
Facial Animation Pipeline Optimisation

with Blendshape Importance Ordering and

Perceptual Metrics

by

Emma Violet Carrigan, B.A. Mod.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Doctor of Philosophy

University of Dublin, Trinity College

April 2020



Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Emma Violet Carrigan

October 21, 2020



Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Emma Violet Carrigan

October 21, 2020



Acknowledgments

I would like to thank my supervisor, Rachel McDonnell, for the guidance throughout

this PhD, the long hours committed, and for the regular coffee meetings which made

the last few years much more manageable and enjoyable.

I would also like to give a special thanks to Katja Žibrek who was my confidante
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The quality of realistic virtual human faces has increased in recent years with

the availability of new technologies such as photogrammetry systems to scan actors

and reproduce their shape and texture digitally with minute detail, improved motion

capture to allow for the recording of intricate facial movements, and new game engines

which allow for the real-time rendering of complex structures and materials such as

the human eye. All of these combined have led to an intensely high level of quality

in virtual characters, but the added complexity of these technologies has increased the

amount of time, money, and effort needed to create them, with a significant increase
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in the computational power and memory required due to the high level of detail.

The goal of this thesis is to review the facial animation pipeline, identify areas to

optimise, and create new methods and algorithms to assist in the creation of high-

quality, realistic facial animation. The current industry standard for the high quality

facial animation is blendshape animation. This method requires a large amount of

geometry to describe the different possible poses of the face, known as blendshapes.

We first optimise the rig creation stage, the stage in which blendshapes are created

either by scanning an actor, or through a process called blendshape transfer, which

transfers existing blendshape expressions from a template character to create the re-

quired shapes. The blendshapes created through blendshape transfer can be further

improved by providing training example expressions of the target character. We con-

duct a perceptual experiment on the impact of this training on blendshape transfer,

and then propose a novel algorithm to suggest training examples using blendshape

importance ordering, i.e. the ordering of blendshapes such that the most and least

important blendshapes can be easily identified for a given task, as an integral part of

the example creation process, and an unexplored area that could be applied to various

stages of the pipeline and benefit from further investigation.

We go on to apply this idea of blendshape ordering to the animation stage. We im-

plement a GPU animation method with level of detail optimisation through blendshape

reduction, using the idea of blendshape importance to identify which blendshapes are

least important and can be removed.

We conclude with a perceptual experiment to further investigate the numeric met-

rics used throughout this thesis and their relation to human perception of faces. These

results provide a perceptual basis for blendshape ordering which can be used to optimise

the facial animation pipeline in methods such as blendshape reduction for level of de-

tail optimisation and training example creation using blendshape importance ordering,

such as those which we explore in this thesis.
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Chapter 1

Introduction

In recent years, improvements to technology have made it possible to create a highly

personalised virtual human that is almost indistinguishable from reality [unr18, 3la18,

Sey19]. This desire for highly realistic graphics has, in turn, considerably increased the

time, effort, and cost necessary for creating these characters. Additionally, real-time

character animation is constrained by the computational power available, limiting the

quality of virtual characters even further. With such a strain on the creation process,

there is high demand for optimisation of the virtual character animation pipeline.

The recent game release Hellblade: Senua’s Sacrifice (2017) [Sey16] presents one

of the most realistic examples of facial animation in games to date (see Figure 1.1).

We can see the attention to detail and the various state-of-the-art technologies used to

recreate those minute details which are required to reach what is becoming a standard

for games. The protagonist was created using a vast array of cutting edge technologies.

She has a complex facial rig, created by scanning an actress, which accurately replicates

her facial movements and skin rendering, including blood flow. Her eyes are rendered

by combining complicated geometry and lighting to create one of the most accurate
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Figure 1.1: Hellblade: Senua’s Sacrifice (2017)

portrayals of the human eye in gaming. She is animated using state-of-the-art face

and eye tracking, recording over 200 feature points at 90fps which are then fed into an

animation solver to recreate the actress’s performance. This involved the collaboration

of multiple companies including 3Lateral, CubicMotion, and Epic Games. Despite

all of this, Hellblade’s budget of $10 million was considered relatively small [McC18].

This gives us a good idea of just how much work is required to create realistic facial

animation.

The creation of realistic human faces is not just a question of rendering, however.

Perception of emotion and intent on human faces is now a mechanic that can be used

to facilitate gameplay and other interactive applications. Heavy Rain (2010) and L.A.

Noire (2011) are games based on trust and deception of virtual characters, as portrayed

by their behaviour. The player must decide whether a character is telling the truth,

or attempting to deceive them, in order to solve a mystery. Detroit: Become Human

(2018) is a critically-acclaimed game that had multiple digital-double characters created
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Figure 1.2: Detroit: Become Human (2018)

from actor scans and performances (see Figure 1.2). It explores a world where extremely

realistic androids exist, following some of these androids through complicated story

trees guided by player choices, and exploring a number of ethical questions. Despite

a development budget of e30 million [Aud18] and a cast of famous actors, the game

received some negative reviews regarding “wooden acting”, which is detrimental to a

game that is trying to invoke an emotional response from the player. Realistic graphics

does not always equal perceived realism, which is why investigating the impact of these

technological advances in facial animation is important. Similarly, there are various

games that allow the player to have a relationship with non-player characters, such

as the Dragon Age series (2009-2014), the Mass Effect series (2007-2017), and Skyrim

(2011). In these games, the relationships are not integral to the main story or gameplay,

but provide additional content for players to enjoy. However the characters must be

able to elicit some sort of emotion from the player, and a character’s facial animation

can hugely affect their ability to do this.
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A more recent application for virtual human facial animation is within virtual

spaces. Virtual Reality (VR) has recently achieved mainstream availability, causing

a huge surge in products and research in the field. One application that is becoming

more popular is that of virtual hangouts or meetings in VR. This involves avatars

representing users interacting in VR in place of their real selves. While it may be

acceptable for casual meetups to have avatars which do not represent the user in any

way, for more formal situations like meetings or conferences there needs to be a way to

accurately represent human faces, including all necessary emotional and communicative

expressions, in VR. This field is becoming popular, with methods already existing to

replicate a person’s face while reconstructing the upper half of their face which is

occluded by the headset [TZS+18, LTO+15].

As we can see, optimising the creation of realistic facial animation is desirable,

however it must be done with the final application in mind. Increasing the realism of

the graphics does not equate to increased realism of performance, so it is important to

also investigate the perception of the output of any optimisation.

This work focusses on creating virtual characters to be used for real-time applica-

tions such as video games, however it is worth mentioning the contrast in workflows

between creating characters used for real-time applications using the pipeline discussed

in this thesis, or those created for movies using a VFX (virtual effects) pipeline [Sey18].

Notably, the VFX pipeline is used to create animations at the highest possible quality

to be used, for example, in a few seconds of footage for a movie, while the real-time

pipeline creates characters that can be rendered and animated interactively depending

on the application. This greatly affects the focus of certain aspects of the pipelines.

While the real-time pipeline aims to automate and optimise the creation of animations

such that a large amount of animation at a reasonably high quality can be achieved, the
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VFX pipeline heavily relies on manual tweaking, for example frame-by-frame keyfram-

ing of an animation, in order to get the highest possible quality output of a much

smaller amount of animation.

The goal of this thesis is to optimise the facial animation pipeline, with percep-

tual analysis of our technological choices. We investigate both the animation and rig

creation stages, identify a common factor of blendshape ordering in the optimisation

of these stages, and develop perceptual metrics to guide the technical contributions

through perceptual experiments.

1.1 Methodology

As we investigate multiple stages of the facial animation pipeline, including analysis

and perception of completed facial rigs, i.e. the completed character setup to perform

the required facial animation, we require a wide range of methods and metrics to

appropriately investigate each stage. Optimisation can be defined in a number of

ways, whether it be faster computation times, reduced memory usage, or automising

labour-intensive manual tasks. Here we describe the specific techniques that we used

for the experiments in this thesis.

1.1.1 Geometric Metrics

In this thesis, we use geometric error for importance ordering, for evaluation of results,

and for investigating the impact of said error on perceived difference for various expres-

sions and characters. Root-Mean-Square Error and Hausdorff Distance are commonly

used metrics in the field of geometry processing [Lav11, BDBP12], while Triangle Dis-

tortion is a metric more commonly used for “as-rigid-as-possible” geometry mapping
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methods [LZX+08, Oh19]. For our purposes, we use a simplified version of Triangle

Distortion in order to measure the “stretch” of triangles after deformation. Here, we

give an overview of these metrics and a brief description of how they are used.

Mean-Squared-Error (MSE) and Root-Mean-Squared (RMS) Error of the vertices

of a character mesh are used to give the absolute value for the average movement of

a vertex between two meshes that share topology. We use these for measuring error

in results compared to ground truth (Section 3.2.3), and for analysing and ordering

blendshapes based on their variance from the neutral expression (Section 4.1.2 and

Chapter 5). In terms of our work with example-based blendshape transfer, identifying

large geometric displacements is important when trying to find suitable examples to

assist the transfer, as Deformation Transfer [SP04] can produce artifacts when trans-

ferring large displacements, and providing training examples can reduce artifacts in

these cases. We also use Displacement Strength as a metric for blendshape ordering in

Section 3.2, but as we define it as the average displacement of all vertices in a mesh

rather than, say, the maximum displacement of a single vertex, it is simply a multiple

of MSE or RMS.

Triangle Distortion is a metric designed to measure the stretch of a triangle between

meshes with the same topology. Similar to the other geometric metrics, this is useful

for example-based blendshape transfer methods as large differences in triangles could

cause artifacts in transfer.

Hausdorff Distance is a measure of the distance between two sets of points. In

terms of 3D meshes, it is the greatest distance from any point on either mesh to its

closest neighbour on the opposite mesh. Unlike the other metrics, Hausdorff distance

does not require correlation between the meshes, however all data measured using this

metric does share topology.
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1.1.2 Image Metrics

While geometric metrics are calculated based on the 3D vertex positions of a mesh, im-

age metrics are calculated on pixel values of a rendered image. In general, image-based

metrics are less appropriate to our needs as they are highly affected by application-

specific variables such as texture and lighting, and even the scene in which the model

is displayed. In the case of our animation optimisation work (Chapter 4), we render

images of a character in the neutral pose, as well as each blendshape activated on its

own, and use these to calculate image metrics between each blendshape and the neu-

tral face, essentially creating a mock scenario for how this character will be displayed.

However, in the case of our perceptual optimisation work (Chapter 5), it can be much

more precise, as the images we use to calculate the metrics in this case are exactly

those which are seen by the participants.

We use image Mean-Squared-Error (MSE) to give us a sum of all per-pixel differ-

ences. While MSE does not take into account human perception, it still describes the

difference between two images in a simple and meaningful way.

Structural Similarity Index Metric [WBSS04] and Perceptual Metric [Yee04] are

image-based error metrics that attempt to replicate the human vision system. Given

the highly perceptual nature of our research, having metrics that attempts to mimic

perception is of great interest.

1.1.3 Subjective Metrics

Subjective metrics are commonly used to analyse perception, such as asking partici-

pants to submit questionnaires, to make a choice, or to rate something. In this thesis,

we use the methods of two-alternative forced choice (2AFC) (Section 3.1) and rating
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using a Likert scale (Sections 3.1 and 5.1) [Bla52, Lik32].

2AFC forces a user to make a choice between two stimuli, recording choice and re-

sponse time as the measurements, also measuring reliability if stimuli are repeated [Bla52].

Likert is a numeric scale used for magnitude estimation, with some or all of the

points on the scale labelled. The number of points on the scale is advised to be no

less than 5 and no more than 11 [WC11]. Likert provides a numeric rating for each

stimulus on an interval scale.

1.1.4 Other

Alongside the metrics discussed above, we use computation time to measure optimi-

sation of a task (Section 4.1) as well as practicality of implementation (Section 3.2).

We conduct a user study of our proposed method in Section 3.2 as the pipeline would

require an actor to replicate our results, so the feasibility of this is paramount.

1.2 Motivation

Our initial motivation for this research was technical. State-of-the-art virtual char-

acters are computationally intensive both in memory, with new scanning technologies

producing models with hundreds of thousands of vertices [FNH+17, GZC+16] and

high-quality animation techniques such as blendshape animation require the storage of

hundreds of copies of this model with varying expressions [LAR+14], and computation-

ally, as the position of these vertices must be computed for real-time animation in the

case of blendshape animation. These blendshapes are either created manually by an

artist, or through automatic methods which often require manual cleaning. The cost

in terms of time, effort, and money required to create these state-of-the-art characters
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is immense, so we considered it of great interest, both for research and industry, to

provide solutions to reduce that cost.

We identified bottlenecks in the facial animation pipeline at the animation and rig

creation stages and found a common need for blendshape ordering based on an impor-

tance metric, which we needed to define in each case. In terms of our GPU animation

optimisation work in Chapter 4, we needed to identify the least important blendshapes

so we could remove them from the animation. In our character rig creation work in

Chapter 3, however, we required a way to identify the most important blendshapes to

include in training examples to best improve blendshape transfer results.

This leads us to the perceptual motivation. Our technical contributions required

a way to determine blendshape importance, which we defined numerically using in-

formation about the geometry of the blendshapes. However, perception of faces is a

complex topic, and while there has been much previous work on faces in perception,

none have investigated perception of displacement importance on different parts of

the face through different Action Units (AUs) [EF78]. For this reason, we decided

that a perceptual investigation was necessary, as well as analysis of the metrics used

throughout the technical chapter of this thesis with reference to our perceptual results.

1.3 Scope

We investigate the character rig creation and animation stages of the pipeline, however

we do not address the actor scanning or rendering stages. Within the animation stage,

we focus on optimising computation time and memory usage of real-time animations,

we do not investigate offline animation methods or animation creation or retargeting.

We focus on realistic characters as opposed to stylised or cartoon characters who
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often have simplified face structures and exaggerated movements.

We suggest our method would be useful for level of detail techniques, however we

never conduct experiments to test the effect on perception of different distances. We

present our results as estimates for level of detail techniques, but we would require

further experimentation for a definitive answer, which was out of the scope of this

thesis.

1.4 Limitations

Our work regarding blendshape transfer between characters, including example ex-

pressions of the target character to improve transfer (Chapter 3) was limited by the

available datasets.

Section 3.1 required a common set of scanned expressions performed by a number

of actors, all brought into correspondence with a template character rig in order to

perform and evaluate Example-Based Facial Rigging [LWP10]. This required a lot

of pre-processing of the meshes, and limited the expressions we could use to those

we could find examples of across many characters in the databases we had access to.

The pre-processing time also caused us to limit the number of stimuli in our project

due to time constraints, as we initially wanted to test a number of subsets of training

expressions, but in the end only performed a perceptual evaluation of one set.

We managed to obtain two highly realistic virtual human rigs for our work in

Section 3.2 through our collaboration with Eisko, who also brought the rigs into cor-

respondence to allow us to perform blendshape transfer on a realistic test case and

compare our results against ground truth. However, as we relied entirely on our col-

laborators for this data, we were limited to just these two models and could not obtain
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more for further test cases.

In our perceptual experiment in Chapter 5, we only used static stimuli and did not

investigate the effect of animated stimuli on perception.

1.5 Contributions

We formulate, to the best of our knowledge, the first training example suggestion al-

gorithm for example-based blendshape transfer. Blendshape transfer is a method to

assist in the creation of blendshape rigs by transferring a set of blendshapes from one

character to another target character, which can be further improved and personalised

by including example expressions of the target character. Our novel algorithm iden-

tifies important blendshapes and combines them such that the maximum amount of

information can be input to the algorithm, thus allowing complex personalised rigs to

be created with the minimum number of examples.

Additionally, we suggest a novel GPGPU real-time animation approach with anima-

tions passed to the GPU as texture buffer objects. We also investigate the possibility of

blendshape ordering metrics for blendshape reduction in the context of level of detail,

i.e. removing less important blendshapes for lower fidelity representations.

Finally, we define guidelines on blendshape importance based on their perceptual

importance, as well as its relation to various geometry-based and image-based distance

metrics, and we present linear models for predicting facial blendshape perceptual im-

portance from geometry and image displacement metrics calculated between the face

in neutral and face under expression.
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1.6 Summary of Chapters

We begin in Chapter 2 with a discussion on some of the literature in the fields relat-

ing to the topic of this thesis, namely creation and animation of virtual humans, and

human face perception. We then follow with the technical contributions made during

this PhD. In Chapter 3, we introduce the largest contribution of this thesis, which is

a method for suggesting optimal training expressions to be used with example-based

blendshape transfer algorithms. We begin in Section 3.1 by investigating the percep-

tion of facial rigs created using the Example-Based Facial Rigging algorithm with a

certain example set, looking for particular blendshapes or face areas that are most or

least affected by the inclusion of training examples with this algorithm. We then form,

to the best of our knowledge, the first training expression suggestion algorithm for

example-based blendshape transfer in Section 3.2. The training expressions are cre-

ated by combining the most important blendshapes, with some symmetry constraints

to make the expressions posable by a human. The importance of blendshapes are de-

fined by a number of importance factors that we discuss in detail. In Chapter 4 we

discuss a technique for optimising blendshape animation in the case of multiple users in

a shared VR simulation, as well as crowd animations using GPGPU methods. We also

suggest level of detail optimisations through reduction of the number of blendshapes,

which would lessen the amount of information needed to be sent to the GPU. We dis-

cuss different methods for ordering blendshapes in order to choose the least important

blendshapes to remove.

In Chapter 5 we perform a perceptual investigation into the idea of blendshape

importance, keeping in mind the technical applications of blendshape ordering from

the previous chapter. We begin with a preliminary experiment on the perception of
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various blendshapes of a highly realistic virtual human rig at various levels of activa-

tion, referencing geometric mesh difference metrics to provide a deeper insight into the

results. We continue this work with a larger variety of characters and metrics to test

the generalisability of our results across different face types. We then present models

for predicting the perceptual importance of blendshapes given the geometry or image

displacement metrics of a blendshape when compared to the neutral.

In Chapter 6 we summarise the contributions of this thesis and discuss the potential

conclusions that can be drawn from our results, and in Chapter 7 we suggest future

research on these topics.
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Chapter 2

Related Work

The creation of realistic virtual character faces spans many disciplines. Character

creation requires 3D scanning capabilities to generate the geometry, as well as high-

resolution image capture to recreate the texture. Rigging requires artists to create

intuitive controls so that the face can be animated with natural movement. Rendering

involves estimating the properties of the physical materials being displayed, as well as

the effect of the environment on these materials. On the topic of realistic faces, we

cannot ignore the psychology of face perception and how this impacts both the creation

of realistic characters and their application. In this chapter, we discuss the background

of each of these areas and provide a baseline for which to review the contributions of

this thesis.

2.1 Facial Animation Pipeline

The motivation for this thesis is to optimise the facial animation pipeline, focussing

on high-quality characters such as main characters in AAA games, so we begin by
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Figure 2.1: The facial animation pipeline. The stages discussed in detail in this thesis
are highlighted in green.

providing an overview of the stages of the pipeline. We focus on realistic character

creation, as this thesis is interested in the creation and perception of realistic virtual

humans. An overview of the pipeline can be found in Figure 2.1, with the particular

stages that we focus on in this thesis highlighted in green.

As mentioned in Chapter 1, the pipeline we focus on here is the real-time facial

animation pipeline for use with high-quality realistic characters in applications such as

AAA video games. When creating animations for use in a pre-rendered video, such as

CGI in a movie, the pipeline changes. While it is still necessary to create a character

and animate it, these stages no longer rely on optimised algorithms to create characters

and animations more quickly to be used in a vast array of scenarios. Rather, they rely

heavily on manual work so that each frame of each animation can be perfected for the

specific scene in which they are used.

A character will be created with a rig specifically geared towards the sentences and

emotions portrayed in each scene, and sometimes this animation is applied to directly

to the vertices of the model with no initial rig, with a rig only created as an aid for

animators to manually edit the already keyframed animation. This differs greatly from

the real-time pipeline which creates characters which have very comprehensive rigs

in order to anticipate the wide variety of facial movements they will need to portray

throughout a game.
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We will continue to focus on the real-time pipeline for the remainder of this thesis.

2.1.1 Character Creation

The first stage of the pipeline is the character creation stage. This can be done either

manually by artists or automatically using 3D scanning technologies. Manual character

creation is achieved using modelling software such as Maya or Blender [Aut16, Com18,

Mar03]. While this allows complete control over the creation, it is also the most inten-

sive in terms of work involved, and can be quite expensive as it requires a skilled artist

to create a high-quality model. Automatic methods involve scanning an actor using

photographs [PHL+06, HSW+17] or 3D scans [ZSCS08, GZC+16, FNH+17]. While

these methods are much faster and cheaper than manual character creation, they often

still require a manual step to clean and edit the resulting model.

There are a number of fast and refined avatar creation products that only require

a single photo and create an avatar within seconds on tablet or phone [Loo20, Pin19,

itS20, Did19, ZTG+18]. The geometry of the face can be reconstructed using a PCA

model with pixel-wise optimisation [HSW+17, TZS+16, YSN+18, SWH+17] or a face

can be imitated by using dynamic textures [NSX+18]. These methods currently pro-

duce lower quality or stylised characters, which are not suitable for the use case of high

quality game characters that we focus on, however this is another avenue for character

creation optimisation that is likely to improve in quality in the future.

There are methods for fast human scanning and rigging, such as fitting a template

model to a point mesh scanned using multi-view stereo scanning, which are suitable

for many applications [AWLB17]. While the results are realistic, these methods do not

produce the high level of quality needed for AAA games or films. A more appropriate
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Figure 2.2: An actor being scanned in a light stage.

example for reaching the desired level of realism and detail would be the light stage

work of Debevec and colleagues (e.g. [Deb12]). An example of such a photogrammetry

system with surrounding light stage used for scanning can be seen in Figure 2.2. The

capture described here can yield sub-millimetre measurements of facial geometry in

seconds, however it requires a light stage setup which is not readily available, and does

not produce animation-ready characters as it outputs only a single scanned expression.

To complete the character creation, it is necessary to scan multiple expressions; hun-

dreds, if each blendshape is scanned individually. The geometry of these then need to

be simplified in order to be usable in real-time, and the topology needs to be put into

correspondence in order for blendshape animation to be possible.

In order to maintain a consistent topology between scans, it is possible to use a

template model or shape prior and fit it either to scans or a video sequence using non-

rigid registration [ZSCS08, GVWT13, GZC+16, FHCP19, IBP15, FNH+17]. While

this is a suitable solution in many cases, it can reduce the quality of the scan as the

fitted mesh is only an approximation of the shape. As well, there is the possibility
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of texture drift when transferring the recorded texture to the template mesh. One

solution for this is to identify corresponding feature points on the texture rather than

the geometry, allowing for correspondence to be created using UV space [CFA+16].

While these methods propose rapid creation of blendshape rigs, it is worthwhile to

note that the quality of the finalised rig depends on the scanning methods used, and

as well does not take into account the necessary reconstruction of obstructed areas of

the face such as the internals of the mouth, which is better handled by methods such

as deformation transfer [SP04, LWP10].

2.1.2 Rigging

Once a character has been created, it needs to be rigged in order to be animated.

Without a rig, a character can only be animated by directly manipulating the vertex

of the character mesh and meticulously keyframing each pose. While possible, this

method is not only time intensive but also very difficult, and is not feasible in practice.

