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Summary

This thesis covers a number of different research projects which are all connected to
the central topic of computing Feynman integrals efficiently through analytic methods.
Improvements in our ability to evaluate Feynman integrals allow us to increase the
order in perturbation theory at which we are able to produce theoretical predictions
for various processes in the Standard Model, which can be tested at the Large Hadron
Collider.

In Chapters 2 and 3, we review scalar Feynman integrals, and classes of iterated
integrals to which they evaluate. Many Feynman integrals are expressible in terms
of multiple polylogarithms (MPLs) [6, 7], which are functions whose properties are
well studied, and for which efficient numerical algorithms exist [8]. However, MPLs do
not span the space of all functions to which Feynman integrals evaluate. For example,
so-called elliptic Feynman integrals [9–40] evaluate to elliptic generalizations of MPLs
such as elliptic multiple polylogarithms (eMPLs) [20, 41–43]. In Chapter 4, we discuss
novel research on the analytic computation of elliptic Feynman integrals, based on
Ref. [1]. We will show how certain elliptic Feynman integrals can be written as
one-fold integrals over polylogarithmic integrands, which can be solved from systems
of differential equations in a canonical d log form [44], or by direct integration of the
Feynman parametrization. The differential equations depend on the final integration
parameter and can be directly solved in terms of eMPLs, or in terms of MPLs. We
show for two examples how the final integration can be performed in terms of elliptic
multiple polylogarithms (eMPLs).

Although fully analytic solutions in terms of MPLs are known to be very efficient
for numerical purposes, obtaining and numerically evaluating solutions in terms of
eMPLs generally requires more work. Furthermore, for many Feynman integrals it is
not known how to obtain fully analytic solutions at all, as their space of functions
may lie beyond the MPLs and eMPLs. For example, the so-called ‘banana’ graphs are
associated with Calabi-Yau (l − 1)-folds, where l denotes the number of loops (see e.g.
[45, 46].) In Chapter 5, we discuss how Feynman integrals, including those for which
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the space of functions is not well-studied, can be efficiently computed by solving their
differential equations in terms of one-dimensional series expansions along contours in
phase-space [2–4, 40, 47]. By connecting series expansions obtained along multiple line
segments, it is possible in this way to obtain high precision numerical results for many
Feynman integrals at arbitrary points in phase-space.

In Chapter 5, we also present a novel Mathematica package called DiffExp, which
was announced in Ref. [4], and which implements these series expansion methods for
general usage. As a first example, we apply the package to obtain high precision results
for the unequal-mass banana graph family at various points in the physical region,
something that is currently out of reach of other analytic methods. We also showcase
the application of DiffExp to two-loop five-point integrals taken from Refs. [47, 48], for
which the differential equations and boundary conditions are publicly available, but for
which no publicly available numerical implementation existed so far.

In Chapter 6, we present the computation of the complete set of non-planar master
integrals relevant for Higgs plus jet production at next-to-leading order with full heavy
quark mass dependence, based on Refs. [2, 3]. We perform the computation using the
method of differential equations, by setting up a canonical basis for most of the integral
sectors, and by simplifying the elliptic top sectors in a way such that the differential
equations of at most two integrals are coupled at a time. We obtain three-dimensional
plots of the integrals in the physical region, by evaluating them numerically at a
large number of points using the series expansion methods discussed earlier. As a
proof of concept, we also obtain analytic solutions for some of the canonical basis
integrals in terms of logarithms, dilogarithms, and one-fold integrals over combinations
of these.

Lastly, we present the derivation of the diagrammatic coaction of the equal-mass
sunrise family, based on unpublished work [5]. The existence of a diagrammatic coaction
operator was first conjectured for one loop Feynman integrals in Refs. [49, 50]. The
diagrammatic coaction was further studied, including for two-loop polylogarithmic
examples, in Refs. [51–53]. By deriving the diagrammatic coaction of the equal-mass
sunrise family, we show that the diagrammatic coaction can also be generalized to
families of elliptic Feynman integrals.
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Chapter 1

Introduction

1.1 Introduction and motivation

The main topic of this thesis is the study of Feynman integrals from a mathematical and
computational perspective. Feynman integrals are mathematical objects associated with
Feynman diagrams, which schematically depict particle interactions within a quantum
field theory. Feynman integrals are the building blocks of scattering amplitudes, which
are obtained by summing over Feynman integrals that have a given configuration of
incoming and outgoing particles. By squaring and integrating scattering amplitudes
over kinematic phase-space (in a particular way), we may derive cross-sections and
decay rates, which can be measured at detectors of particle colliders. This way we may
test different theorems of particle physics.

Currently, the most complete model of particle physics is called the Standard Model,
which is a specific instance of a quantum field theory (QFT). It has been intensively
studied and tested at the Large Hadron Collider (LHC) in CERN, and other particle
accelerators before that, such as the Tevatron and the Large Electron–Positron Collider.
The Standard Model describes three out of four fundamental interactions, namely the
strong, weak, and electromagnetic interaction. The part of the Standard Model that
describes the strong interaction is the theory of quantum chromodynamics (QCD).
The strong interaction is mediated by gluons and binds together quarks into composite
particles called hadrons, such as the proton and neutron. The weak interaction is
responsible for certain kinds of radioactive decay, and can be combined with the
electromagnetic interaction into a unified theory called the electroweak theory, whose
symmetry is spontaneously broken by the Higgs mechanism .
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The Higgs mechanism relies on the existence of a Higgs field, which gives rise to a
particle called the Higgs boson. The Higgs boson was the last particle in the Standard
Model that had not been experimentally detected, until its discovery at the LHC
in 2012 [54, 55]. A big part of the research conducted at the LHC during the last
decade has focused on measuring the properties of the Higgs boson, and on looking for
footprints of physics beyond the Standard Model. The Standard Model is known to
be incomplete, as it does not incorporate the theory of gravity, which is described by
the theory of general relativity. Furthermore, there is strong astronomical evidence
for the existence of dark matter, which is not described by any of the particles in the
Standard Model either.

There are two ways that searches for new physics may be performed at the LHC. Firstly,
there are direct searches for particles that are not included in the Standard Model.
Secondly, one can probe for the effects of new physics by measuring cross-sections
for processes in the Standard Model at a higher precision. Because new particles
show up in the virtual states of loop corrections to various Standard Model processes,
the existence of these particles might be inferred from deviations of the experimental
measurements from predictions made by the Standard Model. In the coming years,
the LHC will be upgraded to the High Luminosity LHC (HL-LHC), which is expected
to come into operation in 2027. The HL-LHC will generate many more collisions, and
capture ten times as much data. This will improve the experimental precision at which
various processes can be measured.

The increase in experimental precision also requires an increase in the precision of
the theoretical predictions. The computation of amplitudes and cross-sections in the
Standard Model is done perturbatively in the coupling constants of the theory, which
quantify the strength of the interactions. The order of the perturbative corrections
determines the number of loops of the Feynman diagrams that one has to consider.
Perturbative computations provide a valid approximation if the coupling constants
in the theory are small. The strengths of the coupling constants change with (or
‘run’ with) the energy scale of a given process. Because the LHC collides hadrons
(protons for most of the year), a large part of the relevant physics is described by QCD.
A remarkable property of QCD is that it is an asymptotically free theory [56–58],
which means that the strong coupling constant becomes smaller as the energy scale
goes up.

For the energies considered at the LHC, the strong coupling constant is relatively small,
and perturbative expansions can be used. However, such perturbative corrections can
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only be computed efficiently up to a few orders, largely due to limitations in our ability
to evaluate Feynman integrals at high loop orders. The undetermined higher orders
provide a source of theoretical uncertainty on the predictions. Therefore, advancements
in our ability to evaluate Feynman integrals efficiently will allow us to increase the
precision of the theoretical predictions for measurements at the LHC (or other particle
colliders.) It should be noted that another source of theoretical uncertainty comes
from the consideration of non-perturbative effects. In particular, perturbative QCD
describes interactions between quarks and gluons, but not directly between hadrons.
The modelling of the hadronization is another active subject of research and forms an
additional source of theoretical uncertainty on the predictions. We will not discuss this
further in this thesis.

There are typically many Feynman integrals contributing to a given scattering ampli-
tude, which can be reduced to a smaller set. Firstly, all Feynman integrals which have
tensors in the numerators can be reduced to Feynman integrals which are of a scalar
type [59–61], which was first shown by Passarino and Veltman for one-loop diagrams
[59]. After the tensor reduction is performed, one may end up with large numbers
of scalar Feynman integrals, which can be further reduced into a basis of so-called
master integrals using integration-by-parts (IBP) identities [62–65]. The IBP reduction
is typically a computationally heavy procedure, that requires the use of computer
clusters for sufficiently complicated processes. The procedure of IBP reduction has
been given a lot of attention in recent years, and numerous specialized packages based
on the Laporta algorithm [65] have been developed in recent years [66–68]. After the
IBP reduction is performed, the remaining challenge is the evaluation of the master
integrals. We will review a number of aspects of the computation of (scalar) Feynman
integrals next.

Feynman integrals are typically divergent, and need to be regulated. A powerful
prescription is dimensional regularization [69], in which the dimension of the integrals
is shifted by a complex parameter ϵ called the dimensional regulator. The procedure of
shifting the dimension by a complex number can be made rigorous by first converting the
Feynman integrals to a parametric representation, such as the Feynman parametrization
[70–73]. Feynman integrals are then computed as Laurent expansions in the dimensional
regulator, where the poles in the dimensional regulator capture the original divergences.
One can distinguish two types of divergences. The first type are the ultraviolet
(UV) divergences, which occur at regions where the loop momenta of the integrals
become large. In so-called renormalizable theories such as the Standard Model, the UV
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divergences of scattering amplitudes can be ‘reabsorbed’ into the definitions of the
free parameters and fields of the theory, in a procedure that is called renormalization.
In non-renormalizable theories, such as gravity, it is not possible to absorb the UV
divergences by renormalizing a fixed and finite number of quantities in the theory.
This is the main obstacle to deriving a full quantum theory of gravity. However, one
may treat gravity as an effective field theory, in which case the number of quantities
which need to be renormalized increases order-by-order in perturbation theory. The
second type of divergences are the infrared (IR) divergences, which arise from massless
particles in the loops of the diagrams. These cancel out in the computation of inclusive
cross sections and other IR safe observables.

Many phenomenological results can be obtained by integrating the ϵ coefficients of
Feynman integrals numerically, and programs for this purpose have been considerably
optimized over the last years (see e.g. [74, 75]). However, analytic methods are generally
much faster than numerical methods, whenever these are available. In this thesis we will
consider two powerful methods for the analytic computation of Feynman integrals. The
first is the method of direct integration (see e.g. Refs. [76, 77]), which involves rewriting
Feynman integrals in the Feynman parametrization, and integrating one Feynman
parameter at a time. The second is the method of differential equations [44, 78–81],
which involves deriving systems of differential equations for Feynman integrals, and
solving the differential equations from a suitable set of boundary conditions. The
method of differential equations has become particularly powerful after the introduction
of the concept of a canonical basis in Ref. [44], in which the differential equations take
a simple form.

Feynman integrals are generally observed to evaluate to classes of iterated integrals.
The simplest iterated integrals that show up are the multiple polylogarithms (MPLs)
[6, 7], which have well understood analytic and algebraic properties. Many Feynman
integrals may be expressed in terms of these functions. For example, the massless
one-loop bubble, triangle, box and pentagon integrals may be expressed in terms of
MPLs at all orders in the dimensional regulator. There are also many non-trivial
multiloop Feynman integrals which evaluate to MPLs. In fact, certain amplitudes in
special theories, such as the MHV and NMHV planar amplitudes in N = 4 Super
Yang-Mills (SYM) theory, are conjectured to be expressible in terms of MPLs at all
loop orders (see e.g. Ref [82] for an overview of the topic.)

However, not all Feynman integrals can be expressed in terms of multiple polylogarithms.
In general, Feynman integrals are expected to evaluate to increasingly complicated
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classes of iterated integrals as the number of loops and the number of scales (kinematic
invariants and masses) are increased. Loosely spoken, the first class of iterated integrals
that has to be considered beyond the multiple polylogarithms, are the elliptic multiple
polylogarithms (eMPLs) [20, 41–43]. These functions were introduced in the literature
relatively recently, and are still an active subject of study. Many of their properties
have been studied by now, but in practice they are more difficult to work with than the
MPLs. For example, the analytic continuation of eMPLs and the study of functional
identities between them is more involved than in the polylogarithmic case. Nonetheless,
eMPLs have been successfully applied to the computation of numerous Feynman
integrals (see e.g. Refs. [9–40] for works investigating elliptic Feynman integrals and
eMPLs.)

More generally, the types of kernels that appear in the iterated integrals to which
Feynman integrals evaluate can be predicted by computing maximal cuts. Loosely
spoken, the maximal cuts of a Feynman integral are defined by integrating the Feynman
integral over contours which compute residues of all the propagators appearing in
the integrand. Maximal cuts solve the homogeneous part of the differential equations
which a Feynman integral satisfies [18], and therefore their function space shows up
in the general solutions to the differential equations. There are known examples
of Feynman integrals which have hyperelliptic maximal cuts [83], or which involve
Calabi-Yau geometries. For example, the so-called ‘banana’ graphs are associated with
Calabi-Yau (l − 1)-folds, where l denotes the number of loops (see e.g. [45, 46].) For
these geometries, the iterated integrals have not yet been studied in the literature,
and such Feynman integrals are difficult to compute using current analytic methods.
(Some results are available however in terms of A-hypergeometric functions, see e.g.
[45, 46, 84–86].)

Alternatively, it turns out that many Feynman integrals, including those for which
the space of functions is not well-studied, can be efficiently computed by solving their
differential equations in terms of one-dimensional series expansions along contours in
the phase-space of kinematic invariants and masses [2–4, 40, 47]. Such series expansion
methods combine some of the best aspects of numerical and analytic methods. On the
one hand, it is easy to perform the analytic continuation of Feynman integrals computed
through series expansions. On the other hand, by connecting series expansions along
multiple line segments, it is possible to obtain high precision numerical results for
Feynman integrals at arbitrary points in the phase-space of kinematic invariants
and masses. The performance of series expansion methods outperforms numerical
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integration methods by orders of magnitude [3, 40, 47], and may in some cases even be
competitive with fully analytic solutions in terms of multiple polylogarithms [47].

In this thesis, we will discuss both (fully) analytic methods for the computation of
Feynman integrals in terms of MPLs and eMPLs, and analytic methods based on series
expansions. Some of the novel results appearing in this thesis are:

1. The study of linearly reducible elliptic Feynman integrals through the method of
direct integration and the method of differential equations.

2. The computation of the complete set of non-planar master integrals relevant for
Higgs plus jet production at next-to-leading order, with full heavy quark mass
dependence.

3. The development of a Mathematica package for solving Feynman integrals at
high precision from their differential equations, through one-dimensional series
expansions.

4. The derivation of the diagrammatic coaction of the equal-mass elliptic sunrise
family.

In the following section, we will give a brief overview of these results, and the collabora-
tions in which they have been produced. We will also give an outline for the structure
of the rest of the thesis.

1.2 Contributions and structure of the thesis

My first paper [1], in collaboration with F. Moriello, dealt with the study of what we
called ‘linearly reducible elliptic Feynman integrals’. Such integrals are elliptic in the
sense that their maximal cuts, or the maximal cuts of integrals in their subsectors,
evaluate to elliptic integrals. Furthermore, they admit a linearly reducible integration
order (see Section 3.1) except for a final integration parameter. Such Feynman integrals
do not evaluate to multiple polylogarithms, but take the form of a one-fold integral
over a polylogarithmic integrand which depends algebraically on one or more elliptic
curves. We showed that the polylogarithmic integrand may be computed using the
method of differential equations, or using the direct integration method. We showed
that the analytic continuation of such integrals could be performed by analytically
continuing the polylogarithmic integrand using standard techniques. For two examples
we showed that the differential equations can be put in a canonical form, which may
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be directly solved in terms of E4-functions (eMPLs). Some of the results of this paper
are discussed in Chapter 4.

For my second paper [2], I joined a collaboration consisting of R. Bonciani, V. Del Duca,
H. Frellesvig, J.M. Henn, L. Maestri, F. Moriello, G. Salvatori, and V.A. Smirnov. We
set out to compute one of two remaining non-planar integral families relevant for Higgs
plus jet production at next-to-leading order with full heavy quark mass dependence.
These integrals are difficult to compute, as they require large IBP reductions, satisfy
differential equations which depend on many non-rationalizable square roots, and
contain integral sectors with elliptic maximal cuts. We were able to obtain a canonical
basis for the integral sectors whose maximal cuts were not associated with elliptic
integrals. We showed that the canonical integrals in these sectors can be solved at
weight two in terms of logarithms and dilogarithms, and in terms of one-fold integrals at
orders ϵ3 and ϵ4. Furthermore, we were able to solve all integrals, including the elliptic
top sectors, through series expansion methods. For my third paper [3], I collaborated
with a subset of the same authors, to solve the remaining non-planar family of master
integrals using similar methods. Chapter 6 is based on the results of these papers.

For my fourth paper [4], I worked by myself on a Mathematica package that provides
a public implementation of the series expansion methods that were considered in
Refs. [2, 3, 40]. My implementation contains a few novel improvements compared
to those references, among which an optimized strategy for solving sectors in which
multiple integrals are coupled together. Furthermore, I applied the package to the
computation of the unequal-mass banana graph family, and showed it can be used
to obtain high precision results in the physical region. This is a non-trivial result,
because the unequal-mass banana graph is associated with integrals over Calabi-Yau
varieties, which have not been studied in detail. The package significantly outperforms
the speed of sector decomposition based approaches when applied to this and many
other integral families. Chapter 5 is based on this paper.

Chapter 7 of this thesis contains unpublished work on the diagrammatic coaction of
the (two-loop) equal-mass elliptic sunrise family, performed in collaboration with S.
Abreu, C. Duhr, E. Gardi, R. Britto, and R. Gonzo. The existence of a diagrammatic
coaction operator was conjectured for one loop integrals in Refs. [49, 50], and it was
further studied in Refs. [51–53]. The diagrammatic coaction allows one to resum the
coaction of multiple polylogarithms, which acts on the coefficients in the ϵ expansion
of one-loop Feynman integrals, into a coaction which acts on expressions that are
in closed-form in ϵ, where ϵ is the dimensional regulator. It is an open question to
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what extent the diagrammatic coaction generalizes to higher loops and to functions
beyond polylogarithmic type. Some two-loop results were obtained in Ref. [53] for
polylogarithmic integral families. The equal-mass sunrise family has elliptic maximal
cuts, and presents the first derivation of the diagrammatic coaction of an elliptic
integral family.

Lastly, let us summarize in short the main structure of this thesis. We will start
by reviewing the basic definitions and properties of Feynman integrals and iterated
integrals in Chapter 2. In Chapter 3, we will review two powerful methods for the
computation of Feynman integrals, namely the method of direct integration, and the
method of differential equations. In Chapter 4, we will discuss the analytic computation
of linearly reducible elliptic Feynman integrals based on Ref. [1]. In Chapter 5, we
discuss methods for solving differential equations in terms series expansions, and we will
discuss the DiffExp Mathematica package that automates these methods. This chapter
is based on Ref. [4]. In Chapter 6, we discuss the computation of the non-planar
Higgs plus jet integral families, based on Refs. [2, 3]. Lastly, in Chapter 7, we discuss
progress on the diagrammatic coaction at two-loops in the elliptic case. We provide a
conclusion and outlook in Chapter 8.



Chapter 2

Feynman integrals and iterated
integrals

In this chapter, we cover the basic definitions and properties of Feynman integrals.
Furthermore, we will review a class of iterated integrals called multiple polylogarithms,
in terms of which many Feynman integrals which may be expressed. The analytic
properties of these functions are well-understood, and furthermore there are efficient
algorithms for their numerical evaluation. We will also consider a class of iterated inte-
grals called elliptic multiple polylogarithms, which generalize multiple polylogarithms,
and which are obtained by considering integrals of rational functions on an elliptic
curve. A subset of so-called elliptic Feynman diagrams may be expressed in terms of
these functions, which has been the subject of much recent study in the literature.

2.1 Scalar Feynman integrals

Feynman diagrams are the building blocks of scattering amplitudes in quantum field
theories. Feynman diagrams are graphical depictions of Feynman integrals, which are
multidimensional integrals arising in perturbative calculations in quantum field theories.
Feynman diagrams schematically depict interactions between particles and various
short-lived virtual particles that mediate the interactions. The translation between
Feynman diagrams and Feynman integrals comes from a set of Feynman rules, which
are derived from the Lagrangian of the quantum field theory under consideration. The
simplest Feynman rules are associated with scalar theories such as ϕ3-scalar theory,
in which case the Feynman diagrams and integrals do not contain terms carrying free
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Lorentz indices or indices associated with gauge groups. More generally, Feynman
integrals which do not carry such indices, are referred to as scalar Feynman integrals.
It is well-known that by tensor reduction it is possible to express all Feynman integrals
in terms of combinations of scalar Feynman integrals. The tensor reduction was first
worked out by Passarino and Veltman at one-loop in Ref. [59], while the more general
case was studied by Tarasov [60, 61]. Therefore, we may restrict our study of Feynman
integrals to scalar ones, which is done for the remainder of this thesis. We review the
basic definitions next.

We define a scalar Feynman diagram G by the following data:

• A directed and connected graph, containing a certain number of half-edges, called
the external legs, and containing internal edges called propagators. We denote
by l the number of independent cycles in the graph, by n the number of internal
edges, and by N+1 the number of external legs. We denote by EG = {e1, . . . , en}
the set of internal edges of G, by Eext

G = {ẽ1, . . . , ẽN+1} the external half-edges,
and we denote by VG the vertices of G.

• To each internal edge ei, we assign an internal momentum in d-dimensional
Minkowski space denoted by qi, and a mass variable m2

i .

• To each external leg ẽi, we assign an external momentum vector in d-dimensional
Minkowski space denoted pi. The external momenta should be conserved, in the
sense that the sum of the incoming momenta minus the sum of the outgoing
momenta is equal to zero.

• For each vertex v ∈ VG, we also have a momentum conservation condition, which
states that the sum of the incoming internal and external momenta minus the
outgoing internal and external momenta at the vertex should equal zero.

Due to the momentum conservation conditions at the vertices, the internal momenta qi
are linearly related to each other and to the external momenta. We can choose a basis
of l independent internal momenta, and label them by k1, . . . , kl. The other internal
momenta can then be expressed as linear combinations of the ki and the external
momenta. Such a choice is not unique, and is called a choice of routing.

To a Feynman diagram G, we can associate a family of scalar Feynman integrals, which
is a collection of integrals of the form:

Ia1,...,an+m =
∫ (

l∏
i=1

ddki

) ∏n+m
i=n+1 N

−ai
i∏n

i=1 D
ai
i

, Di = −q2
i +m2

i − iδ , (2.1)
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where we take the indices ai to be integers, of which a1, . . . , an are non-negative, and of
which an+1, . . . , an+m are non-positive. When one of the propagator powers ai is raised
to the power two, we will occasionally refer to the propagator as being ‘dotted’, and
diagrammatically we will distinguish this case by drawing a dot on the corresponding
line in the Feynman diagram. Each propagator Di inherits its internal momentum qi

from the Feynman diagram. The factors iδ, with δ > 0 being an infinitesimally small
positive number, are introduced as part of the Feynman prescription and invoke a
(physical) choice of branch of the Feynman integrals. We elaborate more on this point
in Section 2.2.2.

The numerator terms Ni are linear combinations of dot products of internal and external
momenta, and can be freely chosen subject to the constraint that the propagators and
numerators form a basis of the vector space of dot products of the form ki ·kj and ki ·pj ,
where ki denotes a loop momentum, and where pj denotes an external momentum.
We denote the number of such dot products by n + m = l(l+1)

2 + lN , where n is the
number of propagators, and m is the number of numerators.

It is well-known that integrals within a family may be related to each other through
integration-by-parts (IBP) identities. In particular, it is possible to express any member
of a family of Feynman integrals as a linear combination of a finite basis of linearly
independent Feynman integrals in the given family. The choice of independent basis
is called a choice of master integrals. It is often possible to choose a basis of master
integrals without numerators. The relevant IBP identities are of the form:
∫ (

l∏
i=1

ddki

)
∂

∂kµi
kµj

(∏n+m
i=n+1 N

−ai
i∏n

i=1 D
ai
i

)
= 0 ,

∫ (
l∏

i=1
ddki

)
∂

∂kµi
pµj

(∏n+m
i=n+1 N

−ai
i∏n

i=1 D
ai
i

)
= 0 .

(2.2)
These identities are derived by using Gauss’ theorem and the fact that in dimensional
regularization the surface terms vanish (see e.g. [87] for a review.) We will refer to the
master integrals for which all a1, . . . , an are nonzero as being in the ‘top sector’ of the
family, while we will refer to the sets of integrals for which some of the ai are zero as
‘subsectors’, where i ≤ n.

There are other ways to derive the IBP identities between Feynman integrals as
well. For example, they may be obtained in the parametric representation using
parametric annihilators [88], they may be obtained through syzygy equations and
algebraic geometric methods (see e.g. [89–92]), and they may be obtained through
intersection theory methods [93, 94]. In addition to IBP identities, Feynman integrals
also satisfy dimensional recurrence identities, which relate (dimensionally regulated)
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integrals with different integer dimensions [60]. These relations have a particularly
simple formulation in the Baikov parametrization [95, 96].

Feynman integrals are often divergent, and have to be computed through a suitable
regularization prescription. A powerful regularization prescription is dimensional
regularization. In dimensional regularization, the dimension d is upgraded to a complex
parameter, usually written as d0 − 2ϵ, where d0 is an integer, and where ϵ is called the
dimensional regulator. This does not immediately make sense from the viewpoint of
Eq. (2.1), but it can be made rigorous by first converting Eq. (2.1) to a parametric
representation such as the Feynman parametrization (see Section 2.2), in which the
dimension d becomes a variable in the integrand that is roughly on the same footing
as the powers of the propagators. Every integration is then performed in a region of d
in which the integral converges, and the result is analytically continued towards ϵ = 0
at the end. The possible (infrared and ultraviolet) divergences of the Feynman integral
are then expressed as poles in the dimensional regulator. Note that in renormalizable
theories like the Standard Model, one can remove UV divergences in the amplitudes
by absorbing them into appropriate rescalings of the free parameters and fields of the
theory. The remaining poles in ϵ are then due to infrared divergences, which cancel in
the computation of infrared finite observables.

Feynman integrals satisfy the scaling relation:

Ia1,...,an+m(S/λ) = λ− γ
2 Ia1,...,an+m(S) , γ = ld− 2

∑
j

aj , (2.3)

where we explicitly wrote the dependence on the set S = {p2
j}∪{sij}∪{m2

j}, containing
the squares of external momenta, the Mandelstam variables, and the internal masses,
and where by S/λ we denote the set of elements {s/λ | s ∈ S}, where λ is a parameter
of mass dimension two. Furthermore, note that γ is the mass dimension of the integral.
By choosing λ ∈ S, we may trivialize the dependence on one of the kinematic invariants
or internal masses.

2.2 The Feynman parametrization

It can be difficult to perform explicit computations in the momentum-space represen-
tation given in Eq. (2.1). It is therefore often useful to rewrite Feynman integrals
in a parametric representation such as the Feynman parametrization (see e.g. Refs
[70–73].) A Feynman integral for which all the numerators have exponent zero, admits
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the following Feynman parametrization:

Ia1,...,an =
(
iπ

d
2
)l

Γ
(
a− ld

2

)∫
Rn

≥0

dnα⃗

(
n∏
i=1

αai−1
i

Γ(ai)

)
Ua− d

2 (l+1)F−a+ ld
2 δ

1 −
n∑
j=1

αj

 ,

(2.4)

where a = a1 + . . . + an. The integration variables αj are referred to as Feynman
parameters. The so-called Symanzik polynomials U and F can be written in terms of
the Feynman diagram G as:

U =
∑

T∈T (G)

∏
ei /∈T

αi, F̃ =
∑

(T1,T2)∈F (G)

 ∏
ei /∈(T1∪T2)

αi

 s(T1,T2), F = −F̃ + U
(∑

αim
2
i

)
,

(2.5)

where T (G) denotes the set of spanning trees of G, and where F (G) denotes the set of
all two-forest of G. Note that a spanning tree is a tree that touches all vertices of the
graph, and that a two-forest is a set of two disjoint trees whose union touches all the
vertices of the graph. We denoted the square of the momentum flowing between the
components T1 and T2 by S(T1,T2).

We may also write the Feynman parametrization as a projective integral:

Ia1,...,an =
(
iπ

d
2
)l

Γ
(
a− ld

2

)∫
∆n−1

[
dn−1α⃗

] ( n∏
i=1

αai−1
i

Γ (ai)

)
Ua− d

2 (l+1)F−a+ ld
2 , (2.6)

where ∆n−1 = {[α1 : α2 : . . . : αn] ∈ RPn−1 | αi ≥ 0, 1 ≤ i ≤ n}, and where [dn−1α⃗] de-
notes the canonical volume form on RPn−1, given by:

[
dn−1α⃗

]
≡

n∑
j=1

(−1)j−1αjdα1 ∧ · · · ∧ d̂αj ∧ · · · ∧ dαn . (2.7)

This can be seen by noting that the first Symanzik polynomial U is homogeneous of
degree l, and that the second Symanzik polynomial F is homogeneous of degree l + 1,
so that the integrand in Eq. (2.6) is invariant under a simultaneous rescaling of all
Feynman parameters and their differentials. Furthermore, the set

{(α1, . . . , αn) ∈ Rn
≥0 | α1 + . . .+ αn = 1} , (2.8)

and ∆n−1 are in one-to-one correspondence, since we may always choose the representa-
tive of a point α⃗ = [α1 : . . . : αn] ∈ ∆n−1 for which the sum of the coordinates is equal
to one. Note that we should choose the orientation of the integration over ∆n−1 in such
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a way that we obtain the same overall sign as in Eq. (2.4). We will sometimes use the
projective notation in Eq. (2.6) instead of the notation in Eq. (2.4), for brevity.

In the case where the Feynman integral has numerators (i.e. some of the ai are negative
integers for i > n), we need to do a bit more work to give the Feynman parametrization.
First, we need a definition of the Symanzik polynomials that derives directly from the
propagators Di. Consider the (l × l)-matrix A, l-vector B, and constant C, defined
by:

n∑
i=1

αiDi +
n+m∑
i=n+1

αiNi = −
l∑

i,j=1
kiAijkj +

l∑
i=1

2ki ·Bi + C . (2.9)

We then let:

U+ = det(A) , F+ = det(A)
(
C +BA−1B

)
. (2.10)

The Feynman parametrization is then given by:

Ia1,...,an+m =
(
iπ

d
2
)l

Γ
(
a− ld

2

)∫
Rn

≥0

dnα⃗

(
n∏
i=1

αai−1
i

Γ(ai)

) n+m∏
j=n+1

(−1)aj
∂−ai

∂α−ai
j

×

(
U+
)a− d

2 (l+1) (
F+

)−a+ ld
2

]∣∣∣∣∣
αn+1,...,αn+m=0

δ

1 −
n∑
j=1

αj

 , (2.11)

where a = a1+. . .+an+m . Note that U+|αn+1,...,αn+m=0 = U , and that F+|αn+1,...,αn+m=0 =
F . See also Ref. [72] for a more detailed review of Feynman graph polynomials.

2.2.1 The Cheng-Wu theorem

The so-called Cheng-Wu theorem [97] tells us that by a change of variables we may
let:

∫
∆n−1

[dn−1α⃗] →
∫
Rn

≥0

dnα⃗ δ

1 −
∑
j∈J

αj

 , (2.12)

where J ⊆ {1, . . . , n} denotes any nonempty subset of the Feynman parameters. As
an illustrative example, consider the beta function, which can be written as

B(x, y) =
∫ 1

0
dα1 α

x−1
1 (1 − α1)y−1 =

∫
∆1

[
d1α⃗

] (α1)x−1 (α2)y−1

(α1 + α2)x+y , (2.13)
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where we projectivized the integral using the change of variables

αi → αi∑n
j=1 αj

. (2.14)

Applying the Cheng-Wu theorem, with J = {2}, leads to:

B(x, y) =
∫ ∞

0
dα1

(α1)x−1

(α1 + 1)x+y . (2.15)

The Cheng-Wu theorem can be a useful tool for finding a linearly reducible integration
order, which will be discussed in Section 3.1.1.

2.2.2 Remarks on analytic continuation

Let us consider how the Feynman prescription in the momentum space representation
translates to the Feynman parametrization. First, we may absorb the iδ’s in the
definition of the internal masses. Then, looking at Eq. (2.5), we see that:

F → F − iδ U . (2.16)

and since U is positive-definite we can put:

F → F − iδ . (2.17)

Therefore, the second Symanzik polynomial F carries an infinitesimally small negative
imaginary part. The integration of the Feynman parametrization is the simplest in
a region where F > 0 on the interior of the whole integration domain, as the iδ

prescription can then be dropped. From Eq. (2.5) we see that taking s(T1,T2) < 0 for all
two-forests is sufficient for this condition to hold. This kinematic region is known as
the Euclidean region. Note that such a region is not always guaranteed to exist. For
an example see e.g. Section 4.1 of Ref. [98].

In the Euclidean region, the only possible singularities of the Feynman integral lie at
the boundary of the integration domain, where we may have U = 0, or F = 0. If we
choose the integration domain to be a simplex containing all Feynman parameters,
i.e. the set {(α1, . . . , αn) |αi ≥ 0, α1 + . . . αn = 1}, then all possible boundary
singularities lie at positions where subsets of the Feynman parameters vanish. If we
apply the Cheng-Wu theorem and choose a different integration domain, for example
the set {(α1, . . . , αn) |αi ≥ 0, αn = 1}, then there may also be singularities when
subsets of integration variables go out to infinity. Using the method of analytic
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regularization1 from Ref. [99], it is possible to rewrite a Feynman integral in the
Feynman parametrization in terms of a sum of integrals with prefactors that depend
on ϵ, for which there are no more boundary singularities in the integration domain.
The terms in the sum are Feynman integrals associated with the same graph, but with
different propagator powers and shifted dimensions. This method is implemented in
the package HyperInt [100]. Another approach to resolve boundary singularities is the
method of sector decomposition [101–103].

Outside of the Euclidean region, Feynman integrals have threshold singularities. The
locations of these singularities can be found from the Landau equations [104], which
we will not discuss here further. Instead of integrating Feynman integrals directly in
a given physical region, it is usually simplest to first perform the integration in the
Euclidean region, and to analytically continue to the physical region from there. It is
important that threshold singularities are crossed in a manner that is consistent with
the Feynman prescription. Looking at Eqns. (2.5) and (2.17), we see that every squared
mass should be interpreted to carry a negative imaginary part, while the Mandelstam
variables s(T1,T2) should carry a positive imaginary part, since their prefactors in the
second Symanzik polynomials are sums of monomials with positive coefficients.

2.3 The Baikov parametrization

Another useful representation of Feynman integrals is the Baikov parametrization
[95], which is obtained by changing integration variables from the loop momenta to
the irreducible scalar products of the form ki · kj and ki · pj, where ki denotes a loop
momentum, and where pj denotes an external momentum. The Baikov parametrization
is particularly useful for the purposes of computing cut Feynman integrals, see for
example Refs. [22, 105–108] for the application to maximal cuts. We will consider
the Baikov parametrization in Chapter 7 to compute cuts of the equal-mass elliptic
sunrise integral family. For a pedagogical derivation of the Baikov parametrization,
see e.g. Ref. [87]. Here we will simply provide the necessary definitions. The Baikov
parametrization is more naturally defined for Feynman integrals defined in Euclidean
conventions. We will distinguish this case by the superscript E. In particular, we

1Not to be confused with the identically named concept of analytic regularization in the method of
expansion by regions, where the propagator exponents are used as additional regulators.
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consider a family of Feynman integrals of the following form:

IEa1,...,an+m
=
∫ (

l∏
i=1

ddki

) ∏n+m
i=n+1 N

−ai
i∏n

i=1(DE
i )ai

, DE
i = q2

i +m2
i − iδ , (2.18)

where the loop momenta are integrated over d-dimensional Euclidean space, and where
the external momenta live in Euclidean space as well. Note that the sign in front of the
square of the internal momentum inside the propagators DE

i is now positive. We will
assume that the integrals are functions of N independent ingoing external momenta,
which we denote by p1, . . . , pN .

Note that we could drop the iδ-prescription in the Euclidean case, but we keep the
prescription explicit for the following two reasons. Firstly, we will consider cut Feynman
integrals in Chapter 7, in which case the squares of the masses will be assumed to
be negative. In that case the zeros of the propagators may lie inside the integration
region. Secondly, we may Wick rotate from the Euclidean to the Minkowskian case,
in which case the iδ-prescriptions are relevant. We can relate the Minkowskian and
Euclidean versions of Feynman integrals using the following prescriptive rule (see e.g.
Ref. [22]):

Ia1,...,an+m({sij}, {p2
i }, {m2

i }) = iLIEa1,...,an+m
({−sij}, {−p2

i }, {m2
i }) , (2.19)

where the lefthand side denotes the Feynman integral in the usual Minkowskian
convention. In other words, to relate the two conventions, we flip all the kinematic
invariants, and we add an overall factor iL.

The Baikov parametrization is given by:

IEa1,...,an+m
= π− 1

4 l(−2d+2N+l−1)∏l
i=1 Γ

(
d−l−N+i

2

)G (p1, . . . , pN)(−d+N+1)/2

×
∫  l∏

i=1

l+N∏
j=i

d (qi · qj)
G (k1, . . . , kl, p1, . . . , pN)(d−l−N−1)/2

∏n+m
i=n+1 N

−ai
i∏n

i=1 (DN
i )ai

,

(2.20)

where we have that

q1 = k1, . . . , ql = kl, ql+1 = p1, . . . , ql+N = pN , (2.21)

and where G (p1, . . . , pN) and G (k1, . . . , kl, p1, . . . , pN) are Gram determinants. The
latter is called the Baikov polynomial. The integration region of the Baikov parametriza-
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tion typically has a complicated form. It has the property that the Baikov polynomial
vanishes on the boundary of the integration region. A general solution for the inte-
gration region can be found in Refs. [109, 110]. In the simple case where l = 1, it is
defined by k2

1 ≥ 0 and G (k1, p1, . . . , pN) ≥ 0.

It is often useful to set up the Baikov parametrization one loop at a time. For
example, if there are two internal momenta k1 and k2, we can set up a one-loop Baikov
parametrization for the loop momentum k1, treating k2 as an external momentum.
Afterwards, we can set up another one-loop Baikov parametrization associated with
the second internal momentum. Using this approach is it often possible to decrease
the number of integrations that need to be considered.

2.4 Multiple polylogarithms

2.4.1 Introduction

It has been known for a long time that polylogarithms and zeta values appear in
the analytic computation of Feynman integrals. The (classical) polylogarithms are
functions defined by:

Lim(z) =
∫ z

0

dt

t
Lim−1(t) =

∞∑
k=1

zk

km
, (2.22)

where we will let m be a positive integer. The series representation converges for
complex arguments |z| ≤ 1 when m ≥ 2, and for |z| < 1 when m = 1.

For m = 1, we have the special case Li1(z) = − ln(1 − z). The case where m = 2 is
called the dilogarithm, and the case where m = 3 is called the trilogarithm. When the
argument z is evaluated at unity, classical polylogarithms evaluate to special values of
the Riemann zeta function:

Lim(1) = ζ(m) = ζm for m ̸= 1 . (2.23)

In this section, we will discuss a generalization of classical polylogarithms, called
the multiple polylogarithms (MPLs) [6, 7]. Multiple polylogarithms are defined by
generalizing the series definition of the classical polylogarithms to nested sums of the
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form2

Lim1,...,mk
(z1, . . . , zk) =

∑
0<n1<n2<···<nk

zn1
1 zn2

2 · · · znk
k

nm1
1 nm2

2 · · ·nmk
k

, (2.24)

which converge for

|z1 . . . zj| ≤ 1 ∀j ∈ {1, . . . , k} and (zk,mk) ̸= (1, 1) . (2.25)

Multiple zeta values are defined by the special case

ζm1,...,mk
≡ Limk,...,m1(1, . . . , 1) . (2.26)

An alternative definition of multiple polylogarithms is given by iterated integrals of
the form:

G(a1, . . . , an; z) =
∫ z

0

dt

t− a1
G(a2, . . . , an; t), G(; z) ≡ 1 , (2.27)

where the parameters aj and the argument z are complex variables. The definitions in
Eqns. (2.24) and (2.27) are related by:

Lim1,...,mk
(z1, . . . , zk) = (−1)kG

(
0⃗mk−1,

1
zk
, . . . , 0⃗m1−1,

1
z1 . . . zk

; 1
)
, (2.28)

where 0⃗m denotes a sequence of m zeros. The number of parameters n in Eq. (2.27),
or equivalently the sum of the indices m1 + . . . + mk in Eq. (2.24), is referred to as
the weight of the MPL. In the special case where all parameters are equal we have
that:

G(⃗an; z) = 1
n! logn

(
1 − z

a

)
, (2.29)

where we used the notation a⃗n to denote the sequence of parameters (a, . . . , a). We
will call functions or integrals ‘polylogarithmic’ if they are expressible in terms of
combinations of MPLs. Functions that evaluate to linear combinations of multiple
polylogarithms that are of the same weight are typically said to be of uniform tran-
scendental weight (UT). Furthermore, if the prefactors of the multiple polylogarithms
are rational numbers, such functions are said to be pure [44].

2We follow the summation convention of Refs. [6, 111].
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2.4.2 Chen iterated integrals

We will take a brief look into the properties of MPLs inherited from the iterated
integral structure next. If we introduce the integration kernels ωj = d log(z − aj) ∈
Ω1(CP1/{a1, . . . , an}), we may alternatively write the definition of MPLs in terms of
Chen iterated integrals [112]:

G(⃗a; z) =
∫
γ
ω1 . . . ωn ≡

∫
[0,1]

(γ∗ω1) (t1) . . .
∫

[0,tn−1]
(γ∗ωn) (tn) , (2.30)

where γ is a path with γ(0) = 0 and γ(1) = z. Note that the above iterated integrals
are homotopy invariant. More generally, given any set of differential forms ωi, iterated
integrals of the above type are homotopy invariant if they satisfy Chen’s integrability
condition:

n∑
k=1

ω1 · · · (dωi) · · ·ωn −
n−1∑
k=1

ω1 · · · (ωk ∧ ωk+1) · · ·ωn = 0 . (2.31)

Chen iterated integrals obey the shuffle product identity:(∫
γ
w1

)
·
(∫

γ
w2

)
=
∫
γ
(w1 w2) , (2.32)

where w1 and w2 denote ‘words’ in the ‘letters’ ωj, i.e. ordered sequences of the
differential forms, and where the symbol denotes the shuffle product of the words w1

and w2. In particular, if w1 = (ω1 . . . ωn1) and w2 = (ωn1+1 . . . ωn1+n2), then we have
that:

w1 w2 =
∑

σ∈Σn1,n2

(ωσ(1) . . . ωσ(n1+n2)) , (2.33)

where

Σn1,n2 =
σ ∈ Sn1+n2

∣∣∣∣∣ σ−1(1) < . . . < σ−1 (n1) ,
σ−1 (n1 + 1) < . . . < σ−1 (n1 + n2)

 , (2.34)

and where Sn1+n2 denotes the symmetric group of order n1 + n2. Furthermore, Chen
iterated integrals satisfy the path-concatenation formula:

∫
γ⋆η

ω1 · · ·ωn =
n∑
k=0

∫
η
ω1 · · ·ωn−k

∫
γ
ωn−k+1 · · ·ωn , (2.35)
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for two paths γ and η, such that γ(1) = η(0) = (γ ⋆ η)
(

1
2

)
. Lastly, Chen iterated

integrals satisfy the identity∫
γ−1

ω1 . . . ωn = (−1)n
∫
γ
ωn . . . ω1 , (2.36)

where γ−1 is the path γ oriented in the reverse direction.

2.4.3 Regularization

Next, let us have a look at the regularization of multiple polylogarithms for special
values of the parameters, where the iterated integrals diverge. We can distinguish two
types of divergent cases. In the first case we have that aj = . . . = an = 0 for some
j ≤ n, and there is a logarithmic divergence at the basepoint of integration. In the
second case, we have that a1 = . . . = aj = z for some j ≥ 1, and there is a logarithmic
divergence at the endpoint of the integration. Such divergent configurations of the
multiple polylogarithms may appear when integrating Feynman integrals. Note that
the integrand of a (quasi-)finite Feynman integral that is evaluated in the Euclidean
region has at most integrable singularities at the integration boundaries (see Section
3.1.1.) However, if we partial fraction the integrand (in order to integrate it in terms of
multiple polylogarithms), we may end up with pieces whose integrals are individually
divergent. If we regulate the individual pieces in a consistent manner, the sum of all
terms will be finite and will not depend on the regularization prescription.

