excitonic cells such as organic cells, based on empirical observations

regarding the excitonic behaviour. The PCE is calculated as in the SQ model ac-
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cording to Eq.(1.21), employing Jsc, Voc and FF . However, these quantities are

obtained here by relying on experimental parameters of Ld and employing fittings.

For example, the maximum obtained photocurrent density, defined in Eq.(1.6), is

here approximated as a function of the band gap Eg through a fitting:

Jmax = a · e−b·Eg , (1.23)

with a=73.531, b=0.440 and c=1.862. The next descriptor that is defined is the

short circuit current density:

Jsc(E,α(E), θeff ) = q

∫ ∞
Eg

φsun(E)[1− e−α(E)Ld/cos(θeff )]dE , (1.24)

where θeff is a parameter that is chosen such that the ratio of Jsc/Jmax is maximized

for varying values of 1/cos(θeff ). Unlike in the SQ model, the absorbance here is not

necessarily taken to be 1 for energies higher than the band gap. It is governed by the

absorption spectrum α(E) and it is obtained from the same first principles calcula-

tions that help determine Eg. Also, the solar AM1.5G solar photon flux and a cell

temperature of 25◦C are considered. The recombinations are accounted empirically

by Ld. Fitting real experimental values of Voc as a function of Eg yields:

q · Voc = Eg − (0.0114E1.8617
g + 0.057Eg + q · VL0) , (1.25)

where VL0 is a constant fitting parameter. This parametrisation yields two fitting

lines, one for excitonic cells, which result in VL0=0.5 V and another one for non-

excitonic cells with a corresponding VL0=0.2 V. VL0 is meant to account for voltage

losses. These are especially big for heterojunction excitonic cells due to their intrin-

sically larger band offsets that enable the dissociation of excitons [58]. The exciton

binding energies in such cells are not negligible by comparison to those of excitons

that form in non-excitonic cells [58].

A similar fit is repeated for the experimental fitting factor FF in terms of the empir-

ical open circuit voltage Voc. It is found that the parametrization can be expressed

as:

FF = Voc
Voc + akT

(1.26)
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where k is Boltzmann’s constant, T is room temperature and a = 6 and a = 12 were

found to best fit the upper limits of the empirical FF for non-excitonic cells and

excitonic cells, respectively. The resulting values for all these descriptors, together

with the experimentally collated ones are shown in Fig. 1.14 for non-excitonic cells.

Similar to the descriptors obtained within the detailed balance limit, this model

shows that state-of-the-art devices based on Si and GaAs have almost reached their

optimization limits, whereas hybrid perovskite MAPbI3, CIGS, CdTe, and InP solar

cells still have room for improvements. It is shown that in the case of non-excitonic

cells, the PCE is highly dependent on the absorber thickness up to a few µm, after

which it fully saturates. The exception are Si devices which require thicknesses of

at least two orders of magnitude larger to reach saturation.

Figure 1.14: The values for the experimental photovoltaic descriptors of the best
performing non-excitonic cells based on Si [51], GaAs [65], InP [66], GaInP [67],
CdTe [68], CIGS [69] and the hybrid perovksite MAPbI3 [70] are compared to the
ones obtained in the model proposed by Alharbi et al. [58]. Image taken from Ref.
[58].
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1.5.3 SLME model

The following model proposed by Yu et al. [59] is called the “spectroscopic limited

maximum efficiency" (SLME). It relies on the intrinsic properties of the materials by

only considering the band gap, absorption spectra shape and recombination losses.

At the same time, it also considers the cell thickness, which is an extrinsic property.

This is set to L=0.5 µm, in order to account for the "material-dependent spectro-

scopic properties".

This model stands out, first of all, as it takes into account the existence of the low-

est dipole-forbidden (DF) and dipole-allowed (DA) direct transitions, and it makes

the distinctions between direct and indirect band gaps. Materials can be classified

in four “optical types" as follows. If the DA direct gap, Egda, corresponds to the

lowest allowed energy transition and the next one above it, Egdf , corresponds to

a direct-forbidden transition, i.e. (Egda ≤ Eg
df ), then the material is defined as an

OT1. Similarly, if the lowest direct transition is forbidden, i.e. Egdf < Eg
da, then the

material is defined is an OT2. The last two optical types (OT3) and (OT4) present

both an indirect gap, Ei
g, and correspond to the cases where Ei

g < Eg
da ≤ Eg

df and

Ei
g < Eg

df < Eg
da, respectively. An evaluation of the momentum matrix elements

establishes whether a transition is allowed or forbidden. All the optical types can be

visualized in Fig. 1.15. According to the SLME model, the SQ model approximates

all materials to be OT1 and so their fraction of radiative recombination is fr = 1.

Based on the optical types classification, the SLME model extends the assumptions

brought by the SQ model as it considers also nonradiative recombinations which can

occur for an OT2 material, for example, where fr << 1. The approximation that is

made is that fr = e−
∆

kT where kB is the Boltzmann constant, T is the temperature

and ∆ = Eg
da − Eg.

Secondly, the SLME model improves the SQ model assumption regarding the nature

of the absorbance. Instead of assuming it is a step-function, the absorbance is defined

as:

a(E) = 1− e−2α(E)L , (1.27)

where L is the thickness of the thin film with the front and back surfaces having zero
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and unity reflectivity, respectively. As in the Alharbi et al. model [58], α(E) is the

absorption coefficient and it is obtained from first-principles calculations. Hence, the

main ingredients of the SLME model are the band gap and the absorption spectrum

which are calculated by applying the GW self-energy approximation [71] on top

of the Kohn-Sham wavefunctions obtained with the hybrid functional HSE06 [72].

We shall give more details on the Kohn-Sham scheme and the hybrid functionals

in Chapter 2. The solar photon flux is also considered here based on the AM1.5G

standardized spectrum and the cell is at the standard temperature of 298 K.

The defining expression for the current density is

J = Jsc − J0(eeV/kT − 1) , (1.28)

where Jsc is defined as Jmax in equation (1.6). Here J0 is the reverse saturation

current and it corresponds to the total electron-hole recombination (nonradiative

Jnr and radiative Jr) current,

J0 = Jnr + Jr = Jr/fr . (1.29)

Since SLME closely follows the thermodynamic principle of the detailed balance

introduced in the SQ model, Jr is calculated hereby in the same way, as shown in

Eq. (1.10). The efficiency is obtained using the formula indicated in Eq.(1.21). This

model is tested on 256 different compounds and the top resulting SLME values are

found to correspond to materials that are established good photovoltaic compounds,

Figure 1.15: Schematic of four optical types. DA(DF) direct transitions are pre-
sented with an arrow pointing to a solid (dashed) line. Indirect states are depicted
as dashed lines that are displaced laterally (not vertically). Image taken from the
work of Yu et al. [59].
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hence confirming the validity of this model. For instance, CuInSe2 yields a SLME

value of 28%, which slightly exceeds the highest experimentally measured one of

20% [73].

We conclude this section by reiterating that the SQ model is a strong starting

point for assessing solar cell devices as it provides a set of descriptors such as Jsc,

Voc, FF and PCE that can guide the optimization process of a junction. The

multi-parameter model proposed by Alharbi et al. considers the standard testing

conditions by setting the cell temperature at room temperature and by employ-

ing the AM1.5G solar photon flux. It also accounts for the material’s specific

absorbance spectrum, instead of overestimating it by assuming all photons with

energies higher than the band gap are absorbed. This physical quantity requires

a material-specific analysis which can be obtained from ab-initio calculations. Ab-

initio or first-principle methods aim to describe electronic systems by solving ap-

proximately the Schrödinger equation without accessing empirical parameters. In

order to account for recombinations, Alharbi et al. introduce the diffusion length

which requires a treatment of the charge carriers transport properties. However,

calculating the diffusion length is not feasible for a large set of materials. Therefore,

these are introduced in the Alharbi model as external empirical parameters which

characterize four different types of junctions. It is shown within this model that

the efficiency is largely dependent on the absorption thickness. Hence, we note that

the latter is also an important descriptor which is here set to approximately the

size of the diffusion length. Moreover, this model relies on performing linear fittings

between empirically known values of Jsc, Voc and FF in terms of the band gap. The

descriptors in this mode, therefore, are not obtained in an ab-initio way.

Taking a slightly more ab-initio approach, the spectroscopically limited maximum

efficiency proposed by Yu et al. is essentially a more accurate treatment of the SQ

model. Herein the descriptors have similar analytical expressions as in the SQ model

that do not rely on prior knowledge of empirical parameters but they include the

absorption spectrum of the PV compound, as well as the radiative and non-radiative

recombinations which can be accounted for using ab-initio calculations. We note

that it was possible in this model to assume a unique film thickness because a class

of similar compounds was treated whose diffusion lengths were probably not very
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different. If a larger variety of compounds and junctions had been considered, a range

of different film thicknesses would have been needed in the SLME model. These

three models establish the band gap, the material-dependent absorption spectrum

and the cell thickness as the most important variables that enable the theoretical

determination of the PV descriptors and hence, of the best-performing solar cell

devices achievable.
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2 Theoretical background

The current chapter is devoted to the theories that lie at the core of all the elec-

tronic structure calculations conducted throughout this work. Firstly, there will

be a brief introduction to the most important framework for treating single elec-

trons in periodic crystals, i.e. Bloch theorem, followed by a number of significant

consequences. Afterwards, we shall dedicate a slightly extended section to den-

sity functional theory. An overview of this widely-used theory will be provided

together with an account of the most commonly implemented exchange-correlation

functionals: the local density approximation (LDA) and the generalized gradient

approximation (GGA). Since the problem of correctly estimating the true band gap

of a system is highly relevant to our work, we concisely present the shortcoming that

DFT poses on this front. We then go on to providing a description of a separate class

of exchange-correlation functionals, namely of "hybrid functionals" that were specif-

ically created to resolve the band gap underestimation of DFT. In view of our work

involving two-dimensional materials, we also introduce the "Tkatchenko-Scheffler"

method that was conceived in order to correct for the missing van der Waals effects

within the standard DFT scheme. Moreover, we discuss the approaches with a spe-

cial emphasis on the basis set implemented in the electronic structure code that we

used throughout this work, namely the "Fritz Haber Institute ab initio molecular

simulations" (FHI-AIMS) package. Lastly, we examine the dielectric function that

arises from the random phase approximation and which we have heavily made use

of throughout this work through its FHI-AIMS implementation.
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2.1 Bloch Theorem

Bloch’s theorem is central to studying independent electrons in a periodic potential.

Such potentials obey the condition:

U(r +R) = U(r) , (2.1)

for all R in a Bravais lattice. The eigenstate ψ of the one-electron Hamiltonian

H = −~2∇2/2m+U(r) will then be defined as a plane wave eik·r, which is modulated

by a function with the periodicity of the Bravais lattice, u(r),

ψk(r) = eik·ruk(r) . (2.2)

This implies the canonical expression:

ψk(r +R) = eik·Rψk(r) . (2.3)

This important theorem is a consequence of the general observation which holds that

the eigenstates of H can be chosen to be eigenstates of all the translation operators

TR. The implications that Bloch’s theorem gives rise to are:

1. The solution of H is no longer required to cover the entire crystal but can span

only the unit cell. So the scale of the problem and, hence, the computational time,

have been reduced by a factor of N , where N = 1023 is the number of unit cells

in a crystal structure. Bloch theorem can be considered, from this perspective, the

bedrock of computational-based electronic structure for solids.

2. The number of distinct k states in a primitive cell is equal to the total number

of lattice sites in the real space lattice, i.e. N . This fact follows from acknowledging

that the vector k is a label for the Bloch state ψk(r), restricting the k vectors as

a consequence of the periodic boundary conditions and by recalling that two k are

identical if they differ by exactly an integer multiple of a reciprocal lattice vector

G.

3. The set of k vectors that make up the Bloch states fill up the first Brillouin zone

(FBZ), the Wigner-Seitz cell in reciprocal space. FBZ is characterized by the crystal
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symmetry.

4. The free electron states have the form:

〈r|k〉 = eik·r , (2.4)

where 〈r| .= (r∗1 r∗2 ... r∗N) and |k〉 .=


k1

k2
...

kN

. In a periodic crystal these are not

energy eigenstates. A linear combination of free electron waves, however, can be

used to describe the energy eigenstates of the crystal:

|ψ〉 =
∑
k

Ck |k〉 . (2.5)

Bloch’s theorem dictates that |ψ〉 is constituted only by |k〉 states that differ by

translations in the reciprocal lattice. In other words, each unit cell in the reciprocal

lattice contributes with one |k〉 state towards a Bloch state. That is why Bloch

states are typically indexed with a particular k-vector belonging to the FBZ:

|ψn,k〉 =
∑
G

Cn(k +G) |k+G〉 , (2.6)

where the reciprocal lattice vectors G are expressed in terms of the reciprocal prim-

itive vectors b1, b2, b3, namely G = n1b1 + n2b2 + n3b3. The index n serves as a

band index which distinguishes between the various Bloch states that have the same

k-vector but different energies.

5. In the free-electron picture, all states are labelled solely by the index k. On

the other hand, Bloch states that characterize electrons in a periodic potential have

the additional index n. However, this does not mean that the number of wavefunc-

tions has multiplied. Note that ψn,k+G = ψn′,k as they share the same eigenvalue

eik·R, when acted upon with a translation operator commensurate with the Bravais

lattice vector R. In order to build a set of complete and linearly independent wave-

functions ψn,k, the k are limited to the first Brillouin zone so that k − k′ 6= G.

This approach is called the reduced zone scheme. An equivalent approach involves
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considering all possible k vectors, hence, dropping the n index. This is known

as the extended zone scheme. The state ψn,k, labelled in the convention of the

reduced zone scheme can, in fact, be written as ψn,k+Gn , in the extended zone scheme

[74].

6. The density of states (DOS) describes the number of states that a system occupies

at each level of energy. Its general form in d dimensions is:

D(E) =
∫
dk

2
(2π)d δ(E − Ek) . (2.7)

In Eq.(2.7), Ek is the energy eigenvalue corresponding to the Bloch eigenstate ψn,k
where we have suppressed the index n. Based on the proof presented in Marder [74],

we shall demonstrate here how the density of states can be reformulated in terms of

an integral over the energy surface E = Ek. The respective expression will be used in

Chapter 5 to describe the emergence of "band-nesting" in two-dimensional materials.

We now consider the fact that the delta function is defined as the derivative of the

Heaviside function, i.e.:

δ(E − Ek) = θ(E − Ek)− θ(E − Ek − dE)
dE

. (2.8)

Let us now rewrite Eq. (2.7) so that we transform it from an integral over k-space

into an integral over energy surfaces Ek. So for each k-point, we fix E = Ek and

vary E by dE, which is equivalent to increasing k by dk. The variation in E by dE

means we are moving from an energy surface E = Ek to E = Ek+dk, and there will

be a change in the actual surface size by dS, which becomes the integral measure.

The direction of the change that was previously provided by dk now becomes dk · n̂,
where,

n̂ = ∇kEk
|∇kEk|

, (2.9)

is the unit surface normal. Now, since the second energy surface has an additional

dk to its associated k vector, one can apply Taylor expansion up to first order and

get:

Ek+dk = Ek + dk · ∇kEk . (2.10)

As established previously, the variation in the energy is dE so it follows that dE =
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dk·∇kEk. Since the numerator in the Heaviside is 1, Eq. (2.7) can thus be re-written

in terms of an energy surface integral as:

D(E) = 2
(2π)d

∫
dS · dk · n̂ 1

dE
= 2

(2π)d

∫
dE

|∇kEk|
· dS
dE

= 2
(2π)d

∫
dS

|∇kEk|
.

(2.11)

As it can be inferred from Eq.(2.11), the density of states has a singularity, where

the electron velocity vnk, i.e. 1
~∇kEnk vanishes.

7. For certain systems such as metals, where the conduction electrons essentially

behave as free electrons, it is convenient to express the Bloch states in terms of the

plane waves defined in Eq.(2.6) [75]. However, in more covalent systems where the

electronic density is largely situated around the ions, it is more straightforward to

define basis functions that are localized at lattice points:

|ψn,k〉 =
∑
µ,R

Cµ,n(k,R) |φµ,R〉 . (2.12)

Here, Cµ,n(k,R) is a coefficient in the linear combination and |φµ,R〉 is the µ-th

orbital at lattice site R. Using Bloch theorem, it can be shown fairly easily that the

coefficients can be written as:

Cµ(k,R) = eik·RCµ(k) . (2.13)

This leads to rewriting the Bloch state in terms of a localized function as:

|ψn,k〉 =
∑
µ,R

eik·RCµ,n(k) |φµ,R〉 . (2.14)

Of course the Bloch state is the eigenket of a periodic Hamiltonian such that:
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Ĥ |ψn,k〉 = En(k) |ψn,k〉∑
µ,R

eik·RCµ,n(k) 〈φν,Rm | Ĥ |φµ,R〉 = En(k)
∑
µ′ ,R

′

eik·R
′

Cµ′ ,n(k) 〈φν,Rm |φµ′ ,R′ 〉

∑
µ,R

eik·(R−Rm)Cµ,n(k) 〈φν,Rm | Ĥ |φµ,R〉 = En(k)
∑
µ′ ,R

′

eik·(R
′−Rm)Cµ′ ,n(k) 〈φν,Rm |φµ′ ,R′ 〉

∑
µ

Cµ,n(k)Hν,µ(k) = En(k)
∑
µ′

Cµ′ ,n(k)Sν,µ′ (k) .

In these equations we made the substitutions:

Hν,µ(k) =
∑
R

eik·(R−Rm) 〈φν,Rm | Ĥ |φµ,R〉 (2.15)

Sν,µ(k) =
∑
R

eik·(R−Rm) 〈φν,Rm |φµ,R〉 . (2.16)

Knowing these matrices helps to solve the Schrödinger equation and obtain En(k)

and Cµ′ ,n(k).

2.2 Density Functional Theory

The underlying principle of density functional theory is that the ground-state elec-

tron density contains all the information carried by the many-electron wave function.

This surprising idea is somehow justified considering the fact that the two varying

ingredients of many-electron systems are the external potential and the number of

electrons. Now we will try and see how these two variables are directly correlated

to the electronic density. Firstly, the correspondence between the electronic density

and the number of electrons appears straightforwardly since the density is defined

as:

n(r) = N

∫
dr2...drNΨ∗(r, r2...rN )Ψ(r, r2...rN ) , (2.17)

where N is the number of electrons in the system. The second, less obvious ob-

servation that Hohenberg and Kohn made [76], was that knowing the density of a

many-electron system in the ground state is sufficient to deduce the external poten-
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tial up to a constant. To prove the validity of this statement, let us assume that

for a system of N electrons there are two external potentials, V̂ext1 and V̂ext2, that

differ by more than a constant, which result in the same ground-state density, n0(r).

We then call the resulting Hamiltonians Ĥ1 and Ĥ2, E1 and E2 their associated en-

ergy eigenvalues and Ψ1 and Ψ2 their corresponding ground-state many-body wave

functions. Assuming these two ground states to be non-degenerate, then we can

write:

E1 = 〈Ψ1| Ĥ1 |Ψ1〉 < 〈Ψ2| Ĥ1 |Ψ2〉 (2.18)

= 〈Ψ2| Ĥ2 |Ψ2〉+ 〈Ψ2| (Ĥ1 − Ĥ2) |Ψ2〉 (2.19)

= E2 +
∫
dr n0(r)[Vext1(r)− Vext2(r)] . (2.20)

The last equality is valid since two Hamiltonians with the same number of elec-

trons differ only in their external potential and since we assume that 〈r| V̂ext |r′〉 =

Vext(r)δ(r − r′). We can just as well switch the indices 1 and 2, leading to :

E2 < E1 +
∫
dr n0(r)[Vext1(r)− Vext2(r)] . (2.21)

Adding Eq.(2.20) and (2.21), we arrive at the conclusion that E1 + E2 < E1 + E2,

which is clearly a contradiction. Thus, Vext1 and Vext2 must be the same. So the

ground-state density of a N -electron system uniquely defines the external potential

up to an additive constant. This claim is known as the first Hohenberg-Kohn theorem

[76]. As a result of this finding, knowing the charge density of a system allows for

the ground state Ψ0 and the ground-state energy E0 to be written as functionals

of the ground-state density n0(r) alone. Although DFT does not require the wave

function, Kohn-Sham DFT refers to a noninteracting system whose ground state

density matches that of the interacting one. As we shall show further, we can then

use the quantum state |Ψ0〉 of the noninteracting system to describe the interacting

one. The ground state and its corresponding energy can be written as :

|Ψ0〉 = |ψ[n0(r)]〉 , (2.22)
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and

E0 = E[n0(r), Vext(r)] = E[n0(r)] . (2.23)

This means that for any other density n′(r) that is not the ground-state density of

Vext(r):

E0 = E[n0(r), Vext(r)] < E[n′(r), Vext(r)] . (2.24)

This implication is known as the second Hohenberg-Kohn theorem [76]. An interest-

ing consequence of this view of the many-body problem is that one can in fact write

the energy functional E[n(r)] as:

E[n(r)] =
∫
dr n(r)Vext(r) + F [n(r)] , (2.25)

where F [n(r)] is the sum of the kinetic energy of the interacting electrons and the

Coulomb energy:

F [n(r)] = T [n(r)] + Vee[n(r)] . (2.26)

Let us assume that an exact or approximate expression for the Coulomb energy

Vee[n(r)], and hence of the functional F [n(r)], is known. It must be noted that this

functional is universal, which means that it does not depend on the external potential

and thus, is the same for all systems. Minimizing F [n(r)] over all wavefunctions

producing the density n(r) and then over all densities defines E[n(r)]. This, in

turn, helps determine the ground-state energy E0 even in the case where the non-

degeneracy condition cannot be imposed as in the demonstration above [74]. Also,

this procedure circumvents the issue that can arise from the ill-defined E[n(r)] in

the absence of a Vext(r) that yields the ground-state density n0(r) [74].
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Thus, the search for the ground-state energy E0 of a many-body system can be

carried out as follows [74]:

E0 = min
Ψ
〈Ψ| T̂ + V̂ext + V̂ee |Ψ〉 (2.27)

= min
n

[min
Ψ→n
〈Ψ| T̂ + V̂ext + V̂ee |Ψ〉] (2.28)

= min
n

[
min
Ψ→n

(
〈Ψ| T̂ + V̂ee |Ψ〉+ 〈Ψ| V̂ext |Ψ〉

)]
(2.29)

= min
n

[
min
Ψ→n

F [n(r)] +
∫
Vext(r)n(r)dr

]
(2.30)

≡ min
n
ELL[n(r), Vext(r)] (2.31)

The term in the third equation on the right hand side between square brackets is

a unique functional of the density and the external potential called the Levy-Lieb

energy functional, ELL[n(r), Vext(r)] [77, 78]. The formalism presented before can

also be applied to a noninteracting N -electron system:

Es
0 = Es

LL[n0(r), V s
ext(r)] = min

Ψ→n

(
〈Ψ| T̂ s |Ψ〉+

∫
V s
ext(r)n0(r)dr

)
, (2.32)

where T̂ s is the kinetic energy operator acting on the single electron states and V s
ext

represents the external potential for the noninteracting N -electron system. In this

case, the ground state wave function can be written as a Slater determinant of single

particle wave functions:

ψ(r1σ1, ..., rNσN) = 1√
N !


φ1(r1σ1) . . . φN(r1σ1)

... . . . ...

φ1(rNσN) . . . φN(rNσN)

 (2.33)

where σ denotes the spin index. The single particle eigenstates φi(riσi) and their

associated eigenvalues εi are, of course, obtained by solving the Schrödinger equation

for a non-interacting system:

(
− 1

2∇
2 + V s

ext(r)
)
φi(rσ) = εiφi(rσ) . (2.34)

Similarly to the many-body wave function expressed in Eq. (2.22), the single particle
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wave functions are also uniquely determined by the ground state density and hence,

can be written as functionals, i.e. φi(riσi)[n0(r)].

The ELL functional is minimized under the condition that the total number of

electrons, N , is conserved, by solving the following equation [77, 79]:

δ

δn(r)

[
ELL[n(r), Vext(r)]− µ

(∫
d3rn(r)−N

)]
n(r)=n0(r)

= 0 , (2.35)

where µ is the Lagrange multiplier used to impose the charge conservation condition.

For Eq. (2.35) to be valid, certain criteria have to be satisfied for the functional

derivatives to exist. It is provable that all N -representable densities i.e. densities,

which can be obtained from any anti-symmetric state, satisfy those criteria [79].

Thus, we extend the definition of ELL of Eq.(2.31), such that it includes densities

that correspond to fractional particle numbers:

∫
d3rn(r) = N + η where 0 < η < 1 .

We do this by redefining F [n(r)]:

F [n(r)] = min
(|ψN 〉,|ψN+1〉)→n(r)

[
(1− η) 〈ΨN | T̂ + V̂ee |ΨN〉+ η 〈ΨN+1| T̂ + V̂ee |ΨN+1〉

]
,

(2.36)

where the state of this system with non-integer particle numbers is in a superpo-

sition of two states, i.e. a state ψN with N particles and a state ψN+1 with N+1

particles. The density of such a state is then n(r) = (1 − η) 〈ΨN | n̂(r) |ΨN〉 +

η 〈ΨN+1| n̂(r) |ΨN+1〉 [79].

The constraining equation, Eq.(2.35) can clearly be applied to a noninteracting

system as well, yielding:

δT s[n0(r)]
δn(r) + V s

ext(r) = µ . (2.37)

So starting with the example of the noninteracting case, it appears that all densities

for which we can build an associated energy functional ELL, correspond to a Slater

determinant made up of single particle eigenstates. This sets the foundation for

the Kohn-Sham scheme [80]. Hence, densities in the KS scheme are of the type:
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n(r) =
∑

i

∑
σ |φi(rσ)|2. Therefore, this allows one to express the Levy-Lieb energy

functional for the interacting electrons as:

ELL[n] = T s[n] + EH [n] + Eext[n] + Exc[n] . (2.38)

The first term on the right hand side is the kinetic energy of noninteracting electrons.

The second term on the right hand side represents the classical Coulomb or Hartree

energy EH [n], which accounts for the simple electrostatic potential arising from the

charge distribution of N electrons and has the form 1
2

∫
dr
∫
dr′ n(r)n(r′)

|r−r′| . The third

term corresponds to the energy due to the external potential
∫
drVext(r)n(r). The

last term, Exc[n], represents the exchange-correlation energy and it incorporates all

the other electronic effects that cannot be classically accounted for, such as electron

exchange and correlation. Exc[n] also contains the remaining interacting kinetic

energy terms that are not captured by the noninteracting kinetic energy functional

T s[n]. Hence, knowing the exact expression of the Exc[n] functional would solve

all the many-body problems for any external potential Vext(r). For this interacting

system, the variational equation becomes:

µ =δE[n0(r)]
δn(r) , (2.39)

=δT
s[n0(r)]
δn(r) +

∫
dr′ n(r′)
|r − r′| + Vext(r′) + δExc[n0(r)]

δn(r) . (2.40)

We define the sum of thee last three terms as the Kohn-Sham potential vKS(r).

Now comparing Eq.(2.37) with Eq.(2.40), it is clear that they are the same for

V s
ext(r) = vKS(r). Therefore, the interacting system has the same ground state

density as that of a noninteracting system in an external potential vKS(r). This

is called a Kohn-Sham system [80]. Knowing vKS(r) for the interacting system

is equivalent to knowing the quadratic Hamiltonian of the noninteracting Kohn-

Sham system. Hence for V s
ext(r) = vKS(r), the single-particle equations in Eq.(2.34)

become the famous Kohn-Sham equations corresponding to the interacting system

[80]:

(
− 1

2∇
2 + vKS(r)

)
φi(rσ) = εiφi(rσ) . (2.41)
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Here, the φi(riσi) eigenstates are called Kohn-Sham orbitals and are also a unique

functional of n(r), since they are uniquely determined by vKS(r). Now we can sum-

marize the Kohn-Sham self-consistent-field (SCF) method that yields the ground-

state density:

1. An initial guess for the density n(r) is made based on the external potential

vext(r). Then the vKS(r) is calculated.

2. The density of the KS system is calculated by diagonalizing its Hamiltonian

or by directly minimizing its energy functional.

3. The vKS(r) is reconstructed with the obtained density and the procedure is

repeated until the density and the total energy are converged.

2.2.1 Semi-local exchange-correlation functionals

Density functional theory is an exact theory since knowing the exact exchange-

correlation (XC) functional implies obtaining precisely the ground-state energy of

the system. However, in practice this functional is only known within some approx-

imations. We will review two main flavours of XC functionals: the local density

approximation (LDA) and the generalized gradient approximation (GGA). The lat-

ter has been used throughout this work.