There are multiple methods for rigging, the most common of which are bone-based

rigging [OBP+12] (including automatic bone rigging methods [DMOB10, MAF10])

and blendshape rigging [LAR+14]. Skeletal animation is conveniently also used to rig

bodies, as shown in a basic example in Figure 2.3, and is therefore a natural choice

for character artists. It is achieved by creating a skeletal structure beneath the mesh

consisting of a number of joints. Each joint affects a number of vertices, with multiple

joints able to affect the same vertex. The character can then be animated by simply

moving the joints. While this method is intuitive, it can be difficult to create detailed

realistic facial movements, even with a complicated skeleton, such as the one shown on

the character in Figure 2.4.
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Figure 2.3: A simple bipedal skeleton.

Figure 2.4: A virtual human with the bones of his facial rig shown on the surface of
his face (left) and the complex internal structure (right).

19



Figure 2.5: The virtual human Louise created by Eisko with an open mouth blendshape
at 0.6 activation.

For this reason, blendshape rigs are often favoured for high-quality animation. A

“blendshape” is a deformation of the character face representing a certain shape, typ-

ically an atomic movement like an eye blink or mouth open shape. A blendshape rig

consists of many of these blendshapes, usually hundreds for production level rigs, and a

blendshape animation is created by linearly interpolating the vertex positions between

the character neutral and a combination of these blendshapes, an example of which

can be seen in Figure 2.5. As blendshape rigs are of particular interest to this thesis,

we will go into detail in this section.

Blendshape Rigs

The current state-of-the-art for high quality facial animation is blendshape animation

[LA10, SSK+11, SLS+12, LAR+14, ZTG+18]. This method has seen use in many films

such as The Lord of the Rings and Star Wars [DN08] and games such as Ryse: Son

of Rome [EMH14]. Personalised blendshape models, i.e. models which are created
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to imitate the characteristics and dynamics of a certain person’s face, are also used

in related research, such as markerless facial capturing [WBLP11, BWP13, LYYB13,

CHZ14, CBZB15, TZN+15].

One issue with blendshape animation is deciding what exactly these expression

blendshapes will be. There is currently no consensus on what blendshapes a rig should

contain, with the decision being left entirely to the artist. However, one solution

is to base these expressions on the Facial Action Coding System (FACS) of Ekman

et al. [EF78]. FACS defines a set of atomic facial expressions, or more specifically

fundamental muscle activations, known as Action Units (AUs). These AUs can be

combined to create almost any facial expression, which makes them an ideal fit for a

blendshape model. We discuss FACS in more detail in Section 2.2.

Blendshape rigs are non-orthogonal [LAR+14], meaning blendshapes may interfere

with each other when activated together. To compensate, additional shapes may be

added to a rig known as corrective blendshapes. Corrective blendshapes are blend-

shapes with specific purposes of “fixing” undesirable results of combining blendshapes

within a rig caused by non-orthogonality of blendshapes. For example, activating jaw

open and smile blendshapes together may cause some unnatural movements as they

both affect the mouth area, so a corrective blendshape could be used to fix this unnatu-

ralness and add realism. The detail added by a corrective blendshape is meaningless on

its own, but very useful in the context of a combination of specific shapes. Corrective

blendshapes may also be used to add realism to a rig, for example adding wrinkles.

Blendshapes are popular for realistic animation as they allow a large degree of artis-

tic control [SILN11]. If additional expressivity is required, one can simply add more

blendshapes. Other systems such as linear blend skinning are more constrained and

might require a reworking of the animation rig to facilitate new expressions. Blend-
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shapes are not without disadvantages though. In particular, they can take a very

long time to produce, as each expression must be hand crafted and requires consider-

ably more vertices than other methods. Movie standard blendshape models can often

have hundreds of blendshapes, covering not only the basic expressions, but also ones

correcting geometric anomalies when certain expressions are active.

As the manual creation of blendshapes is a time-consuming task [Osi07], several

methods have been developed to facilitate the transfer of a set of blendshapes from

an existing rig to new characters. These methods are an application of surface defor-

mation, in this case deforming one face to match another while both maintaining the

personality of the face being deformed and the semantics of the face it is matching.

There are a number of types of surface deformation. Space deformation deforms

the space around an arbitrary object, usually defined by a lattice or a cage, and then

infers the deformation onto the object [JSW05, LKCOL07, JMD+07]. These methods

usually require careful manual creation of the bounding area, and can often lose local

details [Bec94].

Surface-based deformation methods operate directly on the surface of the mesh,

as opposed to its surrounding space. This allows for much more control over the

topology and therefore these methods are better suited for maintaining local features.

Within this group, there are physically-based methods [TPBF87], as well as methods

based on differential surface representations, such as Laplacian-based [Ale01, SCOL+04,

LSC+04] and gradient-based methods [BS07, SP04].

We focus on Sumner and Popović’s gradient-based method of deformation transfer

for triangle meshes. This method allows for the transfer of blendshapes from a template

rig containing the desired shapes to a target character rig [SP04]. The transfer is

achieved through solving a constrained optimisation for the target mesh topology that
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matches the source deformations as closely as possible, while maintaining consistency

constraints. This was expanded upon by allowing deformation transfer to be applied

to more than just single component manifold triangle meshes [BCWG09], or by adding

semantic constraints [Sai13] or physical constraints like collision detection [IKNDP16].

The quality and personalisation of these blendshapes, i.e. how well they repre-

sent the details of the captured actor’s facial structure and unique expressions, can

be improved by providing examples of the target character face [LWP10]. Li et al.’s

method performs blendshape optimisation in gradient space, balancing the original

blendshape geometry with those of the provided examples. Extensions on Li et al.’s

method include actor-specific rig improvements using captured performance as in-

put [MLD+16, SML16, BiRZL+17]. Similar to the question of which blendshapes

should be included in a rig, there is no consensus on which examples should be provided

to best improve a rig. This is one of the areas of focus in this thesis.

2.1.3 Animation

Animations are created by posing a character using its rig and changing that pose

over time. With no rig you change the individual vertex positions, with a skeleton rig

you change the joint rotations, and with a blendshape rig you change the blendshape

weights, which are usually constrained in the range 0 to 1. For example, setting a

blendshape weight to 0.5 would mean linearly interpolating each vertex position half-

way from the neutral position to the blendshape position.

Posing each frame manually, like every other manual stage so far, can be quite

time-consuming. For offline animation, i.e. animation created before the running of

an application, such as in a movie or cutscene in games, keyframe animation is most
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common. Instead of posing each frame, an animator would only pose the “key” frames

and allow the animation software to interpolate between the key frames to complete

the animation [RP06].

There are automatic methods for creating animation using performance capture

[ZTG+18]. These methods either use traditional motion capture markers to track facial

movements [RDK+16] or computer vision methods to track facial features [LKA+17] as

equivalent to markers, and feed these through a neural network which has been trained

to produce an animation on a provided character rig. Performance capture methods

can be used to drive online real-time facial animation [BWP13, BGVS19].

Ultra-high quality animation can be achieved using 4D scanning, i.e. scanning

an actor over time in order to reconstruct a full performance [DI419]. This method

is expensive in both computational time and memory, so it is only applicable as an

offline process at the moment. There are methods which do partial 4D animation

reconstruction online, however, such as applying wrinkles in real time to a low resolution

face mask [CBZB15].

As before, we will focus in particular on blendshape animation. While blendshapes

provide the current best solution for realistic facial animation, they come with the

disadvantage that they require a significant amount of memory, as information about

each of the blendshapes in the rig need to be stored in order for the correct vertex

positions to be calculated [SILN11]. As we mentioned before, production-level rigs

can have hundreds of blendshapes, so this disadvantage can be quite restrictive. High-

quality rigs usually also have a large number of vertices, adding to complexity and

memory issues. In this section, we discuss a few methods for optimising blendshape

animation.
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Retargetting

If the desired motion already exists on a character, another character can be ani-

mated using the same motion through motion retargetting, initially used for body

motion [Gle98], which is the process of transferring an animation from one character

to another. More detailed animations, such as wrinkles, can be retargetted by sepa-

rating the process into two parts, base mesh retargetting and detail mesh retargetting,

allowing for the transfer of highly detailed motion data [NJ04]. As well, characteristics

of the target model may be preserved by an additional warping step after the initial

retargetting [SCSN11].

Procedural and Behavioural

Another method for animation creation is procedural animation, i.e. animation which

is created on the fly at run-time without captured motion. This allows for a wide variety

of motion to be created with low memory costs, however the animation quality is lower

than that of captured motion. Examples of procedural motion include motion graph

animation given an input expression label [SCR+18], neural network based methods

based on speech [KAL+17, SSKS17, TKY+17], as well as methods to generate motion

based on audio input [LMD12].

Behavioural animation is a type of scripted animation that allows for a character to

react appropriately to outside stimuli. Animation is created by defining a set of rules

by which a character can animate itself [MHK99, DRPP+03, PP02]. This is closely

related to procedural animation, in that animation is generated at run-time, however

it differs in that there is a strict definition of rules for how a behaviourally animated

character can respond. There are also methods which mix behavioural and procedural
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animation in order to add more variety and realism to a character [SOC16].

GPU Optimisation

In order to discuss the optimisation of the real-time animation of blendshape rigs, we

first review the blendshape equation in Equation 2.1. We define B as the matrix of

unrolled delta blendshapes, i.e. each row is a single blendshape with the (x, y, z)

coordinates of the difference between its vertices and the neutral shape flattened into

a single vector. b0 is the neutral mesh, w is the vector of blendshape weights, and x is

the resulting expression. To create an expression, each delta blendshape is multiplied

by its weight and added to the neutral mesh.

x = b0 + wB (2.1)

One avenue for optimising blendshape animation is by implementing the animation

on the GPU. Early attempts to perform blendshape animation on the GPU were lim-

ited. Methods based on vertex attributes were restricted to a fairly small number of

blendshapes (typically 4). The number of blendshapes could be increased by accumu-

lating the final blendshape over multiple passes but this involved using the CPU to drive

the blendshapes. However, over the last 10 years, it has been possible to implement a

buffer-template method using more modern GPU features. This improves performance,

with greater performance as the number of blendshapes in a model increases. There is

a 1.34 times improvement using a small rig of only six blendshapes, which improves to

a 2.4 times for a model with 50 blendshapes [Lor07]. One more recent method of GPU

animation has displayed results with high enough fps such that it allows for real-time

GPU animation, although it is only tested with four blendshapes [YWZ13].
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On the GPU, the number of blendshapes we can render is still limited and due to

their size. Because of this, blendshapes may benefit from some form of level of detail

control to improve performance at the expense of visual quality. Geometry reducing

methods could be applied such as the edge collapse method of Garland and Heck-

bert [GH97] but maintaining correspondence between blendshapes is difficult. While

Mohr and Gleicher [MG03] adapted Garland and Heckbert’s method to work with

blendshapes, it still remains an expensive process that is only really suitable as an

offline pre-process step. While geometry reduction may in theory maintain expres-

siveness by retaining blendshapes, it may also produce unappealing artifacts and finer

expressions may be lost at lower resolutions.

Blendshape Reduction

A better idea may be to retain the geometric complexity of the mesh but reduce the

blendshape set. This should theoretically lower the computational and memory burden

of the technique but retain the resolution necessary for fine, nuanced expressions. Prin-

cipal component analysis (PCA) compression is one possible method for compressing

the dataset [LYYB13, ZTG+18]. The fact that PCA shares many theoretical similarities

to blendshapes makes it an obvious candidate but according to Lewis et al. [LAR+14]

PCA gives poor compression ratios. It also changes the very nature of the model and

animations, trading a dense set of intuitive expressions for a sparser but less intuitive

set. By unintuitive, we mean that PCA blendshapes do not necessarily represent any

recognisable expressions. Work has been done to overcome this by segmenting the face

and applying PCA regionally [TDlTM11]. Animations also change from large values

on a small set of expressions to small values across the entire range of expressions.

Overall, these changes make it very difficult for an animator to understand or control
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the animation.

Another possible method, according to Lewis et al., is to apply hierarchically semi-

separable algorithms to the matrices. This replaces the denser blendshape model with

a coarser sparse matrix model but such a system is quite complex to integrate into

existing game engines. A potentially better idea is to remove extraneous blendshapes

entirely, in reverse order of their perceptual importance. This retains the sensible

animation weights and is much easier to integrate into any game engine. Such a method

can be applied easily in real-time unlike the geometry reduction discussed earlier. The

buffer-template method of Lorach [Lor07] does something similar by only passing active

blendshapes to the shader.

For small blendshape reductions, there may be no change in the final animation,

as removed expressions might never have been used. Depending on the severity of the

reduction required though, more important expressions may eventually be affected.

This can be offset through careful consideration of where and when to use lower qual-

ity models. Many level of detail methods position lower quality models in the back-

ground [ESV99]. This takes advantage of reduced screen resolution to hide any missing

details. Lower quality meshes can also be placed in the foreground by exploiting inat-

tentional blindness [LMS10] to direct the user’s focus.

Ideally, we would like to retain critical facial features while simplifying less impor-

tant regions similar to what Duarte et al. [DERC+11] try to achieve. The body of

research into facial feature importance is quite small, however we find that according

to Sadr et al. [SJS03b] it is generally believed that for facial recognition at least, the

most important features are the eyes (especially the eyebrows), followed by the mouth

and then the nose region. However it has been shown that the recognition of different

emotions rely on different areas of the face, with the mouth being important for the
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detection of happiness and fear, and the eyes being important for anger, fear, and

sadness [BSSM+13, WVK+17]. Of course, if we consider the case of speech, the mouth

would naturally have a higher importance over other areas of the face. It is necessary

to consider the context when talking about areas of importance of the face. Removing

minor expressions could have unintended side effects on the emotional content of the

animation so some manual intervention will likely be required to determine the correct

ordering.

Error metrics to assess perceptual dissimilarity for meshes have typically been used

for watermarking, simplification, or lossy compression, with the goal being to edit a

mesh without introducing a perceptible difference. The types of metrics involved are

view-dependent and view-independent, or image-based and model-based. An overview

of these can be seen in the review paper by Corsini et al. [CLL+13]. One novelty of

our work is to apply error metrics to perceived saliency of facial expressions. Our goal

is not to edit a mesh with minimal perceptual difference, but to estimate perceptual

difference of expressions with error metrics.

Motion Capture Optimisation

Marker-based motion capture, while trivial for large-scale body motion, is much more

complicated when considering small areas where markers need to be more densely

placed, such as finger motion, and areas where motion is non-rigid, such as the face. For

these cases, marker placement optmisation is crucial, as too many markers will cause

confusion (markers cannot be accurately differentiated) and too few will result in loss

of detail. In order to address these issues, reduced and optimally placed marker sets are

necessary, and can be calculated using PCA [SMB15, WJZ13], k-means [RGL15], lin-

ear optimisations [LZD13], or through perceptual evaluation [HRMO12]. Alternatively,
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FACS estimation of facial expressions can be estimated by using additional make-up

markings on the face to assist in optical facial motion capture [RDK+16]. For memory

optimisation of motion capture, motion can be segmented and stored hierarchically,

and an animation can then be represented by motion pattern indices [GPD09]. Al-

ternatively, lossy compression through Bezier curves and PCA can be used [Ari06].

We expect that these techniques would not be directly applicable to facial animation

data due to the difference in scale between subtle facial movements and larger body

movements.

2.2 The Human Face

On the topic of realistic human facial animation, we must pay due diligence to research

on the human face. In this section, we discuss the anatomy of the face, methods for

defining and measuring facial expressions, as well as the purpose of the face with regard

to our research.

The face is defined as the front of the head, or more specifically “the various struc-

tures between the superciliary arches superiorly, the lower edge of the mandible infe-

riorly, and as far back as the ears on either side” [DVM09]. It consists of a number

of notable features such as the forehead, eyes, nose, cheeks, and mouth. The human

face consists of many muscles, most of which can be grouped into the following cat-

egories: orbital, nasal, and oral. These groups control the muscles around the eyes,

nose, and mouth respectively. The remaining muscles are either auricular, controlling

ear movements, or the occipitofrontalis muscles which control the scalp and the skin

of the eyebrows. Together, these muscles facilitate speech and perform the important

social function of conveying emotion.
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Figure 2.6: The musculature of the face, from Gray’s Anatomy E-Book: The Anatom-
ical Basis of Clinical Practice [Sta15]

While we can rely on anatomy to define the face in terms of discrete muscles and

bones, it is more useful to face perception to define the face in terms of the effect that

these muscle movements have. For this purpose, the Facial Action Coding System

(FACS) was defined [EF78]. FACS classifies facial expressions in terms of Action Units

(AUs), which it considers the fundamental movements of the face, and can be described

by which muscles are involved in the movement. This allows us to more easily define

facial expressions and conduct facial perception research.

The face has a number of communicative purposes, namely recognition, emotion,

and speech. The recognition of faces is what allows us to distinguish people, as well as
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determine identifying information from them, while emotion communicates information

non-verbally. Speech, while involving internal structures as well, is also a communica-

tive function of the face, as it requires movement of the lips, tongue, and jaw to form

specific sounds, and to some degree, even without the auditory accompaniment pro-

vided by the vocal cords, speech can be understood through lip-reading.

2.2.1 Recognition

Face recognition is the mechanism through which we identify people by their faces. It

tells us information about a person such as their identity, sex, mood, age, race, and

direction of attention [TL08]. A person’s ability to recognise faces is affected by both

the time spent viewing that face, and also the amount of previous experience that

person has with the variety of faces they have viewed before [MIGC15].

In the case of the facial structure being unclear, such as in degraded images, it has

been shown that faces are better recognised when moving than when static [LCB99],

and are better recognised again when animated using their natural motion than an arti-

ficial morphed motion [LCW06]. While these results were not significantly reproduced

for non-degraded stimuli, it is still worthwhile considering the recognition advantage

of animation, specifically natural animation of the person, in facial recognition.

For computer facial recognition, the ability to recognise faces has improved sub-

stantially in recent years, with current methods not only able to find faces in images in

videos, but recognise face identity with high levels of accuracy [WZLQ16]. One method

for face recognition is using Active Appearance Models [CET98, CET01], which learn

a statistical model of the shape and grey-level appearance of an object. Other methods

often rely on deep features defined internally by a neural network [SYCW17]. Neu-
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ral network approaches for facial recognition require large amounts of data. While

databases are available that contain real, in-the-wild data, it has been shown that

generated databases can be used to train networks with a high degree of recognition

accuracy [XGS+18]. When discussing face tracking for facial animation, however, more

meaningful feature points are tracked, such as the corners of the eyes and mouth, which

are then passed to an animation solver to recreate the tracked motion on a virtual char-

acter [CHZ14, CWLZ13].

The recognition of Action Units from FACS using computer vision has been explored

using facial component models, with AUs being recognised with greater than 95%

accuracy [TKC01]. Computer recognition of AUs is interesting to our work as it allows

us to assess the similarities between human perception and computer vision. Most AUs

were recognised correctly, with incorrect recognition attributing to either an additional

similar AU being recognised (e.g. both Inner and Outer Brow Raiser being recognised

when only one was present), or a similar AU being incorrectly recognised (e.g. Jaw

Drop being recognised instead of Lips Part). It is noted that one of the pairs of

AUs that were confused, Cheek Raiser and Lid Tightener, are confused by humans

as well [CZLK99]. Recognition of AUs, as well as automatic recognition of intensity

of AUs, has also been accomplished using pure deep learning methods, although with

lower accuracy [SLC+19].

2.2.2 Attention

Attention is interesting both in terms of what draws attention, and what can direct

attention. For facial animation, and specifically for optimisation of facial animation,

knowing what areas of the face and what type of movements draw the most attention
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from the observer is useful. Similarly, we are interested in the ways in which an

observer’s attention is affected, for example it has been shown that the gaze of a face

stimulus can affect the observer [FBT07] which makes it a very relevant topic for facial

animation.

It has been shown that selective attention of emotional faces differs depending on

the psychological state of the observer, such as a bias towards sad faces for people

suffering from or recovered from depression [JG07], or a bias towards angry faces for

people with social phobias [MPB04].

Our attention to faces differ depending on many things. For example, there is a

difference in gaze between sexes [BPT05], we pay more attention to faces of babies than

faces of adults [BSS07] (particularly mothers [TBVM+14]), and surprisingly emotion

has a negative impact on attention, with studies showing a preference for the neutral

face [KVB+07].

2.2.3 Emotion

Similar to how FACS was defined to better conduct facial expression research, it is

useful to define emotions to further research them. The definition of emotion itself is

difficult, and the research into this is ongoing [LHJB10]. At a basic level, it can be

defined as the feeling of either pleasure or pain [Fri88]. One definition is that there

exists basic emotions. There are a number different definitions of basic emotions, but

there is a lot of commonality between them, with a general agreement on the existence

of happiness, sadness, fear and anger [EC11, Iza11, Lev11, PW11, PK80]. For our

purposes, we follow Ekman’s definition that the basic emotions are those of anger,

fear, enjoyment, sadness, surprise and disgust [Ekm92a], displayed in Figure 2.7. This
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Figure 2.7: The basic emotions as defined by Ekman [Ekm92b], including the later
added contempt emotion, from paulekman.com [Ekm20]

model can also include contempt as a seventh basic emotion, however this was included

later and most studies limit themselves to the initial six [TR11].

The definition of basic emotions has sparked some debate [OT90, Ekm92a], and has

been challenged using the example that emotions cannot be distinguished at extreme

intensities, or even classified as positive or negative [ATT12], such as the happiness of

an athlete winning a competition appearing as anger without context, however it is

one of the most widely used definitions we have at the moment. A number of studies

have investigated emotional faces and found that body cues assist in the distinguishing

of emotions. For example, a fearful face can be confused as sad without accompanying

body motion, with the inverse being true for happy or angry bodies, which require

an accompanying face for distinction [EHEM13, EI15]. Similarly, audio cues have

been found to improve emotion recognition and increase the intensity rating of an

emotion [HCKH14].
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The purpose of emotional expressions is both physiological, such as the widening

of the eyes in a fearful expression to increase visual field, and communicative, such as

using anger to threaten [ST11]. This purpose may also explain why some emotions

are perceived more easily than others. Happiness, the only positive emotion of the

basic emotions, is most quickly recognised and least often confused with other emo-

tions [CN08, PC04, LH04], while angry faces, which are important for discerning the

danger of a situation, are more easily detected within a crowd [CC13].

For each emotional expression, specific parts of the expression appear to be more

important for the classification of an emotion [SCGS05]. Since particular areas of

the face are important for the recognition of emotion, different action units could

potentially be more salient than others. The evidence supporting this suggests that

areas, specialised for the perception of action units, exist in the brain (region pSTS).

This could indicate that action units are a necessary precursor to categorization of

emotion [SGM16]. In addition, particular action units are responsible for a correct

recognition of an emotion [WVK+17]: for happiness, this is the lip corner puller and

parting of lips; for disgust, the most important are the raising and plucking of the

lip. For fear, surprise, anger and sadness the regions around the eyes have the highest

weights, with the lid raiser (exposing the sclera of the eyes) important for fear, and the

lid tightener significantly most important for anger. Brows are important for sadness

and both eyes and mouth contribute significantly to the recognition of surprise.

There were also studies which used the information about individual action units

to generate synthetic expressions. A gradual activation of specific action units resulted

in detection of an expression [YGS12]. Reverse engineering expressions based on per-

ceptual relevance helped with improved facial recognition in artificial faces [CGZ+18].

There is enough evidence to suggest that action units alone have a perceptually signif-
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icant impact on emotion categorisation.