Let us first consider the case where aj = . . . = an = 0 for some j ≤ n. We can regulate
this case by setting the logarithmic divergences at the basepoint of integration to
zero for a consistent choice of branch of the logarithm. This can be done if we pick a
convention for how to approach the basepoint along the integration path. For example,
let γ(t) : [0, 1] → C\(−∞, 0) be a path which satisfies that γ(0) = 0 and γ(1) = z. In
the asymptotic limit where t → 0, we have that:

lim
t→0

log(γ(t)) ∼ log(γ′(0)) + log(t), (2.37)

where the logarithm is considered on the principal branch with a branch-cut along the
negative real axis. We aim to regulate the limit by putting log(t) to zero:

reglimt→0 log(γ(t)) = log(γ′(0)) , (2.38)

but then the value of the regularized limit still depends on γ′(0). If we choose to
consider only paths for which γ′(0) is set to a fixed value, the regularized limit becomes
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well-defined, which is called the choice of tangential basepoint (see e.g. [113].) The
standard choice is γ′(0) = 1, in which case we simply have that:

reglimt→0 log(γ(t)) = 0 . (2.39)

Now, let ω0 = d log(z), and 0 < δ ≪ 1. Then we have:

reglimδ→0

∫ 1

δ
γ∗(ω0)(t) = reglimδ→0 [log(γ(1)) − log(γ(δ))] = log(z) . (2.40)

Therefore, we will define that:

G(0; z) = log(z) . (2.41)

The shuffle-product is compatible with the tangential basepoint prescription, and so
we have as well that:

G(⃗0n; z) = 1
n! log(z)n , (2.42)

where 0⃗n denotes a sequence of n zeros. Lastly, suppose that we have an MPL of the
form G(⃗a, 0⃗n; z), where the last parameter in a⃗ is not equal to zero. We may write
that:

G(⃗a, 0⃗n; z) = 1
n!G(⃗a; z) log(z)n −

[
G(⃗a; z) G(⃗0n; z) −G(⃗a, 0⃗n; z)

]
. (2.43)

If we work out the shuffle product in the bracketed term, the resulting sum contains
terms with at most n − 1 zeros in the last parameters. We may iterate the above
substitution on such terms, until we reach a decomposition of the form:

G(⃗a, 0⃗n; z) =
n∑
j=0

fj(z) log(z)n , (2.44)

where the terms fj(z) are polylogarithmic expressions which are finite as z approaches
zero. This shows in general how to regulate basepoint divergences of multiple polylog-
arithms. Note that the expressions obtained through Eq. (2.43) are not minimal in
size. A basis for the shuffle product can be obtained by considering so-called Lyndon
words [114], which we will not discuss here further (see e.g. Refs. [77, 100] for further
reading.)

Next, let us discuss the second divergent case where a1 = . . . = aj = z, for some j ≥ 1.
In this case there are logarithmic divergences at the endpoint of the integration. We
could proceed in a similar manner to before and regulate the endpoint divergences
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by setting these to zero in a consistent way. However, in practice we are focused
on integrating (quasi-)finite Feynman integrals, for which the divergences between
individual terms at the endpoint of the integration should cancel. We can shuffle out
terms which have a divergence at the endpoint, in a similar manner to Eq. (2.43), by
using the identity:

G(z⃗n, a⃗; z) = G(z⃗n; z)G(⃗a; z) − [G(z⃗n; z) G(⃗a; z) −G(z⃗n, a⃗; z)] , (2.45)

where z⃗n = (z, . . . , z) is a sequence of n parameters, and where a1 ̸= z. After putting
all contributions together, the coefficients of terms of the form G (z⃗n; z) = 0 should
then evaluate to zero. Furthermore, if we know the endpoint divergences cancel in a
sum, we can also iterate Eq. (2.45) with terms of the form G (z⃗n; z) put to zero from
the start.

Note that the extraction of divergences in the manner of Eqns. (2.43) and (2.45) is
known as shuffle regularization.

2.4.4 Integration of rational functions

Any integral of a rational function of a single complex variable z, times a multiple
polylogarithm with argument z, can be expressed in terms of combinations of multiple
polylogarithms. This can be seen by partial fractioning the rational function and by
using integration by parts identities.

In particular, consider a product Q(z)G(⃗a; z) of a rational function Q(z) times a
multiple polylogarithm. By partial fractioning, we may write:

Q(z) = N(z)∏k
i=1(z − bi)pi

=
k∑
i=1

pi∑
j=1

Nai

(z − bi)j
+

deg(N(z))−
∑

i
pi∑

j=0
Mjz

j, (2.46)

where k ≥ 0, pi ∈ N, and where all Nai
, bi,Mj ∈ C. Next, we can distinguish the

following cases:∫ z

0
dz′ 1

(z′ − b)k
G (⃗a; z′) ,

∫ z

0
dz′G (⃗a; z′) ,

∫ z

0
dz′z′kG (⃗a; z′) , (2.47)

for k ∈ N. The first case with k = 1 is trivial to integrate, as it matches the definition
of an MPL. The other cases can be performed using integration by parts identities. We
will illustrate this by working out the integration of the case on the left of Eq. (2.47)
with k > 1. For simplicity, we assume that the last parameter in a⃗ is not equal to zero,
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and that the first parameter in a⃗ is not equal to z. Otherwise, we shuffle regulate the
MPL first. We have that:∫ z

0
dz′ 1

(z′ − b)kG(⃗a, z′) = G(⃗a, z′)
(−k + 1)(z′ − b)k−1

∣∣∣∣∣
z

0
+ 1
k − 1

∫ z

0

1
(z′ − b)k−1(z′ − a1)

G(⃗a−, z
′) ,

(2.48)

where a⃗− denotes the sequence of parameters a⃗ with the first parameter removed. By
partial fractioning we have that:

1
(z′ − a1) (z′ − b)k−1 = − (−1)k

(b− a1)k−1 (z′ − a1)
−

k−1∑
j=1

(−1)k+j

(b− a1)k−j (z′ − b)j
. (2.49)

We see that the highest order pole at z′ = b is of order k − 1. Furthermore, the MPL
inside the integrand on the righthand side of Eq. (2.48) has its weight reduced by one.
We may therefore iterate the IBP identity, until we either obtain a simple pole, or
until the weight of the MPL inside the integrand is reduced to zero. Terms of the form∫ z

0 dz z
mG(⃗a; z) can be dealt with in a similar manner.

2.4.5 Hopf algebraic structure and symbol map

Next, we will review the Hopf algebraic structure satisfied by multiple polylogarithms
[7, 115]. It can be utilized to simplify complicated expressions for scattering amplitudes
and Feynman integrals [116]. First, consider the vector space of multiple polylogarithms
over the rational numbers, defined by:

AMPL =
∞⊕
n=0

An
MPL , (2.50)

where An
MPL is the Q-vector space of multiple polylogarithms of weight n. Note that

the shuffle product respects the weight, which makes AMPL into a graded algebra. Next,
we will mod out terms that are proportional to π, and we define:

HMPL = AMPL/ (πAMPL) . (2.51)

Then, HMPL is a Hopf algebra [7]. Recall that a Hopf algebra is a bialgebra together
with an antipode map. Furthermore, recall that a bialgebra is a (unital associative)
algebra that is also a (unital coassociative) coalgebra. The counit and antipode maps
will not play a role in this thesis, so we will not discuss them further.
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The coproduct map ∆ : HMPL → HMPL ⊗ HMPL satisfies the coassociativity condi-
tion:

(id ⊗ ∆)∆ = (∆ ⊗ id)∆ , (2.52)

and is compatible with the (shuffle) multiplication map:

∆(a · b) = ∆(a) · ∆(b) . (2.53)

In the case where all arguments are distinct, a compact formula for the coproduct is
given by [30, 117]:

∆(G(⃗a; z)) =
∑
b⃗⊆a⃗

G(⃗b; z) ⊗Gb⃗(⃗a; z) , (2.54)

where the sum runs over all order-preserving subsets b⃗ of a⃗, including the empty set.
The functions Gb⃗(⃗a; z) are defined by the iterated integral with the same integrand, but
on a contour which circles around the singularities z = ai, ai ∈ b⃗, and which includes a
factor 1/(2πi) for each point. This is equivalent to taking residues of the integrand
at the singularities. One may use the path-concatenation formula in Eq. (2.35) to
show that the functions Gb⃗(⃗a; z) can be expressed in terms of combinations of multiple
polylogarithms.

Another form of the coproduct formula can be found in Refs. [111, 115, 116], which
can be visualised in terms of polygons drawn on a semi-circle. A Mathematica
implementation of the coproduct can be found in the package PolyLogTools of Ref.
[118]. Next, we give two particular cases of the coproduct. For powers of logarithms
we have that:

∆ (log(z)n) =
n∑
k=0

(
n

k

)
log(z)k ⊗ log(z)n−k . (2.55)

For classical polylogarithms we have that:

∆ (Lin(z)) = 1 ⊗ Lin(z) +
n−1∑
k=0

Lin−k(z) ⊗ 1
k! log(z)k . (2.56)

Note that to define the Hopf algebra we modded out terms proportional to iπ. This is
necessary to make the coproduct well defined. One way to see this is to consider how
the coproduct acts on the even zeta values (see e.g. Ref. [111].) From Eqns. (2.23)
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and (2.56) it follows that:

∆ (ζn) = ζn ⊗ 1 + 1 ⊗ ζn . (2.57)

Furthermore, we have that ζ2 = π2/6 and ζ4 = π2/90. Combining these expressions
with the coproduct formula given above, we find that:

∆ (ζ4) = ζ4 ⊗ 1 + 1 ⊗ ζ4 ,

∆ (ζ4) = 2
5∆ (ζ2)2 = (ζ2 ⊗ 1 + 1 ⊗ ζ2)2 = ζ4 ⊗ 1 + 1 ⊗ ζ4 + 4

5ζ2 ⊗ ζ2 . (2.58)

Clearly there is a discrepancy in the above two expressions, because of the term ζ2 ⊗ ζ2.
If we work modulo π, the inconsistency goes away, since both ζ2 and ζ4 are then set to
zero.

It is possible to extend the coproduct to a coaction operator ∆̄, which does retain
information about powers of iπ [111, 119, 120]. To do this, we consider the space
HMPL = Q[iπ] ⊗ HMPL, where by Q[iπ] we denote the ring of polynomials in iπ with
rational numbers as coefficients. We then define ∆̄ : HMPL → HMPL ⊗ HMPL by

∆̄(iπ) = iπ ⊗ 1 , ∆̄(a) = ∆(a) for a ∈ HMPL . (2.59)

In this case we have ∆̄ (ζ4) = 2
5ζ

2
2 ⊗ 1 = 2

5∆̄ (ζ2)2, as desired. In the remaining part of
this thesis we will denote both the coaction and coproduct by ∆, with context making
it clear which one we are working with. The following identities hold for the coaction
[116]:

∆ ∂

∂z
=
(

id ⊗ ∂

∂z

)
∆ , ∆Disc = (Disc ⊗ id)∆ . (2.60)

In other words, derivatives act on the last entry of the coproduct, and discontinuities
act on the first entry.

Lastly, let us take a look at the following formula for the total differential of an MPL
[6]:

dG (a1, . . . , an; z) =
n∑
i=1

G (a1, . . . , âi, . . . , an; z) d log ai−1 − ai
ai+1 − ai

, (2.61)

where the notation âi indicates that the label ai is absent, and where an+1 = 0 and
a0 = z. The above formula gives rise to the definition of the so-called symbol map S
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[115, 121], defined by:

S(G (a1, . . . , an; z)) =
n∑
i=1

S(G (a1, . . . , âi, . . . , an; z)) ⊗ log ai−1 − ai
ai+1 − ai

, (2.62)

where S(G(a; z)) = log(1 − z/a1), and where we work modulo iπ. The symbol may
alternatively be computed by maximally iterating the coproduct. In particular, let
Fn1,...,nk

be the map that filters terms of weight (n1, . . . , nk) out of the tensor product
and which sends everything else to zero. Furthermore, let ∆(n) be the n-th iteration
of the coproduct, which is well defined by the coassociativity of the coproduct. For
example:

∆(2) = (id ⊗ ∆)∆ = (∆ ⊗ id)∆ . (2.63)

Then the symbol map S is given by:

S(G(a1, . . . , an; z)) =
(
F1,...,1 ◦ ∆(n−1)

)
(G(a1, . . . , an; z)) . (2.64)

The symbol maps multiple polylogarithms to a tensor product of logarithms. The
symbol is often used as an algebraic fingerprint of multiple polylogarithms, and
can be used to find functional identities between multiple polylogarithms, up to
terms that lie in the kernel of the symbol. For example, let f(z) = Li2(z) and
g(z) = −Li2(1 − z) − log(1 − z) log(z). We have that:

S(f(z)) = − log(1 − z) ⊗ log(z) = S(g(z)) , (2.65)

from which we conclude that f(z) and g(z) are equal up to a constant of π2 and
terms of the form π log(a(z)). By numerically evaluating f(z) − g(z) in a number of
different points, we can verify that the difference is constant. We can numerically fit
the constant to a power of π2, which leads to the well-known identity:

Li2(z) = −Li2(1 − z) − log(1 − z) log(z) + π2

6 . (2.66)

It was shown in Refs. [111, 116] that the coaction can also be used to find functional
identities, and that it may provide additional information about terms that lie in the
kernel of the symbol.

Lastly, suppose we are given a term

f =
∑

i1,...,in

ci1,...,in log fi1 ⊗ . . .⊗ log fin ∈ H1
MPL ⊗ . . .⊗ H1

MPL . (2.67)
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We may ask whether there exists a polylogarithmic function F such that S(F ) = f . A
necessary condition for the existence of F is that the following integrability condition
is satisfied:
∑

i1,...,in

ci1,...,in(d log fij ∧ d log fij+1)(log fi1 ⊗ . . . log fij−1 ⊗ log fij+2 ⊗ . . .⊗ log fin) = 0

(2.68)
which is inherited from Eq. (2.31).

2.5 Elliptic multiple polylogarithms

2.5.1 Introduction

In this section, we review elliptic multiple polylogarithms (eMPLs.) Various definitions
have been given for such functions in the recent literature, and we will give a short
historical overview. Afterwards, we will discuss in Section 2.5.2 a specific construction
of elliptic multiple polylogarithms, which are labeled by the symbol E4. We will
consider these functions for the computation of examples of linearly reducible elliptic
Feynman integrals in Chapter 4. We will start with a brief review of elliptic curves,
without being overly mathematical.

Elliptic curves We may informally think of an elliptic curve as an algebraic curve
defined by a polynomial equation of one of the following types:

y2 = P3(x) , y2 = P4(x) , (2.69)

where P3(x) or P4(x) is a cubic or quartic polynomial respectively, with distinct roots.
Furthermore, for our purposes we will always work over the field of complex number.
Any elliptic curve over the complex numbers may be written in a special form by a
change of variables (see e.g. Ref. [122]), called the Weierstrass normal form, which is
given by:

y2 = 4x3 − g2x− g3 , (2.70)

where g2 and g3 are complex numbers satisfying g3
2 − 27g2

3 ̸= 0. More formally, we may
view an elliptic curve as a smooth projective algebraic curve of genus 1. This can be
seen by letting y → y/z, and x → x/z, and by working with homogeneous coordinates
[x : y : z] ∈ CP2. For example, in Weierstrass normal form we would have the defining
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polynomial equation

y2z = 4x3 − g2xz
2 − g3z

3 , (2.71)

in projective space. There is a special point ‘at infinity’, given by O = [0 : 1 : 0]. An
elliptic curve can be shown to admit the structure of an Abelian group, for which O is
the identity element. One way to expose the group structure is to use the fact that an
elliptic curve can be identified one-to-one with a complex torus. We will show how to
do this next. First, we consider a complex torus as the quotient C/Λ = {z+ Λ : z ∈ C}
of the complex plane by a lattice Λ:

Λ = ω1Z + ω2Z = {mω1 + nω2 : m,n ∈ Z} ⊂ C , (2.72)

where ω1 and ω2 are (distinct) periods of the lattice in the complex plane. A mapping
from the torus to an elliptic curve in Weierstrass normal form can be constructed using
Weierstrass’s elliptic function, which is denoted by ℘(z; Λ), or simply ℘(z), and which
is defined by:

℘ (z; Λ) = 1
z2 +

∑
(m,n)̸=(0,0)

(
1

(z +mω1 + nω2)2 − 1
(mω1 + nω2)2

)
. (2.73)

This is a doubly-periodic meromorphic function in z with double poles at the lattice
points, which satisfies the following differential equation:

℘′(z)2 = 4℘(z)3 − g2℘(z) − g3 , (2.74)

where

g2 = 60
∑

(m,n) ̸=(0,0)
(mω1 + nω2)−4 , g3 = 140

∑
(m,n)̸=(0,0)

(mω1 + nω2)−6 , (2.75)

are multiples of the first two Eisenstein series. A mapping from the complex torus to
an elliptic curve E in Weierstrass normal form is then constructed as follows:

φ : C/Λ → E ,

p 7→ [℘(p) : ℘′(p) : 1] for p ̸= 0 ,
0 7→ [0 : 1 : 0] .

(2.76)

The Abelian group law on the elliptic curve is equivalent to the addition of points
on C/Λ. The inverse map from the elliptic curve to the torus is given by an elliptic
integral. In a more general setting, we will consider elliptic curves that are not in
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Weierstrass normal form. In that case the mappings from and to the complex torus
can be found in Ref. [43]. We will briefly discuss the mapping in the quartic case in
Section 2.5.2.

Elliptic curves may show up in the computation of Feynman integrals as square roots
y(x) which satisfy an equation of the form of Eq. (2.69). Such square roots can not
be rationalized by a change of variables, due to a classical result by Clebsch that
states that algebraic curves admit rational parametrizations if and only if their genus
is zero. Therefore, once a square root of a cubic or quartic polynomial with distinct
roots appears in an integrand, it is generally not possible to perform the integration in
terms of multiple polylogarithms (unless cancellations occur with other terms.) We
will discuss how such square roots may arise in the computation of Feynman integrals
in Sections 3.1.2, 3.1.3, and 3.2.2. In such cases, suitable generalizations of the multiple
polylogarithms are needed, such as the elliptic multiple polylogarithms.

Overview of the literature Various variations of elliptic multiple polylogarithms
have been constructed in the recent literature, and we will give a brief history next.
The first versions of eMPLs were constructed by Brown and Levin in Ref. [41], in
terms of certain averaging sums over classical polylogarithms. Building on those results,
in Ref. [42] a basis of homotopy invariant iterated integrals was constructed on the
complex torus, which coincide with the eMPLs from Ref. [41] when they are constrained
to the real line. These iterated integrals are nowadays also called elliptic multiple
polylogarithms. They were originally considered in order to find a space of functions
for one-loop string amplitudes. Different from the case of multiple polylogarithms, the
set of integration kernels of eMPLs is infinite. They are constructed by a generating
series, defined from a non-holomorphic extension of a certain Eisenstein-Kronecker
series. The non-holomorphicity comes from an exponential factor multiplying the
Eisenstein-Kronecker series, and is introduced in order to make the integration kernels
doubly-periodic on the torus.

In Refs. [28, 43] a variant of the eMPLs of Ref. [42] was considered, in which the
non-holomorphic exponential factor is removed. The integration kernels are then
quasi-periodic on the torus. When the iterated integrals are constrained to the real
line, the two definitions are manifestly the same. Typically the non-holomorphic
iterated integrals are denoted by the letter Γ, while the holomorphic versions are
denoted by the letter Γ̃. Furthermore, in Refs. [28, 43] two other constructions of
eMPLs were introduced, labeled by E3 and E4, the latter of which are the main subject
of Section 2.5.2. These functions are obtained by considering iterated integrals of
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‘rational functions on an elliptic curve’. These are defined to be rational functions of
two variables x and y, which satisfy the defining equation of an elliptic curve (i.e. Eq.
(2.69).)

The E3-functions are associated with an elliptic curve defined by a cubic equation, while
the E4-functions are associated with an elliptic curve defined by a quartic equation.
Since any quartic elliptic curve can be reduced to a cubic one using a change of variables,
the E3- and E4-functions are equivalent to each other, although sometimes it might be
more practical to work with one class over the other. In the examples which we will
consider in Chapter 4, we will only encounter quartic elliptic curves. Note that because
an elliptic curve can be identified one-to-one with the torus, the E3- and E4-functions
span the same space of functions as the Γ and Γ̃ functions, and vice versa. The E3- and
E4-functions are well-suited for the computation of Feynman integrals, as the kernels
of these functions naturally show up in the direct integration method, which will be
discussed in Section 3.1.1.

An additional variation of elliptic multiple polylogarithms was considered in Ref.
[33], which are denoted by the symbol E4, and which are obtained by considering
iterated integrals of parity invariant combinations of the kernels of the Γ̃-functions.
The integration kernels can be mapped from the torus to a quartic elliptic curve, in
which case they are explicitly obtained as functions of the variables x and y, where
y2 = P4(x) and where P4(x) is a quartic polynomial with distinct roots. This makes
the E4-functions directly suitable for the computation of Feynman integrals as well.
The definition of the E4-functions is motivated by the observation that the Γ̃-functions
are pure, while the E4-functions are not, where we refer the reader to Ref. [33] for the
precise notion of ‘purity’ which is a natural generalization of the notion of purity in the
case of multiple polylogarithms. We will not consider E4-functions further in this thesis,
but we note that it is algorithmic to rewrite E4-functions in terms of E4-functions.

We also note that another type of elliptic multiple polylogarithms was constructed in
Refs. [14–16], which can be rewritten in terms of the eMPLs that were discussed earlier.
These functions are defined by natural generalizations of the series representations of
multiple polylogarithms. One advantage of these functions is that it is straightforward
how to evaluate them numerically, which can be done by summing the defining series
up to the desired order. Furthermore, they were the first types of elliptic multiple
polylogarithms that were successfully applied to the computation of Feynman integrals
at high orders in the dimensional regulator. For example, it was shown in Ref. [20] that
the family of kite integrals, which has the equal-mass sunrise family as a subtopology, can
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be solved in terms of these functions at any order in the dimensional regulator. Lastly,
another class of functions which are special cases of elliptic multiple polylogarithms
[30] are the iterated integrals of modular forms, which were first considered for the
computation of Feynman integrals in Ref. [123]. We will encounter these functions in
Chapter 7 for the computation of the cuts of the equal-mass sunrise family.

2.5.2 E4-functions

In this section we will discuss the E4-functions, which were introduced in Ref. [43],
in more detail. These functions will be relevant for the computations performed in
Chapter 4. Their construction is motivated by considering iterated integrals of the
form ∫ x

0
R1(x1, y(x1)) dx1 . . .

∫ xk−1

0
Rk(xk, y(xk)) dxk , (2.77)

where k is some positive integer, and where the functions Rj(x, y) are rational in the
variables x and y which are subject to the constraint

y(x)2 = P4(x) =
4∏
j=1

(x− aj) , (2.78)

for some quartic polynomial P4(x) with distinct roots. We are in principle free to
choose the branch of the square root y(x), and in the following we will consider the
principal branch y(x) =

√
P4(x). We will comment more on the choice of branch at

the end of this section. In the remaining parts of this section, we will generally not
write out the dependence of y(x) on x.

Let us investigate the kinds of integration kernels that we have to consider in order to
solve iterated integrals of the type in Eq. (2.77). Consider a rational function in x and
y, which we will denote by R(x, y). We can decompose it in the form:

R(x, y) = R1(x) + 1
y
R2(x) , (2.79)

where R1(x) and R2(x) are rational functions in x. This can be achieved in the following
way. First we multiply any term of the form

1
(A(x) +B(x)y)k , (2.80)
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by its conjugate, where A(x) and B(x) are polynomials in x, and where k is some
positive integer. This leads to:

1
(A(x) +B(x)y)k = 1

(A(x) +B(x)y)k
(A(x) −B(x)y)k
(A(x) −B(x)y)k = (A(x) −B(x)y)k

(A(x)2 −B(x)2P4(x))k
.

(2.81)

Next, we expand out the power in the numerator, and note that all even powers of y are
polynomials in x. We then use the relation y = P4(x)/y to obtain the decomposition in
Eq. (2.77). Furthermore, we may partial fraction the rational terms R1(x) and R2(x)
(see Eq. (2.46).) This leaves us with the following integration kernels:

dx

(x− β)ky ,
xk dx

y
, dx xk ,

dx

(x− β)k , (2.82)

where k is a non-negative integer, and where β is a constant. We can reduce the set
of kernels further by considering integration by parts (IBP) identities. We provide
these identities next. In order to avoid focusing on the details of the integration path,
we provide these relations for primitives. Firstly, we have the following relation for
k > 1:∫ xk

y
dx = xk+1

(k − 1)y + 1
2(k − 1)

∫ (
a1x

k

y (x− a1)
+ a2x

k

y (x− a2)
+ a3x

k

y (x− a3)
+ a4x

k

y (x− a4)

)
dx

(2.83)

where we note that:

xk

x− ai
= ak−1

i

(
k−1∑
i=0

(
x

ai

)i
+ ai
x− ai

)
, (2.84)

from which it is clear that the maximum power of x in the numerator is reduced by
one. Similarly, we may derive the following relation for k > 1:

∫ 1
y(x− c)k dx = − (x− c)1−k

(k − 1)y − 1
2(k − 1)

∫ (
(x− c)1−k

y (x− a1)
+ (x− c)1−k

y (x− a2)

+(x− c)1−k

y (x− a3)
+ (x− c)1−k

y (x− a4)

)
dx . (2.85)

Note that partial fractioning a term of the form (x− c)1−k/ (x− ai) decomposes it into
pieces that carry a factor (x− c)−j, where 1 ≤ j ≤ k − 1, and a piece that carries a
factor 1/(x− ai). Hence we may safely iterate Eq. (2.85) to reduce the power of the
factor (x− c) in the denominator. Lastly, we provide the following relation that may
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be used to trade the kernel dx/(y(x− a1)) for x2 dx/y:
∫ 1
y (x− a1)

dx = − 2 (x− a2) (x− a3) (x− a4)
a12a13a14 y

+ 1
a12a13a14

∫ (
2x2

y
+

(−a1 − a2 − a3 − a4)x
y

+ a1 (−a1 + a2 + a3 + a4)
y

)
dx . (2.86)

One may obtain similar relations for the kernels dx/(y(x−aj)), j = 2, 3, 4, by cyclically
permuting the labels of the roots according to ai → ai+1. This way, we may trade
every kernel of the type dx/(y(x− ai)), for the kernels x2 dx/y and dx/y. Thus, after
using the above IBP identities, we can express any integral of the form∫ x

0
R(x1, y(x1))dx1 (2.87)

in terms of integrals over the kernels

dx

(x− β̃)y
,

dx

y
,

x dx

y
,

x2 dx

y
,

dx

(x− β) , (2.88)

where β and β̃ are constants, and where β̃ is not equal to one of the roots of P4(x).
Next, suppose that we have an integral of the type:∫ x

0
R1(x1, y(x1))I(x1) dx1 , (2.89)

where I(x1) is an iterated integral of the form

I(x) =
∫ x1

0
ω1(x1) . . .

∫ xk−1

0
ωk(xk) , (2.90)

and where the integration kernels ωj(xj) schematically denote the kernels in Eq. (2.88).
We may consider the same types of IBP identities as before, which will now contain
additional terms proportional to derivatives of I(x1). Since the only dependence on x1

is in the upper bound of the last integration, I ′(x1) involves one less integration. We
can therefore iterate the IBP identities in order to completely rewrite Eq. (2.89) in
terms of iterated integrals over the kernels of Eq. (2.88).

It seems that by using these integration kernels we have defined an elliptic generalization
of multiple polylogarithms, but there is a subtlety. In order for the iterated integrals
to be rightfully called polylogarithms, the integration kernels should have only simple
poles on the elliptic curve. This is the case for all the kernels, except for x2 dx/y, which
has a double pole at infinity. We can see this explicitly by letting x = 1/x̃, which
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yields:

x2 dx

y(x) = −dx̃

x̃2 + O
(1
x̃

)
. (2.91)

It was shown in Ref. [43] that one may replace the kernel x2 dx/y by adding an infinite
tower of kernels, which involve a primitive of x2 /y, and which have only simple poles
in x. The fact that an infinite tower of kernels is required, is in correspondence with
the fact that eMPLs defined on the torus, such as the Γ̃-functions, involve an infinite
set of kernels too.

Next, we give the definition of the E4-functions [28, 43]. They are defined by:

E4 ( n1 ...nk
c1 ... ck ;x) =

∫ x

0
dt ψn1(c1, t)E4 ( n2 ...nk

c2 ... ck ;x) , (2.92)

where the integration kernels are:

ψ0(0, x) = c4

y
, ψ1(c, x) = 1

x− c
,

ψ−1(c, x) = yc
(x− c)y − δc0

x
, ψ1(∞, x) = c4

y
Z4(x) ,

ψ−1(∞, x) = x

y
, ψn(∞, x) = c4

y
Z

(n)
4 (x) ,

ψn(c, x) = 1
x− c

Z
(n−1)
4 (x) − δn2Φ4(x) ψ−n(c, x) = yc

y(x− c)Z
(n−1)
4 (x) ,

ψ−n(∞, x) = x

y
Z

(n−1)
4 (x) − δn2

c4
,

(2.93)

where c4 = 1
2
√
a13a24, where aij = ai − aj, and where yc = y(x = c). The kernel

ψ−1(c, x) has been defined with an extra term −δc0/x in correspondence with Ref. [28].
The ‘non-algebraic’ kernels containing the terms Z(n)

4 (x) and Φ4(x) are introduced to
avoid the kernel x2 dx/y, and we refer the reader to Ref. [43] for their definition. The
construction of these kernels depends on a choice of conventions for the periods of the
elliptic curve, for the branch of y, and for the ordering of the roots a1, . . . , a4. In Ref.
[43], it is assumed that the roots are real and ordered according to a1 < a2 < a3 < a4.
Furthermore, the branch of y is not chosen to be principal branch, but it is instead
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taken to be:

y(x) =
√

|P4(x)| ×



−1, x ≤ a1 ,

−i, a1 < x ≤ a2 ,

1, a2 < x ≤ a3 ,

i, a3 < x ≤ a4 ,

−1, x > a4 .

(2.94)

This choice of branch is made such that the periods ω1 and ω2, which are taken to
be

ω1 = 2c4

∫ a3

a2

dx

y
, ω2 = 2c4

∫ a2

a1

dx

y
, (2.95)

satisfy ω1 ∈ R+, and ω2 ∈ iR+, and span a rectangular lattice for the given ordering of
the roots. In Chapter 4, we will consider the computation of a few examples of elliptic
Feynman integrals in the Euclidean region. We will find that for these examples the
roots of the associated elliptic curves are all complex-valued in the Euclidean region,
and that y2 ∈ R for x ∈ R. In this case we may follow Ref. [36], which describes how
to pick the branch of y and the labeling of the roots, when some or all of the roots
are complex-valued, and in such a way that ω1 ∈ R+, and ω2 ∈ iR+. The roots will
consist of two pairs of complex conjugates. We may order them as follows [36]:

a1 = a∗
2, a3 = a∗

4, Re (a1) < Re (a3) ,
Im (a2) , Im (a3) > 0, Im (a1) , Im (a4) < 0 ,

(2.96)

and we may let y =
√∏4

j=1 (x− aj) be the principal branch of the square root. Then
the periods defined in Eq. (2.95) satisfy ω1 ∈ R+, and ω2 ∈ iR+. For completeness, we
note that the map from the torus to the elliptic curve can be constructed from the
following function [36, 43]:

κ(z) = −3a1a13a24℘(z) + a2
1s̄1 − 2a1s̄2 + 3s̄3

−3a13a24℘(z) + 3a2
1 − 2a1s̄1 + s̄2

, (2.97)

where z is a variable on the torus, where ℘(z) is Weierstrass’s elliptic function defined
in Eq. (2.73), and where:

s̄1 = a2 + a3 + a4 , s̄2 = a2a3 + a2a4 + a3a4 , s̄3 = a2a3a4 . (2.98)
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We then have that:

(c4κ
′)2 = P4(κ) = (κ− a1) (κ− a2) (κ− a3) (κ− a4) , (2.99)

and that:

κ(0) = a1, κ (ω1/2) = a4, κ (ω2/2) = a2, κ (ω3/2) = a3 . (2.100)

The connection between the torus and the elliptic curve will not play a significant role
in this thesis, as we will not consider examples of Feynman integrals that evaluate to
E4-functions with non-algebraic integration kernels.

Lastly, we note that by virtue of being iterated integrals, E4-functions obey the shuffle
product identity. Furthermore, a coproduct and symbol map can be defined on eMPLs,
which was done in Ref. [30]. These maps are most naturally defined in terms of
Γ̃-functions, which can be rewritten into E4-functions.





Chapter 3

Methods for the analytic
computation of Feynman
integrals

In this chapter we discuss two methods for the computation of Feynman integrals.
First we discuss the direct integration method, which involves analytically integrating
the Feynman parametrization one Feynman parameter at a time. Next, we discuss the
differential equations method, which involves setting up linear systems of differential
equations for families of Feynman integrals, and solving the integrals directly from the
differential equations. The differential equations method will play a significant role in
the remaining parts of this thesis. We will discuss in Chapter 5 how the differential
equations can be solved in terms of series expansions, which will provide a very efficient
method for the numerical evaluation of Feynman integrals.

3.1 Direct integration method

3.1.1 Basic concepts

A powerful approach to computing Feynman integrals is to directly integrate the
Feynman parametric representation, one Feynman parameter after another (see e.g.
Refs. [76, 77].) Furthermore, we are typically interested in computing Feynman
integrals as a Laurent expansion in the dimensional regulator ϵ, up to the desired order.
However, in general we are not allowed to expand the Feynman parametrization in
ϵ before integrating. This is easy to see from the fact that expanding the integrand
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of the Feynman parametrization in ϵ only gives a Taylor series, if we exclude the
prefactor Γ

(
a− ld

2

)
which may give a pole in ϵ. In general, there could be additional

poles in ϵ which do not come from the gamma function, which we will see after all
integrations are performed. Following Ref. [124], we call a Feynman integral quasi-finite
if it has at most a pole in ϵ originating from the gamma function prefactor. We are
allowed to Taylor expand quasi-finite integrals before integration. Each coefficient
in ϵ is then a multidimensional parametric integral, which we aim to solve in terms
of multiple polylogarithms or elliptic multiple polylogarithms. The integrations are
typically performed in the Euclidean region, in which case there are no branch cuts in
the integration region. Results in the physical region can be obtained by analytically
continuing the results obtained in the Euclidean region to the physical region.

Luckily, any Feynman integral can be expressed in terms of combinations of quasi-finite
Feynman integrals. There are two straightforward ways to do this. One method relies
on scanning over a large set of Feynman integrals in the same family, with different
propagator exponents and shifted integer dimension, and to use power counting methods
to identify the quasi-finite integrals. By scanning over enough Feynman integrals, one
will eventually land on a basis of finite master integrals. All other integrals in the
family may then be related to this finite basis through IBP identities and dimensional
recurrence identities, see Ref. [124]. Another option is to use the method of analytic
regularization of Ref. [99], which is formulated directly in the Feynman parametrization.
This method involves repeatedly applying an operation to the integrand which rewrites
it as a sum of parametric integrals which have an improved scaling near parts of
the boundary of the integration region where the original integral diverges. These
parametric integrals come with prefactors that depend on the kinematic invariants
and masses and on ϵ. After applying the operation a sufficient number of times, all
divergences at the boundary of the integration region can be resolved, and the resulting
parametric integrals are all finite. These finite parametric integrals can then be safely
expanded in ϵ before integration. Furthermore, each parametric integral itself can
be identified as a quasi-finite Feynman integral in the same family, which has shifted
powers and shifted integer dimension from the original one.

The package HyperInt [100] can be used to perform the direct integration of Feynman
integrals in terms of multiple polylogarithms, and we used it to obtain the results in Ref.
[1] which are discussed in Chapter 4 of this thesis. We will outline the main steps of the
integration here. We do not aim for a complete treatment of all details, but instead we
focus on the steps that allow us to explain the concept of linear reducibility, which we
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discuss further in Section 3.1.2. We will consider a quasi-finite Feynman integral without
numerators, which we denote by Ia1,...,an . Its Feynman parametric representation can be
obtained from Eq. (2.4). We may simplify the Feynman parametrization by including
an overall normalization factor given by∏n

i=1 Γ (ai)(
iπ

d
2
)l

Γ
(
a− ld

2

) , (3.1)

where a = a1 + . . . + an. This prefactor cancels out all the Euler gamma functions
appearing in the Feynman parametrization. We consider the dimension d = d0 − 2ϵ,
and denote the Taylor series in ϵ by

Ia1,...,an =
∞∑
k=0

I(k)
a1,...,an

ϵk , (3.2)

for which the coefficients are given by

I(k)
a1,...,an

= 1
k!

∫
∆n−1

[
dn−1α⃗

] ( n∏
i=1

αai−1
i

)
Ua− d0

2 (l+1)F−a+ l
2d0 [(1 + l) log(U) − l log(F)]k .

(3.3)

We proceed by integrating terms of the form of Eq. (3.3) one Feynman parameter at
a time. Furthermore, we will aim to perform these integrations in terms of multiple
polylogarithms. We are typically interested in computing Feynman integrals in even
integer dimension d0, in which case the integrand of Eq. (3.3) is a product of a rational
function times powers of logarithms. Because we have to integrate over multiple
distinct integration parameters, it is not guaranteed that the final expression will be
expressible in terms of multiple polylogarithms. This is because we may encounter
algebraic obstructions in the integrations, as we will discuss next.

To perform the integration of Eq. (3.3), we will deprojectivize the integral using a
suitable application of the Cheng-Wu theorem (see Eq. (2.12).) Let us first consider
the simplest choice, where one of the Feynman parameters is set to one. For example,
we may put α1 = 1. Next, we fix an integration order for the remaining variables. For
example, we may choose to integrate these in the order α2, α3, . . . , αn. Each integration
then takes the schematic form:

fj (αj+1, . . . , αn) =
∫ ∞

0
dαjfj−1 (αj, . . . , αn) , (3.4)
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where j ∈ {1, . . . , n}. Let us assume that we have already performed a number of
polylogarithmic integrations, and that fj−1 is a polylogarithmic expression, which
doesn’t contain any algebraic functions of the integration variables. We may perform
the integration of αj in the following way [100]:

1. We express fj−1(αj, . . . , αn) as a combination of multiple polylogarithms of
argument αj,

2. We find a primitive Fj(αj, . . . , αn) such that ∂αj
Fj(αj, . . . , αn) = fj−1(αj, . . . , αn),

3. We compute the limit:

fj(αj+1, . . . , αn) = lim
αj→∞

Fj(αj, . . . , αn) − lim
αj→0

Fj(αj, . . . , αn) . (3.5)

Let us consider the first step. Note that while the integrand fj−1 is assumed to be
polylogarithmic, it might not be in a form that is directly suitable for integration.
Typically, it will consist of combinations of MPLs of the form:

G(a1(αj, αj+1, . . .), . . . , ak(αj, αj+1, . . .); 1) , (3.6)

where k is the weight of the MPL. We aim to rewrite such terms into the form

G(a′
1(αj+1, . . .), . . . , a′

k(αj+1, . . .); αj) , (3.7)

where the integration variable αj is only present in the argument. We discuss how
this may be done next. For simplicity, we will denote the integration variable αj by
α, and we will suppress the dependence on the remaining integration variables, which
is not important at this stage of the calculation. We can make use of the following
relation:

G(⃗a(α); 1) = G (⃗a (0) ; 1) +
∫ α

0
dα′ ∂

∂α′G(⃗a(α′); 1) , (3.8)

where we assume that G (⃗a (0) ; 1) is finite. If it is not finite we need to employ a
suitable regularization, which we do not discuss here. From Eq. (2.61), it is clear
that ∂

∂α′G(⃗a(α′); 1) can be expressed in terms of rational functions times MPLs whose
weight is reduced by one. Therefore, we may repeatedly apply Eq. (3.8) until we reach
weight zero. We are then left with iterated integrals over rational functions, which may
be rewritten in terms of multiple polylogarithms with argument α. Let us consider a
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simple example. We have that:

G(α− 1, 2; 1) = G(−1, 2; 1) +
∫ α

0
dα′ ∂

∂α′G(α− 1, 2; 1) . (3.9)

Furthermore, using Eq. (2.61) we have that:

∂

∂α
G(α− 1, 2; 1) =

( 1
α− 2 − 1

α− 3

)
G(2; 1) + 1

α− 3G(α− 1; 1) . (3.10)

We apply Eq. (3.8) again and write:

G(α− 1; 1) = G(−1; 1) +
∫ α

0
dα′ ∂

∂α′G(α− 1; 1) , (3.11)

where we have that:

∂

∂α
G(α− 1; 1) = 1

α− 2 − 1
α− 1 . (3.12)

Putting everything together yields:

G(α− 1, 2; 1) = G(0, 2; 1) +
∫ α

0
dα′

[( 1
α′ − 2 − 1

α′ − 3

)
G(2; 1)+

1
α′ − 3

(
G(−1; 1) +

∫ α′

0
dα′′

[ 1
α′′ − 2 − 1

α′′ − 1

])]
. (3.13)

In this example, there is no need for using any additional IBP relations, and we
find:

G(α− 1, 2; 1) = G(−1, 2; 1) +G(2; 1) (G(2; α) −G(3; α))
+G(−1; 1)G(3; α) +G(3, 2; α) −G(3, 1; α) , (3.14)

which gives the desired result.

For the second step of the integration, we seek to find a primitive Fj (αj, . . . , αn) so
that ∂αj

Fj (αj, . . . , αn) = fj−1 (αj, . . . , αn). We may choose∫ αj

0
fj−1

(
α′
j, . . . , αn

)
dα′

j . (3.15)

Note that fj−1 consists of rational functions times MPLs of the form G(⃗a(αj+1, . . .); αj).
We can partial fraction the rational terms, and use IBP relations, to perform the
integration. Lastly, in the third step we have to compute limits of the primitive. For
further details on taking the limit and the regularization thereof, we refer the reader
to Ref. [100].
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3.1.2 Linear reducibility

Note that we assumed at the start that fj−1 is polylogarithmic, and that it does not
contain algebraic functions of the integration variables. However, this is not necessarily
the case for fj. This can be seen from the fact that in steps 1 and 2 of the integration
we partial fraction any rational terms in order to separate out the poles. In general, this
can not be done without introducing algebraic factors, such as square roots, that depend
on the remaining integration parameters. Consider the field of rational functions in the
integration variables with complex coefficients, denoted C(αj, . . . , αn). Then, for fj to
be absent of algebraic terms, all irreducible polynomials appearing in denominators
of rational terms that are partial fractioned, have to be linear in αj. If there is an
integration sequence for which this condition holds for all integrations, the integration
sequence and the Feynman integral are called linearly reducible [76].

Note that we started our discussion with a particular integration sequence. We used the
Cheng-Wu theorem to put α1 = 1, and integrated the remaining Feynman parameters
in increasing order. In general, we have much more freedom. Firstly, we could have
picked any subset J of the Feynman parameters in the application of the Cheng-Wu
theorem (see Eq. (2.12)). Secondly, we are free to pick the order in which to integrate
the Feynman parameters. Typically one finds that only specific integration sequences
are linearly reducible. This has been studied in detail in Refs. [76, 77]. Also, note
that it is often possible to rationalize square roots by a suitable change of variables.
Such changes of variables have been studied in a number of works, see for example
Refs. [99, 125–127]. It is not always possible to perform a change of variables that
rationalizes the roots. A typical situation is one where there are two square roots with
irreducible quadratic arguments, and upon rationalizing one of the roots, the argument
of the other root becomes an irreducible quartic polynomial. Such a polynomial defines
an elliptic curve, and it is well-known that algebraic curves of genus greater than zero
can not be parametrized by rational functions.