In the LDA, at a point in space r, of density n(r), Exc[n(r)] is the XC energy of

an interacting uniform electron gas (jellium) with density n(r). In other words, this

approximation assumes that the charge density is not uniform, but varies slowly. So

then Exc[n(r)] will be given by a known expression obtained in jellium, but evaluated

locally and integrated over all space:

Exc[n(r)] =
∫
d3rn(r)ε(n) , (2.42)

where ε is the exact XC energy per electron in a uniform gas of constant density

n. For metals, where the electron density is close to homogeneous, the LDA is

expected to work well. If, however, the density is highly inhomogeneous, the LDA

is not expected to work well [81]. The great advantage of the LDA consists in its

fortuitous error cancellation, whereby the underestimation of the exchange term is
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compensated by the overestimation of the correlation term [82].

The generalized gradient approximation (GGA) is an improved version of LDA,

where besides the density at point r, one includes the gradient of the density at

point r, i.e. ∇n(r). Here we use the specific flavour of GGA called PBE, which was

proposed by Perdew, Burke and Ernzerhof [83]. The general expression is:

EPBE
xc =

∫
d3rn(r)εPBExc (rS(r), s(r), ζ(r)) , (2.43)

where rS = (4πn/3)−1/3 is the Weigner-Seitz radius, ζ = (n↓ − n↑)/n is the relative

spin-polarization and s = |∇n|/(2kFn), with kF = (3π2n)1/3 is the reduced den-

sity gradient. The exact expression of εPBExc is constructed to satisfy a number of

conditions of the exact XC DFT functional, which are discussed in detail in Ref.

[83].

2.2.2 The band gap problem

Kohn-Sham DFT is notorious for its incorrect prediction of the electronic gap of

extended systems and molecules [84, 85]. The band gap is an essential quantity

that determines the absorption of light in a system. Therefore, the inherent band

gap underestimation in KS has to be addressed. In the following section we will

discuss this limitation in more detail and then present a class of functionals that

were designed to circumvent the band gap underestimation among other molecular

properties.

To start understanding the problem of the band gap underestimation in Kohn-Sham

DFT, let us start by considering again the system with a non-integer number of

particles. As discussed in Eq. (2.36), such a system is expressed as a superposition

of a state with N particles and one with N + 1 particles [79, 86]. So the Levy-Lieb

functional ELL is minimized such that both |ψN〉 and |ψN+1〉 are ground states for

the same Vext(r) [79, 86] . It follows then that:

EN+η
0 = (1− η)EN

0 + ηEN+1
0 , (2.44)

where EQ
0 is the ground state energy of a system with Q interacting electrons.
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Figure 2.1: Ground-state energy corresponding to a system of interacting electrons
as a function of number of particles. The plot EQ

0 against Q is linear between any
two integer points. This yields EQ non-differentiable at integral values of particle
numbers. Image taken from [79] courtesy of Subhayan Roychoudhury.

As seen in Fig. 2.1, EQ
0 is not differentiable and there is clearly a linear behaviour

between the integer values of Q. The fundamental gap of any N -particle system is

the difference between the ionization potential and the electron affinity which, in

turn, are calculated as total energy differences [87]:

EFG = (EN+1
0 − EN

0 )− (EN
0 − EN−1

0 ) . (2.45)

For a noninteracting N -particle system such as the KS system, the fundamental gap

EFG is the difference between the (N + 1)-th and the N -th eigenvalue, i.e. :

εFG = εN+1
0 − εN0 . (2.46)

More specifically for a KS system, it is

∆KS = εN+1
KS − εNKS . (2.47)

Now for the interacting system, the total energy of a system with Q electrons, EQ
0 ,
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is a linear function of Q between any two integer points, as can be seen from Fig.

2.1. Therefore EFG is in fact equal to the derivative gap EDG:

EDG = ∂EN
0

∂N

∣∣∣∣
N+
− ∂EN

0
∂N

∣∣∣∣
N−

, (2.48)

where N+ and N− are the positive and the negative sides approaching N . Noting

that ELL[nQ(r), Vext(r]) = EQ
0 for the Q-particle system with ground-state density

nQ, it follows that: ∂EN
0

∂N
= µ [79]. Looking at Eq. (2.35), we see that the Lagrange

multiplier is µ = ∂ELL[n]
∂n

∣∣∣∣
n=nN

. One more thing to consider is that the Hartree

potential and the external potential have continuous density derivatives.

Hence we can rewrite EDG as:

EDG = δELL[n]
δn

∣∣∣∣
N+
− δELL[n]

δn

∣∣∣∣
N−

=
[
δT [n]
δn

∣∣∣∣
N+
− δT [n]

δn

∣∣∣∣
N−

]
+
[
δExc[n]
δn

∣∣∣∣
N+
− δExc[n]

δn

∣∣∣∣
N−

]
= ∆KS + ∆XC .

∆XC is called the derivative discontinuity [87]. For local and semi-local DFT XC

functionals, this quantity is 0, and hence for standard DFT XC-functional: EDG =

∆KS. In the case of a finite system, Exc in LDA is a continuous, non-linear function

of density, which is completely differentiable in N . However, in the limit of a bulk

system consisting of an infinite number of unit cells, the plot of the total LDA energy

becomes linear between integer points. This is due to the fact that the added charge

is delocalized, resulting in infinitesimally small fractional charges per unit cell [85].

Therefore the so-called "delocalization error" defines the incorrect linear behaviour

whereby the energies at integer values of Q are wrong in the limit of infinite number

of cells [85]. The delocalization error is thought to be related to the self-interaction

error (SIE) which arises in semilocal XC-functionals [84]. In the Levy-Lieb energy

functional corresponding to a one-electron system, the electron Coulomb repulsion

must cancel exactly the exchange-correlation [88]. Since semilocal approximations

of the XC functionals do not provide this cancellation [88], the SIE refers to the

electrons being allowed to interact with themselves which, naturally, leads to non-

negligible errors in many-electron systems [89]. Reducing SIE has been correlated
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with improved values of the band gap [84, 88].

2.2.3 Hybrid functionals

One of the most useful classes of density functionals that alleviates the band-gap un-

derestimation are "hybrid functionals", which incorporate a fraction of exact nonlocal

Hartree-Fock-type exchange, i.e HF exchange. HF exchange is defined by

EHF
X = −1

2
∑
σ

∑
i,j

∫
d3r1

∫
d3r2

φiσ(r1)φ∗iσ(r2)φjσ(r2)φ∗jσ(r1)
|r1 − r2|

, (2.49)

where σ denotes the spin and φiσ(r) is the orbital of the noninteracting Kohn-Sham

system. Introducing SIE-free HF exchange to the semilocal XC functionals leads

to a significant reduction in the unwanted SIE-induced effects and hence, to an

improvement of many properties compared to semilocal functionals [88]. However,

hybrid functionals pose difficulties in terms of computation. The integral introduced

in Eq.(2.49) decays slowly with distance [90]. Also, the fact that there are a total

of K4 such integrals explains why EHF
X is expensive to compute in extended sys-

tems, where K is the total number of basis functions over which the wave functions

are expanded [74]. To overcome the problem of large computational cost, the two

suggested solutions are to artificially truncate the exchange interactions and to ac-

celerate the spatial decay [90]. The former method is more applicable to localized

systems where the HF exchange decays rapidly with increasing charge separation

[90]. In delocalized systems, it is claimed that this method leads to problems in the

SCF calculation and inaccurate total energy prediction. These problems are avoided

through the second approach in which the spatial decay is accelerated [90].

This method proposed by Heyd, Scuseria, and Ernzerhof [72] is based on screened hy-

brid functional and it essentially partitions the Coulomb operator in Eq.(2.49) into

a short and a long- range component based on some empirically selected screen-

ing parameter ω. The HF exchange is then only applied to the short range part

[88].

HSE is implemented based on one of the flavours of the Perdew-Burke-Ernzerhof

50



GGA [83], namely in the global hybrid PBEh [91, 92]. It is defined as:

EωHSE
xc = aEHF,SR

x (ω) + (1− a)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c , (2.50)

where EHF,SR
x is the short-range HF exchange, EPBE,SR

x and EPBE,LR
x are short-

range and long-range components of the PBE exchange functional obtained from

the model PBE exchange hole [93] and EPBE
c is the PBE correlation energy. The

fraction a=25% of HF exchange is derived from perturbation theory [94]. Therefore,

HSE includes 25% short-range HF exchange and no long-range HF exchange. The

inclusion of a fraction of HF exact exchange in HSE has the overall effect of decreas-

ing the many-electron SIE inherent to semilocal functionals [95], hence reducing the

error associated with the band gap estimation from band energy differences. That is

due to the cancellation of error between HF, which induces unphysical localization

[96] and semilocal XC, which induces unphysical delocalization [95, 97, 98]. The

empirical range-separation parameter ω is set to 0.11 Bohr−1 in the latest version

of the HSE functional, namely in HSE06 [93].

Another special feature of hybrids like HSE is that they include an approximate

derivative discontinuity, i.e. ∆XC 6= 0 [99]. Thus, ∆XC can be incorporated into

the band energy differences of Eq. (2.47) by replacing the noninteracting Kohn-

Sham reference system with a system containing some fraction of the electron-

electron exchange interaction in a so-called generalized Kohn-Sham (GKS) scheme

[100, 101].

2.2.4 van derWaals correction: Tkatchenko-Scheffler method

An important class of forces that semi-local XC functionals do not treat by default

are the Van der Waals forces. These occur due to the weak attraction and repul-

sion interactions between instantaneous fluctuating dipoles even without electron

densities overlapping. [102].

Implementing these long range van der Waals (vdW) interactions is a challenge

in DFT. With no vdW correction added, GGA yields strictly repulsive potentials

with no minimum and LDA drastically overbinds for certain diatomic molecules
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[102]. Several attempts have been made to correctly incorporate the vdW inter-

actions. Some proposed schemes are applicable only to systems with no density

overlap [103, 104], others can be implemented for systems separated by any distance

but are computationally demanding [105]. In our work, we consider the accurate

nonempirical method proposed by Tkatchenko and Scheffler, whereby both short-

and long- range screening effects are taken into account when computing the vdW

energy.

The Tkatchenko-Scheffler (TS) method combines the Tkatchenko-Scheffler van der

Waals (TS-vdW) scheme with the self-consistent screening equation of classical elec-

trodynamics. Typically the vdW interaction that is added to standard DFT, i.e.

EvdW , takes the form of a pairwise interatomic term C6R
−6:

EvdW = −1
2
∑
A,B

fdamp(RAB, R
0
A, R

0
B)C6ABR

−6
AB , (2.51)

where RAB is the distance between atoms A and B, C6AB is the associated C6 dis-

persion coefficient, R0
A and R0

B are the vdW radii. A short-ranged damping function

fdamp(RAB, R
0
A, R

0
B) eliminates the singularity R−6

AB that arises at small distances.

The free-atom reference values for the C6 coefficients are taken from a database and

are used to define the effective coefficients for an atom inside a solid or a molecule

via the Hirshfeld partitioning of the electron density [106].

Therefore, TS-vdW describes very well pointwise atomic polarizabilities and short

range interactions and it determines them by calculating the effective vdW radii and

C6 coefficients of atoms in molecules or solids from the ground-state electron density

obtained via DFT. Fortunately, the TS-vdW scheme does not depend on the chosen

DFT exchange correlation-functional, be it LDA, PBE or BLYP (a flavour of hybrid

functional). When tested on a dataset of more than 1000 complexes, it achieves a

mean absolute error of only 5.5% in the C6 intermolecular coefficients relative to the

experimentally deduced ones [106].

For an atom that is part of a large molecule or of a solid, the dipolar fluctuations

differ from the case of the free atom also due to the electrostatic interaction be-

tween a fluctuating dipole and other more distant ones. However, the TS-vdW

scheme does not account for electrostatic screening beyond the range of the expo-
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nentially decaying atomic densities, thus considering only the local environment of

a dipole starting from the free atom polarizability [107]. Therefore TS, an improved

method, was conceived to tackle this problem [107]. By representing the N atoms in

a certain molecular system as a set of quantum harmonic oscillators, one can solve

a self-consistent screening equation and obtain the molecular and atomic polariz-

ability tensors, which include both the short-range and the long-range electrostatic

screening [107].

2.3 FHI-AIMS

The current section will describe the main features of the FHI-AIMS code and it

will be largely based on its foundational paper [108].

The form of the basis set that defines the Hilbert space of the electrons, {〈φi| , i =

1, ..., Nb} plays a crucial role in the efficiency and accuracy of electronic structure

calculations. The FHI-AIMS ("Fritz Haber Institute ab initio molecular simula-

tions”) package implements a very practical form of basis functions called numeric

atom-centered orbitals (NAO) expressed as:

ϕi(r) = ui(r)
r

Ylm(Ω) , (2.52)

where Ylm are spherical harmonics, whose indices are implicitly dependent on the

basis function index i, Ω represents the angular degrees of freedom and ui(r) are

numerically tabulated radial functions.

Most physical properties emerge due to the valence electrons. Therefore it is ac-

curate to substitute the influence of the core electrons on the valence ones with an

effective screening potential. The overall resulting potential acting on the valence

electrons is smoother than the original ionic potential and it is coined "pseudopo-

tential". Many electronic structure codes rely on this efficient replacement of the

core electrons with a pseudopotential, hence requiring to only explicitly consider the

valence electrons.

FHI AIMS, however, is an all-electron code with similar efficiency to the fast ex-

isting plane-wave pseudopotential schemes as implemented in codes such as VASP
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("Vienna Ab initio Simulation Package") [109, 110]. It exhibits good scaling with

system size for up to thousands of atoms, as well as good scaling on individual and

parallel computers with many CPUs [108].

As indicated in section 2.2, all the observables such as energies, forces, polarizabil-

ities, etc. of a cluster or periodic geometry require the solutions of the KS single

particle Schrödinger equations. We can rewrite Eq. (2.41) in its explicit form:

ĤKS |Ψl〉 = El |Ψl〉 , (2.53)

where the Hamiltonian ĤKS incorporates the KS effective single-particle kinetic en-

ergy T̂S, the external potential V̂ext, the electrostatic potential V̂H and the exchange-

correlation potential V̂xc. Within each iteration performed in the SCF, the single-

particle wave function is introduced as an expansion of the basis functions ϕi(r), i.e.

ψl(r) =
∑Nb

i=1 cilϕi(r). The discretized generalized eigenvalue problem to be solved

becomes: ∑
j

hijcjl = El
∑
j

sijcjl (2.54)

where the Hamiltonian and overlap matrix elements hij and sij are obtained by

numerical integration:

hij =
∫
d3rϕi(r)ĤKSϕj(r)

sij =
∫
d3rϕi(r)ϕj(r) .

(2.55)

These matrices are essentially the real-space analogues of those defined in Eq.(2.15)

and (2.16). The complex conjugate notation is omitted since only real-valued basis

functions are used. The total number of Kohn-Sham states, Nstates, is at most equal

to the total number of basis functions, Nb. Now, the total energy of the KS system

has the following expression:

Etot =
Nstates∑
l=1

flεl −
∫
d3r[n(r)Vxc(r)] + Exc[n]− 1

2

∫
d3r[n(r)VH(r)] + Enuc−nuc .

(2.56)

Here the KS single-particle eigenvalues were summed up and their corresponding

contribution to the exchange-correlation potential was subtracted in order to be
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replaced by the exchange-correlation energy functional Exc[n], which is needed to

calculate the total energy. Moreover, the double-counting carried by the eigenval-

ues is removed and replaced with the nuclear-nuclear repulsion term. An essential

principle of the FHI-AIMS code is that in order to ensure a wide range of total

energy accuracies for rough or highly accurate calculations, the basis sets need to

be preconstructed. The aim of this is to ensure the accuracy of the basis set and the

convergence to a separately converged basis set limit. The numerical radial basis

function ui(r) are chosen to satisfy the Schrödinger equation:

[
−1

2
d2

dr2 + l(l + 1)
r2 + vi(r) + vcut(r)

]
ui(r) = εiui(r) . (2.57)

Two parts define the radial function: the potential vi(r), which describes the main

shape of ui(r), and a fast increasing confining potential vcut(r), that ensures the

smooth decay of each radial function such that they are strictly zero outside a

confining radius rcut.

Also, for different atomic structures, the basis sets should be transferable and should

be as small as possible given a certain accuracy. The basis set construction procedure

should be fully automated and objective, requiring no human assistance. To fulfil

these goals, the construction assumes the following iterative workflow:

1. A large set of radial function shapes ui(r) (hydrogen-like and cation-like func-

tions or valence and excited-states of single atoms) with a variable confinement

potential is selected.

2. Starting from a given basis set (in the first iteration, the minimal free-atom

basis set), run through the pool of candidate functions and add each separately

to the given basis set. The radial function that yields the largest improvement

in the total energy is added to the given basis set.

3. The same procedure is repeated iteratively until the total energy is converged.

It is worth noting that each radial function, ui(r), is associated to an angular mo-

mentum l according to the definition of NAOs in Eq. (2.52). Thus adding ui(r) to

the given basis set implies in fact that all the 2l+1 functions ui(r)
r
Ylm become part

of the basis set. Also, the minimal basis set comprises core and valence functions of
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spherically symmetric free atoms and it is functional-dependent as it is obtained by

setting vi(r) to the KS self-consistent free-atom radial potential.

For the optimization target, the simplest possible chemical bonds formed by a given

element are chosen. Therefore the goal is to minimize the total energy error of a

set of non-spinpolarized symmetric dimers constructed at Nd ≈ 4-5 different bond

distances. The total energy error associated with each given basis set is evaluated

as:

∆basis = 1
Nd

Nd∑
i=1

[εbasis(di)− εcb(di)] (2.58)

In the above expression, εbasis(di) denotes the total energy per atom associated to the

dimer with bond distance di for a given basis set. It is obtained non-selfconsistently

in order to avoid potential systematic errors linked to the self-consistency cycle. It

is then compared against the non-selfconsistent reference energy εcb(di) for a con-

verged basis set.

The different total energy accuracy levels (from qualitative tight-binding to sub-

meV accuracies) correspond to increasingly larger sets of basis functions. These are

organized as different, functional-independent, tiers or levels of different angular

momenta such as spd-spdf-spdfg... . It is interesting how the automated basis con-

struction process implemented here yields basis function groups similar to the more

standard and human-devised Gaussian basis sets [111, 112].

One conclusion of this construction process is that valence functions of cations are

really good additions to the minimal free atom basis set. Nevertheless, the main

finding of the FHI-AIMS developers was that hydrogen-like functions perform bet-

ter than all the initially considered radial functions, even better than the well-

performing valence functions of cations. For Hartree Fock (HF) calculations, it

would be desirable for the minimal basis set to be generated with a HF atomic

solver that would essentially go beyond the standard DFT semilocal functional-

based method. Such a solver is, however, not implemented so the starting minimal

basis for HF calculations is the same as for conventional DFT ones. The only dis-

advantage is that additional tier basis functions are needed to achieve a target level

of basis convergence.
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2.4 Linear optical properties in RPA

DFT is highly accurate in determining ground-state properties for atoms, molecules

and solids. As is known, the simplest approximation for Exc, the LDA, employs the

homogenous electron gas exchange-correlation energy density [81]. However, the

success of LDA is not limited only to the correct prediction of ground-state prop-

erties of metals, but also of highly inhomogeneous system ones [113]. Due to the

single-particle nature of the Kohn-Sham wavefunctions, their associated eigenvalues

are quite often treated as quasiparticle energies [114, 115]. Since the Kohn-Sham

single-particle states pertain to a fully noninteracting system, there is no particu-

lar theoretical rationale for identifying the Kohn-Sham eigenvalues as electron and

removal energies [114]. Also, the LDA band gap and the transition energies in non-

metals are largely underestimated, causing a redshift of 30-50% in the absorption,

photoemission and inverse photoemission spectra when compared to the experimen-

tal spectra [116]. Neverthless, using the Kohn-Sham equations as a starting point

for perturbative calculations of quasiparticle energies for various systems is well

founded, at least partially, in the resemblance between the Kohn-Sham and the

quasiparticle equations where, in the latter case, the hole and the screened exchange

caused by the addition of an electron are accounted for [114]. Another possible ar-

gument for this is the almost perfect overlap between the LDA and the quasiparticle

wavefunctions, as it is claimed in the work of Hybertsen et al. [117] where systems

with a large range of band gap sizes were investigated [114]. In order to discuss

the absorption of light by an electronic system, one needs to go beyond the band

structure and describe the response of the system to an external potential, which is

reflected by the redistribution of its charge and their corresponding wave functions

[114]. The response of the system to the external perturbation is quantified through

the dielectric function which is found from Hedin’s equations [71] to be:

ε(r, t; r′, t′) = δ(r − r′)δ(t− t′)−
∫
P (r, t; r′′, t′)v(r′′ − r′)dr′′ , (2.59)

where v is the bare unscreened Coulomb interaction and P is the polarizability. The

simplest approximation for P corresponds to the independent particle form that can
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be written in the random phase approximation (RPA) [118, 119] and it is expressed

as [114]:

PRPA(r, r′
, E) =

∑
ij

(fi − fj)
ψi(r)ψ∗j (r)ψj(r

′)ψ∗i (r
′)

E − εij + iη
, (2.60)

where fi are Fermi occupation numbers and i and j are labels corresponding to the

one-particle states of energy εi and εj. εij represents the difference between energy

εi and εj, respectively. The small imaginary term iη gives rise to an imaginary term

in P , which is proportional to δ(E− εij + iη). This indicates that the photon energy

E is conserved as an electron gets promoted from state i to state j [114].

In a nutshell, RPA describes a calculation where P has the expression found in Eq.

(2.60) whereby the ψi wavefunctions and Ei energies can be DFT or GW eigenstates

and eigenvalues. Also known as the Lindhard approximation [120], it was conceived

to describe a calculation based on a linearized Hartree approach for the homogeneous

electron gas [114]. Basically, the Hartree calculation is simplified by assuming that

the induced charge is required only to first order in the total potential [75]. The

presence of the hole is taken into account through the self consistent Hartree field

[75]. In a nutshell, in this approximation, the electron-hole pair is noninteracting and

thus, unscreened [114]. Since the neglect of exchange-correlation effects in the RPA

electron-hole screening can lead to an underestimation of the dielectric constant, this

approximation might overestimate exciton binding energies [114]. This is reflected,

for instance, by the poor agreement between the RPA and experimental absorption

spectrum of bulk Si [114].

Despite the mentioned issues regarding the use of DFT+RPA to obtain absorption

spectra, we shall rely on this method to calculate the dielectric function of the

systems discussed in this work. The good scaling with number of atoms renders

DFT as a practical method to determine band structures for a large set of materials.

As discussed, hybrid functionals enable a reasonably good determination of the

band gap and hence, of the absorption edge. The advantage of using RPA for

the calculation of the dielectric function of solids lies in the fact that it is more

numerically practical compared to more precise methods that calculate effective two

particle equations iteratively. In this work, the accurate determination of absorption

spectra is not as relevant as understanding the relative differences in the absorption
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spectra of materials. Ultimately, we are interested to rank materials based on their

absorption capabilities. Under these circumstances, we consider DFT+RPA to be a

sufficiently valid approach.

In Ref. [115], a formalism for treating optical properties in the random phase approx-

imation (RPA) is proposed. In the following, we shall reiterate the main steps and

expressions required to derive the RPA dielectric function according to Ambrosch

et al. [115].

For the case of a solid with translational symmetry, the states in Eq. (2.60) can

be replaced by a sum over states and k-points, with k lying in the first Brillouin

zone. It is also assumed here that the photon energy can be written as E = Ẽ + iη.

Having said this, one can Fourier transform the polarization propagator P in Eq.

(2.60) and obtain:

PG,G′(q, E) = 1
Ωc

∑
n′,n,k

f(εn,k+q)− f(εn′,k)
εn,k+q − εn′,k − E

[MG
n′,n(k, q)]∗MG′

n′,n(k, q) , (2.61)

where Ωc is the unit cell volume, εn,k are the eigenvalues corresponding to the k-point

k and the band index n and M are the matrix elements defined as:

MG
n,n′(k, q) = 〈n′,k| e−i(q+G)·r |n,k + q〉 , (2.62)

with G a reciprocal lattice vector and q belonging to the first Brillouin zone. Here

the incoming photon of wavevector q excites an electron from state |n′,k〉 to state

|n,k + q〉. By Fourier transforming Eq.(2.59), it follows that the polarization in

Eq.(2.61) is related to the dielectric tensor as:

εG,G′(q, E) = δG,G′ − v(q +G)PG,G′(q, E) . (2.63)

The dielectric tensor establishes a connection between the total electrostatic poten-

tial V and the external potential, V ext:

V ext
G (q, E) =

∑
G′

εG,G′(q, E)VG′(q, E) . (2.64)

Let us invert the dielectric tensor and denote it by ε. It is reasonable to assume that
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the wavelength of the external perturbation potential resulted from the incoming

light are much larger than the lattice size of the cell. In that case the assumptions

made are that q � Gmin and that only the G′ = 0 component of V ext
G′ , i.e. V ext

0

would be non-zero and should be considered:

VG(q, E) = εG,0(q, E)V ext
0 (q, E) . (2.65)

As can be seen, even in the case of an external potential with long wavelengths in

real space (G′ = 0), the response of the system has shorter wavelength components

(εG 6=0,0), which translate into microscopic changes in the local potential produced

by particles or dipoles. These are referred to as local field effects. If we look at the

previous equation and identify the average of the total potential in one unit cell as

V0(q, E), we can relate it to V 0
ext as:

V0(q, E) = εmac(q, E)V ext
0 (q, E) . (2.66)

This gives us that the macroscopic dielectric constant εmac is essentially one over

the (0,0) element of the inverse dielectric tensor:

εmac(q, E) = 1
ε0,0(q, E) . (2.67)

Evaluating the dielectric tensor with components G,G′ and subsequently inverting

it to obtain the (0,0) component of the inverse tensor is rather expensive. However,

if we neglect the local field effect and substitute the (0,0) component of the inverse

by the inverse of the (0,0) component, it follows that:

εnlfmac(q, E) = ε0,0(q, E) = 1− v(q)P 0
0,0(q, E) . (2.68)

Local field effects will be further neglected in the derivation of the dielectric function

expressed in terms of the KS eigenvalues. We expect their effect to be negligible, at

least for the in-plane component of the dielectric function of our studied systems.

As argued before, it is assumed that light has a wavevector q that is much smaller

than that of the electrons in the system. Hence the matrix elements in the expression

for P will be studied in the limit of small q through perturbation theory in the
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Appendix. There, in Eq. (A.13), it is indicated that the intraband matrix elements

(n′ = n) and the interband matrix elements have distinct limits. This motivates one

to split the dielectric tensor into terms corresponding to intraband and interband

transitions, respectively:

εnlfmac(q, E) = 1 + εintra(q → 0, E) + εinter(q → 0, E) . (2.69)

The minimum macroscopic dielectric tensor is 1 and it corresponds to the case

where the system is unpolarizable. Considering that the Coulomb interaction in

reciprocal space is v(q) = 4πe2

|q|2 and using Eq.(2.63), it follows that the intraband

term constituting the dielectric tensor is:

εintra(q → 0, E) = − lim
q→0

4πe2

Ωc|q|2
∑
n,k

f0(εn,k+q)− f0(εn,k)
εn,k+q − εn,k − E

|M0
n,n(k, q)|2 , (2.70)

and the interband term is given by:

εinter(q → 0, E) = − lim
q→0

4πe2

Ωc|q|2
∑

n′,n6=n′,k

f0(εn′,k+q)− f0(εn,k)
εn′,k+q − εn,k − E

|M0
n,n′(k, q)|2 .