While the mouth is understandably a significantly attended to area due to its im-

portance for emotional expression and communication [NCWB08, EA11] and its size

relative to other facial features, the eyes and eyebrows can also be considered highly im-

portant despite their considerably smaller size. Eyebrows are integral for emotional and

conversational signals [Ekm79], and can alter the perception of the eyes [MMMY15],

however they are important in their own right for face recognition [SJS03a] and not

just in relation to how they change the perception of eyes.

2.2.4 Perception

Face perception is an interesting area of study, as humans have been shown to perceive

faces in a different way to regular perception [BY13, FWDT98, KMC97]. As well, the

different areas of the face have been shown to be important in terms of speech and

emotion perception [BY86, Ado06]. A great deal of research is ongoing in the areas of

face recognition, detection, memory, the other-race effect and the effect of experience

on face perception, critical features for recognition, and social evaluation of faces. For

an overview of recent work, see the review paper by Oruc et al. [OBL19].

Experiments have shown that viewing inverted faces (i.e. upside-down faces) affects

our perception of faces much more than of other objects, such as houses. This simple

fact opens up an interesting way of investigating face perception. By comparing partic-

ipant responses when viewing upright faces compared to inverted faces, we can separate

perceptual results into those that are face-specific and those that are not [KMC97].

This face inversion effect is linked to the fact that we view faces holistically, rather

than as a number of different features combined. This is further supported from results
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of other experiments such as the composite experiment, where the participant tries to

identify the different people’s faces which are combined to make a new face under

different conditions, and the parts-whole task, which tests memory and recognition of

isolated facial features, as well as faces with certain features removed [TG11].

It has been shown that people perceive faces of their own race differently to faces of

other races, with studies showing an own-race recognition memory advantage [LJC91],

as well as an own-race encoding advantage [WT03]. One explanation for this phe-

nomenon is that people have more exposure to people of their own race, and there is

evidence that experience can mitigate these other-group effects even if the experience is

acquired during adulthood [CPKC09]. For an overview of work in own-race/other-race

perception, please see the review paper by Meissner and Brigham [MB01]. There is

also a neurological basis for perceptual differences of faces based on both shape and

pigment [BN10]. Similarly, a person’s sex has been shown to affect their recognition

of faces, with opposite-sex faces being recognised faster [HSL06], as well as their gaze

strategy when examining other faces [CBH+16].

The area of perception of human faces is extensive, and we focus only on some

relevant papers to our work in this thesis. For further information on face perception,

recognition, emotion, attention, and the neurological processes involved please see these

state-of-the-art papers [Bet12, BI12, JS15, PR07, CN16, NO11].

2.2.5 Perception in Graphics

Notably, face perception research often uses 2D photographs as stimuli. Many per-

ceptual studies have been conducted with artificial data, i.e., static, usually black and

white, and often posed photos [Ado06]. These stimuli are usually masked such that
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only the inner face is visible, i.e. not including the hairline, ears, or neck. For dy-

namic stimuli, videos can be used. Both photograph and video stimuli have the same

limitation - the need for a human to pose the expression. One solution is image or

video editing, however this can cause unnatural results [BY12, DBS18]. This can be

considered a major limitation, as unnaturalness of these types of stimuli, while neces-

sary for the purpose of conducting a controlled experiment, may impact the results.

With advanced game engines and highly realistic facial rigs, we can conduct perceptual

experiments with control over the minute details of how stimuli are displayed. Using

virtual characters as stimuli gives us a lot more control over the exact expressions be-

ing shown, which areas of the face are activated or not, the texture and lighting of the

scene, and the replication of motion across characters. This allows us to do interesting

experiments involving changing the level of activation of face or body motion [HJO+10]

or creating artificial animations with varying face area onset orders [TGRJ19], or in-

vestigating linear and non-linear motion [CKH10]. With VR, we can even begin to

investigate the psychology surrounding social presence in virtual spaces [ZM19].

Visual saliency of meshes is an interesting topic that leads to applications such as

optimal viewpoint selection and mesh simplification. [LVJ05, SF07]. The relationship

between 3D geometry and face perception is of particular interest, due to the special

way in which we perceive faces as opposed to other objects. Identifying the salient

areas of the face, as well as optimal viewpoints, using mesh saliency methods and

investigating those through perceptual experiments may give further insight into the

special properties of face perception.

While improvements in computation power and capture methods; as well as algo-

rithms to display complex geometry, textures, and animations; allow for more realistic

virtual humans to be displayed, it is important that the perceptual impact of these
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improvements is appropriately assessed. Perceptually guided character and anima-

tion creation can lead to more believable, recognisable, intense, and sincere expres-

sions [DM08, WBCB08].

These perceptual guidelines are of particular importance in the case of automatically

generated animations such as those found in human-like agents [CPB+94] In this case,

a plausible animation must be generated given the context the agent finds themselves

in, such as a dialogue. Appropriate head rotations, eye gaze, and facial expression are

integral to the perceived naturalness of the agent, and are necessary in order to avoid

discomfort in the user interacting with the agent. Similarly, a broad understanding of

the social signals involved in human interaction is necessary to accurately understand

a situation in order for an agent to appropriately respond [VPH+11].

2.3 Conclusion

In this chapter we provided an overview of the fields of realistic facial animation, fo-

cussing on the areas of character creation and real-time animation, and the psychology

of perception of the human face, with a focus on the effect of structure and dynamics

of the face on the perception of emotion, and highlighting the importance of of having

a deep understanding of this field in order to create the highest possible quality of

virtual human.

We discussed the technical implications of current state-of-the-art character cre-

ation, noting the high levels of computation power and large amount of memory nec-

essary to store and animate such characters. We introduced the creation and real-time

animation of blendshapes as areas which could most benefit from optimisation, and sug-

gested GPU animation, blendshape reduction, and optimised input for example-based
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blendshape transfer as methods through which these optimisations could be achieved.

We gave a brief overview of the physiognomy of the face; as well as the areas of face

recognition, attention, emotion, and perception; and noted its importance in human

interaction, particularly focussing on the fact that the visual saliency of different areas

of the face vary drastically and that this idea can drive decisions based on importance

weighting of blendshapes for facial animation and rig creation algorithms. We explained

that, while the optimisations discussed above may be achievable through purely tech-

nical means, it is imperative to assess their perceptual impact through appropriate

experimentation.

With this in mind, we present in this thesis optimisations to the facial animation

pipeline stages of rig creation and real-time animation with the idea of blendshape

importance as a key factor in these optimisations. We conduct perceptual studies of

our choices throughout to evaluate and further guide future optimisations in these

areas.
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Chapter 3

Geometry Optimisation

Figure 3.1: The facial animation pipeline with the rig creation stage highlighted.

Our first pipeline investigation is at the rig creation stage (highlighted in Fig-

ure 3.1). In the related work in Chapter 2, we discuss the methods of Deformation

Transfer [SP04] and Example-Based Facial Rigging (EBFR) [LWP10] for blendshape

creation. We identified that there was no method for deciding which examples to pro-

vide for EBFR, and that providing a method for calculating which examples to create

could be beneficial.

To briefly recap, Deformation Transfer transforms two meshes similarly given a

correspondence map between the vertices of the meshes. It achieves this by solving an

optimisation problem to transform each triangle of the target mesh to match that of

the closest corresponding triangle on the source mesh. It also maintains a consistent
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topology by adding the constraint that shared vertices must be transformed to the

same place.

Example-Based Facial Rigging further personalises the results of Deformation Trans-

fer by allowing for input training examples which are included in the optimisation

problem. The final output is a balance between the exact shape of the source mesh

(pure Deformation Transfer) and the nuances of the topology of the target mesh.

We begin by investigating the perceptual impact of training examples provided to

EBFR in Section 3.1 by analysing the output of EBFR given a set of training poses to

see how well the results reproduced our ground truth actor scans compared to a Defor-

mation Transfer approach. We then go on to formulate a training example suggestion

algorithm in Section 3.2, keeping in mind the deficits of Deformation Transfer, which

is the method used for transfer in EBFR when no examples are present, such that we

prioritise blendshapes to be included in the training examples appropriately. This is

achieved by ordering blendshapes based on various importance metrics. Notably, these

metrics are purely numeric, and are not perceptually evaluated until Chapter 5.

Finally, we conduct a thorough evaluation of the method, including default param-

eter suggestions based on some tests and a quick feasibility study, showing that the

training examples we suggest are appropriate for digital double creation pipelines that

require an actor to pose the example faces.

Section 3.1 was done as part of a collaboration between Trinity College Dublin,

and Inria and Technicolor in Rennes, France. I contributed to all parts of this work.

Section 3.2 was done in collaboration with a post-doctoral researcher from Trinity. I

was the main contributor to everything except for the implementation of the example-

based blendshape transfer technique which we used to create blendshape rigs with

results from our algorithm.
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3.1 Perception of Example-Based Facial Blendshape

Creation

The process of creating blendshapes is still very reliant on artists. Although there is a

lot of research done on scanning and rigging faces, any facial blendshapes or rigs that

are created using these methods require extensive editing for use in games and movies.

Additionally, some methods require a large amount of facial scans or motion capture,

which can be costly depending on the technology required or the amount of time for

which an actor must be hired. Currently, these are necessary costs for any AAA game

or blockbuster.

One method which is used in production is Example-Based Facial Rigging [LWP10],

which is an extension of Deformation Transfer [SP04]. This method uses a generic

blendshape rig template, i.e. a neutral face with a number of blendshape target faces,

as well as the neutral face of the character for which you want to create the rig,

and a number of facial poses of this character. The algorithm recreates each of the

blendshapes of the generic rig for the desired target face, while also incorporating facial

details which it learns from the supplied facial poses.

While this method is used in professional pipelines, companies still need to hire an

actor to create numerous poses and 3D modelling artists to clean the final blendshapes.

However, we believe that we can improve the blendshape creation process to cut down

the dependency on actors by finding the optimal types of poses to supply to the system.

Our contribution is a preliminary perceptual study into the effect of a set of input

scans on the EBFR system. From this, we can see what areas of the face were most

improved by the algorithm and which areas were least improved. This gives us an idea

of the impact of our supplied training poses and is a basis for further research into

44



Figure 3.2: An example of stimuli shown to participants comparing the facial rigs
created without training, and those with training.

reducing the number of scans needed to attain suitable blendshape rigs using EBFR.

3.1.1 Method

Our idea was to use all the common training poses available across a number of actors,

which would theoretically create the best possible trained rigs for our data using EBFR.

We then ran an experiment comparing these trained rigs, as well as untrained rigs

created using the Deformation Transfer method, to a ground truth facial scan. The

participants chose which of DT or EBFR faces best resembled the ground truth, then

described how close their chosen pose was to the ground truth on a 5-point Likert scale.

This showed us which parts of the face were most improved or disimproved by EBFR.

An example of the stimuli can be seen in Figure 3.2.

Stimuli

We used the Bosphorus Database to get data for our experiment [SAD+08]. The data is

provided as point clouds with textures. We meshed, cleaned, normalised and registered
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Figure 3.3: Examples of scanned poses from the Bosphorus database.

this data to create meshes with consistent topology for ease of use for our experiment.

After this preprocessing step, we had a large number of facial expressions from different

actors which we could use both as ground truth and as input to EBFR. An example

of the cleaned data we used can be seen in Figure 3.3.

The Bosphorus database is a database of facial scans of over a hundred actors

attempting to recreate the Action Units (AUs) as described in Ekman et al.’s Fa-

cial Action Coding System (FACS) [EF78], however due to the difficulty of activating

certain facial muscles in isolation, most scans are actually a combination of AUs. For-

tunately, each scan in the database has been annotated by a FACS expert. Using this

information, we can attempt to recreate the scans using our facial rigs created using

DT and EBFR, as the blendshapes of the rigs we used were based on FACS.

We selected 4 female and 4 male actors from this database, and created trained and

untrained rigs for each selected actor. The untrained rig was created using Deformation

Transfer using a generic facial animation rig whose blendshapes were based on FACS

AUs. The trained rig was created using Example-Based Facial Rigging, using the same

generic model and neutral pose as the untrained rig, but including 19 additional facial

scans of the actor with different expressions as training poses.

The expressions in the scans used as training were the same across all actors. These

expressions consisted of the 19 Action Units as detailed in Table 3.1. These expressions
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AU No. FACS Name Expression No.
9 Nose Wrinkler 0
10 Upper Lip Raiser 1
12 Lip Corner Puller 2
14 Dimpler 3
15 Lip Corner Depressor 4
16 Lower Lip Depressor 5
17 Chin Raiser 6
18 Lip Pucker 7
22 Lip Funneler 8
23 Lip Tightener 9
24 Lip Pressor 10
25 Lips Part 11
26 Jaw Drop 12
27 Mouth Stretch 13
28 Lip Suck 14
34 Cheek Puff 15
2 Outer Brow Raiser 16
4 Brow Lowerer 17
43 Eyes Closed 18

Table 3.1: The Action Units we used in our experiment with their FACS names. The
third column shows the numbers we used for them in our experiment. Expressions 0-15
are lower face expressions, 16-18 are upper face.

were chosen because they were the most commonly represented expressions in the

database and we required a common set of expressions across all actors. They were

also chosen to convey information from all the different areas of the face, e.g., mouth,

nose, eyes.

Participants and Procedure

Participants were presented with 152 trials: 2 Actor Sex (Female, Male) × 4 Actors ×

19 Expressions. In each trial, participants were presented with the ground truth face

(scan) in the middle of the screen, and both the trained and untrained faces randomly

presented on the left or right side of the screen (Figure 3.2). Participants could rotate
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the faces simultaneously using the arrow keys on the keyboard, to a maximum of 30

degrees in each direction. For each stimulus they were asked “Which face resembles the

middle face most?”, and answered using the S and F keyboard keys. They saw the faces

for a maximum of 10s, after which they were forced to provide an answer. Then they

were asked to rate how close the face they selected was to the middle face on a scale

from 1 (Not at all) to 5 (Identical) using the keyboard. The trials in the experiment

were presented in blocks: each actor of one gender was presented in a random order,

then the actors of the other gender. The genders were presented in a randomised order.

All the expressions for one actor were presented in a random order before moving to

the next actor.

We included training stimuli at the beginning of the experiment, identical across

participants and using an actor who did not appear in the experiment. The participants

used these stimuli to become familiar with the experiment and the buttons needed to

answer our questions. Responses for these stimuli were not recorded. A screen was

shown between the training and real experiment to warn the participants that their

responses would begin to be recorded.

Twenty-three participants took part in our experiment (5 female, 17 male and 1

other, aged 23-61 years). They viewed the experiment on a 24” display of resolution

1920x1200. Each participant was given an information sheet and consent form to sign.

The information was repeated on the screen at the beginning of the experiment. The

participant was then asked to input age and sex before they began the experiment.
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3.1.2 Results

To assess whether trained (EBFR) faces were preferred to untrained (DT) faces, as

well as whether differences appear for different parts of the faces, we performed a

one-way repeated measures Analysis of Variance (ANOVA) with within-subject factors

Expression on the percentage of times EBFR was preferred over DT. To analyse these

results, each participant’s results were averaged across all the actors for each condition.

All effects are reported at p < 0.05. When we found main or interaction effects, we

further explored the cause of these effects using Newman-Keuls (p < 0.05) post hoc

tests for pairwise comparisons.

First, we found a main effect of Expression (F18,396 = 41.65, p ≈ 0), where post

hoc analysis showed that EBFR was clearly preferred for some expressions, and less

for others (Figure 3.4). To further explore these effects, we conducted single t-tests

against 50% to evaluate if preference was above chance level (p < 0.05). Results showed

3 categories of expression, which are listed below:

Improved by EBFR: 0, 1, 2, 3, 5, 6, 7, 8, 9, 14 and 15

No preference between EBFR and DT: 4, 10, 12, 17 and 18

EBFR worsened the results: 11, 13, 16

Excluded Results

We found that, for some of the expressions, participants preferred the untrained faces

across all actors, which was unusual as we expected the trained faces to be equal or

better in every case. In order to understand why, we manually examined the stimuli

and found some artifacts across almost all actors for certain expressions.

There were texture artifacts for expressions 16 and 18, with FACS names Outer
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Figure 3.4: Main effect of Expression on preference of EBFR over DT.

Brow Raiser and Eyes Closed, as can be seen on the left in Figure 3.5 (a). Although

our interest was purely morphological and we asked participants to ignore texture

artifacts to the best of their ability, we found these artifacts to be too noticeable to

ignore. For this reason, we chose to exclude expressions 16 and 18 from our analysis.

While we could have avoided these issues by removing the textures on every stimu-

lus, we found that the meshes with no texture were unnatural and might have affected

the perception of participants, as they were too unlike real faces. As we are interested

in human facial perception, we decided to include the textures to ensure the faces

looked as human as possible.

We also found that the trained stimulus for expression 13 (Mouth Stretch) was often

unnatural looking, which we found to be caused by an error in scaling the scan from

the database. In our data cleaning process, we scaled the faces to be of unit length.

This had a strong negative effect on expression 13, as the actor opens their mouth as

wide as possible, which causes the face to be a lot longer than when at rest. In the
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(a) Texture artifact exam-
ple

(b) Left: Neutral scan, Centre: Expression 13, Right:
Trained rig recreation of expression 13

Figure 3.5: (a) The texture artifact which affected expressions 16 and 18. (b) The
artifact which affected expression 13.

training process, we were essentially telling our algorithm to make the neutral actor

scan (Figure 3.5 (b), left) shrink to match the scanned expression 13 (Figure 3.5 (b),

centre). This resulted in an unnatural face (Figure 3.5 (b), right). For this reason, we

excluded expression 13 from our results.

Analysis

After removing the results that were caused by artifacts, we can separate the results

into groups as shown in Table 3.2.

We excluded the Mouth Stretch expression, as our data cleaning algorithm scaled

the faces so the meshes would be unit-length from top to bottom. This made Mouth

Stretch smaller than it should have been. However, we did not exclude Jaw Drop as

there were no obvious artifacts, although it appears a similar issue may have happened.

Jaw Drop is a slightly longer than normal face, so the scaling should have affected this

expression unfavourably as well.

Brow Lowerer was the only upper face expression that remained after we excluded

results. We had a noticeable lack of upper face expressions to choose from, and two of
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AU FACS Name Exp.
9 Nose Wrinkler 0
10 Upper Lip Raiser 1
12 Lip Corner Puller 2
14 Dimpler 3
16 Lower Lip Depressor 5
17 Chin Raiser 6
18 Lip Pucker 7
22 Lip Funneler 8
23 Lip Tightener 9
28 Lip Suck 14
34 Cheek Puff 15

(a) The expressions where EBFR was significantly preferred.

AU FACS Name Exp.
15 Lip Corner Depressor 4
24 Lip Pressor 10
26 Jaw Drop 12
4 Brow Lowerer 17

(b) The expressions where there was no significant difference between EBFR and
DT.

AU FACS Name Exp.
25 Lips Part 11

(c) The expressions where DT was significantly preferred.

Table 3.2: Results grouped by ratio of trained to untrained responses.
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the three expressions we had were excluded due to artifacts. Brow Lowerer’s neutral

result may be caused by not having enough upper face training poses.

Interestingly, for Lip Corner Depressor and Lip Pressor, expressions which cause the

lips to be pushed together and stretched, it seems that the algorithm simply has a hard

time recreating these. For Lip Pressor, the lips become quite thin, which confused our

training algorithm and seemed to accentuate some sharp edges around the lip contour,

and sometimes caused overlapping faces. For Lip Corner Depressor, the downward

movement seemed to make the mouth open slightly in some cases, and stretch the

bottom lip to make it look slightly larger in other cases. Lips Part had a similar issue

in that it often made the contour of the lips slightly sharper. These small errors seem

to be enough to affect the perception of these expressions.

3.1.3 Discussion

We created a number of facial rigs using EBFR and showed that EBFR produces

perceptually better facial rigs than Deformation Transfer. We found that artifacts

caused by the algorithm that affected the contour of the lips were more noticeable

than artifacts that affected the other areas of the face. Our results indicate that the lip

area is important when creating facial rigs. However, it is possible this was caused by

the lack of an internal mouth structure. This caused any opening of the mouth to be

very apparent. Future work will investigate the importance of the internal structure.

More interesting is the fact that the Lips Part expression was noticeably affected.

This expression had the mouth slightly open, so we see that it is not the difference

between an open and closed mouth that is noticeable, but the actual shape of the lips,

specifically the edge between the lip and the inside of the mouth.
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We cannot exclude the possibility that the database we used impacted our per-

ceptual results. While we saw an overall improvement from using EBFR compared

to Deformation Transfer, the specific expressions impacted could be due to the low

quality of the meshes we used, or due to the lack of an internal mouth structure, or

due to the geometry or texture artifacts. For our future investigations, we prioritize

developing our own pipelines to acquire high quality models for testing, rather than

relying on available open-source databases.

We continue our research into finding optimal training expressions for example-

based blendshape transfer techniques. We implement a novel training expression sug-

gestion algorithm, which combines blendshapes based on importance to create training

expressions that efficiently provide the most salient information to the blendshape

transfer method.
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3.2 Expression Packing

Creating high-quality, production-ready animation rigs for individual characters is a

time-consuming task which is a major bottleneck in current facial animation pipelines,

where blendshape interpolation is still the method of choice for real-time [Sey16] and of-

fline animation [Sey19]. Aiming for high quality, it became common to acquire 3D scans

for digital doubles, while high-resolution models of fictional characters are sculpted in

3D. The resulting 3D models and expressions define the shape down to the pore level,

but vary with regard to the vertex count and are therefore lacking the required one-

to-one vertex correspondence between blendshapes. In order to ensure equal numbers

of vertices and consistent connectivity across expressions, the 3D meshes are retopolo-

gised, in general at lower resolution. Academic work largely automated this process by

registering a template blendshape model non-rigidly towards the 3D scan or sculpted

model (e.g., [IBP15, FNH+17, LBB+17]). Within these frameworks, the template

model is consistently deformed until it accurately approximates the shape of the 3D

scan or sculpted model. To simplify the creation of blendshapes further, several algo-

rithms have been proposed that transfer existing generic blendshapes from a template

model to new characters [SP04] or personalise the generic blendshapes based on train-

ing expressions[LWP10, SML16]. So far, the semantics of these training expressions,

whether it should be a smile, frown or any other expression, have been defined manu-

ally.

In general, blendshape transfer methods offer a trade-off between fast generation

of plausible (but not necessarily artefact-free) blendshapes and creation of accurately-

personalised blendshapes, at the cost of requiring many training expressions. While

the two extremes are well defined (either no training expressions or one training ex-
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pression for each blendshape) no obvious solution exists for an optimal set of training

expressions. By optimal, we mean that we aim to satisfy the following four goals:

1. The number of training expressions should be as-few-as-possible to reduce the

number of expressions to scan or sculpt.

2. To ensure accurate extraction of personalised blendshapes, no overlap of blend-

shapes should exist in training expressions. (e.g., instead of combining two mouth

blendshapes, a combination of an eye and a mouth blendshape should be pre-

ferred).

3. If the number of training expressions is limited, blendshapes that would be prob-

lematic to transfer without examples, should be prioritised.

4. Training expressions should be poseable, meaning that a human face should be

able to reproduce them.