Next, we make a few practical remarks about finding a linearly reducible integration
order. Typically this involves enumerating over many different integration sequences.
For sufficiently complicated Feynman integrals, the integration can be (very) compu-
tationally expensive, and so it would take a possibly long time to try out different
integration orders. Luckily, the set of polynomials which have to be factored at a
given integration step can be computed without actually performing the integration,
using so-called compatibility graphs [76, 77]. In practical terms, this works as follows.
One starts by considering a compatibility graph defined by the complete graph whose
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vertices are the two Symanzik polynomials, and the Feynman parameters. Next, one
considers a reduction procedure on the graph with respect to one of the Feynman
parameters. This reduction procedure transforms the compatibility graph into a new
compatibility graph, whose vertices are polynomials that do not depend anymore on
the given Feynman parameter. The vertices of the new graph represent the irreducible
polynomials that occur in the integrand of the next integration. We proceed by reducing
the compatibility graph one Feynman parameter at a time, until we either end up with
a trivial graph or we encounter irreducible quadratic polynomials. If we can reduce the
graph to the trivial graph for some integration order, the family of Feynman integrals
associated with the Symanzik polynomials is linearly reducible. The converse is not
necessarily true. For a review of compatibility graphs, we refer the reader to Ref. [77].
Compatibility graphs are implemented in the Maple package HyperInt [100].

We provide a few more practical remarks about the use of the Cheng-Wu theorem. In
Refs. [76, 77], the Cheng-Wu theorem is typically applied in the form where a single
Feynman parameter is set to one. Furthermore, the definition of the compatibility
graph is based on integrating from 0 to ∞. In Ref. [1], we showed that there are
some Feynman integrals which benefit from a non-trivial application of the Cheng-Wu
theorem where multiple Feynman parameters are included in the simplicial constraint.
In this case the integration bounds are different from 0 and ∞. In practice we deal
with this as follow. We choose first some trivial application of the Cheng-Wu theorem.
For example, we let αi → 1 for some i. Thereafter we perform as many integrations as
possible without introducing algebraic terms. We can determine the optimal integration
order from a compatibility graph. Next, let us look at the remaining expression, which
has the schematic form: ∏

j∈J

∫ ∞

0
dαj

 MPL(αj1 , . . . , αjk) , (3.16)

where J = {j1, . . . , jk} denotes a subset of the Feynman parameters, and where
MPL(αj1 , . . . , αjk) denotes some combination of polylogarithms which does not contain
square roots or higher degree roots that depend on the Feynman parameters. We can
lift the integration back to projective space by letting αj → α′

j/α
′
j′ , for all j ∈ J , where

j′ /∈ J (see Ref. [1].) This leads to the form:
∫

∆̃k

[
dkα⃗′

]
(α′

j′)−k−1MPL
(
αj1
αj′

, . . . ,
αjk
αj′

)
, (3.17)
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where:

∆̃k =
{
[αj1 : αj2 : . . . : αjk : αj′ ] ∈ RPk | αji ≥ 0, i ∈ J ∪ {j′}

}
. (3.18)

We can do the same projective lifting of the polynomials appearing in the compatibility
graph, by adding powers of αj′ to the monomials in order to make the polynomials
homogeneous. Next, we try out all possible applications of the Cheng-Wu theorem,
and check whether there is a choice such that all polynomials are linearly reducible in
one of the integration parameters. If so, we may integrate on that parameter. Often,
the Cheng-Wu theorem which we apply at this stage is non-trivial, and the integration
bounds of the remaining integration parameters are different from zero and ∞. Usually,
at this stage we stop considering the compatibility graph, and try out the remaining
integrations on the integral itself.

3.1.3 Elliptic Feynman integrals

So far we have only considered multiple polylogarithms, but in Section 2.5 we already
saw that we may enlarge the set of integration kernels and consider iterated integrals of
rational functions on an elliptic curve. Therefore, even when the Feynman integral is
not linearly reducible, we are in many cases able to perform an additional integration
in terms of elliptic multiple polylogarithms. The requirement is that we have at most a
single square root in the integrand which depends on a cubic or quartic polynomial, or
alternatively, we have multiple square roots in the integrand that can be rationalized
to yield at most one square root of a cubic or quartic polynomial. A natural question
to ask is then whether the introduction of eMPLs is actually necessary for a given
integral, or whether it is an unfortunate consequence arising from choosing the wrong
integration sequence.

It is not known in general which Feynman integrals are expressible in terms of MPLs.
However, there seems to be a criterion to identify which Feynman integrals are not
expressible in terms of MPLs. For a given Feynman integral, one may compute
the maximal cuts in integer dimension. Feynman integrals that are expressible in
terms of MPLs typically have maximal cuts which evaluate to a rational or algebraic
function. If any of the maximal cuts instead evaluate to elliptic integrals, or to integrals
associated with higher-genus varieties, it is expected that the Feynman integral can not
be expressed in terms of multiple polylogarithms. This follows from the observation
that the solutions to the homogeneous part of the differential equations satisfied by a
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Feynman integral are given by the maximal cuts [18, 128]. The homogeneous solutions
are in turn part of the general solution.

For some Feynman integrals, the maximal cuts are rational functions or square roots,
but the Feynman integrals are still not expressible in terms of MPLs. One possibility
is that the differential equations satisfied by these Feynman integrals are coupled to
subsectors whose maximal cuts do involve elliptic integrals. A more difficult problem
is whether integral families for which the maximal cuts of all integrals are rational or
algebraic, can be always be solved in terms of MPLs. For example, there are families
which admit a basis of master integrals for which the differential equations are in a
canonical d log-form in which the dimensional regulator is factorized (see Section 3.2.2),
but for which the alphabet contains multiple non-simultaneously rationalizable square
roots. In such a case it is not clear whether the solutions can be written in terms of
MPLs, although the answer seems to be negative [129]. We comment more on this in
Section 3.2.2.

For the remainder of this thesis, we will call a Feynman integral elliptic if its maximal
cuts, or the maximal cuts of some of its subsectors, evaluate to elliptic integrals.
Furthermore, in a slight abuse of terminology, we will call elliptic Feynman integrals
which are linearly reducible except for the last integration parameter, ‘linearly reducible
elliptic Feynman integrals’. This presents the best case scenario for such integrals,
since elliptic Feynman integrals can not be expressed in terms of MPLs. In Chapter 4
we will consider the analytic computation of a few linearly reducible elliptic Feynman
integrals, following Ref. [1]. We will call the integrand of the last integration the inner
polylogarithmic part (IPP), which is a polylogarithmic expression. When the IPP
depends on on a single elliptic curve, linearly reducible elliptic Feynman integrals can
be algorithmically solved in terms of E3- or E4-functions. We will discuss the IPP in
more detail in Section 4.1. Note that in Ref. [130] a similar and generalized concept
of ‘rigidity’ was introduced for Feynman integrals, which is defined to be the least
amount of integrations that are left before the integrand becomes non-polylogarithmic.
Linearly reducible elliptic Feynman integrals have rigidity one, while linearly reducible
(polylogarithmic) Feynman integrals have rigidity zero.

3.2 The method of differential equations

In this section we review the method of differential equations for Feynman integrals.
An important property of Feynman integrals is that they can be realized as solutions to
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linear systems of ordinary differential equations with respect to the kinematic invariants
and internal masses [78–80]. The traditional way to see this, is to take a basis of
master integrals of a given family and to note that their derivatives can be expressed
as combinations of Feynman integrals in the same family with different propagator
exponents. These integrals may be IBP-reduced back to the original set of master
integrals, which allows one to write the derivatives of the master integrals in terms of
a closed-form linear system of differential equations. In the following we review a few
basic properties of these differential equations.

3.2.1 Basic definitions

Let us consider a family of Feynman integrals with m master integrals, packaged into
a vector f⃗ = (f1, . . . , fm). Suppose that the Feynman integrals depend on a set of
kinematic invariants and internal masses that we denote by S, which consist of squares
of sums of external momenta, and of squares of internal masses. We may write the
associated system of differential equations in the following form:

df⃗ =
(∑
s∈S

As ds

)
f⃗ , (3.19)

where we will refer to the matrices As as partial derivative matrices. From the vanishing
of the total differential d2 = 0, we have the integrability condition:

∂s1As2 − ∂s2As1 + [As1 ,As2 ] = 0 for all s1, s2 ∈ S . (3.20)

If we have dÃ = ∑
s∈S Asds, then we may also write the above equation as:

dÃ = Ã ∧ Ã . (3.21)

Another property of the differential equations is the scaling relation. Starting from Eq.
(2.3), taking a derivative with respect to λ, and putting λ = 1 yields:

∑
s∈S

s∂sIa1,...,an+m = γ

2 Ia1,...,an+m , (3.22)

where S is the set of kinematic invariants and internal masses. This in turn leads
to:

∑
s∈S

sAs = Γ , (3.23)
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where Γ is the diagonal matrix with entries γj/2, where γj denotes the mass dimension
of the j-th basis integral. It is often a good idea to verify that the integrability condition
and the scaling relation are satisfied as a cross-check that the differential equations
were derived correctly.

3.2.2 Canonical basis

The differential equations may be considerably simplified when a so-called canonical
choice of basis is made, a concept that was introduced in Ref. [44]. Let us first consider
a generic change of basis, B⃗ = T−1f⃗ , where T is some matrix that may depend on the
kinematic invariants, on the internal masses, and on ϵ. The partial derivative with
respect to a variable s then takes the form:

∂

∂s
B⃗ =

[(
∂sT−1

)
T + T−1AsT

]
B⃗ . (3.24)

It was observed in Ref. [44] that if T is chosen such that(
∂sT−1

)
T + T−1AsT = ϵÃs , (3.25)

for all kinematic invariants and internal masses s ∈ S, and where Ãs is independent
of ϵ, the differential equations are simplified considerably. It was conjectured in Ref.
[44] that there is always such a choice of matrix T. For integrals that are expressible
in terms of multiple polylogarithms, the canonical basis is conjectured to take the
form:

dB⃗ = ϵdÃB⃗ , Ã =
∑
l∈A

Ãl log(l) , (3.26)

where Ãl are matrices of rational numbers, and where A is a set of functions of the
kinematic invariants and internal masses, called the alphabet, whose elements are
called letters. Note that in the mathematics literature, the alphabet usually denotes
instead the set of differential one-forms d log(l).

The matrix Ã may be found by first computing the following matrices:

Ã1 =
∫

Ãs1ds1 (3.27)

Ãi =
∫ Ãsi

− ∂si

i−1∑
j=1

Ãj

 dsi, i = 2, . . . , |S| , (3.28)
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where the variables si denote the kinematic invariants and masses of the family. The
matrix Ã is then given by the sum of the matrices Ãi. The general solution to Eq.
(3.26) may be written in terms of a path-ordered exponential:

B⃗ = P exp
(∫

γ
ϵ dÃ

)
B⃗(γ(0)) , (3.29)

where γ : [0, 1] → C|S| is a path in the phase-space of the kinematic invariants and
internal masses, which we denote by the set S, and where |S| denotes the number of
these. Let us denote the expansion in ϵ of the basis integrals by:

B⃗ =
∞∑
k=0

B⃗(k)ϵk , (3.30)

where we assume the expansion starts at finite order in ϵ. Note that this can always
be achieved by multiplying the basis by an overall power of ϵ. Expanded in terms of
iterated integrals, the path-ordered exponential works out to:

B⃗ = B⃗(0)(γ(0)) +
∑
k≥1

ϵk
k∑
j=1

∫ 1

0
γ∗(dÃ) (t1)

∫ t1

0
γ∗(dÃ) (t2) × . . .

. . .×
∫ tj−1

0
γ∗(dÃ) (tj) B⃗(k−j)(γ(0)) . (3.31)

If we express Eq. (3.31) in terms of MPLs, the resulting expressions are pure functions
for each order in ϵ. This means that they are given by linear combinations of MPLs
of the same weight, for which the prefactors of the MPLs are numbers (typically
considered to lie in Q.) Furthermore, note that the weight of the MPLs resulting
from Eq. (3.31) increases by one for each order in ϵ. Such Feynman integrals are
also said to be of uniform transcendental weight (UT). Furthermore, the symbol map
[121, 131, 132] is given by:

S
(
B

(k)
i

)
=
∑
j

S
(
B

(k−1)
j

)
⊗ Ãij , (3.32)

where we let S
(
B

(1)
i

)
= B

(1)
i .

To obtain a matrix T that solves Eq. (3.25), it is useful to first find a precanonical
basis, in which the differential equations are given by:

∂

∂s
f⃗ =

(
A(0)
s + ϵA(1)

s

)
f⃗ , (3.33)
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for all kinematic invariants and internal masses s, and where the matrices A(0)
s and

A(1)
s do not depend on ϵ. Such a precanonical basis may often be found by performing

a change of basis where the prefactors depend on ϵ but not on the kinematic invariants
and internal masses. If we start from a precanonical basis, Eq. (3.25) is solved by a
matrix T that is independent of ϵ, and which satisfies:

∂sT = A(0)
s T . (3.34)

Hence, T is an invertible matrix that satisfies the precanonical differential equations
at leading order.

Note that while families of Feynman integrals which are expressible in terms of MPLs
are conjectured to admit a canonical basis of the form of Eq. (3.26), the converse is
not necessarily true. We reflect on this next. If the alphabet contains only rational
functions, it is always possible to rewrite the solutions in Eq. (3.31) in terms of multiple
polylogarithms. This can be seen by choosing an integration contour that is a collection
of line segments, such that along each segment only a single integration variable varies
at a time, while the others are kept constant.

More generally, the alphabet may contain algebraic functions such as square roots.
In this case, it is necessary to pick a parametrization of the integration path along
which the roots are rationalized. In recent literature there have been a number of
papers systematically analyzing variable changes for the rationalization of square
roots, such as Refs. [125, 126, 133]. In particular, Ref. [126] provides a Mathematica
package RationalizeRoots which is (under certain conditions) able to find a change
of variables for the rationalization of square roots, when such a change of variables
exists.

If there are non-simultaneously rationalizable square roots in the alphabet, it might
not be possible to express the iterated integrals in Eq. (3.31) in terms of MPLs. In
this case, a polylogarithmic solution may sometimes be found up to some order in the
dimensional regulator through a method that is called the integration of the symbol.
Practically, this means that one writes down an ansatz of polylogarithmic functions,
inspired by the Duhr-Gangl-Rhodes approach of Ref. [134], and that one constrains the
ansatz by matching its symbol to Eq. (3.32). (We will apply this method in Chapter 6
for the computation of a subset of the master integrals for Higgs plus jet production
up to weight two.) Additionally, in Ref. [127], it was shown that a set of Drell-Yan
master integrals, which have unrationalizable roots in the alphabet, can in fact be
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solved in terms of MPLs through the method of direct integration, or by integrating
the symbol.

However, in Ref. [129] a double integral of d log-forms has been identified, which can
not be expressed in terms of MPLs, strongly indicating that there is no reason to
expect that every family of Feynman integrals admitting a canonical basis of the form
of Eq. (3.26) can be expressed in terms of MPLs.

3.3 Expansion by regions

In the previous section we discussed the method of differential equations. An important
ingredient in the method is to provide a set of boundary conditions at a suitable point
or limit. In this section we briefly review the method of expansion by regions [135–137],
which may be used to find boundary conditions in asymptotic limits. (See also Refs.
[138–140] for some recent developments.)

Generally, we would like to compute boundary conditions in special points, where
the Feynman integrals are expected to simplify. If one looks naively at the second
Symanzik polynomial, it seems that the simplest choice of boundary point should be
one where most of the kinematic invariants and internal masses vanish. In such a point,
the second Symanzik polynomial will simplify, and the Feynman parametrization may
then often be integrated in closed form in ϵ in terms of simple functions, such as ratios
of gamma functions. However, typically a Feynman integral develops divergences as we
approach such a point, and we would not obtain the correct asymptotic limit by simply
plugging it into the integrand. To illustrate this with a simple example, let us consider
the massive bubble, dimensionally regulated around d = 2 − 2ϵ. We have:

eγEϵ

iπ1−ϵ

∫
ddk1

1
(−k2

1 +m2)(−(k1 + p)2 +m2) =
2 log

(
−
√

−p2−
√

4m2−p2√
−p2−

√
4m2−p2

)
√

−p2
√

4m2 − p2 + O(ϵ) ,

(3.35)

in the Euclidean region. Note that the factor eγEϵ/iπ1−ϵ was added by convention,
where γE is the Euler-Mascheroni constant. Next, let us consider the zero-mass limit.
In particular, we let m2 = x, and we take the limit x ↓ 0. This yields the following
expression at finite order in ϵ:

−2 (log (−p2) − log(x))
p2 + O(x) . (3.36)
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If we start directly from the massless bubble, we find instead:

eγEϵ

iπ1−ϵ

∫
ddk1

1
(−k2

1)(−(k1 + p)2) = 2
p2ϵ

− 2 log (−p2)
p2 + O(ϵ) . (3.37)

Thus, the logarithmic divergence in the asymptotic limit in Eq. (3.36) shows up as
a pole in the dimensional regulator in Eq. (3.37), and we can not use Eq. (3.37) to
provide the boundary conditions for the massive bubble in the massless limit. The
question is then how to obtain the asymptotic limit without first computing the
integral for a generic configuration of p2 and m2, which defeats the purpose of choosing
a simple boundary point. One solution is to use the method of expansion by regions
[135]. The method has a powerful formulation in the Feynman parametrization, which
was developed in Refs. [141, 142]. Furthermore, Ref. [142] comes with a powerful
Mathematica package asy, that implements the method.1

We briefly outline the method next, from a pragmatic viewpoint. Suppose we consider
a Feynman integral with n propagators, which depends on a set of kinematic invariants
and internal masses S = {s1, . . . , s|S|} where |S| ≥ 1, and which is written in the
Feynman parametrization. Next, suppose that we are interested in obtaining the
asymptotic behaviour in a one-scale limit in which every kinematic invariant and
mass has a certain scaling si → s′

i = xγisi for i = 1, . . . , |S|, where the exponents
γi are rational numbers, and where x is a line parameter that goes to zero. The
method of expansion by regions states that there is a set of regions {Ri}, denoted by
Ri = (ri1, . . . , rin) for each i, which describe rescalings of the Feynman parameters,
and which prescribe how to compute the asymptotic expansion in the limit. The set of
regions can be determined from the Symanzik polynomials of the Feynman integral
and also depends on the asymptotic limit that is being considered.

We will not discuss the derivation of the set of regions here. We note that they
can be obtained using for example the program asy.m, which relies on a geometric
algorithm based on finding the convex hull of a set of points determined from the
Symanzik polynomials [142]. For each region, we rescale the Feynman parameters
and their differentials according to αj → α′

j = xrijαj. In addition, we also rescale the
kinematic parameters and masses according to si → s′

i = xγisi. Next, we expand the
contribution of each region in the line parameter x, we integrate the result, and we sum
the contributions together. The claim of the method of expansion by regions is that the
resulting sum provides the asymptotic limit of the Feynman integral. Note that it is

1Note that the latest version of asy.m is shipped together with the program FIESTA [74].
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currently not fully mathematically proven that the method is correct [138], however in
practice the method is known to work from the consideration of many examples.

Let us reconsider the example of the massive bubble. Its Feynman parametrization in
d = 2 − 2ϵ is given by:

eγEϵΓ(ϵ+ 1)
∫

∆1

[
d1α⃗

]
(α1 + α2)2ϵ

(
α2

1m
2 + α2

2m
2 + 2α1α2m

2 − α1α2p
2
)−1−ϵ

.

(3.38)

Using the Mathematica package asy we obtain the regions

R1 = {0, 0}, R2 = {0,−1}, R3 = {0, 1} , (3.39)

in the asymptotic limit m2 = x ↓ 0. Rescaling the Feynman parameters in each region,
and summing over the result yields the expression:

eγEϵΓ(ϵ+ 1)
∫

∆1

[
d1α⃗

] (
(α1 + α2)2ϵ

(
xα2

1 − p2α1α2 + 2xα1α2 + xα2
2

)−1−ϵ

+ x−ϵ (xα1 + α2)2ϵ
(
x2α2

1 − p2α1α2 + 2xα1α2 + α2
2

)−1−ϵ

+ x−ϵ (α1 + xα2)2ϵ
(
α2

1 − p2α1α2 + 2xα1α2 + x2α2
2

)−1−ϵ
)
. (3.40)

At leading order in x we obtain:

eγEϵΓ(ϵ+ 1)
∫

∆1

[
d1α⃗

] (
α−ϵ−1

1 α−ϵ−1
2 (α1 + α2)2ϵ

(
−p2

)−1−ϵ

+ x−ϵα−1+ϵ
2

(
−p2α1 + α2

)−1−ϵ
+ x−ϵαϵ−1

1

(
α1 − p2α2

)−ϵ−1
)
. (3.41)

After integrating the result, we find:

−eγEϵ
Γ(ϵ)
p2

(
ϵ
(−p2)−ϵ Γ(−ϵ)2

Γ(−2ϵ) + 2x−ϵ
)

= −2 (log (−p2) − log(x))
p2 + O(ϵ) , (3.42)

which agrees with Eq. (3.36).

We will use the method of expansion by regions a number of times in this thesis. For
example, in Chapter 5, we will use it to compute boundary terms for the massive
three-loop banana graph family in the limit where the momentum goes to minus infinity.
Furthermore, in Chapter 6 we will compute boundary conditions for two non-planar
families of Higgs plus jet integrals using expansion by region. We will also consider it
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in Chapter 7 for the computation of boundary conditions for the one-line cuts of the
equal-mass sunrise family.





Chapter 4

Computation of linearly reducible
elliptic Feynman integrals

We will call Feynman integrals elliptic when one of their maximal cuts, or the maximal
cut of one of their subsectors, is an elliptic integral. In general, such integrals can not
be expressed in terms of multiple polylogarithms. Elliptic Feynman integrals have been
the subject of a lot of research in recent years [9–40]. This results in this chapter are
based on Ref. [1].

In Section 3.1.2, we reviewed the concept of linear reducibility. Practically spoken,
if a Feynman integral is linearly reducible, there exists an integration sequence such
that the Feynman integral can be expressed in terms of multiple polylogarithms. We
discussed in Section 3.1.3 how some elliptic Feynman integrals are linearly reducible
except for the last integration parameter. In that case they can be expressed as a
one-fold integral over a polylogarithmic integrand, which depends algebraically on one
or more elliptic curves. This could be considered the best case scenario for elliptic
Feynman integrals from the viewpoint of the direct integration method, since if the
last integration was linearly reducible, the solutions would be polylogarithmic. In a
slight abuse of terminology, we therefore call such integrals ‘linearly reducible elliptic
Feynman integrals’. We call the polylogarithmic integrand, the inner polylogarithmic
part (IPP). It turns out that the IPP can be identified with a (generalized) Feynman
integral family, that is obtained from the original one by an application of the Feynman
trick [1]. We will show this in Section 4.1.

In the rest of this chapter, we discuss the computation of two examples of linearly
reducible elliptic Feynman integrals. We will consider both the method of direct
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integration, and the method of differential equations. The integrations will be performed
using the Maple package HyperInt. The differential equation method will be applied
to the generalized integral families that correspond to the IPP, which admit a set
of differential equations in a canonical d log-form. This approach is different from
Refs. [34, 35, 37, 143], where canonical form differential equations are set up for
families of elliptic Feynman integrals without any remaining dependence on integration
parameters. In our approach, the solutions to the differential equations still depend
on a final integration parameter, but an advantage is that the integration kernels are
given by a simpler class of functions.

4.1 The inner polylogarithmic part

In this section we show that the inner polylogarithmic part can be mapped to a
generalized integral family, arising from an application of the Feynman trick. Consider
a family of Feynman integrals denoted by Ia1,...,an . For notational convenience, we
consider a family without numerators. We also include an overall normalization factor
N , given by:

N =
∏m
i=1 Γ (ai)(

iπ
d
2
)l

Γ
(
a− ld

2

) . (4.1)

Suppose that we have used the Cheng-Wu theorem (see Section 2.2.1) to put αn = 1,
and that the Feynman parameter αn−1 is the last one in our integration sequence. We
then have schematically:

Ia1,...,an ≡ N
∫ (

l∏
i=1

ddki

)
1∏n

i=1 D
ai
i

=
(
n−1∏
i=1

∫ ∞

0
dαi α

ai−1
i

) (
Ua− d

2 (l+1)F−a+ ld
2
)∣∣∣
αn=1

=
∫ ∞

0
dαn−1 IPP(αn−1) , (4.2)

where in the last step we assume all integration parameters but αn−1 are integrated
out, and where we have denoted the inner polylogarithmic part by IPP(αn−1).

Next, consider the following application of the Feynman trick:

1
D
an−1
n−1 D

an
n

= Γ (an−1 + an)
Γ (an−1) Γ (an)

∫ ∞

0

α
an−1−1
n−1

(αn−1Dn−1 +Dn)an−1+an
dαn−1 . (4.3)
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The combination αn−1Dn−1 +Dn is quadratic in the momenta, and we may treat it as
a propagator that depends on an external scale αn−1, if we ignore the last integration.
Therefore, we consider a new family of Feynman integrals that contains this generalized
propagator. We will denote it with the symbol Ĩ, and it is given explicitly by:

Ĩa1,...,an−2,an−1+an ≡ Ñ
∫ (

l∏
i=1

ddki

)
1(∏n−2

i=1 D
ai
i

)
(αn−1Dn−1 +Dn)an−1+an

, (4.4)

where we included the normalization factor Ñ , given by:

Ñ = Γ(an−1 + an)∏n−2
i=1 Γ(ai)(

iπ
d
2
)l

Γ(a− ld
2 )

. (4.5)

From Eq. (4.3) it is clear that we have:

Ia1,...,an =
∫ ∞

0
dαn−1 α

an−1−1
n−1 Ĩa1,...,an−2,an−1+an . (4.6)

Next, we will show explicitly that:

IPP = α
an−1−1
n−1 Ĩa1,...,an−2,an−1+an . (4.7)

We will add tildes to the Feynman parameters of the family Ĩ, and we will denote its
Symanzik polynomials by Ũ and F̃ . Note that these can be computed using Eqns.
(2.9) and (2.10). The Feynman parametrization is then given by:

Ĩa1,...,an−2,an−1+an =
(
n−2∏
i=1

∫ ∞

0
dα̃i α̃

ai−1
i

) (
Ũa− d

2 (l+1)F̃−a+ ld
2
)∣∣∣
α̃n−1=1

, (4.8)

where the Cheng-Wu theorem has been applied to put the Feynman parameter α̃n−1

to one. Next, we will explicitly write the dependence of the Symanzik polynomials
on their Feynman parameters, using the notation U(α1, . . . , αn) and Ũ(α̃1, . . . , α̃n−1).
One may show that the Symanzik polynomials of the families I and Ĩ are related in
the following way:

Ũ(α̃1, . . . , α̃n−1) = U(α̃1, . . . , α̃n−2, α̃n−1αn−1, α̃n−1) ,
F̃(α̃1, . . . , α̃n−1) = F(α̃1, . . . , α̃n−2, α̃n−1αn−1, α̃n−1) . (4.9)

If we put α̃n−1 = 1, in correspondence with the choice of the Cheng-Wu theorem in Eq.
(4.4), and relabel α̃i to αi for i = 1, . . . , n− 2, then we have:

Ũ(α1, . . . , αn−2, 1) = U(α1, . . . , αn−2, αn−1, 1) ,
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F̃(α1, . . . , αn−2, 1) = F(α1, . . . , αn−2, αn−1, 1) . (4.10)

Therefore, the Symanzik polynomials of both topologies match if we use the Cheng-Wu
theorem to put αn = 1 for the family I, and to put α̃n−1 = 1 for the family Ĩ. If we
compare Eqns. (4.2), (4.4), and (4.10), we conclude that Eq. (4.7) holds. Hence the
family Ĩ may be used to represent the IPP of a family of linearly reducible elliptic
Feynman integral, through Eq. (4.7).

4.2 The unequal-mass sunrise integral

In this section we discuss the analytic computation of the unequal-mass sunrise family,
focusing in particular on the undotted master integral (i.e. the master integral with
unit propagator powers.) The family of integrals is defined by:

Sν1ν2ν3(s,m2
1,m

2
2,m

2
3) = Γ (ν1) Γ (ν2) Γ (ν3)

Γ
(
ν1 + ν2 + ν3 − ld

2

) ,

= Γ (ν1) Γ (ν2) Γ (ν3)
Γ
(
ν1 + ν2 + ν3 − ld

2

) ∫ ddk1

iπd/2
ddk2

iπd/2
1

Dν1
1 D

ν2
2 D

ν3
3
, (4.11)

where the propagators are given by:

D1 = −k2
1 +m2

1 D2 = −k2
2 +m2

2 D3 = −(k1 + k2 + p)2 +m2
3 , (4.12)

and where s = p2. We have included an overall normalization factor which cancels out
Euler gamma functions that appear in the Feynman parametrization. The integral
family has seven master integrals, which can be chosen as S211, S121, S112, S111, S110, S101,

and S011.

Note that the massive sunrise family is a well-known example in the literature and
its computation has been considered from many different angles, see e.g. Refs. [14–
17, 20, 24, 26, 28, 30, 32, 33, 37, 45, 46, 84–86]. For some of the first papers solving
the sunrise in terms of elliptic polylogarithms see e.g. Refs. [9, 12, 14, 16]. The
E4-functions were first applied to the computation of the massive sunrise in Ref. [28].
An addition that we will consider here compared to Ref. [28] is that we will also show
how to obtain expressions in terms of E4-functions by setting up differential equations
in a canonical d log-form for the inner polylogarithmic part. Note that in Ref. [37] the
unequal-mass sunrise family has also been solved from a canonical set of differential
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equations (without leaving out the last integration), which involves integration kernels
on the moduli space M1,3.

4.2.1 Direct integration

The Symanzik polynomials of the unequal-mass sunrise family are:

F = (α1α2 + α3α2 + α1α3)
(
α1m

2
1 + α2m

2
2 + α3m

2
3

)
− α1α2α3s ,

U = α1α2 + α1α3 + α2α3 . (4.13)

Furthermore, the Feynman parametrization is given by:

Sν1ν2ν3(s,m2
1,m

2
2,m

2
3) =

∫
∆2

[
d2α⃗

]
αν1−1

1 αν2−1
2 αν3−1

3 U− 3d
2 +ν1+ν2+ν3Fd−ν1−ν2−ν3 .

(4.14)
We will work in the dimension d = 2 − 2ϵ, where the master integrals in the top sector
are finite. Furthermore, we will work in the Euclidean region, which is given by:

s < 0 , m2
i > 0 . (4.15)

First, we consider the direct integration of the integral S111. We start by expanding
the Feynman parametrization around d = 2 − 2ϵ, which gives:

S111(s,m2
1,m

2
2,m

2
3) =

∞∑
k=0

ϵk
∫

∆2

[
d2α⃗

] F−1

k! [3 log (U) − 2 log (F)]k

≡ S
(0)
111(s,m2

1,m
2
2,m

2
3) + ϵ S

(1)
111(s,m2

1,m
2
2,m

2
3)+

+ ϵ2 S
(2)
111(s,m2

1,m
2
2,m

2
3) + O(ϵ3) . (4.16)

Next, we apply the Cheng-Wu theorem to put α1 = 1. Next, we integrate with respect
to α2. The U -polynomial is linear in the integration variable, whereas the F -polynomial
is not. To perform the integration, we have to factorize the F -polynomial, which leads
to:

F = m2
2 (α3 + 1) (α2 −R+)(α2 −R−) , (4.17)

where we have that

R±(s,m2
1,m

2
2,m

2
3) = −α2

3m
2
3 + α3 (−m2

1 −m2
2 −m2

3 + s) −m2
1 ±

√
PS

2 (α3 + 1)m2
2

. (4.18)
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The square root contains a fourth degree polynomial which defines an elliptic curve,
and which is given by:

PS =
(
α2

3m
2
3 + α3m

2
1 + α3m

2
2 + α3m

2
3 +m2

1 − α3s
)2

− 4
(
α3m

2
2 +m2

2

) (
α3m

2
1 + α2

3m
2
3

)
,

(4.19)

We can now perform the integration with respect to α2. At order ϵ0, we have the
following simple expression:

S
(0)
111(s,m2

1,m
2
2,m

2
3) =

∫ ∞

0
dα3

1√
PS

log
(
R−

R+

)
. (4.20)

At order ϵ1 we obtain:

S
(1)
111(s,m2

1,m
2
2,m

2
3) =

∫ ∞

0
dα3

1√
PS

[
G

(
− R+

R− −R+
; 1
)
G (QS; 1) −G

(
0, 1
R− + 1; 1

)

+G

(
0, 1
R+ + 1; 1

)
− 2G

(
1

R− + 1 ,
1

R+ + 1; 1
)

+ 2G
(

1
R+ + 1 ,

1
R− + 1; 1

)

− 3G
(
α3 + 1, 1

R− + 1; 1
)

+ 3G
(
α3 + 1, 1

R+ + 1; 1
)]

, (4.21)

where we introduced:

QS = m2
2 (1 + α3) (m2

1 +m2
3α3)

m2
1m

2
2 +m2

1m
2
2α3 +m2

2m
2
3α3 +m2

2m
2
3α

2
3 − α2

3
. (4.22)

In deriving this result we combined some logarithmic terms encountered at an interme-
diate stage. Note that all polylogarithms are of weight 2. Using HyperInt, we may
also obtain higher orders in ϵ in the same manner. It can then be verified by explicit
computation that the polylogarithmic part is of weight k + 1 at ϵ-order k.

In Ref. [1] we also showed how the analytic continuation of the undotted master
integral can be performed at orders ϵ0 and ϵ1, by analytically continuing the IPP using
standard techniques for the analytic continuation of polylogarithmic Feynman integrals.
This involves splitting up the phase-space into multiple regions, and finding in each
region an expression in terms of classical polylogarithms without branch cuts. The
integration of the last Feynman parameter may be performed numerically, which we
showed to be sufficient for obtaining fast and precise numerical results.
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4.2.2 Differential equations for the inner polylogarithmic part

Next, we will consider the generalized integral family corresponding to the inner
polylogarithmic part, using the results from Section 4.1. Furthermore, we will set up
canonical form differential equations for this integral family, and solve these analytically.
First, we consider the following Feynman trick:

1
Dν1

1 D
ν3
3

= Γ (ν1 + ν3)
Γ (ν1) Γ (ν3)

∫ ∞

0
dx

xν3−1

(D1 + xD3)ν1+ν3
. (4.23)

We let D̃1 ≡ D1 + xD3, and define the following (generalized) integral family:

SIPP
ν1+ν3,ν2 ≡ Γ(ν1 + ν3)Γ(ν2)

(iπd/2)2Γ(ν1 + ν2 + ν3 − d)

∫
ddk1d

dk2
1

D̃ν1+ν3
1 Dν2

2
. (4.24)

We then have that:

Sν1ν2ν3 =
∫ ∞

0
x−1+ν3SIPP

ν1+ν3,ν2 dx . (4.25)

The integral family has three master integrals. We performed the IBP reduction to the
master integrals using Fire5 [144]. We choose the master integrals to be

B1 = 2(m2
3)2ϵxϵS̃IPP

2,0 , B2 = 2(m2
3)2ϵ(1 + x)ϵ2S̃IPP

1,1 , B3 = ϵ(m2
3)2ϵ+1yS̃IPP

2,1 , (4.26)

where y =
√
P

(x)
S /m4

3, and where P (x)
S is equal to the polynomial defined in Eq. (4.19)

with α3 replaced by x. The prefactor (m2
3)2ϵ is included in the basis definition to

make the integrals dimensionless. We have added tildes to the integrals, to indicate a
different choice of normalization:

S̃IPP
ν1+ν3,ν2 ≡ 1

(iπd/2)2Γ(3 − d)

∫
ddk1d

dk2
1

D̃ν1+ν3
1 Dν2

2
. (4.27)

We divided out the term m4
3 in the elliptic curve to obtain the form:

y =
√

(x− a1)(x− a2)(x− a3)(x− a4) , (4.28)

where the ai variables denote the roots of the elliptic curve. At this stage the ordering
of the roots is not important, and we may choose for example:

a1 = −
m2

1 − (
√
s+m2)2 +m2

3 +
√[

(
√
s−m1 +m2)2 −m2

3

] [
(
√
s+m1 +m2)2 −m2

3

]
2m2

3
,
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a2 = −
m2

1 − (
√
s−m2)2 +m2

3 +
√[

(
√
s+m1 −m2)2 −m2

3

] [
(
√
s−m1 −m2)2 −m2

3

]
2m2

3
,

a3 =
−m2

1 + (
√
s−m2)2 −m2

3 +
√[

(
√
s+m1 −m2)2 −m2

3

] [
(
√
s−m1 −m2)2 −m2

3

]
2m2

3
,

a4 =
−m2

1 + (
√
s+m2)2 −m2

3 +
√[

(
√
s−m1 +m2)2 −m2

3

] [
(
√
s+m1 +m2)2 −m2

3

]
2m2

3
.

(4.29)

The differential equations for our master integrals are in canonical form:

dB⃗ = ϵ dÃ B⃗ , (4.30)

where we have that B⃗ = (B1, B2, B3), and where

Ã =


l8 − 2l4 0 0

1
2 (l6 − l5) 1

2 (−3l5 − l6 + 4l7 − 2l8) l1 − l2
1
4 (3l1 + l2) 3

4 (l2 − l1) 1
2 (−4l3 + l5 + 3l6 + 4l7 + 6l8)

 .

(4.31)

The letters are given by:

l1 = log
(

−xs+(x+1)m2
1−xm2

2+(x2+x−y)m2
3

xs+(x+1)m2
1−xm2

2+(x2+x+y)m2
3

)
, l2 = log

(
(x+1)m2

1+xm2
2+(x2+x+y)m2

3−sx
(x+1)m2

1+xm2
2+(x2+x−y)m2

3−sx

)
,

l3 = log
(
y2
)
, l4 = log

(
m2

1
m2

3
+ x

)
, l5 = log

(
m2

2
m2

3

)
, l6 = log

(
s

m2
3

)
,

l7 = log (x+ 1) , l8 = log (x) . (4.32)

As a first cross-check, we computed the symbol of the inner polylogarithmic part
from the differential equations using Eq. (3.32), and we compared it with the symbol
obtained by iterating the coproduct in the manner of Eq. (2.64) on the results obtained
through direct integration. We found that both approaches gave the same result. Note
that Eq. (3.32) requires us to provide the value of the leading order in the ϵ expansion
of B⃗, which is given by the order ϵ0. By power counting the integrand, one can show
that B3 vanishes at leading order. Furthermore, the integrals B1 and B2 are equal
to one at leading order, which can be shown by direct integration of the Feynman
parametrization.

Next, we discuss how to solve the differential equations explicitly in terms of elliptic
multiple polylogarithms (E4-functions.) First, we will perform a Möbius transformation
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on the parameter x to map the integration region to [0, 1]. This is equivalent to
considering the following Feynman trick:

1
Dν1

1 D
ν3
3

= Γ (ν1 + ν3)
Γ (ν1) Γ (ν3)

∫ 1

0
dx′ (1 − x′)ν1(x′)ν3

[(1 − x′)D1 + x′D3]ν1+ν3
. (4.33)

instead of the one from Eq. (4.23). We define D̂1 ≡ (1 − x′)D1 + x′D3, and con-
sider:

ŜIPP
ν1+ν3,ν2 ≡ 1

(iπd/2)2Γ(3 − d)

∫
ddk1d

dk2
1

D̂ν1+ν3
1 Dν2

2
. (4.34)

Under the identification x = x′/(1 − x′) one has:

S̃IPP
ν1+ν3,ν2 = (1 − x′)ν1+ν3ŜIPP

ν1+ν3,ν2 , (4.35)

and we may rewrite the canonical basis in terms of x′ and ŜIPP as:

B1 = 2(m2
3)2ϵ(1 − x′)x′ϵŜIPP

2,0 , B2 = 2(m2
3)2ϵϵ2ŜIPP

1,1 , B3 = ϵ(m2
3)2ϵ(m2

2 − s)y′ŜIPP
2,1 ,

(4.36)

where we now have the elliptic curve:

(y′)2 = 1
(s−m2

2)
2

[
(x′)2

(
2m2

2 (x′ − 1)
(
m2

3 − sx′ + s
)

+
(
m2

3 + s (x′ − 1)
)2

+m4
2 (x′ − 1)2

)
+m4

1 (x′ − 1)2 − 2m2
1 (x′ − 1)x′

(
m2

2 (x′ − 1)

+m2
3 + s (x′ − 1)

)]
≡ (x′ − a′

1)(x′ − a′
2)(x′ − a′

3)(x′ − a′
4) , (4.37)

and where we consider the principal branch of the square root y′ =
√∏4

j=1(x′ − a′
i).

Explicit expressions for the roots a′
i can be obtained up to permutation from the

ratios:

ai
ai + 1 . (4.38)

The roots are complex-valued in the Euclidean region, and we may choose to order
them in the manner of Eq. (2.96). The ordering of the roots is mainly important when
considering E4-functions that contain non-algebraic integration kernels, and we will
not consider these in what follows.
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Since we work in the Euclidean region, we will use the following kinds of simplifica-
tions:

y(0) =
√√√√ m4

1

(m2
2 − s)2 = m2

1
m2

2 − s
. (4.39)

Next, we solve the differential equations with respect to x′, which are given by:

∂

∂x′ B⃗ = ϵ
∂Ã
∂x′ B⃗ . (4.40)

The partial derivative of Ã with respect to x′ has the following entries:

∂Ã11

∂x′ = − 2 (m2
3 −m2

1)
m2

1 + x′ (m2
3 −m2

1)
+ 1
x′ − 1 + 1

x′ ,

∂Ã22

∂x′ = − 1
x′ − 1

x′ − 1 ,

∂Ã23

∂x′ = 2 (m2
1 −m2

3)
y′ (s−m2

2)
+ 2m2

1
x′y′ (m2

2 − s) + 2m2
3

(x′ − 1) y′ (m2
2 − s) ,

∂Ã31

∂x′ = m2
1

2x′y′ (m2
2 − s) + m2

3m
2
1

y′ (m2
1 −m2

3) (x′m2
1 −m2

1 − x′m2
3)

+ m2
3

2 (x′ − 1) y′ (m2
2 − s) + m4

1 + 2 (s−m2
2 −m2

3)m2
1 +m4

3
2y′ (s−m2

2) (m2
1 −m2

3)
− x′

y′ ,

∂Ã32

∂x′ = 3m2
1

2x′y′ (s−m2
2)

+ 3 (m2
1 −m2

3)
2y′ (m2

2 − s) − 3m2
3

2 (x′ − 1) y′ (m2
2 − s) ,

∂Ã33

∂x′ = 3
x′ − 2

x′ − a′
1

− 2
x′ − a′

2
− 2
x′ − a′

3
− 2
x′ − a′

4
+ 3
x′ − 1 ,

∂Ã12

∂x′ = ∂Ã13

∂x′ = ∂Ã21

∂x′ = 0 . (4.41)

All of the entries may be expressed in terms of integration kernels of the E4-functions
defined in Ref. [28], which we wrote down in Eq. (2.93). The formal solution of the
differential equations is given in terms of a path-ordered exponential:

B⃗(x′, s,m1,m2,m3) = P exp
(
ϵ
∫ x′

x′
0

∂Ã
∂x′ dx

′
)
B⃗(x′

0, s,m1,m2,m3) . (4.42)

The first master integral of the sunrise works out to:

S111(s,m1,m2,m3) (4.43)

= (m2
3)−2ϵ

(m2
2 − s)ϵ

∫ 1

0
dx′B3

y′
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= (m2
3)−2ϵ

(m2
2 − s)ϵ

∫ 1

0
dx′ 1

y′

3∑
k=1

P exp
(
ϵ
∫ x′

x′
0

∂Ã
∂x′ dx

′
)

3,k
Bk(x′

0, s,m1,m2,m3)
 ,

which shows that the last integration kernel at all orders in ϵ is 1/y′, confirming
the observations made through the direct integration method in Section 4.2.1. In
order to obtain a representation in terms of E4-functions, we would like to pick the
boundary condition x′

0 = 0, but note that B⃗(x′
0, s,m1,m2,m3) is singular in this limit.

Nonetheless, the limit x′
0 → 0 of the right hand side of Eq. (4.42) should be finite,

since the left-hand side of the equation is finite.

Since the iterated integrals arising from the path-ordered exponential are elliptic
multiple polylogarithms, we know that we may regulate the base-point divergence,
which is of a logarithmic kind, using the tangential basepoint prescription. To get a
consistent finite result we should apply the exact same regularization to the boundary
term B⃗(x′

0, s,m1,m2,m3), which will amount to taking the limit as x′
0 → 0 from the

positive real axis, and throwing away divergences of the form log(x′
0)k, where k is a

positive integer.

Let us explicitly compute reglimx′→0B⃗(x′, s,m1,m2,m3). It is straightforward to
compute the expression for B1, since the Feynman parameterization of ŜIPP

2,0 requires
no non-trivial integrations. For the integrals B2 and B3 we do have to perform a
non-trivial integration. One way to obtain the boundary terms for these integrals is to
use the method of expansion by regions. Here, we follow a symmetry based argument,
which is the method that we used in Ref. [1]. This works as follows.