(2.71)

Notice that in the case of the intraband term, in the limit of q → 0, εk+q−εk ≈ E ≈
0. Therefore, it is justified to transform the fraction into a derivative with respect

to the energy eigenvalues. Using the expressions Eq.(A.11) and Eq.(A.13) for the

expanded band energies and for the matrix elements, which were both derived in

the Appendix, one obtains the following expression for the intraband term:

εintra(q → 0, E) = − lim
q→0

4π~2e2

Ωcm2E2

∑
n,k

(
− ∂f

∂ε

)
εn,k

(
pn,n,k ·

q

|q|
)2

, (2.72)

where pn,n,k = 〈ψnk| − i~∇ |ψnk〉 are the momentum matrix elements corresponding

to the intraband transitions. The derivative of the Fermi function with respect to

the energy imposes the restriction to sum only over states at the Fermi level. The

interband term is expressed as:

εinter(q → 0, E) = − lim
q→0

4π~2e2

Ωcm2

∑
k,c,v

(pc,v,k · q/|q|)2

(εc,k − εv,k − E)(εc,k − εv,k)2 , (2.73)
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where c runs over the empty conductions states, v over the occupied valence ones

and pc,v,k = 〈ψck| − i~∇ |ψvk〉 are the momentum matrix elements corresponding to

the interband transitions. Even in the limit q → 0, the direction of the vector q

leads to defining the dielectric constant as a three dimensional tensor given by:

εi,j(E) =δi,j

− 4π~2e2

Ωcm2E2

∑
n,k

(
− ∂f

∂ε

)
εn,k

pi,n,n,kp
∗
j,n,n,k

− 4π~2e2

Ωcm2

∑
k,c,v

pi,c,v,kp
∗
j,c,v,k

(εc,k − εv,k − E)(εc,k − εv,k)2 .

(2.74)

The i and j indices correspond to the Cartesian directions along which the gradient

are applied in pi,c,v,k and pj,c,v,k, where pj,c,v,k= 〈ψck|−i~∇j |ψvk〉. The obtained RPA

expression for the dielectric constant will be computed using the KS orbitals and the

associated single particle eigenvalues. In the case of a 2D material, we consider a

large unit cell volume. Since we only sample one k-point in the third direction at Γ,

we set the same large constant c axis for all 2D materials. The fact that each volume

cell can be scaled by a common scaling factor allows for the dielectric functions to

be comparable relative to one another.

In the remaining part we shall elaborate further the expression of the interband term

of the dielectric function as implemented in FHI-AIMS. This decision is motivated

by the fact that intraband transitions are dominant in metallic systems, where the

free electrons respond to the incoming radiation by oscillating at a common plasma

frequency, ωpl. However, intraband transitions are negligible in the case of semicon-

ductors and insulators. In the case of photovoltaic systems, semiconductors are the

preferred absorbers due to their band gap. This ensures the presence of an energy

barrier for the valence electrons to overcome when excited by the incoming photons,

leading to the free flowing of the electrical current. Settingm=e=~=1 and assuming

that q → 0 and that the photon energy E satisfies E ≈ εc,k − εv,k, the interband

term of the dielectric constant derived in Eq.(2.73) is equivalent to:

εinterij (E) = 4π
Ωc · (E + η)

∑
c,v,k

2
εcv + η

·
( pi,c,v,kp∗j,c,v,k
E − εcv − iη

−
p∗i,c,v,kpj,c,v,k

E + εcv + iη

)
, (2.75)

where εcv = εc,k− εv,k. The constant 2 stands for the occupation number in the case
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of spin degenerate states. Here iη represents an infinitesimal energy that is added

explicitly in the denominator to avoid singularities. This expression is equivalent

to Eq.(A.38) in the Appendix, where we derive the dielectric function following the

Kubo-Greenwood formula for optical conductivity as indicated in Marder et al. [74].

So in fact it follows that the imaginary part of the interband term of the dielectric

function along a certain Cartesian direction is

Im[εii(E)] = 8π
Ωc · (E + η)

∑
c,v,k

η · |pi,c,v,k|2
εcv + η

·
( 1

[E − εcv]2 − η2 −
1

[E + εcv]2 + η2

)
.

(2.76)

Re[εii(E)] can be obtained similarly, by taking the real part of the interband di-

electric function defined in Eq. (2.75). Now let us consider the electric field E

associated with the incident radiation. It propagates as a damped wave:

E(x, t) = E0(x)êeiω
c

(nx−ct) , (2.77)

where ω is the angular frequency, ê is the polarization vector, c is the speed of light,

and n is the complex refractive index. The intensity of the field is proportional to

|E(x)|2, i.e.:
I(x) = E2

0e
−2 ω

c
n2x . (2.78)

The absorption coefficient is defined as the inverse of the distance at which I0 is

reduced by e, where I0 = E2
0 is the initial intensity. Therefore:

α = 2ωn2

c
, (2.79)

where n2 is the imaginary part of the refractive index n. Let us note that the

macroscopic dielectric constant and the complex refractive are related as εmac =

ε1 + iε2 = n2. An equivalent expression for the absorption coefficient that follows

is:

α = ωε2

cn1
, (2.80)

where n1 is the real part of the refractive index. In calculating the absorption
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coefficient through Eq.2.80, we use the real expression of n1, namely

n1 =

√
ε1 +

√
ε2

1 + ε2
2

2 . (2.81)

2.5 k-means clustering

In Chapter 5 we present our work on the classification of transitional metal dichalco-

genides. For this exercise, we employ a statistical technique that identifies numerical

patterns in our selected pool of compounds and yields groups of similar materials

based on the variable of interest. In our case, this is represented by the absolute

value of the gradient of the energy difference between the bottom conduction and

top valence band. For this purpose, we make use of a statistical technique known as

"k-means". This is a widely-used method for "optimal classification" [121]. The al-

gorithm was first proposed in 1956 by Steinhaus [122] and then exemplified for data

clustering applications by Lloyd et al. in the work referenced in Ref. [123]. The

technique relies on partitioning a multi-dimensional set of points into k sets or clus-

ters. A number of k cluster centers are initialized. For each point in the dataset, the

closest cluster center is found and the point gets assigned to the respective cluster.

The measure for proximity is given by the shortest Euclidean distance between that

respective point and the cluster center. Afterwards, the means of all the positions of

the points defining each cluster are computed and the cluster centers get updated.

Hence, at each iteration there is a different set of k-means based on the specific

composition of each group at each stage [121]. This iterative process continues until

no new updates are made to any of the clusters [124]. The described steps in the

algorithm are graphically illustrated in Fig. 2.2. One can synthetically reformulate

the objective of the k-means procedure as the minimization of the squared Euclidean

distances also termed as "within-cluster sum of squares" [125]:

WCSS1 :=
∑
ci

∑
j=1...d

∑
x,y∈ci

(xij − yij)2 , (2.82)

where ci denotes the ith cluster, d are the total number of dimensions of the vector

and x and y are the data points or observables belonging to cluster ci. So, the
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Figure 2.2: 1. Random generation of k-means 2. Closest points to the means
form clusters 3. New means are calculated and updated 4. Previous two steps are
repeated till convergence is reached.

Euclidean distance is calculated between the data points of all i clusters which are

represented as d-dimensional vectors. Due to lower computational complexity, an

equivalent definition of the WCSS is commonly used, namely as the sum of cluster

variance weighted by the cluster size whereby the pairwise distances are in this case

between the cluster points and their respective cluster centers [125]:

WCSS2 :=
∑
ci

∑
j=1...d

|2ci|
∑
x∈ci

(xij − µij)2 , (2.83)

where µij is the mean coordinate of cluster i in dimension j. It is worth noting

that the overall sum of the Euclidean distances remains constant throughout each

iteration and irrespective of the number of clusters. That implies that the total

variance of the data set does not change, hence minimizing the WCSS is equivalent

to maximizing the difference between points that are in different clusters [125]. The

latter is also referred to as the "between-cluster sum of squares" (BCSS).

The presented statistical tool will be implemented in order to group 2D materials

based on similarities identified in their electronic structure. The quantity that is

selected for the classification is the absolute value of the gradient of the difference

between the bottom conduction band and the highest valence band, |∇k(Ec1−Ev1)|
across the irreducible Brillouin zone. We will show later how this quantity is related

to band nesting, a process inherent to all transition metal dichalcogenides that

gives rise to strong absorption peaks. Each compound will be characterized by a

multidimensional vector representing the mentioned gradient calculated on a dense

k-mesh. Compounds grouped together via k-means are expected to exhibit certain

similar absorption features. Such a classification based on simple electronic structure

analysis serves as a screening for suitable photovoltaic compounds.
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3 Photoconversion efficiency study

3.1 Introduction

The following work consists of a study of the photoconversion efficiency of various

well-established photovoltaic materials. The model used was conceived as a "hybrid"

between the SQ and SLME models presented in sections 1.5.1 and 1.5.3, respectively.

Here we describe the quantities relevant for the model. In order to account for the

inhomogeneity of the absorption spectrum, we consider the SLME definition of the

absorbance:

a(E) = 1− e−α(E)L , (3.1)

where α(E) is the absorption coefficient obtained from the bandstructure postpro-

cessing according to Eq.(2.80) and L is the thickness of the material considered.

Note that we did not impose here the condition of reflectivity of the back surface for

brevity. The short-circuit current density is essentially calculated as the maximum

current extracted under solar radiation given the absorbance a(E):

Jsc = q

∫ ∞
0

Φsun(E)a(E)dE , (3.2)

where Φsun corresponds to the AM1.5G solar photon flux according to the ASTM

G173-03 standard [8] and q is the elementary charge. Note that we made the ap-

proximation Jsc ≈ Jmax, where the maximum photogenerated current density was

defined in Eq.(1.6). This decision was motivated by the fact that the radiative

current density at zero bias, which is the difference between Jmax and Jsc in the
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SQ model, is considered to be negligible according to Ref.[130]. According to the

SLME model, an analysis of the momentum matrix elements would be required to

determine whether a transition is forbidden or not. However, we did not follow this

procedure in calculating the fraction of radiative recombination fr due to technical

difficulties. Instead, similarly to the SQ model, we assume that the only recombi-

nation losses are due to radiation, i.e. fr = 1 so that J0 = Jr, where J0 is defined in

Eq.(1.29). Then the total net current is found to be:

J = Jsc − Jr(eeV/kBT − 1) , (3.3)

where V is the voltage across the cell, kB is Boltzmann constant and T is set to be

at room temperature, i.e. 300 K. Here the radiative recombination current density

is a function of the non-constant absorption coefficient:

Jr(V ) = fg · q
∫ ∞

0

2πE2

h3c2 ·
a(E)

e
E−qV
kBTc − 1

dE . (3.4)

The maximum extracted power Pmax is the maximum product between the voltage

and the net current:

Pmax = max(V · J) . (3.5)

The photoconversion efficiency is the ratio between Pmax and Pin, the latter being

the total power of the irradiated solar flux, which is equal to 1000.22 A/m2. Thus,

the PCE can be expressed as:

PCE = Pmax
Pin

(3.6)

We will start with a description of the workflow that was conducted in the initial

phase in order to determine the photoconversion efficiency. As discussed in the

Introduction chapter, amorphous and crystalline silicon have played a big role in

establishing the first generation of PV technology. That is why we shall showcase

silicon in this part.
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3.2 Silicon

To start off, we perform convergence tests of the number of k-points with respect

to two control quantities, namely to the total energy E and the direct band gap

Eg. This is done through single-point calculations. This calculation runs multiple

SCF cycles at the end of which the ground state density for the original unchanged

geometrical structure is determined. This type of test is typical for the correct esti-

mation of the number of k-points required for a subsequent geometrical optimization

calculation. The total energy is chosen as an obvious control quantity because con-

verging it towards its minimum essentially ensures a correct ground-state density

estimation, which is critical for the calculation of further quantities. The band gap

is a feature particularly of interest for the analysis of the absorption spectrum en-

tailed in our study. These single-point calculations done with increasing number

of k-points are performed with the "tight" basis set for each of the involved atom

species, in this case Si only. The GGA semi-local functional as parametrized by

PBE is employed in these calculations as well as for the relaxations, bandstructure

and dielectric function ones.

As it can be seen from Fig. 3.1, the k-grid composed of 10x10x10 points is sufficient

for obtaining an accurate band gap Eg and total energy E, respectively, i.e. within
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Figure 3.1: Convergence of the k-grid for single-point calculations of Si with respect
to the total energy (squares and right-hand scale) and the direct band gap (circles
and left-hand scale) values. The connecting lines are a guide to the eye obtained by
interpolation.

69



-12

-9

-6

-3

0

3

6

E
n

er
g

y
 (

eV
)

L Γ X K Γ

Figure 3.2: Silicon bandstructure plot using the GGA single-particle eigenvalues.

less than 5 meV from their corresponding minima. After the optimized geometry is

calculated with a relaxation calculation performed with the converged k-grid, the

band structure of Si is obtained. As expected, the bandstructure plot depicted in

Fig.3.3, reveals that Si is an indirect gap semiconductor and the PBE energy gap

value is approximately 0.63 eV. This value is in good agreement with the PBE band

gap of 0.57 eV calculated in [131]. The valence band maximum is at Γ and the

conduction band minimum is at ∆, where the latter symmetry point lies between Γ

and X. As pointed out in Section 2.2.2, there is an inherent underestimation within

DFT of the true band gap of any insulator.

In order to understand the severity of this effect, we compare the PBE-obtained

band gap values with the experimental band gap values for Si [132]. These are

tabulated below in Table 3.1.

The next step in our endeavour is to perform post-processing to the band structure

according to Eq.(2.75). The three diagonal elements of the dielectric tensor ε,

i.e. εxx, εyy and εzz are identical since Si has a diamond lattice, and hence, it is

an isotropic system. Therefore, in the case of Si, we will present only one of the

components for simplicity. Before generating these quantities, it is worth noting from

PBE Exp.
Ei
g(eV) 0.63 1.14 [132]

Ed
g (eV) 2.55 3.40 [133]

Table 3.1: Silicon band gaps. The references for the experimental band gaps are
also cited.
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Figure 3.3: (a) The xx component of the imaginary part of the dielectric function
of Si plotted for different k-grids. (b) The converged spectrum of Si with k-grid
50x50x50 along with the error functions.

Eq.(2.75) that a high number of k-points is crucial in order to capture a smooth,

noise-free spectrum. To this end we conduct another k-grid test for the convergence

of Im(εxx) which is defined in Eq.(2.76). We incrementally increase the size of the

k-grid and quantify the gradual changes in the spectra by devising an error function

equal to the absolute value of the difference between any two consecutive spectra.

Once this error function reaches a critical value of approximately 10%, we consider

that particular spectrum converged with respect to the number of k-points. Here,

the grid consisting of 50x50x50 k-points was taken to be converged.

Let us now look at the imaginary part of the xx component of ε, Im(εxx) and its

real counterpart Re(εxx). They can be seen in Fig. 3.4. These components are

plotted in the same energy range, in which the visible spectrum lies as standardized

by the American Society for Testing and Materials in Ref. [8]. The photon solar flux

density rate reported in this source refers to photon energies between approximately

0.33 eV and 4.42 eV.

According to Eq.(2.76), only vertical transitions are considered in the calculation of

the imaginary part of the dielectric function. These transitions are basically between

single-particle states that are characterized by the same k-point. This implies that

the onset of the spectrum of the imaginary part of the dielectric function (and also of
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Figure 3.4: The real and imaginary parts of the xx-component of the dielectric
tensor for Si obtained from FHI AIMS postprocessing of the bandstructure.

the absorption coefficient) lies at the direct band gap energy since that is essentially

the energy of the lowest vertical transitions. In the case of Si, the onset of Im(ε)

is at its PBE calculated direct band gap energy, namely at 2.55 eV. We proceed

now to calculating the absorption coefficient in terms of the imaginary and real

part of the dielectric functions. An obvious shortcoming of the resulting absorption

spectrum is that its PBE determined onset is also drastically underestimated. In

order to correctly describe the onset, we apply a band gap correction or what is also

called a "scissors operator". This consists in rigidly shifting the energy range of the

absorption coefficient spectrum by a quantity ∆ equal to the difference between the

empirical direct gap value and the calculated one, i.e. ∆ = Eg
exp − Eg

PBE.

The "corrected" and "uncorrected" absorption coefficients can be seen together with

the spectrum of the solar flux in Fig. 3.5. Note the significant reduction in the

overlap between the solar flux and the absorption spectrum of Si when applying the

energy shift.

The next step involves calculating the efficiency for which we will follow the scheme

described at the beginning of the chapter. The two relevant quantities, the short-

circuit current density, Jsc, and the radiative recombination current density, Jr(V ),

are functions of the absorbance, which in turn depends on the thickness L of a
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Figure 3.5: The shifted (blue) and unshifted (green) Si absorption coefficient ob-
tained from the PBE bandstructure of Si along with the solar flux.

material. Obviously the thicker the material is, the larger is the absorbance. Hence,

the PCE is also a thickness-dependent quantity. To explore Jsc, Jr(V ) and PCE

for Si, we fix L to be equal to the experimental diffusion length, Ld = 200µm,

which was reported in Ref. [51]. It is reasonable to assume that the cell thickness

should coincide with the average length that carriers travel before recombining as,

in principle, in this way the ratio between the fraction of the absorbance and that

of the recombination, is maximized. We vary the voltage V between 0 and 5 V

in steps of 0.1 V in the calculation of the net current density via Eq.(3.3). The

efficiency obtained through Eq.(3.6) is 33.4%. This value is very close to the SQ

maximum efficiency obtained by Rühle [9] for a material with a band gap Eg = 1.34

eV under AM1.5G global solar spectrum. It is also worth noting that, since Jsc is

calculated by integrating the corrected absorption spectrum from Fig. 3.5 over the

solar spectrum, the amount of overlap between the two is essential. As mentioned

before, the entire absorption spectrum is shifted so that the PBE direct band gap,

2.55 eV, would match with the real experimental one of 3.40 eV, thus ensuring that

the onset of the calculated spectrum coincides with the one of the direct transitions

occurring in a real Si system. Here, however, the entire shifted absorption spectrum

including the portion below the direct band gap (for E < 3.40 eV) is considered.

According to Eq. (2.75), only transitions between states described by the same k-

73



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Photon energy (eV)

0

1×1021

2×1021

3×1021

4×1021

5×1021
So

la
rp

ho
to

n
flu

x
(s
−

1
m
−

2
eV
−

1 )

0

1×106

2×106

3×106

4×106

5×106

Ab
so

rp
tio

n
co

effi
cie

nt
α

(1
/c

m
)

Solar photon flux
Silicon shifted α (E)

Figure 3.6: The Si shifted absorption coefficient (blue) and the solar flux (red) over
the solar photon energy range. The portion below Eg=3.4 eV stems strictly from
the artificially broadened absorption spectrum. The area below this region is not
shaded in blue in order to emphasize how much of the overlap with the solar flux is
lost when omitting it.

point contribute to the dielectric function. However, in order to account for the more

realistic case where the system has a finite temperature and hence, the states have

a limited lifetime, the imaginary part of the dielectric function are represented by

Lorentzian functions that introduce an artificial broadening in the spectrum. This

leads to a non-negligible amplitude in the spectrum at energies below the direct

gap. Although this portion is up to three orders of magnitude lower than the one

above direct gap, the fact that it lies in the energy region where the photon flux

is the largest, leads to a high Jsc of 419.4 A/m2, which is similar to the predicted

value in Ref.[58]. If, in contrast, we completely neglect the artificially broadened

region below 3.40 eV and rely only on the contribution that is derived strictly from

the predicted direct transitions, the PCE drops to a value of 1.7%. The overlap

of this truncated absorption spectrum with the solar flux spectrum can be seen

in Fig. 3.6. This considerable reduction in the efficiency is not surprising as the

photon flux is up to an order of magnitude weaker in the region of the direct band

gap, hence leading to a much lower short-circuit current density of 5.6 A/m2. Si

devices are known to reach much higher efficiencies either due to the enhancement

of the cell architecture, which leads to a reduction of recombination losses [134] or
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due to an enhanced absorption, made possible through a technique that exploits

the wavelike nature of the light through "wave-interference-based light-trapping"

[135]. Having said that, we conclude that in this model the treatment of the pre-

gap artificial broadening is highly critical for indirect band gap materials. This

is especially true for those materials like Si whose direct gap is very large. The

portion of the absorption coefficient with the largest amplitude lies in the tail of the

solar spectrum. However, this study aims to understand the effect of the absorption

coefficient originating from the onset, namely the portion that is derived primarily

from the band structure and not the pre-edge region. It is commonly considered

that the pre-edge region is dominated by the amount of thermal and structural

disorder present in the material, such as doping and defects [136, 137]. Therefore,

we consider the strong impact of the artificial broadening on the PCE estimation

for Si and other possible indirect materials to be an indication of the fact that this

model would be better suited for direct band gap materials, or more generally, for

systems whose direct band gaps matches the energies where the solar flux exhibits

the highest amplitudes (at approximately at 0.8-1.1 eV). This condition could be

more relevant than the shape of the absorption coefficient itself.

3.3 MAPI

We further investigate a different material, namely methylammonium lead iodide

perovskite, in short MAPI. This hybrid perovskite has received increased attention

due to its remarkably high photoconversion efficiency. Here we employ the exact

same ground state orthorhombic phase structure that is investigated by the authors

of Ref. [130]. In order to be able to compare our findings with those of the pre-

viously mentioned authors, we conduct the band structure and dielectric function

calculations using LDA. Following the same convergence procedure described for

Si, we obtained the necessary k-grid for performing the band structure and the di-

electric function calculation in the case of MAPI, namely 20x20x20 k-points. As

can be seen in Fig. 3.7, the structure has a direct gap of 1.55 eV at the Γ point.

Along the Γ-Z line, the conduction band splits between a dispersed, parabolic band

crossing 1.7 eV at Γ, and two flat bands above and below it. This splitting of the
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Figure 3.7: Band structure of MAPI in the orthorhombic phase calculated using
LDA.

doublet of approximately 0.15 eV is due to the orthorhombic distortion [130]. One

can see another doublet above 2 eV attributed to the folding of a band as a result

of doubling the cell along the c-axis. Moving to the L-Γ direction, it appears that

the lowest conduction band becomes dispersive, while the doublet splits into a flat

band and a highly dispersive band, respectively. In contrast, the singlet band at the

very top of the valence is significantly dispersive.

With this band structure at hand, we can now calculate the real and imaginary part

of the dielectric function and compare them with those obtained by the previously

mentioned authors. They employed a similar methodology to calculate the dielectric

function, namely they omitted exciton effects and assumed a single-particle picture

to calculate the dielectric function with the interaction accounted by the Hartree

term via the RPA. The slight differences in amplitude of the various real and imag-

inary components in Fig. 3.8 that arise between our calculation and the one in Ref.

[130], might be due to the use of different basis sets, pseudo-potentials and other

possible slight variations in the determination of the imaginary part. Nevertheless,

there is good agreement between the two dielectric functions.

Once again we proceed to calculating the PCE. Firstly, we look at how the PCE

and the short-circuit current change with the omission of the pre-edge contribution.

For clarity, we depict the resulting truncated spectrum along with the complete one
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Figure 3.8: (a) The real parts of the xx, yy and zz components of the dielectric
function of orthorhombic MAPI. The solid lines are our calculated functions while
the dashed ones correspond to those of the authors of Ref. [130].(b) The imagi-
nary parts of the xx, yy and zz components of the dielectric function. Same line
convention applies.

in Fig. 3.9. Secondly, in order to understand how relevant the actual absorption

spectrum is, we compare its corresponding PCE with the PCE obtained when the

absorbance a(E) is a step function that is unity at energies higher or equal to the

band gap and zero below. Throughout this section we set the cell thickness L to

330 nm in order to match with that of the experimental work referenced in [138].

Similarly to our procedure implemented in the case of Si, we rigidly shift the LDA

calculated band gap (ELDA
g =1.55 eV) to the experimental one (Eexp.

g =1.57 eV) [139].

Therefore in the entire discussion that follows the direct band gap is assumed to be

at 1.57 eV.

The PCE obtained when taking the entire absorption spectrum including the broad-

ened region below the direct gap is 4.8% . The PCE becomes 27.2% when we

consider only the spectrum above the direct gap. However, the short-circuit cur-

rent densities do not change as drastically. They are 294.3 A/m2 and 229.0 A/m2,

respectively. Hence, despite the reduction in the Jsc when omitting the spectrum

below the gap, the PCE has an approximately six fold increase. This is due to the

significant decrease of the reverse saturation current J0 (which is equivalent here to

77



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Photon energy (eV)

0

1×1021

2×1021

3×1021

4×1021

5×1021
So

la
rp

ho
to

n
flu

x
(s
−

1
m
−

2
eV
−

1 )

0

2×105

5×105

8×105

1×106

Ab
so

rp
tio

n
co

effi
cie

nt
α

(1
/c

m
)

Solar photon flux
MAPI α (E)

Figure 3.9: The absorption coefficient of MAPI and the solar flux over the AM1.5G
solar photon energy range. The broadened tail of the absorption spectrum can be
seen below Eg=1.57 eV.

the radiation recombination current Jr). As seen in Eq. (1.10), J0 decays exponen-

tially with energy, which implies that it only reaches values that are significantly

higher than zero when the absolute value of the energy E is small, i.e. lower than

the direct gap. Hence, J0 calculated with the entire absorption spectrum is 2.3·10−2

A/m2, and only 2.3·10−20 A/m2 when the spectrum starts from the direct gap.

Furthermore, we do a similar test where we do not consider explicitly the absorption

coefficient. Instead, we fix the absorbance to a maximum value of 1 starting from

the band gap. Here we constrain the energy range to fully isolate the effect of

the pre-edge broadening. The obtained PCE was 6.2% and the Jsc recorded a

staggering value of 683 A/m2. This result shows that even in the case of maximum

absorbance above the band gap, the recombination current density dominates the

photoconversion, rendering the cell at least 4 times less efficient than if one takes

the DFT absorption. All the mentioned results are summarized in Table 3.2.

In order to correctly model the pre-edge region in MAPI, the authors of [130] applied

an "Urbach exponential tail" to the absorption coefficient spectrum. This approxi-

mation is supposed to realistically account for the disorder caused by the localized

states that emerge over certain temperatures ranges (at least between 200 K and
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620 K) at the absorption edge [140]. Therefore an empirical expression is introduced

to correct the absorption coefficient in the low spectral region i.e. below the direct

gap,

α = α0e
(E−Eg)/EU , (3.7)

where α0 is the absorption coefficient at the direct band gap energy and EU is the

so-called Urbach energy. This denotes the slope of the exponential tail and it is, as

mentioned before, dependent on temperature [137, 140]. This parameter is also very

much system dependent and it roughly indicates the degree of structural disorder

in the crystal. According to [137], MAPI has an EU of approximately 15 meV.

This rather small value indicates a low degree of structural disorder, as opposed to

materials such as a-Si that have more localized states due to their indirect band gap

and hence a larger broadening in the Urbach tail [137].

In Fig. 3.10 one can see our originally calculated absorption coefficients along the

main Cartesian directions together with their corresponding pre-edge corrected ones.

Since the orthorhombic MAPI is an anisotropic system [141], the xx, yy and zz com-

ponents of the dielectric function and hence of the absorption coefficient, are not the

same. As one can see, the slowly increasing tails of the absorption coefficients below

the band gap are corrected into sharply increasing exponential tails that precede

the band gap. We also show how the averaged absorption coefficient compares with

the one in Ref. [130]. The latter has a slightly higher amplitude at higher energies

possibly due to a small difference in the processing of the real and imaginary parts

of the dielectric function.

With our corrected absorption spectrum, we obtain the following: PCE = 27.0%

Table 3.2: The short-circuit current density Jsc, the reverse saturation current den-
sity J0 and the photoconversion efficiency PCE are reported for the following cases:
the absorption coefficient includes the pre-band-gap artificial broadening, the ab-
sorption coefficient only includes the post-band-gap artificial broadening, the ab-
sorbance is fixed to 1 starting from the direct band gap and the absorption coefficient
is corrected below the direct gap with an Urbach exponential tail.

α(E), E ∈ [0.33, 4.42] eV α(E), E ≥ Eg a(E) step fct. a(E) Urbach tail
Jsc (A/m2) 294.3 229.4 683.7 232.0
J0 (A/m2) 2.3 · 10−2 2.3· 10−20 1.5 5.3· 10−20

PCE (%) 4.8 27.2 6.2 27.0
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Figure 3.10: (a) xx, yy, zz components of the real and imaginary parts of the
dielectric function of orthorhombic MAPI. The solid lines depict the uncorrected
absorption spectra while the dashed ones those corrected with a pre-gap Urbach
exponential tail. (b) Our absorption coefficient averaged over the 3 corrected com-
ponents (solid line) along with that of the authors of Ref.[130] (dashed line).

and Jsc = 232 A/m2, respectively. Our value for the short-circuit current density

slightly exceeds the experimentally obtained one of 211.5 A/m2 [138]. However,

considering the potentially different methods through which this experimental re-

sult was obtained, we find to be in good agreement with it. Also, the PCE that the

authors of Ref.[130] obtain for L> 300 nm is larger than 23% and for L=300 nm

they compute Jsc=230 A/m2. Both these quantities seem to match well with ours.