After reviewing recent blendshape creation pipelines [FNH+17], we observe that

the template blendshape model used in blendshape transfer methods is actually avail-

able before individual expressions are scanned or sculpted. Because the blendshapes

of the template and the final, personalised rig will be similar, we can combine sev-

eral non-interfering blendshapes to create complex expressions and use them during

scanning as semantic references for the actual training expressions (Figure 3.7). To

our knowledge, we present the first numerical optimization method that automatically

combines blendshapes to form optimal expressions. In addition, results of our opti-

mization largely satisfy the above mentioned criteria. We pre-compute a minimal set

of reference expressions, ordered by their power to improve the overall results of the

blendshape transfer operation. Considering only the first reference expressions of our
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minimal set will improve blendshape transfer methods as-much-as-possible for an in-

complete set of training expressions. This is an often encountered practical case, for

example if capturing-time is short due to the availability of celebrities, or the budget

limits the number of training expressions that can be post-processed. An entire run of

our optimization returns the smallest set of reference expressions for each blendshape

and this set is significantly smaller than the number of blendshapes of the template rig.

Finally, our method is generic as it is suitable for any blendshape basis. A reference

implementation is published on GitHub to facilitate replication and comparison1.

3.2.1 Blendshape Transfer

An example-based blendshape transfer method requires a template blendshape rig A,

consisting of triangle meshes posing a neutral expression and K blendshapes. All

meshes are of identical connectivity and vertex number (after non-rigid mesh regis-

tration [FNH+17]). We denote the neutral expression and all blendshapes as the set

A = {vA
0 ,v

A
1 , . . . ,v

A
K}, where the vertex positions vn

k are stacked in a single vec-

tor vk = (v1
k, . . . ,v

N
k )T of size 3N due to the coupling of xyz-coordinates. Delta-

blendshapes are defined as: δvk = vk − v0. In addition to the template blendshape

model, a target model exists of different identity vB
0 . For the target model B, J training

expressions xB
j are provided (B = {xB

1 , . . . ,x
B
J }) with the same number of vertices and

connectivity as A. For each training expression, the (approximate) blendshape weights

wj
k are known and the goal of the blendshape transfer function is to compute the missing

personalised blendshapes {vB
1 , . . . ,v

B
K} of B, satisfying the following equation which

1https://github.com/Fiquem/Expression-Packing

57



describes the training expression xB
j as a function of the inputs {vB

1 , . . . ,v
B
K}

xB
j (vB

1 , . . . ,v
B
K) = vB

0 +
K∑
k=1

wj
k

(
vB
k − vB

0

)
(3.1)

We assume that the two blendshapes vA
k and vB

k are semantically equivalent expressions

of A and B and of identical connectivity. In our work, we focus on finding the semanti-

cally equivalent expressions xA
j that serve as a reference for creating the training expres-

sions xB
j , either by modelling the expressions manually or by posing the expression for

a 3D scan. Our main intention is to obtain the semantics for as-few-as-possible training

expressions J , and obtain the most accurate unknown blendshapes {vB
1 , . . . ,v

B
K} as a

result of the example-based blendshape transfer method. A high-level overview of this

method can be seen in Figure 3.7. For greater clarity and convenience we summarise

our notation in Table 3.3.

3.2.2 Optimal Reference Expressions

In the following, we will derive step-by-step our optimization method for pre-computing

the reference expressions xA
j for any blendshape basis. To simplify notation, we largely

omit the indices A and B within this section. Variables without an index refer to

the blendshape model A, e.g. vk ≡ vA
k . We first introduce the concept of binary

blendshapes, which is a fundamental conceptual basis for our optimization framework.

Afterwards, we discuss important modifications to obtain numerically optimal as well

as plausible expressions. We close this section with a discussion on how to solve the

optimization function and the benefits of different solutions.
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Variable Description
j, J index / absolute number of examples
n, N index / absolute number of vertices
t, T index / absolute number of triangles

k, K / m, M index / absolute number of blendshapes
A, B blendshape rigs

vn
k position of vertex n of blendshape k

v0, vk neutral expressions and blendshape k
δvk delta-blendshape k, with: δvk = vk-v0

δvn
k displacement of vertex n and blendshape k

wn weight of blendshape n
xj example expression
bk binary blendshape n
bnk value for vertex n in bk, bnk ∈ {0, 1}
λ blendshape importance weight
s distortion metric between two triangles
d Euclidean distance between two vertices

u, v, w vertex positions of a triangle uvw
(wx, wp) blendshape weights of a symmetric pair

Table 3.3: Notation overview of the most relevant variables.
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Binary Blendshapes

Example-based methods estimate personalised individual blendshapes from a training

expression. This problem is ill-posed when an expression consists of overlapping blend-

shapes (e.g., if an expression is composed of a smile and a mouth-open blendshape).

In contrast, computing individual blendshapes is easy from a training expression con-

sisting of, for example, an eye-closing and a mouth opening blendshape as there is

no overlap. To reduce ambiguity within training expressions, we search for a metric

that allows a balance between combining as many blendshapes as possible in one train-

ing expression and preventing too strong an overlap between blendshapes within the

training expressions (Goal 2).

For this purpose, we introduce a new concept of binary blendshapes (Equation 3.2).

Delta-blendshapes δvk define vertex displacement with respect to the neutral expres-

sion v0, and binary blendshapes bk will contain the information of the location of

relevant deformation within the blendshape. In the following, vertices of blendshape

k with zero displacement (δvn
k = 0) will be called static. In addition, vertices with a

displacement bigger than zero will be divided into two stages: active and smoothing

vertices, depending whether their displacement is strong and important for recognizing

the semantic meaning or whether the deformation mainly exists to maintain a smooth

deformation. See Figure 3.8 for an illustration. It is worth mentioning that the dif-

ferentiation between static and non-static vertices is a common part of example-based

blendshape transfer methods, either in the form of soft constraints [LWP10] - remain

similar to the original blendshape, or hard constraints [SML16] - static vertices remain
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static.

bnk =


0 if ‖δvn

k‖ < µ max
n∈N
‖δvn

k‖ , 0.25 ≤ µ ≤ 0.4

1 otherwise

(3.2)

The information of whether a vertex is active or non-active (static or smoothing) is

saved as a binary value bnk ∈ {0, 1} within a vector that we define as the binary blend-

shape bk = {b1k, . . . , bNk }. Based on our experiments in Section 3.2.3, we recommend

a relative threshold of 25− 40% of the maximum displacement within the blendshape

to decide if a vertex is active or non-active. We preferred a relative metric over an

absolute one, as this scales better across subtle and strong expressions.

Optimization Problem

Creating a minimal set of reference expressions xj for a blendshape transfer method can

be defined as variation of a weighted set packing algorithm [Kar72]. Given a finite set

that defines all unique elements (dictionary) together with a collection of subsets, each

consisting only of a fraction of the unique elements, the set packing algorithm identifies

a group of subsets that are pairwise disjoint (no unique element appears twice) and

that have the maximum number of unique elements.

Applied to our problem, the list of vertex indices {1, . . . , N} is the finite set (dictio-

nary), with every vertex index n defined as a unique element. Each binary blendshape

bk defines a subset of active vertices (vertices with strong displacements). The opti-

mization problem (Equation 3.3) is to pack as many blendshapes as possible in one

expression (Goal 1), which is equivalent to maximizing the number of blendshapes with

wk = 1 (Equation 3.3a). At the same time, combinations of blendshapes should be

prevented if their individual active vertices overlap (Goal 2). This can be expressed
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as a linear constraint (Equation 3.3b) for every vertex n. In the end only two states

are relevant for a blendshape, either it is part of the expression or not. We observe

in practice that it is easier to model and pose extreme expressions, rather than accu-

rately extrapolating from in-betweens. While a closed-eye expression is well defined,

small inaccuracies in a half-closed eye might negatively affect the closed-eye expression.

For this reason wk is always 0 or 1 (Equation 3.3c), making the problem an integer

optimization problem. If only a limited set of example expressions can be provided,

we would like to control which blendshapes should be chosen first (Goal 3). For this

reason, we introduce the importance weight λk in Equation 3.3a. Details on computing

λk are described in Section 3.2.2 and evaluated in Section 3.2.3.

max
wk

K∑
k=1

λkwk, (3.3a)

s.t.
K∑
k=1

bnkwk ≤ 1 , for all n ∈ N (3.3b)

wk ∈ {0, 1} , for all k ∈ K (3.3c)

wx − wp = 0 , for all symmetry pairs (wx, wp) (3.3d)

To increase the plausibility of the automatically computed reference expressions

(Goal 4), we include symmetry constraints (Equation 3.3d). We observe from facial

performance acting that it is easier to pose symmetric facial expressions (e.g., both

eyes closed, both eyebrows frowning) than asymmetric facial expressions (e.g., left

mouth smiling, right mouth sad). We enforce simultaneous activation of symmetric

blendshapes, where (wx, wp) are the blendshape weights of two symmetric blendshapes

(vx, vp). Section 3.2.2 provides more details on defining symmetric blendshape pairs.
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Symmetry pairs and most importance weights are pre-computed once at the be-

ginning. In contrast, Equation 3.3 is solved for every single reference expression and

returns the blendshape weights wj
k for computing the reference expression xj. All

blendshapes with wk = 1 are removed from the set of available blendshapes K and

the total number of blendshapes K is updated. The process is repeated until either

a user-defined maximum number of expressions is reached or no blendshapes remain.

The order of the computed reference expressions reflects their power to improve the

overall result (Goal 3).

Importance Weighting of Blendshapes

The binary blendshape provides information about the activated vertices, but all blend-

shapes are considered as equally important if λk = 1. However, personalizing certain

blendshapes is more important than others, which we model by computing an impor-

tance weight λk for every blendshape k in Equation 3.3. Let us analyze the origin of

errors using example-based blendshape transfer techniques. First, semantically equiv-

alent expressions can have individual variations, e.g., strong dynamic wrinkles in faces

of old people versus barely visible wrinkles in young faces. While it is difficult to

forecast exactly the individual differences of expressions, we can assume that subtle

expressions remain subtle and expressions with strong movements have a higher chance

to introduce noticeable individual differences due to strong deformations. We model

this observation numerically by the displacement strength λDis.

Second, for blendshapes that are missing training examples, deformation transfer

[SP04] might introduce errors. Deformation transfer is based on the assumption that

the shape of the template rig A is similar to the personalised rig B (vA
0 ≈ vB

0 ). As soon

this assumption is violated, artifacts start to appear. Closer examination reveals that if
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triangles are non-uniformly scaled, results become inaccurate. Unfortunately, deforma-

tion gradients are only scale invariant in the tangential plane of a triangle [KG08] but

not in the normal direction. Consequently, transferring the deformation between two

shapes that are non-uniformly scaled, or where facial parts differ in their size relative to

the head (e.g., big eyes vs. small eyes), will lead to visible artifacts. Notice as well that

the non-similarity of meshes from the algorithm’s perspective is different to the per-

ceptual difference of characters. Simple non-uniform scaling creates highly distinctive

characters for the deformation transfer algorithm, but not for a human. At the same

time modifying the amount of fat in a human face leads to visually distinct faces, but

not numerically, because facial parts most affected by blendshapes (e.g., eyes, mouth)

remain the same. We aim to prioritise blendshapes which would be problematic to

transfer by calculating the triangle distortion λTD between two characters.

Finally, we suggest an optional weighting term for blendshape uniqueness to en-

force distinctiveness of consecutive reference expressions. Although a large variation

of expressions may appear advantageous in the first place, we observe that example

based facial rigging [LWP10] tends to remove subtle blendshape differences, which we

deemed important.

We observe that high-end character models with high numbers of blendshapes in-

tentionally have subtle differences in their expressions (e.g., several versions of smiles),

which is important to achieve high levels of realism. Blendshape transfer should main-

tain these subtle differences for high quality results. If, for example, we had 2 similar

blendshapes in the model (e.g., evil and happy smile) with only one training example

(e.g., happy smile) we lose nuances between the two smiles after blendshape transfer

using the original alternating optimization (expression fitting and weight estimation)

[LWP10]. Due to regularization, the weight estimation changes correct blendshape
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weights 0.0,1.0 to an incorrect e.g. 0.3,0.7. Enforcing correct blendshape weights

0.0,1.0 creates a generic evil smile, but more importantly an accurate fit of the happy

smile. Since neither situation is sufficient for the transfer of a high-end model, we

consider the uniqueness term as optional (Figure 3.9).

Each of these factors will be normalised and combined into a single factor, subject to

user-defined variables (α, β). For our purposes we define the weights as α = 0.5, β = 0.0

unless otherwise defined.

λk(α, β) = αλDisk + (1− α)λTDk
+ βλDistk (3.4)

Displacement Strength We consider the displacement weight of each blendshape,

defined as the mean displacement of all vertices n between the blendshape vk and the

neutral expression v0, visualised in Figure 3.10. We consider only active vertices, as

defined for binary blendshape bk in Section 3.2.2. Notice that the dot product of bk ·bk

returns the number of active vertices. All mean displacements d̄k are normalised to

guarantee that λDisk is of range [0, 1].

d̄k =
1

bk · bk

N∑
n=1

bnk ‖vn
k − vn

0‖

λDisk =
d̄k

max
{
d̄1, ..., d̄K

} (3.5)

Triangle Distortion We consider the triangle distortion (as visualised in Fig-

ure 3.10) between the neutral expressions of the template rig A and target character

B, since the relationship between the triangles of these two meshes is key for accuracy

of deformation transfer. Given the equal connectivity between two blendshape models,
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we first compute the vectors vu and vw, for each pair of triangles uvw of the meshes

A and B. The final distortion metric s between triangles t of the meshes A and B is

then:

st = max

{
vuA

vuB

,
vuB

vuA

}
+ max

{
vwA

vwB

,
vwB

vwA

}
(3.6)

The variable s for triangles t is of range [1,∞] and is normalised in Equation 3.7 to

ensure that λTD and λDis are both of range [0, 1]. Triangle distortion is only relevant

for triangles affected by deformation within a blendshape. We multiply st, which is

only based on the two neutral shapes, with the blendshape dependent btk, which is 1 if

at least one vertex of the triangle t is active and 0 otherwise.

sk =
T∑
t=1

btks
t, btk = buk ∪ bvk ∪ bwk

λTDk
=

sk
max {s1, ..., sK}

(3.7)

Blendshape Uniqueness The Pearson coefficient quantifies similarity between two

blendshapes [LAR+14, BiRZL+17]. The codomain of the Pearson coefficient is in the

range [−1, 1], with 1 indicating two blendshapes are the same, 0 indicating they are

different, and −1 indicating they are the same but in opposing directions (e.g. opening

and closing of the mouth). As we wish to consider opposite movements as different,

we change all negative coefficients to 0. The first reference expression is unique by

definition such that λUk
= 0. All blendshapes that are part of a reference expression

are saved in the set R, with r being the index number and R the total number of

blendshapes in R. All other blendshapes remain in the set K, with K being now the

available blendshapes for packing and not the overall number of blendshapes anymore.

To compute the uniqueness weight, we first sum the Pearson coefficient between a
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blendshape k and all blendshapes in R. The result is normalised and inverted. The

intuition behind this metric is, if no similar blendshape is part of the set of reference

expressions the uniqueness weight is high, otherwise it is low.

Uk =
1

R

R∑
r=1

max

{
δvk · δvr

‖δvk‖ ‖δvr‖
, 0

}
, if R > 0

λUk
= 1− Uk

max {U1, ..., UK}

(3.8)

Symmetry Constraints

Our overall goal is to propose reference expressions that are meaningful and have good

numerical properties. To our knowledge, no method exists that can determine whether

an expression can be posed by a human. Interestingly, even well trained actors can

have difficulty in posing all defined Action Units individually [CKH11]. We discarded

the idea of learning plausible expressions from animation data, because this would

require the creation of an expressive animation sequence for every template rig, a time-

consuming and difficult task.

Furthermore, plausible expressions that are not part of the animation would be

considered as infeasible, unnecessarily limiting the combination space of blendshapes.

We preferred a data-free solution that largely ensures plausible expressions in combi-

nation with an optional artist friendly refinement feature (Section 3.2.2). This enables

the user to more quickly accomplish the task of creating poseable expressions. Even

with manual refinement, the workflow remains largely automated.

We observe that symmetric facial expressions are easier to perform and appear more

frequently, e.g. closing eyes or lifting eyebrows simultaneously, a smile on both sides.
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We want to prefer such combinations because they strongly improve the likelihood

to create visually plausible expressions (Goal 4). We identify two different types of

facial symmetry: shape symmetry and motion symmetry (Figure 3.11). Expressions

like closing both eyes, a smile etc., create shapes that are symmetric across the left and

right side of the face. Face shapes are only symmetric when mirrored on the left and

right sides. Nevertheless, the upper and lower lip move in coordination and certain

symmetry exists between the main motion directions. The same applies for the lower

eyelid and the upper eyelid together with the eyebrows. In the following, we aim to

automatically identify blendshape pairs that contain symmetric activation of the face

(e.g. a left eyebrow raise blendshape and a right eyebrow raise blendshape).

Shape Symmetry For shape symmetry, we require a one-to-one mapping between

the vertices on the left and right-hand side of the face. This mapping can be computed

automatically, either based on the mesh topology [Aut16], where a user defines a single

triangle edge as the symmetry axis, or independent of the mesh topology [MGP07] by

comparing different samples of the mesh surface. For all our tested blendshape mod-

els, using symmetry detection based on topology was sufficient. Once the symmetry

mapping is computed on the neutral mesh, our algorithm first automatically detects

all self-symmetric blendshapes, (e.g., a smile that affects both sides of the face) and ex-

cludes them from the symmetry search. Intuitively, one might also consider excluding

all blendshapes that have active vertices on both sides of the symmetry axis. However,

this exclusion is too broad. Many blendshapes for the mouth and eyebrows have active

vertices on both sides of the symmetry axis in combination with a symmetric opponent

(see Figure 3.8).

For the remaining non-self-symmetric blendshapes, we project the displacements
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of blendshape m on the symmetry plane using the projection function p (δvn
m) and

compute the final difference between the potentially symmetric blendshape k and and

the projected blendshape p(m) using the following equation:

εkm =
1∑N

n=1 (bn
k ∩ p (bn

m))

N∑
n=1

‖bn
kδv

n
k − bn

m p (δvn
m)‖ (3.9)

Notice that the intersection of bn
k and p(bn

m) is smaller than the union. While nor-

malizing by the union would compute the average vertex displacement between bn
k and

p(bn
m), normalizing by the intersection amplifies εkm for non-symmetric blendshapes. If

εkm is below the following relative threshold, the blendshapes k and m are considered

as symmetric.

εkm < 0.4 min
n∈N
{max ‖δvn

k‖ ,max ‖δvn
m‖} (3.10)

When multiple symmetric blendshapes are found, we take the pair with the lowest

error and check for possible overlapping of active vertices. We allow small overlap

between symmetric pairs, as we have found that pairs of blendshapes that should be

considered symmetric often have an overlap at the axis of symmetry (e.g., Figure 3.8,

left). Blendshapes that spread along both facial halves will be not combined by the

symmetry constraint. As our optimization algorithm strictly prevents any overlap

between blendshapes in an expression, active vertices must be corrected for symmetric

pairs of blendshapes in advance. Symmetric blendshapes will be forced to be included

together, therefore the total active area remains the same.

Motion Symmetry Finding a reliable mapping between vertices of the upper mouth

and nose area, and the lower mouth and chin area is difficult because facial parts differ

significantly in terms of shape for the neutral pose and in terms of displacement for
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the blendshapes.

Lacking a promising automatic method, we use a sketch-based method, where the

user selects the vertices of the two pairs of symmetric areas. As an approximate selec-

tion is sufficient, we rely on Maya’s built-in mesh painting interface in our implemen-

tation. This allows the entire task to be accomplished within a minute. Blendshapes

that either have no selected vertices or selected vertices from more than one sketch,

are removed from the set of possible candidates for motion symmetry. The remain-

ing blendshapes have very local deformations, a small number of active vertices and

a dominant displacement direction. Lacking a reliable one-to-one mapping approach

between individual vertices, we cannot compare per-vertex displacements as we did for

shape symmetry. Instead, for every blendshape we compute an average displacement

direction δv̄k.

δv̄k =
1∥∥∥∑N

n=1 bn
kδv

n
k

∥∥∥
N∑

n=1

bn
kδv

n
k (3.11)

We then compare the average blendshape displacements between the potential sym-

metry pair candidates k and m,

cos(φkm) = δv̄k · δv̄m . (3.12)

We consider all blendshapes with cos(φkm) below a threshold of −0.985 as symmet-

ric. The minimal threshold is equivalent to 10◦ difference in the opposite direction

(asymmetric activation) and symmetry pairs are built based on the smallest angle. As

previously, active vertices are modified to prevent possible overlapping.
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Test-case N K Optimal Greedy
Male 7366 73 4.97s 0.29s
Toon 11680 65 7.14s 0.39s

Female 5034 265 13.14s 0.39s
DigiDouble 5131 161 13.14s 0.39s

Table 3.4: Timings for computing the first reference expression. Computation time
depends on the vertex number N and the number of blendshapes K in the blendshape
rig.

Test-case 5 ex. 10 ex. 20 ex.
Male 36/38 (31) 49/49 (42) 63/63 (56)
Toon 34/33 (22) 48/49 (43) 62/62 (61)

Female 58/54 (34) 89/85 (57) 124/116 (93)
DigiDouble 61/54 (39) 90/79 (55) 126/121 (104)

Table 3.5: Number of blendshapes selected by greedy and optimal algorithms and
their overlap in the first 5, 10 and 20 training expressions. Format: Greedy/Optimal
(Overlap).

Solving the Optimization Problem

Solving a set packing problem (Equation 3.3) is NP-hard. However, by formulating

the problem as an integer linear problem and using existing numerical libraries, the

optimal solution can be computed within a reasonable time (Table 3.4). Alternatively,

greedy approximation methods facilitate interactive framerates (< 1s) and sufficient

results.

In the following, we discuss the details together with the advantages and disadvan-

tages.

Optimal Solution Our optimization problem (Equation 3.3) is a derivation of the

weighted set packing problem, which is a classic example of an NP-complete problem

[Kar72]. We formulate it as a boolean linear programming problem, which is a special

case of mixed integer linear programming (MILP) due to the linear objective function

71



together with linear (in-)equality constraints and wk ∈ {0, 1}. We compute the optimal

solution in Python using the PuLP library in combination with the numerical library

CPLEX. The linear objective function consists of K unknowns, one for each blend-

shape. The number of linear constraints is N + P which is the number of vertices and

symmetry pairs (wx, wp). Various timings for solving the linear programming problem

are listed in Table 3.4.

The advantage of the optimal solution is that it computes the global optimum, e.g.

by using a branch and cut algorithm. Computation time depends on the number of

vertices, the number of blendshapes and the distribution of activated vertices across

different blendshapes. For example, if blendshapes either activate all vertices in the

upper or lower face halves, the number of combinations to test is less than if different

blendshapes activate vertices at different locations. This blendshape-specific compo-

nent makes it difficult to predict timings exactly for different blendshape rigs. Overall,

we notice that the optimal solution is slower compared to the greedy solution.

Greedy Approximation We implement Kordalewski’s greedy set packing algo-

rithm [Kor13] with some alterations to suit our method as shown in Algorithm 1. First,

we select blendshapes based on the smallest weighted sum of active vertices, where the

importance weight λn is inverted. If the weight is constant across all blendshapes and

vertices, this fits the largest number of blendshapes into one expression. Second, we

include an option to allow a small percentage of overlap between blendshapes, which

is not possible in case of the optimal solution.