Note that if we put x′ = 0 in the momentum space representation, we find that the
integral family becomes that of a squared tadpole, and the resulting integrals are
independent of s. However, to obtain the correct boundary term we first need to
compute the integral for nonzero x′, and then compute the regularized limit as x′ → 0.
Luckily, the dependence on s also disappears in the regularized limit, which we checked
through numerical integration. This means that:

reglimx′→0

(
B⃗(x′, s,m1,m2,m3)

)
= reglimx′→0

(
B⃗(x′, 0,m1,m2,m3)

)
. (4.44)

We can find B⃗(x′, 0,m1,m2,m3) in closed-form in ϵ, by direct integration of the
Feynman parametrization. The result is given below:

B1(x′, 0,m1,m2,m3) = C1 ,
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B2(x′, 0,m1,m2,m3) = C1

21−2ϵ√πϵΓ(ϵ)
Γ
(
ϵ+ 1

2

) (
A2

1A2

(1 − x′)x′

)−ϵ

− 2F1 (1, 2ϵ; ϵ+ 1;A1)
 ,

B3(x′, 0,m1,m2,m3) =

C1

√
A2

2

A1 2F1 (1, 2ϵ+ 1; ϵ+ 1;A1)
(x′ − 1)x′ − 4−ϵ√πϵ (1 − A1)−ϵ−1 A1−ϵ

1 Γ(ϵ)
(x′ − 1)x′Γ

(
ϵ+ 1

2

)
 ,

(4.45)

where we labeled the following terms:

A1 = m2
2 (x′ − 1)x′

m2
1 (x′ − 1) −m2

3x
′ , A2 = m2

1 (−x′) + x′ (m2
2 (x′ − 1) +m2

3) +m2
1

m2
2

,

C1 =
(
m2

3

)2ϵ
(

A2
1

m4
2 (1 − x′)x′

)ϵ
. (4.46)

Next, we take the regularized limit x′ → 0. The final expressions are given by the
following pure functions:

reglimx′→0 B⃗(x′, 0,m1,m2,m3) =
(
m2

1
m2

3

)−2ϵ


1

ϵΓ(ϵ)2

Γ(2ϵ)

(
m2

1
m2

2

)ϵ
− 1

ϵΓ(ϵ)2

2Γ(2ϵ)

(
m2

1
m2

2

)ϵ
− 1

 . (4.47)

From Eqns. (4.42), (4.43) and (4.47), we have all the elements to express B⃗, and in
particular S111, in terms of elliptic multiple polylogarithms. Since we already removed
the boundary divergences in Eq. (4.47), they will show up again once we solve the
iterated integrals. We can filter these out explicitly by shuffle-regulating. For example,
we have that:

E4 ( 11
20 ; 1) = E4 ( 11

20 ; 1) + E4 ( 1
2 ; 1) E4 ( 1

0 ; 1) − E4 ( 1
2 ; 1) E4 ( 1

0 ; 1)
= −E4 ( 11

02 ; 1) , (4.48)

where in the second line we used that E4 ( 1
0 ; 1) = log(1) = 0, since we throw away the

logarithmic divergence at the basepoint. In terms of E4-functions, the solution of the
unequal-mass sunrise in the Euclidean region is given up to order O(ϵ)2 by:

c4
(
m2

2 − s
)

(m2
3)2ϵS111 =

− E4 ( 0 −1
0 0 ; 1) − E4 ( 0 −1

0 1 ; 1) − E4 ( 0 −1
0 ∞ ; 1) + E4

(
0 −1

0
m2

1
m2

1−m2
3

; 1
)

+ E4 ( 1 0
0 0 ; 1)
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+ log
(
m2

1
m2

2

)
E4 ( 0

0 ; 1) − (m2
1 (m2

2 − 2m2
3 − s) +m4

1 +m4
3) E4 ( 0 0

0 0 ; 1)
c4 (m2

1 −m2
3) (s−m2

2)
+ ϵ

(
− π2

6 E4 ( 0
0 ; 1)

+ 2E4 ( 0 −1 1
0 0 1 ; 1) − E4

(
0 −1 1

0 0 −
m2

1
m2

3−m2
1

; 1
)

+ 2E4 ( 0 −1 1
0 1 1 ; 1) − E4

(
0 −1 1

0 1 −
m2

1
m2

3−m2
1

; 1
)

− E4 ( 0 −1 1
0 ∞ 1 ; 1) + 2E4

(
0 −1 1

0 ∞ −
m2

1
m2

3−m2
1

; 1
)

+ E4

(
0 −1 1

0
m2

1
m2

1−m2
3

1 ; 1
)

− 2E4

(
0 −1 1

0
m2

1
m2

1−m2
3

−
m2

1
m2

3−m2
1

; 1
)

− 5E4 ( 0 1 −1
0 0 0 ; 1) − 5E4 ( 0 1 −1

0 0 1 ; 1) − 2E4 ( 0 1 −1
0 0 ∞ ; 1) + 2E4

(
0 1 −1

0 0
m2

1
m2

1−m2
3

; 1
)

− 3E4 ( 0 1 −1
0 1 0 ; 1)

− 3E4 ( 0 1 −1
0 1 1 ; 1) − 3E4 ( 0 1 −1

0 1 ∞ ; 1) + 3E4

(
0 1 −1

0 1
m2

1
m2

1−m2
3

; 1
)

+ 2E4
(

0 1 −1
0 a′

1 0 ; 1
)

+ 2E4
(

0 1 −1
0 a′

1 1 ; 1
)

+ 2E4
(

0 1 −1
0 a′

1 ∞ ; 1
)

− 2E4

(
0 1 −1

0 a′
1

m2
1

m2
1−m2

3

; 1
)

+ 2E4
(

0 1 −1
0 a′

2 0 ; 1
)

+ 2E4
(

0 1 −1
0 a′

2 1 ; 1
)

+ 2E4
(

0 1 −1
0 a′

2 ∞ ; 1
)

− 2E4

(
0 1 −1

0 a′
2

m2
1

m2
1−m2

3

; 1
)

+ 2E4
(

0 1 −1
0 a′

3 0 ; 1
)

+ 2E4
(

0 1 −1
0 a′

3 1 ; 1
)

+ 2E4
(

0 1 −1
0 a′

3 ∞ ; 1
)

− 2E4

(
0 1 −1

0 a′
3

m2
1

m2
1−m2

3

; 1
)

+ 2E4
(

0 1 −1
0 a′

4 0 ; 1
)

+ 2E4
(

0 1 −1
0 a′

4 1 ; 1
)

+ 2E4
(

0 1 −1
0 a′

4 ∞ ; 1
)

− 2E4

(
0 1 −1

0 a′
4

m2
1

m2
1−m2

3

; 1
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+ 5E4 ( 0 1 1
0 0 1 ; 1) − 2E4

(
0 1 1
0 0 a′

1
; 1
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− 2E4
(

0 1 1
0 0 a′

2
; 1
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− 2E4
(

0 1 1
0 0 a′

3
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− 2E4
(

0 1 1
0 0 a′

4
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− E4

(
0 1 1
0 0 −

m2
1

m2
3−m2

1

; 1
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− 2E4 ( 1 0 −1
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0 0 1 ; 1)

+ E4 ( 1 0 −1
0 0 ∞ ; 1) − E4

(
1 0 −1
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m2

1
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3

; 1
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+ 3E4 ( 1 0 1
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2
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4
; 1
)

− E4 ( 1 1 0
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3
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(
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(
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(
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(
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(
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(
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(
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(
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+ log
(
m2

2
m2

3

)
log

(
m2

1
m2

3

)
E4 ( 0

0 ; 1) + 3 (m2
1 −m2

3)
c4 (s−m2

2)
log

(
m2

2
m2

3

)
E4 ( 0 0

0 0 ; 1)

+ m2
1 (−m2

2 − 4m2
3 + s) + 2m4

1 + 2m4
3

c4 (m2
1 −m2

3) (s−m2
2)

E4 ( 0 0 1
0 0 1 ; 1)

+ 2 (m2
1 (m2

2 − 2m2
3 − s) +m4

1 +m4
3)

c4 (m2
1 −m2

3) (s−m2
2)

E4
(

0 1 0
0 a′

1 0 ; 1
)

+ 2 (m2
1 (m2

2 − 2m2
3 − s) +m4

1 +m4
3)

c4 (m2
1 −m2

3) (s−m2
2)

E4
(

0 1 0
0 a′

2 0 ; 1
)

+ 2 (m2
1 (m2

2 − 2m2
3 − s) +m4

1 +m4
3)

c4 (m2
1 −m2

3) (s−m2
2)

E4
(

0 1 0
0 a′

3 0 ; 1
)

+ 2 (m2
1 (m2

2 − 2m2
3 − s) +m4

1 +m4
3)

c4 (m2
1 −m2

3) (s−m2
2)

E4
(

0 1 0
0 a′

4 0 ; 1
)

− −2m2
1 (m2

2 +m2
3 − s) +m4

1 +m4
3

c4 (m2
1 −m2

3) (s−m2
2)

E4

(
0 0 1
0 0 −

m2
1

m2
3−m2

1

; 1
)

− −2m2
1 (m2

2 +m2
3 − s) +m4

1 +m4
3

c4 (m2
1 −m2

3) (s−m2
2)

log
(
m2

1
m2

3

)
E4 ( 0 0

0 0 ; 1)

+ 3m2
1 (−m2

2 + 2m2
3 + s) − 3m4

1 − 3m4
3

c4 (m2
1 −m2

3) (s−m2
2)

E4 ( 0 1 0
0 1 0 ; 1)

+ m2
1 (m2

2 + 4m2
3 − s) − 2m4

1 − 2m4
3

c4 (m2
1 −m2

3) (s−m2
2)

E4 ( 1 0 0
0 0 0 ; 1)

+ 2m2
1 (−m2

2 + 5m2
3 + s) − 5m4

1 − 5m4
3

c4 (m2
1 −m2

3) (s−m2
2)

E4 ( 0 1 0
0 0 0 ; 1)

)
+ O(ϵ2) . (4.49)

Lastly, we remark on the three dotted master integrals, which are equivalent upon
permuting the masses. Consider the master integral that has a dot on the second line.
As an integral over the inner polylogarithmic part, it is given by:

S121 = 1
1 + 2ϵ

∫ 1

0
dx′ ŜIPP

2,2 . (4.50)

We can express ŜIPP
2,2 in terms of the canonical basis integrals of the IPP by IBP

reduction. The relation is given by:

(m2
3)2ϵŜIPP

2,2 =
(

c1,1

x− a′
1

+ c1,2

x− a′
2

+ c1,3

x− a′
3

+ c1,4

x− a′
4

)
B1

+
(

c2,1

x− a′
1

+ c2,2

x− a′
2

+ c2,3

x− a′
3

+ c2,4

x− a′
4

)
B2

+
(

c3,1

y (x− a′
1)

+ c3,2

y (x− a′
2)

+ c3,3

y (x− a′
3)

+ c3,4

y (x− a′
4)

+ c3,5

y

)
B3 .

(4.51)
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where we have the following coefficients:

c1,1 = (a′
1 − 1) (a′

1 (7m2
2 + s) −m2

1) + a′
1m

2
3

4a′
1,2a

′
1,3a

′
1,4m

2
2 (m2

2 − s)2 ,

c2,1 = 3 (a′
1 − 1) (a′

1 (s−m2
2) −m2

1) + 3a′
1m

2
3

4a′
1,2a

′
1,3a

′
1,4m

2
2 (m2

2 − s)2 ,

c3,1 = (4ϵ+ 1) ((a′
1 − 1)m2

1 − a′
1m

2
3) ((a′

1 − 1) (a′
1 (m2

2 + 3s) −m2
1) + a′

1m
2
3)

ϵa′
1,2a

′
1,3a

′
1,4 (s−m2

2)
4 ,

c3,5 = m2
2(7ϵ+ 2) + sϵ

2m2
2ϵ (m2

2 − s)2 . (4.52)

The other coefficients are found by cyclic permutations:

ci,j = ci,j−1|a′
k

→a′
k+1

for i = 1, 2, 3 and j = 2, 3, 4 , (4.53)

where a′
5 is equal to a′

1. It is clear from Eqns. (4.42), (4.47) and (4.51) that S121 can
be integrated in terms of E4-functions. In particular, ŜIPP

2,2 can be expressed in terms
of E4-functions with only algebraic integration kernels, while the last integration on
the parameter x′ requires us to introduce more complicated kernels. We will not work
out the expressions in more detail here.

4.3 Triangle with bubble integral

We consider the below triangle diagram, with a massive bubble insertion, relevant for
the two-loop QCD corrections to heavy quark pair production:

T1211(s,m2) = (m2 − s)Γ(1 + 2ϵ) . (4.54)

This diagram has the equal-mass sunrise as a subtopology (as seen from contracting the
massless internal propagator.) In order to make the diagram finite in four dimensions,
we have put a dot on one of the massive propagators of the bubble. We note that
there is only one master integral in the top sector of the integral family to which this
diagram belongs.
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4.3.1 Direct integration

The momentum-space representation of the integral family is given by:

Tν1ν2ν3ν4 = (m2 − s) Γ (ν1) Γ (ν2) Γ (ν3) Γ (ν4)
Γ (ν1 + ν2 + ν3 + ν4 − d)

∫ ddk1

iπd/2
ddk2

iπd/2
1

Dν1
1 D

ν2
2 D

ν3
3 D

ν4
4
, (4.55)

where we included gamma functions in the prefactor which cancel those in the Feynman
parametrization, and where we included an additional overall factor (m2 − s) in the
definition. The propagators are given by:

D1 = − (k1 + p2)2 +m2, D2 = − (k2 − p3)2 +m2 ,

D3 = − (k1 + k2 + p2)2 +m2, D4 = −k2
1 .

(4.56)

The Feynman parametrization has the Symanzik polynomials

F =
(
α2α

2
1 + α3α

2
1 + α2

2α1 + α2
3α1 + 3α2α3α1 + α2α

2
3+

α2
2α3 + α2

2α4 + α2
3α4 + 2α2α3α4

)
m2 − α1α2α3s ,

U = α1α2 + α3α2 + α4α2 + α1α3 + α3α4 . (4.57)

and is given by:

Tν1ν2ν3ν4 = (m2 − s)
∫

∆3

[
d3α⃗

] ( 4∏
i=1

ανi−1
i

)
Uν1+ν2+ν3+ν4− 3d

2 F−ν1−ν2−ν3−ν4+d . (4.58)

We will work in the Euclidean region where s < 0 and m2 > 0. We expand the integral
in ϵ according to:

T1211
(
s,m2

)
=

∞∑
j=0

T
(j)
1211

(
s,m2

)
ϵj . (4.59)

At order ϵ0 one obtains:

T
(0)
1211(s,m2) = (m2 − s)

∫
∆3

[
d3α⃗

] α2

UF
= (m2 − s)

∫ ∞

0

dα1dα3dα4

[UF ]|α2=1
, (4.60)

where we applied the Cheng-Wu theorem to set α2 = 1. Next, we integrate out the
Feynman parameter associated with the massless propagator, which yields:

T
(0)
1211(s,m2) = (m2 − s)

∫ ∞

0
dα1dα3

log
(
m2(α1+α3+1)(α1α3+α1+α3)−α1α3s

(α3+1)m2(α1α3+α1+α3)

)
α1(α3 + 1) (m2(α1α3 + α1 + α3) − α3s)

.

(4.61)
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The polynomial (m2(α1 + α3 + 1)(α1α3 + α1 + α3) − α1α3s) does not factor linearly
in either of the remaining integration parameters without having to introduce a
square root containing the other integration variable. The roots of the quadratic
polynomial are special cases of those encountered for the sunrise, namely R± =
R

(α1)
± (s,m2,m2,m2), where the terms R(α1)

± correspond to the roots of Eq. (4.18) with
α3 replaced by α1. Performing the integration on α3 leaves us with the following
one-fold representation:

T
(0)
1211(s,m2) =

∫ ∞

0

1
α1

[
−G(b(1); 1)G

(
− 1
α1

; 1
)

−G (α1 + 1, b(1); 1)

+G

(
1

R− + 1 , b(1); 1
)

+G

(
1

R+ + 1 , b(1); 1
)]

dα1 , (4.62)

where we have introduced the term:

b(1) = (α1 + 1)m2 − s

m2 − s
. (4.63)

At order ϵ1 we can integrate along the same sequence and we obtain the following
result:

T
(1)
1211(s,m2) =

∫ ∞

0
dα1

1
α1

[
2G(b(1); 1)G(b(2); 1)G(b(3); 1)

− 3G(b(1); 1)G(b(2); 1)G
( 1

1 − α1
; 1
)

− 2G(b(1); 1)G(b(3); 1)G
( 1

1 − α1
; 1
)

+ 2G(b(2); 1)G(0, b(1); 1) − 2G(0, b(1); 1)G
( 1

1 − α1
; 1
)

−G(b(1); 1)G(0, b(2); 1)

+G(b(1); 1)G
(

0, 1
1 − α1

; 1
)

+G(b(2); 1)G(b(1), b(1); 1)

−G(b(1), b(1); 1)G
( 1

1 − α1
; 1
)

− 2G(b(1); 1)G(b(2), b(2); 1)

+ 2G(b(1); 1)G
(
b(2), 1

1 − α1
; 1
)

− 2G(b(3); 1)G
(

1
R− + 1 , b(1); 1

)

+ 3G
( 1

1 − α1
; 1
)
G

(
1

R− + 1 , b(1); 1
)

− 2G(b(3); 1)G
(

1
R+ + 1 , b(1); 1

)

+ 3G
( 1

1 − α1
; 1
)
G

(
1

R+ + 1 , b(1); 1
)

+ 3G(b(1); 1)G
( 1

1 − α1
, b(2); 1

)
+ 3G(b(1); 1)G

( 1
1 − α1

,
1

1 − α1
; 1
)

+ 2G(b(3); 1)G (α1 + 1, b(1); 1)

− 3G
( 1

1 − α1
; 1
)
G (α1 + 1, b(1); 1) −G

(
0, 1
R− + 1 , b(1); 1

)



74 Computation of linearly reducible elliptic Feynman integrals

−G

(
0, 1
R+ + 1 , b(1); 1

)
+G (0, α1 + 1, b(1); 1) − 2G

(
1

R− + 1 , 0, b(1); 1
)

−G

(
1

R− + 1 , b(1), b(1); 1
)

+ 2G
(

1
R− + 1 ,

1
R− + 1 , b(1); 1

)

+ 2G
(

1
R− + 1 ,

1
R+ + 1 , b(1); 1

)
− 2G

(
1

R− + 1 , α1 + 1, b(1); 1
)

− 2G
(

1
R+ + 1 , 0, b(1); 1

)
−G

(
1

R+ + 1 , b(1), b(1); 1
)

+ 2G
(

1
R+ + 1 ,

1
R− + 1 , b(1); 1

)
+ 2G

(
1

R+ + 1 ,
1

R+ + 1 , b(1); 1
)

− 2G
(

1
R+ + 1 , α1 + 1, b(1); 1

)
+ 2G (α1 + 1, 0, b(1); 1)

+G (α1 + 1, b(1), b(1); 1) − 3G
(
α1 + 1, 1

R− + 1 , b(1); 1
)

− 3G
(
α1 + 1, 1

R+ + 1 , b(1); 1
)

+ 3G (α1 + 1, α1 + 1, b(1); 1)
]
, (4.64)

where we introduced the terms:

b(2) = 1
1 − α1(1 + α1)

, b(3) = 1
1 −m2α1(1 + α1)

. (4.65)

Higher orders in ϵ may be obtained from the same integration sequence. In Ref. [1] we
also performed the analytic continuation of the one-fold representation to the physical
region s > 0,m2 > 0 at orders ϵ0 and ϵ1. Like for the unequal mass sunrise, this was
done by partitioning the physical region into a number of subregions, and by expressing
in each subregion the polylogarithmic integrand in terms of logarithms and classical
polylogarithms without branch cuts in the given region. The threshold singularity at
s = 9m2 can be crossed by using the Feynman prescription. For further details, we
refer to Ref. [1].

4.3.2 Differential equations for the inner polylogarithmic part

We combine two massive propagators and define:

T IPP
ν1+ν2,ν3,ν4 ≡ m2(1 + t)Γ(ν1 + ν2)Γ(ν3)Γ(ν4)(

iπ
d
2
)2

Γ(ν − d)

∫ ddk1d
dk2

(xD1 +D2)ν1+ν2Dν3
3 D

ν4
4
, (4.66)
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where ν = ν1 + ν2 + ν3 + ν4, and where t = −s/m2 is a scale with zero mass dimension.
We have that

Tν1,ν2,ν3,ν4 =
∫ ∞

0
dx xν1−1T IPP

ν1+ν2,ν3,ν4 , (4.67)

and in particular that

T1211 =
∫ ∞

0
T IPP

311 dx , T1121 =
∫ ∞

0
T IPP

221 dx . (4.68)

Note that T1211 = T1121 by the symmetry of the diagram. Nonetheless, T IPP
311 and

T IPP
221 are different polylogarithmic expressions, as they represent different integration

sequences of the same integral. We adopt the notation:

y2 = 1 + x
(
2 + 2t+ 3x+ t(6 + t)x+ 2(1 + t)x2 + x3

)
= m−4P

(x)
S (−m2t,m2,m2,m2) , (4.69)

where P (x)
S corresponds to Eq. (4.19) with α3 replaced by x. A canonical basis of the

IPP is given by:

B⃗ =



c1
2,2,1T

IPP
221 + c1

3,1,1T
IPP
311

c2
3,1,1T

IP
311

c3
4,0,1T

IPP
4,0,1

c4
2,1,0T

IPP
2,1,0 + c4

3,1,0T
IPP
3,1,0 + c4

4,0,0T
IPP
4,0,0

c5
2,1,0T

IP
2,1,0 + c5

3,1,0T
IP
3,1,0 + c5

4,0,0T
IPP
4,0,0

c6
4,0,0T

IPP
4,0,0


, (4.70)

where the coefficients are:

c1
2,2,1 = (m2)1+2ϵx(1 + t+ x)ϵ2 , c1

3,1,1 = 2(m2)1+2ϵx2ϵ2 ,

c2
3,1,1 = (m2)1+2ϵ(1 + t)xϵ2 , c3

4,0,1 = (m2)1+2ϵx2ϵ ,

c4
2,1,0 = (m2)−1+2ϵ(1+x)2(1+x(1+t+x))ϵ2(−2+3ϵ)

2y , c4
3,1,0 = − (m2)2ϵ(1+x)ϵ

y
(t2x2ϵ+ (1 + x+ x2)2ϵ

c4
4,0,0 = 3(m2)2ϵxϵ

y(−1+2ϵ) (2x(1 + x− tx+ x2) + ϵ +2tx(ϵ+ x(2 + (−5 + x)ϵ))) ,

+x(−1 + t+ 6tx+ (−1 + t)x2 + x3)ϵ) , c5
2,1,0 = 1

2(m2)−1+2ϵ(1 + x)2ϵ2(−2 + 3ϵ) ,

c5
3,1,0 = −(m2)2ϵ(1 + x)(1 + x(1 + t+ x))ϵ2 , c5

4,0,0 = 3(m2)2ϵx(1+x)2ϵ2

−1+2ϵ . (4.71)

The differential equations are then of the form:

dB⃗ = ϵ dÃB⃗ , (4.72)
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where the letters are:

l1 = log(t), l2 = log(x), l3 = log(y), l4 = log(t+ 1) ,

l5 = log(x+ 1), l6 = log(t+ x+ 1), l7 = log
(
x2+tx+x−y+1
x2+tx+x+y+1

)
,

l8 = log
(

(t+x+2)x+x+y+1
(t+x+2)x+x−y+1

)
,

l9 = log
(
x4+2tx3+2x3+t2x2+4tx2+x2+(x2+tx+x−1)y+1
x4+2tx3+2x3+t2x2+4tx2+x2−(x2+tx+x−1)y+1

)
.

(4.73)

and where:

Ã = (4.74)

−l2 − 2l4 + l6 2l2 + 2l6 6l2 + 6l4 l9
4 − l2

2 − l4
2 − l5

2
l2
2 + l4

2 + l5
2

l2 + l6 −2l4 + 2l6 −6l2 − l7
4

l1
4 + l2

2 − l1
4 − l2

2
0 0 2l2 0 0 l5

3

0 0 0
 3l1

2 + 3l2
−4l3 + 2l5

 −3l7
2

3l7
2 + 2l8

0 0 0 l7
2 − l1

2 − l2 + 2l5 l1
2

0 0 0 0 0 l2 − 2l5


,

We show next how to solve the resulting differential equation in terms of E4-functions.
We perform the change of variables x = x′/(x′ − 1), and let:

(y′)2 = 1 + 2(−1 + t)x′ + (3 + t2) (x′)2 − 2(1 + t)2 (x′)3 + (1 + t)2 (x′)4

(1 + t)2

= (x′ − a′
1)(x′ − a′

2)(x′ − a′
3)(x′ − a′

4) , (4.75)

where we may label the roots in the following way:

a′
1 = 1

2

(
1 −

√
4(t+2

√
−t−1)

t2+2t+1 + 1
)
, a′

2 = 1
2

(
1 −

√
4(t−2

√
−t−1)

t2+2t+1 + 1
)
,

a′
3 = 1

2

(
1 +

√
4(t+2

√
−t−1)

t2+2t+1 + 1
)
, a′

4 = 1
2

(
1 +

√
4(t−2

√
−t−1)

t2+2t+1 + 1
)
,

(4.76)

such that the ordering in Eq. (2.96) is satisfied for t > 0. We consider the principal
branch of the square root y′ =

√∏4
j=1(x′ − a′

i). The differential equation matrix is



4.3 Triangle with bubble integral 77

given by:

∂Ã
∂x′ =



ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ1,5 ψ1,6

ψ2,1 ψ2,2 ψ2,3 ψ2,4 ψ2,5 ψ2,6

0 0 ψ3,3 0 0 ψ3,6

0 0 0 ψ4,4 ψ4,5 ψ4,6

0 0 0 ψ5,4 ψ5,5 0
0 0 0 0 0 ψ6,6


, (4.77)

where the non-zero entries are:

ψ1,1 = ψ1
(
1 + 1

t , x
′
)

− ψ1 (0, x′) , ψ2,6 = 1
2ψ1 (1, x′) − 1

2ψ1 (0, x′) ,

ψ1,2 = 2ψ1 (0, x′) − 4ψ1 (1, x′) + 2ψ1
(
1 + 1

t , x
′
)
, ψ3,3 = 2ψ1 (0, x′) − 2ψ1 (1, x′) ,

ψ1,3 = 6ψ1 (0, x′) − 6ψ1 (1, x′) , ψ3,6 = −1
3ψ1 (1, x′) ,

ψ1,4 = −ψ−1 (1, x′) − 1
2ψ−1 (∞, x′) ψ4,4 = 3ψ1 (0, x′) + 3ψ1 (1, x′) − 2ψ1 (a′

1, x
′)

+1
2 (ψ−1 (0, x′) + ψ1 (0, x′)) + (t−1)ψ0(0,x′)

2c4(t+1) , −2ψ1 (a′
2, x

′) − 2ψ1 (a′
3, x

′) − 2ψ1 (a′
4, x

′) ,

ψ1,5 = ψ1 (1, x′) − 1
2ψ1 (0, x′) , ψ4,5 = −3ψ−1 (1, x′) − 3 (ψ−1 (0, x′) + ψ1 (0, x′)) ,

ψ1,6 = 1
2ψ1 (0, x′) − ψ1 (1, x′) , ψ4,6 = ψ−1 (0, x′) + ψ−1 (1, x′) − 4ψ−1 (∞, x′)

ψ2,1 = ψ1 (0, x′) − 2ψ1 (1, x′) + ψ1
(
1 + 1

t , x
′
)
, +2ψ0(0,x′)

c4
+ ψ1 (0, x′) ,

ψ2,2 = 2ψ1
(
1 + 1

t , x
′
)

− 2ψ1 (1, x′) , ψ5,4 = ψ−1 (0, x′) + ψ−1 (1, x′) + ψ1 (0, x′) ,

ψ2,3 = 6ψ1 (1, x′) − 6ψ1 (0, x′) , ψ5,5 = −ψ1 (0, x′) − ψ1 (1, x′) ,

ψ2,4 = 1
2 (−ψ−1 (0, x′) − ψ1 (0, x′)) ψ6,6 = ψ1 (0, x′) + ψ1 (1, x′) ,

−1
2ψ−1 (1, x′) , ψ2,5 = 1

2ψ1 (0, x′) − 1
2ψ1 (1, x′) . (4.78)

The kernels ψn(c, x′) are defined in Eq. (2.93). The family associated with the inner
polylogarithmic part, after having performed the Möbius transformation, is given
by:

T̂ IPP
a1+a2,a3,a4 ≡ m2(1 + t)(

iπ
d
2
)2

Γ(5 − d)

∫ ddk1d
dk2

(x′D1 + (1 − x′)D2)a1+a2Da3
3 D

a4
4
, (4.79)

so that:

T1211 = 2
∫ 1

0
dx′ (1 − x′)T̂ IPP

311 = −2 (m2)−2ϵ

ϵ2

∫ 1

0

B2

(−1 + x′)x′ dx
′ . (4.80)
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The full solution of B⃗ can again be written as a path-ordered exponential:

B⃗(x′, t,m2) = P exp
(
ϵ
∫ x′

x′
0

∂Ã
∂x′ dx

′
)
B⃗(x′

0, t,m
2) , (4.81)

and combining this with Eq. (4.80) yields:

T1121 = −2 (m2)−2ϵ

ϵ2

∫ 1

0
dx′ (ψ1 (1, x′) − ψ1 (0, x′))P exp

(
ϵ
∫ x′

x′
0

∂Ã
∂x′ dx

′
)
B⃗(x′

0, t,m
2) .

(4.82)

We are interested in finding the boundary term:

reglimx′
0→0 B⃗(x′

0, t,m
2) , (4.83)

so that we may express Eq. (4.82) in terms of E4-functions. Note that that the top
sector integrals B1 and B2 contain the terms T̂ IPP

311 and T̂ IPP
221 with prefactors that are

proportional to an overall factor x′. Furthermore, note that:

T1211 = 2
∫ 1

0
(1 − x′)T̂ IPP

311 dx′ , T1121 =
∫ 1

0
T̂ IPP

221 dx′ . (4.84)

Since T1211 = T1121 is a finite integral, the integrands in Eq. (4.84) should have
integrable singularities at zero. Therefore we find that:

lim
x′→0

B1 = lim
x′→0

B2 = 0 . (4.85)

We may compute B3 by direct integration of the Feynman parametrization. It can
then be seen that it vanishes in the limit x′ → 0 as well. The canonical basis integrals
B4, B5 and B6 belong to the sunrise subsector, and their regularized limit may be
obtained in the same manner as the was done for the unequal-mass sunrise in Section
4.2.2. Putting everything together, we find that:

reglimx′
0→0 B⃗

(
x′

0, t,m
2
)

=



0
0
0

ϵΓ(ϵ)2

2Γ(2ϵ) − 1
ϵΓ(ϵ)2

2Γ(2ϵ) − 1
2

1
2


. (4.86)

We now have almost all the ingredients to write T1121 in terms of E4-functions, but there
is still a technical complication. If we look at Eq. (4.82), we observe the appearance of
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the kernel ψ1(1, x′) in the last entry. We will need to shuffle-regulate it out in order
to make the E4-functions well-defined. A complication is that the kernel ψ−1(1, x′)
may then appear in the first entry, which also diverges at 1. We deal with problem
in a similar manner to Ref. [28], where such issues arise in the analysis of the second
master integral of the equal-mass sunrise. First, we define a new kernel:

ψ−1̃(1, x) = y(1)
(x− 1)y − 1

(x− 1) , (4.87)

which is a regulated version of ψ−1(1, x′). We then express our E4-functions in terms
of this new kernel. After doing so, one may extract out the divergent pieces from each
E4-function by shuffle regularization. The only remaining divergent terms are:

E4 ( 1
1 ; 1) , E4 ( 11

11 ; 1) , (4.88)

and their prefactors should vanish as we know T1121 is finite. We found for example
the contribution:

E4 ( 11
11 ; 1)

(
− c4E4 ( −1

0 ; 1) − 2c4E4 ( −1
∞ ; 1) + E4 ( 0

0 ; 1) − c4E4
(

−1̃
1 ; 1

))
, (4.89)

and it may be numerically verified up to high precision that the combination of E4-
functions multiplying E4 ( 11

11 ; 1) evaluates to zero. We decide to restore the kernel
ψ−1(1, x) in all entries but the first, and we obtain the following representation in
terms of E4-functions that are individually finite:

T1121 = (m2)−2ϵ

c4

(
c4E4 ( −1 −1 1

0 0 1 ; 1) + c4E4 ( −1 −1 1
0 1 1 ; 1) + 2c4E4 ( −1 −1 1

0 ∞ 1 ; 1) − E4 ( −1 0 1
0 0 1 ; 1)

+ c4E4 ( −1 1 −1
0 1 0 ; 1) + c4E4 ( −1 1 −1

0 1 1 ; 1) + 2c4E4 ( −1 1 −1
0 1 ∞ ; 1) − E4 ( −1 1 0

0 1 0 ; 1) − c4E4 ( −1 1 1
0 1 1 ; 1)

− 2c4E4 ( −1 1 1
∞ 1 1 ; 1) + E4 ( 0 1 1

0 1 1 ; 1) + c4E4 ( 1 −1 −1
0 0 0 ; 1) + c4E4 ( 1 −1 −1

0 0 1 ; 1) + 2c4E4 ( 1 −1 −1
0 0 ∞ ; 1)

+ c4E4 ( 1 −1 −1
0 1 0 ; 1) + c4E4 ( 1 −1 −1

0 1 1 ; 1) + 2c4E4 ( 1 −1 −1
0 1 ∞ ; 1) − E4 ( 1 −1 0

0 0 0 ; 1) − E4 ( 1 −1 0
0 1 0 ; 1)

+ 2c4E4 ( 1 −1 1
0 ∞ 1 ; 1) − E4 ( 1 0 1

0 0 1 ; 1) − c4E4 ( 1 1 −1
0 0 0 ; 1) − c4E4 ( 1 1 −1

0 0 1 ; 1) + 2c4E4 ( 1 1 −1
0 0 ∞ ; 1)

+ c4E4 ( 1 1 −1
0 1 0 ; 1) + c4E4 ( 1 1 −1

0 1 1 ; 1) + 2c4E4 ( 1 1 −1
0 1 ∞ ; 1) − E4 ( 1 1 0

0 0 0 ; 1) − E4 ( 1 1 0
0 1 0 ; 1)

− c4E4 ( 1 1 1
0 0 1 ; 1) + c4E4

(
−1̃ −1 1

1 0 1 ; 1
)

+ c4E4
(

−1̃ −1 1
1 1 1 ; 1

)
+ 2c4E4

(
−1̃ −1 1

1 ∞ 1 ; 1
)

− E4
(

−1̃ 0 1
1 0 1 ; 1

)
+ c4E4

(
−1̃ 1 −1

1 1 0 ; 1
)

+ c4E4
(

−1̃ 1 −1
1 1 1 ; 1

)
+ 2c4E4

(
−1̃ 1 −1

1 1 ∞ ; 1
)

− E4
(

−1̃ 1 0
1 1 0 ; 1

)
− c4E4

(
−1̃ 1 1

1 1 1 ; 1
))

+ O(ϵ) . (4.90)

The higher orders in ϵ may be obtained in the same manner.
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4.4 Non-planar triangle integral

Lastly, we will briefly discuss the direct integration of a non-planar triangle integral
with two off-shell legs. The integral is part of the Higgs plus jet integral family F, which
will be fully solved using series expansion methods in Chapter 6. In the following we will
work in d = 4 − 2ϵ, and we will include a prefactor to obtain an inner polylogarithmic
expression of uniform weight:

N111111(s, p2
2,m

2) = (p2
2 − s)

Γ(2ϵ+ 1)

= (p2
2 − s)

Γ(2ϵ+ 1)

∫ ddk1

iπd/2
ddk2

iπd/2
1

D1D2D3D4D5D6
. (4.91)

We have chosen the labeling of the external momenta differently from Chapter 6.
Furthermore, we consider the following routing of the internal momenta, which follows
the conventions of Ref. [23]:

D1 = − (k1 − p1)2 , D3 = − (k1 + p2)2 , D5 = m2 − (k1 − k2)2 ,

D2 = m2 − (k2 − p1)2 , D4 = m2 − (k1 − k2 + p2)2 , D6 = m2 − k2
2 . (4.92)

The maximal cuts of the non-planar triangle integral are known to be elliptic [2, 18, 107].
We will show that the integral is linearly reducible except for the last integration
parameter. A difference from the examples in Sections 4.2 and 4.3 is that the integrand
will depend on multiple algebraic functions, including the square root of an elliptic
curve, so that it can not be solved in terms of E4-functions.

4.4.1 Direct integration

We will work in the Euclidean region where s < 0, p2
2 < 0 and m2 > 0. The Feynman

parametrization is given by:

N111111(s, p2
2,m

2) = (1 + 2ϵ)(p2
2 − s)

∞∑
k=0

ϵk
∫

∆5

[
d5α⃗

] α1

k! F−2 [3 log(U) − 2 log(F)]k

≡ N
(0)
111111(s, p2

2,m
2) + ϵN

(1)
111111(s, p2

2,m
2) + O(ϵ2) , (4.93)
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where the Symanzik polynomials are equal to:

U = α3α4 + α6α4 + α3α5 + α2 (α3 + α4 + α5) + α3α6 + α5α6 + α1 (α2 + α4 + α5 + α6) ,
F = m2α1α

2
2 − sα1α2α3 +m2α2

2α3 + 2m2α1α2α4 − p2
2α1α2α4 +m2α2

2α4 − sα1α3α4

+ 2m2α2α3α4 +m2α1α
2
4 +m2α2α

2
4 +m2α3α

2
4 + 2m2α1α2α5 +m2α2

2α5 − sα1α3α5

+ 2m2α2α3α5 − sα2α3α5 + 2m2α1α4α5 − p2
2α1α4α5 + 2m2α2α4α5 − p2

2α2α4α5

+ 2m2α3α4α5 − p2
2α3α4α5 +m2α1α

2
5 +m2α2α

2
5 +m2α3α

2
5 + 2m2α1α2α6 − sα1α3α6

+ 2m2α2α3α6 + 2m2α1α4α6 − sα1α4α6 + 2m2α2α4α6 + 2m2α3α4α6 +m2α2
4α6

+ 2m2α1α5α6 + 2m2α2α5α6 + 2m2α3α5α6 − p2
2α3α5α6 + 2m2α4α5α6 − p2

2α4α5α6

+m2α2
5α6 +m2α1α

2
6 +m2α3α

2
6 +m2α4α

2
6 +m2α5α

2
6 . (4.94)

In order to obtain a one-fold integral representation, we use the Cheng-Wu theorem to
put α2 → 1 − α4 − α5 − α6, and we choose the following integration sequence:∫

∆5

[
d5α⃗

]
→
∫ 1

0
dα5

∫ 1−α5

0
dα4

∫ 1−α4−α5

0
dα6

∫ ∞

0
dα1

∫ ∞

0
dα3 . (4.95)

After performing the first two integrations, we have:

N
(0)
111111

(
s, p2

2,m
2
)

=
∫ 1

0
dα5

∫ 1−α5

0
dα4

∫ 1−α4−α5

0
dα6

(s− p2
2) log

(
(α4+α5−1)s(α5m2+α4(m2−α5p2

2))
(m2+α2

4p
2
2−α4p2

2+α4α6p2
2−α4α6s)(m2−α4α5p2

2−α5α6p2
2+α2

5s−α5s+α4α5s+α5α6s)

)
(m2 + sα5α6 − p2

2α5 (α4 + α6)) (m2 + p2
2α4 (−1 + α4 + α6) − sα4 (−1 + α4 + α5 + α6))

.

(4.96)

After integrating out α6 we obtain:

N
(0)
111111

(
s, p2

2,m
2
)

=
∫ 1

0
dα5

∫ 1−α5

0

dα4

−α5m2 − α4m2 + α4α5p2
2 + α4α2

5s+ α2
4α5s− α4α5s


−G

(
−m2 + α4α5p

2
2 − α2

4s+ α4s− α4α5s

α4 (α4p2
2 + α5p2

2 − p2
2 − α4s− α5s+ s) ,

α4α5p
2
2 −m2

α4 (α4p2
2 + α5p2

2 − p2
2 − α4s− α5s+ s) ; 1

)

+G

(
−m2 + α4α5p

2
2 − α2

4s+ α4s− α4α5s

α4 (α4p2
2 + α5p2

2 − p2
2 − α4s− α5s+ s) ,

m2 + α2
5p

2
2 − α5p

2
2 − α2

5s+ α5s− α4α5s

α5 (α4p2
2 + α5p2

2 − p2
2 − α4s− α5s+ s) ; 1

)

−G

(
m2 + α2

5p
2
2 − α5p

2
2

α5 (α4p2
2 + α5p2

2 − p2
2 − α4s− α5s+ s) ,

α4α5p
2
2 −m2

α4 (α4p2
2 + α5p2

2 − p2
2 − α4s− α5s+ s) ; 1

)

+G

(
m2 + α2

5p
2
2 − α5p

2
2

α5 (α4p2
2 + α5p2

2 − p2
2 − α4s− α5s+ s) ,

m2 + α2
5p

2
2 − α5p

2
2 − α2

5s+ α5s− α4α5s

α5 (α4p2
2 + α5p2

2 − p2
2 − α4s− α5s+ s) ; 1

)

+ log
(
m2 + α4 ((α4 − 1) (p2

2 − s) − α5s)
m2 − α4α5p2

2

)
log

(
α5 (α4 (p2

2 − s) − α5s+ s) −m2

s

)
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− log
(

m2 − α4α5p
2
2

m2 + (α5 − 1)α5p2
2 − α5 (α4 + α5 − 1) s

)
log

(
α5 (α4 (p2

2 − s) − α5s+ s) −m2

s

)

− log
(

(α4 + α5 − 1) (α4 (α5p
2
2 −m2) − α5m

2)
m2 + (α4 − 1)α4p2

2

)
log

(
m2 + α4 ((α4 − 1) (p2

2 − s) − α5s)
m2 − α4α5p2

2

)

+ log
(

(α4 + α5 − 1) (α4 (α5p
2
2 −m2) − α5m

2)
m2 + (α4 − 1)α4p2

2

)
×

× log
(

m2 − α4α5p
2
2

m2 + (α5 − 1)α5p2
2 − α5 (α4 + α5 − 1) s

) . (4.97)

The integrand contains quadratic polynomials in α4, which have to be factored in order
to perform the next integration. This introduces a dependence on the square roots of
the following three polynomials:

y2
1 = −4m2p2

2 + 4m2s+ 2α5p
2
2s− 2p2

2s+ p4
2 + α2

5s
2 − 2α5s

2 + s2 , (4.98)
y2

2 = −4m2s+ α2
5p

4
2 − 2α2

5p
2
2s+ 2α5p

2
2s+ α2

5s
2 − 2α5s

2 + s2 ,

y2
3 = −2α5m

2p2
2 + 2α2

5m
2s+ 2α5m

2s+m4 + α2
5p

4
2 + 2α3

5p
2
2s− 2α2

5p
2
2s+ α4

5s
2

− 2α3
5s
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2 ,

of which the last one is quartic in α5. We will not present the result of the final
integration here, which can be found in Ref. [1]. Note that in Ref. [1] an additional
Möbius transformation is performed to map the final integration bounds to zero and
infinity. The integral can be integrated at order ϵ along the same integration sequence.
A variant of this integral with an additional on-shell external leg was solved in terms
of eMPLs in Ref. [36].



Chapter 5

Series expansion methods

5.1 Introduction

In this chapter, we will discuss a method for computing Feynman integrals from their
differential equations in terms of truncated one-dimensional series expansions along
line segments in phase-space. By connecting solutions along multiple line segments,
the method will allow us to obtain high-precision numerical results at arbitrary points
in phase-space. The main ideas of the method are based on Ref. [40], which in turn
builds on a large set of previous literature on series expansions methods for Feynman
integrals (see e.g. Refs. [31, 127, 145–156].) The methods were further studied in
Refs. [2, 3], which are discussed in Chapter 6 of this thesis. We will also present the
Mathematica package DiffExp, which I announced in Ref. [4], and which provides a
public implementation of the series expansion method discussed here. Besides providing
a public implementation of the method, the paper and Mathematica package also
contain a few novel improvements compared to Refs. [2, 3, 40], which we will discuss
in Section 5.2.