Compared to the case where the artificial broadening in the absorption is omitted,

there is no significant improvement in Jsc, since the additional tail stemming from

the Urbach correction is very sharply increasing and hence, its integral is very small

. Perhaps more surprising is the fact that J0 remains quite similar as well (here

J0=5.3·10−20 A/m2) despite the fact that, as noted earlier in this section, it is ex-

tremely sensitive to any changes made to the pre-edge region. It seems that due to

the very small empirical Urbach energy, EU , the Urbach tail is significantly larger

than zero within a very short energy range. The J0 is a function of the absorption

coefficient integrated over the entire energy range of the AM1.5G spectrum and it

is set to be equal to the radiative current density defined in Eq.(3.4).

Fig. 3.11 illustrates the black-body flux that is emitted during recombination with
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Figure 3.11: Black body emitted flux due to electron-hole recombinations when the
absorption coefficient of MAPI does not include any amplitude below the direct gap
(orange solid line) and when the absorption coefficient is corrected below the gap
with the Urbach exponential tail (purple dashed line).

the addition of the Urbach tail. Due to the exponential function describing the pre-

edge absorption coefficient, the emitted flux now correctly depicts a very narrow

black body flux curve. As expected, the flux peaks close to the band gap energy and

then dramatically drops to zero at larger energy values. The drop is due to the dom-

inating exponential eE/kT in the denominator, which decays fast for energies larger

than the band gap. So overall, the change in the recombination current density was

roughly doubled. However, the PCE and the short-circuit current densities are very

close when considering the absorption coefficient only from the band gap onwards

compared to the case where the absorption coefficient includes the Urbach pre-gap

correction.

Hence, it is tempting to assume that the correction is not very relevant when de-

termining these quantities. However, it must be noted that the very slight improve-

ment was highly dependent on the value of EU which is an empirical and material-

dependent quantity. Here it is quite circumstantial that EU for MAPI matches the

room temperature energy, hence rendering J0 insignificant. This might be highly

different for other systems, where the pre-gap absorption coefficient might either

require a substantially larger EU or might not even be correctly modeled below the

gap with an Urbach tail. It would not be reasonable to rely on the similar PCE

obtained for MAPI with an Urbach corrected absorption (27.0%) and with a pre-
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gap truncated one (27.2%), respectively, to justify calculating the PCE for other

materials just by considering the latter modified absorption.

Let us look at Jsc instead. As seen in Table 3.2, the short-circuit current density

did not change as dramatically as the PCE did when considering the entire pre-gap

artificially broadened absorption coefficient spectrum. This fact leads us to conclude

that the short-circuit current density is, in this model, a more meaningful quantity

than the PCE, despite the fact that it only describes the absorption performance

of a material, while ignoring the losses derived from recombination.

3.4 J∗sc and L∗

In the light of the previous section, we introduce J∗sc, an absorption descriptor that

quantifies 95% of the saturated short-circuit current density of a material and L∗,

the required thickness to achieve that value of the short-circuit current density.

Obviously when comparing the Jsc obtained with the pre-edge truncated absorption

coefficient and the Jsc calculated with the artificial broadening in the absorption

coefficient, the former is closer to the most accurate Jsc obtained with the pre-edge

correction. Hence, we will simply consider the truncated absorption for the next

materials.

The next results are all obtained from DFT-post processing calculations obtained

with the PBE functional for MAPI, Si, CdTe, InP and GaAs. A visual representation

of the short-circuit current density as a function of the absorption thickness can be

seen in Fig. 3.12. In Tables 3.3 and 3.4, we report the values of the employed lattice

parameters and of the PBE calculated and experimentally determined band gaps,

as well as those of the calculated J∗sc and L∗ along with the corresponding empirical

values.

Firstly, let us point out that Si has a significantly small short-circuit current density

J∗sc due to the complete omission of the absorption coefficient below the direct band

gap of 3.4 eV. Accounting only for the very weak solar flux excitation spanning the

energy window 3.4 eV-4.4 eV, J∗sc and L∗ derived from this model are highly underes-

timated for Si. Studies that have proven record efficiencies and short-circuit current
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densities for Si have relied on sub-band gap absorption using the Urbach exponen-

tial tail [135], among other optimizations such as geometrical ones. These lead to

so-called "wave-interference-based light-trapping" [135] and to very low power loss of

the generated carriers [134]. Moreover, we would like to stress that the experimen-

tal references are based on measurements of systems that are not pristine but have

defects that can lead to carrier trappings and account for sub-band absorption too.
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Figure 3.12: The short-circuit current density of five materials as a function of
the absorption thickness. The value, at which 95% of the maximum is reached, is
illustrated with a circle.

Table 3.3: Lattice parameters and direct PBE and experimental band gaps from
literature for the five materials.

a0(Å), b0(Å), c0(Å) Eg(eV ), Eexp
g (eV )

MAPI 8.83, 8.55, 12.58 1.55, 1.57 [139]
Si 5.40, - , - 2.55, 3.40 [133]

CdTe 6.62, - , - 0.59, 1.47 [132]
InP 5.94, - , - 0.46, 1.35 [132]
GaAs 5.60, - , - 0.15, 1.42 [132]

Table 3.4: J∗sc and L∗ for the five materials along with the experimentally measured
Jsc and L from literature.

J∗sc(A/m2), L∗(µm) Jexpsc (A/m2), Lexp(µm)
MAPI 228.4, 0.87 211.5, 0.33 [138]
Si 5.6, 0.08 395, 100 [134]

CdTe 285.5, 0.81 385, 1.64 [142]
InP 329.2 , 0.97 397, 10 [143]
GaAs 248.7, 0.65 265, 1.57 [144]

83



In the case of GaAs based cells, for instance, the architecture of the device is com-

plex, containing a GaP/Si template on which several layers of n- or p-doped GaAs,

GaInP as a back surface field layer, n-AlInP as a window are grown. Hence, the

measured short-circuit current density and the absorbing thickness are only roughly

comparable to our calculated values. Si essentially is an indirect gap material that

overall follows a different absorption mechanism whereby electrons transitions are

phonon-assisted [133]. Therefore if we somewhat justifiably omit it from the list,

the general ranking in terms of Jsc is preserved, yielding InP and CdTe as the most

absorbent materials, followed by GaAs and MAPI. However, it is worth noting that

the absorption thickness of the real MAPI and GaAs cells, namely of 0.33 µm [138]

and 1.57 µm [144], respectively, are incredibly small due to the low degree of struc-

tural disorder which basically results in almost no recombination loss due to deep

states trapping [137].

3.5 Conclusion

In conclusion, this part of our work has revealed that the absorption coefficient de-

rived from postprocessing the band structure can, in principle, reveal the theoretical

efficiency of photoconversion. We also found that the treatment of the pre-edge ab-

sorption spectrum, which is entirely governed by the degree of disorder characteristic

to the system and cannot realistically be accounted for in an ab− initio description,
is particularly important for a large set of materials. In the case of Si, the PCE

drops drastically, namely from 33.4% to 1.7% when we omit the pre-edge absorp-

tion. Our analysis hence showed that indirect-gap materials are more susceptible to

the inclusion of the pre-edge absorption contribution to the spectrum. We further

emphasize the importance of correctly treating the very narrow pre-edge for a direct

gap material such as methyl ammonium lead iodide. In fact, due to this particu-

lar material’s structural characteristics, the complete omission of the edge better

described the absorption process, yielding a realistic short-circuit current density

and efficiency. We recognize, though, that a slightly more disordered material with

a direct gap could have a broader pre-edge absorption relative to MAPI. This, in

turn, could lead to a significantly larger recombination current density and hence,
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to a reduction in the PCE, compared to the case where the pre-edge absorption

is omitted. Nevertheless, even in such a case, the short-circuit current should not

significantly change upon the complete omission of the pre-edge absorption. Since

this outlook on efficiency prediction proved to be slightly incomplete within our

model, we resorted to describe materials in terms of their absorption characteristics

instead. As there is a rough threshold thickness for each system beyond which the

Jsc is essentially saturated, we decided to define the 95% of the maximum saturated

value of the Jsc, i.e. J∗sc, as the characteristic parameter describing the near max-

imum short-circuit current density. The corresponding thickness yielding J∗sc was

termed L∗ and it indicates the minimum necessary thickness to reach maximal val-

ues of the short-circuit current density. These descriptors were tested for three other

direct gap materials and were proven to be fairly well in agreement, in particular

the short-circuit current density, with experimental works.
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4 Interlayer dielectric function of

a type-II van der Waals semi-

conductor: the HfS/PtS heter-

obilayer

4.1 Introduction

In the previous chapter we have shown that within an ab-initio framework based on

DFT band structure, we employed the short-circuit current density as a benchmark

to make reliable predictions regarding the absorption capabilities of compounds.

However, another process that requires fine-tuning in a PV system consists in mini-

mizing the recombinations of the photogenerated free carriers. This can be achieved,

if they are spatially separated. For this purpose, heterostructures composed of two-

dimensional materials are ideal candidates.

Two-dimensional transition metal dichalcogenides are a very suitable materials class

for PV applications, because of their well-developed production techniques and gen-

erally attractive electronic properties [41, 145]. Many of the known 2D TMDs have

a semiconductor bandstructure and possess similar band gaps in the visible to near

infrared range, high carrier mobility, strong photoluminescence and exciton binding

energies that can be tuned with the number of layers that are stacked on top of each

other. These are all features that make them strong candidates for various optoelec-

tronic devices such as solar cells, photo-detectors and light-emitting diodes [146]. In

general, 2D materials are layered compounds characterised by a crystalline planar
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structure held together by strong in-plane covalent bonds and weak out-of-plane

van der Waals (vdW) forces [147]. This peculiar configuration allows them to be

exfoliated into thin planes or monolayers (MLs) by either mechanical or chemical

means, and to be re-assembled on top of each other to build a multitude of different

vdW heterostructures. Such heterostructures can be designed layer by layer without

being constrained by the lattice mismatch [146, 148, 149], a manufacturing flexibil-

ity that enables the practical realization of novel properties otherwise difficult to

obtain.

For instance one can engineer heterogeneous bilayers (HBLs) having the so-called

type-II band alignment, where the conduction band minimum (CBM) resides on one

layer type, while the valence band maximum (VBM) is on the other (see Fig. 4.1). In

this case spatial separation of the electron-hole pairs (excitons) is possible, such that

the ground state of the exciton (the thermalised exciton) ends up having the charge

carriers of different polarity located on the two different layer types. Such inter-layer

excitons may form either already during the light absorption, or afterwards as the

product of scattering. If they form during absorption, some inter-layer transitions

might appear as additional features in the absorption spectra, overall increasing

the absorption efficiency. In type-II HBLs, inter-layer transitions could occur at

an energy below the absorption or emission edges of the individual layers (intra-

layer transitions). This is the most favourable situation for detection as no other

Figure 4.1: Type-II band alignment. The differently coloured blocks represent the
valence and conduction bands of the two monolayers making up the bilayer. The
bi-layer bandgap, ∆E, is between the valence band maximum of one layer type
and the conduction band minimum of the other. The conduction and valence band
offsets between the individual layers are denoted as ∆Ec and ∆Ev, respectively.
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transitions are available in that spectral range. Inter-layer excitons recombine more

slowly compared to intra-layer ones, a feature that can be detected experimentally.

Such long-living inter-layer excitons have indeed been previously identified in TMDs

HBLs in photoluminescence experiments [48, 150, 151, 152].

The formation process of inter-layer excitons in vdW materials is still debated. Some

studies point to the existence of inter-layer excitations in the absorption spectra. For

instance in Ref. [41] Bernardi et al. state that the absorption onset of the MoS2/WS2

bilayer, as calculated with highly-accurate many-body perturbation theory, is shifted

to a lower energy as compared to that of monolayers. This feature is taken as a

signature of an interlayer charge-transfer excitation. In contrast, other works report

the absence of inter-layer effects in the HBLs absorption spectra [48, 153, 154].

Andersen et al. [155] proposed a model for computing the dielectric function of

multi-layer systems based on ab initio calculations for monolayers combined with a

classical electrostatic model for dielectric screening. Interlayer hybridization such as

the creation of bonds between layers is not included in the model, which nonetheless

yields a remarkably good agreement with full ab initio calculations of the dielec-

tric function. This confirms that interlayer coupling is largely a screening effect

meaning that it is due to the long-range electrostatic interaction between layers

and that electronic inter-layer transitions are only weak. Komsa et al. performed

first-principles calculations of the dielectric function of MoS2/WS2 heterostructures

with many-body perturbation theory in order to accurately capture excitonic ef-

fects [156]. They found that electronic interlayer excitations are very weak, and

that the absorption spectrum of the HBL resembles a superposition of those of the

constituent MLs [156].

In general, screening effects are hard to distinguish from inter-layer excitons in

absorption spectra of type II heterostructures. This is because they can both lead

to a bandgap reduction and hence to a red-shift in the absorption spectra. In order

to separate screening effects from interlayer transitions, here we decompose the

dielectric function, as calculated with ab initio density functional theory (DFT), into

inter-layer and intra-layer components. Our heterostructure of choice is HfS2/PtS2,

a decision motivated by two main reasons. On the one hand, GW calculations for the
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constituent monolayers exist [157] and suggest that the HBL is indeed of type II. On

the other hand, HfS2 and PtS2 have an almost identical in-plane lattice parameter

so that a commensurate bi-layer unit cell can be constructed without the need for

large supercells.

4.2 Methods and Computational Details

All the calculations have been performed with DFT [158, 159]. We have chosen

the specific numerical DFT implementation contained in the FHI-AIMS all-electron

package [108, 160] that adopts a numerically tabulated atom-centered orbitals basis

set [161]. In order to ensure sufficient accuracy we have used the “tight" basis

set constructed using the first tier numerical orbitals for the metal atoms and a

modified version of the first tier for the sulphur atoms. Geometry relaxations have

been performed with an all-electron potential and the GGA of the exchange and

correlation energy, as parametrised by PBE [83]. A convergence threshold of 10−6 eV

based on the total energy is used for the Kohn-Sham self-consistency cycle. The

van der Waals interaction between layers has been taken into account by using the

Tkatchenko-Scheffler van der Waals correction scheme [106]. A force convergence

threshold of 10−5 eV/Å and a 10×10×1 k-mesh have been used for the structural

optimization of the HfS2 and PtS2 MLs.

Ground-state bandstructure calculations have been carried out with PBE and also

with the hybrid HSE06 [72] exchange-correlation functional. Since the absorption

spectrum is highly sensitive to the size of the direct bandgap, we have also employed

HSE06 for the calculation of the dielectric function. In fact, HSE06 typically corrects

for the bandgap underestimation produced by semilocal functionals such as PBE.

We have obtained the layer-projected bandstructure of the HfS2/PtS2 HBL with

VASP, the Vienna Ab initio Simulation Package [110]. VASP uses pseudopotentials

and it is based on the projector augmented wave method. In this case the number

of valence electrons for each distinct species is as follows: 12 for hafnium, 16 for

platinum and 6 for sulphur. We have employed a 10×10×1 Monkhorst-pack mesh

and a plane-wave cutoff energy of 400 eV.
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Figure 4.2: Total energy as a function of compressive/tensile strain for monolayers of
HfS2 (blue) and PtS2 (yellow). The optimal lattice constant, aHfS2/PtS2

0 , minimizing
the total strain energy is shown by an arrow.

Since the in-plane lattice parameters of the relaxed HfS2 and PtS2 monolayer are

not identical (aHfS2
0 = 3.64 Å and aPtS2

0 = 3.57 Å), constructing the primitive cell for

the HfS2/PtS2 HBL imposes a small strain on the two layers. We have computed

the HBL in-plane lattice parameters as follows. Firstly, the total energy of the two

MLs, HfS2 and PtS2, has been calculated as a function of the in-plane strain, and

fitted to a quadratic equation. We have then minimised the sum of such quadratic

functions in order to find the optimal in-plane lattice constant of the HBL. This is

the one that minimises the total strain energy and it is found to be aHfS2/PtS2
0 = 3.60

Å (see arrow in Fig. 4.2). Throughout this work, in the case of the homogeneous

(HfS2/HfS2 and PtS2/PtS2) and heterogeneous (HfS2/PtS2) bilayers, we have shifted

the second layer relative to the first one by a distance d equal to the average of the

relaxed bulk HfS2 and PtS2 out-of-plane lattice parameter, namely d=5.24 Å. All

the fractional in-plane atomic coordinates of the MLs, homogeneous bilayers (BLs)

and of the HBL are kept fixed, namely they are identical to the in-plane coordinates

of the relaxed MLs relative to the HfS2/PtS2 HBL lattice constant aHfS2/PtS2
0 . This is

done in order to compare results for the homogeneous ML and BL systems to those

for the HBL, and to single out electronic effects from those arising from structural

relaxation.

For monolayers and bilayers calculations choosing an appropriate out-of-plane lat-

tice parameter, c, is equivalent to choosing the size of the vacuum gap between the

periodic replicas of the cell. This needs to be optimised carefully in order to obtain
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the correct 2D limit of the various quantities to calculate. In our case we have used

the imaginary part of the dielectric function, Im(ε), as the control quantity and

chose the value of c for which there was less than 1% variation in the amplitude of

Im(ε). The resulting c was found to be 22.62 Å. Note that the absolute scale of the

dielectric function depends on the volume of the unit cell used for the calculation

[see Eq. (2.75) in Chapter 2]. As such our calculated dielectric functions are not

directly comparable with experiments. However, since for all the structures inves-

tigated we have maintained the same in-plane and out-of-plane lattice parameters,

respectively a
HfS2/PtS2
0 and c, they can be compared directly with each other. A

k-grid of 30×30×1 points was found to converge the dielectric function reasonably

well. The converged k-grid was established once the maximum value of the difference

between two spectra of different k-grids was less than 10%, as discussed in Chapter

3. A Lorentzian function of width 0.1 eV was employed to construct smooth dielec-

tric function spectra. Since the investigated systems have a finite band gap, the

intraband term of the dielectric function is neglected and thus, εinterij = εij. Thus,

throughout this work, the entries of the part of the dielectric tensor, εij, have been

calculated through expression (2.75) defined in Chapter 2.

In order to single out quantitatively the contributions to the dielectric function

originating from the intra- and inter-layer transitions we have applied the following

procedure. We denote with α and β two distinct subsets of the basis functions

placed respectively on the α and β layer, namely we partition the Kohn-Sham wave

functions as

|ψnk〉 = |ψαnk〉+ |ψβnk〉 . (4.1)

The momentum matrix elements defined in Chapter 2 can be then decomposed

as

pj,n′,n,k = pααj,n′,n,k + pαβj,n′,n,k + pβαj,n′,n,k + pββj,n′,n,k , (4.2)

with pαβj,n′,n,k = 〈ψαn′k|− i~∇j |ψβnk〉. This allows us to separate the dielectric function

of Eq.(2.74) into three distinct components

εij(ω) = εinter
ij (ω) + εintra

ij (ω) + εmixed
ij (ω) , (4.3)
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where the inter-layer component, εinter
ij (ω), is restricted to products of inter-layer

matrix elements of the form pαβi,n′,n,kp
αβ∗
j,n′,n,k and pαβi,n′,n,kp

βα∗
j,n′,n,k, the intra-layer com-

ponent, εintra
ij (ω), contains only products between the intra-layer matrix elements of

the form pααi,n′,n,kp
αα∗
j,n′,n,k and pααi,n′,n,kp

ββ∗
j,n′,n,k, and the “mixed” component, εmixed

ij (ω),

is made up of all the remaining products between intra-layer and inter-layer matrix

elements, pααi,n′,n,kp
αβ∗
j,n′,n,k, pααi,n′,n,kp

βα∗
j,n′,n,k, p

αβ
i,n′,n,kp

αα∗
j,n′,n,k, and p

βα
i,n′,n,kp

αα∗
j,n′,n,k.

Note that the three contributions to the dielectric function introduced by our proce-

dure do not correspond, as those of any other partition, to any physical observables.

However, they enable us to single out transitions between conduction and valence

states localised on the different layers and to study how these contributions evolve

when changing the structure, or the interaction between the layers. As such, the

quantities introduced in Eq. (4.3) have to be considered in the same spirit as the

orbital populations in the Mulliken analysis [162], namely as useful to understand

trends. The mixed component of the dielectric function may be thought as the

analogue to the overlap Mulliken population and it does not possess a transparent

physical interpretation.

4.3 Results and Discussion

4.3.1 Bandstructure

We begin by discussing the calculated bandstructures of the fully relaxed MLs and

of their corresponding BLs. These are presented in Fig. 4.3, where we report results

for HfS2 [panel (a)] and PtS2 [panel (b)], computed at both the PBE and HSE level.

HfS2 ML crystallises in the 1T form (its bulk structure belongs to the trigonal sys-

tem, space group P 3̄m1, No. 164) and it is an indirect gap semiconductor with the

VBM at the Γ point and the CBM at M. The only substantial difference between the

PBE and HSE results is the increased bandgap obtained with HSE, while the band

curvatures (effective masses) remain essentially identical for the two functionals.

The HSE-calculated bandgap is 1 eV smaller than that computed with G0W0 start-
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ing from a local-density-approximation bandstructure (G0W0@LDA) as reported in

Ref. [157] (see Table 4.1 for a detailed comparison of the various bandgap energies).

The bandgap of HfS2 has been measured in the past with a combination of angle-

resolved photoemission and inverse photoemission. Bulk HfS2 shows the significant

indirect gap of 2.85 eV between the Γ and the M points [163]. Unfortunately the

same measurement is not available for the ML form. In contrast a direct bandgap

has been measured at Γ for both bulk [163] and for few-layer HfS2 [164] to be around

3.6 eV and rather independent of the number of layers. Such value, which can be

extrapolated to the ML, lies in between our computed HSE result of 2.97 eV and

the G0W0@LDA one of 3.97 eV reported in [157]. This gives us confidence that our

HSE description of the material is quantitatively sound. When forming the bilayer

there is a small reduction of the bandgap (in the region of 200/300 meV). This is

due partly to the dielectric screening by the other layer, and partly to the small in-

terlayer interaction, which splits the bands. Notably, the VBM now moves slightly

away from the Γ point to locate along the Γ-M symmetry line (for both HSE and

PBE).

PtS2 ML also crystallises in the 1T form and presents a semiconducting bandstruc-

ture with the CBM sitting along the Γ-M line, a feature common to both PBE and

HSE. The VBM is also along the Γ-M line, but the precise location is different for

PBE and HSE. Notably, the VBM is almost degenerate, since there is another point

along the Γ-K direction, which is extremely close to the valence top. Such band-

Figure 4.3: Bandstructure for (a) HfS2 and (b) PtS2 in their monolayer (left-hand
side panels) and bilayer (right-hand panels) form. The red and black bands corre-
spond to results obtained with the GGA and HSE functionals, respectively.

94



∆EG0W0
d ∆EG0W0

i ∆EHSE
d ∆EHSE

i
HfS2 ML 3.97 (Γ) 2.98 (Γ-M) 2.97 (Γ) 1.98 (Γ-M)
HfS2 BL - - 2.67 (Σ) 1.77 (Σ-M)
PtS2 ML 3.14 (T′) 2.95 (Σ-Σ) 2.61 (Σ) 2.49 (Σ-Σ)
PtS2 BL - - 2.08 (Σ) 1.69 (Σ-Σ)

HfS2/PtS2 HBL - - 2.22 (Σ) 1.41 (Σ-M)

Table 4.1: Direct, ∆Ed, and indirect, ∆Ei, bandgaps (in eV) of HfS2 and PtS2
MLs and BLs as well as of the HfS2/PtS2 HBL. Results are presented for the HSE
functional. We also report the results of reference [157] obtained with G0W0@LDA
for the MLs. In that case the calculations were carried out at the relaxed geometry.
In brackets we report the position in k-space for the direct bandgap and the position
of both the VBM and CBM for the indirect ones. Note that here Σ/Σ′ denotes
a generic point along the Γ-M line and not the high-symmetry point at midway
between Γ and M.

structure returns us PtS2 ML as an indirect gap semiconductor, where the CBM

and VBM are quite close in k-space. Furthermore, the direct gap is only about

150 meV larger than the indirect one, meaning that PtS2 ML is almost a direct

bandgap semiconductor. The same situation is found also in G0W0@LDA calcula-

tions [157], and now the HSE gap (either direct or indirect) is only about 0.5 eV

smaller than that from G0W0@LDA. We are not aware of any photoemission and

inverse-photoemission experiment for PtS2, so an experimental determination of the

quasi-particle gap is not available. However, the optical absorption edge of ML PtS2

has been measured [165] in the region of 1.6 eV and found to be very sensitive to

the number of layers. This is broadly consistent with our data, which returns a

quasi-particle gap larger than such value, but does not provide the opportunity of

establishing a full quantitative comparison.

When PtS2 is taken in its BL form a few significant differences appear with respect

to the ML case. The most striking one is a drastic reduction of the bandgap (by

more than 0.5 eV) arising from substantial band-splitting. This is consistent with

the strong absorption edge reduction as a function of the number of layers found

in experiments [165], and points to an interlayer interaction much stronger than

in the HfS2 case. Such interaction produces large distortions of the valence band,

which now presents two clear quasi-degenerate VBM near Γ along the Γ-M and Γ-K

directions. In fact a closer inspection reveals that the VBM is formed by a set of

k-points arranged arranged along a hexagon at the edge of the 2D Brillouin zone, a
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Figure 4.4: Bandstructure of the HfS2/PtS2 HBL calculated with HSE. The band
colour encodes the quantity f =DOSHfS2/(DOSHfS2+DOSPtS2), namely the projec-
tion of a particular eigenstate on the different layers. Blue bands are localised on
the HfS2 layer, orange ones on the PtS2 layer.

fact already observed before [166].

Next we move to the bandstructure of the HfS2/PtS2 HBL, which is presented in

Fig. 4.4. Since the electronic interaction across the van der Waals gap is typi-

cally weak, one expects the wave-functions to be rather localised on the individual

layers. As such it is useful to attribute to each energy point, εnk, in the band-

structure a layer character. This is obtained by computing the following quantity,

f =DOSHfS2/(DOSHfS2+DOSPtS2), where DOSX is the density of states projected on

layer X of the eigenfunction, |ψnk〉. Thus, for f = 1 the state is entirely localised on

the HfS2 monolayer, while for f = 0 it is entirely localised on the PtS2 layer. Such

information is translated into a colour code in Fig. 4.4. Clearly the HfS2/PtS2 HBL

presents a type-II band alignment since the CBM is almost completely localised on

HfS2, while the entire valence band is mostly on PtS2. It is interesting to observe

that, while the conduction band resembles closely that of the HfS2 monolayer, the

valence one is much more similar to that of the PtS2 bilayer, with the k-degeneracy

discussed before. This suggests that the interlayer interaction affects the two con-

stituent materials differently, meaning that the two constituent monolayers have

different susceptibility. The resulting hetero-bilayer is also an indirect semiconduc-

tor with an HSE bandgap of 1.41 eV between the M point (CBM) and a point along

the Γ-M line (VBM). This is smaller than the indirect gaps of all the other struc-

tures investigated. In contrast, the direct gap is computed with HSE to be 2.22 eV,
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Note that in the case of MLs we have scaled ε by a factor two for comparison. Panels
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tion into intra-layer (“intra”), inter-layer (“inter”) and “mixed” components for the
HfS2/PtS2 HBL (see Methods section for details). For comparison we also present
the sum of the dielectric functions of the HfS2 and PtS2 MLs.

namely it is smaller than the corresponding one for HfS2 BLs, but larger than that

of the PtS2 BLs. This means that the three bilayer structures investigated have all

a different absorption edge.

4.3.2 Dielectric function

We now proceed to analyse the dielectric function and in particular its imaginary

part, which is proportional to the absorption coefficient. In our discussion we sepa-

rate the in-plane, ε‖, and out-of-plane, ε⊥, components and consider a spectral range

between 0.3 eV and 4.3 eV, namely within the solar spectrum range as standardised

by the American Society for Testing and Materials [8]. Our HSE results are pre-

sented in Fig. 4.5, where panels (a) and (b) show the total dielectric functions for

all the structures investigated, while panels (c) and (d) focus on the decomposition

of the dielectric function of the HfS2/PtS2 HBL into the inter-layer, intra-layer and

mixed contributions.
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Let us look first at ε‖ for the MLs and the homogeneous BLs [Fig. 4.5 (a)]. In all

cases the absorption edge, as expected, corresponds to the direct HSE bandgap (see

Table 4.1). For HfS2 there is little difference in the dielectric function when going

from the ML to the BL, despite the change in direct bandgap by about 300 meV.