Artist Friendly Refinement After incorporating the symmetry constraint and

fine-tuning the importance weights, the suggested expressions by our algorithm are
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Algorithm 1 Greedy Set Packing

xj = v0 . example expression
K = {1, . . . , K} . non-covered blendshape indices
λmax = 1 . maximum possible weight
for k in K do

nk = bk · bk . sum active vertices
λknk = (λmax − λk)nk . precompute importance

while K 6= ∅ do . expression packing
δvx = smallest( λknk)
δvp = find symmetric(δvx)
xj += δvx + δvp . add blendshapes
K = K \ {kx, kp} . remove covered blendshapes
for m in K do . remove overlapping blendshapes

if overlap(xj, bm) then
K = K \ {m}

return xj

plausible in about 85% of cases (see Section 3.2.3). To correct remaining implausible

expressions but still maintain the optimal selection of blendshapes, we allow for artist

intervention in our greedy algorithm.

As each blendshape is chosen, the user is presented with the options to accept

or reject it. If blendshapes are rejected, the algorithm proposes alternative nearly

optimal blendshapes and the process is repeated. All rejected blendshapes are no

longer considered for the current expression, but will be reconsidered when computing

the next expression.

3.2.3 Results and Evaluation

In this section, we evaluate the influence of different parameters and solvers on the final

output and the pose-ablity of the expressions. For evaluation, we use a derivation of the

original example-based blendshape transfer method [LWP10]. The method required
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a number of training expressions in combination with estimates of the blendshape

weights. By design, the blendshape weights are 0 or 1 and are known for our training

expressions. We therefore remove the weight estimation step within the alternating

optimization (fitting towards examples vs. blendshape weight estimation).

Dataset

One intrinsic challenge of evaluating example-based blendshape transfer methods are

suitable character assets. As we discussed in Section 3.1, using lower quality meshes

from a convenient database led to difficulty in drawing conclusions from our results.

In order to avoid that, we focus on obtaining high quality test cases that mimic real

industry use cases for blendshape transfer.

For ground truth comparisons, two blendshape models A and B are required of

equal vertex connectivity and semantically equivalent blendshapes. In practice, either

the total number of blendshapes is small [CWZ+14] or a small number of blendshapes

is identical between two characters, while other blendshapes can range from simi-

lar to completely different. This is even the case in recent datasets, e.g., 3D FACS

and FLAME [CKH11, LBB+17]. Furthermore, evaluation should cover difficult cases,

meaning that the two blendshape models should have significantly different proportions

in areas that are deformed most by blendshapes (Section 3.2.1).

As a ground-truth test for the digital double use-case, we acquired two high-end

photogrammetry-scanned characters, created by Eisko, a leading Digital Double com-

pany (Figure 3.12). We refer to these characters as Female 1 and Female 2. Se-

mantically equivalent blendshapes between both models were selected manually. Non-

equivalent blendshapes were removed. This resulted in a total of 161 in-correspondence

blendshapes between Female 1 and Female 2. To establish equal connectivity between
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the two high-quality facial rigs we followed the default procedure as described previ-

ously (Figure 3.7). We refer to this test-case as DigiDouble. Because the two rigs

are based on real people and 3D scans, this is the closest possible approximation to a

real use-case that offers ground truth comparisons. In such a dataset, the blendshape

weights of the reference expressions can be copy-pasted to obtain training expressions.

After running the example-based blendshape transfer algorithm with only four training

expressions, we compare the individual blendshapes for character B with the original

(see Figure 3.12, right columns). Despite a compact packing of over 30 blendshapes in

a few expressions visible artifacts that appeared when using deformation transfer only,

are removed and only small numerical errors appear where blendshapes overlapped. A

larger set of results can be found in Figure 3.19.

To provide more test-cases, especially of very challenging scenarios, we first gathered

3 production-quality rigs: a Male, Female (Female 1 from before), and a Toon (see

Table 3.4 and Figure 3.18). The characters ranged in vertex count (5034 to 11,680),

number of blendshapes (from 65 to 265), and whether they were sculpted by hand

(Toon and Male) or high-end photogrammetry-scanned (Female). Since it is difficult

to obtain rigs with semantically identical blendshapes, we generated altered versions

of our rigs, by applying a set of deformations to the entire blendshape model. This

includes non-uniform scaling as well as local enlarging and shrinking of facial parts like

eyes and mouth using free-form deformation. The original and altered characters can be

seen in Figure 3.18, first column. For example, the third row shows the original Toon

character, as well as the Toon character with non-uniform scaling applied in order

to create significantly different geometry that would be a suitable test case. These

alterations were specifically designed to generate proportionally non-similar character

pairs, which are difficult cases for deformation transfer. To simplify naming, test-cases
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using the original character and warped version are named as the original character

(Toon, Male, Female).

Generic Optimization Parameters

Our proposed optimization has a set of user-parameters to refine the computation

of reference expressions. To avoid unnecessary parameter tweaking, we investigate

suitable default parameters that create good results for all test cases.

In general, we aimed in previous sections for relative metrics in order to be scale

independent and added normalization to be more stable across character rigs with

different numbers of vertices or blendshapes.

Binary Blendshapes Threshold A relative threshold (Equation 3.2) turned out

to be the best compromise for defining active vertices for both subtle and expressive

blendshapes. For evaluation, we tested different values of this threshold µ on characters

with few and many blendshapes. During the evaluation we set λk = 1.0 in Equation 3.3.

Increasing µ increases the number of blendshapes within one reference expression and

decreases the total number of expressions. At the same time, a high value for µ > 0.4

created frequently unfeasible expressions for blendshape models with K ≈ 50 and could

drop to µ > 0.3 for blendshape models with K ≈ 265 (Figure 3.13). During parameter

testing of the maximum overlap between two blendshapes, we also noticed that a higher

overlap creates a bigger error during the reconstruction of individual blendshapes from

training expressions. We therefore recommend 0.25 ≤ µ ≤ 0.4 as a good trade-off

between the smallest number of examples and plausible examples. In the remaining

evaluation, we use µ = 0.3. An example of a combined expression with its constituent

blendshapes can be found in Figure 3.16.
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Importance Weighting For evaluation of the importance weights, we linearly in-

terpolate between different importance weights: λ = αλDis + (1.0−α)λTD. Symmetry

constraints are removed during numerical comparisons to avoid any bias. Remember

that a small number of vertices were allowed to overlap for symmetric blendshapes.

As a measure of improvement, we compute the root mean squared distance between

the ground truth blendshapes of the target model and the output of an example-

based blendshape transfer algorithm (with training expressions as input). As intended,

adding importance weights decreases the error (Figure 3.15). Weighting both impor-

tance values equally (α = 0.5) was found to be the best trade-off across different

characters and numbers of training expressions. This confirms that both importance

metrics are relevant.

Greedy vs Optimal Finally, we compare the reference expressions computed by

the optimal and the greedy solver (Section 3.2.2). Between 67% and 98% of blend-

shapes selected by the optimal method have also been selected by the greedy solver

(Table 3.5), meaning that both solvers compute similar, but not identical results. The

greedy algorithm creates reference expressions with slightly more blendshapes due to

the permission of little overlap between active vertices and is nearly 20 times faster

(Table 3.4). In contrast, blendshape transfer in combination with training expressions

of the optimal solver creates blendshapes that are closer to ground-truth in terms of

RMS-error (See Figure 3.17). With only 20 training expressions, both methods covered

approximately 67% blendshapes for Female, 86% for Male and 95% for Toon, which

is a remarkable reduction of training expressions. Interestingly, adding the symmetry

constraint to the optimal solution had basically no influence on the measured RMS-

error, while the RMS-error increased for the greedy algorithm with active symmetry
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constraints.

Expression Pose-ability

Good reference expressions should not only show good numerical properties, but should

be poseable by an actor, to facilitate scanning. The general unweighted set packing al-

gorithm creates reference expressions that might be difficult or even impossible to pose

(Figure 3.18, left). Our results showed that adding importance weighting had a positive

side-effect on how posable the expressions are (Figure 3.18, middle). Blendshapes with

strong displacements, which coincidentally tend to have more active vertices, started to

be part of the first reference expressions. Rather than packing several subtle expression

in the first reference expressions, subtle and expressive blendshapes were distributed

more evenly. Some reference expressions even appeared symmetric, due to the fact

that some template rigs were perfectly symmetric, and therefore left and right blend-

shapes had equal importance factors. If these blendshapes do not overlap, then they

are included at the same time, thus creating already symmetric expressions.

To create more plausible expressions automatically, we introduced the symmetry

constraint (Figure 3.18, right). To evaluate the final output of our Expression Packing

algorithm, we recruited two volunteers to demonstrate posing of the first ten reference

expressions of the DigiDouble case. The first expressions are the most tightly packed

and therefore the most difficult to pose. Some expressions were slightly modified be-

cause the symmetry constraint at times forced the eyes to look in opposite directions.

After editing, both eyes looked in the same direction and both volunteers were able to

pose all ten expressions within short capturing sessions (Figure 3.14).
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3.2.4 Discussion

The main novelty of our work is the adaptation of the weighted set packing algorithm

to the problem of finding optimal reference expressions. The automatically created

reference expressions are largely plausible even for challenging high-quality rigs con-

sisting of over 250 blendshapes. Furthermore, our artist-friendly refinement method

gives the user full control over the created reference expressions, without the need to

track minimal overlap of blendshapes or estimate the influence on the optimization for

a blendshape.

In this chapter, we proposed a solution for automatic reference expression creation,

allowing for the creation of optimal training expressions for example-based blendshape

transfer. This is achieved through constrained blendshape packing. Our key contri-

butions include blendshape importance ordering specifically aiming to deal with the

weaknesses of the deformation transfer algorithm, and the use of the weighted set pack-

ing algorithm for creation of information-dense reference expressions. Combined, these

produce as-few-as-possible packed reference expressions, tailored to the characters and

blendshapes to which the blendshape transfer will be applied. Using the recommended

parameters, our algorithm achieves a remarkable density of blendshape information.

With 20 examples, our results showed that almost the full set of blendshapes of our

test rigs were covered and 67% of the blendshapes of our highly-expressive production

rig.

In the following chapter, we continue investigating the idea of optimising the pipeline

using blendshape importance, but focusing our attention on the animation stage of the

pipeline, where having large numbers of shapes to blend at run-time is a major bot-

tleneck, and one of the reasons why many games favour bone-based facial animation
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for real-time. We propose a novel GPU blendshape animation method allowing high-

quality characters with large blendshape sets to be animated on the GPU in real-time.

We also propose a blendshape reduction level-of-detail technique, which uses the idea of

blendshape importance at its core. By ordering blendshapes and removing only those

deemed least important, the impact on the perception of the optimised animation is

reduced.
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Figure 3.6: Deformation Transfer [SP04] showing the output with (A) only the non-
translational transformations, (B) all transformations, and (C) Deformation Transfer,
which solves the optimisation problem balancing the non-translational transformations
with new translations such that vertex connectivity is maintained.
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Figure 3.7: Illustration of our expression packing algorithm as part of the digital double
pipeline. We run our expression packing algorithm to create as-few-as-possible reference
expressions, which help to guide an actor during a scanning session. Using non-rigid
registration, e.g. [IBP15, FNH+17, LBB+17], the mesh topology of the template rig
is transferred to the 3D scans. The resulting training expressions are optimal for the
blendshape transfer algorithm, since they lead to best results with as-few-as-possible
expressions. Finally, the blendshapes are computed for the personalised rig.
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Figure 3.8: Illustration of the different types of vertices for one blendshape: static
(blue), smoothing (green) and active (red). The blendshape on the left is self-
symmetric, the two blendshapes on the right are symmetric, but have overlapping
active vertices.
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Figure 3.9: First five expressions computed with (β = 0.5) and without (β = 0.0) the
optional blendshape uniqueness metric.

Figure 3.10: Visualisation of Displacement Strength (left) and Triangle Distortion
(right).
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Figure 3.11: Symmetric blendshape activation. Shape symmetry remains while lifting
both eyebrows (left) and motion symmetry is created due to perpendicular movement
of the lips (right).
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Test case: Reference Expressions:

Template
Character A

Without Training
(Deformation

Transfer)

With 4 Training
Expressions

(Our Results)

Ground Truth
Character B

Figure 3.12: Comparison of individual blendshapes after applying blendshape transfer
without training expressions (Deformation Transfer) and with only four training ex-
pressions based on our reference expressions. Each row shows two blendshapes that
have been corrected by one training expression.
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Figure 3.13: Output from expression packing algorithm for our Female test-case: the
first four computed reference expressions using different thresholds for the definition
of binary blendshapes. A threshold of up to µ = 0.3 creates plausible results in most
cases even for model with many blendshapes (K = 265).
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#δvk #δvk

12 7
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6 3

2 6

Figure 3.14: Two volunteers demonstrating the pose-ability of the DigiDouble expres-
sions. The number of blendshapes in each expression is shown on the left and right
columns.
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Figure 3.15: Average RMS-error per vertex between ground truth and the output of
example-based blendshape transfer for 3 different test-cases. Number of training ex-
pressions ranges from 2 to 15, (shown on x-axis). Importance weighting that considers
both, vertex displacement (λDis) and triangle distortions (λTD), creates most accurate
results across different characters and number of training expressions.

Figure 3.16: First packed reference expression (Figure 3.18) together with the nine
individual blendshapes.
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Figure 3.17: RMS-error for our DigiDouble test case (k = 161) with different numbers
of training expressions as input (ranging from 2 to 25, shown on x-axis). Training
expressions were computed with the optimal and greedy algorithms.
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Figure 3.18: Output from our expression packing algorithm showing the first 3 com-
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Figure 3.19: Selection of individual blendshapes after applying blendshape transfer in
combination with a full set of training expressions, where every blendshape is present
in one of the training expressions.
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Chapter 4

Real-Time Optimisation

Figure 4.1: The facial animation pipeline with the real-time animation stage high-
lighted.

In this chapter we explore the animation stage of the pipeline (highlighted in Fig-

ure 4.1). For real-time applications, blendshape animations are usually calculated on

the CPU, which is a slow process, and are therefore generally limited to only the closest

level of detail for a small number of characters in a scene. We present a GPU based

blendshape animation technique. By storing the blendshape model and animations on

the GPU, we are able to attain significant speed improvements over CPU-based anima-

tion. We also find that by using compute shaders to decouple rendering and animation

we can improve performance when rendering a crowd animation.

We also present a level of detail method for blendshapes, which is an importance-

90



based reduction of the number of blendshapes in an animation. Reducing the set

of blendshape expressions improves performance, but at the cost of expressiveness.

However, the quality impact can be minimised by selecting this subset carefully. We

mention similar methods for blendshape reduction which are animation-specific, i.e.

they remove blendshapes that are not activated during an animation, and briefly eval-

uate a number of non-animation-specific blendshape ordering techniques which could

be generalisable across various tasks requiring blendshape importance ordering.

I collaborated as third author on the work in this chapter, alongside another PhD

student and post-doctoral researcher from Trinity College Dublin. I was involved in

the research discussions, data preparation and analysis; and presented the paper at

Motion In Games 2016 in San Francisco.
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4.1 GPU Blendshape Animation

In real-time rendering, facial animation is usually performed using linear blend skinning

which can be readily accelerated using the Graphics Processing Unit (GPU). More re-

alistic results can be achieved through blendshape animation, but at the cost of greater

memory consumption and computational expense. Implementing blendshapes on the

GPU is not straightforward, and until recently, was quite difficult due to limitations

imposed by contemporary graphics hardware and drivers. As a result, most implemen-

tations have been on the CPU, such as the popular video-game Ryse Son of Rome by

Crytek [EMH14] which used corrective blendshapes at close distances. Performance

on the CPU is acceptable when rendering small numbers of characters, but with large

crowds performance will suffer unless we move the computation over to the highly

parallel GPU.

Our contributions are:

• A general purpose GPU (GPGPU) variation to shader-based blendshape anima-

tion using compute shaders and texture buffers, supporting very high complexity

meshes.

• A system for discarding perceptually less important blendshapes to improve per-

formance for crowds (example crowd shown in Figure 4.2).

• Comparative performance evaluations of CPU and GPU blendshape techniques.

We are interested in leveraging the power of commodity GPUs to allow blendshapes

to be used at more than just the closest level of detail, and potentially for multiple

characters in a scene. The challenges here are finding out how to arrange the data

and animation processing that we need, such that it is congruent with the latest GPU
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Figure 4.2: A real-time rendering of 40 blendshape animated heads with 72 blendshapes
each using our GPU technique.

rendering pipelines, and then finding a system that suits our scene for discarding ani-

mation processing that is less perceptually important to our rendering.

We propose a GPU-based blendshape technique which exploits relatively recent

advances in GPU technology such as Texture Buffer Objects (TBO) and compute

shaders. TBOs allow arbitrarily large blocks of data to be passed to the shader. Due

to the highly parallel nature of the GPU, we can expect significant performance im-

provements over CPU-based implementations. We investigate further potential speed

improvements through the use of general purpose GPU programming in the form of

compute shaders and by controlling the level of detail of animations by only processing

a subset of the blendshape expressions. Compute shaders give us the advantages of

using the GPU for general-purpose programming, which means we are able to compute

tasks not necessarily part of the graphics pipeline, in the same fashion as CUDA and
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OpenCL interfaces. Compute shaders offer the additional benefit of being built into a

rendering API, so are able to transfer the results of computations over to the graphics

rendering pipeline within the same workflow.

4.1.1 Method

On older GPU hardware, the most sensible technique for GPU-based blendshape an-

imation would be to pass the expressions in the form of either uniform variables or

vertex attributes [Lor07]. The number of uniforms or vertex attributes is quite limited

however, and would likely be insufficient for detailed models with a large number of

blendshapes. By using relatively recent features of the GPU we are able to overcome

these limitations. Our basic method is similar to Larach [Lor07] but differs in how it

handles the geometry and animation. The basic structure of our method can be seen

in Algorithm 2.

Figure 4.3: The blendshapes are serialised and stacked together in the 1-dimensional
Texture Buffer Object.

We are able to pass the 72 blendshapes of our model to the shader by packing

them inside a TBO as in Figure 4.3. These are one dimensional textures which allow

extremely large collections of arbitrary data [SA12]. The maximum size of the TBO

is effectively only limited by the amount of GPU memory available. For our model,

we require less than 40 MB of texture memory - comparable to two uncompressed 2k
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textures (2048x2048x4 channels), to store all vertex blendshape and animation data. If

we wanted to add normal, tangent or texture coordinate blendshapes to the TBO this

would increase, but only linearly, and well within the limits of modern GPU memory,

which is in the order of gigabytes.

Figure 4.4: The blendshape animation encoded in a 32 bit floating-point texture. Each
row contains the animated weight of a specific blendshape over time. We can see a
group of blendshapes activate in the middle (bright white).

As the geometry resides on and is manipulated by the GPU, the graphics driver

does not need to be stalled to transfer geometry to the video memory. In addition

to storing the blendshapes on the GPU, using a similar technique to [Dud07], we also

store the entire animation on the GPU as well. This was achieved by packing the

animation values into a m by n texture, where m is the number of blendshapes, and

n is the number of frames as in Figure 4.4. To ensure precision is preserved, a 32 bit

floating-point texture is used. Texture components are usually represented using only

8 bits, which would severely quantise our animation data. Moving the animation onto

the GPU removes the need to calculate and pass the animation weights to the shader

every frame, the cost of which we find to be significant. Moving these calculations to

the vertex shader further reduces the number of operations that might stall the GPU

driver and frees the CPU for other purposes.

To reduce the number of iterations, and therefore improve performance, we have

modified our blendshape shader to be able to return early, similar to the method of
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Algorithm 2 Blendshape Pseudo-code

NBs = Blendshape Limit
VIdx = Current Vertex Index
TAnim = Animation Texture
TBs = Blendshape TBO
NV = Number of Vertices per blendshape
t = Current Frame
V ertexPos = Initial neutral vertex position at index VIdx

for i = 0 to MAXBLENDSHAPES do
Weight = TAnim[i,t]
if i < NBs then

TIdx = i ∗NV ∗ 3 + VIdx ∗ 3 //TBO index
TempPos = (0,0,0)
TempPos.x = TBs[TIdx]
TempPos.y = TBs[TIdx + 1]
TempPos.z = TBs[TIdx + 2]
V ertexPos = V ertexPos+ TempPos ∗Weight

else
Escape Loop
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Lorach [Lor07]. This can be seen in Algorithm 2 where, inside the for loop, a con-

ditional checks against the number of blendshapes, NBs. If this many iterations have

been computed, then the shader returns early. This smaller number of blendshapes

is specified by the user. This effectively trades animation quality for animation per-

formance. As can be seen later in Section 4.1.4, this is necessary if we want practical

real-time performance in large scenes. Such a system may appear initially unattractive,

as a näıve implementation will result in a reduction in quality that can be severe. If,

however, an importance order is established for each expression, the effect on quality

can be minimised. This will be discussed in more detail in Section 4.1.2 and Chapter 5.

Compute Shader

A disadvantage of performing all blendshape related calculations on the GPU through

the vertex shader, is that animation and rendering become inextricably linked. This is

because everything now resides within the standard graphics rendering pipeline. This

means that all calculations will need to be repeated every draw call whether they are

required or not. A CPU-based solution does not share this limitation.

If we render multiple characters with different animation frames, repeating the

calculations is not a problem but in a crowd rendering context this does limit us. This

is because the perceived size of a crowd can be increased by interspersing duplicates of

a small set of unique characters throughout the scene [MLD+08]. If we use our current

GPU-based system there is no performance advantage to this technique.

It is possible though to decouple animation and rendering while still keeping all cal-

culations on the GPU by using GPGPU programming in the form of compute shaders.

These programs can be executed on the GPU, accessing all the same texture and vertex

data as our normal method but operate independent of rendering. We are even able to
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run the same method as Algorithm 2 with minimal alteration. Compute shaders were

first added in OpenGL 4.3 [SA12], two years after DirectX 11.

CPU

For comparison, we also implement a basic CPU blendshape technique as most current

implementations of blendshape animation are CPU-based. It should also be stated

that CPU-based methods do have some advantages. They are invariably easier to

implement and allow for a much simpler graphics pipeline which might be important

if GPU rather than CPU time is at a premium.

If we are rendering small numbers of faces, real-time performance can easily be

achieved on the CPU. For larger numbers of characters, the disadvantages become

apparent. As the geometry must be recalculated on the CPU, it must also be passed

to the GPU every frame which can be very costly as the GPU stalls while the transfer

is underway.

4.1.2 Level of detail

As discussed in Section 4.1.1, our method, similar to Lorach [Lor07], allows the user to

reduce the number of blendshapes being computed by the vertex shader, and in our case

compute shader, to improve performance. Lorach only removed inactive blendshapes,

ensuring the animations would be identical. Our method goes further and sorts the

blendshapes in terms of importance. By removing less important expressions first,

we can make much deeper performance improvements while minimising the effect on

quality.
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Ordering

We investigated using a number of general purpose metrics for ranking or ordering

blendshapes by perceptual importance. Every metric was used to compare each blend-

shape expression to the neutral version of our model’s face, i.e. all blendshape weights

set to zero. These metrics can roughly be classified as either geometry or image-based.

The geometry-based metrics only consider the vertex positions of the various expres-

sions. They are not influenced by any rendering information such as texture or lighting.

In contrast, the image-based metrics only consider the final rendered image and are

heavily influenced by texture and lighting.