The rest of this chapter is structured as follows. In Section 5.2, we discuss all aspects
of solving Feynman integrals as one-dimensional series expansions from the differential
equations. In particular, we discuss how to obtain an integration sequence, how to
solve the homogeneous and inhomogeneous differential equations of coupled Feyn-
man integrals, we discuss how to perform the analytic continuation past threshold
singularities and branch points, we discuss how to improve the precision of the series
expansions, and lastly we discuss strategies for obtaining the line segments along which
to integrate. In Section 5.3, we discuss the main functions and options of the DiffExp
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package. Lastly, in Section 5.4 we discuss the computation of the equal-mass and
unequal-mass three-loop banana graph families with DiffExp. We also apply DiffExp
to a few examples from the literature. This Chapter closely follows Ref. [4].

5.2 Series expansion methods

In this section, we will outline how to find series solutions for Feynman integrals
starting from their systems of differential equations, and how to use these to obtain
high precision numerical results for Feynman integrals at arbitrary points in phase-
space. The main integration strategy was first considered in Ref. [40], and was further
studied and applied in Refs. [2, 3], for the computation of Higgs plus jet integral
families. We will discuss the computation of the non-planar Higgs plus jet integral
families in Refs. [2, 3] in Chapter 6. The series expansion method has also been applied
recently to the computation of two-loop non-planar five-point functions in Ref. [47].
Series expansions methods have also been explored in many other literature, such as
in Refs. [31, 145–156], usually for the computation of single-scale integrals, or for the
computation of multi-scale integrals in special kinematic limits.

We will discuss a few novel improvements compared to Refs. [2, 3, 40]. In particular,
in subsection 5.2.2 we discuss how to derive an integration sequence directly from the
differential equations using basic graph theory. In subsection 5.2.3 we discuss a simple
way to find all homogeneous solutions using the Frobenius method and the method of
reduction of order. In subsection 5.2.4 we develop an optimized strategy for finding
the general solutions of coupled Feynman integrals. Lastly, we slightly improve the
integration strategy of Ref. [3] in subsection 5.2.8, by deriving explicit formulas for the
center points of neighbouring line segments.

5.2.1 Differential equations order-by-order in ϵ

Consider a family of Feynman integrals with m master integrals, packaged into a vector
f⃗ = (f1, . . . , fm). We denote the set of kinematic invariants and internal masses by S.
We then have the following differential equations:

∂

∂s
f⃗({S}, ϵ) = Asf⃗({S}, ϵ) , (5.1)

for each s ∈ S. We will refer to the matrices As as partial derivative matrices. Suppose
that we have a line segment described by the path γ(x) = (γs1(x), γs2(x), . . . , γs|S|(x)),
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where s1, s2, . . . ∈ S, and where x is the line parameter. We may then write:

∂xf⃗(x, ϵ) = Ax(x, ϵ)f⃗(x, ϵ) , Ax =
∑
s∈S

As(γ(x)) ∂γs(x)
∂x

. (5.2)

where now we explicitly wrote down the dependence of the integrals on the line
parameter and on the dimensional regulator. Let us expand the partial derivative
matrix in terms of the dimensional regulator:

Ax(x, ϵ) =
∞∑
k=0

A(k)
x (x)ϵk . (5.3)

We have assumed that there are no poles of the form 1/ϵk for k ≥ 1. Such poles in
ϵ may typically be removed by rescaling the basis integrals with overall powers of ϵ.
We sum up to infinity in order to account for terms of the type 1/P (ϵ), where P (ϵ)
denotes a polynomial in ϵ with P (0) ̸= 0. In general, it is also convenient to rescale
the basis integrals by ϵ-dependent factors that remove any terms of the form 1/P (ϵ),
whenever possible, so that for some positive integer K, it holds that A(k)

x = 0 for all
k > K. This will speed up the computation of the series expansions of the master
integrals at higher orders in ϵ. We will assume the basis integrals are finite, which can
be achieved by normalizing them with an overall power of ϵ, and we will write their ϵ
expansion as:

f⃗(x, ϵ) =
∞∑
k=0

f⃗ (k)(x)ϵk . (5.4)

For brevity, we will drop the dependence on x in the notation in the following. Plugging
Eqns. (5.3) and (5.4) into Eq. (5.2), and collecting terms order-by-order in ϵ, we
obtain:

∂xf⃗
(k) = A(0)

x f⃗ (k) +
k−1∑
j=0

A(k−j)
x f (j) . (5.5)

It is clear that the matrix A(0)
x plays a special role, as it multiplies the homogeneous

component of the differential equations. Note that for a canonical basis A(0)
x = 0. In

the following sections, we will solve Eq. (5.5) by considering sets of coupled integrals.
Roughly spoken, we consider integrals to be coupled when their derivatives depend on
each other at leading order in ϵ, i.e. in the part that is expressed by the A(0)

x matrix.
We will make the definition of coupled integrals rigorous in Section 5.2.2.
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Let {fσ1 , . . . , fσp} be a set of coupled integrals, where Σ = {σ1, . . . , σp} labels a subset
of the master integrals. For convenience we will introduce the notation fσ1 → g1, fσ2 →
g2, and so on, and let g⃗ = (g1, . . . , gp). We are then interested in the differential
equations

∂xg⃗
(k) = Mg⃗(k) + b⃗(k) , (5.6)

where we have explicitly that:

Mij = (A(0)
x )σi,σj

, b⃗
(k)
i =

∑
j /∈Σ

[(
A(0)
x

)
σij
f

(k)
j +

k−1∑
l=0

(
A(k−l)
x

)
σij
f

(l)
j

]
(5.7)

In the following sections we will discuss in detail how to solve Eq. (5.6) as a series
expansion around the origin. As a final remark, we will assume that the matrix M
does not contain functions other than rational functions and square roots of irreducible
polynomials. This also means that the basis of master integrals that we choose should
not contain prefactors other than rational functions and square roots.

5.2.2 Deriving an integration sequence

The first task in solving the differential equations is to determine an integration
sequence. We should start by integrating the leading order in ϵ of the integrals, and
move up one order in ϵ at a time, since the derivatives of the higher order terms contain
contributions of the lower order terms (see Eq. (5.5).) Furthermore, for any given
integral, its subsectors should be integrated first, since derivatives of subsectors never
evaluate to terms containing integrals in higher sectors. Next, we show how to read off
a suitable integration sequence directly from the partial derivative matrices, which can
be done using basic graph theory.

First we define a new matrix C, which is of the same size as A(0)
x (i.e. k× k where k is

the number of master integrals), and which will be interpreted as the adjacency matrix
of a directed graph G. We define C such that its elements Cij are equal to one if
(A(0)

x )ji is nonzero, and zero otherwise. That way, the vertices of the directed graph G
are the basis integrals, and G has an edge j → i for all nonzero (A(0)

x )ij . Next, consider
the strongly connected components of G. Each strongly connected component is a set
of vertices for which there is a directed path between every pair of vertices. Note that
every vertex is connected to itself by the trivial path. By repeatedly differentiating an
integral in a strongly connected component, one will eventually obtain a contribution
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from any other integral in the strongly connected component. We will call such integrals
coupled, and their differential equations have to be solved simultaneously.

Next, consider the condensation G̃ of the graph G. This is the graph whose vertices are
the strongly connected components of G, and which has an edge between components
c1 and c2 if there is at least one directed edge in G between a vertex of c1 and a vertex
of c2. An integration sequence is then found by topologically sorting the vertices of
G̃, meaning that a vertex ci comes before cj if there is a directed path from ci to cj.
For example, suppose we have three master integrals, and find the set {{3}, {1, 2}}
after sorting. This indicates that we should first integrate the third integral, and then
integrate together the coupled integrals one and two. Note that in general topological
sorting does not lead to a unique integration sequence, but we are free to pick any
integration sequence that is compatible with the topological ordering. Lastly, we
remark that we should (re-)derive an integration sequence for each path γ(x). This is
because sometimes integrals are coupled when transported along certain directions, but
not along others. Luckily, deriving an integration sequence is very fast in the above
approach.

5.2.3 Homogeneous solutions and the Frobenius method

In the following subsection we discuss how to solve the homogeneous component of
the differential equations of a set of coupled integrals as a series expansion around the
origin of the line segment. We adopt the notation of Eq. (5.6), but we will drop the
superscripts, since the homogeneous differential equations are the same at each order
in ϵ. Thus, we are interested in solving differential equations of the form:

∂xg⃗ = Mg⃗ , (5.8)

for a vector of integrals g⃗ = (g1, . . . , gp). For simplicity, we will use the notation ∂ = ∂x.
Furthermore, we will let g(j) ≡ ∂j g⃗. Note that the superscript now does not refer to
the order in ϵ, which was the case in subsection 5.2.1. We define a set of matrices M(j)

by:

g⃗(j) ≡ M(j)g⃗ . (5.9)

We can obtain these matrices by the recursion relation:

M(0) = 1 , M(j) = ∂M(j−1) + M(j−1)M(1) for all j ≥ 1 . (5.10)
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Since we are interesting in finding series solutions, we expand M around the point
x = 0 up to a given order, and we compute M(j) in terms of series expansions as well.
Note that upon series expanding square roots, we have to take care that we choose
the correct analytic branch of the square root. This is discussed in more detail in
subsection 5.2.6.

Next, consider the (p × p)-matrix M̃ whose rows are given by the top rows of the
matrices M(j). In particular, we have: M̃ij = M(i−1)

1j . Furthermore, consider the vector
g⃗∂ = (g1, ∂g1, . . . , ∂

p−1g1). Then it holds that:

g⃗∂ = M̃g⃗ . (5.11)

If M̃ is invertible, we may write:

g⃗ = M̃−1g⃗∂ . (5.12)

For generic configurations of the kinematic invariants and internal masses, M̃ is
invertible. If the master integrals are instead integrated along line segments that lie
on degenerate configurations of the kinematic invariants and internal masses, it may
happen that there are relations between the master integrals along the line. In such
cases, M̃ might not be invertible. We will discuss a solution strategy for the case where
M̃ is singular at the end of this subsection, and we assume for now that M̃ is invertible.
Note that one way of avoiding the situation is to use a set of differential equations
where the additional relations between the master integrals have been plugged in
explicitly.

We are interested in finding and solving a p-th order differential equation for g1. In
particular, we seek a vector c⃗ = (c0, . . . , cp), such that:

p∑
j=0

cjg
(j)
1 = 0 . (5.13)

Note that the elements of c⃗ depend on x. Consider the ((p+1)×p)−matrix M̃+, which
is again defined by (M̃+)ij = M(i−1)

1j . There is a unique vector c⊺ in the left null-space
of M̃+, up to normalization, since we assumed that M̃ is invertible. Next, define the
vector g⃗∂+ = (g1, ∂g1, . . . , ∂

pg1). We then obtain the desired differential equation in the
following way:

c⊺g⃗∂+ = c⊺M̃+g⃗ = 0 (5.14)
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We will normalize c⊺ such that cp = 1, i.e. the coefficient of the highest derivative is
set to one. Next, we will discuss how to solve Eq. (5.13) using a simple formulation of
the Frobenius method.

The Frobenius method is a general method for solving a homogeneous ordinary differ-
ential equation around a regular point x = 0, in terms of series expansions. The main
idea relies on taking an ansatz for the solution in terms of a series of the form:

g1(x) = xrs(x) , s(x) =
∞∑
m=0

smx
m (5.15)

for some rational number r. We may series expand the coefficients of the differential
equations, plug Eq. (5.15) into Eq. (5.13), and collect terms based on powers of x.
We then obtain a set of equations for the coefficients sm. At leading order in x, the
equation is a non-trivial polynomial equation for r, which is called the indicial equation.
The indicial equation will in general have multiple solutions. It turns out that if we
take the largest solution for r, we may (recursively) solve for all sm with m ≥ 1, by
considering the equations defined by the remaining orders of x. The value of s0 is a
free parameter, and we may put it to one. The reason for picking the largest root of
the indicial equation is to ensure that the recursion for sm does not break down. This
can be seen if one works out the recursion symbolically, but we will not do that here
(see e.g. Ref. [157] for a more detailed review of the Frobenius method.)

Thus, the Frobenius method yields at least one series solution to the differential
equations. Next, we discuss how to find the p − 1 remaining independent series
solutions, using the well-known method of reduction of order. Let D = ∑p

i=0 ci∂
i be the

differential operator associated with Eq. (5.13), and assume that h is the solution from
the Frobenius method, which satisfies Dh = 0. Next, consider a multiplicative ansatz of
the form hµ, where µ =

∫
ν, which satisfies D(hµ) = 0. We then have explicitly:

0 = D (hµ) =
p∑
j=0

cj∂
j (hµ) =

p∑
j=0

j∑
n=0

cj

(
j

n

)
(∂j−nh)(∂nµ) . (5.16)

Note that the coefficient of µ = ∂0µ, in the above equation, is simply given by:
p∑
j=0

cj∂
ph = Dh = 0 . (5.17)

Thus, Eq. (5.16) is a p-th order differential equation for µ with no ∂0µ-coefficient.
Therefore, it defines a (p − 1)-th order differential equation for ν. We may describe
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this equation by a new differential operator D′ = ∑p−1
i=0 c

′
i∂
i, for which we may again

find one solution using the Frobenius method. It is clear that we may take another
multiplicative ansatz, and iterate until we obtain a trivial differential equation. A
possible recursive implementation in Mathematica looks as follows:

FrobeniusSolutions[DEq_] := Block[{Sols = {}, DEq2},
AppendTo[Sols, FrobeniusSolution[DEq]];

If[DEqnOrder[DEq] > 1,
DEq2 = Dprime[DEq, Sols[[-1]]];
Sols = Join[Sols, (Sols[[-1]] * Integrate[#, x])& /@

FrobeniusSolutions[DEq2]];
];

Return[Sols]
];

In the above example, the function DEqnOrder[DEq_] represents a function that returns
the order of the differential equation DEq. The function FrobeniusSolution[DEq_]
represents a function that returns a solution to the differential equation from the series
ansatz in Eq. (5.15), and lastly, the function ReduceD[DEq_, h_] represents a function
that returns a lower order differential equation from the solution h given in the second
argument. The series solutions which are obtained will contain terms of the type:

λi log(λ)j , (5.18)

where i is a rational number, and j is a non-negative integer. Such terms may be
integrated in terms of combinations of terms of the same form, by repeatedly using
an integration-by-parts identity to reduce the power of the logarithm down to zero.
Within DiffExp, the integration of terms of the form of Eq. (5.18) is implemented
using a list of replacement rules, which is faster than using the Mathematica function
Integrate[...], like in the above example.
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We now have a way of obtaining p independent solutions, which we will denote by
h1, . . . , hp in the following. Next, consider the Wronskian matrix:

W =

∣∣∣∣∣∣∣∣∣∣∣∣

h1 · · · hp

∂h1 · · · ∂hp
... . . . ...

∂p−1h1 · · · ∂p−1hp

∣∣∣∣∣∣∣∣∣∣∣∣
(5.19)

A matrix of solutions F to the homogeneous differential equation in Eq. (5.8) is found
by putting the Wronskian at the place of g⃗∂ in Eq. (5.12), which leads to:

F = M̃−1W , ∂F = MF . (5.20)

We may multiply the columns of F by free parameters, and sum over them, to obtain
a general vector solution to Eq. (5.8).

5.2.4 General solutions

In the previous subsection, we showed how to solve homogeneous differential equations
of the form of Eq. (5.8). Next, we describe how to obtain the general solution to a
system of differential equations of the type:

∂xg⃗ = Mg⃗ + b⃗ , (5.21)

which will allow us to solve Eq. (5.6) in particular. First, consider the matrix:

B = 1
p

(⃗b, . . . , b⃗) , (5.22)

where b⃗ = (b1, . . . , bp) is a vector of size p. Next, consider the matrix G = FH, which
satisfies:

∂G = MG + B , (5.23)

where F is given in Eq. (5.20), and where H will be determined next. We then have
that:

F∂H = B ⇒ H =
∫

F−1B + E , (5.24)

where E is any constant matrix. We let E be a diagonal matrix of the form E =
diag(e1, . . . , ep), where the constants ej are to be fixed from boundary conditions. The



92 Series expansion methods

general vector solution to Eq. (5.21) is then given by:

g⃗ =
p∑

k=1
G⃗k , G = F

(∫
F−1B + E

)
, (5.25)

where G⃗k denotes the k-th column of G. In principle, this concludes the task of solving
the differential equations. Let us discuss some optimizations to computing Eq. (5.25).
Note that the definition of F relies on the inverse matrix M̃−1, while the definition of
G also relies on the inverse matrix F−1 = W−1M̃. Since our matrix elements contain
series expansions, it can be computationally expensive to compute these inverses when p
is large. Let us first consider the inverse of M̃. Note that the entries of M̃ contain series
expansions without logarithms, since there were no integrations involved in computing
M̃. This makes the computation of the inverse of M̃ relatively straightforward. In the
current version of DiffExp, the Mathematica function Inverse[...] is used, with the
option Method set to "DivisionFreeRowReduction".

Next, let us consider the Wronskian matrix W. Its entries contain series expansions
which may contain logarithmic terms of the form log(x), and we find in this case that
Mathematica has trouble to explicitly compute the inverse matrix, or an associated
linear system, for high orders of p. We remedied this problem in a manner which we
discuss next. First note that the Wronskian matrix satisfies a differential equation of
the form:

∂W = NW , N =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 0 1

−c0 −c1 −c2 · · · −cp−2 −cp−1


. (5.26)

Furthermore, we have:

0 = ∂(WW−1) = (∂W)W−1 + W∂W−1 = N + W∂W−1 . (5.27)

Therefore, we have:

∂(W−1)⊺ = −N⊺(W−1)⊺ . (5.28)

We may solve this differential equation for W−1 using the Frobenius method following
the steps outlined in subsection 5.2.3. After solving Eq. (5.28) this way, we obtain a
matrix, which we will call X−1, that is not quite the inverse of W, but which satisfies
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the condition ∂(WX) = 1. Therefore, WX is a constant matrix, which we will call Z.
We may easily invert Z, and we can then obtain the inverse of the Wronskian matrix as
W−1 = XZ−1. We use this approach to calculate W−1 in DiffExp when the Wronskian
contains logarithms. Otherwise, we invert W directly, which we find to be faster in
that case.

Note that we only compute F and F−1 once for each set of coupled integrals on a
given line segment. To find the solutions of the coupled integrals at a given order in ϵ,
we then compute the appropriate B-matrix, and use Eq. (5.25). Lastly, we remark
that the above integration strategy is essentially equivalent to the method of variation
of parameters, which we discuss next in subsection 5.2.5. However, we found (by
considering a number of examples) that the above way of computing the solutions is a
bit more efficient in practice.

5.2.5 Solution along degenerate lines

The integration strategy discussed in the previous subsection relies on the property
that M̃ is invertible, which is the case along generic contours where all master integrals
are independent. We have also implemented a more direct version of the method of
variation of parameters. We find (experimentally) that this method performs a bit
slower than the one discussed in subsection 5.2.4. However, we have found it more
straightforward to generalize this method to the case where M̃ is not invertible. We
discuss the method next.

Consider the differential equations in Eq. (5.21), repeated here for clarity:

∂xg⃗ = Mg⃗ + b⃗ . (5.29)

Next, define an analogue of Eq. (5.9) by introducing vectors ⃗̃b(j), so that:

g⃗(j) = M(j)g⃗ + ⃗̃b(j) . (5.30)

We then have that:

⃗̃b(0) = 0 , ⃗̃b(j) = ∂⃗̃b(j−1) + M(j−1)⃗b for all j ≥ 0 . (5.31)

Next, we seek to find a higher order differential equation for each integral in g⃗. Consider
the set of ((p+1)×p)−matrices M̃q,+, and vectors⃗b

∼∼

q,+ of length (p+1), for q = 1, . . . , p,
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defined by:

(M̃q,+)ij ≡ M(i−1)
qj , (⃗b

∼∼

q,+)i ≡ ⃗̃b(i−1)
q . (5.32)

Furthermore, let g⃗∂q,+ = (gq, ∂gq, . . . , ∂pgq). Then we have:

g⃗∂q,+ = M̃q,+g⃗ +⃗
b
∼∼

q,+ . (5.33)

Next, let c⊺q denote the vector (up to normalization) in the left null-space of Mq,+

with the most trailing zeros (i.e. which gives the lowest order differential equation for
integral q.) Then we obtain the following differential equations:

c⊺q g⃗
∂
q,+ = c⊺qM̃q,+g⃗︸ ︷︷ ︸

=0

+c⊺q
⃗
b
∼∼

q,+ = 0 , for all q = 1, . . . , p . (5.34)

Let us consider the differential equation for the integral gq. We will denote the order
of the differential equation by vq. We have:

vq∑
j=0

cq,j∂
jgq + b

∼∼∼

q = 0 , (5.35)

where b
∼∼∼

q ≡ −c⊺q
⃗
b
∼∼

q,+. We choose the normalization cq,vq = 1. We may obtain the
homogeneous solutions to Eq. (5.34) using the Frobenius method, as described in
subsection 5.2.3. Denote these by hq,1, . . . , hq,vq . The method of variation of parameters
tells us that the general solution to Eq. (5.35) can then be written as:

gq =
vq∑
j=1

hq,j

(
eq,j +

∫ W(q,j)

W(q)
dx

)
, (5.36)

where the constants eq,j are are to be determined from boundary conditions, where
W(q) is the Wronskian determinant of the homogeneous solutions hq,1, . . . , hq,vq , and
where W(q,j) is the determinant of the Wronskian matrix with the j-th column replaced
by the vector (0, . . . , 0, b

∼∼∼

q).

Next, we distinguish two cases. In the first case, we consider that M̃q is invertible for
some q, where M̃q is the (p × p)-matrix obtained by removing the last row of M̃q,+.
We may then compute Eq. (5.36) for the given q, and use that:

g⃗ = M̃−1
q

(
g⃗∂q −⃗

b
∼∼

q

)
, (5.37)
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in order to find the solutions of the other basis integrals. Here we used the notation g⃗∂q
and ⃗b

∼∼

q to denote the vectors g⃗∂q,+ and ⃗b
∼∼

q,+ with the last entry removed. In the second
case where M̃ is not invertible, we can use Eq. (5.36) to compute all the coupled
integrals. Because the integrals are related through Eq. (5.29), there are relations
between the constants eq,j for different q. These are fixed by plugging the solutions of
Eq. (5.36) into Eq. (5.29) and eliminating the redundant constants by reducing the
resulting linear system.

Note that we only have to compute the matrix W̃(q) and the matrices M(j) once for
a given line segment. For each order in ϵ, we then compute the corresponding terms
b
∼∼∼

q and determinants W(q,j). The method of variation of parameters may be enabled
in DiffExp by setting the option IntegrationStrategy to the value "VOP" in the
configuration.

5.2.6 Analytic continuation

In the following subsection we discuss how to perform the analytic continuation of
the series solutions to the differential equations. We also discuss some specific details
related to the Mathematica package DiffExp.

If we solve the differential equations on a line segment that is centered on a threshold
singularity, the series expansions may contain multivalued functions of the form log(x)
and

√
x. Square roots may arise from a Frobenius ansatz of the form of Eq. (5.15),

when the maximal root r of the indicial equation has denominator two. We are not
aware of any Feynman integral family for which there are homogeneous solutions
containing roots of degree higher than two. Square roots may also appear when the
partial derivative matrices contain square roots. DiffExp is only able to analytically
continue square roots and logarithms. Therefore, the user should give a set of differential
equations that contains only rational functions and square roots.

We can specify the branch of the logarithms and square roots by adding an infinitesimally
small imaginary part to the argument. For real x, we have:

log(x+ iδ) = log(x) ,
√
x+ iδ =

√
x ,

log(x− iδ) = log(x) − 2πiθm ,
√
x− iδ = (θp − θm)

√
x , (5.38)

where we let θp = θ(x) and θm = θ(−x) be Heaviside step functions. Within the
Mathematica code, we don’t have to work with terms of the form iδ, θp and θm

explicitly, but we can instead implement the above relations using replacement rules.
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For example, if we know the line parameter carries a small negative imaginary part, we
can evaluate the series expansions at negative values of the line parameter by applying
the following rules before evaluation:

log(x) → log(x) − 2πi ,
√
x → −

√
x . (5.39)

Internally DiffExp only uses replacement rules, but results that are provided to the user
from the function IntegrateSystem[...] carry explicit factors of θp and θm.

If we seek to obtain results in a given physical region, the imaginary part of the line
parameter should be in correspondence with the Feynman prescription. We discuss
next how this is handled in DiffExp. First, note that the Feynman prescription does
not always provide a unique choice of signs of the Mandelstam variables. We saw in
subsection 2.2.2 that every variable s(T1,T2) should carry a positive imaginary part, and
that the masses should carry a negative imaginary part. However, the quantities s(T1,T2)

evaluate to sums of Mandelstam variables, and are related by momentum conservation.
Therefore, the Feynman prescription may sometimes be ambiguous in terms of the
Mandelstam variables.

Therefore, we have taken a more general approach to analytic continuation in DiffExp,
where instead of assigning an imaginary part to each Mandelstam variable, the user
provides a list of polynomials with an additional term ±iδ, such that the zeros of the
polynomials parametrize either physical threshold singularities or the vanishing locus of
square roots, and such that the iδ’s determines the choice of branch. This is done with
the configuration option DeltaPrescriptions. For example, a user may put:

DeltaPrescriptions -> {4msq-s-Iδ, 4*msq*(p4sq - s - t) + s*t + Iδ}

to fix the iδ-prescription for a threshold singularity at s = 4m2, where s and −m2

carry +iδ, and to tell DiffExp that the square root
√

4m2 (p2
4 − s− t) + st should be

interpreted as: √
4m2 (p2

4 − s− t) + st+ iδ . (5.40)

To transfer the user-provided iδ-prescriptions over to the line parameter x, we plug
the line into the polynomials provided by the user, expand the resulting expressions
in x, and take the leading terms in x. The polynomials for which the leading term is
constant are discarded, as the current line segment is not centered on their corresponding
singular surface. For the remaining polynomials, we check whether the leading term
is proportional to x (raised to power one.) If so, we can read off how to associate
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the iδ-prescription with the line parameter. If the leading term is proportional to
a different power of x, we are unable to transfer the Feynman prescription, and we
should pick a different line segment.

Let us work out a simple example. Consider the square root f(s) =
√

4 − s− iδ. Its
differential equation is given by:

∂sf(s) = − 1
2(4 − s)f(s) . (5.41)

Let us consider the line s = 4 − x. We then have:

∂xf(x) = 1
2xf(x) . (5.42)

Solving the above differential equation leads to the general solution f(x) = c1x
1/2, where

c1 is to be fixed from boundary conditions. Furthermore, we have that 4 − s(x) − iδ =
x− iδ. Hence, we see that x carries the imaginary part −iδ. Next, we use Eq. (5.38)
to update our general solution to the correct prescription, which gives:

f(x) = c1
√
x− iδ = c1(θp − θm)

√
x . (5.43)

Fixing c1 at a boundary point gives c1 = 1, which provides the correct answer.

We conclude this subsection with some additional remarks about the handling of square
roots in the differential equations. Firstly, in the case where the square root lies on a
physical threshold singularity, it is important that it is assigned the branch that agrees
with the Feynman prescription. For example, if the basis contains a square root of
the form

√
4m2 − s, and the Feynman prescription tells us that s carries a positive

imaginary part and m2 carries a negative imaginary part, the corresponding square
root should be interpreted as

√
4m2 − s− iδ. The branch of the square roots which do

not lie on a physical threshold singularity can be chosen freely. For those, it is most
convenient to pick +iδ, so that the square roots are given in the standard branch. All
square roots for which the argument or −1 times the argument is not passed to the
option DeltaPrescriptions by the user, will automatically be assigned the imaginary
part +iδ.

Another point is that we should only work with square roots that contain irreducible
arguments (over the real numbers). If the arguments of the square roots are reducible
the following problem could arise. Consider the square root

√
s(4 − s). We want

to assign the square root some branch, for example
√
s(4 − s) →

√
s(4 − s) + iδ.
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Furthermore, suppose that the Feynman prescription dictates that s carries a positive
imaginary part. Along the line s = x, we can safely let x ∼ x + iδ, and this agrees
with the choice of branch of

√
s(4 − s). However, along the line s = 4 + x, that

would yield
√
s(x)(4 − s(x)) =

√
−x(4 + x) ∼

√
−x(4 + x) − iδ. Therefore, we can

not simultaneously satisfy the Feynman prescription and the fact that the square root
is on the standard branch.

Lastly, note that upon series expanding the partial derivative matrices, we have to take
care that the square roots are expanded in the correct branch. A simple way to do this
is to take all square roots in the matrices which carry a −iδ, and use the relation:√

a(S) − iδ = −i
√

−a(S) + iδ , (5.44)

where a(S) denotes an irreducible polynomial in the kinematic invariants and internal
masses (which are denoted by the set S.) After using the above relation, we can
use Mathematica’s function Series[...] with the option Assumptions → x > 0, in
order to obtain a series expansion that is valid for positive values of x. We can then
evaluate the expansions at negative values of x, by using the replacement rules of Eq.
(5.39) whenever x carries negative imaginary part.

5.2.7 Precision and numerics

In the following subsection we discuss two ways that we may increase the precision of
the series expansions along a given line segment. First, we give a few remarks on the
convergence of the expansions and the growth of the series coefficients.

Convergence radius and growth of series coefficients

Note that DiffExp is only designed to work with differential equations whose coefficients
are composed of rational functions and square roots of rational functions. Suppose
that we expand along a line parametrized by the line parameter x. The differential
equations have singularities in the complex plane of x, at the positions of the poles of
the rational functions, and the positions of the zeros of the arguments of the square
roots. Let us denote these by the set Xsing = {x1, . . . , xn}, and suppose that we are
expanding around the origin x = 0. Then, the radius of convergence of the series
expansions is given by r = min{|xi| ∈ Xsing}. Note that the Feynman integrals
themselves typically possess a small subset of the singularities that are contained in
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the differential equations. Nonetheless, at intermediate stages of the calculations, our
computations will be sensitive to the points in Xsing.

Within the DiffExp package, the coefficients of the series expansions are treated as
inexact numbers which are valid up to the user-provided working precision. If r is very
small, we will typically find that the series coefficients of the expansions grow very fast.
This is undesirable, as it may lead to loss of precision and/or numerical instabilities.
For this reason, it is a good idea to rescale the line parameter in order to map the
points in Xsing away from the origin. In the upcoming subsections, we will discuss two
different segmentation strategies for the transportation of boundary conditions. In
both strategies, the line segments which are returned are always chosen such that the
radius of convergence r satisfies r ≥ 1. In some cases, the choice of r = 1 may still lead
to numerical instabilities. We find this to be the case for the unequal-mass three-loop
banana graph family, which is solved in subsection 5.4.2. Therefore, DiffExp contains
the additional option RadiusOfConvergence, which is equal to one by default. For
values different than one, the line parameter will be rescaled so that for each segment
r is at least equal to the value of RadiusOfConvergence.

Improving the precision: Möbius transformations

One way to improve the precision along a given line segment is to act with a specific
Möbius transformation on the line parameter, which repositions the nearest singularities
so that they are at an equal distance from the origin.

Suppose that we are interested in expanding around the origin of the line γ(x).
Furthermore, suppose that Xsing = (x1, . . . , xk)/{0} is a finite set of points at which
the line γ(x) crosses a singularity of the differential equations. We exclude the point
zero from the set, as we are expanding at origin. Assume for now that all xj ∈ Xsing

are real. We comment on the more general case later. Let xL < 0 and xR > 0 be the
two points in Xsing that are closest to the origin. If there is no xj ∈ Xsing such that
xj < 0, we let xL = −∞. Similarly, if there is no xj > 0 in Xsing, then we let xR = +∞.
Now, consider a new line parameter y defined by the Möbius transformation:

x(y) = 2yxLxR
xL − xR + y (xL + xR) , (5.45)

such that the points y = −1, 0, 1 correspond to x = xL, 0, xR respectively. When
xL = −∞, or xR = ∞, we can take a limit of the Möbius transformation. Let
Ysing = (y1, . . . , yk)/{0} be the set of points such that x(yj) = xj. We then have



100 Series expansion methods

that |yj| ≥ 1 for all yj. Therefore, if we expand in the line parameter y, the resulting
expansions converge in the range y ∈ (−1, 1), which corresponds to the range (xL, xR) in
the line parameter x. Had we expanded instead in the line parameter x, the expansions
would have been valid in the smaller range (−r, r), where r = min(−xL, xR).

Let us illustrate this with a simple example. Consider the function:

f(x) = 1
1/10 + x

− 1
1 − x

, (5.46)

which has poles at x = −1/10 and x = 1. We are interested in a series expansion at
the point x = 0, which we denote by S(f)(x). The first five orders are given by:

S5(f)(x) = 9 − 101x+ 999x2 − 10001x3 + 99999x4 − 1000001x5 + O(x)6 . (5.47)

It it clear that the series coefficients quickly grow in size, and that the radius of
convergence of f(x) is equal to 1/10. Next, consider the line parameter y defined
by:

x(y) = − 2y
9y − 11 , (5.48)

We may plug x(y) into Eq. (5.46) or Eq. (5.47), and obtain:

S5(f)(y) = 9 − 202y
11 + 18y2 − 202y3

11 + 18y4 − 202y5

11 + O
(
y6
)
. (5.49)

Notice that the series coefficients are now much better behaved. Furthermore, consider
the point x = 1/4, which corresponds to y = 11/17. Evaluating the series expansions
up to order 15 gives:

S15(f)(x) ≈ −6.65 · 106 , S15(f)(y) ≈ 1.51 , f(x = 1/4) = 32/21 ≈ 1.52 . (5.50)

Clearly, the series in x does not converge, while the series in y does. Therefore, it is
beneficial to use a Möbius transformation to remap the singularities.

Lastly, we comment on the case where some of the xj ∈ Xsing are complex numbers. In
that case, we may consider instead the set X ′

sing, which contains all the points Re(xj)
for xj ∈ Xsing with Re(xj) ̸= 0, and which contains the points ±Im(xj) where xj is the
closest point to the origin satisfying Re(xj) = 0. We may then proceed as before, with
Xsing replaced by X ′

sing, and consider the line parameter y of Eq. (5.45). In the complex
case, it is not guaranteed anymore that expanding in y is better than expanding in
x. For example, there may be complex singularities with large imaginary parts, but
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real parts close to the origin, and it might not be optimal to map their real part to
−1 or +1. One solution would be to increase xL and xR dynamically until one of the
singularities in the complex plane of y lands inside the unit disc, and such that xR −xL

is as large as possible, but this possibility is left for a future version of DiffExp.

Improving the precision: Padé approximants

If a function f(x) admits a Taylor series at x = 0, we may compute its Padé approximant
of order (n,m), which is a rational approximation to f(x) of the form:

Pn,m(f)(x) = S1(x)
S2(x) , (5.51)

where S1(x) and S2(x) are polynomials of degrees n and m respectively. The Padé
approximant is uniquely defined by the property that its Taylor expansion matches
the Taylor expansion of f(x) up to order O(xn+m+1), and can be computed using
standard algorithms. It is well-known in the field of applied mathematics that Padé
approximants often yield a better approximation to a function than the Taylor series.
(See e.g. Ref. [158] for a more general overview of Padé approximants and series
acceleration methods.) Furthermore, the Padé approximant is computed directly from
the Taylor series of f(x).

The definition of the Padé approximant can be extended to cover functions f(x) which
admit a Laurent expansion at x = 0. In this case, we may multiply out the highest
degree pole, compute a Padé approximant of the resulting Taylor series, and divide out
the pole, to obtain a Padé approximant for f(x). We can also extend the definition
to power series with fractional powers. For example, suppose we have a series of the
type:

k∑
j=−p

fjx
j/r + O(x(k+1)/r) , (5.52)

for integers k ≥ −p, and a positive integer r ≥ 1. We may compute the Padé
approximant of ∑k

j=−p fjx
j, and replace every power xj by xj/k afterwards. In this

case the Padé approximant is not anymore the ratio of two polynomials, but of two
power series with fractional powers. We will then let Pn,m(f)(x) denote the Padé
approximant where the powers of x in the numerator are at most equal to n, and where
the powers of x in the denominator are at most equal to m. The Padé approximant is
implemented in Mathematica, including for series with fractional powers, and can be
called using the function PadeApproximant[f[x], {x, 0, {n, m}}].
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Note that series solutions of Feynman integrals may also contain powers of logarithms.
To deal with these, we decompose the series expansions as:

q∑
i=0

log(x)i
∞∑

j=−p
fijx

j/r , (5.53)

for a non-negative integer q, an integer p, and where r = 1 or r = 2. We then compute
a Padé approximant for each power of the logarithm.

We may employ Padé approximants in our setup whenever we need to evaluate the
series solutions of the Feynman integrals. For example, in order to compute boundary
conditions for the next line segment, we compute the Padé approximant of each integral,
and evaluate it at the next boundary point. Note that Padé approximants were also
used in Ref. [3] to improve the numerical precision. Lastly, note that DiffExp always
computes the diagonal Padé approximant. In particular, for a series of the form of Eq.
(5.52), we let n = ⌊k+p+1

2 ⌋ and m = ⌊k+p+1
2 ⌋.

There are two possible caveats when using Padé approximants, which we discuss next.
Firstly, note that the series solutions that are found by DiffExp have inexact numerical
coefficients which are valid up to a certain number of digits. Typically, the accuracy of
the coefficients of the Padé approximants is lower than the accuracy of the coefficients
the original series. Therefore, when Padé approximants are enabled in DiffExp, the
working precision should typically be increased too. The second caveat is that it can
take some time to compute the Padé approximants of all the basis integrals, especially
when the expansions contain half-integer powers and/or logarithms. Nonetheless,
in the examples on which DiffExp was tested, we have almost always found Padé
approximants to significantly decrease the computation time needed to obtain results
at a given precision. However, to be safe, Padé approximants are disabled in DiffExp
by default. They can be turned on by setting the option UsePade to True.

5.2.8 Line segmentation strategies

In the following section we describe two strategies for transporting boundary conditions
along a line, based on subdividing the line into multiple segments. First, we consider a
‘dynamic’ segmentation strategy, in which we keep the error of the series expansions of
the differential equations within a certain bound. In practice, bounding the error of the
expansions of the differential equations also bounds the error of the series solutions to
the differential equations (although not necessarily to the exact same extent.) Secondly,
we describe a variation of the first strategy, which we call the ‘predivision’ segmentation
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strategy. In that strategy, we subdivide the line into multiple segments, with the
requirement that the expansions on each line segment are only evaluated at a fixed
fraction of the distance to the nearest singularity of the differential equations. Similar
integration strategies were considered in Refs. [2, 3, 40, 47]. Our implementation of
the predivision strategy is closest to that of Ref. [3], where the strategy was considered
with the use of Möbius transformations. Compared to that paper, we have slightly
improved the matching of neighbouring line segments.

Dynamic segmentation strategy

Suppose we are transporting along a line γ(x), from a point xstart to a point xend > xstart.
Let Xsing = (x1, . . . , xk) denote the set of singularities of the differential equations in
the complex plane of x, and assume that xend /∈ Xsing. Next, let

x(yx̃) = x̃+ rx̃yx̃ (5.54)

define a line parameter yx̃, for each point x̃, such that x(yx̃ = 0) = x̃ and such that
x(yx̃ = ±1) = x̃± rx̃. The variable rx̃ denotes the distance of x̃ to the nearest point in
Xsing. By including this additional rescaling, the series expansions in yx̃ behave better
numerically, as discussed in subsection 5.2.7, and converge within the interval (−1, 1).
Next, consider some small number δ, and define the interval

Iδ(yx̃) = [−yδx̃, yδx̃] , (5.55)

where yδx̃ is the maximum real number so that:∣∣∣A(k)
yx̃,ij(yx̃) − Sn

(
A(k)
yx̃,ij

)
(yx̃)

∣∣∣ < δ , for all i, j, k, and − yδx̃ < yx̃ < yδx̃ , (5.56)

and where Sn
(
A(k)
yx̃,ij

)
denotes the series expansion of A(k)

yx̃,ij in y′
x̃ up to order O(yn+1

x̃ ),
where n is the order at which the expansions are performed. In fact, within DiffExp,
we usually take n in Eq. (5.56) to be a few orders smaller than the order at which
we perform the expansions, to be safe. The matrices A(k)

yx̃
are the partial derivative

matrices introduced in Eq. (5.3), with respect to the line parameter yx̃. In practice, it
is hard to compute yδx̃ exactly, and so we instead use the estimate:

yδ,est
x̃ = min


 δ∣∣∣S(n)

(
A(k)
yx̃,ij

)∣∣∣
 1

n

, for all i, j, k

 , (5.57)
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where S(n)
(
A(k)
yx̃,ij

)
denotes the coefficient of the n-th power ynx̃ in the series expansion

of A(k)
yx̃,ij, and where we pick the real and positive n-th root. Lastly, let:

Iδ(x̃) = [x̃δ,L, x̃δ,R] , (5.58)

where:

x̃δ,L = x(yx̃ = −yδx̃) x̃δ,R = x(yx̃ = yδx̃) , (5.59)

be the interval Iδ(yx̃) expressed in the line parameter x. Note that to compute these
intervals, we have to perform the expansions of the partial derivative matrices in yx̃,
which can be time-consuming. The first step in our integration algorithm is to compute
Iδ(xi) for all real xi ∈ Xsing, such that xstart ≤ xi < xend.

Next, suppose that we are given boundary conditions f⃗(xbc) at the point xbc, and
that we are given the point xxp on which to center the current line segment. Then we
perform the following steps:

1. Expand the differential equations in yxxp and find the corresponding series solu-
tions. Fix boundary conditions at the point yxxp,bc, where x(yxxp = yxxp,bc) = xbc.

2. Determine yδxxp and xδ,Rxp . If xδ,Rxp > xend, evaluate the series solutions at yxxp,end,
where x(yxxp = yxxp,end) = xend, and return the result. Otherwise, let x′

bc = xδ,Rxp ,
and evaluate the series solutions at yδxxp , to obtain the next set of boundary
conditions f⃗(x′

bc).

3. If x′
bc ∈ Iδ(xi) for some xi ∈ Xsing, then let x′

xp = xi. Otherwise, let x′
xp = x′

bc.

By iterating the above steps, starting with xxp = xbc = xstart, we may reach the
endpoint xend. Note that we may let xstart ∈ Xsing if we give the set of boundary
conditions f(xstart) as an asymptotic limit in the line parameter yxstart .

Lastly, we discuss how we may incorporate Möbius transformations in the above setup,
in the spirit of subsection 5.2.7. In this case we have to be careful with the presence
of complex singularities. We may deal with complex singularities by defining a new
set of points X ′

sing which consists of particular projections of the singularities in Xsing

onto the real axis. In particular, for each xi ∈ Xsing, consider the set Xproj(xi), such
that:

• Re (xi) ∈ Xproj (xi),

• Re (xi)−Im (xi) ∈ Xproj (xi) if ! (∃xj ∈ Xsing | Re (xi) − Im (xi) < Re (xj) < Re (xi)),
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• Re (xi)+Im (xi) ∈ Xproj (xi) if ! (∃xj ∈ Xsing | Re (xi) < Re (xj) < Re (xi) + Im (xi)) .

Then we let X ′
sing = ∪xi∈XsingXproj(xi) = {x′

1, . . . , x
′
k}. Next, we choose line parameters

of the following form:

x(yx̃) = yx̃ (2x̃Lx̃R − x̃x̃L − x̃x̃R) + x̃x̃L − x̃x̃R
yx̃ (x̃L + x̃R − 2x̃) + x̃L − x̃R

, (5.60)

where x̃L is the nearest point in X ′
sing that is on the left of x̃, and similarly for x̃R. If

there is no singularity on the left, we choose x̃L = −∞, and if there is no singularity on
the right, we choose x̃R = +∞. We may now proceed with the same three integration
steps as before, using the line parameters of Eq. (5.60), and replacing Xsing by X ′

sing in
the third step.

Predivision segmentation strategy

In this subsection, we describe an integration strategy that subdivides the contour
into multiple segments, based on the requirement that the series solutions on each
line segment are at most evaluated at a fixed fraction of the distance to the nearest
singularity of the differential equations. We call this strategy the predivision strategy,
because with this strategy all line segments may be obtained in advance (before doing
any expansions.)

We will work with the set X ′
sing of projections of the singularities on the real line,

defined at the end of subsection 5.2.8. Next, we define the analogue of Eqns. (5.55)
and (5.58) by:

I(yx̃) = [−1/k, 1/k] , I(x̃) = [x̃L, x̃R] , (5.61)

such that

x̃L = x(yx̃ = −1/k) x̃R = x(yx̃ = 1/k) , (5.62)

and where k is some real number greater than one.

Next, suppose that we are given boundary conditions f⃗(xbc) at xbc, and the point xxp

on which to center the current line segment. We perform the following three steps,
which are very close to those in subsection 5.2.8:

1. Expand the differential equations in yxxp and find the corresponding series solu-
tions. Fix boundary conditions at the point yxxp,bc, where x(yxxp = yxxp,bc) = xbc.