In contrast, there is a significant red-shift in the case of PtS2. Interestingly, while

for HfS2 the in-plane component of Im (ε) of the BL is essentially twice that of the

ML (note that in Fig. 4.5 the ML plots have been rescaled by a factor 2), this is

not the case for PtS2, where the two functions are rather different. Such feature

simply reflects the significant band distortion in PtS2 introduced by the inter-layer

interaction and it is in agreement with experimental evidence [165]. The situation for

the out-of-plane component, ε⊥, is somewhat different [Fig. 4.5(b)], mostly because

now also HfS2 displays an absorption-edge redshift when going from ML to BL,

as expected from the corresponding reduction of the direct bandgap. Overall all

perpendicular components of the dielectric function of the MLs are different from

those of the corresponding BLs.

The dielectric function of the HfS2/PtS2 HBL, as expected, is different from all the

others. Most importantly its absorption edge is always in between that of the ho-

mogeneous HfS2 and PtS2 bilayers, although it is lower than that of all the MLs

(in particular for the perpendicular component). This reflects the relative mag-

nitude of the direct gaps of the various structures. A distribution of absorption

edges as the one described here, unfortunately, prevents the unique identification of

HfS2/PtS2 HBLs in a mixture containing stacks with different numbers of layers, as

those produced by liquid-phase exfoliation [167]. In fact, the most high-throughput

means of producing 2D hetero-structures is by re-aggregating 2D materials previ-

ously exfoliated. In the process, however, one retains little control of the number of

layers making the various structures, so that together with hetero-bilayers one will

find in the mixture homo-bilayers, monolayers and a multitude of other structures

comprising more than two layers [167, 168, 169]. As the lower part of the absorp-

tion is always dominated by structures consisting of PtS2, the absorption edge of

HfS2/PtS2 HBLs will never be spectrally separated, hence such structures will not

be detectable by a single optical measurement.

The absorption edge of the HfS2/PtS2 HBL is just above 2 eV, where we find the
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first direct, inter-layer, transition. However, close to the two VBM there are several

intra-layer transitions within PtS2 available. These have an energy just above that

of the direct gap (inter-layer), so that they can contribute close to the absorption

edge. In order to identify the different types of transition, in panel (c) and (d)

of Fig. 4.5 we decompose the dielectric function of HfS2/PtS2 HBL into its inter-

layer, intra-layer and mixed contributions and these are compared with the sum of

the dielectric functions of the individual isolated monolayers. Interestingly, while

the in-plane component ε‖ of the HBL is essentially the sum of those of the two

monolayers (except for a small shoulder just below 2.5 eV), the out-of-plane part is

significantly different, since its absorption edge is redshifted by about 0.5 eV with

respect to the sum of the monolayers. This is a similar behaviour to that found

when going from monolayers to homogeneous bilayers.

When looking at the different layer-resolved components the most striking feature

concerns their relative amplitude. In fact the spectrum is dominated by the intra-

layer component with the inter-layer one accounting for only about 1% of the total

spectrum (note that the inter-layer ε has been multiplied by a factor 100 in Fig. 4.5).

The mixed component instead contributes to about 10% and can also take negative

values. This essentially means that inter-layer excitons indeed are available but

they produce an absorption signal about 100 times smaller than their intra-layer

counterparts. This is the same order of magnitude as the factor 200 found in resonant

photocurrent measurements of the MoSe2/WSe2 HBL [170]. It has to be said that

the spectra calculated here do not take into account the exciton binding energy. In

bilayers both intra- and inter-layer excitons can have binding energies that are some

fraction of an eV. However, the latter energy is generally significantly smaller than

the former [171, 172, 173]. Thus, the actual relative positions of the excitations

can be different from those calculated here, with the PtS2 intra-layer excitations

being at a lower energy than the inter-layer excitations. The main reason for such a

small amplitude of inter-layer transitions has to be associated with the large spatial

separation of the electron and hole wave-functions, which reside on different layers

and make the dipole matrix elements small.

In order to enhance the amplitude of the interlayer transition, we explore the effect

of compressing the stack. This is obtained by incrementally decreasing the interlayer
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Figure 4.6: Imaginary part of the dielectric function as function of the interlayer
distance d. In panel (a) through (d) we show the inter-layer, intra-layer and mixed
parts together with the total spectrum for the in-plane component of ε. Panels (e)
through (h) report the same quantities for the out-out-of-plane component.

distance of the HBL from the equilibrium value of d = 5.2 Å to d = 4.0 Å. The cor-

responding spectra are depicted in Fig. 4.6. There are two clear features appearing

as the inter-layer distance is reduced, common to both the in-plane and out-of-plane

component of the dielectric function. On the one hand, there is a continuous red-

shift of the absorption edge, which is sharper for the in-plane component than for

that out of plane. This is as large as 1 eV for an inter-layer distance reduction of

1 Å. On the other hand, we can observe the formation of a well-isolated absorption

peak just at the absorption edge, in particular for small interlayer distances. Thus,

we observe that reducing d has profound effects on the dielectric function, which is

significantly modified. Such modifications are more pronounced for the out-of-plane

component, for which the formation of the new peak at the absorption edge is coun-

terbalanced by a significant increase in amplitude in the spectral region E >3 eV.
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Figure 4.7: Bandstructure of the HfS2/PtS2 HBL calculated with HSE as a
function of the interlayer distance d. The band colour encodes the quantity
f =DOSHfS2/(DOSHfS2+DOSPtS2), namely the projection of a particular eigenstate
on the different layers. Blue bands are localised on the HfS2 layer, orange ones on
PtS2. Note the formation of a split-off band upon compression.

These new features of the dielectric function can be understood by looking at the

evolution of the bandstructure upon compression, presented in Fig. 4.7. We observe

that, while the conduction bands are little affected by the change in interlayer dis-

tance, the valence bands are significantly altered. In particular at small d the top

of the valence band splits from the rest of the manifold and already for d > 4.8 Å

there is the formation of an impurity band. This contributes to closing the bandgap,

which remains indirect but it is reduced by approximately 0.5 eV. Interestingly, de-

spite the formation of the impurity band, the dispersion around the VBM is not

significantly modified and the VBM degeneracy is preserved. Even more interesting

is the fact that the VBM and CBM are localised on the PtS2 and HfS2 layer, re-

spectively, thus the HBL has still a type-II bandstructure. This is in contrast with

the rest of the valence bands, which are now formed by hybrid states with almost

equal contributions of the two layers.
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Thus, we can clearly attribute the peak in the dielectric function at the absorption

edge to transitions between the impurity valence band and the lowest conduction

band. These are inter-layer in nature, and in fact we observe a significant increase

of the inter-layer absorption with compression [see Fig. 4.6(a) and Fig. 4.6(e)]. Such

features suggest an overall enhanced charge separation, which is promoted both by

the presence of layer-separated excitons and by the fact that these form at transi-

tions across an indirect band-gap. For the smallest interlayer distance investigated,

4.0 Å, the intra-layer, inter-layer and mixed component of the dielectric function

have comparable magnitudes at the absorption edge, while for energies larger than

3 eV the intra-layer component dominates again. This is because in such high energy

range the available transitions now involve the lower part of the valence manifold.

As a final observation we remark that in all cases the out-of-plane component of

the inter-layer dielectric function is significantly larger than the in-plane compo-

nent.

In order to estimate the pressure needed to yield the layer distances investigated,

and hence to monitor the evolution of the inter-layer dielectric function, we compute

the pressure, p, as a function of the layer distance, d. This is simply given by

p = −∂E
∂V

, (4.4)

where E is the total energy and V is the cell volume, given by the in-plane cell area

times the interlayer distance d. Our results are plotted in Fig. 4.8, where we can

observe that one needs a pressure of ' 38 GPa to compress the HfS2/PtS2 HBL to

an interlayer distance of d = 4.4 Å. Although this is a rather significant pressure,

which exceeds what is possible in standard experimental investigations, it is still

lower than the metallisation pressure predicted for other 2D systems, e.g. 68 GPa

for MoS2 [174].

4.4 Summary and Outlook

Our rationale behind vertically stacking TMDs in a lego fashion was to explore

whether one could find unique and experimentally distinguishable peaks in the di-
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electric function, which could be unequivocally attributed to inter-layer transitions.

Ideally these should be present at energies where no other transitions are available

so that they can be uniquely identified, a condition met by heterostructures with

type-II band alignment. Furthermore, ideally one wishes to find these features at an

energy where other homogeneous structures (multi-layers of the same TMD) have

no absorption. This situation may enable one to identify inter-layer transitions in

heterostructure mixtures produced by liquid-phase processing. Based on these crite-

ria we have used previously published GW data to identify HfS2/PtS2 hetero-bilayer

as a possible candidate.

We have then quantitatively studied the in-plane and out-of-plane components of the

dielectric function for HfS2 and PtS2 mono-layers and bilayers, and for a HfS2/PtS2

hetero-bilayer. In particular we have decomposed the dielectric function into intra-

layer, inter-layer and mixed components, so that the specific nature of the transitions

can be distinguished. This is obtained by projecting the dipole matrix elements on

the relevant layers. We find that the intra-layer component of the dielectric function

exceeds the inter-layer component by a factor 100. Furthermore, the mixed compo-

nent, which does not bear a transparent physical interpretation, is also larger than

the inter-layer component and may be negative. Thus, it appears that, although

inter-layer transitions are located predominantly at the absorption edge, they can-

not be unequivocally separated from the intra-layer transitions. In addition we find

that, although the absorption edge of the HfS2/PtS2 hetero-bilayer is at lower en-

ergy than that of the homogeneous HfS2 bilayers, it is at higher energy than that
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Figure 4.8: Energy curve as a function of volume for each interlayer distance d
(squares) and its derivative corresponding to the pressure (circles). The energy was
shifted by E0, the total energy at the equilibrium distance d = 5.2 Å. The lines
(splines) are a guide for the eye.
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of the PtS2 bilayers. This is because the PtS2 bandstructure is very sensitive to

the layer interaction and hence to the number of layers in the stack, as reported

before [165].

Since the small inter-layer transition amplitude originates from the large spatial

separation between the electron and its hole (residing on different layers), we have

investigated the changes in the dielectric function as the layer distance is reduced.

Indeed, this promotes an increase in the inter-layer dielectric function, together with

a significant red-shift of the absorption edge, mostly driven by the formation of a well

separated peak. By following the evolution of the bandstructure upon decreasing

the interlayer distance we can attribute such behaviour to the formation of a valence

impurity band, well separated from the rest of the valence manifold. Most inter-

estingly, the type-II band alignment is maintained even under severe compression,

so that the split-off peak at the absorption edge is mostly composed of inter-layer

transitions.

In conclusion, we have shown that TMD hetero-structures under severe compres-

sion present bandstructures and dielectric properties different from those of the

constituent layers and different from those expected from simple electrostatic mod-

els. Here we have discussed one example in which the type-II band alignment can

be preserved under pressure and where pressure can be used to uniquely isolate

the inter-layer excitations from the rest of the spectrum. This work was published

together with Dr. Sabine Körber, Dr. Carlo Motta, Prof. Fadwa El-Mellouhi and

Prof. Stefano Sanvito in Physical Review Materials and it is referenced in Ref.

[175].
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5 2D material clustering and their

joint density of states

5.1 Introduction to band nesting and JDOS

As discussed in the previous chapters, transition metal dichalcogenides (TMDs) are

a family of crystals with the chemical formula MX2, where M=W, Mo, Ti, Zr,

Hf, Pd, Pt, etc. and X=S, Se, Te. TMDs typically form a two-dimensional (2D)

structure that is constituted by two layers of chalcogens with a layer of transition

metal atoms in between[176]. These three distinct atomic layers are embedded in

hexagonal sublattices and together form a three-atom-thick sheet [176]. The metal-

chalcogen bond is typically covalent in nature. The sheets are then held together

by weak van der Waals forces, namely the attractive London dispersion interaction

[28]. Given the environment of the metal centre, the two most common structural

polytypes of TMDs are trigonal prismatic (2H=hexagonal or 3R=rhombohedral)

and octahedral (1T=trigonal prismatic) [28]. These two polytypes are illustrated in

Fig. 5.1. In this chapter, we shall also investigate transition metal halides (TMHs),

which crystallise in layers [177]. The stoichiometry encountered in this study is

MY2 where M is a transition metal and Y is a halogen element. Like in the case

of TMDs, the metal centre is in a trigonal prismatic or octohedral environment and

the 2D TMH sheets, which are composed of the two halides and one metal layer,

are stacked on top of each other and held together through the London dispersion

forces [28]. Despite the fact that TMHs are ionic insulators [177], we shall consider

in this study those whose band gap lies within the visible solar energy range, both

in their bulk and monolayer form.
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Figure 5.1: a) Trigonal prismatic (2H) and b) Octohedral (1T) configurations de-
picted for one metal atom (purple spheres) bonded to six chalcogens or halides
(yellow spheres). The side and the top view of the extended hexagonal lattice is also
shown.

With the advent of liquid phase exfoliation, the isolation of two-dimensional (2D)

materials followed by the creation of various vertical stacks has become increasingly

fruitful in the area of flexible and ultrathin devices. This newly emerged field of

building heterostructures based on 2D crystals has also been geared towards the

expansion of the conventional set of photoactive materials and device architectures.

Creating a new generation of PV materials using 2D TMD is motivated by their

band gaps, which lie in the visible range between 1 and 3 eV [178, 179]. Moreover,

the optically generated excitons have large binding energies due to reduced screening

and many-body interactions [180]. However, their strong absorption is a remarkable

counter-intuitive feature despite being only three atoms thin [41]. Their unusually

large optical response is associated with the existence of van Hove singularities in the

electronic density of states (DOS) of TMDs and TMHs [177], which are usually not

at the band-gap edge [176]. Such singularities in the DOS both in the conduction and

the valence bands guarantee enhanced light-matter interactions, which lead to strong

photon absorption and electron-hole creation through the process of "band-nesting"

[176]. In this process, the conduction and valence bands have similar curvatures in
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certain k-space regions, which are determined by the points in the Brillouin zone

where there are van Hove singularities [45]. These peaks in the DOS are thought

to be the signature of the localized nature of the wave function [45]. The valence

bands are mainly composed of localized d orbitals derived from the transition metal

(TM) and the conduction bands are made of a linear superposition of the d and

p orbitals coming from the TM and the chalcogen atom, respectively [45]. The

consequence of such band-nesting is that the photo-generated electrons and holes

propagate with exactly the same, but opposite, velocities [45, 176]. It is claimed

that this phenomenon occurs for all TMDs [41, 176]. We will show in the following

that band nesting results in the large optical conductivity characteristic of TMDs as

noted earlier in the works cited in Ref.[41, 45, 176, 181]. The optical conductivity

of a material can be expressed as

σ1(ω) = ε2(ω)ωε0 , (5.1)

where ε2(ω) is the imaginary part of the dielectric function, ω is the frequency of

the incoming radiation and ε0 is the vacuum permittivity [176]. Assuming that the

wavevector of the perturbation is significantly smaller than that of the electrons in

the material, i.e. q → 0 we can write [176]:

ε2(ω) = A(ω)
∑
v,c

∫
BZ

d2k
(2π)2 |dvc|

2δ(Ec − Ev − ~ω) , (5.2)

where the integral is over the entire 2D Brillouin zone and the sum is over the

occupied states in the valence band and the unoccupied states in the conduction

band with energies Ec and Ev, respectively. The sum over spins is also included

through A(ω) = 4π2/(Ωcm
2ω2) where e is the electric charge, m is the carrier mass

and Ωc is the volume of the unit cell. Here dvc is the dipole matrix element. By

writing the dipole matrix element in terms of the momentum matrix element, it can

be shown that the imaginary part of the dielectric function in (5.2) is equivalent to

the imaginary part of Eq.(2.73) derived in the RPA in Chapter 2. We note that

the density of states is defined in 2D as D(ω) = 2
(2π)2

∫
S(ω)

dS

∇kEk
as we have shown

in Chapter 2. Then under the assumption that the dipole matrix element does not

vary significantly in the regions of the spectrum where |∇k(Ec−Ev)| ≈ 0, it follows
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that,

ε2(ω) ≈ A(ω)
∑
v,c

|dvc|2ρvc(ω) , (5.3)

where

ρvc(ω) = 1
(2π)2

∫
S(ω)

dS

∇k(Ec − Ev)
, (5.4)

is the joint density of states (JDOS) [176]. The points where ∇k(Ec − Ev) = 0

are called critical points (CP). If ∇kEc = ∇kEv = 0, these singularities will either

correspond to a maximum, a minimum, or a saddle point in each band and these

usually occur at high-symmetry points [176]. These points are more easily iden-

tifiable through visual examinations of the regions in the band structure that are

constant. The condition ∇k(Ec − Ev) = 0 is also met when |∇kEc| ≈ |∇kEv| > 0,

which describes band nesting and hence the emergence of singularities of the JDOS

[176].

After having said that, we would like to state that the work cited in Ref.[176] has

systematically investigated band nesting in vast regions of the Brillouin zone for

a number of 2D TMDs. They found that the octahedral compounds 1T-TiS2 and

1T-ZrS2 were among the materials with largest band-nesting regions. As a proof

of concept, we aim to explore the band-nesting characteristics of a widely studied

TMD, namely 2H-WS2. We shall consider the results from the cited paper as a

reference, against which we will compare our own findings. Then we will extend our

analysis to a wide range of TMDs and TMHs.

In this chapter, we will focus on several related questions: 1) is it possible to classify

the TMD and TMH family of materials in terms of the characteristic regions in the

BZ, where band nesting occurs? 2) can one make the approximation that the imag-

inary part of the dielectric function and the JDOS are related by a semi-constant

momentum matrix element squared? 3) if so, does this hypothesis hold over the

entire visible solar spectrum? In that case, is it possible to reliably rank materials

in terms of their absorption coefficient and short-circuit current density based on

the JDOS scaled by the momentum matrix element squared instead of using the

dielectric function?

The workflow is devised as follows: firstly, a series of HSE relaxations and then band

structure calculations were performed on 36 different exfoliable TMD and TMH
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Figure 5.2: a) Bravais lattice of the hexagonal lattice where ai are the primitive
vectors, δi are the nearest neighbors vectors and a0 is the lattice constant. (b) The
Brillouin zone of the hexagonal lattice, with the high symmetry points Γ, M, K
indicated. K’ and K are equivalent points hence the triangle delineated by Γ-M-K
is the irreducible Brillouin zone. Image reproduced from Ref.[182]

.

compounds. Following a similar procedure as described in our previous chapter, we

construct a unit cell with a sufficient amount of vacuum along the z-direction such

as to avoid the spurious interactions between two neighbouring periodic unit cells.

The number of k-points was also converged with respect to the total energy. From

this analysis 29 distinct semiconducting TMD and TMH monolayers with direct

band gaps in the optimal 0.33 to 4.42 eV visible solar energy range were identified.

This set was further considered for spin-unpolarized band structure calculations with

the FHI-AIMS all-electron DFT package. These were performed on a highly dense

k-mesh consisting of 43x44x1 k-points in the x− y plane by my colleague, Postdoc-

toral researcher Rui Dong, as part of a collaborative project on 2D materials. The

discretized grid was chosen such that it would cover the irreducible Brillouin zone

(IRBZ). The IRBZ of a hexagonal lattice is illustrated in Fig. 5.2 and is given by one

of the equivalent 12 triangles making up the hexagonal Wigner Seitz cell, namely

that along Γ-M-K. We then computed the gradient of the difference between the

lowest conduction band and the highest valence band at each k-point in the IRBZ

grid using finite differences.

The authors of [176] looked at the energy difference between the lowest unoccupied

band and the highest occupied band, Ec1-Ev1, together with the absolute value of its

gradient, |∇k(Ec1 − Ev1)|, along the Γ-M-K-Γ high-symmetry line of the Brillouin

zone. The regions where band nesting occurs were established to be those where the
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condition |∇k(Ec1 − Ev1)| � 1eV/(2π/a) was satisfied, where 2π/a is the modulus

of the reciprocal lattice vector. Although the authors have used the GGA approx-

imation and pseudopotentials to obtain their band structure, we shall compare our

HSE-based results to theirs in order to gain a better understanding of how the energy

difference and their gradient change with different employed methods.

Figure 5.3: Our results for the monolayer 2H-WS2 indicating the difference Ec1-Ev1
together with the modulus of its gradient along the corresponding high symmetry
path. The lowest unoccupied conduction band is denoted by Ec1 and the highest
occupied valence band by Ev1.

As can be seen from Fig. 5.3 and Fig. 5.4, our obtained energy difference, Ec1-

Ev1, is very similar to the one presented by Carvalho et al. [176]. This is due to

the fact that the shape of the bands seems to be well preserved when changing the

exchange-correlation functional. The main difference resides in the fact that the

HSE energy difference is almost rigidly shifted to higher values by approximately

1 eV due to the role the hybrid functional plays in widening the band gap. Also,

our calculated |∇k(Ec1 − Ev1)| and that of Carvalho et al. [176] have very similar

trends if we do not consider the exact amplitude. It must be noted, though, that

since we performed the band structure calculation without spin-orbit coupling, our

calculated highest valence band is in fact nonequivalent to either of the two highest

valence band obtained by Carvalho et al. [176].
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Figure 5.4: The results for 2H-WS2 obtained by Carvalho et al. [176] present the
same quantities as in Fig. 5.3. The authors also considered the energy difference Ec1-
Ev2 and |∇k(Ec1Ev2)|, where Ev2 denotes the the second highest occupied occupied
valence band.

We further examine the entire IRBZ to obtain a better view of the extent of band

nesting. Figure 5.5 shows |∇k(Ec −Ev1)| for WS2 that was calculated based on the

Λ Λ

Figure 5.5: Map of |∇k(Ec1 − Ev1)| over the Brillouin zone calculated for 2H-WS2
with HSE by us in panel a) and with GGA by Carvalho et al. [176] in panel b),
respectively.

HSE band structure and without spin-orbit coupling. The white areas represent the

regions where band nesting occurs and they are located at Λ, an intermediate point

between Γ and K. This is found for both bands, namely for our HSE ones and for the

PBE highest valence band and lowest conduction band [176]. Nevertheless, these

white areas around Λ are more pronounced in the PBE case. The same observation

can also be made when considering only the high-symmetry line Γ−Λ−K shown in
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Fig. 5.4 and Fig. 5.3, where |∇k(Ec1 − Ev1)| reaches values close to zero near Λ.

Moreover, due to the band splitting considered in the band structure calculations,

Carvalho et al. [176] obtained an extra shoulder in |∇k(Ec1 − Ev1)| along the K-M

direction as depicted in Fig. 5.4. In Fig. 5.5)b one can see that along the K-M

line, |∇k(Ec1−Ev1)| reaches high values of about 10 eV·nm after which it decreases

to around 4 eV·nm and then steadily rises again to about 6 eV·nm as it aproaches

M. This fluctuating trend is absent for our bands calculated without considering

spin-orbit coupling, as it can be seen in Fig. 5.5)a.

5.2 TMD and TMH clustering

5.2.1 Monolayer analysis

Our initial exploratory work prompts us to tackle the first question that we raised at

the beginning of this chapter regarding the classification of TMDs and TMHs based

on their band-nesting features. To this end, we devise a plan of action in which we

perform the following: first we consider the band structures of the 29 monolayers

and compute the gradient of the difference between the bottom conduction band

and the highest valence band |∇k(Ec1 − Ev1)| across the entire IRBZ, for which we

have the DFT band structure eigenvalues. In order to classify compounds based on

common numerical patterns in their respective |∇k(Ec1−Ev1)|mapped on the IRBZ,

we make use of a statistical technique known as "k-means" whose working principles

were presented in Chapter 1. We begin by vectorizing, for all the 29 monolayer

TMD and TMH compounds, their respective |∇k(Ec1−Ev1)| grids. We employ the

statistical software R that has in-built packages that run the k-means algorithm.

In order to overcome the tricky problem of visualizing high-dimensional data, we

employ the t-SNE ("t-distributed Stochastic Neighbor Embedding") technique that

is also implemented in R, whereby each datapoint is associated with a position in a

two or three-dimensional map [126]. The most notable feature of this dimensionality

reduction method is that it preserves both the local and the global structure of the

high-dimensional data, as it produces well-separated clusters through a nonlinear di-

mensionality reduction technique [126, 127]. Unfortunately, large distances between
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points belonging to the same cluster are not accounted for, which renders both the

relative and absolute positions of the clusters meaningless [127, 128]. In a nutshell,

t-SNE works as follows: it calculates the probability of similarity of points in high-

dimensional space and in the corresponding low-dimensional space. The similarity

of points is taken as the conditional probability that a point X would choose point Y

as its neighbour under the assumption that neighbours are chosen in proportion to

their probability density under a normal distribution centered at X [126]. Then, the

algorithms attempts to minimize the difference between the distribution of pairwise

similarities in the high- and low- dimensional space such that the data points are ac-

curately represented in the low-dimensional space [126]. This difference is quantified

as the sum of the Kullback-Leibler divergence of all data points [129] and it is min-

imized using gradient descent. Since the resulting low-dimensional coordinates of

the datapoints are no longer correlated to any identifiable quantity, the data should

only be explored visually [126].

A non-trivial issue in implementing k-means is that of deciding the optimal number

of clusters such that the similarities among same cluster members and the differences

among different cluster members, respectively, are best captured. A common method

employed for this purpose is the so-called "elbow method" discussed in Ref.[183].

The underlying idea is to plot the quantity that needs to be converged against the

number of clusters. In our case, we consider this quantity to be the WCSS/BCSS

ratio. If there is a noticeable flattening of this curve, this is an indication that

a "good enough" threshold of minimization is reached. Hence, it is reasonable to

assume that the appropriate number of clusters with sufficiently similar members

is found, where the curve changes its slope most, forming an elbow-shape. In this

case, four seem to be the optimum number of clusters, as it can be observed in Fig.

5.6.

A typical shortcoming of the k-means method is that it is highly dependent on

the randomly chosen initial points that determine to a large extent the positions

of the resultant cluster centers. The algorithm stops when it has reached a local

optimum. Since in principle there is no guarantee of finding the global optimum

cluster configurations, a common solution is to restart the algorithm with different

initial conditions and keep only the configuration with the minimum final WCSS

113



0

0.05

0.1

0.15

0.2

0.25

3 4 5 6 7

W
C
S
S
/B

C
S
S

No. clusters

Figure 5.6: The total within-cluster sum of squares (TWCSS) divided by the
between-cluster sum of squares (BCSS) against the preselected number of clusters.
The curved elbow marks the appropriate threshold for the number of clusters (4 in
this case).

[125]. Hence, we set k-means to initialize 100 distinct runs, each encompassing 1000

iterations, which should ensure a highly converged cluster configuration. Among the

100 runs, only the best configuration is kept and shown here. In Fig.5.7, we illustrate

the resulting clusters projected in two-dimensional space. Each cluster is described

in terms of its most representative data points, i.e. we show the |∇k(Ec1 − Ev1)|
mapped on IRBZ for only certain compounds from each group. Note that the

compounds denoted by the * symbol refer to 2H polytypes and the rest are 1T

polytypes. Throughout our entire analysis, band nesting will correspond to the

regions in k-space where |∇k(Ec − Ev1)| ≈ 0.

The groups obtained after applying k-means with 4 clusters to our 29 TMD and

TMH monolayers are the following:

Group 1 is constituted by the compounds 1T-CdI2, 1T-GeI2, 1T-PbI2, 1T-PtO2,

1T-SnS2, 1T-SnSe2, 1T-ZnI2, 2H-GeI2. One common feature of all these compounds

is that the band nesting condition occurs at the Γ and more noticeably, at the

M point. Moreover, almost invariably, there seem to be two other regions, where

band nesting is present: one that is very close to the symmetry path Γ-K, closer

to K and one that is along the Γ-M path, closer to Γ. Let us look at the details

of the compounds with the transition metal belonging to the same group. Zinc
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Figure 5.7: (Top panel) Two-dimensional representation of the relative distances
between the 29 studied monolayer compounds. The different colors of the data
points indicate the k-means determined clusters. (Bottom panel) |∇k(Ec1 − Ev1)|
mapped over the IRBZ of all the compounds that exhibit the most defining features
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and Cadmium belong to group 12 having the valence d and s states fully occupied.