Through an ad hoc assessment, we found that each metric has advantages and

disadvantages. The results are broadly similar although there are differences for certain

expressions particularly in the eyebrow region. All methods also give relatively low

importance values to eye blinks. In general, we found that these metrics gave acceptable

results for small to moderate blendshape reduction but some manual intervention was

required for larger reductions.

Geometry-Based : Mean Squared Error MSE is a fairly simplistic metric which

compares two objects on a vertex by vertex basis, based on the equation below:

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2 (4.1)

where n is the number of vertices, Ŷi is a neutral expression vertex, and Yi is a vertex

of the current expression being evaluated. For our model, we found that this method

gave high importance values to mouth and lip expressions but low values to eye and

brow expressions.
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Geometry : Hausdorff Distance The Hausdorff distance is a more robust metric

that is commonly used to compare the differences between two different meshes based

on the following equation [ASCE02]:

H = max
a∈A
{min
b∈B
{d(a, b)}} (4.2)

where A and B are the meshes being compared, a and b are vertices of their respective

meshes and d is the Euclidean distance. Similar to the geometry-based MSE, we found

this metric gave high values to the mouth region and lower values to the eye region. It

gave higher values to the eyebrows though than most methods.

Image-Based : Mean Squared Error The image-based variant of mean squared

error metric is the same as the geometric version although it operates on a pixel by

pixel basis.

MSE =
1

wh

h∑
y=1

w∑
x=1

(Ia(x, y)− Ib(x, y))2 (4.3)

Where Ia and Ib represent two 2d input images with dimensions w and h, and pixel co-

ordinates given by x and y, respectively. In our tests, this metric gave high importance

values to the mouth and brow region of our model. Blinks were also not too low. This

method can be a little too sensitive though. For example, minor asymmetric differences

between the left and right of the face texture can result in different importance values

for otherwise identical expressions.

Image-Based : Structural Similarity Index The structural similarity index met-

ric (SSIM) tries to model the response of the human vision system [WBSS04]. We

found this method gives identical importance values to asymmetric expressions unlike
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Figure 4.5: Combining expression blendshapes to make a final, composite expression.

the image-based MSE. In terms of importance values, we found the brow expressions of

our model were given relatively high values compared with the other metrics although

cheek and blink expressions were relatively low.

Image-Based : Perceptual Difference The perceptual difference metric, created

by Yee [Yee04] is an attempt to model the human vision system to an even higher

degree of accuracy than Wang et al. [WBSS04]. We found this method was sensitive

to certain subtle expressions of our model such as cheek motions.

4.1.3 Test Data

To acquire our data for testing, we captured a volunteer performing 6 unique sentences

from the TCD-TIMIT [HG15] dataset. We selected this because its sentences are

very dense phonetically, which should help ensure that more mouth blendshapes are

activated. Facial motion was captured using a tripod mounted GoPro camera at 120

fps with a resolution of 1920x1080. This motion was tracked and retargeted to our 3D

model (Figure 4.5), which has 72 high quality blendshape expressions closely matching

the FACS action units, using the professional pose-based solution by FaceWare [Fac16].
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4.1.4 Results
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Figure 4.6: Plots compare the basic CPU method, the vertex shader method, and
the compute shader method. The top row gives GPU times for rasterisation-disabled
drawing for 1 and 100 heads, each head with unique blendshape weights. The bottom
row gives corresponding times on the CPU.

Figure 4.6 gives our measured timing results. Our results are based on a sample

size of n = 100 measurements, and error bars shown are plus and minus 1 standard

error from the mean. All plots have error calculated, but most results have negligible

variation. The columns show results from 2 scene configurations:

• 1 head rendered with unique blendshape animation frames per head.

• 100 heads rendered with unique blendshape animation frames per head.

This means that, in the case of 100 heads in Figure 4.6, each of our timings also
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includes the cost of computing a set of unique blendshape animations for each head -

no instancing or cloning is used. The rows show results for each scene for two timers:

• GPU timer queries to measure the time to render the scene on the graphics device

(in milliseconds).

• Round-trip frame time on the CPU (in milliseconds), which includes the cost of

drawing as well as CPU-side driver overheads, and associated uniform variable

updates.

All results are measured on a 64-bit 6-core Intel Core i7 3.5GHz CPU with a Nvidia

GeForce GTX 960 GPU, using Windows 10 64-bit driver version 362.00. We explicitly

disable rasterisation before drawing, so that our measurements only consider the shader

processing costs related to animation, and not any overheads created by rasterisation

and fragment shading stages of the pipeline.

In all tested techniques, we observe a linear decrease in drawing time on the GPU

as blendshapes are discarded. We note, in particular, that in this general purpose case

the vertex shader-based animation technique is always faster than compute-shader and

CPU-based animation techniques. All of the techniques have a linear cost increase as

both the number of blendshapes computed, and the number of animated heads drawn

increases.

We also measured for the case of cloning or reusing animation sequences within a

crowd. This means that animations are computed once, and shared with subsequently

drawn heads. In this special case we see compute shader animations processing many

times faster than other methods on the GPU (Figure 4.7, left), and this gives an

interesting case to leverage general computing shaders to performance advantage over

the traditional pipeline. The CPU round-trip time (Figure 4.7, right) is negligible for
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Figure 4.7: The special case of instanced rendering for crowds (sharing weights) on the
GPU (left), and round-trip frame time on the CPU (right). We observe performance
advantage in leveraging generic computing in shaders here.

both shader-based implementations.

4.1.5 Discussion

We have demonstrated a technique for rendering large numbers of blendshape charac-

ters in real-time using the GPU. By storing all geometry and animation information

on the GPU as textures, we were able to minimise expensive graphics driver compu-

tational overheads inherent in any CPU technique. Our method when coupled with

compute shaders, makes larger, fully blendshape animated crowds a possibility.

In terms of performance, we observed that the vertex shader technique was signifi-

cantly faster than the CPU, or even compute shader methods in most configurations.

We found that the compute shader has a much more costly overhead associated with its

use, although performance was superior to the CPU technique. The compute shader

method has the advantage of decoupling rendering from animation. This means in

certain circumstances, such as crowd rendering where instancing is appropriate, signif-

icant speed improvements could be gained by reducing the number of compute shader
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calls, as can be seen in Figure 4.6.

Performance improvements were found to increase linearly with respect to the num-

ber of blendshapes computed, with both vertex and compute shader techniques. Using

a smaller subset of blendshapes does, however, reduce the expressiveness of the model

as full expressions are being discarded. As a result, using a lower number of blend-

shapes without ordering gave inconsistent results for our model. We found though that

by using sensibly ordered expressions, we were able to reduce the impact on animation

quality and achieve much higher blendshape reduction levels. We expect that these

reduced blendshapes would be used in less salient background characters.

We performed an ad hoc assessment of a variety of standard geometric and vision-

based metrics to help establish a sensible automatic blendshape ordering for our level of

detail method. We found that reductions of up to 50% can be achieved for our dataset

examples with little manual intervention when using any of the 5 metrics. At a more

significant reduction level of 75%, the ability of the mouth to create plausible shapes

to match the audio is lost when using the image-based MSE and perceptual difference

metrics. This was mostly maintained, however, with the geometric MSE, SSIM and

Hausdorff distance metrics. We found that all methods gave small yet perceptually

significant expressions such as blinks low importance values.We believe that this implies

that using mathematical metrics alone is not a good choice for defining importance of

facial blendshapes. Therefore, a perceptual metric needs to be explored that would

take into account the special nature of face perception, which is known to be processed

differently in the brain.

The technical contributions of this thesis so far provide a wide variety of applications

for blendshape ordering methods, as well as multiple suggestions for methods to define

this order. As of yet, however, we have not explored the perceptual impact of these
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methods. In the following chapter, we conduct a perceptual experiment to investigate

the saliency of different blendshapes at various activation levels. We then compare these

to the values given to the blendshapes by the geometry-based and image-based metrics

which we have used throughout this thesis, with the goal of identifying a correlation

between these metrics and perception. The results of this perceptual experiment will

inform the choice of metrics to be used in future blendshape importance weighting

algorithms. With perceptual verification of these metrics, we can more confidently

present them as good metrics for blendshape reduction. Alternatively, if they are

found to not represent the perceptual impact of blendshapes well, then our perceptual

results could be used either to entirely replace these metrics, or to enhance them for

use in blendshape reduction with minimal perceptual impact.
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Chapter 5

Perceptual Optimisation

In the previous chapters, we have shown that defining an order of blendshapes is useful

for many aspects of optimizing the facial animation pipeline. In Chapter 3, blendshape

importance is a vital component of the Expression Packing algorithm which defines

optimal training examples for example-based blendshape transfer. In Chapter 4 we

saw how blendshape importance could be used to reduce the complexity of animations

by removing unused or perceptually less important blendshapes from an animation.

In this chapter, we investigate the idea of blendshape importance more closely. We

explore the perceptual importance of blendshapes under different activation levels, and

seek to determine if these perceptual results can be predicted by the various geometry

and image error metrics we have used throughout this thesis. Of particular interest are

our results from the metrics used in Chapter 4, which gave eye expressions a relatively

low ranking, which is in contrast to perceptual research showing that eyes are an

especially salient area of the face.

Here, we find that the eye area has a high perceptual importance which does not

match its numeric difference. Similarly, we find that the eyebrow frown and mouth
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frown expressions are less perceptually important than their numeric displacement

values suggest. We also find that there is a large variance in the different levels of

activation necessary for different expressions to become perceptible.

The work in this chapter was done in collaboration with a post-doctoral researcher

from Inria and an academic collaborator from TCD (expert in statistics). I contributed

to everything, while my co-authors contributed to the experiment design, analysis, and

choosing and implementing the model fit.
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5.1 Perceptual Importance of Blendshapes

In psychology literature, the perception of human faces is a much studied area of

research. In terms of virtual characters, expressions are generally created using blend-

shape rigs [LAR+14] based on FACS action units [EF78], however these rigs are compu-

tationally expensive for real-time applications. The question of importance of blend-

shapes is therefore of great interest to computer games and other real-time appli-

cations, with the aim of prioritising which blendshapes to include in expressions for

example-based blendshape rig creation algorithms (Chapter 3), or reducing the number

of blendshapes needed for animating a rig (Section 4.1).

Due to the nature of facial perception, and how it is a special form of perception

that humans are particularly attuned to [BY13, FWDT98, KMC97], we expect that

differences in perception of facial action units will not align with the magnitude of

displacement on the mesh caused by the action units. We hypothesise that even small

displacements, such as slight eyelid movement will be considered as perceptually more

salient than other larger movements, for example the puffing of cheeks, and that these

will not be accurately reflected by geometric and image distance metrics.

In this section, we investigate the perceptual impact of a carefully selected range

of expressive blendshapes at varying activation levels across a number of characters of

different race and sex. We then compare our qualitative perceptual results to quan-

titative metrics in order to determine whether the perceptual effect can be predicted

easily. Geometric and image-based error metrics for triangle meshes are traditionally

used for predicting mesh errors such as watermarking, simplification or lossy compres-

sion. However, we aim to determine if our question of perceived blendshape importance

can be predicted by simply calculating the error between the neutral pose and the ac-
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tion unit, which is an indication of the overall vertex displacements, using common

image and geometry error metrics. We investigate RMS, Hausdorff distance, and tri-

angle distortion for our geometric errors, and MSE and SSIM for our image metrics, as

described in Section 5.1.4. We then perform linear regression analysis to determine if

facial action unit importance can be predicted using simple error metrics, or if a new

perceptual metric specific to facial action units is required.

We run a preliminary experiment on a single character to guide parameter and

stimuli choices. After a few small changes, we run the main experiment on a larger

and more diverse set of characters.

Questions we address are:

• Are some facial action units more salient than others?

• Does a linear increase in activation of action units (geometry alterations) result

in a linear perceptual response for different action units?

• Is the perception of facial action units consistent across faces of different race and

sex?

• Can we fit a statistical model in order to predict the perceptual impact of facial

action units using standard geometry and image-based error metrics?

Our results in this section could be used for optimisation of blendshape rigs through

blendshape reduction, which we first discussed in Chapter 4. Blendshape rigs are mem-

ory intensive as they require hundreds of blendshapes, each with tens of thousands of

vertices, to be stored in a blendshape matrix in order to display real-time animations.

This also makes them computationally expensive due to the matrix-vector multipli-

cation required [SILN11]. By identifying and removing blendshapes of lower visual
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(a) Neutral (b) Eyebrows Up (c) Frown (d) Eyes Opened

(e) Smile
Lips Closed

(f) Mouth
Frown

(g) Lips
Protrude

(h) Mouth
Open

(i) Cheeks
Puffed

(j) Cheek
Inhaled

(k) Nostrils
Dilated

(l) Eyes
Closed

1

Figure 5.1: The set of blendshapes used in our main experiment, shown on the Asian
Female character at full activation (1.0).

Figure 5.2: The Mouth Open blendshape shown at the 5 activation levels used in our
experiments, shown on the White Male character.
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saliency, which equates to simply removing rows from the blendshape matrix, we can

save both memory and computation required.

5.1.1 Preliminary Experiment

We ran the preliminary experiment in Unreal Engine 4 on 8 participants in order

to check the experiment procedure and stimuli and parameter selections. We did not

record demographic information. We displayed two faces of the same character side-by-

side in full-screen on a monitor approximately 27” in size with the participant sitting

approximately one meter from the monitor. The faces took approximately 187mm

x 224mm of screen space each. The face on the left showed a neutral expression,

while the face on the right changed expression. We displayed the faces on a flat grey

background so that there would be sufficient contrast between it and the skin tone of

each character. We showed them in a front facing position in order to give the clearest

view of all facial features. We asked participants to rate how similar the faces were

on a scale from 1 to 9, with 1 being exactly the same and 9 being extremely different.

We also recorded response time from the moment the stimulus was displayed on screen

until the moment the participant submitted their response, as this could indicate how

confident the participants were in their answers.

We showed a total of 12 expressions - 11 action units (AUs) and 1 neutral expression

as a control. These action units, as shown in Table 5.1, were chosen to cover all areas

of the face, with additional focus on the mouth due to the mouth’s ability to produce

a wider range of shapes. We also attempted to include opposite movements in each

area, e.g. smile and frown. For each of these AUs, we showed 5 activation levels:

20%, 40%, 60%, 80%, 100%, with 100% being the maximum activation of that AU
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AU AU Name Area
2 Eyebrows Up Eyebrows
4 Frown Eyebrows
5 Eyes Opened Eyes
12 Smile Lips Closed Mouth
15 Mouth Frown Mouth
18 Lips Protrude Mouth

26/27 Mouth Open/Mouth Wide Opened Mouth
34 Cheeks Puffed Cheek
35 Cheek Inhaled Cheek
38 Nostrils Dilated Nose
43 Eyes Closed Eyes

Table 5.1: Action Units shown in the experiment. Note: AU 27 (shown in italics
alongside AU 26) was shown in the preliminary experiment, but was changed to AU
26 for the main experiment to better match the magnitude of the other AUs.

performed by the actor during the scanning process. In terms of blendshapes, this is

simply a linear interpolation from the neutral face to the blendshape, with 100% being

the fully activated action unit (e.g. eyes fully closed) and each intermediate step being

a transition from neutral to that AU, e.g. 40% of the eyes closed AU would be eyes

almost half closed (see Figure 5.2 for an example of activation levels). We showed 3

repetitions of each stimulus. For analysis, we looked at the average response across

the repetitions. For each stimulus, we measured the AU’s difference from the neutral

using a number of metrics: RMS Error, Hausdorff Distance, and Triangle Distortion

(described in Section 5.1.4).

Preliminary Results

We ran a correlation test (Pearson’s Product-Moment) across all blendshapes and

activation levels to compare perceptual responses with the mesh error calculations. We

found all three methods correlated significantly with the perceived ratings of similarity;
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RMS: r = 0.71, Hausdorff D.: r = 0.75, Triangle D.: r = 0.84 (all significant at

p < 0.05). This result shows that these error metrics can estimate perceptual difference

well, however this is something we would like to continue investigating in our main

experiment.

We ran a repeated measures ANOVA on perceptual ratings with within factors

Blendshape and Activation Level to estimate if there are any blendshapes which have

a more prominent perceptual effect. We found that stimuli were rated differently ac-

cording to Blendshape (F(11, 77) = 48.66, p = 0.00), Activation Level (F(4, 28) =

54.32, p = 0.00) and we found an interaction between both (F(44, 308) = 5.33, p

= 0.00). Blendshapes which caused the largest perceptual dissimilarity were Mouth

Wide Open and Eyes Closed (Tukey’s HSD test: p < 0.0002, for all), while the Nostril

Dilated, Cheeks Puffed and Frown were indiscernible from the reference neutral mesh.

This pattern slightly changed with the Activation Level, where higher levels increased

dissimilarity between blendshapes. Perceived difference between 80% and 100% ac-

tivation was not significant, others were (p < 0.2, for all), implying that perceptual

difference of action units changes as the activation changes until 80% activation, above

which the perceptual difference is negligible. This is visualised in Figure 5.3.

We observed that the Mouth Wide Open AU was much larger in terms of displace-

ment compared to the other blendshapes we chose. In order to have a more balanced

set of blendshape stimuli, we choose to change this to a smaller Mouth Open shape in

the main experiment.

These results show a promising correlation between error metrics and perceptual

results, indicating that error metrics may be a good method for predicting perceptual

importance. This is a result we are interested in further investigating by testing across

a wide range of characters.
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Figure 5.3: The perceptual difference per activation level for our preliminary experi-
ment.

5.1.2 Main Experiment

We used the preliminary results to guide our main experiment, this time with more

participants and character models, and some adjustments based on the results of the

preliminarily experiment. One of the goals of this experiment was to generalise our

results beyond the single character we tested in the preliminary experiment, therefore

we attempted to create a diverse set of stimuli. We included 2 characters of each

Asian, Black, and White race. Within each race group, there was 1 female and 1

male character. In order to cope with this large increase in stimuli, we reduced the

repetitions to one.

We changed from using the largest mouth open blendshape (Mouth Stretch AU 27)

in the preliminary experiment to a smaller one (Mouth Open AU 26) in order to better

match the magnitude of the other shapes. Also, this shape is more common, i.e. you

are more likely to slightly open your mouth when talking/smiling than open your jaw
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Figure 5.4: The experiment question screen showing the character we used for training,
which is also the character used in the preliminary experiment.

as wide as possible. We altered the wording of the question based on feedback from

the preliminary experiment. Instead of asking how similar the faces were, we asked

how different they were, defining the low end of the slider as “No Difference” and the

high end as “Extremely Different”. We also changed the UI to be more comfortable to

use, shortening the slider and changing the between-stimuli screen to a 1 second focus

cross, instead of a button for the participant to click. An example of the experiment

as seen by participants can be seen in Figure 5.4. The rest of the experiment remained

the same. We used the same experiment set-up in Unreal Engine 4, only altering the

factors mentioned above, and displayed the characters at the same size on the same

monitor.

Stimuli Creation

As we mentioned in Section 3.1 in this thesis, low quality stimuli can cause many issues

when using blendshape transfer. For this reason, as we did in Section 3.2, we prioritise

the need for high quality stimuli.
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For stimuli creation, we first explored acquiring a range of high-resolution full-head

meshes with semantically-matching AUs and diversity of facial features from open-

source databases. However, to our knowledge, no such set exists, therefore we we

developed a pipeline for creating our own data-set.

We first acquired a high-end photogrammetry-scanned template model, created by

Eisko1, a leading Digital Double company. The character had over 200 blendshapes,

inspired by the FACS system [EF78] with additional shapes for emotion and speech

(Figure 5.4). Our experiment characters were a set of 6 neutral faces (Figure 5.5)

created utilising high resolution scan data, from 3D Scan Store2.

In order to obtain the 11 AUs required for the experiment for each of our experiment

characters, we used the Russian 3D Scanner3 Wrap 3.4 to transfer the topology of

our template model to each of the neutral characters, using some feature points as

guidance so that the semantics of the topology remained the same. We then used this

wrapped mesh to warp the 11 AU blendshapes of our template model to the experiment

characters, thereby creating 6 new character rigs with equal topology and blendshapes.

These characters can be seen in Figure 5.5. We chose not to include any hair on

the characters as we are exclusively interested in facial features and wanted to avoid

distracting elements.

Participants

We ran the experiment with 20 participants (3 female, 16 male, 1 prefer not to answer;

8 were in the age range 18-27, 10 in 28-37, and 2 in 38-47). All reported medium or

high familiarity with computer graphics and video games. As the characters we showed

1https://www.eisko.com/
2https://www.3dscanstore.com/3d-head-models/
3https://www.russian3dscanner.com/
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Figure 5.5: Neutral faces of the characters used in our experiment. Left: white, middle:
black, right: asian faces. Top row shows the female faces, while the bottom row shows
the male faces.

in this experiment varied in race, and there is a perceptual effect of one’s own race and

perception of other races [LJC91, WT03], we asked the participants to disclose their

race (5 Asian, 13 White, 0 Black, 2 Other).

5.1.3 Perceptual Results

We ran a 4-way repeated measures ANOVA on the Perceptual Difference results with

the within factors Sex, Ethnicity, Blendshape, and Activation Level. Due to the imbal-

ance between participant race and sex groups, we did not include these between-groups

factors in the analysis. The ANOVA results can be seen in Table 5.2. We ran post hoc

analysis using Tukey’s HSD tests throughout.
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Figure 5.6: Main effect of Blendshape in the Main Experiment.

Factor F(DFn, DFd) = F-value p-value η2p
Sex F(1, 19) = 1.727 0.2

Race F(2, 38) = 4.192 0.02* 0.18

Blendshape F*(2.93, 55.58) = 123.8 0.00* 0.86

Activation F*(1.21, 22.90) = 158.2 0.00* 0.89

Sex-Race F(2,38) = 7.826 0.001* 0.29

Sex-BS F(11, 209) = 2.99 0.001* 0.14

Race-BS F(22, 418) = 6.885 0.00* 0.27

Sex-Activation F(4, 76) = 2.887 0.03* 0.13

Race-Activation F(8, 152) = 1.581 0.14

BS-Activation F(44, 836) = 19.29 0.00* 0.50

Sex-Race-BS F*(6.73, 127.86) = 5.301 0.00* 0.22

Sex-Race-Activation F(8, 152) = 2.031 0.046* 0.10

Sex-BS-Activation F(44, 836) = 0.979 0.5

Race-BS-Activation F(88, 1672) = 1.592 0.001* 0.07

Sex-Race-BS-Activation F(88, 1672) = 1.68 0.00* 0.08

Table 5.2: ANOVA interactions with dependent variable “Perceptual Difference” from
the perceptual results. (BS = Blendshape, * represents significant p-values, F* stand
for Greenhouse-Geisser correction for violations of sphericity). Effects sizes are reported
in the last column (η2p).
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Figure 5.7: Left: The Frown AU shown on the Asian Female and Black Male characters,
Right: The Cheeks Puffed AU shown on the Asian Female and Black Male characters.

Race

We found a main effect of Race, where shape differences were less perceptible for Black

characters overall than for Asian characters (p < 0.02). An interaction between Race

and Sex gave further insight that shape differences were more perceptible for the Asian

Female character than other characters except for the White Male (p < 0.03 for all).

There was an interaction between Race and Blendshape level, which showed that these

differences were mainly coming from the Frown and Cheeks Puffed AUs (p < 0.02). A

comparison of these expressions can be seen in Figure 5.7. This implies that differences

in the cheek and frown AUs were less perceptible on Black characters.