106 Series expansion methods

2. If xRxp > xend, evaluate the series solutions at yxxp,end, where x(yxxp = yxxp,end) =
xend, and return the result. Otherwise, let x′

bc = xRxp, and evaluate the series
solutions at yxxp = 1/k, to obtain the next set of boundary conditions f⃗(x′

bc).

3. If x′
bc ∈ I(xi) for some xi ∈ X ′

sing, then let x′
xp = xi. Otherwise, let x′

xp be the
point such that x′,L

xp = x′
bc.

The third step differs from the one in subsection 5.2.8 in an important way. Instead of
letting x′

xp = x′
bc, we define x′

xp as the point for which x′
bc lies on the left boundary

of the interval I(x′
xp). This way, we are able to cover more distance with less line

segments. In the dynamic strategy we are not able to solve this condition efficiently,
as computing the interval Iδ(x′

xp) requires expanding the differential equations at x′
xp.

However, in the current scenario, we may algebraically solve the equation

x(yx′
xp = −1/k) = x′

bc . (5.63)

If we use straight line segments we have:

x′
xp = x′

bc + s

k
(5.64)

where s is the distance of x′
xp to the nearest singularity, which is given by:

s =


k(x′

bc−x̃L)
−1+k if x̃L < x′

bc <
x̃L(1+k)+x̃R(k−1)

2k
k(−x′

bc+x̃R)
1+k if x̃L(1+k)+x̃R(k−1)

2k ≤ x′
bc < x̃R

(5.65)

If we use the Möbius transformed line segments of Eq. (5.60), we have simply:

x′
xp = 2x̃Lx̃R + x′

bc [(−1 + k)x̃L − (1 + k)x̃R]
−2x′

bc + (1 + k)x̃L − (−1 + k)x̃R
. (5.66)

We can take limits of the above equation when x̃L = −∞ or when x̃R = +∞. We
find that the predivision strategy typically needs less line segments than the dynamic
integration strategy, in order to obtain results at a given precision. The predivision
strategy is enabled in DiffExp by default, with the variable k set to 2, which is controlled
by the configuration option DivisionOrder.
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5.3 The DiffExp package

In this section we discuss the functions and use of the DiffExp Mathematica package,
which was announced in Ref. [4]. DiffExp can be loaded into Mathematica using the
Get[...], command, i.e.:

<< "DiffExp.m";

Note that DiffExp has been designed and tested on Mathematica 12.1.

5.3.1 Main functions

LoadConfiguration[l_List] / UpdateConfiguration[l_List] /
UpdateConfiguration[l__Rule] First we should parse the configuration options to
DiffExp. This is done using the commands LoadConfiguration[...] or Update-
Configuration[..]. The commands take in a list of rules of configuration options
and their values. The function LoadConfiguration[...] sets default values for
options which are not included in the argument, while the function UpdatesConfigu-
ration[...] can be used to change individual configuration options. Most options
have default values, as described in the table below. The only option that is mandatory
is the option MatrixDirectory, which should be a path to a directory containing
the partial derivative matrices. For many practical purposes, the option DeltaPre-
scriptions, which defines the iδ-prescriptions for the analytic continuation, is also
mandatory. If it is not specified, it is still possible to transport boundary conditions
within a region where no physical threshold singularities are crossed. The full list of
options is described next.

Main configuration options
Option: DeltaPrescriptions Default value: {}
Description: A list of polynomials in the kinematic invariants and internal masses,
each of which should contain an explicit factor ±iδ. The zeros of the polynomials
should describe singularities such as physical threshold singularities, or branch points
of square roots.
Option: EpsilonOrder Default value: 4
Description: An integer specifying the highest order in the dimensional regulator ϵ
in which the integrals should be computed.
Option: LineParameter Default value: x
Description: The line parameter used for parsing lines to DiffExp.
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Option: MatrixDirectory Default value: None
Description: The location of a directory on the file system which contains the partial
derivative matrices A(k)

s . The files should be named according to the convention:
ds_k.m, where s is an external scale or a mass variable, and where k is the order
in ϵ. A special file d_1.m may be provided for a canonical polylogarithmic family,
which should contain a matrix whose entries are Q-linear combinations of logarithms
(the alphabet letters.)
Option: Variables Default value: None
Description: The kinematic invariants and masses of the family of basis integrals. If
no value is provided, DiffExp will attempt to load all files with the name d*_*.m at
the location specified by the option MatrixDirectory.

Options related to precision and numerics
Option: AccuracyGoal Default value: None
Description: The option AccuracyGoal can be used to control the precision of the
results. This option is required when the dynamic segmentation strategy is used,
and is optional for the predivision strategy. There are a few limitations, discussed
below this table.
Option: ChopPrecision Default value: 250
Description: Indicates the number off zeros after the decimal point after which terms
should be set to 0 in intermediate computations.
Option: DivisionOrder Default value: 3
Description: This option determines the inverse distance to the nearest singularity
at which the line segments are evaluated, when the predivision strategy is used.
Option: ExpansionOrder Default value: 50
Description: Specifies the maximum power of the line parameter that should be
kept in intermediate series expansions. At intermediate steps the expansions might
be multiplied by poles, and the final results may be provided at a lower expansion
order.
Option: RadiusOfConvergence Default value: 1
Description: This option has the effect of rescaling the line parameter of each line
segment, so that the minimal radius of convergence is given by its value. Higher
values may help to combat fastly growing series coefficients.
Option: SegmentationStrategy Default value: "Predivision"
Description: This option determines which segmentation strategy is used. The
possible values are "Dynamic" and "Predivision".
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Option: IntegrationStrategy Default value: "Default"
Description: Determines how the differential equations are solved. The value
"Default" corresponds to the strategy of Section 5.2.4, and is the fastest. The
value "VOP" corresponds to using variation of parameters, described in Section 5.2.5.
This strategy is generally a bit slower for solving coupled integrals, but works along
degenerate lines.
Option: UseMobius Default value: False
Description: This option determines whether the line segments are obtained by
linear transformations or by Möbius transformations.
Option: UsePade Default value: False
Description: Determines whether Padé approximants are used while transporting
boundary conditions.
Option: WorkingPrecision Default value: 500
Description: The number of digits kept for any intermediate computation.

Other options
Option: LogFile Default value: None
Description: Location of a log file on which to write all output of the current session.
Option: Verbosity Default value: 1
Description: Determines the level of printed output. The default level is 1 and the
maximum level is 3. When running inside a Mathematica notebook, lower verbosity
levels are generally recommended. For shell-scripts higher verbosity levels might be
preferred.

We provide additional comments about some of the configuration options next.

AccuracyGoal: When AccuracyGoal is specified, DiffExp will aim to transport the
boundary conditions at an absolute precision of 10−δ, where δ is the value of
AccuracyGoal. The option AccuracyGoal works by bounding the error of the
expansions of the differential equations. For integrals that are not coupled, or
coupled at low orders, it is typically the case that the solutions to the differential
equations have the same error. For highly coupled sectors we did not always
find this to be the case, and in the presence of such sectors setting the option
AccuracyGoal might not have the desired effect. In this case, one may still increase
or lower the value of AccuracyGoal to control the precision globally. By default,
AccuracyGoal is turned off, and the precision can be controlled using the options
ExpansionOrder and DivisionOrder.
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If the option SegmentationStrategy is set to "Dynamic", the option Accuracy-
Goal determines how far the solutions are evaluated away from the origin. If the
option SegmentationStrategy is set to "Predivision", DiffExp will dynamically
increase or decrease the expansion order of each line segment, until the expansions
of the differential equations are within the desired precision. This means that the
differential equations are expanded multiple times, until the desired precision is
reached. If the expansion of the differential equations bottlenecks the computation,
then using the option AccuracyGoal with the predivision segmentation strategy is
not recommended.

Lastly, note that AccuracyGoal does not take into account Pade approximants in
determining the error. When AccuracyGoal is specified, and Pade approximants
are enabled, the precision of the results are typically far higher than the given
AccuracyGoal. In this case, setting a value for AccuracyGoal might still be useful
for globally increasing or decreasing the precision.

ChopPrecision, RadiusOfConvergence, and WorkingPrecision: We provide a num-
ber of comments about these three options, which impact the numerical precision
and stability of the calculations. Firstly, the option WorkingPrecision determines
the number of digits at which inexact numbers are kept. The value of WorkingPre-
cision should typically be put significantly higher than the precision that is desired
for the final results. This is because at intermediate stages there might for example
be cancellations between large numbers. The value of ChopPrecision determines
the number off zeros after the decimal point after which numbers are discarded.
For families of integrals where the number of coupled integrals is low, such as a
polylogarithmic family in a canonical basis, the value of ChopPrecision can be set
a bit lower than the value of WorkingPrecision. For integral families where there
are sectors with many coupled integrals, the value of ChopPrecision may need to
be set significantly lower than the value of WorkingPrecision. One reason for this
is that solving the coupled sectors involves calls to a number of Mathematica’s linear
algebra routines, for which the options Tolerance and ZeroTest are controlled
by the value of ChopPrecision. If very small nonzero numbers remain present
in the matrices, the linear algebra routines may run into numerical instabilities.
Note that by default the values of ChopPrecision and WorkingPrecision are set
fairly high, so that most problems simply run out of the box. One can look at the
example notebooks to see some other typical configuration values.
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Lastly, another option that may affect the numerical stability is RadiusOfCon-
vergence. It has the effect of rescaling all series coefficients in the manner
ckx

k → ck(x/10)k. This may be useful when the expansions blow up at inter-
mediate stages. By default the value of RadiusOfConvergence is set to one.
In the three-loop unequal-mass banana graph family, we found it necessary to
set this option higher than one, in order to obtain stable numerical behaviour.
For all other examples we didn’t need to use this option. Note that the three-
loop unequal-mass banana graph family is somewhat of an edge case, since it
involves a sector of eleven coupled integrals. Also note that setting the value of
RadiusOfConvergence too high may result in the expansion coefficients becoming
too small, and being incorrectly discarded, at intermediate stages of the calculation.

DeltaPrescriptions: The option DeltaPrescriptions should be given a list of poly-
nomials with associated iδ-prescriptions, such that the zero sets of the polynomials
correspond to physical threshold singularities, or the arguments of square roots
in the basis choice. In order to find results at any given point in phase-space, the
list should contain all the physical threshold singularities of the basis integrals. In
practice, one only has to provide the physical threshold singularities that need to
be crossed. For example, if the boundary conditions are provided in the Euclidean
region, one would provide the necessary iδ-prescriptions to analytically continue
the results to the physical region of interest. By default, DiffExp will recognize
which square roots appear in the differential equations, and assign them the +iδ
prescription (i.e. the standard branch), unless otherwise specified.

There are two equivalent ways that the iδ-prescriptions may be passed to DiffExp.
The first way involves adding explicit terms of the form ±iδ to the polynomials,
while the second method involved adding the signs of the iδ-prescription as a
separate argument. For example, we could provide either of the following:

DeltaPrescriptions -> {-s+4-Iδ, t-4+Iδ},
DeltaPrescriptions -> {{-s+4,-1}, {t-4,1}},

to define the prescriptions for threshold singularities at t = 4 and s = 4.

Lastly, we mention a potential pitfall regarding the analytic continuation. For
each line segment, DiffExp checks whether there are multivalued functions in the
expansions. If multivalued functions are present, but DiffExp is not centered at one
of the singular regions provided by DeltaPrescriptions, the computation will be
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aborted and DiffExp will ask the user to provide the relevant iδ-prescription. One
situation where this check fails, is if two singular regions intersect at the origin of
the line segment but the analytic continuation prescription is only given for one of
them. In this case, DiffExp will assume the iδ-prescription of the singular region
that was provided to the option DeltaPrescriptions, which might not be the
correct choice for the other one.

MatrixDirectory: The partial derivative matrices that are provided to DiffExp may
only contain combinations of rational functions and square roots with irreducible
polynomial arguments. Other functions such as elliptic integrals, which show up
for canonical bases of elliptic families of Feynman integrals, are not supported.
However, for such families one may provide a precanonical basis instead. If a file
ds_k.m is absent, for some epsilon order k, it is assumed that the corresponding
matrix has all entries equal to zero. To speed up the expansions of polylogarithmic
sectors, a special matrix d_1.m may be provided, whose entries should be linear
combinations of logarithms. Note that if both d_1.m, and files of the form ds_1.m,
are present in the folder, their contributions will be summed together.

UseMobius: Enabling Möbius transformations reduces the number of line segments
needed to transport boundary conditions at a given precision. However, if we
work on Möbius transformed line segments, the time needed for expanding the
differential equations might increase considerably. When the differential equations
are large, their expansion might be the main computational bottleneck, and in
such cases enabling Möbius transformations can be detrimental to performance.
For this reason, Möbius transformations are turned off by default.

UsePade: Enabling Padé approximants typically increases the precision of the solutions
considerably. However, the use of Padé approximants can sometimes lead to
numerical instabilities. This is typically the case when the options ChopPrecision
and WorkingPrecision are set to values that are too low. Furthermore, finding
the Padé approximants is somewhat costly too, and adds computation time to the
algorithm. Typically, we still find that the use of Padé approximants significantly
decreases the computation time needed to obtain results at a given precision, but
to be safe, they are currently turned off by default.
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CurrentConfiguration[]
This function return a list with the current configuration options.

PrepareBoundaryConditions[bcs_List, line_List]
This function converts a set of boundary conditions into a form that is useable by the
routines IntegrateSystem[...] and TransportTo[...]. The first argument should
contain the boundary conditions, while the second argument should contain a point or
line specifying an asymptotic limit in phase-space, in which the boundary conditions
are given. DiffExp recognizes whether the argument is a line or a point, by checking
whether it depends on the line parameter.

The first argument should be a list of n elements, which contain the boundary conditions
of the integrals. The boundary conditions of an individual integral can be given in one
of the following three forms:

1. A closed-form expression in ϵ.

2. A list of coefficients for each order in ϵ, where the first list element corresponds
to order ϵ0.

3. The string "?", which instructs DiffExp to ignore boundary conditions for the
integral. This option is useful for when dealing with coupled integrals in an
asymptotic limit, where the boundary conditions for a subset of the integrals
may fix the remaining ones.

If the second argument is a line, DiffExp assumes that the boundary conditions given
in the first argument are valid at leading order in the limit where the line parameter x
approaches the origin from the positive direction. More specifically, if the leading order
is proportional to xk, then DiffExp will assume the boundary conditions are valid up
to O(xk+1/2). To override this behaviour, one may provide the boundary conditions
as a list of terms, order-by-order in ϵ, where each term itself is a series expansion in
x (given by Mathematica’s SeriesData object, i.e. the output of the Series[...]
function.) DiffExp will then assume the results to be valid up to the order to which
the series is provided.

If the boundary conditions contain multivalued functions, which is typical for asymptotic
limits, they should be provided in such a way that the positive direction of the line
across which the limit is taken points along the standard (Mathematica branch) of the
multivalued function. For example, suppose that the boundary conditions contain a
term of the form log(−s), and that the Feynman prescription dictates that s should
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carry a positive imaginary part. This situation will lead to incorrect results along the
line s = x, since DiffExp will convert the logarithm into the form

log(−s(x)) = iπ + log(x) . (5.67)

The correct way to pass the boundary term to DiffExp is therefore to change log(−s) to
−iπ+log(s) before calling PrepareBoundaryConditions[...]. Similar considerations
apply when passing closed-form expressions like (−s)ϵ.

Note that the output of PrepareBoundaryConditions[...] includes the point or line
that was given in the second argument. That way, when feeding the result to Inte-
grateSystem[...] or TransportTo[...], DiffExp knows where to fix the boundary
conditions.

IntegrateSystem[bcs_List, line_List]
The function IntegrateSystem[...] implements the integration of the differential
equations along a single line segment. It is possible to omit the first argument, and
IntegrateSystem[...] will then return the general solution to the differential equa-
tions at the given point. The free parameters will be labelled using the convention
ci,j,k, where i corresponds to the order in ϵ, j to the coupled block of integrals, and k

labels the parameters.

When boundary conditions are provided, the first argument should be the output
of the function PrepareBoundaryConditions[...], or the output of the function
TransportTo[...]. If the boundary conditions are given at a point, the point should
lie on the line given as the second argument. If the boundary conditions are given as
an asymptotic limit, the line along which the boundary conditions are given should
be parallel, oriented in the same direction, and centered at the line passed to Inte-
grateSystem[...]. If the two lines satisfy these conditions, but were parametrized
differently, DiffExp will automatically perform the change of parametrization in the
boundary terms.

The output of IntegrateSystem[...] is an (n×m)-matrix, where n is the number
of basis integrals and where m is equal to the value of the option EpsilonOrder plus
one. The first column gives the ϵ0-coefficients of the integrals. If the expansions were
centered at a branch point, the result may contain the Heaviside step functions θ(x)
and θ(−x), which are labelled as θp and θm respectively.

TransportTo[bcs_List, line_List, to_:1, save_:False]
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The function TransportTo[...] is the most important function in DiffExp, as it per-
forms the transportation of boundary conditions to arbitrary (real-valued) points in the
phase-space of kinematic invariants and internal masses. The conditions on the argu-
ments bcs_ and line_ are the same as for the function IntegrateSystem[...], in the
case that line_ depends on the line parameter x. The results will then be transported
to the endpoint line /. x → to. If the argument line_ is a point instead, DiffExp
will consider the line x*line + (1-x)*start, where start is the point at which the
boundary conditions were prepared using PrepareBoundaryConditions[...].

The argument save_ determines whether the expansions along individual line segments
should be saved and returned in the output. If it is set to true, the output of
TransportTo[...] may be passed to the function ToPiecewise[...], which combines
the results of all line segments together into a single function, which is suitable for
numerical evaluation, or for plotting purposes. If the argument save_ is set to false,
the output of TransportTo[...] is a list consisting of the form {point, results, errors}.
The first list element is the point in phase-space at which the results were evaluated.
The second and third element of the list are both (n × m)-matrices, where n is the
number of basis integrals and where m is equal to the value of the option EpsilonOrder
plus one. If the argument save_ is set to true, the output of TransportTo[...] has
instead the form {{point, results, errors}, segmentdata}, where segment data is a list
which encodes the expansions obtained along individual line segments.

The error estimates are provided as a convenience to the user, but should probably not
be relied upon for sensitive results. In that case, a better way to estimate the error, is
to evaluate a point along two different contours, and to take the difference between the
results. The error estimates are obtained in the following way. At each matching point
between neighbouring line segments, and at the final evaluation point, we also evaluate
the series solutions at an order that is reduced by a certain number q > 0. We then
compute the difference between the evaluation of the lower order solutions and the
original solutions, and take the absolute value. The number q is currently determined
by a simple heuristic. In particular, we found that it was useful to let q be proportional
to the maximum order at which integrals are coupled in the integral family, in order to
get reliable estimates for highly coupled families. The error accumulated along each
line segment is added to the total error estimate. Note that if the option UsePade is
set to true, the evaluation of the lower order series solutions is also done using Padé
approximants.
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ToPiecewise[segmentdata_List, pade_:False] The function ToPiecewise[...]
takes as input the output of TransportTo[...], given that the latter has been run
with the argument save_ equal to true. The output of ToPiecewise[...] is an
(n×m)-matrix, where n is the number of basis integrals and where m is equal to the
value of the option EpsilonOrder plus one. Each entry is a Piecewise mathematica
object, which is a function of the line parameter of the line that was given to Trans-
portTo[...]. The output of ToPiecewise[...] may be used for numerical evaluation
of the results at arbitrary points along the line, or for plotting purposes.

The argument pade_ determines whether the Piecewise objects are composed out of
the Padé approximants of the solutions along the line segments, or out of the series
solutions. If TransportTo[...] was called with the configuration option UsePade
to false, there should not be a significant difference in precision by enabling Padé
approximants here. Note that computing the Padé approximants might take some
time, and if one is just interested in plotting results then it is usually not necessary
to compute the Padé approximants. However, if the aim is to use the output of
ToPiecewise for numerical evaluation, it is advised to set pade_ to true.

5.4 Examples

In the following section we consider two examples in detail, the equal-mass three-loop
banana family, and its unequal-mass generalization. The results in this section can
be obtained by running the notebook Banana.nb in the Examples folder shipped with
DiffExp (see Ref. [4]). We discuss a few other examples at the end of this section.

5.4.1 Equal-mass three-loop banana family

Fig. 5.1 The three-loop unequal mass banana diagram.

The three-loop unequal-mass banana diagram is depicted in Fig. 5.1. We will first
consider the equal-mass case, in which we let m2

i = m2 for i = 1, . . . , 4. We will
normalize out the overall mass dimension, and parametrize the kinematics by the ratio
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t = p2
1/m

2. Furthermore, we will work in the dimension d = 2 − 2ϵ. We define the
equal-mass banana integral family by:

Ibanana
a1a2a3a4 =

(
eγEϵ

iπd/2

)3
(m2)a− 3

2 (2−2ϵ)
( 4∏
i=1

∫
ddki

)
D−a1

1 D−a2
2 D−a3

3 D−a4
4 . (5.68)

where the propagators are:

D1 = −k2
1 +m2 , D2 = −k2

2 +m2 ,

D3 = −k2
3 +m2 , D4 = −(k1 + k2 + k3 + p1)2 +m2 . (5.69)

We choose the following basis of master integrals:

B⃗banana = (ϵIbanana
2211 , ϵ(1 + 3ϵ)Ibanana

2111 , ϵ(1 + 3ϵ)(1 + 4ϵ)Ibanana
1111 , ϵ3Ibanana

1110 ) , (5.70)

for which the differential equations are in precanonical form. They are given by:

∂tB⃗
banana =


−64−2t+t2+(8+t)2ϵ

t(t−16)(t−4)
2(t+20)(2ϵ+1)
t(t−16)(t−4) − 6(2ϵ+1)

t(t−16)(t−4) − 2ϵ
t(t−16)

3t(3ϵ+1)
t(t−4) −2(t+8)ϵ+t+4

t(t−4)
3ϵ+1
t(t−4) 0

0 4(4ϵ+1)
t

−3ϵ−1
t

0
0 0 0 0

 B⃗
banana

(5.71)
The IBP reductions required for setting up the differential equations were obtained
using Kira [68, 159, 160]. We seek to compute boundary conditions for the system
of differential equations. Since the first three master integrals are coupled, it turns
out we only have to provide boundary conditions for the master integrals Ibanana

1111 and
Ibanana

1110 , the latter of which is trivial and given by:

Ibanana
1110 = e3γϵΓ(ϵ)3 . (5.72)

We will compute boundary conditions for Ibanana
1111 in the limit t = −1/x, with x ↓ 0.

We will occasionally refer to this as the infinite momentum limit. The Feynman
parametrization of Ibanana

1111 is given by:

Ibanana
1111 = ie3γϵΓ(3ϵ+ 1)

(
m2
)−3ϵ−1

x3ϵ+1
∫

∆3

[
d3α⃗

]
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α2α3α

2
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2
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2
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2α4α1x+ α2
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3α4x+

+α2
2α3α4x+ α2α3α4α1

)−3ϵ−1
.

(5.73)
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From asy, we obtain fifteen regions as x ↓ 0:

R1 = {0,−1,−1,−1} , R2 = {0,−1,−1, 0} , R3 = {0, 0, 0, 0} ,
R4 = {0, 0, 0,−1} , R5 = {0, 1, 1, 0} , R6 = {0, 0, 1, 0} ,
R7 = {0,−1, 0,−1} , R8 = {0,−1, 0, 0} , R9 = {0, 0, 0, 1} ,
R10 = {0, 1, 1, 1} , R11 = {0, 0, 1, 1} , R12 = {0, 1, 0, 0} ,
R13 = {0, 0,−1,−1} , R14 = {0, 1, 0, 1} , R15 = {0, 0,−1, 0} .

(5.74)

At leading order in x and in each region Ri, the resulting parametric representation for
Ibanana

1111 may be integrated directly. The contributions of all regions are given by:

IR1
1111 ∼ xe3γϵΓ(ϵ)3 , IR2

1111 ∼ e3γϵϵxϵ+1Γ(−ϵ)2Γ(ϵ)3

Γ(−2ϵ) ,

IR3
1111 ∼ 3e3γϵϵx3ϵ+1Γ(−ϵ)4Γ(3ϵ)

Γ(−4ϵ) , IR4
1111 ∼ 2e3γϵϵx2ϵ+1Γ(−ϵ)3Γ(ϵ)Γ(2ϵ)

Γ(−3ϵ) ,

IR5
1111 ∼ e3γϵϵxϵ+1Γ(−ϵ)2Γ(ϵ)3

Γ(−2ϵ) , IR6
1111 ∼ xe3γϵΓ(ϵ)3 ,

IR7
1111 ∼ e3γϵϵxϵ+1Γ(−ϵ)2Γ(ϵ)3

Γ(−2ϵ) , IR8
1111 ∼ 2e3γϵϵx2ϵ+1Γ(−ϵ)3Γ(ϵ)Γ(2ϵ)

Γ(−3ϵ) ,

IR9
1111 ∼ xe3γϵΓ(ϵ)3 , IR10

1111 ∼ 2e3γϵϵx2ϵ+1Γ(−ϵ)3Γ(ϵ)Γ(2ϵ)
Γ(−3ϵ) ,

IR11
1111 ∼ e3γϵϵxϵ+1Γ(−ϵ)2Γ(ϵ)3

Γ(−2ϵ) , IR12
1111 ∼ xe3γϵΓ(ϵ)3 ,

IR13
1111 ∼ e3γϵϵxϵ+1Γ(−ϵ)2Γ(ϵ)3

Γ(−2ϵ) , IR14
1111 ∼ e3γϵϵxϵ+1Γ(−ϵ)2Γ(ϵ)3

Γ(−2ϵ) ,

IR15
1111 ∼ 2e3γϵϵx2ϵ+1Γ(−ϵ)3Γ(ϵ)Γ(2ϵ)

Γ(−3ϵ) . (5.75)

Summing over all the regions, we obtain the final result:

Ibanana
1111

x↓0∼ e3γϵ
(

6ϵxϵ+1Γ(−ϵ)2Γ(ϵ)3

Γ(−2ϵ) + 8ϵx2ϵ+1Γ(−ϵ)3Γ(ϵ)Γ(2ϵ)
Γ(−3ϵ)

+3ϵx3ϵ+1Γ(−ϵ)4Γ(3ϵ)
Γ(−4ϵ) + 4xΓ(ϵ)3 + O(x2)

)
. (5.76)

Next, we use DiffExp to plot the banana graph in the region t = 0, . . . , 32. First we
consider the line t = −1/x, and transport the boundary conditions from x = 0 to 1.
Thereafter, we transport the result along the line t = x, from −1 to 32. The relevant
commands are:
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Γ = Gamma;
BananaBoundaryConditions = {

"?", "?",
ϵ(1+3ϵ)(1+4ϵ)(-((4E^(3ϵEulerGamma)Γ[ϵ]^3)/t)+(

6E^(3ϵEulerGamma)ϵ(-(1/t))^(1+ϵ)Γ[-ϵ]^2Γ[ϵ]^3)/
Γ[-2ϵ]+(8E^(3ϵEulerGamma)ϵ(-(1/t))^(1+2ϵ)
Γ[-ϵ]^3Γ[ϵ]Γ[2ϵ])/Γ[-3ϵ]+
(3E^(3ϵEulerGamma)ϵ(-(1/t))^(1+3ϵ)Γ[-ϵ]^4Γ[3ϵ])/Γ[-4ϵ]),

E^(3ϵEulerGamma)ϵ^3Γ[ϵ]^3
}// PrepareBoundaryConditions[#, <|t -> -1/x|>] &;

Results1 = TransportTo[BananaBoundaryConditions, <|t -> -1|>];
Results2 = TransportTo[Results1, <|t -> x|>, 32, True];

ResultsFunction = ToPiecewise[Results2];

ReImPlot[{ResultsFunction[[3, 4]][x], ResultsFunction[[3, 5]][x]},
{x, 1/2, 32}, MaxRecursion -> 15, WorkingPrecision -> 100]

We performed some additional processing of the plot, which gives the result in Fig. 5.2.
It took about 1 minute to reach the point p2/m2 = 32 from the limit p2/m2 = −∞,
with an estimated error of 10−25, with the option DivisionOrder set to 3, and the
option ExpansionOrder set to 50.
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Fig. 5.2 Plot of the master integral B3 in the region p2/m2 = 0 . . . 32. The solid lines
are the real parts of the integrals, and the dotted lines the imaginary parts.
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5.4.2 Unequal-mass three-loop banana family

Next, we will consider the unequal-mass banana graph family. This time, we will not
normalize the integrals by the power of an internal mass. The unequal-mass banana
integral family is then defined by:

Ibanana
a1a2a3a4 =

(
eγEϵ

iπd/2

)3 ( 4∏
i=1

∫
ddki

)
D−a1

1 D−a2
2 D−a3

3 D−a4
4 , (5.77)

where:

D1 = −k2
1 +m2

1 , D2 = −k2
2 +m2

2 ,

D3 = −k2
3 +m2

3 , D4 = −(k1 + k2 + k3 + p1)2 +m2
4 . (5.78)

We choose the following basis of precanonical master integrals:

B⃗banana =


ϵIbanana

1122 , ϵIbanana
1212 , ϵIbanana

1221 , ϵIbanana
2112 , ϵIbanana

2121 , ϵIbanana
2211 ,

ϵ(1 + 3ϵ)Ibanana
1112 , ϵ(1 + 3ϵ)Ibanana

1121 , ϵ(1 + 3ϵ)Ibanana
1211 ,

ϵ(1 + 3ϵ)Ibanana
2111 , ϵ(1 + 3ϵ)(1 + 4ϵ)Ibanana

1111 ,

ϵ3Ibanana
0111 , ϵ3Ibanana

1011 , ϵ3Ibanana
1101 , ϵ3Ibanana

1110


. (5.79)

We will label the basis integrals from left to right, and top to bottom, by B1, . . . , B15,
and we denote their ϵ-orders by a superscript. The corresponding differential equations
are 8 megabytes in size, and too large to present here.

The unequal-mass family is significantly more difficult to compute than the equal-
mass family, due to the fact that there are eleven coupled integrals in the top sector.
Furthermore, we found that at intermediate steps of the calculation the series coefficients
are growing very fast with the order of the line parameter. We compensated for this
by setting the options ChopPrecision and WorkingPrecision very high, and setting
the option RadiusOfConvergence to 10. This has the effect of rescaling all series
coefficients in the manner ckxk → ck(x/10)k.

In the following, we will denote the phase-space coordinates by (p2,m1,m2,m3,m4).
As an illustrative example, we have computed results along the line:

γ(x) = (x, 2, 3/2, 4/3, 1) , (5.80)

from x = 1/2 to x = 50. In Fig. 5.3, we provide plots for B(2)
1 , B

(3)
1 , B

(4)
1 , B

(2)
11 , B

(3)
11

and B
(4)
11 along this line. These results were obtained in the following manner. First,

we used the differential equations of the equal-mass family to obtain high precision
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Fig. 5.3 Plots of some of the precanonical basis integrals of the unequal-mass three-loop
banana family. Note that B1 = ϵ(1 + 3ϵ)Ibanana

1122 and that B11 = ϵ(1 + 3ϵ)(1 + 4ϵ)Ibanana
1111 .

results at the point (1/2, 1, 1, 1, 1). Next, we transported the results to the point
(1/2, 2, 3/2, 4/3, 1). Lastly we performed the expansions along the line γ(x) to reach
the point (50, 2, 3/2, 4/3, 1). The transportation of the results along γ(x) took about 1
hour and 5 minutes on a PC equipped with an i7-4700MQ processor. The expansions
for the unequal-mass family were configured with the following options:

{
ChopPrecision -> 250, DivisionOrder -> 4, EpsilonOrder -> 4,
ExpansionOrder -> 70, RadiusOfConvergence -> 10, UseMobius -> True,
UsePade -> True, WorkingPrecision -> 1000

}
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The error reported by DiffExp at the point (50, 2, 3/2, 4/3, 1) was of order 10−22. We
performed an internal cross-check of the results by reaching the point (50, 2, 3/2, 4/3, 1)
through a different contour. In particular, we first used the differential equations of
the equal-mass family to obtain results at high precision at the point (50, 1, 1, 1, 1),
and then we transported those to the point (50, 2, 3/2, 4/3, 1) using the unequal-mass
differential equations. We found that the maximum difference between the results at
(50, 2, 3/2, 4/3, 1) obtained along the different contours was of the order 10−24.

We also performed a higher precision evaluation along the line γ(x). In this case we
configured DiffExp with the following options for the unequal-mass family:

{
ChopPrecision -> 600, DivisionOrder -> 4, EpsilonOrder -> 4,
ExpansionOrder -> 110, RadiusOfConvergence -> 10, UseMobius -> True,
UsePade -> True, WorkingPrecision -> 1400

}

It took a bit under four hours to obtain the results along γ(x). The error reported
by DiffExp was of order 10−58. Upon cross-checking the results along an independent
contour, like before, we found a maximum difference of order 10−61. Note that after the
expansions are computed, it is almost instantaneous to evaluate the integrals anywhere
along the line between x = 1/2 and x = 50, since this simply amounts to plugging
numbers into the Padé approximants. For example, evaluating orders 0 to 4 in ϵ of
all basis integrals from the Padé approximants, in the point γ(10), takes about half a
second. As a numerical example, we provide 55 digits after the decimal point of the
coefficients in the ϵ expansion of the integral B11 in the point (50, 2, 3/2, 4/3, 1):

B
(0)
11 = 0

B
(1)
11 = 5.1972521136965043170129578538563652405618939122389078645

+ i 6.8755169535390207501370685645538902299559024551830956594
B

(2)
11 = −17.9580108112094060899523361698928478948780687053899075733

+ i 31.7436703633693090908402932299011971913508950649494231047
B

(3)
11 = −121.5101152068177565203392807541216084962880772908306370668

− i 40.7690762360202766453775999917172226537428258529145754746
B

(4)
11 = 125.6113388023605534745593764004798958232118632681257073923

− i 229.9200257172388589952062757571215176834471783495112755027 (5.81)
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Note that it is considerably faster to reach the point (50, 2, 3/2, 4/3, 1) if we move
from the infinite momentum limit to the point (50, 1, 1, 1, 1), and from there to the
point (50, 2, 3/2, 4/3, 1), instead of moving along the line γ(x). The total time to reach
(50, 2, 3/2, 4/3, 1) from the infinite momentum limit is then around 23 minutes, at an
estimated precision of 10−70. If we repeat the computation at a lower expansion order,
we manage to achieve an estimated precision of 10−34 in 6 minutes.

We performed a cross-check of the results against pySecDec [75] in a few points, for
which we obtained full agreement every time within the errors reported by pySecDec.
To give a specific example, we ran pySecDec on the integral Ibanana

1111 in the point
(50, 2, 3/2, 4/3, 1) up to order ϵ3. (Note that our precanonical basis integrals were
computed up to order ϵ4, but the basis definition contains an overall factor of ϵ.) We
configured the integrator with the following options:

use_Qmc(verbosity=2,minn=10**7,maxeval=1,transform='korobov2')

It took about 54 minutes to obtain the results, with an error of order 10−13 for the
ϵ3-coefficient. We also ran pySecDec with the following options:

use_Qmc(verbosity=2,minn=10**6,maxeval=1,transform='korobov2')

In this case the computation took about 6 minutes to complete, with an error of 10−11

for the ϵ3-coefficient.

From the above it seems clear that the expansion method performs significantly faster.
Firstly, pySecDec utilized all four CPU cores (and all eight threads), to perform the
computation. Secondly, the program was used to compute a single integral. On the
other hand, using DiffExp we obtained results for all eleven master integrals in the top
sector, on a single CPU core, and with about three times as many digits.

5.4.3 Other examples

We have tested DiffExp on the planar two-loop five-point one-mass integral families of
Ref. [47], taking the differential equations and boundary conditions from the ancillary
files of the paper. The paper provides high-precision boundary conditions at seven
points in phase-space, accurate up to at least 128 digits. Among other checks, we
transported the numerical results for family "zzz" from phase-space point one to phase-
space point two at a precision of at least 128 digits, finding full agreement. The
computation took about 2 hours and 15 minutes to complete. We also transported the
results at a lower expansion order from phase-space point one to phase-space point
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six, which yielded a maximum error of order 10−23, and which took a bit under half
an hour to complete. The integral families of Ref. [47] can be computed with the
notebook 5pPlanar1Mass.nb in the Examples folder shipped with DiffExp.

Furthermore, we have tested DiffExp on the two-loop five-point non-planar massless
integrals of Ref. [48], using the differential equations from the ancillary files of that
paper. The ancillary files of the paper provide numerical results at two points in phase-
space at a precision of at least 50 digits. We cross-checked these results by transporting
the results from one point to the other using DiffExp, finding agreement of at least
50 digits. The transportation of the results took a bit under five minutes to complete.
The integrals of Ref. [48] can be computed with the notebook 5pNonPlanar.nb in the
Examples folder shipped with DiffExp.



Chapter 6

Non-planar master integrals for
Higgs + jet production at NLO

6.1 Introduction

In this chapter, we will discuss the computation of the non-planar master integrals
relevant for Higgs plus jet production in QCD at next-to-leading order (NLO) with full
heavy quark mass dependence. The dominant production mechanism of the Higgs boson
at the Large Hadron Collider is through gluon fusion. The Higgs boson does not couple
directly to gluons, and the interaction is mediated by a heavy quark loop. Therefore,
the leading order contributions are computed from one loop Feynman diagrams, while
the NLO contributions are computed from two loop diagrams. In the full theory (which
includes dependence on all the quark flavours) Higgs production in association with
one jet, and the Higgs pT distribution, are known only at leading order [161, 162]. At
NLO they have been computed in Ref. [163] through sector decomposition techniques
by including only the dependence on the top quark mass and neglecting the bottom
quark mass. The full NLO computation, where quark mass effects are included for all
flavours, has not yet been performed.

Most literature has focused on the Higgs Effective Field Theory (HEFT), where the
top quark is assumed to be infinitely heavy, and where the loop-mediated Higgs-gluon
coupling is replaced by a tree level effective coupling, which decreases the loop order
of the integrals by one. The HEFT can be applied when the jet or Higgs transverse
momenta (pT ) are smaller than the top quark mass, pT ≲ mt [164, 165]. The inclusive
corrections to Higgs production have been computed in the HEFT at next-to-next-to
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leading order (NNLO) in Refs. [166–168], and at N3LO in Refs. [31, 169]. Furthermore,
the fully differential corrections to Higgs plus jet production have been computed in
the HEFT at NNLO in Refs. [170–172]. The HEFT is not a good approximation
when the jet or Higgs transverse momenta are of the order or larger than the top
mass, i.e. pT ≳ mt. However, in many new physics models deviations from Standard
Model predictions show up in the high pT region [173–187], which are due to additional
couplings of the Higgs to particles not predicted by the Standard Model. Thus, to
study these effects, it is important to compute the NLO Higgs plus jet corrections in
the full theory. In addition, it would be beneficial to have an approach that is more
efficient than the sector decomposition based calculation in Ref. [163], and to have an
independent cross-check of those results which include also the bottom quark mass
contributions.

In Ref. [19], a first step was made towards the full theory NLO computation by some of
my collaborators. In this paper the analytic computation of all planar master integrals
relevant for the process was performed. The planar integrals fit in four families, which
were labeled by A, B, C and D. For families B, C and D a canonical d log-basis was
derived for the differential equations. For family A, the highest sectors involve elliptic
integrals. For the remaining sectors of family A, a canonical d log-basis was derived
as well. The integral families/sectors for which a canonical d log-basis was derived
were called ‘polylogarithmic’. However, it should be noted that these integrals may not
evaluate to polylogarithms at all orders in ϵ, because their alphabet contains numerous
non-simultaneously rationalizable square roots. (See also the discussion at the bottom
of Section 3.2.2 of this thesis.)

The polylogarithmic sectors were solved up to weight two in terms of combinations
of logarithms and dilogarithms, while weights three and four were written as one-fold
integrals over combinations of the weight two result. The integrals in the elliptic
sectors of family A were written in terms of at most three-fold integrals over the
polylogarithmic sectors with additional elliptic integration kernels. The representations
for the integrals obtained this way still contain some practical limitations. Firstly, the
results are only computed in the Euclidean region, and the analytic continuation to the
physical region was not performed. Secondly, the numerical evaluation of the remaining
integrations is still somewhat inefficient for phenomenological purposes. These issues
were solved in Ref. [40], which introduced a series expansion method that could be used
to solve the integrals directly from the differential equations along one-dimensional
contours in phase-space, without requiring an intermediate representation in terms of
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multiple polylogarithms or integrals thereof. Note that these series expansion methods
were discussed in Chapter 5 of this thesis.

In this rest of this chapter we discuss the computation of the two remaining non-
planar families of integrals, which we completed in Refs [2, 3]. These integral families
were labeled F and G in Ref. [19], and we follow that convention. We performed
the computation of these integral families in a similar manner to Refs. [19, 40]. In
particular, for both families F and G we found a canonical d log-basis for the sectors
which are not associated with elliptic maximal cuts. Like in Ref. [19], we will call these
integral sectors ‘polylogarithmic’, although they may not evaluate to polylogarithms
at all orders in ϵ.

For Family F, we will derive a minimal alphabet of d log’s for the polylogarithmic
sectors. In addition, we will find explicit solutions for the polylogarithmic sectors at
weight two in a subset of the Euclidean region, in terms of logarithms and dilogarithms.
We will then write the weight three and four solutions of the polylogarithmic sectors
in terms of one-fold integrals over combinations of the weight two results, in a similar
manner to what was done in Ref. [19]. We will also solve the complete family of
integrals, including the elliptic sectors, using series expansion methods. For Family G
we will only consider series expansion methods, and we will forgo the polylogarithmic
solutions in terms of logarithms and dilogarithms.

The text in the rest of this chapter is largely adapted from Refs. [2, 3].

6.2 Definitions of the families
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Fig. 6.1 Family F.
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Fig. 6.2 Family G.

In this section, we define the two non-planar integral families relevant for Higgs plus
jet production at next-to-leading order with full heavy quark mass dependence. For
both families, the indices a1, . . . , a7 are non-negative, and the indices a8 and a9 are
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non-positive. The external momenta satisfy p2
1 = p2

2 = p2
3 = 0, and we parametrize the

kinematics by:

s ≡ (p1 + p2)2 , t ≡ (p1 + p3)2 ,

u ≡ (p2 + p3)2 , p2
4 = (p1 + p2 + p3)2 = s+ t+ u , (6.1)

while we denote the quark mass by m2. The integral family F is defined by

Ia1a2a3a4a5a6a7a8a9 = e2γEϵ
∫ ∫ dDk1d

Dk2

(iπd/2)2
N−a8

8 N−a9
9

P a1
1 P a2

2 P a3
3 P a4

4 P a5
5 P a6

6 P a7
7
, (6.2)

where γE = −Γ′(1) is the Euler-Mascheroni constant, and where

P1 = −k2
1, P4 = − (k1 − p3)2 , P7 = m2 − (k1 − k2 − p2)2 ,

P2 = − (k1 + p1)2 , P5 = m2 − (k2 − p3)2 , N8 = m2 − k2
2 ,

P3 = m2 − (k2 + p1 + p2)2 , P6 = m2 − (k1 − k2)2 , N9 = m2 − (k1 − k2 − p1 − p2)2 .

(6.3)

The family contains 73 master integrals. The IBP reductions were performed at an
early stage using the program Fire [67, 144, 188, 189], and later we also performed
the reductions with the program Kira [68, 159, 160]. We consider the choice of basis
given in Appendix A.1, for which the integrals are labeled by B1, . . . , B73.

The differential equations of B1, . . . , B65 are in canonical form. It can be shown by
explicit computation that the maximal cuts of the integrals I011111100 and I111111100

evaluate to elliptic integrals [2, 18, 107]. The choice of basis of B66, . . . , B73 has been
made such that at most two integrals are coupled together in the homogeneous part
of the differential equations. In particular, integrals B66 and B67 are coupled, and
integrals B70 and B71 are coupled.

The integral family G is defined by

Ia1a2a3a4a5a6a7a8a9 = e2γEϵ
∫∫ dDk1d

Dk2

(iπd/2)2
N−a8

8 N−a9
9

P a1
1 P a2

2 P a3
3 P a4

4 P a5
5 P a6

6 P a7
7
, (6.4)

where

P1 = − (k1 − k2)2 , P4 = m2 − (k2 − p3)2 , P7 = m2 − (k1 + p1 + p2)2 ,

P2 = m2 − (k2 + p1 + p2)2 , P5 = m2 − k2
1 , N8 = m2 − k2

2 ,

P3 = − (k1 − k2 + p3)2 , P6 = m2 − (k1 + p2)2 , N9 = − (k1 − k2 − p1)2 . (6.5)
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The family contains 84 master integrals. The IBP reductions were performed using
Kira. We consider the choice of basis given in Appendix A.2, for which the integrals
are labeled by B1, . . . , B84. Note that we have used the same letters I and B for both
integral families F and G. In the following sections, it will be clear from context which
integral family we are referring to.