Therefore, ZnI2 and CdI2 have very similar features i.e. |∇k(Ec−Ev1)| and the band

nesting regions are virtually identical. However, because cadmium is heavier than

zinc, its bands tend to be less dispersive as shown in Fig. 5.8. Moreover, the broadly

flatter valence bands, stemming from iodide, which participates in a more ionic bond

with cadmium than with zinc, can, in principle, lead to less variation between the

slopes of the conduction and of the valence bands. This could explain the overall

smaller values of |∇k(Ec −Ev1)| for CdI2 than for ZnI2. A similar argument can be

employed to justify the strong resemblance between SnS2 and SnSe2, two compounds

that have qualitatively similar bands to those of CdI2 and ZnI2. However we will

not present here their band structure. Germanium is in group 14, making 1T-GeI2 a

compound with a slightly more covalent bond. One can take note of the significantly

more dispersive valence bands along the Γ-M and M-K symmetry lines compared to

those of 1T-CdI2 and 1T-ZnI2. The similarly dispersive bottom conduction and top

valence bands in 1T-GeI2 along M-K imply very small variation between ∇k(Ec1)

and ∇k(Ev1) and lead, hence, to very small overall values of |∇k(Ec1 − Ev1)| along
M-K. This justifies the strong band nesting region that characterize this system

around M with a noticeable spread towards K.

Group 2 contains 2H-MoS2, 2H-MoSe2, 2H-MoTe2, 2H-WS2, 2H-WSe2, 2H-WTe2,

2H-HfTe2 and 1T-STl2. These compounds are dominated by regions with |∇k(Ec1−
Ev1)| ranging between 0 and 2 eV·nm. The band nesting regions generally cover

larger areas of the BZ, e.g. between the Γ-M and the Γ-K symmetry paths in close

proximity to Γ. Another significant band nesting region can be observed along

the Γ-K path with a varyingly wide spread towards M. Band nesting is also lo-

calized strictly around Γ and M. The noticeable similarity between the tungsten-

and molybdenum-based compounds, i.e. 2H-WS2, 2H-WSe2 and 2H-WTe2 and 2H-

MoS2, 2H-MoSe2 and 2H-MoTe2, is striking. This can be justified on the basis of

their very similar band structures, since the two transition metals belong to the

same group and hence, have similar electronic behaviours when bonded with the

three chalcogens. The band structures of 2H-WTe2, 2H-WSe2 and 2H-WS2 and

their corresponding |∇k(Ec1 − Ev1)| maps are shown in Fig. 5.9. Since sulfur, sele-

nium and tellurium increase in ionic radius size in this order, the valence bands of the
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corresponding transition metal chalcogenides become increasingly flatter while the

conduction bands do not change much. The increasing offset between the slope of

the top valence bands and that of the bottom conduction bands might then explain

the gradual reduction in band nesting areas when going from sulfur- to selenium-

and, finally, to tellurium-based compounds.

Group 3 is made of 1T-HfS2, 1T-HfSe2, 1T-HfTe2, 1T-ZrS2, 1T-ZrSe2, 1T-YbI2 and

1T-TiS2. The common feature of all these compounds is that there is a large region

of high gradient values, which exceeds 7 eV · nm and it is invariably located between

M and K with a wide spread in the direction of Γ. For all the members of this group,

the band nesting regions are situated sparsely along the Γ-M symmetry path. In

the following order, 1T-HfS2, 1T-HfSe2, 1T-HfTe2 gradually exhibit larger gradient

areas although it is not immediately obvious from their band structure why that

is the case. However, the band nesting regions seem to be largest for 1T-HfTe2,

extending significantly along Γ-M. From the band structure depicted in Fig. 5.10,

one can see that between these two points, the top valence and bottom conduction

bands of 1T-HfTe2 are overall more similar that those of 1T-HfS2.

Group 4 is made of 1T-PtS2, 1T-PtSe2, 1T-PtTe2, 1T-PdTe2, 1T-OTl2 and 2H-

ZrCl2. The common feature that stands out is the wide-spread regions throughout

the IRBZ characterized by large values of |∇k(Ec1−Ev1)|, namely ranging between

11 and 14 eV·nm. However, there are isolated band nesting regions close to the

Γ-K and Γ-M symmetry lines. In the case of the 1T-PtS2, 1T-PtSe2, 1T-PtTe2 trio,

both the band nesting and the high gradient regions decrease in this order as seen in

Fig. 5.11. Also, since palladium and platinum belong to the same group, the band

structure of 1T-PtTe2 and 1T-PdTe2 and hence their |∇k(Ec1 −Ev1)| mapped over

their respective IRBZ, are almost identical.

So far we have carried out an exploration of the way TMD and TMH materials

can be grouped and classified in terms of their intrinsic band nesting features. We

have found that the k-means clustering algorithm does indeed capture the regions

in the BZ that are numerically closest and hence, helps quantitatively to shed some

light on the subsets of TMD and TMH materials that go through band nesting at
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Figure 5.8: Group 1: Band structure of 1T-CdI2, 1T-ZnI2 and 1T-GeI2 in monolayer
form together with their characteristic |∇k(Ec1 − Ev1)| map.
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Figure 5.9: Group 2: Band structure of 2H-WS2, 2H-WSe2 and 2H-WTe2 in mono-
layer form together with their characteristic |∇k(Ec1 − Ev1)| map.
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Figure 5.10: Group 3: Band structure of 1T-HfTe2, 1T-HfSe2 and 1T-HfS2 in mono-
layer form together with their characteristic |∇k(Ec1 − Ev1)| map.
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Figure 5.11: Group 4: Band structure of 1T-PdTe2, 1T-PtS2 and 1T-PtTe2 in mono-
layer form together with their characteristic |∇k(Ec1 − Ev1)| map.
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similar places in the reciprocal space. This insightful band nesting classification can

prove to be helpful in determining the regions in k-space where excitonic transitions

occur. Also, as shown in the work of Kozawa et al. [184], photocarriers generated

through band nesting relax towards the closest band extrema with opposite momen-

tum. Therefore, band nesting is an important process that suppresses the radiative

recombination of the photocarriers and hence, determines their relaxation pathways

[184].

A further analysis that we undertake involves the classification of band nesting con-

voluted with the solar flux φsol. In other words, after studying the characteristic

profile of the band nesting for each material and grouping them accordingly, we in-

tend to introduce the solar flux φsol as another parameter in the IRBZ map of each

compound. Essentially, we shall consider the solar flux φsol amplitude at the energy

Ec1,k−Ev1,k for each k-point in the IRBZ multiplied by the inverse |∇k(Ec1−Ev1)|.
In this way we obtain a better view of the absorption profile of TMDs and TMHs,

since we also take into account the inhomogeneity of the solar spectrum.

This decision is motivated by the following observation: in Eq (5.3) the imaginary

part of the dielectric function can be written in terms of the joint density of states,

which is defined as an integral over the inverse |∇k(Ec − Ev)|. We have checked

and most transitions that correspond to the same energy range as the visible solar

radiation range are predominantly between the lowest conduction band and the top

valence band. Therefore we believe it is a reasonably good assumption to make that

these two bands denoted by c1 and v1 are sufficient in describing the absorption in

TMDs and TMHs.

In Fig. 5.12, one can see that the solar flux φsol has a magnitude of the order of

1021 s−1m−2eV−1 throughout most of the spectrum. In the band nesting regions,

where it is expected that |∇k(Ec,k − Ev,k)| ≈ 0, the resulting product between the

inverse of the gradient |∇k(Ec − Ev)| and the solar photon flux at the respective

energy Ec1 − Ev1 should have a magnitude order of at least 1022 s−1m−3eV−2. We

then loosely define the "regions of interest" to be those regions that facilitate band

nesting in transitions that match energetically with the largest regions of the so-

lar spectrum. Therefore, we shall analyze the resulting clusters by plotting their

constituting compounds on a log scale and consider the "regions of interest" to be
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Figure 5.12: The solar photon flux as a function of the energy.

wherever φsol/|∇k(Ec − Ev)| is of the order 1022 s−1m−3eV−2. Similar to the band

nesting clustering section presented previously, we present in Fig. 5.13 the different

clusters and their most defining compounds.

Group 1 (black) in Fig. 5.13 is composed of 1T-SnS2, 1T-HfS2, 1T-ZrS2, 1T-ZnI2,

1T-YbI2, 1T-CdI2 and 1T-PtO2. The first three are the compounds with the smaller

direct gaps that coincide energetically with the portions of the solar flux that are

strongest. The other iodide and oxygen based systems have larger band gaps possibly

due to their more ionic nature. This, in fact, leads to very limited "regions of

interest" mostly due to the very weak solar spectrum at the E = Ec1 − Ev1 energy

transitions.

Group 2 (red) in Fig. 5.13 is made of 1T-PdTe2, 1T-PtS2, 1T-PtSe2, 1T-PtTe2, 2H-

GeI2, 2H-MoS2, 2H-WS2 and 2H-WSe2. We indicated in the previous section that

the extent of band nesting decreases from 1T-PtS2, 1T-PtSe2 to 1T-PtTe2. But

once we consider the solar flux φsol, the trend changes. Now 1T-PtTe2 displays the

largest "regions of interest". This is due to the decreasing direct band gap going from

1T-PtS2, to 1T-PtSe2, to 1T-PtTe2. In all these compounds, the "regions of interest"

match with the regions of inherent band nesting depicted in the previous section.

Moreover, it seems that the intrinsically strong band nesting regions of 2H-MoS2,

2H-WS2 and 2H-WSe2 cannot be exploited under solar radiation. This is simply

because their band-nesting assisted transitions are energetically unfavourable since
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Figure 5.13: (Top panel) Two-dimensional representation of the relative distances
between the 29 studied monolayer compounds. The different colors of the data
points indicate the k-means determined clusters. (Bottom panel) log[φsol(Ec1 −
Ev1)/|∇k(Ec1 − Ev1)|] mapped over the IRBZ for the monolayer compounds that
illustrate the most defining features of the group they belong to.
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they have energies reaching E = Ec1 − Ev1> 3.5 eV. According to Fig. 5.12, these

are energies where the solar spectrum is strongly reduced.

Group 3 (pink) in Fig. 5.13 contains compounds 1T-GeI2, 1T-PbI2, 1T-STl2, 1T-

OTl2, 2H-ZrCl2. All exhibit values of φsol(Ec1 − Ev1)/|∇k(Ec1 − Ev1)| with a mag-

nitude of the order of 1019 s−1m−2 eV−1 around Γ. However there is an abrupt

decrease towards the second half of the IRBZ, towards the M-K direction.

Group 4 (green) in Fig. 5.13 is made of three compounds, namely of 2H-MoTe2,

2H-WTe2, 2H-MoSe2 due to their low band gaps. For all three, a significant fraction

of the inherent band nesting regions along the Γ-K symmetry line, observed in Fig.

5.7, coincides with the "regions of interest" where φ(Ec1 − Ev1)/|∇k(Ec1 − Ev1)| is
around 1022s−1m−2 eV−1. However, these regions correspond to transitions of at

least 2 eV, hence they do not fall in the solar spectrum energy range with high flux

as can be noted from Fig. 5.12. The band nesting region between Γ-K is large for

2H-MoTe2 as seen in Fig. 5.13. Nevertheless, since the "region of interest" are very

similar to the regions of band nesting along Γ-K, they shrink gradually going from

2H-MoTe2 to 2H-MoSe2.

Group 5 (purple) in Fig. 5.13 consists of the low gap compounds, i.e. 1T-TiS2 (1.15

eV), 1T-HfTe2 (1.17 eV), 2H-HfTe2 (1.44 eV), 1T-SnSe2 (1.84 eV), 1T-ZrSe2 (1.85

eV) and 1T-HfSe2 (2.28 eV). This group is formed by roughly the same compounds as

those of group 3 of the previous classification. The "regions of interest" are sparsely

located in the very close vicinity of the Γ-M symmetry line. In all the 6 systems,

the lowest values of φsol(Ec1 − Ev1)/|∇k(Ec − Ev)| are near the K point.

Once this analysis is concluded, we would like to point out, which are the compounds

whose inherent band nesting regions best match the "regions of interest". We defined

the "regions of interest" as the band nesting regions that also match energetically the

high-flux portion of the solar spectrum. These are: 1T-PdTe2 (group 2), 1T-PtTe2

(group 2), 2H-HfTe2 (group 3), 2H-ZrCl2, 2H-MoSe2 (group 4), 2H-MoTe2 (group

4), 2H-WTe2 (group 4) and 1T-TiS2 (group 5).
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5.2.2 Bulk analysis

A similar exercise based on the t-SNE and the k-means algorithms was done for a set

of bulk 29 semiconductor TMD and TMH materials. Similarly to the monolayers,

the structures were relaxed and then their HSE band structure was computed on a

dense 43x44x1 k-grid. Only one k-point is sampled in the perpendicular z direction

since we will classify the gradients of the difference between Ec1 and Ev1 mapped on

the same Brillouin zone region as for the monolayers, namely within the Γ-M-K-Γ

symmetry path in the x − y plane. Unlike the monolayers, the unit cells of the

bulk compounds have a small lattice parameter c0 so that there is no need to omit

the interlayer interaction in the z-direction by adding large amounts of vacuum as

necessary in the case of monolayers. The number of clusters was determined by

investigating once more the WCSS/BCSS ratio. This is depicted in Fig. 5.14 and

as can be seen from the position of the ’elbow’, the optimal number of clusters is

again four. Despite the weak change in the WCSS/BCSS ratio corresponding to

four clusters, the reduction is, nevertheless, strongest compared to the cases where

larger number of clusters are considered.
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Figure 5.14: Four clusters are found to be ’good enough’ to classify bulk 2D materials
in terms of |∇k(Ec1 − Ev1)|. Their number is computed using the elbow method.

The obtained groups can be seen in Fig. 5.15 where we have arranged the members

of the four resulting groups into four columns. For simplicity, we only show the

|∇k(Ec1 − Ev1)| maps over the IRBZ for all the studied materials. Let us look at

the four groups.
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Figure 5.15: |∇k(Ec1−Ev1)| maps over the IRBZ for all the bulk compounds investi-
gated. The four columns representing the four distinct groups depict the compounds
and their characteristic maps.
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Group 1 consists of 1T-ZnI2, 1T-CdI2, 1T-SnS2, 1T-SnSe2, 1T-CdBr2, 1T-MnO2,

1T-MnI2, 1T-PtO2 and 1T-VS2. We first note that the first four compounds were

also clustered together in group 1 during the monolayer band nesting analysis done

in the previous section. This fact indicates that the band structure characteristics do

not change significantly when considering the bulk instead of the monolayer geome-

tries. The common features of all the members of this group are the emerging band

nesting regions along the Γ-M and Γ-K symmetry lines and those tightly localized

around the M point. Another common element is the existence of a region between

M-K that spreads internally with high values of |∇k(Ec −Ev)|, exceeding 5 eV·nm.

The band structures of 1T-CdI2 and 1T-SnSe2 are depicted in Fig. 5.16. Their band

nesting regions along the Γ-K and along the Γ-M symmetry-lines can be traced back

to the comparably similar top valence bands and bottom conduction bands, respec-

tively. In both cases, the bands are quite parallel starting half-way between the Γ-K

line going all the way up to K. This behaviour is even more pronounced for CdI2,

possibly because the valence bands stemming from iodide are slightly flatter due to

iodide being a larger ion. This leads to a less dispersive top valence band, which

matches appropriately with that of the conduction band above. In Fig. 5.16 we also

show the band structure of 1T-VS2, which is qualitatively different from the ones of

1T-CdI2 and 1T-SnSe2. Between Γ and M, the top valence and bottom conduction

bands, have identical dispersions, hence the band-nesting region that between M

and Γ.

Group 2 is composed of 1T-VBr2, 1T-VCl2, 1T-VI2, 2H-GeI2, 2H-MoS2, 2H-MoSe2,

2H-WS2 and 2H-WSe2. For all of these compounds, the profile of |∇k(Ec1 − Ev)|
has the same broad features. On the one hand, the highest gradient |∇k(Ec1−Ev1)|
values of at least 4 eV·nm are associated roughly with the center of the IRBZ and

stretch along the Γ-M line. On the other hand, there are several pronounced band

nesting regions, namely along the Γ-K line and between the Γ-M and Γ-K lines. In

Fig. 5.17 we present the band structures of 2H-MoSe2 and 2H-MoS2, which display

very similar top valence and bottom conduction bands. These bands are roughly

parallel along the Γ-K line and along the Γ-M one in the close proximity of Γ. Once

again, the fact that sulfur is lighter than selenium leads to a slightly more dispersive

top valence band. Along the Γ-K line, this translates into a stronger resemblance
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with the bottom conduction above, hence yielding the stronger band nesting region

for 2H-MoS2 along the Γ-K line.

Group 3 consists of 1T-HfS2, 1T-HfSe2, 1T-HfTe2, 1T-TiS2, 1T-ZrS2, 1T-ZrSe2,

1T-PtS2 and 1T-NiI2. The first six compounds were also clustered together in the

monolayer band nesting analysis of the previous section, proving once again the

similarity between the overall features of the monolayer and bulk band structures.

All the members of this group have band nesting regions along the Γ-M points and

extremely high gradient values |∇k(Ec1−Ev1)| in a region between M-K. The latter

regions spreads inside the IRBZ and reaches up to 14 eV·nm. We choose to represent

here the band structures of 1T-TiS2, 1T-HfS2 and 1T-ZrS2 in Fig. 5.18. Titanium,

zirconium and hafnium belong to group 4 and have increasing atom size. As one

can see from Fig. 5.18, aside from the increasing band gap going from 1T-TiS2

to 1T-HfS2, the overall features of the band structures are very similar. The top

valence and conduction bands are roughly parallel along the Γ-M line and close to

Γ on the Γ-K symmetry path. Since the electronegativity decreases from titanium

to hafnium, the ionicity of the bond between the metal and the sulfur increases. As

a consequence, the top conduction band pertaining to the metal becomes increas-

ingly dispersive going from 1T-TiS2 to 1T-HfS2. This leads 1T-HfS2 to have almost

identical slopes along Γ-M in the conduction and valence bands and so, very low

gradient values mostly along the entire Γ-M line.

Group 4 is made of 1T-GeI2, 1T-TmI2, 1T-YbI2 and 2H-ZrCl2. The common feature

of all these materials is that one of the band nesting regions is invariably located

at roughly the same position along the Γ-M line, closer to Γ than to M. The band

structures of two of the compounds, namely of 1T-YbI2 and 1T-TmI2 are illustrated

in Fig. 5.19. It has been claimed that the valence electrons of compounds containing

lanthanide metals are quite inert [185], which could explain the flat bands stemming

from the metal in 1T-YbI2 and 1T-TmI2 . Their corresponding |∇k(Ec1 − Ev1)|
maps are virtually the same due to the complete lack of dispersion in the top va-

lence bands.
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Figure 5.16: Group 1: Band structure of the bulk form of 1T-CdI2, 1T-SnSe2 and
1T-VS2 together with their characteristic |∇k(Ec1 − Ev1)| map.
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Figure 5.17: Group 2: Band structure of the bulk form of 2H-MoS2 and 2H-MoSe2
together with their characteristic |∇k(Ec1 − Ev1)| map.
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Figure 5.18: Group 3: Band structure of the bulk form of 1T-HfS2, 1T-TiS2 and
1T-ZrS2 together with their characteristic |∇k(Ec1 − Ev1)| map.
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Figure 5.19: Group 4: Band structure of the bulk form of 1T-TmI2 and 1T-YbI2
together with their characteristic |∇k(Ec1 − Ev1)| map.
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We now proceed to cluster these materials in terms of their corresponding φsol(Ec1−
Ev1)/|∇k(Ec1−Ev1)| product, which was also previously implemented for the mono-

layers. We start again by examining the optimal number of clusters and we find a

rather weak minimization of the WCSS/BCSS ratio from three to four clusters.

Nevertheless, since the magnitude of φsol(Ec1−Ev1)/|∇k(Ec1−Ev1)| is in the order

of 1018 to 1022 s−1m−3eV−2, there will be considerably more variation between the

corresponding maps over BZ and those of |∇k(Ec1 − Ev1)|. Therefore, we consider

it reasonable to settle for a larger WCSS/BCSS ratio of 27% yielded in the case of

four clusters. Moreover, by choosing four clusters, the comparison with the previous

classification will also be more straightforward.
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Figure 5.20: The appropriate number of clusters in terms of φsol(Ec1 −
Ev1)/|∇k(Ec1 − Ev1)| is determined using the elbow method for the bulk TMD
and TMH semiconductors.
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bulk compounds investigated. These illustrate the most defining features of the
group they belong to.
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Again let us describe the various groups.

Group 1 is composed of 1T-CdBr2, 1T-CdI2, 1T-GeI2, 1T-MnI2, 1T-MnO2, 1T-NiI2,

1T-PtO2, 1T-VBr2, 1T-VCl2, 1T-ZnI2 and 2H-GeI2. All these materials exhibit very

low values of φsol(Ec1 − Ev1)/|∇k(Ec1 − Ev1)| due to their large band gaps that

exceed 3 eV. 2H-GeI2 is an exception, since its HSE direct band gap only reaches

2.8 eV. When looking at the previous case, where only the intrinsic band nesting

was investigated, 1T-CdI2, 1T-CdBr2, 1T-MnO2, 1T-PtO2 and 1T-ZnI2 exhibited

significant band nesting regions between the Γ-K and Γ-M symmetry lines. Once

we include the solar flux, the BZ map of φsol(Ec1 − Ev1)/|∇k(Ec1 − Ev1)| exhibits
no "regions of interest". This can be due to the fact that the energy differences,

Ec1−Ev1, exceed 3 eV . However, from Fig. 5.12, it is clear that the solar flux φsol is

quite negligible at those energies. Hence group 1 is not appealing since its intrinsic

band nesting features cannot be exploited for the absorption of solar radiation.

Group 2 is formed by 1T-HfS2, 1T-PtS2, 1T-VI2, 1T-ZrCl2, 1T-ZrS2, 2H-MoS2, 2H-

MoSe2, 2H-WS2 and 2H-WSe2. This is the most appealing group due to the existence

of some "regions of interest". All compounds display large values of φsol(Ec1 −
Ev1)/|∇k(Ec1 −Ev1)| of the order of 1021 s−1m−3eV−2 along the Γ-K line with very

low values in the M region. 1T-PtS2, 1T-ZrCl2, 2H-WS2 and 2H-WSe2 also exhibit

"regions of interest". Once again, molybdenum- and tungsten-based compounds are

grouped together due to their similar band structures.

Group 3 is composed of 1T-SnS2, 1T-TmI2, 1T-YbI2, 1T-SnSe2, 1T-HfSe2 and 1T-

ZrSe2. The latter three display "regions of interest" along the Γ-M line. These are

very narrow, short and mostly localized around M. All the compounds in this group

have small values of the order of 1018 −1m−3eV−2 in the corner of the IRBZ where

the K-point is located. 1T-SnSe2 also displays values that are overall around one

order of magnitude higher than for the rest of the compounds.

Group 4 consists only of 1T-HfTe2, 1T-TiS2 and 1T-VS2. All three compounds

are characterized by a gradual increase of φsol(Ec1 − Ev1)/|∇k(Ec1 − Ev1)| as one

traverses the IRBZ from K to Γ, with "regions of interest" in the proximity of M

along the Γ-M line. 1T-VS2 stands out because of its predominantly high φsol(Ec1−
Ev1)/|∇k(Ec1−Ev1)|, reaching values of the order of 1022 s−1m−3eV−2 also across the

Γ-K line and between the Γ-M and Γ-K lines. 1T-VS2 exhibits also abrupt jumps
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in φsol(Ec1 − Ev1)/|∇k(Ec1 − Ev1)|, oscillating between 1021 and 1018 −1m−3eV−2

approaching the K-point. A large fraction of the inherent band nesting regions,

corresponding to these three compounds that were investigated previously, match

with the "regions of interests" discussed here.

In conclusion, the materials that exhibited some match between the ’regions of

interest’ and those of intrinsic band nesting are 2H-GeI2 from group 1, 1T-ZrCl2,

1T-PtS2, 2H-WS2 and 2H-WSe2 from group 2, 1T-SnSe2, 1T-HfSe2 and 1T-ZrSe2

from group 3 and 1T-HfTe2, 1T-TiS2 and 1T-VS2 from group 4.
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5.3 JDOS operationally defined in terms of ε2

At the beginning of the chapter, in Eq. (5.4), the joint density of states was described

in terms of an integral over equal energy surfaces of the gradient difference between

the conduction and the valence bands. Gradient values approaching zero define the

regions in the Brillouin zone, where there is band nesting and hence high peaks in the

imaginary part of the dielectric function. We sought to investigate in detail the band

nesting features of 29 monolayers and 29 bulk TMD and TMH compounds and to

classify them accordingly. Now we shall attempt to address the second question we

raised at the beginning of the chapter. In practice, we shall test the hypothetically

linear relation between the joint density of states and the imaginary part of the

dielectric function, ε2. Let us take another look at the expression used to calculate

Im(εii) in Chapter 2, namely at Eq. (2.76). Under the assumption made at the

beginning of this chapter, namely that the momentum matrix elements do not vary

significantly in the regions of band nesting and that any off-diagonal contributions

in the dielectric tensor vanish, we can then re-write Eq. (2.76) as

Im[εii(E)] ≈ JDOS(E) ·
∑
c,v,k

|pi,c,v,k|2 , (5.5)

where we define JDOS(E) as

JDOS(E) = 8π
Ωc · (E + η)

∑
c,v,k

η

εcv + η
·
( 1

[E − εcv]2 + η2 + 1
[E + εcv]2 + η2

)
, (5.6)

with εcv = εc,k−εv,k. Another approximation that could, in principle, be made is to

postulate that the sum over momentum matrix elements in Eq.(5.5) does not vary

significantly across the solar energy range, namely between the direct gap and 4.42

eV. This hypothesis reads

∫ E=4.42eV

E=Eg

Im[εii(E)]dE ≈ µii ·
∫ E=4.42eV

E=Eg

JDOS(E)dE , (5.7)

where µii is a constant. Depending on the Cartesian direction i that defines pi,c,v,k,

we expect different momentum matrix elements and hence, different scaling factors
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µii. In the following, we plan to test the extent to which this operational definition

holds. So we set µ as the ratio between the two integrals defined in Eq.(5.7). We

want to check how much variance there is between the JDOS scaled by µ and the

imaginary part of the dielectric function that takes into account the total varying

momentum matrix elements contribution. We take the difference at each energy

in the energy spectrum considered and we integrate them all. We introduce δ to

quantify this variance relative to the imaginary part of the dielectric function,

δ =
∫ E=4.42eV

E=Eg

|Im[εii(E)]− µii · JDOS(E)|
Im[εii(E)] dE . (5.8)

If δ is close to zero, one can conclude that the momentum matrix elements are

not quite energy dependent and that their entire spectrum contribution could be

replaced by the constant µ. This would imply that JDOS is accurate in capturing

the behaviour of the imaginary part of the dielectric function. We employ the HSE

band structure calculations done on a dense k-grid of 43x44x1 points, the same

used to calculate |∇k(Ec1 − Ev1)| in the previous section. We use it to calculate

JDOS(E) according to Eq.(5.6), where we consider the first four conduction and

the last four valence bands, respectively. We then integrate these contributions

up over the energy range defined in Eq.(5.7). The HSE dielectric function was

initially calculated on a dense k-grid of 40x40x1 points for six compounds, namely

for the monolayers 2H-MoS2, 2H-WS2, 1T-PtS2, 1T-HfS2, 1T-ZrS2 and 1T-TiS2.

For both this initial dielectric function calculation and for that of the JDOS, we set

the Lorentzian broadening, η, to 0.025 eV. The dielectric function calculation was

subsequently repeated for all the monolayers on a coarser k-grid of 20x20x1 k-points

and with a larger broadening of 0.1 eV. We will compare both sets of dielectric

function calculations against the JDOS, which is kept fixed.

In Tables 5.1 and 5.2 we present the µ obtained for the xx component of the dielec-

tric function and the associated error δ. One first observation is that using a coarser

k-mesh does not alter by more than 10% the value of µ. Let us take a look and

see how the imaginary part of the xx component of the dielectric function, obtained

with two distinct sets of k-meshes and broadening values compare to the JDOS. In

Fig. 5.22, the three spectra are illustrated for 6 TMDs. Also note that the dielectric
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Compound µxx δ
2H-WS2 1.47 0.67
1T-HfS2 1.14 0.44
1T-PtS2 1.05 0.30
2H-MoS2 0.90 0.82
1T-ZrS2 0.84 0.44
1T-TiS2 0.45 0.88

Table 5.1: µxx and δ for Im(εxx)
calculated with 40x40x1 k-points and
with η=0.025 eV.