Sex

There was no main effect of the Sex of the character. We found some smaller inter-

actions showing some individual differences in the models, but no interesting trends.

This result may have been affected by our predominantly male participant pool.

120



Figure 5.8: Perceived differences of activations between characters.

Activation

A main effect of Activation showed a significant difference between each activation

level, with a linear increase in perceived differences as the activation increased.

There was no difference across all characters and blendshapes at the lowest acti-

vation level of 20%, however some characters were rated as relatively more different

at higher activation levels. There was a significant difference between Asian Female’s

60% and that of the White Female, Black Female and Black Male characters, but no

significant difference between Asian Female’s 60% and their 80% (p < 0.02). This is

visualised in Figure 5.8. You can see that the perceived difference of the Asian Female

AUs at 60% activation (0.6 on the graph) is similar to other character’s AUs at 80%.

The only blendshapes which are significantly different from the Neutral at 20%

activation are Eyes Closed and Mouth Open (p < 0.00005). Cheeks Puffed and Mouth
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Figure 5.9: Perceived differences of activations between blendshapes.

Frown are only significantly different from the Neutral at 60% activation or higher (p <

0.0002), Frown is only significantly different at 80% activation or higher (p < 0.00005),

and Nostrils Dilated is significantly different at 100% activation (p < 0.02). All other

shapes were perceptually different from the neutral at 40% activation (p < 0.005),

indicating that 40% activation seems to be the point at which people can visualise

displacements well for most action units at this size on-screen. This is visualised in

Figure 5.9.

Blendshapes

We found a main effect of blendshape where Mouth Open and Eyes Closed were sig-

nificantly more different than every other blendshape for all Characters (p < 0.005).

Mouth Open was significantly more different from the neutral than every shape (p <

0.005) except Eyes Closed for Asian Female and Black Male, where the difference was
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insignificant. Nostrils Dilated was not significantly different from Neutral for all char-

acters. Frown was not significantly different from Neutral for White Female, Black

Female, and Asian Male.

Mouth Frown was the only blendshape to be rated significantly differently between

the sexes (p < 0.05), with the female characters being rated as more different. This

could be due to the gender stereotype that women are more likely to show happiness

and men are more likely to show anger [HAJK04], therefore a frown is more unexpected

on a female face.

We found an interaction with Race. Eyes Opened and Eyebrows Up were perceived

as significantly more different from the Neutral, and Nostrils Dilated, Mouth Frown

and Lips Protrude were perceived as significantly less different from the Neutral for the

Black characters than the Asian characters (p < 0.05). This could be caused by the

higher contrast between the eyes and skin, and lower contrast around the lips, for the

Black characters. Eyes Opened was rated as having a significantly lower perceptual

difference, and Cheeks Puffed was rated as having a significantly higher difference

for the White characters than the Black characters (p < 0.00005). There were no

significant per-blendshape differences between the White and Asian characters.

We also found an interaction with Race and Sex, showing some per-character differ-

ences. Specifically, for both the Asian Female and White Male characters, the Frown

and Cheeks Puffed AUs of the Black Female and Asian Male characters, and the Cheeks

Puffed of the Black Male character were all rated significantly lower. The Asian Female

was also rated as having a higher perceptual difference than the Black Male for the

Cheeks Puffed AU (p < 0.02 for all). There was also a difference in the Eyebrows Up

AU, with the Black characters being rated more different than the Asian Male charac-

ter (p < 0.05). The per-character perceptual differences for these blendshapes can be
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Figure 5.10: Perceived differences of blendshapes between characters.

seen in Figure 5.10.

5.1.4 Error Results

As we discussed at the beginning of this section, we do not only wish to examine

the perceptual importance of different action units, we also want to investigate the

relationship between numerical metrics and perception. Here, we introduce the error

metrics we investigate and begin to discuss their relationship with perception. While

we define these as error metrics as they are more commonly used to measure error

in the fields of geometry and image processing, we use them more as a measure of

displacement, and refer to them as displacement metrics after this section.

Error Metrics

We calculate each metric for each activation level of each blendshape for each character.

Each metric is calculated between an AU and the neutral mesh. Our geometric metrics

are calculated using the vertex positions of each stimulus. To calculate our image metric

results, we took screenshots of each stimulus during the experiment and cropped out a
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large amount of the empty space surrounding each head. An example of the crop can

be seen in Figure 5.5. We compare each activation level of each blendshape of each

character to the neutral of the same character. MSE and SSIM were calculated using

scikit-image [vdWSN+14].

Geometric: Root-Mean-Square We calculate the RMS error between two meshes

by getting the sum across all vertices n ∈ N of the square root of the average of the

square of each (x, y, z) component of each vertex, as described in Equation 5.1.

δRMS =
N∑

n=1

√
1

3
vn · vn (5.1)

Geometric: Hausdorff We calculate the bi-directional Hausdorff distance between

two meshes of vertex sets N and M using the equation described in Equation 5.2 where

d(n,m) is the distance between two vertices.

dH = max

{
sup
n∈N

inf
m∈M

d(n,m), sup
m∈M

inf
n∈N

d(n,m)

}
(5.2)

Geometric: Triangle Distortion We define the triangle distortion δt of triangle

uvw between two meshes A and B of equal connectivity in Equation 5.3.

δt = max

{
vuA

vuB

,
vuB

vuA

}
+ max

{
vwA

vwB

,
vwB

vwA

}
− 2 (5.3)

Image: Mean-Square-Error We calculate MSE by getting the per-pixel average

error between images A and B, where N is the total number of pixels in the image,

and xA
n is the nth pixel of image A.
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δMSE =
1

N

N∑
n=1

xA
n − xB

n (5.4)

Image: Structural Similarity Index Metric SSIM is calculated as defined by

Wang et al. [WBSS04] and using the default suggested parameters. It is designed to

model the response of the human vision system and therefore should correlate better

to our perceptual results than MSE. As this metric measures similarity rather than

difference, we sometimes invert this metric for the purpose of visualisation for better

comparison with our other metrics. In these cases, we refer to it as 1-SSIM, as SSIM

returns a value between 0 and 1 so to invert we simply subtract from 1.

Results

We found a correlation between all of our error metrics and the perceptual experiment

results using Pearson’s Product-Moment correlation test, shown in Table 5.4. Overall,

the geometry metrics correlated better with the perceptual results. This is interesting

as image metrics are based upon the exact image that the participants saw, as opposed

to the geometry metrics which do not directly translate to a change in what the par-

ticipant sees. Our results in this section are visualised in Figures 5.11 and 5.12, and

for ease of comparison we provide a table of the various orderings of action units in

Table 5.3. We also provide a graph of Perceptual Difference against each of our metrics

at the end of this section, in Figure 5.16.

Mouth Open had the highest error value when measured using RMS, Hausdorff

and MSE, which matches with our perceptual results, however none of these metrics

gave particularly high values to Eyes Closed, which was the second highest rated per-

ceptually different AU. The Triangle Difference metric gave Lips Protrude the highest
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Figure 5.11: Geometry errors averaged across characters.
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Figure 5.12: Image errors averaged across characters. Note: we use 1-SSIM for our
SSIM graphs, as SSIM is a measure of Similarity between 0 and 1, and we are interested
in the percieved difference.
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error rating, which was rated about average perceptually, and SSIM rated Frown the

highest, which is one of the least perceptually different AUs. All metrics rated Eyes

Opened low, giving similar importance to Nostrils Dilated which was imperceptible

from Neutral, even though Eyes Opened is significantly different from Neutral per-

ceptually. Eyebrows Up was rated relatively low by geometric error metrics although

it was considered perceptually as important or more important than all AUs except

for Mouth Open and Eyes Closed. The image metrics gave a higher importance to

Eyebrows Up. While all of our metrics correlate well with our perceptual results, we

see that the action units which are worst predicted by our metrics are mainly eye and

eyebrow action units.

We also provide a heatmap visualisation of RMS error, created by assigning a colour

gradient to the range of displacements on the meshes, from zero displacement to the

maximum displacement across all action units, on all of the action units we tested and

ordered them based on their average perceptual difference as rated by our participants

(see Figure 5.13). This shows more intuitively how small the RMS error is for certain

highly salient action units such as Eyes Closed and Eyes Opened.

5.1.5 Model Fit

Our initial ANOVA analysis focussed purely on the perceptual results. This allowed

us to draw conclusions based on the factors of Race, Sex, Blendshape, and Activation.

While our conclusions on Activation were interesting, the definition of Activation varies

a lot between action units, as 100% activation is simply the maximum that the scanned

actor could pose. This does not tell us much about the actual shape or displacement of

the action unit. In order to further investigate this data, we need to look at these results
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Order RMS Hausdorff Tri. Diff
1 Mouth Open Mouth Open Lips Protrude
2 Lips Protrude Cheeks Puffed Eyes Closed
3 Cheeks Puffed Cheek Inhaled Smile Lips Closed
4 Smile Lips Closed Lips Protrude Cheek Inhaled
5 Cheek Inhaled Eyes Closed Cheeks Puffed
6 Eyes Closed Smile Lips Closed Frown
7 Frown Frown Mouth Open
8 Eyebrows Up Eyebrows Up Eyebrows Up
9 Mouth Frown Mouth Frown Mouth Frown
10 Eyes Opened Nostrils Dilated Eyes Opened
11 Nostrils Dilated Eyes Opened Nostrils Dilated

Order MSE 1-SSIM Perceptual
1 Mouth Open Frown Mouth Open
2 Frown Mouth Open Eyes Closed
3 Eyes Closed Smile Lips Closed Smile Lips Closed
4 Smile Lips Closed Cheek Inhaled Eyebrows Up
5 Eyebrows Up Lips Protrude Lips Protude
6 Lips Protrude Eyes Closed Cheek Inhaled
7 Cheeks Puffed Eyebrows Up Eyes Opened
8 Cheek Inhaled Cheeks Puffed Cheeks Puffed
9 Eyes Opened Mouth Frown Mouth Frown
10 Mouth Frown Eyes Opened Frown
11 Nostrils Dilated Nostrils Dilated Nostrils Dilated

Table 5.3: Our blendshapes ordered from most to least important by each of the
different error methods and the perceptual results, averaged across all characters and
activation levels.

Metric Type Correlation p-value
RMS geometry 0.76 0.00*

Hausdorff geometry 0.76 0.00*
Triangle Distortion geometry 0.68 0.00*

MSE image 0.5 0.00*
SSIM image -0.56 0.00*

Table 5.4: Pearson correlations between the error metrics we calculated and the per-
ceptual results. Includes Neutrals, average Similarity result across participants.
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RMS Hausdorff Tri. Diff. MSE SSIM
Cheek Inhaled 0.97 0.97 0.97 0.55 -0.59
Cheeks Puffed 0.88 0.87 0.91 0.61 -0.64
Eyebrows up 0.96 0.94 0.96 0.45 -0.75
Eyes Closed 0.89 0.93 0.87 0.48 -0.8

Frown 0.84 0.62 0.85 0.77 -0.65
Mouth Open 0.93 0.91 0.92 0.77 -0.81
Lips Protrude 0.95 0.95 0.95 0.63 -0.65
Mouth Frown 0.92 0.81 0.93 0.38 -0.63

Nostrils Dilated 0.79 0.75 0.82 0.32* -0.63
Eyes Opened 0.95 0.96 0.96 0.13* -0.94

Smile Lips Closed 0.96 0.95 0.95 0.49 -0.61
Female 0.76 0.77 0.69 0.5 -0.55
Male 0.76 0.76 0.67 0.5 -0.59
Asian 0.78 0.79 0.71 0.63 -0.58
Black 0.7 0.7 0.64 0.56 -0.55
White 0.79 0.8 0.69 0.5 -0.62

Table 5.5: Pearson correlations between our error metrics and the perceptual results
broken down by Blendshape, Sex, and Race; p = 0.00 for all RMS and Triangle Differ-
ence (Tri. Diff.), p < 0.0003 for Hausdorff, p < 0.02 for MSE, p < 0.001 for SSIM. *
denotes insignificant results. Similarity results averaged across participants.

(a) Mouth
Open

(b) Eyes
Closed

(c) Smile
Lips Closed

(d) Eyebrow
Up

(e) Lips
Protrude

(f) Cheek
Inhaled

(g) Eyes
Opened

(h) Cheeks
Puffed

(i) Mouth
Frown

(j) Frown
.

(k) Nostrils
Dilated

1

Highest Perceptual Difference ——————————— Lowest Perceptual Difference

Figure 5.13: A heatmap visualisation of RMS error on the set of blendshapes used in
our main experiment, shown on the template character at full activation (1.0). The
blendshapes are shown in order of Perceptual Difference, from highest to lowest. No
displacement is dark blue, while the largest displacement is shown in dark red in (as
seen in (a) Mouth Open). The colours in order of displacement are: dark blue, blue,
cyan, yellow, red, dark red.
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with reference to the various error metrics we calculated. By fitting a Generalised

Linear Model to our data using the perceptual difference results and error metrics, we

can infer information about the perceptual importance of blendshapes relative to their

errors. This model will also be useful in predicting potential visual saliency of these

blendshapes on other characters, or potentially new blendshapes that we did not test

in this study.

Response time and perceived difference are both collected from participants. We

show first that these two quantities are negatively correlated indicating that the stronger

the perceived difference the quicker the response time. Then we propose to fit a model

to predict the perceived difference from metrics with interactions from Blendshape

types and the virtual character Race and Sex.

Response Time and Perceptual Difference

We first analyse response times with relation to perceived difference using ANOVA. We

observed a significant negative correlation between the Response Time and the per-

ceived difference recorded from participants (Table 5.7). Neither the character Race

and Sex nor the Blendshapes had any impact on these results (Table 5.6). The stronger

the perceived difference of the presented blendshape to the neutral blendshape, the

quicker the participant is to provide their response. This indicates that it takes more

time for participant to notice and score their perceived difference for subtle deforma-

tions of the virtual character. This was as expected, and provides a sanity-check on

the fact that participants were in-fact rating as quickly as they could.
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Df Sum Sq Mean Sq F value Pr(> F )

Difference 1 2.792970e+03 2792.9703977 102.4093736 0.0000000

BS 11 4.079669e+02 37.0879041 1.3598959 0.1846796

Sex 1 2.475704e-01 0.2475704 0.0090776 0.9240979

Race 2 5.707053e+00 2.8535267 0.1046298 0.9006593

Difference:BS 11 3.921903e+02 35.6536644 1.3073069 0.2129383

Difference:Sex 1 3.017544e+01 30.1754445 1.1064379 0.2928936

BS:Sex 11 3.801665e+02 34.5605904 1.2672273 0.2366319

Difference:Race 2 1.054015e+02 52.7007635 1.9323700 0.1448812

BS:Race 22 4.999137e+02 22.7233487 0.8331932 0.6861076

Sex:Race 2 1.007804e+02 50.3902075 1.8476492 0.1576835

Difference:BS:Sex 11 2.091324e+02 19.0120384 0.6971112 0.7426163

Difference:BS:Race 22 5.742463e+02 26.1021065 0.9570815 0.5173894

Difference:Sex:Race 2 5.773405e+01 28.8670232 1.0584623 0.3470441

BS:Sex:Race 22 4.022006e+02 18.2818441 0.6703373 0.8726223

Difference:BS:Sex:Race 22 4.154845e+02 18.8856577 0.6924772 0.8517504

Residuals 7056 1.924355e+05 27.2726050 NA NA

Table 5.6: ANOVA test Response Time of participants with relation to Perceptual
Difference and blendshape. Only Perceived Difference is a significant regressor for
Response Time. (Difference = PerceptualDifference, BS = Blendshapes)

Estimate Std. Error t value Pr(> |t|)
(Intercept) 6.2115387 0.1146936 54.15766 0

Difference -0.2972758 0.0293540 -10.12727 0

Table 5.7: A linear model is fitted to predict Response Time with relation to Percep-
tual Difference and it shows a negative correlation between Perceptual Difference and
Response Time of participants. (Difference = PerceptualDifference, BS = Blendshapes)
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Model Gaussian Poisson
RMS*Blendshapes 24878 24688 (Id)
RMS*Blendshapes+Race:Sex 24853 24673 (Id)
RMS*Blendshapes*Sex*Race 24810 24749 (Id)
Hausdorff*Blendshapes*Sex*Race 24898 24814 (Id)
TriangleDifference*Blendshapes*Sex*Race 24819 24751 (Id)

SSIM*Blendshapes 26287 25591 (Id)
SSIM*Blendshapes*Sex*Race 24841 24758 (log)
MSE*Blendshapes*Sex*Race 24839 24776 (Id)

Activation*Blendshapes*Sex*Race 24820 24759 (Id)

Table 5.8: Model comparison with AIC↓ to explain the perceived difference. Best link
function reported for Poisson between Identity(Id), log and sqrt. Only Id link function
has been tested with Gaussian distribution.

Perceptual Difference and Displacement Metrics

Several generalised models were tested and compared using Aikaike Information Crite-

rion (AIC) [DB08]. Poisson distribution is compared to Gaussian distribution. Poisson

distribution better captures the discrete nature of the perceived difference: all AICs

with Poisson distribution are lower than their corresponding model with Gaussian dis-

tribution (Table 5.8).

In the geometry domain, we selected RMS as it is the most popular metric to

measure mesh deformation. We note that RMS also achieves the lowest AIC in com-

parison to Hausdorff and Triangle Difference (Table 5.8) indicating that it is the best

predictor among the geometry metrics. Similarly in the image domain, SSIM, defined

as a perceptual metric [WBSS04], is chosen to create a model for predicting the per-

ceived difference. All models tested in Table 5.8 are acceptable ones for our dataset as

validated using their deviance (Poisson distribution) with χ2 test [DB08].
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Df Sum Sq Mean Sq F value Pr(> F )

RMS 1 11125.300638 11125.300638 6174.531821 0.0000000

Blendshapes 11 5114.028326 464.911666 258.025555 0.0000000

Sex 1 3.555549 3.555549 1.973326 0.1601392

Race 2 24.913623 12.456811 6.913519 0.0010010

RMS:Blendshapes 10 2103.488064 210.348806 116.743398 0.0000000

RMS:Sex 1 7.984011 7.984011 4.431119 0.0353246

Blendshapes:Sex 11 30.062896 2.732991 1.516807 0.1178373

RMS:Race 2 21.928141 10.964071 6.085049 0.0022886

Blendshapes:Race 22 132.014531 6.000661 3.330361 0.0000002

Sex:Race 2 36.295358 18.147679 10.071946 0.0000429

RMS:Blendshapes:Sex 10 10.545043 1.054504 0.585249 0.8274276

RMS:Blendshapes:Race 20 63.216912 3.160846 1.754266 0.0198763

RMS:Sex:Race 2 6.866608 3.433304 1.905481 0.1488276

Blendshapes:Sex:Race 22 140.943779 6.406535 3.555621 0.0000000

RMS:Blendshapes:Sex:Race 20 58.884299 2.944215 1.634037 0.0368748

Residuals 7062 12724.345000 1.801805 NA NA

Table 5.9: Perceptual difference with relation to RMS and interaction with character
Sex, character Race and Blendshapes. The red rows mark insignificant results.

Perceptual Difference and RMS Table 5.9 shows the ANOVA test when fitting

a linear regression to explain the Perceived Difference (response variable) with ex-

planatory variables RMS, Blendshapes, Sex, and Race. As can be seen, most of the

perceived difference is explained using RMS and Blendshapes with their interactions

(variable highlighted in green, Table 5.9), indicating that Sex and Race have little

impact on the perceptual results.

Perceptual Difference and SSIM Table 5.10 shows the ANOVA analysis when

using the image metric SSIM, Blendshapes, Sex, and Race. The SSIM is systematically

better than the other image metric MSE in explaining the perceived difference hence

SSIM is the chosen image metric as a predictor to the perceived difference. SSIM

as an image metric (captured in a 2D projective space), is not as powerful as the

geometry metric RMS (measuring the deformation in 3D) for explaining the perceived
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Df Sum Sq Mean Sq F value Pr(> F )

SSIM 1 6135.88301 6135.883010 3393.489386 0.0000000

Blendshapes 11 8500.78006 772.798188 427.400986 0.0000000

Sex 1 204.14274 204.142736 112.902447 0.0000000

Race 2 615.24550 307.622752 170.132733 0.0000000

SSIM:Blendshapes 11 924.91321 84.083019 46.502652 0.0000000

SSIM:Sex 1 23.56551 23.565513 13.033058 0.0003082

Blendshapes:Sex 11 405.86809 36.897099 20.406177 0.0000000

SSIM:Race 2 113.56291 56.781454 31.403347 0.0000000

Blendshapes:Race 22 484.94349 22.042886 12.190959 0.0000000

Sex:Race 2 645.40840 322.704198 178.473623 0.0000000

SSIM:Blendshapes:Sex 11 97.79763 8.890693 4.917055 0.0000001

SSIM:Blendshapes:Race 22 148.00950 6.727704 3.720800 0.0000000

SSIM:Sex:Race 2 148.00017 74.000085 40.926221 0.0000000

Blendshapes:Sex:Race 22 297.96831 13.544014 7.490604 0.0000000

SSIM:Blendshapes:Sex:Race 22 100.09184 4.549629 2.516202 0.0001106

Residuals 7056 12758.19241 1.808134 NA NA

Table 5.10: Perceptual difference with relation to SSIM and interaction with character
Sex, character Race and Blendshapes.

difference (as shown by the Sum of Squares (Sum Sq.) column in first rows in Tables 5.9

and 5.10). While our participants only visualised a projected image directly associated

with image metrics, their recorded perceived difference is better explained by geometric

metrics computed from 3D meshes. A potential explanation may be that because faces

are very familiar objects, a 3D representation is automatically imagined or inferred by

participants when viewing 2D facial images. Having a model fitted using image metrics

can be useful however a prediction of perceived difference has to be computed from

only image information (i.e. when geometry metrics are not available).

Models for prediction Mathematically these models can be written as :

ŷj,k = g−1(αj,k + βj,k x) (5.5)
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for x ∗Blendshapes ∗ Sex ∗Race or x ∗Blendshapes+ Sex : Race listed in Table 5.8.

The simpler models using only metric x and blendshapes (for x ∗ Blendshapes listed

in Table 5.8) can be written as:

ŷj = g−1(αj + βj x) (5.6)

where j = 1, · · · , 12 indicates the Blendshape, k = 1, · · · , 6 indicates the virtual char-

acter used (Sex,Race) and g is the link function used. ŷ is the predicted perceived

difference and x is the chosen metric. These models are shown in Figure 5.14 where

graphs (a) and (c) fits a model of the form Equation 5.5 while graphs (b) and (d) use

the simpler model Equation 5.6. We note that when using RMS all characters are

scored in a similar fashion for each blendshapes (a) and are well summarised by the

average fit computed across the 6 virtual characters. In practice this means that the

simpler model shown in (b) can be used to predict perceived difference for other virtual

characters. On the other hand, SSIM is not as effective for capturing a usable model

that generalises for other virtual characters.

Table 5.11 reports the fitted parameters for RMS shown in Figure 5.14 (a). For

the Neutral Blendshape, the equation for computing a prediction with relation to

RMS x is ŷ = 1.4216667 + 0.0159118 x (note that x = 0 for RMS for all Neutral

shapes therefore the predicted values is ŷ = 1.4216667 in practice); for the Cheek

Inhaled Blendshape, the equation for computing a prediction with relation to RMS x

is ŷ = 1.4216667− 0.8001795 + (0.0159118 + 0.0003925) x ' 1.4216667− 0.8001795 +

(0.0159118) x considering the uncertainty associated with the parameters; The equation

for Cheeks Puffed is ŷ = (1.4216667− 0.5800126) + (0.0159118− 0.0064210) x; etc.