The differential equations of B1, . . . , B71 are in canonical form. It can be shown by
explicit computation that the maximal cuts of the integrals I011111100 and I110111100

evaluate to elliptic integrals [3, 19]. Therefore, the solutions of the basis integrals
B72, . . . , B84 are expected to involve elliptic integrals. The maximal cuts of B80, . . . , B84

do not evaluate to elliptic integrals, but their differential equations nonetheless couple
to the sectors made up out of integrals B72, . . . , B75 and B76, . . . , B79. The choice of
basis was made so that the homogeneous differential equations of at most two integrals
are coupled. In particular, integrals B72 and B75 are coupled, and integrals B76 and
B79 are coupled.

6.3 Polylogarithmic sectors of Family F

In this section we discuss the analytic computation of the polylogarithmic master
integrals of family F up to weight two. We will integrate them in terms of manifestly
real valued logarithms and dilogarithms in a subregion R of the Euclidean region,
where the canonical basis integrals and the alphabet are real valued. The weight three
and four expressions will be obtained as one-fold integrals over the weight two result.
In Section 6.5, we will obtain high precision numerical results for all integrals of family
F and G and in the physical region, by using the expansion methods of Chapter 5.
Therefore, the analytic solutions obtained here serve partly as a proof of concept, and
partly as a means to compare a fully analytic integration to a computation using series
expansion methods.

6.3.1 Finding an independent symmetrized alphabet

Starting from the canonical basis in Appendix A, we derived the differential equations
for the polylogarithmic sectors with respect to each kinematic invariant and with
respect to the quark mass. Afterwards, we computed the corresponding matrix Ã
in the manner of Eq. (3.27). The form of Ã that is found in this manner contains
many linearly dependent combinations of logarithms. In this section, we discuss how
to reduce these logarithms to a linearly independent set. We will use the term ‘letter’
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to refer to the arguments of the logarithms, and ‘alphabet’ to a set of such arguments.
However, when we speak about linear (in-)dependence of a set of letters we refer to the
linear (in-)dependence of the logarithms of the letters. For example, if Aexample = {a, b},
then we let SpanQAexample = SpanQ{log a, log b}.

We will seek to express Ã in terms of a linearly independent alphabet for which the
letters have a symmetric form with respect to the square roots (in the manner of Eq.
(6.6).) As a first step we enumerate the irreducible factors of the arguments of the
logarithms that appear in Ã. An alphabet consisting of these letters spans the space of
logarithms in Ã, but is still overcomplete. Let us denote this overcomplete set by Aoc.
We may obtain a linearly independent basis of SpanQAoc by starting with an empty
set ∅ = Aidp, and iteratively adding to Aidp a letter from Aoc that is independent of
the ones already contained in Aidp. After adding a letter to Aidp we remove from Aoc

the elements that are contained in SpanQAidp. For simplicity we let each choice of new
letter be the one that is of smallest (notational) size in Aoc.

After iterating this procedure we are left with a linearly independent alphabet Aidp, such
that all elements of Ã lie in SpanQAidp. Next we seek to find an alphabet whose letters
are manifestly symmetric under changing signs of their square roots. In particular, we
seek to write the algebraic letters in the form

a+ Alg
a− Alg , (6.6)

where a is some rational function, and Alg denotes a product of square roots, and
inverses of square roots. Changing a sign of a square root in Alg sends the letter to its
reciprocal, and hence the logarithm of the letter to its negative. Note that there is the
freedom to combine the square roots in Alg together, but we typically prefer to split
up the roots in terms of irreducible factors.

To find an alphabet Asym spanning the elements of Ã, and in which all algebraic letters
are symmetric of the form of Eq. (6.6), we had to consider two special cases of letters
with algebraic arguments. The first case consists of letters of the type log (a+ bAlg),
which for simplicity we denote by log (a+ b

√
c), since the following arguments go

through in the same way for a combination of square roots or a single square root.
One may substitute letters of this type in terms of symmetric ones by considering the
following relation, obtained from multiplying by the conjugate:

log
(
a± b

√
c
)

= 1
2

[
± log

(
a/b+

√
c

a/b−
√
c

)
+ log

(
a2 − b2c

)]
(mod iπ) . (6.7)
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If the term a2 − b2c contains irreducible factors that are linearly independent of the
original alphabet, we add these to the alphabet as well.

The next case consists of letters of the form (a+ b
√
c+ d

√
e), where

√
c and

√
e may

again denote a combination of square roots. Multiplying by the conjugate with respect
to the first square root, i.e. (a− b

√
c+ d

√
e), leads to the following relation,

log
(
a+ b

√
c+ d

√
e
)

= 1
2

[
log

[ (
a+ b

√
c+ d

√
e
) (
a− b

√
c+ d

√
e
) ]

+ log
(
a+ b

√
c+ d

√
e

a− b
√
c+ d

√
e

)]
(mod iπ) . (6.8)

Furthermore, multiplying the fraction by the term 1 = (a+ b
√
c− d

√
e) / (a+ b

√
c− d

√
e),

composed of the conjugate with respect to the second square root, yields the rela-
tion:

log
(
a+ b

√
c+ d

√
e

a− b
√
c+ d

√
e

)
= log

[ (
a+ b

√
c+ d

√
e
) (
a+ b

√
c− d

√
e
) ]

(6.9)

− log
[ (
a− b

√
c+ d

√
e
) (
a+ b

√
c− d

√
e
) ]

(mod iπ) .

After expanding the products of conjugate terms, their algebraic dependence is captured
in a single term of the sum. For example,(

a+ b
√
c− d

√
e
) (
a+ b

√
c+ d

√
e
)

= a2 + b2c− d2e+ 2ab
√
c . (6.10)

Such terms can be dealt with in the same manner as Eq. (6.7). Putting everything
together leads to the final relation,

log
(
a+ b

√
c+ d

√
e

)
= 1

4 log
(
a2 + b2c− d2e+ 2ab

√
c

a2 + b2c− d2e− 2ab
√
c

)

− 1
4 log

(
a2 − b2c− d2e+ 2bd

√
c
√
e

a2 − b2c− d2e− 2bd
√
c
√
e

)
(6.11)

+ 1
4 log

(
a2 − b2c+ d2e+ 2ad

√
e

a2 − b2c+ d2e− 2ad
√
e

)

+ 1
4 log

(
a4 − 2a2

(
b2c+ d2e

)
+
(
b2c− d2e

)2
)

(mod iπ) .

It can be verified that the letters on the right-hand side are in fact sufficient to rewrite
every term of the form log (±a± b

√
c± d

√
e), where the plus and minus signs may

differ from each other.
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At this point the alphabet Asym consists of linearly independent letters with manifest
symmetry properties under changing the sign of any square root, and the alphabet
covers the entries of Ã, i.e. SpanQ{Ãij} ⊆ SpanQAsym. The alphabet is still larger
than necessary when SpanQ{Ãij} is a proper subspace. In this case some letters only
appear in fixed combinations in {Ãij}.

Indeed, we found at this stage an alphabet Asym that contains 75 letters, while the rank
of the vector space spanned by the entries of the canonical matrix {Ãij} is equal to
69. To reduce the alphabet to 69 independent letters, we sorted {Ãij} by (notational)
complexity and picked out the first 69 independent entries. We could identify that 12
letters of Asym only appear together in pairs of two in these entries. Combining these
pairs into 6 letters yields the final alphabet A which is written out fully in Appendix
B.1.

Note that letters l63, l64, l65, l67, l68 and l69 of family F result from combining pairs
of letters of Asym. Each pair contains the same square roots, so that the algebraic
dependence of the ‘combined’ letters is still symmetric: changing the sign of a square
root sends the letter to its reciprocal, and hence changes the overall sign of its
logarithm.

6.3.2 A manifestly real region

It is convenient to work in a kinematic region in which the integrals are real-valued
and free of branch cuts. Such a region can be found for the integrals of family F by
requiring that their second Symanzik polynomial is positive in the whole integration
domain, i.e. F > 0. A subregion satisfying this condition can be found by requiring
that the coefficients of the monomials in the Feynman parameters are positive definite.
Furthermore, it is sufficient to consider the scalar integral with maximal number of
propagators. We therefore consider the following region

E : m2 > 0 & p2
4 < 2m2 & p2

4−4m2 < t < 0 & −2m2+p2
4−t < s < 2m2 , (6.12)

which we refer to as the Euclidean region. The canonical basis integrals may be
complex-valued in the Euclidean region as they are algebraic combinations of Feynman
integrals, and the square roots in the prefactors may be evaluated at negative argument.
The alphabet also contains these square roots, and we seek to work in a region where
the letters are manifestly real-valued as well.
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In Appendix A.1 we label 15 square roots whose radicands are irreducible polynomials.
These roots appear in the canonical basis and the alphabet of the polylogarithmic
sectors, and are given explicitly in Eq. (A.3). As the roots only appear in certain
fixed combinations, they may be combined together into just 10 roots. We decided to
keep them separated. The letters are real-valued when the ratios of roots which they
contain are real-valued. To find a region where this is the case for all letters, let us
first decompose the phase space into 215 regions R̃σ1,...,σ15 , depending on the signs of
the radicands of the 15 roots in Eq. (A.3),

R̃+,+,...,+ : −p2
4 ≥ 0 & − s ≥ 0 & . . . &

(
p2

4

)2 (
−p2

4 + s+ t
)

− 4m2st ≥ 0

R̃−,+,...,+ : −p2
4 ≤ 0 & − s ≥ 0 & . . . &

(
p2

4

)2 (
−p2

4 + s+ t
)

− 4m2st ≥ 0
... ...

R̃−,−,...,− : −p2
4 ≤ 0 & − s ≤ 0 & . . . &

(
p2

4

)2 (
−p2

4 + s+ t
)

− 4m2st ≤ 0 .
(6.13)

Next, we filter out regions where (some of) the letters are complex valued. For example,
consider the letter

l25 =
1 +

√
4m2−s√

−s

1 −
√

4m2−s√
−s

. (6.14)

Looking at the ratio of two roots in the letter, we see that the letter is real-valued if
and only if

(4m2−s ≥ 0 & −s ≥ 0) || (4m2−s ≤ 0 & −s ≤ 0) , (6.15)

since the kinematic invariants and masses are real-valued, and with any other assignment
of signs to the radicands the ratio evaluates to an imaginary number. Hence, we filter
out all the regions with (σ2, σ7) = (+−) or (σ2, σ7) = (−+).

After selecting all regions where the alphabet is manifestly real-valued, we consider their
intersection with the Euclidean region. Just one region has a non-empty intersection,
which is the one where all the radicands are non-negative: R = R̃+...+ ∩ E . In this
region the canonical basis is real-valued as well. After simplifying, we find that the
region is specified by the following constraints,

R : t ≤ − 4m2, s ≤ −4m2,

[(
s ≤ t,

4m2(s+ t) − st

4m2 ≤ p2
4 ≤ −4m2s+ st+ t2

t

)
||
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(
t < s,

4m2(s+ t) − st

4m2 ≤ p2
4 ≤ −4m2t+ s2 + st

s

)]
, m2 ≥ 0 . (6.16)

6.3.3 Polylogarithmic solutions at weight two

The solutions of a canonical form system of differential equations may be written order
by order in ϵ in terms of Chen iterated integrals. Because our family of integrals has
multiple square roots that cannot be simultaneously rationalized through a variable
change, it is not clear that the iterated integrals can be rewritten in terms of multiple
polylogarithms. (See also the discussion at the bottom of Section 3.2.2.). In the
following section, we will perform the explicit integration of the polylogarithmic sectors
at weight two in terms of a basis of manifestly real-valued logarithms and dilogarithms.
The results will be obtained in the region R defined in the previous section, where the
canonical basis integrals and the letters are real-valued.

It is useful to first consider the symbol of the canonical basis integrals, and to integrate
the differential equations up to terms that lie in the kernel of the symbol, which will
be referred to as ‘integrating the symbol’. Terms in the kernel of the symbols may
be fixed afterwards by imposing that our solutions satisfy the system of differential
equations, and by fixing overall transcendental constant from boundary conditions. In
the following, we will use the notation B⃗ to refer to the integrals in the polylogarithmic
sectors of family F, i.e. integrals B1 to B65. Let us expand the basis integrals in ϵ as
B⃗ = ∑∞

k=0 B
(k)ϵk. The symbol of the i-th basis integral at order k is given by:

S
(
B

(k)
i

)
=
∑
j

S
(
B

(k−1)
j

)
⊗ Ãij , (6.17)

as we already saw in Section 3.2.2. Note that the leading order of the canonical integrals
B⃗(0) is constant and hence equal to the leading order of the boundary term given in
Eq. (6.33).

At weight two, i.e. order ϵ2, some canonical integrals are identically zero. Furthermore,
the symbols of the remaining 40 nonzero integrals can be expressed in terms of the
symbols of basis integrals

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 20, 23, 26, 33, 35, 38, 40, 49} . (6.18)

By considering permutations of p1, p2, p3 the number of independent symbols can be
reduced even further, decreasing the number of integrals that need to be studied. We
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aim to integrate the symbol by writing a sufficiently general ansatz of logarithms and
dilogarithms with undetermined prefactors, in the spirit of the Duhr-Gangl-Rhodes
method of Ref. [134]. We then equate the symbol of the ansatz with the symbol of
the individual master integrals and solve the resulting linear system. This can be
done unambiguously since we express the symbol in terms of the linearly independent
alphabet of Appendix B.1. We pick the basis of logarithms and dilogarithms in the
ansatz such that they are manifestly real-valued in the region R. Thus we require
the arguments of the dilogarithms to lie in the range (−∞, 1] for all of R, while we
require the arguments of the logarithms to be positive. This also guarantees that no
branch-cuts will be crossed, such that the final expressions will be valid in at least the
region R. If one moves outside of R the basis functions may cross spurious branch
cuts, which leads to incorrect results.

We denote the set of letters that appear at weight two by A2. In the region R the
signs of these letters are completely fixed in the following way,

l1 > 0 , l2 < 0 , l3 < 0 , l4 < 0 , l5 < 0 , l6 < 0 , l7 < 0 , l8 < 0 ,
l9 > 0 , l10 > 0 , l11 > 0 , l13 > 0 , l25 < 0 , l26 < 0 , l27 < 0 , l28 > 0 ,
l29 < 0 , l39 > 0 , l40 > 0 , l43 > 0 , l44 > 0 , l46 > 0 , l48 > 0 , l49 > 0 ,
l53 > 0 , l54 > 0 , l55 > 0 , l56 > 0 , l60 > 0 , l61 > 0 . (6.19)

For the logarithmic terms in the ansatz we therefore consider products of the type
log(±li) log(±lj) with li, lj ∈ A2, where a minus may be included to fix a positive sign
for the argument. Furthermore, we include dilogarithms with the following arguments
in the ansatz,

Li2 (±lilj) ,Li2
(

± li
lj

)
,Li2

(
± 1
lilj

)
for li, lj ∈ A2 ∪ {l33, l38, l41} , (6.20)

where we filter out dilogarithms whose argument does not lie between (−∞, 1] in the
region R. We included the spurious letters l33, l38 and l41 in the ansatz, which do not
appear in the symbol at weight two, but are necessary for the ansatz to be sufficiently
general. We identified these letters by using direct integration methods, outlined at
the end of this section. Without knowledge of these spurious letters, we could have
proceeded with an ansatz that includes all letters in A.

After equating the symbol of the ansatz with the symbol of the canonical integrals,
and solving the resulting system of equations, the following products of logarithms
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survive,

log2 (l1) , log2 (−l4) , log2 (−l25) , log2 (−l26) ,
log2 (−l27) , log2 (l28) , log (l1) log (−l4) , log (−l3) log (−l25) ,
log (−l4) log (−l25) , log (−l4) log (−l26) , log (−l2) log (−l27) , log (−l5) log (−l27) ,
log (−l7) log (−l27) , log (−l8) log (−l27) , log (−l25) log (−l27) , log (−l4) log (l28) ,
log (l9) log (l28) , log (−l27) log (l28) , log (−l25) log (l43) , log (−l26) log (l44) ,
log (l28) log (l48) , log (l28) log (l55) , log (−l26) log (l56) , log (−l27) log (l60) ,
log (−l27) log (l61) . (6.21)

Furthermore, the following dilogarithms are contained in the final result,

Li2
(

1
l25

)
, Li2

(
− 1
l25

)
, Li2

(
1
l26

)
, Li2

(
− 1
l26

)
, Li2

(
− 1
l27

)
,

Li2
(

1
l27

)
, Li2

(
1

l25l27

)
, Li2

(
l25
l27

)
, Li2

(
1

l26l27

)
, Li2

(
l26
l27

)
,

Li2
(

1
l28

)
, Li2

(
− 1
l28

)
, Li2

(
− 1
l27l28

)
, Li2

(
− l28
l27

)
, Li2

(
1

l27l29

)
,

Li2
(
l29
l27

)
, Li2

(
− 1
l33

)
, Li2

(
1

l25l33

)
, Li2

(
l25
l33

)
, Li2

(
1

l26l33

)
,

Li2
(
l26
l33

)
, Li2

(
1

l27l33

)
, Li2

(
l27
l33

)
, Li2

(
− 1
l38

)
, Li2

(
1

l25l38

)
,

Li2
(
l25
l38

)
, Li2

(
1

l27l38

)
, Li2

(
l27
l38

)
, Li2

(
− 1
l28l38

)
, Li2

(
− l28
l38

)
,

Li2
(
− 1
l41

)
, Li2

(
1

l26l41

)
, Li2

(
l26
l41

)
, Li2

(
1

l27l41

)
, Li2

(
l27
l41

)
,

Li2
(
− 1
l28l41

)
, Li2

(
− l28
l41

)
.

(6.22)

We still have to fix terms that lie in the kernel of the symbol. At weight two these are
transcendental constants and terms that have the form of a transcendental number
times a logarithm, such as iπ log(li) or log(2) log(li). Since the canonical basis is
real-valued in R, it is already guaranteed there will be no contributions of the form
iπ log(. . .). Furthermore, if terms of the type log(2) log(li) were missing in the solutions
that we determined at the symbol level, they would not satisfy the system of differential
equations. However, we find that our solutions already satisfy the differential equations
without adding such terms, so that only additive transcendental constants are left
undetermined. Note that to check if our weight two solutions satisfy the differential
equations, we first need to derive the basis integrals at weight 1, which can be done in
a similar manner as described here for the weight two case.

Next, we fix the overall transcendental constants from boundary conditions. In Section
6.4.1, we will compute boundary conditions in the heavy mass limit given in Eq. (6.32).
However, it is not directly possible to use the heavy mass limit to fix the constants
of our polylogarithmic solutions, because the limit lies outside of region R where our
solutions are valid. Using the series expansion method of Chapter 5, which we will
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apply in Section 6.5 of this chapter, we can transport the heavy mass limit at high
numerical precision to a regular point in R, and use this to fix the remaining constants
of our solution. We find in this way that some integrals carry additive constants
proportional to π2. The final result is provided in Appendix B.2.

Lastly, we note that the weight two integration of the symbol may also be performed by
direct integration methods. Firstly, note that the most complicated Feynman integrals
appearing in the list of integrals in Eq. (6.18) have five propagators, but at weight two
we only need to compute them at order 1/ϵ because they carry a prefactor proportional
to ϵ3 in the canonical basis. Setting up the Feynman parametrization for these integrals,
and regularizing them using analytic regularization, we find that they are linearly
reducible at order 1/ϵ and can be computed algorithmically by direct integration, for
example using HyperInt. All other Feynman integrals appearing in the basis elements
of Eq. (6.18) may also be computed using direct integration up to the required order
in ϵ. The resulting solutions are then given in terms of multiple polylogarithms. The
resulting expressions are generally larger than those obtained from a suitable ansatz,
but they can be used to identify the spurious letters needed for the ansatz, such as the
letters l33, l38 and l41 in Eq. (6.20).

6.3.4 One-fold integrals for weights 3 and 4

For weights three and four, we will use the approach of Ref. [190] (see also Appendix
E of [19]) to represent the results in terms of one-fold integrals. The approach works
as follows. Firstly, it is clear that∫

γ
dB⃗ = B⃗(γ(1)) − B⃗(γ(0)) = ϵ

∫
γ
dÃB⃗ , (6.23)

where γ : [0, 1] → C4 is some path in the phase space of (s, t,m2, p2
4). Order-by-order

in ϵ, we may write

B⃗(i)(γ(1)) =
∫
γ
dÃB⃗(i−1) + B⃗(i)(γ(0)) . (6.24)

Since the polylogarithmic sectors were integrated up to weight two, we directly obtain
the weight three expression as a one-fold integral over the weight two expression. By
performing integration by parts, it is also possible to write the i-th order as a one-fold
integral over the (i− 2)-th order result:

B⃗(i)(γ(1)) =
[
ÃB⃗(i−1)

]γ(1)

γ(0)
−
∫
γ

ÃdB⃗(i−1) + B⃗(i)(γ(0)) , (6.25)
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=
∫
γ

(
Ã(γ(1))dÃ − ÃdÃ

)
B⃗(i−2) + [Ã]γ(1)

γ(0)B⃗
(i−1)(γ(0)) + B⃗(i)(γ(0)) ,

where [Ã]γ(1)
γ(0) = Ã(γ(1)) − Ã(γ(0)). In this way one may obtain the weight 4 result

as a one-fold integral, without needing an analytic expression of the basis integrals at
weight three.

For the base point of the integration we pick the point

(s, t,m2, p2
4) = (−4,−4, 1,−12) = rR , (6.26)

at which we may obtain high precision results by transporting the boundary conditions
in Eq. (6.33), which are valid in the heavy mass limit in Eq. (6.32), using the series
expansion method discussed in Chapter 5. We note that the diagonal entries of Ã at
positions 38, 40, 42, 45 and 49 are divergent in the point rR. However, we may read
off from the canonical basis that these integrals are identically zero in rR, so that the
term [Ã]γ(1)

γ(0)B⃗
(i−1)(γ(0)) in Eq. (6.25) is well-defined.

Lastly, let us explicitly define a path γ with basepoint rR, some endpoint in R, and
which lies fully inside region R. A simple choice would be a straight line, but R is
not convex. To ensure that γ lies fully in R, we consider a path that moves along a
straight line in the s, t and m2 direction, but averages the p2

4-coordinate between the
upper and lower bounds in Eq. (6.16). We work this out in detail next.

Let us assume that s ≤ t, so that the bounds on p2
4 in region R are given by

p2
down ≡ 4m2(s+ t) − st

4m2 ≤ p2
4 ≤ −4m2s+ st+ t2

t
≡ p2

up . (6.27)

Defining a path for s ≥ t can be done in the same manner, if we change to the
corresponding upper bound. Let us assume the endpoint of the path γ is given by
(s′, t′,m′2, p′2

4 ) ∈ R. Next, write p′2
4 as a combination of the upper and lower bounds

evaluated at (s′, t′,m′2),

p′2
4 = yp′2

up + (1 − y)p′2
down , (6.28)

which yields

y = t′ (4m′2(s′ + t′ − p′2
4 ) − s′t′)

s′ (16m′4 − (t′)2) . (6.29)
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Next, consider the following straight line path in the phase space of (s, t,m2),

γ(3) : λ 7→ λ(s′, t′,m′2) + (1 − λ)(−4,−4, 1) . (6.30)

We may then define the integration path by

γ : λ 7→
(
γ(3)(λ), yp2

up(γ(3)(λ)) + (1 − y)p2
down(γ(3)(λ))

)
, (6.31)

where p2
up(γ(3)(λ)) indicates the upper bound of p2

4 evaluated at the point given
by γ(3)(λ), and similarly for p2

down(γ(3)(λ)). By construction γ has the endpoint
(s′, t′,m′2, p′2

4 ) at λ = 1, and lies inside R for all λ ∈ [0, 1].

6.4 Boundary terms

In this section we discuss the computation of boundary terms for families F and G.
The boundary terms will be obtained in the heavy mass limit, given by:

(s, t, p2
4,m

2) → (xs, xt, xp2
4,m

2) , (6.32)

where x ↓ 0. We will assume the limit is approached from the Euclidean region. The
boundary terms will be computed using the method of expansion by regions in the
parametric representation, which was discussed in Section 3.3.

6.4.1 Family F

First we present the results. For the polylogarithmic sectors, the boundary terms are
quite simple. We have that:

lim
x→0

B1 = e2γEϵΓ(1 + ϵ)2(m2)−2ϵ ,

lim
x→0

B2 ∼ x−ϵ
(

−ϵ3e2γEϵ
(
m2
)−ϵ

(−t)−ϵΓ(−ϵ)2Γ(ϵ)2

2Γ(−2ϵ)

)
,

lim
x→0

Bi = 0 for i = 3, . . . , 65 . (6.33)

In the elliptic sectors, all but the last integral are identically zero in the heavy mass
limit. In particular, we have

lim
x→0

Bi = 0 for i = 66, . . . , 72 ,

lim
x→0

B73 ∼ x−ϵ
(
ϵ4e2γEϵ

(
m2
)−ϵ

(−t)−ϵ
(

−p2
4 + 4s+ t

−p2
4 + 2s+ t

)
Γ(−ϵ)2Γ(ϵ)2

Γ(−2ϵ)

)
. (6.34)
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We will work out the computation of the last boundary term B73 as an illustrative
example. This basis integral is given explicitly by

B73 = tϵ4
(

I1,1,1,1,1,1,1,−2,0 + 4s
−p2

4 + 2s+ t
I1,1,1,1,1,1,1,−1,−1 + I1,1,1,1,1,1,1,0,−2

+1
4
(
4s+ t− p2

4

)
(I1,1,1,1,1,1,1,−1,0 + I1,1,1,1,1,1,1,0,−1)

) (6.35)

All the Feynman integrals that appear in B73 lie in the same sector, but with different
numerators. We consider the Feynman parametrization of the integrals, and obtain the
regions for the expansion by regions in the heavy mass limit using the Mathematica
package asy. We find that there are two regions, given by:

R1 = {0, 0, 0, 0, 0, 0, 0} ,
R2 = {0, 0, 1, 0, 1, 1, 1} .

(6.36)

Thus, in the region R1 we do not rescale the Feynman parameters, while in the region
R2, we let αi → xαi for i ∈ {3, 5, 6, 7}. The asymptotic limit of the integrals therefore
takes the form:

lim
x→0

I1,1,1,1,1,1,1,σ1,σ2 ∼ I(1)
1,1,1,1,1,1,1,σ1,σ2 + x−ϵ−1I(2)

1,1,1,1,1,1,1,σ1,σ2 ,

for (σ1, σ2) ∈ {(−2, 0), (−1, 0), (−1,−1), (0,−1), (0,−2)} , (6.37)

where the superscripts denote the contributions of both regions respectively. In other
words, for the integrals with superscripts the kinematics has been rescaled in the
manner of Eq. (6.32), the Feynman parameters are rescaled according to Eq. (6.36),
and the overall dependence on x has been explicitly factored out of the integrand.

Note that we are only interested in the leading behaviour in x near ϵ = 0. Rescaling the
prefactors in Eq. (6.35), and plugging in the results of Eq. (6.37) yields the following
asymptotic limit B73:

lim
x→0

B73 ∼ ϵ4x−ϵ

−
4stI(2),(x=0)

1,1,1,1,1,1,1,−1,−1

p2
4 − 2s− t

+ t
(
I(2),(x=0)
1,1,1,1,1,1,1,−2,0 + I(2),(x=0)

1,1,1,1,1,1,1,0,−2

) .
(6.38)

There are three surviving contributions, which lie in region two. Since we are only
interested in the leading terms in x, we can put x = 0 in the integrals

I(2),(x=0)
1,1,1,1,1,1,1,−1,−1 , I(2),(x=0)

1,1,1,1,1,1,1,−2,0 , I(2),(x=0)
1,1,1,1,1,1,1,0,−2 . (6.39)
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The integrations can be performed by picking a suitable integration order and integrating
one Feynman parameter at a time, while keeping full dependence on the dimensional
regulator ϵ.1 The Symanzik polynomials of the integrals are

U (2),(x=0)
1,1,1,1,1,1,1,0,0 = (α1 + α2 + α4) (α3 + α5 + α6 + α7) , (6.40)

F (2),(x=0)
1,1,1,1,1,1,1,0,0 = (α1 + α2 + α4) (α3 + α5 + α6 + α7)2 m2 − α2α4 (α3 + α5 + α6 + α7) t .

There is a factorization of the Feynman parameters 1,2,4 and 3,5,6,7, which indicates
that the integrations may be simplified by the use of the Cheng-Wu theorem (see Eq
(2.12).) In particular, we can use the Cheng-Wu theorem to introduce the constraint
α3 + α5 + α6 + α7 = 1, and then we can integrate out α3 in a trivial manner by letting
α3 → 1−α5 −α6 −α7. This way the dependence on α3, α5, α6, α7 completely disappears
from the Symanzik polynomials. The integrations are then trivially performed:∫ 1

0

∫ 1−α7

0

∫ 1−α6−α7

0
dα5 dα6 dα7 = 1

6 . (6.41)

We are left with:

I(2),(x=0)
1,1,1,1,1,1,1,−2,0 = 1

6Γ(2ϵ+ 1)e2γEϵ

 ∏
i∈{1,2,4}

∫ ∞

0
dαi

[8(ϵ+ 1)(2ϵ+ 1)(m2)2F−2ϵ−3U3ϵ+1

− 2(2ϵ+ 1)(3ϵ− 1) (α1 + α2 + α4)
(
2 (α1 + α2 + α4)m2 − α2α4t

)
F−2ϵ−2U3ϵ−2

− 8(ϵ+ 1)(2ϵ+ 1)m2α2α4tF−2ϵ−3U3ϵ − 2(2ϵ+ 1)m2 (α1 + α2 + α4) F−2ϵ−2U3ϵ−1

+ 2(ϵ+ 1)(2ϵ+ 1)t2α2
2α

2
4F−2ϵ−3U3ϵ−1 + (3ϵ− 2)(3ϵ− 1) (α1 + α2 + α4)2 F−2ϵ−1U3ϵ−3

]
,

(6.42)

where U and F are shorthands for the Symanzik polynomials of Eq. (6.40), with
the replacement α3 → 1−α5−α6−α7. There are still three non-trivial integrations to
perform. We find that integrating out any of the remaining three parameters leads
to hypergeometric 2F1’s, which complicates the integration of the last two variables.
We may circumvent the appearance of 2F1’s and simplify the integration by making
the integrand projective and by using a suitable application of the Cheng-Wu theorem.

1We found that some of the integrations converge in disjoint domains of ϵ. In situations without a
domain of ϵ, where all parts of an integral are convergent, one usually considers each part in its own
domain of convergence from which it can analytically be continued to a desired common final domain
after an evaluation. To be on the safe side, we could proceed with an auxiliary analytical regularization,
and assign the third propagator the exponent ν3, which serves as an additional regulator. After
computing the integrals we then take the limit ν3 → 1. We confirmed that performing the integration
with an auxiliary regulator leads to the same result as without. In the remaining discussion, we do
not include the auxiliary regulator for brevity.
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We projectivize the integrand by letting αi → αi/α8 for i = 1, 2, 4, and adding an
overall factor α−4

8 . Next, we use the Cheng-Wu theorem to introduce the constraint
α1 + α2 + α4 = 1, and we integrate out α1 by letting α1 → 1 − α2 − α4. This leaves us
with:

I(2),(x=0)
1,1,1,1,1,1,1,−2,0 = 1

6Γ(2ϵ+ 1)e2γEϵ
∫ 1

0
dα4

∫ 1−α4

0
dα2

∫ ∞

0
dα8

[
αϵ−1

8

(
α8m

2 − α2α4t
)−2ϵ−3

×
(
α2

8m
4(ϵ+ 3)(ϵ+ 4) + 2α2α4α8m

2t(ϵ− 2)(ϵ+ 4) + α2
2α

2
4t

2(ϵ− 3)(ϵ− 2)
)]
. (6.43)

In the following, we will analytically continue the results in ϵ after each integration,
so we will not report the conditions on ϵ that are necessary for the integrations to
converge. We integrate α8 from 0 to ∞, which yields the expression:

I(2),(x=0)
1,1,1,1,1,1,1,−2,0 = e2γEϵ

(
m2
)−ϵ

(−t)−ϵ−1ϵΓ(ϵ)2
(∫ 1

0
dα4

∫ 1−α4

0
dα2 α

−ϵ−1
2 α−ϵ−1

4

)
.

(6.44)

The remaining integrations yield the expression:
∫ 1

0
dα4

∫ 1−α4

0
dα2 α

−ϵ−1
2 α−ϵ−1

4 = − Γ(−ϵ)2

2ϵΓ(−2ϵ) . (6.45)

The final result is given by:

I(2),(x=0)
1,1,1,1,1,1,1,−2,0 = I(2),(x=0)

1,1,1,1,1,1,1,−1,−1 = I(2),(x=0)
1,1,1,1,1,1,1,0,−2 = −

(
m2
)−ϵ

(−t)−ϵ−1e2γEϵ
Γ(−ϵ)2Γ(ϵ)2

2Γ(−2ϵ) .

(6.46)

Plugging these expressions into Eq. (6.38) yields the boundary term of B73, stated in
Eq. (6.34). We used the assumption t < 0 during the integration to avoid branch cuts,
and we may analytically continue the expression to the physical region by using the
Feynman prescription, which tells us to interpret t as having an infinitesimally small
positive imaginary part.

The remaining boundary terms may be computed using the same approach as was
followed here for the most complicated sector. Although we found that all basis
integrals except for B1, B2, and B73 are zero, showing this requires the computation of
numerous integrals which cancel with each other at the end.
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6.4.2 Family G

We consider again boundary conditions in the heavy mass limit in Eq. (6.32). The
final result is given by:

lim
x→0

B1 = e2γEϵΓ(1 + ϵ)2(m2)−2ϵ ,

lim
x→0

Bi = 0 for i = 2, . . . , 84 . (6.47)

We note that the homogeneous solution of the differential equation satisfied by B78 is
proportional to x as we expand around the heavy mass limit, and hence we are not
able to determine the boundary constant for B78 directly from Eq. (6.47). It may be
verified that B78 is also zero at order x1 as we expand around the heavy mass limit,
and hence the constant multiplying the homogeneous solution may be put to zero for
this integral.

6.5 Numerical results

In this section we present explicit results that were obtained using the expansion
method described in Chapter 5. We have performed a new run of the expansions using
the Mathematica package DiffExp (discussed in Section 5.3), compared to Refs. [2, 3],
for which different private implementations of the expansion method were used. We
follow the overall setup of Ref. [3] in the following. Note that in Ref. [2] results for
family F were only obtained for a single line, while here we presented three-dimensional
plots for all integrals of family F. For both families F and G, the basis integrals in
the elliptic sectors have been chosen such that at most two integrals are coupled
together.

Specifically, we used DiffExp to compute the integrals of families F and G in 10000
points covering the physical region given below, for both the top and bottom quark
corrections. We consider the following physical region:

s > 0 , t < 0 , s+ t− p2
4 > 0 . (6.48)

We may map this region to the unit square by using the following parametrization:

s = p2
4
z
, t = p2

4 l (z − 1)
z

. (6.49)
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0


(l,z) = (1,0)(l,z) = (0,0)

(l,z) = (0,1) (l,z) = (1,1)

1/(n+1)

s = 4 m
2

Fig. 6.3 Depiction of lines along which we produce samples in the physical region in
the case of the top quark. The black lines 0⃗ → (1/(n+ 1), n/(n+ 1)) → (1/(n+ 1), 1/(n+ 1))
are computed first to obtain boundary values for n horizontal lines, depicted in grey.
The horizontal lines are themselves used to produce n evenly spaced samples, denoted
by blue dots. The particle production threshold s = 4m2 is depicted by a dashed red
line. Depicted is the case with n = 10. The actual plots are produced with n = 100.

We will use the scaling relation in Eq. (2.3) to put the quark mass equal to one, so
that the value for p2

4 is given by m2
H/m

2
q where mH denotes the mass of the Higgs

particle, and where mq denotes the mass of the internal quark. For the top quark, we
approximate the ratio by p2

4 = 13/25, while for the bottom quark we consider the ratio
p2

4 = 323761/361.

For the case of the top quark, the particle production threshold s = 4m2 corresponds
to z = 13/100, while for the case of the bottom quark it lies outside the physical
region of Eq. (6.48). For the sake of the presentation of the plots, we use a Möbius
transformation for the case of the top quark to map z = 13/100 to 1/2 while keeping
z = 0 and z = 1 fixed. Thus, we consider the following parametrizations of the physical
regions of the top and bottom quark contributions:

top (l, z)t : s = 87 − 74z
25z , t = 87 l (z − 1)

25z , p2
4 = 13

25 ,

bottom (l, z)b : s = 323761
361z , t = 323761 l (z − 1)

361z , p2
4 = 323761

361 . (6.50)

To produce plots in these regions we seek to compute n2 evenly spaced points on the
unit square for all basis integrals. We will let n = 100, so that we obtain 10000 points in
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total. We explain next how we obtained results in these points. For convenience we use
the notation a → b to denote a line, we denote coordinates in the physical regions by
pairs (l, z), and we denote the heavy mass limit by 0⃗. The following discussion applies
to both the top and bottom region, given their respective set of (l, z)-coordinates.

First we move from the heavy mass limit to the point (1/(n+ 1), n/(n+ 1)). Then, we
continue by moving along a vertical line (1/(n+ 1), n/(n+ 1)) → (1/(n+ 1), 1/(n+ 1)).
This vertical line may be used to obtain values at the points (1/(n + 1), y/(n + 1))
for y = 1, . . . , n. We may then consider n horizontal lines (1/(n + 1), x/(n + 1)) →
(n/(n+1), x/(n+1)) for x = 1, . . . , n, to obtain values at the points (x/(n+1), y/(n+1)),
for x, y = 1, . . . , n. The situation is depicted in Fig. 6.3, for the case where n = 10.

Note that as l and z range from zero to one, we travel across the full physical region
defined in Eq. (6.48). For the plots we let n = 100, and therefore the variables l and z
range from 1/101 to 100/101. Thus, in the plots a small part of the physical region is
cut off at the boundary. In terms of the variables s and t, the plotted regions are given
by:

top :
(1387

2500 ≤ s ≤ 8713
25

)
,
( 52

101 − 100
101s ≤ t ≤ 13

2525 − s

101

)
, (6.51)

bottom :
(32699861

36100 ≤ s ≤ 32699861
361

)
,
(32376100

36461 − 100
101s ≤ t ≤ 323761

36461 − s

101

)
.

We performed the expansions using DiffExp with the option UsePade set to true,
the option DivisionOrder set to 3, the option AccuracyGoal set to 20, and the
option SegmentationStrategy set to "Default", i.e. the predivision strategy. Three-
dimensional plots for the basis integrals in the top sectors of family F and G are
provided in Figs. 6.4, 6.5, 6.6 and 6.7.

Next, we give an example of the timing. We computed the results on a laptop equipped
with a core i7-6700HQ processor, and we ran four lines at the same time, using the four
available CPU cores. For family G configured with the top mass, it took about 19.5
hours to obtain all 10000 samples. This puts the average sampling time per integral
at

19.5 hour/(10000 ∗ 84) ≈ 0.08 second. (6.52)

The estimated error of the results is of order 10−36. The timing is orders of magnitude
better than sector decomposition based approaches. Some explicit comparisons of
timings are given in Refs. [2, 40].
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Cross-checks

Numerous cross-checks of the results were performed in Refs. [2, 3]. The results were
obtained here through the Mathematica package DiffExp. We compared the results for
families F and G in a number of points with the results that were obtained in Refs.
[2, 3], finding full agreement. In those references, the results were in addition cross-
checked against FIESTA [74, 191–193] and pySecDec [75] in a number of points, and in
the case of the bottom quark contributions of family G against a private code [194] for
the numerical evaluation of multiloop integrals in momentum space using the loop tree
duality [195] (for related work on the loop tree duality see also [196–199].)
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Fig. 6.4 Plots of integrals B71, B72, and B73 of family F at order ϵ4 in the physical
region of the top using the parametrization of Eq. (6.50).
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Fig. 6.5 Plots of integrals B71, B72, and B73 of family F at order ϵ4 in the physical
region of the bottom using the parametrization of Eq. (6.50).
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Fig. 6.6 Plots of integrals B82, B83, and B84 of family G at order ϵ4 in the physical
region of the top using the parametrization of Eq. (6.50).
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Fig. 6.7 Plots of integrals B82, B83, and B84 of family G at order ϵ4 in the physical
region of the bottom using the parametrization of Eq. (6.50).



Chapter 7

Diagrammatic coaction of the
equal-mass sunrise family

7.1 Introduction

In this chapter we will discuss the derivation of the diagrammatic coaction of the
equal-mass sunrise family, which is the first example of the diagrammatic coaction in
the elliptic case. This work is part of a larger effort to understand the diagrammatic
coaction in the elliptic case, in collaboration with the authors of Refs. [49, 50] and
with R. Gonzo.

We will start by giving a brief history and overview of the diagrammatic coaction. It
is known that the coefficients of Feynman integrals in the Laurent expansion in the
dimensional regulator ϵ are periods [200]. In the simplest formulation, periods are
complex numbers defined by integrals of algebraic functions over domains defined by
inequalities between algebraic functions [201]. There is a variety of modern mathe-
matical literature that studies periods, typically in the language of so-called motivic
periods (see e.g. Refs. [202, 203] for an overview.) Very loosely, these are formal
pairings between integration contours and integrands which satisfy the main properties
of integrals such as linearity with respect to the integration contour and the integrand,
and equivalence of periods related by variable transforms. Motivic periods have a
natural homomorphism to the complex numbers, which maps motivic periods onto the
integrals which they represent. There exists a motivic coaction which acts on motivic
periods, and through which identities and relations between motivic periods can be
derived. For example, the coproduct (Eq. (2.54)) of multiple polylogarithms can be
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defined by lifting MPLs to periods of so-called mixed Tate motives, and acting with
the motivic coaction [115]. Similarly, the multiple zeta values have motivic versions,
and one can show that these are graded by weight and may be decomposed into a
particular basis [120]. These properties are only established at a conjectural level for
multiple zeta values themselves.

Although the coefficients in ϵ in the Laurent expansion of Feynman integrals are periods,
this is not the case for a Feynman integral in closed-form which retains full dependence
on the dimensional regulator. The diagrammatic coaction conjecture states that there
is nonetheless a coaction operator acting on (families of) Feynman integrals and their
so-called cuts, and that this coaction operator may be represented diagrammatically.
Furthermore, the conjecture states that if the Feynman integrals are expanded in
ϵ, the diagrammatic coaction operator reduces to the (motivic) coaction operator
acting on the individual ϵ coefficients. In particular, when the Feynman integrals are
expressible in terms of multiple polylogarithms, the diagrammatic coaction operator
should reduce at the level of the coefficients to the coaction of multiple polylogarithms
(see Eq. (2.59).) The diagrammatic coaction conjecture was originally formulated
at one loop in Refs. [49, 50], and the diagrammatic coaction has been derived for
a number of two-loop examples which evaluate to multiple polylogarithms in Ref.
[53]. A hope is that the study of the diagrammatic coaction will provide a deeper
understanding into the mathematical structure of Feynman integrals. Furthermore, the
diagrammatic coaction has already inspired novel mathematical results. For example,
many Feynman integrals evaluate to hypergeometric functions in closed-form in ϵ, and
insights from the diagrammatic coaction have been used to conjecture a coaction on
certain hypergeometric functions in Ref. [52]. A mathematically rigorous version of
the coaction was afterwards proven to exist for Lauricella hypergeometric functions in
Ref. [204].

Let us briefly overview cut Feynman integrals, which are an essential component of
the diagrammatic coaction. Cut Feynman integrals are Feynman integrals for which a
subset of the propagators are put on-shell. Their study has a long history, of which
we highlight a few aspects next. Cuts show up in the study of the discontinuities of
amplitudes and Feynman integrals [205–209]. For example, it follows from the optical
theorem that the discontinuity of an amplitude in a given momentum channel can be
computed by summing the cuts of the amplitude in the channel. Furthermore, Feynman
integrals and amplitudes can be written as integrals over their discontinuity across a
branch cut, which are called dispersion relations. Such relations were first studied for
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amplitudes by using the unitarity of the S-matrix [206], and were also shown to exist for
individual Feynman integrals using the so-called largest time equation [205, 207–209].
Methods that reconstruct amplitudes from cuts are known as unitarity methods. It
was shown in Refs. [210, 211] how cuts can be used to reconstruct amplitudes from
on-shell tree level data. The use of generalized unitarity cuts (see e.g. [210, 212–215])
has been shown to be particularly powerful for this purpose. Another modern use of
cuts is the method of reverse unitarity [167], in which phase-space integrals for the
computation of cross-sections are written as cuts of loop integrals. This approach
allows one to compute cross-sections in a manner that is almost completely analogous
to the computation of Feynman integrals.