Compound µxx δ
2H-WS2 1.39 0.97
1T-HfS2 1.05 0.35
1T-PtS2 0.93 0.29
2H-MoS2 0.86 1.00
1T-ZrS2 0.77 0.44
1T-TiS2 0.43 0.72

Table 5.2: µxx and δ for Im(εxx)
calculated with 20x20x1 k-points and
with η=0.1 eV.

function spectra have been scaled by a factor of 1/µ in order be fully comparable to

the JDOS. Employing a denser k-mesh with a small broadening of 0.025 eV yields

two notable features in the dielectric function. On the one hand, the 2H polymorphs

capture quite exactly the peaks in the JDOS, namely that at 3.5 eV for 2H-WS2

and the one at 4.0 eV for 2H-MoS2. For both compounds, the broader spectrum

does not capture the individual peaks as they get smeared out into a wide peak,

only exhibiting a faint shoulder. The dielectric function obtained with the denser

k-mesh and smaller broadening is very accurate in describing the JDOS from 3.5 eV

till about 4.0 eV. We thus speculate that the contribution of the momentum matrix

elements to the dielectric function is to a large extent constant, namely that it is

roughly equivalent to a constant scaling factor in the range 3.5 eV-4.0 eV. Analyzing

the momentum matrix elements is still required to confirm this. Moreover, even

when considering the entire energy range defined from the band gap to 4.4 eV, the

error between the scaled JDOS and the imaginary part of the dielectric function is

still smaller for the spectrum obtained with a narrower broadening and denser k-

mesh. This can be noted from the values of δ reported in tables 5.1 and 5.2, namely

0.67 and 0.97 for 2H-WS2 and 0.82 and 1.00 for 2H-MoS2, respectively. On the

other hand, for the 1T polymorphs, the broader and coarser spectra of the dielectric

functions lead to slightly smaller values of δ. This is due to the fact that the peaks

in the scaled JDOS are closer in amplitude to the coarser dielectric function spectra.

Hence, the fluctuation in the momentum matrix elements might be higher for 1T

than for 2H polytypes. This explains the disparity in amplitude between the highly

accentuated noisy peaks of Im(εxx) calculated with 40x40x1 k-points and broaden-

ing η =0.025 eV and the broader and less strongly peaked JDOS obtained from the
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band structure calculated on a grid of 44x43x1 k-points and broadening η =0.025 eV.
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Figure 5.22: The joint density of states (black line) calculated on a dense k-mesh of
44x43x1 k-points and with a Lorentzian broadening η = 0.025 eV, the xx component
of imaginary part of the dielectric function calculated on a dense k-mesh of 40x40x1
k-points and with a Lorentzian broadening η = 0.025 eV (green line) and on a coarse
k-mesh of 20x20x1 k-points and with a Lorentzian broadening η = 0.1 eV (red line).
The latter two quantities were divided by the corresponding scaling factor µxx.

We repeat the procedure for determining µ for the zz component of the imaginary

part of the dielectric function. We expect the first two diagonal entries of the

dielectric tensor, namely εxx and εyy, to be identical due to the in-plane isotropy

of the 2D TMD and TMH compounds. Also, the obtained µ values are up to two

orders of magnitude lower in the case of the zz-component compared to the xx one.
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In fact, the momentum matrix elements are expected to be smaller in the out of

plane direction. Also, the two dielectric function spectra obtained with different

k-meshes and spectral broadening lead to roughly the same values of µ. By looking

at Fig. 5.23, it becomes apparent that in the case of the 2H polymorphs, the roughly

constant spectra ranging from the direct gap to about 3.5 eV is captured well by

the constant JDOS. However, none of the higher energy peaks in the zz-dielectric

spectra are equal in amplitude to the scaled JDOS. This suggests that an overall

scaling factor cannot accurately substitute the momentum matrix elements along

the zz direction for the entire considered energy interval. For the 1T polymorphs,

we compare the amplitudes of the three sets of spectra. We observe that overall, the

dielectric spectra with a coarser k-grid and larger broadening are closer in amplitude

to the scaled JDOS. However, in the case of 1T-ZrS2 and 1T-HfS2 the dielectric

spectra with a denser k-grid and narrower broadening preserves the general profile of

the JDOS, displaying only some oscillations around the scaled JDOS. This translates

into the small δ values computed for these compounds (Table 5.3), thus rendering

the momentum matrix elements in the z direction slightly less fluctuating than for

the 2H polymorphs.

Compound µzz δ
2H-WS2 0.02 2.06
1T-HfS2 0.23 0.35
1T-PtS2 0.32 0.32
2H-MoS2 0.03 3.03
1T-ZrS2 0.21 0.71
1T-TiS2 0.09 8.00

Table 5.3: µzz and δ for Im(εzz)
calculated with 40x40x1 k-points and
with η=0.025 eV.

Compound µzz δ
2H-WS2 0.04 0.62
1T-HfS2 0.23 0.13
1T-PtS2 0.29 0.26
2H-MoS2 0.04 0.60
1T-ZrS2 0.21 0.20
1T-TiS2 0.09 2.32

Table 5.4: µzz and δ for Im(εzz)
calculated with 20x20x1 k-points and
with η=0.1 eV.
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Figure 5.23: The joint density of states (black line) calculated on a dense k-mesh of
44x43x1 k-points and with a Lorentzian broadening η = 0.025 eV, the zz component
of imaginary part of the dielectric function calculated on a dense k-mesh of 40x40x1
k-points and with a Lorentzian broadening η = 0.025 eV (green line) and on a coarse
k-mesh of 20x20x1 k-points and with a Lorentzian broadening η = 0.1 eV (red line).
The latter two were divided by the corresponding scaling factor µzz.
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In order to test our speculation regarding the behaviour of the momentum matrix el-

ements, we proceed to calculating them for 2H-WS2 and 1T-ZrS2 on a dense k-mesh

of 400 points for 26 bands. For this purpose, we use VASP which enables technically

straightforward access to the momentum matrix elements that are expected to be

qualitatively comparable to those calculated through FHI-AIMS. Also, the Kohn-

Sham single particle eigenstates needed to calculate the momentum matrix elements

are obtained using PBE since such a calculation requires significantly less compu-

tational resources than an HSE-based one. Despite the known underestimation of

the band gap, the PBE band structure is expected to display a similar curvature

to the HSE one. Thus, we believe that the momentum matrix elements presented

in Fig. 5.24 can offer a qualitative understanding of the HSE ones. For simplicity,

we choose to plot the absolute value of the momentum matrix elements, namely

|〈ψc,k| − i~∇k |ψv,k〉| with ~ in atomic units. Fig. 5.24a) illustrates the momentrum

matrix elements associated with the valence and conduction bands whose energy

differences match the range of the solar spectrum, namely from approximately 0.3

eV to 4.4 eV. Each represented element is obtained by summing up over the con-

tributing k-points. It can be seen that the 2H-WS2 compound has a much smaller

variance than 1T-ZrS2. In other words, there is a larger fraction of semi-constant

2H-WS2 momentum matrix elements spanning the transition energy range relative

to 1T-ZrS2, which clearly exhibits a more significant spread across the range. Fig.

5.24b)-g) displays 〈ψc,k|−i~∇k |ψv,k〉| mapped on a k-mesh for three selected optical

transition energies in the first half of the solar spectrum, namely E=2.0, E=2.1 and

E=2.2 eV. We chose these close transition values in order to observe the gradual

changes across the k-mesh, which is represented in fractional coordinates along the x

and y direction. The colored boxes indicate the value of 〈ψc,k| − i~∇k |ψv,k〉| associ-
ated with each contributing k-point for each selected energy transition. The outline

of the irreducible Brillouin zone was included for reference in the k-mesh. We notice

a larger variation across the k-mesh for 1T-ZrS2 than for 2H-WS2 at each chosen

energy but also between meshes corresponding to different energies. Hence, this

seems to indicate that the momentum matrix elements of 2H-WS2 are significantly

less varying with energy transition and also across the k-mesh. Due to the similar

electronic structure of 2H-MoS2 and 2H-WS2, we infer that our initial speculation
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b) E = 2.0 eV        1T-ZrS2 c) E = 2.0 eV        2H-WS2

a)

e) E = 2.1 eV        2H-WS2d) E = 2.1 eV        1T-ZrS2

f) E = 2.2 eV        1T-ZrS2 g) E = 2.2 eV        2H-WS2

Figure 5.24: Absolute value of PBE momentum matrix elements a) for 2H-WS2
(blue circles) and 1T-ZrS2 (red triangles) represented along the solar energy range,
i.e. from 0.3 eV to 4.4 eV and b)-g) mapped on the k-mesh of 1T-ZrS2 and 2H-WS2
for transition energies E=2.0 eV, E=2.1 eV and E=2.2 eV. The blue dots outline
the irreducible Brillouin zone.
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is indeed justified, namely that approximating the momentum matrix element by a

global scaling factor µ is better suited for 2H polymorphs than for 1T ones.

In Fig. 5.25 we investigate the partial density of states of 2H-WS2 and 1T-ZrS2. The

Fermi energy has been fixed at 0 eV. We notice that both the conduction and valence

edge states of 2H-WS2 are predominantly d states that originate from tungsten. In

the case of 1T-ZrS2, the entire valence manifold stems from the p orbitals of sulfur

while the conduction manifold pertains to the d orbitals of zirconium. Thus, as

opposed to 1T-ZrS2, 2H-WS2 is characterized by the same orbital character in con-

duction and valence states separated by energies between 2.4 and 4 eV. This might

roughly explain why the momentum matrix elements of 2H-WS2 corresponding to

transitions equal to the band gap energy and up to 1.5 eV larger are less varying

than those of 1T-ZrS2. Also, the change in the dominant orbital character (from

d- to p-like) at energies lower than -2.5 eV for 2H-WS2 might explain the larger

variation in the momentum matrix elements at E>4 eV and hence, the poor match

between the JDOS and the scaled Im(εxx) at energies larger than 4 eV.
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Figure 5.25: Partial density of states (pDOS) of 2H-WS2 (right) and 1T-ZrS2 (left)
depicting the contribution of s, p, d orbitals coming from the TM and sulfur, re-
spectively.
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5.3.1 JDOS - a descriptor for ranking compounds

In the light of our previous section, we would now like to test the newly obtained

sets of scaled JDOS and see whether it can be used as an accurate descriptor for

the imaginary part of the dielectric function over the entire solar spectrum. In

order to account for the inhomogeneity of the solar flux, we perform a numerical

integration of the imaginary dielectric function multiplied by the solar flux φsol(E)

over the energy range defined by the direct band gap energy and the uppermost

solar radiation energy, namely 4.42 eV. We shall then compare this integral with

the analogous one where the joint density of states spectrum is multiplied by φsol.

These pairs of integrals will be sorted in descending order in order to check to what

extent the ranking of one integral is preserved in the ranking of the other integral.

Hence, the two studied quantities are

Iεii
=
∫ E=4.42eV

E=Eg

Im[εii(E)] · φsol(E)dE , (5.9)

IJDOS =
∫ E=4.42eV

E=Eg

µii · JDOS(E) · φsol(E)dE . (5.10)

The subscripts ii denote the component of the dielectric function and consequently,

of the scaling factor µ, for which we calculate the integrals. We choose to present

here only the xx component. The dielectric functions calculations with a coarser

k-grid of 20x20x1 k-points and a Lorentzian broadening of 0.1 eV were used for

these integrations, since they were done for the entire set consisting of the 29 2D

semiconducting monolayers. Firstly, by looking at Table 5.5, we note that the 29

compounds mostly occupy the same position in the two rank categories. The highest

deviation is recorded by 2H-HfTe2, occupying position number 8 in the rank based

on Iεxx and no. 4 in the rank based on IJDOS. Since the band gap is 1.44 eV, the

intense solar flux at that energy amplifies the inherent discrepancy between JDOS

and Im(ε), caused by the omission of potentially highly contributing momentum

matrix elements at the band edge. The first ten compounds with the highest values

of Iεxx and IJDOS feature the lowest direct band gaps, none of which exceeds 2 eV.

This has to be expected since the solar spectrum peaks between 0.7 and 1.3 eV. The
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next ten compounds have larger band gaps, ranging between 2 and 2.7 eV, which

explains their relatively lower integral values. The last nine compounds can be split

in two types: one containing materials with very large band gaps , namely exceeding

3.2 eV, thus overlapping with a very weak section of the solar spectrum; the other

with compounds having direct gaps between 2.8 and 3.0 eV. These exhibit very low

JDOS due to their predominantly flat valence bands. This is the case, for instance,

of 1T-YbI2.

Compound Iεxx(s−1m−2) Rank Iεxx µxx IJDOS(s−1m−2) Rank IJDOS(s−1m−2)
1T-PdTe2 1.84·1022 1 1.02 1.41·1022 1
1T-HfTe2 9.85·1021 2 0.85 5.38·1021 3
1T-PtTe2 8.03·1022 3 1.24 5.96·1021 2
1T-TiS2 4.94·1021 4 0.43 3.26·1021 7
1T-PtSe2 4.39·1021 5 1.76 3.38·1021 6
2H-MoTe2 4.22·1021 6 0.65 3.61·1021 5
2H-WTe2 3.52·1021 7 0.81 2.37·1021 8
2H-HfTe2 3.23·1021 8 0.38 3.74·1021 4
1T-ZrSe2 2.96·1021 9 0.68 1.70·1021 10
1T-OTl2 2.61·1021 10 1.19 1.91·1021 9
2H-ZrCl2 1.98·1021 11 0.85 1.54·1021 12
2H-MoSe2 1.75·1021 12 0.72 1.04·1021 13
1T-HfSe2 1.67·1021 13 0.91 9.84·1020 14
2H-WSe2 1.19·1021 14 0.93 5.79·1020 16
2H-MoS2 9.58·1020 15 0.86 5.02·1020 18
1T-STl2 7.58·1020 16 1.64 7.26·1020 15
1T-PtS2 6.31·1020 17 0.93 5.03·1020 17
2H-WS2 6.19·1020 18 1.39 3.81·1020 20
1T-SnSe2 5.92·1020 19 0.83 1.59·1021 11
1T-ZrS2 5.60·1020 20 0.77 4.45·1020 19
1T-HfS2 2.48·1020 21 1.05 2.08·1020 21
2H-GeI2 1.45·1020 22 0.96 1.12·1020 23
1T-GeI2 1.14·1020 23 2.90 1.37·1020 22
1T-SnS2 4.69·1019 24 0.38 8.38·1019 24
1T-YbI2 3.95·1019 25 0.09 2.85·1019 25
1T-PbI2 1.01·1019 26 3.09 1.74·1019 26
1T-ZnI2 7.67·1018 27 0.49 1.55·1019 27
1T-CdI2 2.28·1018 28 0.50 3.77·1018 28
1T-PtO2 1.33·1017 29 0.32 9.17·1016 29

Table 5.5: Integrals of the xx component of the imaginary part of the dielectric
function and of the JDOS scaled by µxx, and multiplied by the solar flux. The
ranking is conceived in descending order. See definition in Eqs.(5.9) and (5.10).

148



So far we based our endeavor on the strong assumption conveyed by Eq.(5.7), namely

that the imaginary part of the dielectric function integrated over the solar spectrum

energy range can be approximated as the integral of the joint density of states

scaled by a constant factor. This can be thought of as a constant momentum

matrix element squared. It was shown that the approximation allows us to rank

the compounds based on the overlap between the solar flux and Im(εxx). Another

exercise worth trying now is to calculate the absorption coefficient to further test

the robustness of this approximation. This will be based on the following method:

let us introduce a quantity λ, which is equivalent to the dielectric function ε with

the sole distinction that its momentum matrix elements are fully constant. Since

ε=Re(εii)+i· Im(εii), we analogously write λ=JDOSii1+i·JDOSii2 , where:

JDOSii2 (E) = µii · JDOS(E) , (5.11)

and JDOSii1 and JDOSii2 are related through the Kramers-Kronig relation:

JDOSii1 (E ′) =
∫ ∞
−∞

JDOSii2 (E)
E − E ′ dE . (5.12)

We will discuss in the Appendix how this integration was implemented numerically.

Now we will employ the xx and zz components of the real and imaginary parts

of the dielectric function to compute the absorption coefficients along the x and z

direction, i.e. αxx and αzz, respectively, through the expression:

αii = ω · Im(εii)

c ·
√

Re(εii)+
√
Re(εii)2+Im(εii)2

2

. (5.13)

Moreover, we plan to construct the absorption coefficient by using λ instead of ε,

namely we will substitute Im(εii) with JDOSii2 and Re(εii) with JDOSii1 , respec-

tively.

In Fig. 5.26, we illustrate all these quantities where ii = xx for 2H-WS2 plotted

from the direct band gap up to 4.42 eV. In this case, µxx=1.39. The JDOSxx1 in

the right plot is significantly higher in amplitude than Re(εxx). The JDOS and the

dielectric function were calculated with spectra having a Lorentzian broadening of

0.025 eV and 0.1 eV, respectively, as mentioned previously. Hence, JDOSxx1 exhibits
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clearly defined peaks that match in position with the more smeared out peaks of

Re(εxx) at approximately 3.4 and 3.8 eV, respectively. Interestingly, the absorption

coefficient αεxx calculated using Im(εxx) and Re(εxx) exceeds in amplitude the ab-

sorption coefficient αλxx obtained using JDOSxx1 and JDOSxx2 . This is probably due

to the larger denominator in Eq.(5.13) in the case of αλxx.
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Figure 5.26: Left panel: The absorption coefficient αεxx obtained with Re(εxx) and
Im(εxx) together with the absorption coefficient αλxx calculated with JDOSxx1 and
JDOSxx2 . Right panel: Re(εxx) and Im(εxx), the JDOS scaled by µxx and JDOS1

xx.
For 2H-WS2, µxx=1.39

In Tables 5.6 and 5.7 we look at the integrated absorption coefficients, αεii and αλii,

over the energy defined by the direct band gap and the solar spectrum maximum

energy of 4.42 eV:

Iεαii
=
∫ E=4.42eV

E=Eg

αεii(E)dE , (5.14)

and

Iλαii
=
∫ E=4.42eV

E=Eg

αλii(E)dE . (5.15)

Once again, we shall rank the materials from highest to lowest values according

to these integrals. The main observation that we derive is that the ordering of the

compounds is not preserved for the xx component, although it is fully preserved for

the zz one. This is a surprising takeaway message and we do not fully understand

why the discrepancy between Iεαii
and Iλαii

is reduced for ii = zz with respect to

ii = xx.
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Compound Iεαxx
(1/m) Rank Iλαxx

(1/m) Rank
1T-PtSS2 2.86·1010 1 2.53·1010 1
2H-MoS2 2.76·1010 2 2.09·1010 3
2H-WS2 2.43·1010 3 1.64·1010 5
1T-TiS2 2.29·1010 4 2.29·1010 2
1T-HfS2 1.85·1010 5 1.59·1010 6
1T-ZrS2 1.80·1010 6 1.70·1010 4

Table 5.6: Integrals of the absorption coefficients Iεαxx
and Iλαxx

, respectively. The
rank of each integral is shown for all compounds.

Compound Iεαzz
(1/m) Rank Iλαzz

(1/m) Rank
1T-PtS2 1.05·1010 1 1.43·1010 1
1T-TiS2 6.38·1010 2 1.06·1010 2
1T-ZrS2 5.38·1010 3 8.94·109 3
1T-HfS2 4.26·1010 4 7.41·109 4
2H-MoS2 1.76·109 5 4.78·109 5
2H-WS2 8.61·108 6 2.81·109 6

Table 5.7: Integrals of the absorption coefficients Iεαzz
and Iλαzz

, respectively. The
rank of each integral is shown for all compounds.

Having the absorption coefficient now enables us to calculate the short circuit current

density as defined in Chapter 3, namely as

J iisc = q

∫ 4.42eV

Eg

φsol(E)[1− e−L·αii(E)]dE . (5.16)

We shall employ the previously obtained absorption coefficients, αλii and αεii to deter-

mine their associated Jεii
sc and Jλii

sc . For all compounds, we will consider a thickness

L equal to 0.35 µm. This decision is based on the knowledge of the experimental

carrier diffusion length observed in 2H-MoS2 by P. Yuan et al. [186]. In Table 5.8

we record the short circuit current densities obtained in descending order for the xx

component. An observation that can be first made is that the ordering of the first 8

and last 6 compounds, respectively, is perfectly preserved. For the top compounds,

this is due to their low direct gaps that do not exceed 1.7 eV. This implies that

inherent errors arising from the assumption Im[ε(E)] ≈ µ · JDOS(E) are blurred

out, since the absorption coefficient appears as an exponent in Eq. (5.16). In other

words, the short circuit current densities of small-gap materials are not sensitive to

the shortcomings associated with the assumption made, rendering the joint density

of states a solid absorption descriptor for low-gap materials. The next 14 materials
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have larger band gaps and thus the fluctuations in the momentum matrix elements

are now made obvious since the solar flux diminishes rapidly at high energies. Nev-

ertheless, the deviation is not larger than three positions from the Jεxx
sc rank, which

means the approximation is fairly robust even for the higher band gap materials.

Interestingly, the last six compounds have the same ordering according to both Jεxx
sc

and Jλxx
sc . In conjunction with their very high band gaps, these systems have con-

siderably low band dispersion, which might explain their low-valued JDOS spectra.

Their respective δ values, which quantify the relative error associated with the con-

stant momentum matrix elements assumption, are among the lowest, averaging 0.6.

The JDOS and the imaginary part of the dielectric function with its components

along xx and zz are plotted for two representative low-ranking compounds, 1T-ZnI2
and 1T-CdI2 and are shown in the Appendix together with all the values of µxx and

associated δ.

By investigating the short circuit current densities along the zz component tabulated

in Table 5.9, it is evident that the Jεzz
sc values are considerably lower than those

of Jεxx
sc presented in Table 5.8. The monolayers in the study have an out-of-plane

dispersion considerably lower than the in-plane one, leading to smaller zz momentum

matrix elements and hence lower amplitude of the Im(εzz) spectra compared to

the Im(εxx) one. It is also worth noting that due to the values of the scaling

factors, µzz, being up to two orders of magnitude lower than those of µxx, the

values of Jλzz
sc are also overall lower than those of Jλxx

sc . Perhaps more striking is

the fact that Jλzz
sc is up to 5 times larger than Jεzz

sc despite the relative order of

compounds being conserved. This seems to suggest that omitting the fluctuations

of the momentum matrix elements in the zz direction does overestimate the short

circuit current densities. In terms of the compounds relative order, the ranking

among the top ten compounds with the largest values of Jεzz
sc is not fully conserved

in the case of the Jλzz
sc . This shows that the high solar flux occurring at low energies

cannot make up for the errors inherent in our approximation when determining the

best out of plane absorbing monolayers. The highest rank deviation is found for

2H-WSe2 which probably has a similar discrepancy between the scaled JDOS and

the imaginary part of the dielectric function as illustrated for 2H-WS2 in Fig. 5.23.

The worst performing monolayers have matching rank positions due to their large
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Compound Jεxx
sc (Am−2) Rank Jλxx

sc (Am−2) Rank
1T-PdTe2 498.7 1 485.1 1
1T-HfTe2 401.1 2 369.1 2
1T-TiS2 375.6 3 326.4 3
2H-HfTe2 291.3 4 298.4 4
1T-PtTe2 265.1 5 259.4 5
1T-OTl2 265.0 6 253.4 6
2H-MoTe2 229.4 7 203.2 7
2H-WTe2 226.5 8 184.0 8
1T-ZrSe2 174.6 9 156.9 10
2H-MoSe2 126.1 10 102.4 12
1T-SnSe2 107.7 11 173.4 9
1T-STl2 105.7 12 102.6 11
2H-WSe2 103.0 13 75.6 16
1T-PtSe2 98.9 14 98.6 13
1T-HfSe2 90.5 15 83.4 15
2H-ZrCl2 89.5 16 89.3 14
2H-MoS2 83.9 17 62.8 17
2H-WS2 63.1 18 46.8 18
1T-ZrS2 47.9 19 45.2 19
1T-PtS2 25.9 20 25.8 21
1T-HfS2 16.8 21 16.43 23
1T-SnS2 15.9 22 28.5 20
1T-YbI2 15.6 23 18.5 22
1T-GeI2 9.7 24 9.7 24
2H-GeI2 8.70 25 8.6 25
1T-ZnI2 3.50 26 7.5 26
1T-PbI2 2.3 27 2.5 27
1T-CdI2 1.1 28 2.1 28
1T-PtO2 0.3 29 0.3 29

Table 5.8: Short circuit current density, Jsc, calculated using the xx components of
the dielectric function and of the joint density of states, respectively. The compounds
have been ranked according to their respective Jsc.
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band gaps and small momentum matrix elements, which entails low fluctuations,

hence rendering the scaling more appropriate.

Compound Jεzz
sc (Am−2) Rank Jλzz

sc (Am−2) Rank
1T-PdTe2 260.7 1 459.2 1
2H-HfTe2 208.8 2 283.9 2
1T-PtTe2 151.4 3 247.4 5
1T-HfTe2 123.0 4 304.7 3
1T-TiS2 90.7 5 229.7 4
1T-PtSe2 82.2 6 97.0 6
1T-ZrSe2 76.8 7 128.8 8
2H-MoTe2 61.6 8 149.5 10
2H-WTe2 47.7 9 119.2 9
1T-OTl2 45.7 10 195.0 15
1T-HfSe2 41.6 11 69.3 7
1T-STl2 36.9 12 86.5 12
1T-ZrS2 28.9 13 38.2 17
1T-SnSe2 26.5 14 15.0 11
1T-PtS2 23.2 15 25.1 13
2H-MoSe2 18.4 16 56.9 14
1T-HfS2 11.9 17 14.4 19
2H-WSe2 11.8 18 35.8 23
1T-GeI2 7.9 19 8.9 16
2H-MoS2 7.6 20 24.5 18
2H-ZrCl2 7.0 21 67.6 22
1T-YbI2 6.9 22 15.8 20
2H-GeI2 5.8 23 8.6 21
1T-SnS2 4.8 24 21.4 24
2H-WS2 4.6 25 14.3 25
1T-PbI2 2.2 26 2.1 26
1T-ZnI2 1.5 27 5.0 27
1T-CdI2 0.5 28 1.4 28
1T-SnS2 0.2 29 0.2 29

Table 5.9: Short circuit current density, Jsc, calculated using the zz components of
the dielectric function and of the joint density of states, respectively. The compounds
have been ranked according to their respective Jsc.

In conclusion, we have attempted in this chapter to explore band nesting for a set of

29 transition metal dichalcogenides and halides. We first clustered the monolayers

according to their characteristic |∇k(Ec1−Ev1)| mapped on their IRBZ, which was

sampled using a dense grid of 43x44x1 k-points. We identified four groups exhibiting

certain common patterns. The group displaying the largest intrinsic band nesting

regions contain molybdenum- and tungsten- based compounds. We repeated the

clustering procedure by introducing the solar flux, whereby each k-point in the IRBZ
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was associated to φsol(Ec1−Ev1)/|∇k(Ec1−Ev1)|. We defined the regions in the IRBZ

that yield band nesting transitions at energies where the solar flux is at its strongest

"regions of interest". Materials with the largest "regions of interest" were identified

as residing in a group and they consisted of platinum-based compounds and of the

molybdenum and tungsten monolayers that exhibit lower band gaps, namely of 2H-

MoTe2, 2H-WTe2 and 2H-MoSe2. A very similar analysis was performed for a set

of bulk TMD and TMH compounds. "Regions of interest" were identified in all the

clusters although they were quite localized and narrowly spread. In the second part

of the chapter we introduced an operational definition relating the imaginary part

of the dielectric function to the joint density of states. We tested the hypothesis,

under which the two have a linear relation, where the scaling factor is a constant

quantifying the global effect of the momentum matrix elements. We compared two

sets of dielectric function spectra with varying number of k-points and Lorentzian

broadening. We found that these features of the dielectric spectrum do not have a

significant effect on the size of the scaling factor, µ, and its corresponding relative

error, δ. We also came to the conclusion that the hypothesis is better justified when

considering the xx component of the spectrum than the zz one. We plotted |pc,v,k| for

2H-WS2 and 1T-ZrS2 along the solar energy range and observed a smaller variance

in the case of the former compound. This helped validate our assumption made from

observing the good match between JDOS and the scaled Im(εxx) spectra of 2H-WS2

and 2H-MoS2 in Fig.5.22. The pDOS of 2H-WS2 indicates that there is a change in

the orbital character in the lower lying valence bands, thus possibly justifying why

the scaled JDOS does not describe well the xx component of the imaginary part of

the dielectric function from 4 eV onwards. We went on to show that observables such

as the absorption coefficient along both the xx and zz directions, together with the

short circuit current density can very reliably be employed as ranking descriptors

using interchangeably the dielectric function spectra or the joint density of states

and its Kramers-Kronig derived counterpart. An important conclusion is that the

values of the strong solar flux downplay the error that arise from ignoring the energy

dependence of the in-plane momentum matrix elements, while this is not necessarily

the case for the out-of-plane ones.
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6 Conclusions

Throughout this PhD thesis we have explored different avenues for describing the

absorption properties of semiconductors under direct solar radiation. We selected

DFT as our theoretical framework to determine the states and the eigenvalues of the

system, predominantly employing the hybrid functional HSE06 to correct for the in-

herent band gap underestimation of the LDA/GGA. The assumption that underlies

this work is that the Kohn-Sham states can be interpreted to a certain level of accu-

racy as the ground and excited states of the system in question. Despite the lack of

a formal theoretical justification to back up this approximation, the loose identifica-

tion of the Kohn-Sham as the quasi-particle states of an electronic system have been

made successfully before. Nevertheless, as stated in Chapter 1, the objective of this

work was aimed at providing a qualitative, rather than a fully quantitative method

of ranking and assessing the absorption characteristics of compounds, especially of

two-dimensional layered ones. We consider that this goal is achieved by employing

the DFT-derived Kohn-Sham states into the optical response expression formulated

in the many-body RPA approximation.