Using the information from Table 5.11, it is possible to use our models to predict
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Figure 5.14: Model fits for Perceived difference using geometry metric RMS ((a) and
(b)) and image metric SSIM ((c) and (d)) as per models listed Table 5.8. The 6 virtual
characters behave in a similar fashion when using RMS (a) and are well captured
with the simpler model (b) corresponding to the average model fit across the 6 virtual
characters for each blendshape.
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Estimate Std. Error z value Pr(> |z|)
(Intercept) 1.4216667 0.0486769 29.2061637 0.0000000
RMS 0.0159118 0.0008862 17.9554892 0.0000000
Cheek Inhaled -0.8001795 0.1436953 -5.5685842 0.0000000
Cheeks Puffed -0.5800126 0.1402300 -4.1361520 0.0000353
Eyebrows up -0.5072498 0.1540199 -3.2934038 0.0009898
Eyes Closed 1.8899715 0.2071724 9.1226971 0.0000000
Eyes Opened -0.7117859 0.1439472 -4.9447705 0.0000008
Frown -0.5975084 0.1303547 -4.5837118 0.0000046
Lips Protude -0.5734539 0.1526630 -3.7563376 0.0001724
Mouth Frown -0.6914172 0.1345563 -5.1384967 0.0000003
Mouth Open 2.9246443 0.2261913 12.9299567 0.0000000
Nostrils Dilated -0.1725020 0.1292436 -1.3347043 0.1819731
Smile Lips Closed -0.2794534 0.1667462 -1.6759209 0.0937537
RMS:Cheek Inhaled 0.0003925 0.0012747 0.3078796 0.7581739
RMS:Cheeks Puffed -0.0064210 0.0011175 -5.7456773 0.0000000
RMS:Eyebrows up 0.0272924 0.0026938 10.1313825 0.0000000
RMS:Eyes Closed -0.0037234 0.0015423 -2.4142767 0.0157665
RMS:Eyes Opened 0.0904807 0.0064230 14.0870002 0.0000000
RMS:Frown -0.0051578 0.0013076 -3.9444512 0.0000800
RMS:Lips Protude -0.0026542 0.0011687 -2.2711484 0.0231380
RMS:Mouth Frown 0.0166446 0.0025212 6.6018302 0.0000000
RMS:Mouth Open -0.0111309 0.0010812 -10.2948576 0.0000000
RMS:Nostrils Dilated 0.0093119 0.0055673 1.6725981 0.0944064

Table 5.11: Coefficients for model in Figure 5.14 (b) using the Neutral expression as
reference. Red values indicate models with a bad fit. Pr(> |z|) indicates the p-value.
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the perceptual difference of an action unit as displayed on a virtual character, given

the RMS error from the Neutral. We can use information about what area of the face

the action unit affects to estimate which model would be best to use, in order for the

most accurate results.

5.1.6 Discussion

In this section, we explored the difference between face perception and various error

metrics. We found that there was a correlation between all of the error metrics we

tested and the perceptual results, with RMS and Hausdorff correlating the best. This

suggests that perceived difference of facial expressions can be estimated from error met-

rics. However, the correlation is not perfect when analysing all blendshapes together,

and increases in almost all cases if we look at per-blendshape correlations, shown in

Table 5.5. This shows that the increase of perceived difference for each blendshape

increases at different rates depending on action unit. A visualisation of this can be

seen in Figure 5.15.

A quick further investigation into the direction of movement for each action unit

showed that the perceptual difference correlated better with x- and y-axis movements,

and not z-axis movements (see Table 5.14). This is likely due to the viewpoint of the

characters in our experiment, as they were viewed front-on.

There was no large difference in correlations when viewed at a per-Race or per-Sex

level, implying that our results were generally consistent across characters.

Both the Eyes Closed and Eyes Opened AUs were consistently given lower error

ratings than perceptual ratings, showing that we are relatively more sensitive to eye

AUs than their error metrics indicate, in contrast to other areas of the face.
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Figure 5.15: Graph showing the increase in perceived difference as RMS error increases
for each blendshape. The five points in each line indicate the five activation levels of
each blendshape.

Frown was one of the least perceptually different AUs, however it had similar ge-

ometric error values compared to other blendshapes (see Figure 5.11), and had either

the highest or second-highest error using image-based metrics (see Figure 5.12). Inter-

estingly, the opposing eyebrow AU Eyebrows Up was rated higher than Frown percep-

tually, but equal or below in every error metric. The mismatch in error and perceptual

difference results for the eye and eyebrow area indicate that the importance of these

are not well estimated by our metrics and should be weighted manually.

The average perceptual difference of each AU, shown in Table 5.12, gives us a basis

for a perceptually-based blendshape ordering. This is beneficial for tasks that require

an order of blendshapes, such as importance ordering of blendshapes, such as example

creation for blendshape transfer (Section 3.2), or level of detail blendshape reduction

methods (Section 4.1).
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As well, our observations on which shapes are most perceptually different and how

this correlates to various error metrics could be used to estimate the importance of other

blendshapes which are not investigated in this section. For this purpose, we provide

a table of orderings based on our metrics in Table 5.3. While our Expression Packing

algorithm in Section 3.2 is automatic and does not include information about which

ares of the face each blendshape affects, this information could be included through

an automatic detection method, which would allow us to account for face perception

in blendshape importance ordering for traning expression creation as well. For our

work in Chapter 4, these tables could be used to improve the automatic importance

ordering done by the various metrics, by showing which AUs and which areas of the

face specifically require manual reordering (either raising or lowering their relative

importance) in order to best match perceptual results.

Our linear regression with RMS (shown in Figure 5.14, left) show quite sharp in-

creases in perceptual difference as RMS error increases for Eyes Opened, Eyebrows Up,

and Mouth Frown; while Smile Lips Closed, Cheek Inhaled, Cheeks Puffed, Frown, Lips

Protrude, and Eyes Closed all had smaller increases in Perceptual Difference as RMS

increased. Mouth Open had the smallest slope, although it also had the largest RMS

at every level of activation, so this may be explained by a plateau effect. The Nostrils

Dilated AU had a large slope, but the increase in both RMS and perceptual difference

was quite small, so this area may need to be investigated more with larger expressions.

It is not clear whether we can extrapolate information about blendshapes that lie

outside of the tested RMS ranges from this model. Our stimuli showed the maximum

level of activation of certain blendshapes as posed by an actor, therefore predicting

the perceptual difference of a blendshape with a higher RMS than the maximum we

tested is not sensible, as that implies the shape is outside the natural range of motion
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Blendshape Difference
Mouth Open 5.97
Eyes Closed 5.2

Smile Lips Closed 4.18
Eyebrows Up 3.56
Lips Protude 3.55

Cheek Inhaled 3.24
Eyes Opened 3.15
Cheeks Puffed 2.77
Mouth Frown 2.56

Frown 2.22
Nostrils Dilated 1.78

Table 5.12: The blendshapes ordered by average perceptual difference.

for a human face. However, larger RMS errors could be caused by larger features of a

different actor’s face. Another experiment would be necessary to evaluate the impact

of this.
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Figure 5.16: Graphs showing the increase in perceived difference as each of our error
metrics increases for each blendshape. The five points in each line indicate the five
activation levels of each blendshape.
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AU Name x y z
Eyes Closed 158.43 352.20 112.32
Eyes Opened 13.47 59.38 16.09
Eyebrows Up 52.71 349.16 82.84

Frown 89.92 74.3 105.05
Nostrils Dilated 45.86 19.77 18.69
Cheeks Puffed 139.12 115.17 526.33
Cheek Inhaled 292.24 224.94 126.76
Mouth Open 157.04 792.38 487.33

Smile Lips Closed 258.38 379.56 232.3
Mouth Frown 57.8 107.45 75.73
Lips Protrude 188.32 311.53 400.1

Table 5.13: Sum of the absolute values of each component of each vertex difference of
each blendshape from the neutral.

Axis Correlation p-value
x 0.64 0.00
y 0.86 0.00
z 0.57 0.00

Table 5.14: Correlations between the X, Y and Z components defined in Table 5.13
and the similarity results.
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Chapter 6

Discussion

In this thesis we investigated ways to optimise the facial animation pipeline at both

the animation and rig creation stages, identifying a common factor of blendshape im-

portance ordering as a necessary component for optimisation. Our main contribution

was a novel algorithm for suggesting input for example-based blendshape transfer al-

gorithms, allowing for more efficient creation of high-quality, personalised blendshape

rigs. We also contributed a GPU blendshape animation technique which, when paired

with computer shaders and a blendshape reduction level of detail method, allows for

large numbers of characters to be animated using blendshapes in a single scene. We

conducted a perceptual analysis of the various numeric metrics suggested as ordering

methods, as well as providing a perceptual ordering based on our observations. In this

chapter, we provide a summary of our conclusions and a discussion of the implication

of the results of this thesis as a whole.
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6.1 Research Contributions

We presented, to the best of our knowledge, the first training example suggestion

algorithm for example-based blendshape transfer methods, which we call Expression

Packing (Chapter 3). Our algorithm takes a novel approach by defining the character

mesh as a set of vertices, and each blendshape as a subset of those vertices, based on

the area of the face which it affects. Expressions may then intuitively be created by

solving the Set Packing problem using linear programming methods. We reduce the

complexity by only allowing fully activated blendshapes to be included, making it an

integer linear programming problem.

This algorithm takes into account the source and target character geometry, as well

as the geometry of the blendshape set to be transferred, and created expressions which

are densely packed with the necessary information to improve the blendshape transfer.

The expressions are produced in order of importance, i.e. the first expression produced

will provide the most important information.

As part of the evaluation of this algorithm we focussed on using high-quality virtual

characters to replicate real world test cases for blendshape transfer. We considered this

integral, as our previous research (Section 3.1) showed that lower quality meshes had

issues with artifacts when used with blendshape transfer.

One novelty of this algorithm is the idea of blendshape importance which is inte-

gral to the creation of example expressions. Blendshapes are ordered by their overall

displacement, as well as by the triangle distortion between the source and target char-

acter models in the area affected by the blendshape, as these are factors that can cause

errors in blendshape transfer when example expressions are not present.

Notably, we include a symmetry constraint in our algorithm to ensure the created
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expressions are feasible to pose by a human, as training expressions are likely to be

created by scanning an actor.

We also provide a method for GPU blendshape animation to allow for high-quality

blendshape rigs with large numbers of vertices and blendshapes to be animated on

the GPU in real time (Chapter 4). We achieve this by passing all of the blendshape

and animation information to the GPU as a texture using Texture Buffer Objects. We

expand upon this and present a compute shader method, which decouples the animation

and rendering calculations, allowing for more control over these individual areas. We

compare the typical CPU blendshape animation technique with our new GPU method

as well as our GPU method with compute shaders and found substantial computation

time reductions using our GPU method. While the compute shader method was slower

than the non-compute shader method in most cases, we found it to be faster in the

case of instanced crowd animation.

For further optimisation, we discuss a blendshape reduction level of detail technique

for GPU blendshape animation. Reducing the amount of information to be sent to

and calculated by the GPU naturally increases performance, the reduction in quality

caused by removing blendshapes from a rig can be severe. In order to mitigate this

loss of quality, we propose a number of methods to order blendshapes by importance.

By removing blendshapes deemed least important, we can reduce the loss in quality

considerably.

In our perceptual experiment in Chapter 5, we conduct an experiment to inves-

tigate the perceptual importance of blendshape at various levels of activation. We

first analyse the data using an ANOVA to identify where significant differences appear

in the data. From this we concluded that the eyes closed and mouth open expres-

sions were significantly more important perceptually than the other expressions we
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tested. The smile and eyebrow frown expressions were also important. Notably, the

eye expressions were consistently rated lower by our metrics relative to their perceptual

importance. We also concluded that our results were roughly generalisable across the

set of characters that we used.

We used a Generalised Linear Model (GLM) to fit our data given each stimulus’s

perceptual difference and its RMS error. Using this model, we can estimate the per-

ceptual difference a new blendshape will have given its RMS error, and we can predict

this more accurately if we have information about what type of blendshape it is.

6.2 Methodology Contributions

We found that, while using error metrics on blendshapes compared to the neutral face

is a viable way to define their perceptual importance, it cannot be done naively, as

the values for eye and eyebrow blendshapes are often weighted incorrectly. While the

metrics discussed in this thesis are commonly used in geometry and image processing

for measuring error (e.g. [CLL+13]), they are not immediately applicable to perceptual

ordering tasks.

In order to get generalisable results, we used a diverse set of characters as stimuli in

our perceptual experiment in Chapter 5, including Asian, Black, and White characters

with various skin tones. It is worth noting that a large amount of psychology research

on perception of faces does not include diverse stimuli sets. We found, however, that

some of our choices for displaying the characters could have impacted our results. In

this instance, our contribution is a face perception study of virtual characters with a

focus on stimuli diversity.
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6.3 Material Contributions

We provide the code used for our Expression Packing algorithm from Chapter 3, allow-

ing anyone to run our algorithm given source rig with blendshapes and target character

mesh which are in correspondence.

For stimuli creation in Chapter 5, we required high-quality stimuli with shared

topology and blendshapes. We provide details on how we created these stimuli such

that our stimuli creation pipeline may be reproduced to allow for high quality stimuli

to be used in other experiments.

We share the data collected from the perceptual experiment in Chapter 5 along

with the code used to analyse it. This can be used as a teaching aid for statistics

classes, and the data can be used either to create or test models.

We provide the details of our Generalised Linear Model, created using our per-

ceptual experiment data and geometric error, which is beneficial as a predictor for

perceptual importance of blendshapes.

6.4 Guidelines for Character Design

Throughout this thesis we have discussed the idea of blendshape importance as an

essential metric for optimisation of the facial animation pipeline. In Chapter 4 we

found that error metrics gave low importance to they eyes, which is contradictory to

perceptual research showing that the eyes are a very perceptually salient area of the

face. We identified through perceptual experimentation that small movements such as

those around the eyes and eyebrows are often given relatively low values when impor-

tance is calculated automatically using geometry-based or image-based metrics, while
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their perceptual importance is relatively much higher. With this in mind, we propose

that these blendshapes should be given a higher importance than those assigned using

automatic methods, and should not be removed without careful consideration when

reducing blendshape sets.

We propose the use of a perceptually-based metric which can account for the speci-

ficity of face-perception, rather than purely numeric methods. However, this type of

method would require information about which blendshapes affect which area of the

face, which is information we did not have in Chapters 3 and 4. An automatic method

for identifying the area of the face that each blendshape impacts would be beneficial

to this process. With this information, we could appropriately determine the percep-

tual importance of blendshapes, accounting for both their displacement in terms of

vertex movement across the mesh, and for their perceptual impact based on the type

of expression being shown.
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Chapter 7

Future Work

There were a number of avenues of research we did not explore throughout this thesis

due to limitations in time and resources during each project. In this chapter, we briefly

discuss a few options for future work.

Our method in Section 4.1 considers the perceived prominence of individual blend-

shapes in the rig for blendshape reduction, but it is possible that further reductions

would be possible depending on the animation type (e.g. conversation, emotion, etc.),

as different blendshapes are important depending on the type of animation displayed.

Our initial goal for our work in Section 3.1 was to identify what facial expressions

are important to use as training when using Example-Based Facial Rigging to create

facial rigs. While our work here has indicated certain parts of the face might require

more attention when automatically creating blendshapes, there is room for more inves-

tigation into this topic. We suggest an algorithm for optimal training example creation

in Section 3.2, however a thorough perceptual investigation using the output of this

algorithm and other training example sets would be necessary to undeniably verify the

usefulness of our algorithm.
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We would like to apply our method from Section 3.2 to a number of characters

with equivalent FACS-based rigs in order to propose a generalised expression set which

would be applicable to all FACS-based rigs. However, a general set of reference expres-

sions comes at the cost of not being optimal for each individual, because the triangle

distortion metric between neutral expressions must be ignored.

In each of our implementation chapters (Chapters 3 and 4), we use numeric met-

rics to define blendshape importance and discuss how these would need to be further

investigated through perceptual experiments. We begin this perceptual verification in

Chapter 5, however there are many other aspects of human perception and blendshape

animation to delve in to in order to fully round out the research carried out in this

thesis.

It is well documented that face perception is a special type of perception that hu-

mans are particularly attuned to [BY13, FWDT98, KMC97]. Future work into separat-

ing our results from Section 5.1 from non-face specific perception would be worthwhile,

for example through experiments with upside-down faces [FWDT98, HUC+99].

As our work study into investigating the perceived importance of facial blend-

shapes, we limited our study to static expressions of single blendshapes. Naturally,

perception of animated faces with combined expressions would be more complicated,

particularly since specific AUs are important for the perception of emotions (e.g., AU

7 Lid Tightener for anger [WVK+17]). It might be the case that even if these AUs

are not perceptually important according to our approach, removing them from the

rig might alter the interpretation of emotion of the virtual human, which is something

that we will study in future work.

We present a model for predicting perceptual impact of blendshapes, however we

could not confidently say that these models could predict the perceptual impact of
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blendshapes outside of the displacement ranges which we tested. We would like to

investigate this further by examining how well the model predicts perceptual impact

on other characters.

We noted that diversity is missing from much of the psychology and computer

vision research on recognition and perception of faces. Therefore, we including Asian,

Black, and White characters with various skin tones. We found an effect of race (see

Section 5.1.3), which showed that certain expressions were less perceptible on our Black

characters. This result may have been due to our predominantly European and Asian

participant pool, indicating that differences in perception of Black characters could

be caused by the other-race effect [LJC91, WT03]. However, we did find that mouth

and eye expressions were perceived similarly across race, indicating that the effect was

not strong. A more diverse participant pool would be interesting to test for future

experiments. The effect of race may also be caused by the chosen background and

lighting of the characters, which could be biased towards a clearer representation of

lighter skinned characters.

We also discuss leveraging blendshape rig reduction for level of detail as a possible

application of our work, which means a further experiment varying the viewing distance

of the character on the screen would be imperative. However, while animation and

distance are important variables to analyse, our current study should already inform

the choices for which AUs to include or remove when memory and computation power

are limited. It is likely that our results would be conservative estimates for blendshape

reduction at further viewing distances.

Another metric which could be investigated is that of eye gaze, by using eye-tracking

to determine the blendshapes that elicit greater visual attention and contrast this with

their computed saliency based on our method.
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The level at which an expression becomes perceptually different from the neutral

varied across the blendshapes we chose for this experiment. Further research into the

exact point at which that difference occurs, and the differences in perception at a barely

perceptible level between expressions would be interesting.

Our experiment in Chapter 5 displayed each blendshape statically with a fixed

viewpoint, showing each stimulus front-on. Further investigation into the direction

of movement for each blendshape indicates that movement in the x and y-axes, i.e.

movement up, down, left, or right on the screen, correlated better with our perceptual

results than movement in the z-axis, which would be movement toward or away from

the participants. Further work should be done to investigate the impact of facial

expressions in 3/4 or profile views.

One use case we posited for blendshape importance is the reduction of blendshapes

in a rig while maintaining the expressivity and accuracy of the animations that that

rig could produce. Our work focussed on the perceptual saliency of individual facial

movements with no context of what animation those movements would be used for.

If we take into account the animation that a character will be portraying before re-

moving certain blendshapes from a rig, then the importance of each blendshape would

likely change drastically. For example, blendshapes used to create appropriate mouth

shapes for speech would likely be the first to be removed if the animation contained no

speech. Similarly, blendshapes which are used only for extreme emotional expressions

would likely be removed if the animation contained only neutral speech. While we

intentionally tried to generalise our results as much as possible in Chapter 5, it would

be important to investigate the impact of these results in real-world animation cases.

This reduction could take place before the animation is recorded, in which case we

would attempt to predict the blendshapes which would be used given the nature of the
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animation, or after the animation has been recorded and displayed on the character,

in which case we would remove the blendshapes least used in order to minimise the

impact on the performance.

Our work may be helpful for optimising marker placement for animation, as those

markers which are driving more salient areas of the face could be prioritised. This

would require investigation into animated stimuli first however.

Human face perception is a highly interesting topic, covering many different areas

that we could use as inspiration for further perceptual experimentation. Limiting the

scope to the topic of this thesis, optimisation of the facial animation pipeline, still

offers a wide variety of research questions to follow. With the constant improvements

in virtual human technology, there will always be a need for perceptual verification of

new methods, as well as potential perceptually guided improvements to these methods,

which we hope this thesis has made clear.
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Seidel. Laplacian surface editing. In Proceedings of the 2004 Eurograph-

ics/ACM SIGGRAPH Symposium on Geometry Processing, SGP ’04,

page 175–184, New York, NY, USA, 2004. Association for Computing

Machinery.

[SCR+18] José Serra, Ozan Cetinaslan, Shridhar Ravikumar, Veronica Orvalho,

and Darren Cosker. Easy generation of facial animation using motion

178



graphs. In Computer Graphics Forum, volume 37, pages 97–111. Wiley

Online Library, 2018.

[SCSN11] Jaewon Song, Byungkuk Choi, Yeongho Seol, and Junyong Noh. Char-

acteristic facial retargeting. Computer Animation and Virtual Worlds,

22(2-3):187–194, 2011.

[Sey16] Mike Seymour. Put your (digital) game face on. https://www.fxguide.

com/featured/put-your-digital-game-face-on/, 2016.

[Sey18] Mike Seymour. Making thanos face the avengers, 2018.

[Sey19] Mike Seymour. Weta digital’s remarkable face pipeline : Alita

battle angel. https://www.fxguide.com/featured/weta-digitals-

remarkable-face-pipeline-alita-battle-angel/, 2019.

[SF07] Philip Shilane and Thomas Funkhouser. Distinctive regions of 3d sur-

faces. ACM Transactions on Graphics (TOG), 26(2):7–es, 2007.

[SGM16] Ramprakash Srinivasan, Julie D Golomb, and Aleix M Martinez. A neu-

ral basis of facial action recognition in humans. Journal of Neuroscience,

36(16):4434–4442, 2016.

[SILN11] Jaewoo Seo, Geoffrey Irving, J. P. Lewis, and Junyong Noh. Compression

and Direct Manipulation of Complex Blendshape Models. In Proceedings

of the 2011 SIGGRAPH Asia Conference, SA ’11, pages 164:1–164:10,

New York, NY, USA, 2011. ACM.

[SJS03a] Javid Sadr, Izzat Jarudi, and Pawan Sinha. The role of eyebrows in face

recognition. Perception, 32(3):285–293, 2003.

179



[SJS03b] Javid Sadr, Izzat Jarudi, and Pawan Sinhaô. The role of eyebrows in

face recognition. Perception, 32(3):285–293, 2003.

[SLC+19] Zhiwen Shao, Zhilei Liu, Jianfei Cai, Yunsheng Wu, and Lizhuang Ma.

Facial action unit detection using attention and relation learning. IEEE

Transactions on Affective Computing, 2019.

[SLS+12] Yeongho Seol, JP Lewis, Jaewoo Seo, Byungkuk Choi, Ken Anjyo, and

Junyong Noh. Spacetime expression cloning for blendshapes. ACM

Transactions on Graphics (TOG), 31(2):14:1–14:12, April 2012.
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[ZTG+18] Michael Zollhöfer, Justus Thies, Pablo Garrido, Derek Bradley, Thabo
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