Firstly, we found that the correct estimation of the pre-edge absorption spectrum

is critical for a reliable theoretical assessment of a material’s photoconversion effi-

ciency. However, the shape and the amplitude of the pre-edge is largely affected by

the level of disorder inherent to a system, which is a sample-specific property, rather

than an intrinsic one. Surely enough, indirect gap systems are prime candidates that

require an in-depth pre-edge absorption analysis. We have seen that this is the case

even for direct gap materials such as the well-established hybrid perovskite, methyl

ammonium lead iodide, whereby its efficiency was enhanced up to 5 times when the

empirical pre-edge Urbach tail was added to the ab-initio absorption spectrum. In
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contrast, it was found that the shortcircuit current density, Jsc, did not change sig-

nificantly with the inclusion of the sub-band absorption. However, a fully theoretical

treatment of the pre-edge absorption coefficient and hence, of the PCE, would be

impossible. This prompted us to focus fully on the property that appeared to be

reliably determined with our model, namely the intrinsic absorption performance of

materials. To this end, we designated as proxy the short circuit current density. We

opted to quantify this quantity for six materials by taking 95% of their saturated

Jsc and their corresponding characteristic material thickness. Both these descriptors

were reasonably well in agreement with experimental measurements identified in the

scientific literature.

We then moved on to investigate the dielectric function, a direct proxy of the absorp-

tion coefficient, in vertically stacked TMD monolayers. We looked at the HfS2/PtS2

heterostructure characterised by a type II band alignment in order to determine

whether its imaginary part of the dielectric function spectrum exhibits any unique

peaks that could be pinned down to inter-layer transitions. Essentially we decom-

posed the total dielectric function into its constituting intra-layer, inter-layer and

mixed components by projecting the momentum matrix elements on the individual

layers. The inter-layer component exhibited an amplitude that was a factor of 100

lower than the intra-layer one. Unfortunately, the mixed component displayed a

non-zero contribution in the same energy region where the inter-layer component

was present. Therefore, one cannot categorically separate the inter-layer transitions

from the intra-layer ones. Nevertheless, gradually compressing the two layers led to

the creation of a valence impurity band which, eventually, led to a well-isolated peak

at the absorption edge. This was attributed to the inter-layer transitions alone.

Lastly, we attempted to bring together the two previous lines of work by quanti-

fying absorption characteristics of 2D compounds. We investigated the concept of

"band nesting" and its emergence due to van Hove singularities, which are a preva-

lent feature in the density of states of transition metal dichalcogenides. We set out

to examine the specific regions in the Brillouin zone that are associated with these

singularities, since they are attributed to the strong optical conductivity recorded in

TMD systems. We first took a data-driven approach whereby we classified the com-

pounds, first in their monolayer form and then, separately, in their bulk form, using
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statistical algorithms such as "k-means". The quantity used for the classification

consisted of the individual gradients of the energy difference between the the top

valence and bottom conduction bands, i.e. |∇k(Ec1 − Ev1)| mapped onto their re-

spective IRBZ. We found similar human-discernible patterns in the resulting groups

that, to some extent, justified the emerging groups. We also introduced the solar flux

to constrain the energy window on which the band nesting could have a substantial

impact on the solar radiation-induced transitions. These restricted band nesting

regions were defined as "regions of interest". A considerable number of compounds

appeared to exhibit band-nesting features in the visible solar range, although they

were a lot less wide-spread than the inherent ones, which were at energies exceeding

the visible solar range. Furthermore, we delved into the study of the joint density

of states and compared it to the imaginary part of the dielectric function. We noted

that there was a roughly linear relation between the two spectra. Based on this

coarse approximation, we attempted to calculate observable macroscopic quantities

such as the absorption coefficient and the short circuit current density using a scaled

JDOS and its Kramers-Kronig analogue. In these the scaling factor was normalized

to the energy range. We tested whether the compounds ranking in terms of these

macroscopic quantities would be roughly unchanged when using the full dielectric

function. This was indeed the case, especially for the in-plane component of the

absorption coefficient. The first five compounds with the strongest in-plane short

circuit current densities were found to be 1T-PdTe2, 1T-HfTe2, 1T-TiS2, 2H-HfTe2

and 1T-PtTe2. Then 2H-MoTe2, 2H-WTe2 and 2H-MoSe2 closely follow, being on

the 7th, 8th and 10th positions. In this work we have not taken into account the

formation of excitons and their impact on the dielectric spectra. As excitons are

known to have relatively large binding energies in lower dimensional systems, an

idea for the future plan is to semi-classically model the exciton binding energies

for our pool of 2D compounds. To this end, we will use the quantum-electrostatic

heterostructure (QEH) model developed by Andersen et al. [155] that enables the

calculation of dielectric properties and electronic excitations of realistic incommen-

surable systems at considerably lower computational costs than the full many-body

approach. The workflow consists of performing ab-initio calculations to obtain the

response functions of the freestanding layers. Within the dipole approximation, the
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induced density in the isolated layers is found. Afterwards, the full density response

of the van der Waals heterostructure is obtained through a Dyson-like equation that

couples the dielectric building blocks through Coulomb interaction. Then the in-

verse dielectric function in the monopole/dipole basis can be calculated knowing

the full density response and the Coulomb matrices. The reason why this model

works is because the hybridization of the band structure does not have a significant

impact on the dielectric properties of a van der Waals heterostructur [155]. We plan

to implement this model for our entire pool of 2D systems in order to study the

change in the dielectric function from mono- to multi-layers. This model will also

enable us to calculate the screened electron-hole interactions from the full response

function and the Coulomb interaction matrix. Hence, the QEH model appears as

a computationally cheap and accurate way to explore heterojunctions with varying

number of layers that exhibit excitonic transitions at energies that are in the high-

flux part of the solar spectrum, i.e. between 0.7-1.3 eV.

For the most promising systems that emerge from the QEH model and which have

a maximum number of 5 layers, we plan to apply many-body perturbation theory in

order to obtain the close-to-exact optical response. Therefore, we will perform some

GW+Bethe Salpeter calculations [187] and we will compare the excitation energies

obtained with those determined in the QEH model.
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A Appendix

A.1 k · p perturbation theory

The following brief overview aims to provide supplementary details regarding section

2.4. Its content is based on the work of Ambrosch et al. [115]. The Schrödinger

equation corresponding to a system of independent electrons in a periodic potential

can be written as

[−~2∇2

2m + V (r)
]
ψn,k(r) = εn,kψn,k(r) , (A.1)

where m is the electron mass, V (r) is the periodic crystal potential and εn,k are

the single-particle energy eigenvalues. The solution to this equation is the Bloch

wavefunction 〈r|n,k〉 introduced in Chapter 2, Section 2.1. The periodic part of

the Bloch state, un,k(r), is an eigenstate of the Hamiltonian Hk = (p+ k)2

2m +V (r).

We will use perturbation theory under the assumption that the light wave vector q

is negligible to derive εn,k+q and M0
l,n(k, q), two quantities that are central to the

calculation of the macroscopic dielectric constant introduced in Chapter 2, Section

2.4. The equation for un,k+q(r) is

Hk+qun,k+q(r) = εn,k+qun,k+q(r) , (A.2)

where the perturbed Hamiltonian is

Hk+q = Hk + ~p · q
m

+ ~2k · q
m

+ ~2q

2m . (A.3)
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The last three terms are considered to be the perturbation. Let us introduce the

notation convention

(r|n,k) = un,k(r) . (A.4)

The matrix element of an operator Ô are

(n′,k′|Ô|n,k) = 1
Ω

∫
Ω
dru∗n′,k′(r)Ôu∗n,k(r) , (A.5)

with the integral running over the unit cell volume, Ω. According to perturbation

theory the wavefunction to first order in q is

|n,k + q) = |n,k) +
∑
n′ 6=n

|n′,k)(n′,k|Hk+q −Hk|n,k)
εn,k − εn′,k

. (A.6)

Only one of the perturbation terms of Eq.(A.3) has a non-zero contribution to the

first order correction of the wavefunction and hence the previous expression can be

reformulated as

|n,k + q) = |n,k) +
∑
n′ 6=n

|n′,k)
(n′,k| ~

m
p · q|n,k)

εn,k − εn′,k
. (A.7)

Since the states are normalized, the expression for energy to linear order in q is

εn,k+q = εn,k + ~
m

[(n,k|p|n,k) + ~k] · q . (A.8)

We shall now introduce the momentum matrix element, defined as

pl,n,k ≡ 〈l, k|p |n,k〉 = δl,n~k + (l,k|p|n,k) , (A.9)

where the right-hand side expression can be derived using Eq.(A.7) and the fact that

the wavefunctions ψn,k are normalized and are Bloch states. The wavefunctions and

energies to first order in q are then recasted in terms of the momentum matrix

element as

|n,k + q) = |n,k) + ~
m

∑
n′ 6=n

|n′,k) pl,n,k
εn,k − εn′,k

· q , (A.10)

162



and

εn,k+q = εn,k + ~
m
pn,n,k · q . (A.11)

We continue applying a similar procedure whereby we use the periodic function,

un,k, to express the matrix element

M0
l,n(k, q) = 〈l,k| e−iqr |n,k + q〉 = (l,k|n,k + q) . (A.12)

Based once more on Eq.(A.7), the matrix element of the first order for small q

becomes

M0
l,n(k, q → 0) = δl,n + (1− δl,n) ~

m

pl,n,k · q
εn,k − εl,k

. (A.13)

A.2 Semi-classical derivation of the dielectric func-

tion

In this section we will derive the linear response theory for a set of electrons in an

external electromagnetic field. This expression is relevant for obtaining the electrical

conductivity of solids, and hence their dielectric function, in addition to a description

of the interaction between electrons and light. We assume to have an independent

electron approximation for a collection of electrons that occupy states of energy

εl = ~ωl , (A.14)

with probability fl. Generally fl is a Fermi factor, meaning that states up to Fermi

energy are occupied, while those above are empty. The first step in this calculation

is to work out the response to the first order of an arbitrary time-evolved state to

a potential Û(t) with time dependence e−iωt. The next step involves finding the

expectation value of the current in this state. For this goal, we need to find |l(t)〉,
which is the time-evolved eigenstate of Ĥ, i.e. |l〉, under the combined action of Ĥ

and Û .

We start off by considering a many-particle system with a time-independent Hamil-

tonian Ĥ. The system is perturbed at t = t0 by turning on an additional time-
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dependent Hamiltonian Û(t). The new Schrödinger state vector now satisfies the

equation:

i~
|∂ψS(t)〉

∂t
= [Ĥ + Û(t)]|ψS(t)〉 . (A.15)

We seek for a solution of the form:

|ψS(t)〉 = e−iĤt/~Â(t) |ψS(0)〉 , (A.16)

where the operator Â(t) obeys the causal boundary condition

Â = 1, t ≤ t0 . (A.17)

Let us apply the time-derivative to the the Schrödinger state vector

∂ψS(t)
∂t

= −i
~
Ĥ|ψS(t)〉+ e−iĤt/~

∂Â(t)
∂t
|ψS(t0)〉 . (A.18)

Considering Eq. (A.15), Eq. (A.16) and multiplying to the left by eiĤt/~, it follows

that:

i~
∂Â(t)
∂t
|ψS(t0)〉 = eiĤt/~Ûe−iĤt/~Â(t) |ψS(0)〉 , (A.19)

where eiĤt/~Ûe−iĤt/~ is, in fact, Û(t). Acknowledging that any smooth function

could be expressed as

Â(t) = Â(t0) +
∫ t

t0

∂Â(t′)
∂t′

dt′ , (A.20)

we can rewrite Eq. (A.15) iteratively to first order as:

Â(t) = Â(t0) + 1
i~

∫ t

t0

dt′eiĤt
′/~Ûe−iĤt

′/~Â(t0) . (A.21)

Similarly, the perturbed time-dependent Schrödinger state has the expression:

|ψS(t)〉 = e−iĤt/~(|ψS(t0)〉+
∫ t

−∞
dt′eiĤt

′/~ Û

i~
e−iĤt

′/~ |ψS(t0)〉). (A.22)

For simplicity of notation, let us replace the eigenstate of the unperturbed Hamil-

tonian, |ψS(t0)〉 with |l〉 and let us introduce in Eq. (A.22) a sum over all l′ states
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of the unitary operator, i.e.
∑

l′ |l′〉 〈l′| = 1,

|l(t)〉 = e−iĤt/~ |l〉+
∑
l′

∫ t

−∞
dt′ |l′〉 〈l′| e−iĤ(t−t′)/~ Û

i~
e−iĤt

′)/~ |l〉 (A.23)

Let us now consider the time-evolution operator as a Taylor series

e−iĤt/~ = 1− iĤt

~
+ 1

2!

(iĤt
~

)2
+O3(Ĥ) + ... . (A.24)

Now, if we approximate this operator to first order and acknowledge the fact that

its eigenvalues are scalars, we obtain,

|l(t)〉 = e−iωlt |l〉+
∑
l′

∫ t

−∞
dt′e−iωl′ (t−t′) |l′〉 〈l′| Û

i~
|l〉 e−iωlt

′
e−iωt

′
. (A.25)

In Eq. (A.25), we assumed Û(t′) has time dependence e−iωt′ , which we added ex-

plicitly. Here ωl and ωl′ are the eigenfrequencies of the hamiltonian, ωl = εl
~
. We

now separate the sum over the l′ states from the integral over time

|l(t)〉 = e−iωlt |l〉+
∑
l′

|l′〉 〈l′| Û
i~
|l〉 e−iωl′ t

∫ t

−∞
dt′eiωl′ t

′
e−iωlt

′
e−iωt

′
. (A.26)

In order for the time integral to converge, we add a small imaginary part η to ω.

Also, we omit the l state from the sum over all l′ states for normalization purposes.

The final form of the time-dependent state is then

|l(t)〉 = e−iωlt

{
|l〉+

∑
l′ 6=l

|l′〉 〈l
′| Û |l〉 e−iωt

~(ωl − ωl′ + ω)

}
. (A.27)

It is worth mentioning that if the time-dependent potential has the complex conju-

gated form of Ûe−iωt, i.e. Û∗eiω∗t, then the time-dependent state would be

|l(t)〉 = e−iωlt

{
|l〉+

∑
l′ 6=l

|l′〉 〈l
′| Û∗ |l〉 eiω∗t

~(ωl − ωl′ − ω∗)

}
. (A.28)

The imaginary part η in ω alleviates convergence problems, but besides that it does

not pose a real physical interest. It indicates that the interaction potential is turned

on very slowly in the past such that the system can reach a steady state by adjusting
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itself adiabatically to the new potential.

We need now to describe how electrons interact with an electromagnetic field. An ap-

propriate way of accounting for a uniform electrical field within the periodic bound-

ary conditions is through a vector potential. According to Maxwell’s equation,

electric fields are generated by time-dependent vector potentials

E = 1
c

∂A

∂t
−∇V , (A.29)

where A is the vector potential and V is a scalar potential. We also note that the

wavelength of the light passing through a solid is approximately 100 Å in the visible

spectrum, while the typical unit cell dimensions are significantly smaller. Hence it

is justifiable to consider electric fields to be of the form

E(r, t) = Ee−iωt , (A.30)

and to set q = 0 in the dielectric and conductivity tensor, omitting q altogether.

Based on Eq. (A.29), the vector potential describing the spatially uniform oscillating

field is

A = cE

iω
e−iωt + cE

−iω∗ e
iω∗t , (A.31)

where we have included the complex conjugate in the second term. The next step

allows us to determine the expectation value of the current in the state |l(t)〉. The

canonical momentum that describes a charge in an electromagnetic field is known

to be p = P − e

c
A. In addition, the kinetic term of the Hamiltonian is responsible

for the emergence of the current and it can be shown that it is j = Re{eψ∗pψ}.
The current operator is finally expressed as

ĵ = − e

m
(P̂ + e

c
A) , (A.32)

Applying the chain rule and noting that ∇ ·A = 0, the kinetic term is hence to first

order P̂
2

2m + e
mc
AP̂ . Therefore, to linear order, the Hamiltonian is modified by the

addition of

Û(t) = e

miω
EP̂ e−iωt − e

miω∗
EP̂ eiω

∗t . (A.33)
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To first order in the perturbative term, the current corresponding to the state |l(t)〉
is

J|l(t)〉 = Ωj|l(t)〉 =− e

m
〈l(t)| P̂ + eA

c
|l(t)〉 = − e

m
〈l| P̂ |l〉 − e2

mc
〈l|A |l〉

−
∑
l′ 6=l

e

m
〈l| P̂ + A

c
|l′〉 〈l′| Ûe−iωt

~(ωl − ωl′ + ω) + Û∗eiω
∗t

~(ωl − ωl′ − ω∗)
|l〉

−
∑
l′ 6=l

e

m
〈l′| P̂ + eA

c
|l〉 〈l| Ûe−iωt

~(ωl − ωl′ + ω)
+ Û∗eiω∗t

~(ωl − ωl′ − ω∗)
|l′〉 .

(A.34)

If we assume that the ground state has no net current and we sum up over all l

states, we get:

Ji = Ω
∑
l

flj
l
i =−e

2

mi
Ei
∑
l

fl 〈l|
e−iωt

ω
− eiω

∗t

ω∗
|l〉

−
∑
l

∑
l′ 6=l

e2

~m2fl 〈l| pi |l
′〉
∑
j

〈l′| pjEje
−iωt

iω(ωl − ωl′ + ω) + pjEje
iω∗t

−iω∗(ωl − ωl′ − ω∗)
|l〉

−
∑
l

∑
l′ 6=l

e2

~m2fl 〈l
′| pi |l〉

∑
j

〈l| pjEje
iω∗t

−iω∗(ω∗l − ω∗l′ + ω∗) + pjEje
−iωt

iω(ω∗l − ω∗l′ − ω) |l
′〉 .

(A.35)

Since the conductivity tensor σ(ω) is defined as the coefficient of e−iωt that relates

the the applied electric field Ei to the current ji, we obtain

σij(q → 0, ω) = −e2

imωΩ

[∑
l

flδij+
∑
l

∑
l′ 6=l

fl
~m

{
〈l| pi |l′〉 〈l′| pj |l〉
ωl − ωl′ + ω

+〈l
′| pi |l〉 〈l| pj |l′〉
ω∗l − ω∗l′ − ω

}]
.

(A.36)

The dielectric constant and the conductivity are related as

ε(q → 0, ω) = 1 + 4πiσ(q → 0, ω)
ω

. (A.37)

Therefore, the part of the dielectric constant for which l 6= l′ has the form

εij(q → 0, ω) = −4πe2

mω2Ω
∑
l

∑
l′ 6=l

fl
~m

{
〈l| pi |l′〉 〈l′| pj |l〉
ωl − ωl′ + ω

+ 〈l
′| pi |l〉 〈l| pj |l′〉
ω∗l − ω∗l′ − ω

}
.

(A.38)

Let us note that ~ω = E. Moreover, let us assume that ~ = e = m = 1, ω has a small
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imaginary part iη, all ωl and ωl′ are real, ω ≈ (ωl − ωl′), the irradiated electronic

system is a solid, which then imposes a summation over k-points to account for its

periodicity, l states correspond to conduction states c and l′ states correspond to

valence states v and finally, the system is spin-degenerate, hence fl = 2, we get

that Eq.(A.38) is equivalent to Eq.(2.75) of Chapter 2, which defines the interband

dielectric function in the RPA approximation.

A.3 Computational approach to Kramers-Kronig

relations

The Kramers-Kronig relations for two real analytic functions χ1 and χ2 defined via

χ(ω) = χ1(ω) + iχ2(ω) are

χ1(ω′) = 1
π
p.v.

∫ ∞
−∞

χ2(ω)
ω′ − ωdω , (A.39)

and

χ2(ω′) = −1
π
p.v.

∫ ∞
−∞

χ1(ω)
ω′ − ωdω , (A.40)

where p.v. denotes the "principal values" of a multivalued function. These refer

to values along a certain branch of that function where it is single-valued. We

will briefly describe below how we computationally implement the Kramers-Kronig

relations to obtain the real part of the dielectric function from its imaginary part. In

our case, we have access to the imaginary part of the dielectric function, ε2, obtained

from the DFT bandstructure. The energy range of our spectrum is limited between

0 and 10 eV. The goal is to find an accurate method to perform the integral in Eq.

(A.39) in order to obtain the real part of the dielectric function. In our case, the

integral in Eq.(A.39) can be broken down as

ε1(E ′) = 1
π

(
p.v.

∫ −10

−∞

ε2(E)
E ′ − EdE + p.v.

∫ a

−10

ε2(E)
E ′ − EdE+

p.v.

∫ b

a

ε2(E)
E ′ − EdE + p.v.

∫ 10

b

ε2(E)
E ′ − EdE + p.v.

∫ ∞
10

ε2(E)
E ′ − EdE

)
,

(A.41)
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with −10 eV < a < b < 10 eV . Now by invoking the fact that the imaginary part

of the dielectric function is an odd function, it follows that ε2(−E) = −ε2(E) with

E ∈ [0, 10] eV. Essentially, this means that the three middle integrals, that range

from -10 eV to 10 eV, can be computed. For each value of E ′, let its corresponding

a and b values be E ′ − h and E ′ + h, respectively

a(E ′) = E ′ − h

b(E ′) = E ′ + h ,
(A.42)

where h is an arbitrarily small overshooting positive constant. The reason why we

introduce h is the following: E ′ can have any value between 0 and 10 eV. Now, the

second and the fourth integral with energy E ranging from -10 eV to a and from b to

10 eV, respectively, pose no particular difficulty and so they can be easily estimated

numerically using the trapezoidal rule. That is because there is no singularity in

the second and fourth integrals since the denominator will always be non-zero, i.e.

|E ′ − E| > 0 eV . However, the third integral is defined over the energy range

comprised between E ′−h and E ′+h, meaning that it has a singularity for E = E ′.

To make the integral tractable, we shall need to apply the Cauchy principal value.

To this end, we will have to transform ε2/(E ′ − E) into an analytic function. This

can be done by expanding the function ε2/(E ′ − E) around the singularity E = E ′

in terms of polynomial functions. After performing some basic complex calculus we

arrive at the expression

p.v.

∫ E′+h

E′−h

ε2(E)
E ′ − EdE =

i=m∑
i=0

ai+1 ·
hi+1

i+ 1 , (A.43)

where m is the maximum order of the polynomial expansion of ε2/(E ′ − E) and

ai is the coefficient of the i-th order polynomium. The overshooting term ensures

that the polynomial fit is done over a sufficiently large range around the singularity

E = E ′ so that the function is well-described at that point. However, choosing a

value for h that is too large can lead to an erroneous polynomial expansion of the

function in the close proximity of the singularity.

The only remaining integrals to solve are the first and the last. Since we cannot

practically obtain them, we note that for 0 � |E ′| � 10eV , the error term which
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we define as

err(E ′) =
∫ −10

−∞

ε2(E)
E ′ − EdE +

∫ ∞
10

ε2(E)
E ′ − EdE , (A.44)

is finite but independent of E ′. This is somewhat expected due to the overall effect

of ε2 being a continuous function and that

∫ −10

−∞

1
E ′ − EdE +

∫ ∞
10

1
E ′ − EdE ≈

∫ −10

−∞

1
E ′ + ζ − EdE +

∫ ∞
10

1
E ′ + ζ − EdE ,

(A.45)

where ζ is taken to satisfy 0 � |E ′ + ζ| � 10eV . Clearly this holds only because

for the most part |E| � 10 eV.

By contrast, approximating err(E ′) to a constant when |E ′| ≈ 10 eV or |E ′| ≈ 0 eV

is not expected to hold anymore.

In Fig. A.1 we show the xx component of ε2 for the 2H-MoS2 monolayer, our

calculated ε1 and the FHI-AIMS calculated ε1. Here, we found that the constant

value by which we can approximate err(E ′) when 0 eV � |E ′| � 10 eV was the

minimum value of ε1(E ′), where E ′ ∈ [0, 10] eV. As it can be seen, the boundary

regions are increasingly deviating from the correct spectrum due to the error effect

we described.
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Figure A.1: The orange line designates the xx component of the imaginary part of
the dielectric function as computed from DFT for 2H-MoS2 monolayer, the red line
is the calculated real part of the dielectric function using the approach described
herein and the blue line is the real part of the dielectric function as obtained from
DFT.
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A.4 Additional information for Chapter 5

Below we present the complete list of the scaling factors µxx, µzz and their corre-

sponding δ values.

Compound µxx δ
1T-PbI2 3.09 0.71
1T-GeI2 2.90 0.47
1T-PtSe2 1.76 0.46
1T-STl2 1.64 0.21
2H-WS2 1.39 0.97
1T-PtTe2 1.24 0.46
1T-OTl2 1.19 0.80
1T-HfS2 1.05 0.35
1T-PdTe2 1.02 0.54
2H-GeI2 0.96 0.35
1T-PtS2 0.93 0.29
2H-WSe2 0.93 0.99
1T-HfSe2 0.91 1.27
2H-MoS2 0.86 1.00
1T-HfTe2 0.85 1.44
2H-ZrCl2 0.85 0.92
1T-SnSe2 0.83 1.59
2H-WTe2 0.81 0.56
1T-ZrS2 0.77 0.44
2H-MoSe2 0.72 0.56
1T-ZrSe2 0.67 1.22
2H-MoTe2 0.65 0.33
1T-CdI2 0.50 0.42
1T-ZnI2 0.48 0.71
1T-TiS2 0.43 0.72
2H-HfTe2 0.38 0.68
1T-SnS2 0.38 0.62
1T-PtO2 0.32 0.19
1T-YbI2 0.09 0.34

Table A.1: µxx and δ for Im(εxx)
calculated with 20x20x1 k-points and
with η=0.1 eV.

Compound µzz δ
1T-PbI2 1.06 0.15
1T-GeI2 0.81 0.27
1T-PtSe2 0.63 0.54
1T-STl2 0.68 1.33
2H-WS2 0.04 0.62
1T-PtTe2 0.46 1.30
1T-OTl2 0.37 3.78
1T-HfS2 0.23 0.13
1T-PdTe2 0.39 2.49
2H-GeI2 0.74 1.70
1T-PtS2 0.29 0.26
2H-WSe2 0.07 0.74
1T-HfSe2 0.21 0.60
2H-MoS2 0.04 0.60
1T-HfTe2 0.22 2.43
2H-ZrCl2 0.04 4.80
1T-SnSe2 0.26 4.94
2H-WTe2 0.10 0.87
1T-ZrS2 0.21 0.20
2H-MoSe2 0.07 0.97
1T-ZrSe2 0.18 0.65
2H-MoTe2 0.09 1.28
1T-CdI2 0.12 0.13
1T-ZnI2 0.10 0.27
1T-TiS2 0.09 2.32
2H-HfTe2 0.17 0.50
1T-SnS2 0.10 1.07
1T-PtO2 0.07 0.33
1T-YbI2 0.04 0.28

Table A.2: µzz and δ for Im(εzz)
calculated with 20x20x1 k-points and
with η=0.1 eV.
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Figure A.2: a) JDOS spectrum, Im(εxx) and Im(εzz) for 1T-ZnI2, where the latter
two are scaled by µxx and µzz, respectively. b) Same as in a) but for the compound
1T-CdI2. These two materials are shown here since they exhibit among the lowest
values of Jsc. Their δ values corresponding to µzz are very low as seen in Table A.2.
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