Often cuts are considered with an additional theta function in the definition, which
restrict the flow of energy of the loop momenta. In this chapter, we will consider
cuts that do not include these theta functions. This is sufficient for the purposes
of the diagrammatic coaction. Furthermore, we will compute the cuts in Euclidean
conventions, where the propagators are of the form 1/(q2 + m2), before moving to
Minkowskian conventions. Cutting a propagator can then be thought of as performing
the replacement:

1
q2 +m2 → δ(q2 +m2) , (7.1)

where the Euclidean momentum q satisfies q2 > 0, and where we will take the squared
mass to be negative, i.e. m2 < 0, in order to have support on the delta function. In
practice, we will not explicitly work with delta functions, but instead take residues of
the integrand, which has (loosely spoken) the same effect [216].

Next, we will summarize some of the main results relating to the diagrammatic coaction.
Consider a one loop Feynman diagram G, with internal edges (propagators) EG. We
assign to the diagram G the scalar Feynman integral IG, which has all propagators
raised to power one. Furthermore, let CC be the operator that cuts the propagators
C ∈ EG. We will draw cut propagators by intersecting them with a dotted red line. In
terms of the Feynman integrals, the cutting procedure can be thought of as replacing the
cut propagators by delta functions (more on this in Section 7.2.3.) The diagrammatic
coaction operator ∆ is conjectured to be the following at one-loop:

∆ (IG) =
∑

∅≠C⊆EG

IGC
⊗

CCIG + aC
∑

e∈EG\C
CCeIG

 , (7.2)



154 Diagrammatic coaction of the equal-mass sunrise family

where GC denotes the subgraph of G which has the propagators that do not lie in C

contracted, and where we have that:

aC =


1
2 if |C| is odd,
0 if |C| is even.

(7.3)

The entries on the right-hand side of the tensor product are considered modulo iπ.
The integrals IG are normalized in a special way. In particular, they are multiplied
by the reciprocal of their maximal cut, and the dimension of the integrals is chosen
according to:

d =
 N + 1 − 2ϵ, for N + 1 even,
N + 2 − 2ϵ, for N + 1 odd,

(7.4)

where N + 1 denotes the number of external legs. The integrals defined in this way
are pure. This means that if the coefficients in the ϵ expansion of the integrals are
expressed in terms of multiple polylogarithms, the multiple polylogarithms appear in
Q-linear combinations of equal weight, and the weight increases by one for each order
in ϵ.

Let us present a simple example of Eq. (7.2), by considering the massive bubble
integral. Its diagrammatic coaction is given by:

e1

e2

=
e1

⊗

e1

e2

+
e2

⊗

e1

e2

+


e1

e2

+ 1
2 e1

+ 1
2 e2

⊗

e1

e2

.

(7.5)

In Ref. [216], a single class of parametric integrals was derived which contains all
one-loop integrals and their cuts. This allows one to write the diagrammatic coaction
formula in the following notation [51]:

∆
(∫

γ
ωG

)
=

∑
∅≠C⊆EG

∫
γ
ωGC

⊗
∫
γC

ωG , (7.6)

where ωG is the integrand of the Feynman integral associated with the graph G, where
ωGC

is the integrand of the Feynman integral which has the propagators that are not
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in the set C contracted (i.e. raised to power zero), where γ is the integration contour
of the uncut integral, and where γC = ΓC + aC

∑
e∈EG\C ΓCe, and aC = 1/2 for |C| odd

and 0 otherwise. The contour ΓC cuts the propagators C, by circling around these
propagators. In particular, it computes the residues of the propagators C, which has
(loosely spoken) the same effect as replacing the propagators by delta functions and
integrating these out. We can make these statements more precise by defining the
cuts as multivariate Leray residues, for which we can explicitly define the integration
contours [216]. In this chapter, we will follow a slightly more informal treatment, and
so we will not discuss this further.

The formula in Eq. (7.6) is suggestive of a generalization, which was made in Refs.
[52, 217]. In those references a so-called master formula was conjectured for a coaction
acting on integrals, which is given by:

∆
(∫

γ
ω
)

=
∑
ij

cij

∫
γ
ωi ⊗

∫
γj

ω . (7.7)

In this formula, we consider a basis of integration contours {γj}, and a basis of
integrands {ωi}, of the homology group and the cohomology group associated with
the integral on the lefthand side. We can think of the integrands {ωj} as the master
integrals of a family of Feynman integrals. The matrix cij in Eq. (7.7) is constructed by
computing intersection numbers [52], and we will not discuss it further here. Instead,
we will use an older formulation of the master formula given in Ref. [217], where the
matrix cij is chosen to be equal to the identity, and where the integrands {ωi} and
contours {γj} are required to satisfy the following duality condition:

Pss

(∫
γi

ωj

)
= δij . (7.8)

In this duality condition, Pss is an operator that projects onto semisimple objects, i.e.
those objects on which the coproduct acts as:

∆(x) = x⊗ 1 . (7.9)

For the case of multiple polylogarithms, Pss keeps weight zero terms, and powers of
π or multiple polylogarithms that evaluate to powers of π. However, the one-loop
cuts which are computed in Ref. [50], and which form the basis of cycles, are defined
modulo π. Therefore, Eq. (7.8) is effectively a condition on the weight zero part of the
integrals.
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Note that a family of cut Feynman integrals satisfies the same system of differential
equations as the uncut family. This becomes clear if we view a cut integral as being
equal to the uncut integrand integrated over a different contour. Differentiation with
respect to kinematic invariants and masses thus acts on the integrand in the same way
in the cut and uncut case. Furthermore, it is well-known that essentially the same IBP
identities hold for cut integrals as for uncut integrals (see e.g. Refs. [91, 108]). The
main difference between the cut and uncut case, from the viewpoint of IBP relations,
is that in the cut case the integrals which do not contain the cut propagators vanish
(because their residue vanishes.) In the differential equations method, we can give such
master integrals the boundary term zero. Suppose that we choose the master integrals
such that they satisfy a canonical system of differential equations. If we consider the
period matrix Pij =

∫
γj
ωi, we have that:

dP = ϵdÃP , (7.10)

for some matrix dÃ. Next, let us rescale the integration contours (i.e. the columns of
P), such that the ϵ expansion of each column starts at finite order, and such that the
leading orders are constants in Q. We will see in the case of the equal-mass sunrise
that this can be done by rescaling the integration contours by factors of ϵ and iπ (see
Eq. (7.86).) We may then expand the period matrix in ϵ according to:

P =
∞∑
i=0

P(i)ϵi . (7.11)

If we choose a basis of integration contours such that P(0) is invertible, we may perform
a change of basis of the integrands and/or integration contours such that:

P(0) = 1 , (7.12)

where 1 is the identity matrix. If we work modulo π, the condition in Eq. (7.8) is then
satisfied. The diagrammatic coaction can then be written down from Eq. (7.7) with
cij = δij.

The rest of this chapter is structured as follows. In Section 7.2 we set up conventions
for the equal-mass sunrise family, and derive its Baikov parametrization. Furthermore,
we will define the cut integral families. In Section 7.3 we will discuss the differential
equations of the equal-mass sunrise family. In Section 7.4, we will derive boundary
conditions for the cut integral families in closed form in ϵ in special kinematic limits.
In Section 7.5 we will use the expansion method of Chapter 5 to transport all boundary
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conditions towards the point p2 = 0. By considering a symmetrized form of the
canonical basis of Ref. [143], we are able to express all the integrals at this point
in terms of transcendental constants of polylogarithmic type. To do this, we fit the
numerical results obtained from the expansion method to a basis of numerical constants
through the PSLQ algorithm [218]. (Note that this has some similarity to the approach
of Ref. [151], where elliptic master integrals are also considered near special kinematic
points through the use of expansion methods and the PSLQ algorithm.) Lastly in
Sections 7.5.1 and 7.5.2, we will derive a basis of independent cuts, we will diagonalize
the period matrix by a change of basis, and we will write down the diagrammatic
coaction.

7.2 The equal-mass sunrise family

7.2.1 Main conventions

In this section we set up of conventions for the equal-mass sunrise family. It is defined
by:

Sa1a2a3(p2,m2) =
(
eγEϵ

iπd/2

)2 ∫
ddk1d

dk2
1

Da1
1 D

a2
2 D

a3
3
, (7.13)

where γE is the Euler-Mascheroni constant, and where the propagators are:

D1 = −k2
1 +m2 − iδ , D2 = −(k1 + k2)2 +m2 − iδ ,

D3 = −(k2 + p)2 +m2 − iδ . (7.14)

We have explicitly written down the infinitesimal iδ-prescriptions which are a part of
the Feynman prescription, and which define the default branch of the integrals. Note
that we can absorb these iδ’s in the squares of the internal masses. We will work in
dimensional regularization and in the dimension d = 2 − 2ϵ, where the sunrise integral
is both infrared- and ultraviolet-finite.

The internal loop momenta k1 and k2 are integrated over d-dimensional Minkowski
space. We will consider the Baikov parametrization for the computation of the cuts.
The Baikov parametrization is more easily defined in the Euclidean case (see Section
2.3.) Therefore, we will also consider a Euclidean version of the sunrise family, which
we distinguish by a super- or subscript E. The propagators are then given by:

DE
1 = k2

1 +m2 − iδ DE
2 = (k1 + k2)2 +m2 − iδ
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DE
3 = (k2 + p)2 +m2 − iδ , (7.15)

and the loop momenta are integrated over d-dimensional Euclidean space. We keep
the iδ-prescription in the Euclidean version, because the cuts will be computed in a
region where the squares of the internal masses are taken to be negative, and where
the integrations may cross the propagator singularities. We will use the rule in Eq.
(2.19) to relate the Euclidean and Minkowskian integral families. In particular, we
have that:

Sa1a2a3(p2,m2) = −SE
a1a2a3(p2

E,m
2) , (7.16)

where p2 = −p2
E.

7.2.2 Baikov parametrization

Next, let us set up the Baikov parametrization of the sunrise family, using the definitions
from Section 2.3. We consider the Baikov parametrization in a loop-by-loop fashion.
We parametrize the first internal momentum k1 by:

dE,dk1 = ds3ds4
π

1
2 −ϵ (s1)ϵ (s1s3 − s2

4) −ϵ− 1
2

Γ
(

1
2 − ϵ

) , (7.17)

where s3 = k2
1 and s4 = k1 · k2, and where k2

2 = s1. We parametrize the second internal
momentum k2 by:

dE,dk2 = ds1ds2
π

1
2 −ϵ (p2

E)ϵ (p2
Es1 − s2

2)
−ϵ− 1

2

Γ
(

1
2 − ϵ

) , (7.18)

where s2 = k2 · pE. The formulas contain the following so-called Baikov polynomi-
als:

det
 k1 · k1 k2 · k1

k2 · k1 k2 · k2

 = s1s3 − s2
4 , det

 k2 · k2 k2 · pE

k2 · pE pE · pE

 = p2
Es1 − s2

2 .

(7.19)
Combining the above equations, the Baikov parametrization of the Euclidean equal-
mass sunrise family becomes:

SE
a1a2a3(p2

E,m
2) =

(
eγEϵ

iπd/2

)2 π1−2ϵ (p2
E)ϵ

Γ
(

1
2 − ϵ

)2

∫
Q
ds1ds2ds3ds4

(
DE

1

)−a1 (
DE

2

)−a2 (
DE

3

)−a3

× sϵ1
(
p2
Es1 − s2

2

)− 1
2 −ϵ (

s1s3 − s2
4

)− 1
2 −ϵ

,
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≡
∫
Q
ds1ds2ds3ds4 ωa1a2a3(p2

E,m
2, s1, s2, s3, s4) , (7.20)

where in the second line we absorbed the prefactor inside the integrand, and labeled
the resulting expression by ωa1a2a3(p2

E,m
2, s1, s2, s3, s4), for brevity. In terms of the

integration variables s1, . . . , s4, the propagators are given by:

DE
1 = s3 +m2 DE

2 = s3 + 2s4 + s1 +m2 DE
3 = s1 + 2s2 + p2

E +m2 . (7.21)

The integration domain Q is given by the region where the Baikov polynomials are
positive:

Q : s1s3 − s2
4 > 0 , p2

Es1 − s2
2 > 0 . (7.22)

As we are working in Euclidean space, it is natural to assume that p2
E is real and

positive. The integration region then simplifies to:

Q : s1 > 0 , s3 > 0 , −
√
p2

Es1 < s2 <
√
p2

Es1 , −
√
s1s3 < s4 <

√
s1s3 , (7.23)

which gives us the explicit integration bounds. Note that for the (uncut) integrals
discussed here, we will also assume that m2 > 0. The integration domain then doesn’t
cross any branch cuts or singularities of the integrand.

7.2.3 Definitions of the cuts

In this section we define the cut sunrise integral families, by taking residues of the
Baikov parametrization that was derived in Eq. (7.20). This approach of computing
the cuts is inspired by Refs. [22, 105, 106], where the Baikov parametrization was
considered for the computation of maximal cuts. The (uncut) equal-mass sunrise family
has three master integrals, usually chosen to be S111, S211 and S110. The set of master
integrals is derived by considering IBP identities, and by using that the integrals are
invariant under permutations of the propagators.

The permutation symmetry is broken once we start cutting propagators. For example,
in the case of the one-line and two-line cuts, there is a freedom on whether to cut the
dotted propagator of S211 or not. One option for dealing with the broken permutation
symmetry is to consider an additional master integral proportional to S211 −S121, which
is nonzero for the case of the one-line and two-line cuts. Another approach, which we
will follow in this chapter, is to explicitly symmetrize the master integrals. Therefore,
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we let:

ωsym
a1,a2,a3

(
p2

E,m
2, s1, s2, s3, s4

)
= 1

6
∑
σ∈S3

ωaσ(1)aσ(2)aσ(3)

(
p2

E,m
2, s1, s2, s3, s4

)
, (7.24)

where S3 denotes the symmetric group of order three, and where ωa1a2a3 was defined in
Eq. (7.20). We then define the cut integral families by:

SE,1-line
a1a2a3 (p2

E,m
2) ≡

∫
Q1-line

ds1ds2ds4 Ress3=−m2 ωsym
a1,a2,a3 , (7.25)

SE,2-line
a1a2a3 (p2

E,m
2) ≡

∫
Q2-line

ds1ds2 Ress4=− s1
2

Ress3=−m2 ωsym
a1,a2,a3 , ,

SE,3-line,(1,2)
a1a2a3 (p2

E,m
2) ≡

∫
Q

(1,2)
3-line

ds1 Ress2= 1
2(−m2−p2

E−s1)Ress4=− s1
2

Ress3=−m2 ωsym
a1,a2,a3 ,

where for brevity we suppressed the variable dependence of ωsym
a1,a2,a3 . We determine

the integration domain of the cut integrals by intersecting the conditions in Eq. (7.22)
with the on-shell constraints of the cut propagators. We will assume that the square of
the Euclidean external momentum is positive. However, different from before we take
the square of the internal mass to be negative, i.e. we let m2 < 0. This way the cut
propagators can be put on-shell while keeping s1 and s3 positive, as they should be in
Euclidean conventions. The integration domains of the cut integrals are then given
by:

Q1-line : s1 > 0 , −
√
p2

Es1 < s2 <
√
p2

Es1 , −
√

−s1m2 < s4 <
√

−s1m2 ,

Q2-line : 0 < s1 < −4m2 , −
√
p2

Es1 < s2 <
√
p2

Es1 ,

Q
(1)
3-line : p2

E −m2 − 2
√

−m2p2
E < s1 < p2

E −m2 + 2
√

−m2p2
E ,

Q
(2)
3-line : p2

E −m2 − 2
√

−m2p2
E < s1 < −4m2 . (7.26)

Note that we give two integration domains for the maximal cut. This is because the
region defined by the intersection of the on-shell conditions of the propagators with
the region where the Baikov polynomials are positive, splits up into two components,
depending on the region in which we take p2

E. In particular, we should consider the
domain Q

(1)
3-line when 0 < p2

E ≤ −m2, and we should consider the domain Q
(2)
3-line when

−m2 < p2
E < −9m2. Note that we also assume m2 < 0 like before.

We will restrict to the appropriate region for p2
E when computing the boundary terms

of the maximal cuts in Section 7.4. Thereafter, we will drop the conditions, and
transport the boundary conditions to the point p2

E = 0. We will find that the two
integration domains of the maximal cuts yield independent cuts, which is in line
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with the observation that the maximal cuts solve the homogeneous component of the
differential equations [18], which are second order in the case of the sunrise.

7.3 Differential equations

In this section we discuss the differential equations of the equal-mass sunrise family.
We will work in Minkowskian conventions, and choose the master integrals S211, S111

and S110. We work in the dimension d = 2 − 2ϵ, and we will normalize the integrals by
mass dependent prefactors which make them dimensionless. In particular, we use the
scaling relation in Eq. (2.3) to define:

Sa1a2a3(x) ≡ Sa1a2a3(x, 1) =
(
m2
)− γa1a2a3

2 Sa1a2a3

(
p2,m2

)
, (7.27)

where

γa1a2a3 = 2 (d− a1 − a2 − a3) (7.28)

is the mass dimension of Sa1a2a3 (p2,m2), and where we introduced the massless ratio
x = p2/m2. We will sometimes refer to these integrals as the ‘mass-normalized’ integrals.
Note that the righthand side of Eq. (7.27) always carries a factor (m2)2ϵ irrespective of
the choice of propagator exponents. For the cut integrals it is more natural to replace
the factor (m2)2ϵ by (−m2)2ϵ, as we will consider those in the kinematic region m2 < 0.
Therefore we will also use the convention

Scut
a1a2a3(x) ≡

(
m2
)−2+a1+a2+a3 (−m2)2ϵScut

a1a2a3

(
p2,m2

)
, (7.29)

for the cut integrals (where the superscript ‘cut’ generically denotes any of the cut
integral families.) As both choices only differ by an overall phase, the differential
equations are not affected by this change, and we will generally use the notation
Sa1a2a3(x) in the rest of this section to represent either case. Note as well that the cut
integrals are symmetrized in the manner of Eq. (7.25).

Next, we will consider two choices of basis for the differential equations. First, we
present a precanonical basis, that we will consider for transporting boundary conditions
using the expansion methods of Chapter 5. It is given by:

∂

∂x


S211(x)

(1 + 2ϵ)S111(x)
ϵS110(x)

 = (A0 + ϵA1)g⃗(x) , (7.30)
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where

A0 =


− (x−3)(x+3)

(x−9)(x−1)x
x−3

(x−9)(x−1)x 0
3
x

− 1
x

0
0 0 0

 , A1 =


− x2+10x−27

(x−9)(x−1)x
3(x−3)

(x−9)(x−1)x − 2
(x−9)(x−1)

6
x

− 2
x

0
0 0 0

 .

(7.31)

Next, we will discuss the canonical basis defined in Ref. [143], which we will use to
obtain pure boundary conditions at (or near) the boundary point x = 0. Furthermore,
by considering the differential equations in this basis we will be able to solve the cuts in
terms of iterated integrals of modular forms. We will only give the necessary definitions
to define the basis choice, and we will not review modular forms here. We refer the
reader to Refs. [123, 143] for more details. The basis is defined by:

B⃗(x) ≡



4ϵ2S110(x) ,
ϵ2 π
ψ1
S111(x) ,[

ϵ
i

2ψ2
1

(
dψ1

dτ

)
S111(x) + ϵ

iψ1

2W

(1
x
S111(x) − 3

x
S211(x)

)
− ϵ2 iψ1

2W

( 1
x− 1 + 1

x− 9 − 5
2x

)
S111(x)

]


, (7.32)

where

ψ1 = 4K(k)
(1 +

√
x) 3

2 (3 −
√
x) 1

2
, ψ2 = 4iK (k′)

(1 +
√
x) 3

2 (3 −
√
x) 1

2
, (7.33)

and where

τ = ψ2

ψ1
, k2 = (z3 − z2) (z4 − z1)

(z3 − z1) (z4 − z2)
, k′2 = (z2 − z1) (z4 − z3)

(z3 − z1) (z4 − z2)
, (7.34)

and where

z1 = −4, z2 = −(1 +
√
x)2, z3 = −(1 −

√
x)2, z4 = 0 . (7.35)

We have suppressed the dependence on x on the left-hand side of the above expressions.
Furthermore, note that K(k) denotes the complete elliptic integral of the first kind,
given by:

K(k) =
∫ π

2

0

1√
1 − k2 sin2(θ)

dθ (7.36)
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The differential equations in this basis are given by:

∂

∂x
B⃗(x) = ϵÃx(x)B⃗(x) = ϵ


0 0 0
0 − 3x2−10x−9

2(x−9)(x−1)x
12π2

(x−9)(x−1)xψ2
1

−ψ1
8π

(x+3)4ψ2
1

48π2(x−9)(x−1)x − 3x2−10x−9
2(x−9)(x−1)x

 B⃗(x) .
(7.37)

We may also consider the differential equations with respect to τ , in which case
the results can be expressed in terms of iterated integrals of modular forms of the
congruence subgroup

Γ1(6) =

 a b

c d

 ∈ SL2(Z) : a, d ≡ 1 (mod 6), c ≡ 0 (mod 6)
 . (7.38)

The differential equations are then given by:

1
2πi

∂

∂τ
B⃗(τ) = ϵ


0 0 0
0 −f2 1
f3
4 f4 −f2

 B⃗(τ) , (7.39)

where the kernels are:

f2 = 1
2iπ

Ψ2
1

W

(3x2 − 10x− 9)
2x(x− 1)(x− 9) = −6

(
e2

1 + 6e1e2 − 4e2
2

)
,

f3 = ψ3
1

4πW 2
6

x(x− 1)(x− 9) = 36
√

3
(
e3

1 − e2
1e2 − 4e1e

2
2 + 4e3

2

)
,

f4 = 1
576

ψ4
1
π4 (x+ 3)4 = 324e4

1 ,

(7.40)

where W (x) denotes the Wronskian determinant

W (x) = ψ1(x)ψ′
2(x) − ψ2(x)ψ′

1(x) = −6πi
x(x− 1)(x− 9) , (7.41)

where we have Eisenstein series:

e1 = E1 (τ ;χ0, χ1) , e2 = E1 (2τ ;χ0, χ1) , (7.42)

and where χ0 and χ1 denote primitive Dirichlet characters with conductors 1 and 3,
given by:

χ0(n) = 1 , χ1(n) =


0, if n = 0 mod 3 ,
1, if n = 1 mod 3 ,

−1, if n = 2 mod 3 ,
(7.43)
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for n ∈ Z. If we let q = e2πiτ , then we may write explicitly:

E1 (τ ;χ0, χ1) = 1
6 +

∞∑
k=1

∑
d|k
χ1(d)

 qk . (7.44)

The solution to Eq. (7.39) is given by Eq. (3.31) (if we move the factor 2πi to the
right-hand side.) The iterated integrals take the form:

I (f1, f2, . . . , fn; τ) = (2πi)n
∫ τ

i∞
dτ1f1 (τ1)

∫ τ1

i∞
dτ2f2 (τ2) . . .

∫ τn−1

i∞
dτnfn (τn) ,

(7.45)
where generically f1(τ), f2(τ), . . . , fn(τ) are modular forms, and where we have chosen
the cusp i∞ as the basepoint of the integration. In the case where the last kernel fn(τ)
does not vanish at the cusp we should regulate the basepoint divergence in a similar
manner to multiple polylogarithms (see Ref. [123].) We may also rewrite the iterated
integrals in terms of q, which gives:

I (f1, f2, . . . , fn; q) =
∫ q

0

dq1

q1
f1 (τ1)

∫ q1

0

dq2

q2
f2 (τ2) . . .

∫ qn−1

0

dqn
qn
fn (τn) , (7.46)

where τj = 1
2πi ln qj.

7.4 Boundary conditions in special kinematic lim-
its

It is complicated to integrate the parametrizations of the cuts that were given in
Section 7.2.3 for generic values of p2

E and m2. Therefore, we will tackle the simpler
problem of computing boundary conditions for the cuts in suitable asymptotic limits
near thresholds or pseudo-threshold1 in which the integrals simplify considerably. We
may then use the differential equations and the series expansion methods of Chapter
5 to evaluate the cuts at arbitrary kinematic points. A complication in obtaining
the boundary conditions is that there is no ready to use formulation of the method
of expansion by regions in the Baikov parametrization. Nonetheless, we may try to
naively expand the integrands of the cuts in special kinematic limits, perform the
integration, and check whether the result is correct at the end. We found at least one
limit for each cut integral family where this naive expansion gives the correct results.

1Note that the cut integrals may have singularities at positions which are pseudo-thresholds for
the uncut integrals.
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The results may be verified by performing a number of non-trivial cross-checks, which
we outline next.

Firstly, we may check the expansion in the given limit by comparing it to a numerical
integration of the unexpanded parametric representation very close to limit point.
Furthermore, using the series expansion methods, we may transport the boundary
conditions to any other kinematic point where we can also compare the results against
a numerical integration of the (unexpanded) parametric representation. Lastly, another
consistency check comes from the differential equations themselves. Typically the
general solution of the differential equations near special kinematic points has a specific
form, and if the boundary conditions have been computed incorrectly one often finds
that they can not be matched to the general solution. In fact, in this way we managed
to spot a number of typos at an early stage of the calculations, in which case the
boundary conditions would not match onto the differential equations.

In the following we will only concern ourselves with computing the undotted master
integrals, and the squared tadpole integrals. In each limit at which we obtain the
boundary conditions, we find that the dotted master integral is fixed from the value of
the undotted one. In the upcoming integrations, we will not write down the conditions
on ϵ that are necessary for the integrations to converge. We will instead follow the
usual approach where we analytically continue in ϵ after each integration.

7.4.1 Maximal cuts

For the maximal cut we have two independent contours, depending on the region of the
external kinematics. We compute S3-line

111 along both contours in the following section.
Note that we have S3-line

110 = 0 along the maximal cut.

Computation of S3-line,(1)
111

From Eqns. (7.25) and (7.26) we obtain:

S
E, 3-line,(1)
111 (p2

E,m
2) = −22ϵe2ϵγE (p2

E)ϵ

πΓ
(

1
2 − ϵ

)2

∫ +2
√

−m2p2
E+p2

E−m2

−2
√

−m2p2
E+p2

E−m2
ds1

[ (
−4m2 − s1

)ϵ− 1
2

×

(
s1p

2
E − 1

4 (p2
E +m2 + s1)2)−ϵ

√
s1

√
−2m2p2

E + 2s1p2
E − p4

E −m4 − 2m2s1 − s2
1

]
. (7.47)
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Introducing the ratio x = p2/m2 = −p2
E/m

2, and using Eqs. (7.16) and (7.29), we have
that:

S
3-line,(1)
111 (x) = −(−m2)2ϵm2S

E, 3-line,(1)
111 (−xm2,m2) . (7.48)

On the first contour, we take 0 < p2
E ≤ −m2, which is equivalent to 0 < x ≤ 1. To

make the right-hand side of Eq. (7.48) explicitly independent of m2, we have to take
m2 out of the integration bounds. We do this by performing a change of variables to a
new integration variable t, defined by:

s1(t) = −m2(2(t− 1)
√
x+ (t+ 1)x+ t+ 1)
t+ 1 . (7.49)

This change of variables maps the integration bounds to 0 and ∞, and leaves us
with:

S
3-line,(1)
111 (x) = −e2ϵγEt−ϵ−

1
2 (t+ 1)3ϵ

Γ
(

1
2 − ϵ

)2

∫ ∞

0
dt

(−2(t− 1)
√
x− (t+ 1)x+ 3(t+ 1))−ϵ− 1

2

π
√

2(t− 1)
√
x+ (t+ 1)x+ t+ 1

.

(7.50)

Note that if we expand the integrand in ϵ and integrate term by term, we could express
the results in terms of eMPLs. Instead, we satisfy ourselves here with computing
the maximal cut in the boundary point x = 0, where it is finite, and where we find
that:

S
3-line,(1)
111 (x = 0) = − 3−ϵ− 1

2 e2ϵγE

πΓ
(

1
2 − ϵ

)2

∫ ∞

0
dt t−ϵ−

1
2 (t+ 1)2ϵ−1

= 3−ϵ− 1
2 e2ϵγE

2πϵΓ(−2ϵ) . (7.51)

Computation of S3-line,(2)
111

From Eqns. (7.25) and (7.26), we obtain:

S
E, 3-line,(1)
111 (p2

E,m
2) = −22ϵe2ϵγE (p2

E)ϵ

πΓ
(

1
2 − ϵ

)2

∫ −4m2

−2
√

−m2p2
E+p2

E−m2
ds1

[ (
−4m2 − s1

)ϵ− 1
2

×

(
s1p

2
E − 1

4 (p2
E +m2 + s1)2)−ϵ

√
s1

√
−2m2p2

E + 2s1p2
E − p4

E −m4 − 2m2s1 − s2
1

]
.

(7.52)
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Like before, we consider the ratio x = p2/m2 = −p2
E/m

2, and use Eqns. (7.16) and
(7.29), to obtain:

S
3-line,(2)
111 (x) = −(−m2)2ϵm2S

E, 3-line,(2)
111 (−xm2,m2) . (7.53)

We use the change of variables

s1(t) = −m2(4t+ x− 2
√
x+ 1)

t+ 1 , (7.54)

to map the integration bounds to 0 and ∞. This leaves us with:

S
3-line,(2)
111 (x) = − 16ϵe2γEϵxϵ

πΓ
(

1
2 − ϵ

)2
(3 + 2

√
x− x)2ϵ

∫ ∞

0
dt

(tx+ 2(t+ 2)
√
x− 3t)−ϵ− 1

2

tϵ+
1
2 (t+ 1)−3ϵ

√
4t+ x− 2

√
x+ 1

.

(7.55)

Next, we seek a suitable boundary point where the integration simplifies. Since we are
working in the region 1 < x < 9, one candidate point to consider is the asymptotic
limit x ↑ 9. Expanding the integrand at leading order and integrating yields:

S
3-line,(2)
111 (x) ∼ −(9 − x)−2ϵ 33ϵ− 1

2 e2ϵγE

4πΓ
(

1
2 − ϵ

)2

∫ ∞

0
dt t−ϵ−

1
2 (t+ 1)2ϵ−1 (7.56)

= 33ϵ− 1
2 e2ϵγE(9 − x)−2ϵ

8πϵΓ(−2ϵ) , (7.57)

as x → 9. We cross-checked the result using the strategies described at the start of
this section.

7.4.2 Two-line cuts

Computation of S2-line
111

From Eqns. (7.25) and (7.26), we obtain:

SE,2-line
111 (p2

E,m
2) =

∫ −4m2

0
ds1

∫ √
p2

Es1

−
√
p2

Es1
ds2

−4ϵe2γϵ(p2
E)ϵ (−4m2 − s1)−ϵ− 1

2 (p2
Es1 − s2

2)
−ϵ− 1

2

πΓ
(

1
2 − ϵ

)2 √
s1 (m2 + p2

E + s1 + 2s2)

 .
(7.58)
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We perform the first integration in s2 analytically, which yields:

SE,2-line
111 (p2

E,m
2) =

∫ −4m2

0
ds1

[
− 4ϵe2γϵs

−ϵ− 1
2

1 (−4m2 − s1)−ϵ− 1
2

√
πΓ

(
1
2 − ϵ

)
Γ (1 − ϵ) (m2 + p2

E + s1)

× 2F1

(
1
2 , 1; 1 − ϵ; 4p2

Es1

(m2 + p2
E + s1) 2

)]
. (7.59)

To avoid having to do any analytic continuation at this stage, let us consider the region
of the external kinematics where the integration region doesn’t cross the branch cut
of the hypergeometric function. The branch cut of the hypergeometric function lies
along the part of the real line with values greater than one, so that we obtain the
condition:

4p2
Es1

(m2 + p2 + s1) 2 < 1 . (7.60)

Under the additional assumptions p2
E > 0, m2 < 0 and 0 < s1 < −4m2, this simplifies

to −p2
E/9 ≤ m2 < 0. In terms of the ratio x = −p2

E/m
2, this condition becomes x ≥ 9.

This leaves two possible candidates for an asymptotic limit in which to compute the
boundary conditions, namely x = 9 and x = ∞. Expanding the integrand at p2

E = ∞,
keeping the leading term, and integrating, yields:

SE,2-line
111 (p2

E,m
2) ∼ − 4εe2ϵγE

p2
EΓ
(

1
2 − ϵ

)
Γ(1 − ϵ)

√
π

∫ −4m2

0
ds1 s

−ε− 1
2

1

(
−4m2 − s1

)−ε− 1
2

= −(m2)−2ϵ
e2ϵγE

ϵ2p2
EΓ(−ϵ)2 . (7.61)

From Eqns. (7.16) and (7.29), we have that:

S2-line
111 (x) = −(−m2)2ϵm2SE, 2-line

111 (−xm2,m2) , (7.62)

and therefore:

S2-line
111 (x) ∼ − e2ϵγE

xϵ2Γ(−ϵ)2 as x → ∞ . (7.63)

We cross-checked the result using the strategies outlined at the start of Section 7.4.

Computation of S2-line
110

We may perform the computation of the two-line cut double tadpole in two different
ways. The simplest method is to compute it as the square of the cut single tadpole.
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Alternatively, we may proceed with the same loop-by-loop parametrization as before.
The equivalence of the two parametrizations provides a non-trivial cross-check of our
computations. In the first approach we have:

SE,2−line
110 (p2

E,m
2) = 1

3 (cut tadpole)2

= 1
3

(
− ieϵγEs−ϵ

1
Γ(1 − ϵ) Res s1=−m2

(
1

s2
1 +m2

))2

= −1
3
e2ϵγE (−m2)−2ϵ

ϵ2Γ(−ϵ)2 . (7.64)

In the second approach, we parametrize the loop momenta in the manner of Eqns.
(7.17) and (7.18), take residues by localizing the variables s3 and s4, and obtain:

SE,2−line
110 (p2

E,m
2) = 1

3

∫ −4m2

0
ds1

∫ √
p2

Es1

−
√
p2

Es1
ds2

− 4ϵe2γEϵ (p2
E)ϵ (−4m2 − s1)−ϵ− 1

2

π
√
s1Γ

(
1
2 − ϵ

)2
(s1p2

E − s2
2)
ϵ+ 1

2

 .

(7.65)

Performing the remaining integrations yields:

SE,2−line
110 (p2

E,m
2) = −1

3
e2γEϵ (m4)−ϵ

ϵ2Γ(−ϵ)2 . (7.66)

The expressions in Eqs. (7.64) and (7.66) are equal in our kinematic region where
m2 < 0. Outside of this kinematic region, they differ by a complex phase. For the
mass-normalized Minkowski space version we lastly find:

S2-line
110 (x) = e2ϵγE

3ϵ2Γ(−ϵ)2 . (7.67)

7.4.3 One-line cuts

Computation of S1−line
111

We will first consider the Baikov parametrization of the loop formed by the propagators
D1 and D2, where the propagator D1 is cut. In other words, we consider the one-line
cut of a bubble, that we will denote by BE,1-line

11 (k2
2,m

2). We have that:

BE,1-line
11 (k2

2,m
2) = − i (k2

2)ϵ eϵγE

√
πΓ

(
1
2 − ϵ

) ∫ √
−k2

2m
2

−
√

−k2
2m

2
ds4

(−m2k2
2 − s2

4)
−ϵ− 1

2

(k2
2 + 2s4)
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= −
ieϵγE (−m2)−ϵ

2F1
(

1
2 , 1; 1 − ϵ; −4m2

k2
2

)
Γ(1 − ϵ)k2

2
for k2

2 ≥ −4m2 . (7.68)

We may unwrap the hypergeometric function by writing out its Euler integral in the
following form:

2F1 (a, b; c; z) = Γ(c)
Γ(b)Γ(c− b)

∫ ∞

0
dy yb−1(y + 1)a−c(y(1 − z) + 1)−a . (7.69)

Furthermore, we change convention to the Minkowski space version of the cut, by
sending k2

2 to its negative, and adding an overall factor i. We then find:

B1-line
11 (k2

2,m
2) = eϵγE (−m2)−ϵ

Γ(−ϵ)
√

−k2
2

∫ ∞

0
dy

(y + 1)ϵ−1√
−k2

2 + 4m2y
1+y

(7.70)

Next, we include the propagator D3, add the integration on the loop momentum k2,
and obtain:

S1-line
111 (p2,m2) = e2ϵγE (−m2)−ϵ

iπ1−ϵΓ(−ϵ)

∫ ∞

0
dy

∫
ddk2

(y + 1)ϵ−1

(−(k2 + p)2 +m2)
√

−k2
2

√
−k2

2 + 4m2y
1+y

.

(7.71)

We introduce Feynman parameters to perform the k2 integration, which yields:

S1-line
111 (p2,m2) = e2ϵγΓ(ϵ+ 1) (−m2)−ϵ

πΓ(−ϵ)

∫ ∞

0
dy (y + 1)2ϵ

∫ ∞

0
dα1dα2dα3

(α1 + α2 + α3)2ϵ

√
α2

√
α3

×(
α2

1m
2 + α1α2m

2 + α1α3m
2 + α2

1m
2y + 4α2

3m
2y + α1α2m

2y + 5α1α3m
2y + 4α2α3m

2y

− α1α2p
2 − α1α3p

2 − α1α2p
2y − α1α3p

2y
)−1−ϵ

δ(1 − α1 − α2 − α3) . (7.72)

To get a more symmetric form of the integrand, we map all scalar integration parameters
to a 3-simplex. This may be done in the following way. First we use the Cheng-Wu
theorem to change the delta function to δ(1 − α3), after which we integrate out α3 in
a trivial manner. Next, we rename y to α3. Lastly, we projectivize the integrand, by
letting αi → αi/α4. The result is given by:

S1−line
111 (p2,m2) = e2ϵγE (−m2)−ϵ Γ(ϵ+ 1)

πΓ(−ϵ)

∫
∆3

[
d3α⃗

] α−ϵ− 1
2

4√
α2

(α1 + α2 + α4)2ϵ

× (α3 + α4)2ϵ F̃−1−ϵ , (7.73)
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where

F̃ ≡ α1α
2
4m

2 + 4α3α
2
4m

2 + α2
1α3m

2 + α1α2α3m
2 + α2

1α4m
2 + α1α2α4m

2 + 5α1α3α4m
2

+ 4α2α3α4m
2 − α1α

2
4p

2 − α1α2α3p
2 − α1α2α4p

2 − α1α3α4p
2 . (7.74)

Note that F̃ carries a small negative imaginary part according to the Feynman pre-
scription. We use the following relation to flip the sign of F̃ :

(F̃ − iδ)−1−ϵ = −eiπϵ(−m2)−1−ϵ
(

F̃
m2 + iδ

)−1−ϵ

, (7.75)

for infinitesimally small positive δ. Next, we introduce the ratio x = p2/m2 = −p2
E/m

2,
and we will work in the region x < 0. We then have that F̃/m2 > 0. We will consider
the asymptotic limit x → −∞, and obtain the boundary conditions using the method
of expansion by regions. There are three regions, given by:

R1 = {0,−1,−1,−1}, R2 = {0, 0, 0, 0}, R3 = {0, 1, 1, 1} . (7.76)

Computing the contributions in the given regions, and summing the result yields:

S1 -line
111 (x) ∼ e2γEϵ+iπϵΓ(ϵ)

(
−(−x)−ϵ−1Γ(−ϵ)

Γ(−2ϵ) + 2
xϵΓ(−ϵ)

)
, (7.77)

as x → −∞.

Computation of S1−line
110

The computation of the one-line cut of the double tadpole may be performed in two
different ways. One option is to start from the analog of Eq. (7.71), and to write:

S1−line
110 (m2) = 2

3
e2ϵγE (−m2)−ϵ

iπ1−ϵΓ(−ϵ)

∫ ∞

0
dy (y + 1)ϵ−1

∫
ddk2

1√
−k2

2

√
−k2

2 + 4m2y
1+y

,

(7.78)

where we included a symmetry factor 2/3 in accordance with Eq. (7.25). We perform
the k2-integration by introducing Feynman parameters and obtain:

S1−line
110 (m2) = 2

3
4−ϵe2ϵγEeiπϵ (−m2)−2ϵ Γ(ϵ)

πΓ(−ϵ)

∫
∆1

[
d1α⃗

]
α

− 1
2

1 α
−ϵ− 1

2
2 (α1 + α2)ϵ−1

×
∫ ∞

0
dy y−ϵ(y + 1)2ϵ−1
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= −e2ϵγEeiπϵ (−m2)−2ϵ Γ(ϵ)
ϵΓ(−ϵ) . (7.79)

For the mass-normalized integral, we thus find:

S1−line
110 (x) = −2

3
e2ϵγEeiπϵΓ(ϵ)
ϵΓ(−ϵ) . (7.80)

The second (and easier) method of computing the one-line cut double tadpole is to
write it as a product of the cut tadpole times the uncut tadpole. In that case we
find:

SE,1−line
110 (m2) = 2

3(cut tadpole) · (uncut tadpole)

= 2
3

(
ieγEϵ(−m2)−ϵ

ϵΓ(−ϵ)

)(
−ieγEϵ(m2)−ϵΓ(ϵ)

)
= 2

3
e2γEϵeiπϵ(−m2)−2ϵΓ(ϵ)

ϵΓ(−ϵ) . (7.81)

For the mass-normalized Minkowskian version, the expression is in agreement with Eq.
(7.80).

7.4.4 Uncut integrals

We may obtain closed-form boundary conditions for the (uncut) sunrise family in
the limit x → −∞ by using the method of expansion by regions. We leave the full
calculation as an exercise to the reader. In the limit x → −∞, the undotted integral is
given by:

S111(x) ∼ (7.82)

e2γEϵ

[
(−x)−ϵ−1

(
3ϵΓ(−ϵ)2Γ(ϵ)2

Γ(−2ϵ)

)
+ (−x)−2ϵ−1

(
2ϵΓ(−ϵ)3Γ(2ϵ)

Γ(−3ϵ)

)
− 3Γ(ϵ)2

x

]
.

The double tadpole is given by:

S110(x) = e2γEϵΓ(ϵ)2 . (7.83)

7.5 Results

We have used the expansion methods of Chapter 5, and in particular the Mathematica
package DiffExp, to transport all boundary conditions to the point x = 0 up to order
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ϵ4. We did this in the basis given in Eq. (7.30). Thereafter, we changed basis to
the canonical basis given in Eq. (7.32). (We remark that transporting the boundary
conditions may also be directly possible in the canonical basis, using the methods of
Refs. [219, 220].)

Note that in the point x = 0, the canonical basis simplifies to:

lim
x↓0

B⃗(x) ∼


4ϵ2S110

1
2

√
3ϵ2S111(x)√

3
(

3
2S211(x) − 1

4ϵ(5ϵ+ 2)S111(x)
)
 . (7.84)

For the two-line cut and three-line cut on the second contour, the integrals diverge
at x = 0. In those cases we also consider the leading (logarithmic) behaviour, as
x approaches 0 from the positive real axis, to be part of the boundary conditions.
Furthermore, upon transporting the boundary conditions for these cuts, we have to
perform the analytic continuation past the singularities x = 1 and x = 9. Note that we
worked in the region p2 < 0 and m2 < 0, such that x > 0. Furthermore, note that m2

carries a negative imaginary part. We will therefore cross the singularities by assigning
x a negative imaginary part, since:

p2

m2 − iδ
∼ p2

m2 − iδ , (7.85)

for negative m2 and negative p2. Note that from the expansion methods we obtain
numerical data at the point x = 0. We may lift the numerical data to pure combinations
of transcendental constants of polylogarithmic type using the PSLQ algorithm. An
ansatz of transcendental constants can be identified by integrating S111(x) at x = 0
term-by-term in ϵ using HyperInt, and by using the Mathematica package of Ref.
[221] to convert the result into classical polylogarithms. We have to add additional
prefactors proportional to iπ and ϵ in order to find pure expressions that have weight
zero at order zero in ϵ. These are given by:

⃗̃Buncut(x) ≡ B⃗uncut(x) , ⃗̃B1-line(x) ≡ 1
ϵ
B⃗1-line(x) ,

⃗̃B2-line(x) ≡ iπ

ϵ
B⃗2-line(x) , ⃗̃B3-line,(1)(x) ≡ iπ

ϵ2 B⃗
3-line,(1)(x) ,

⃗̃B3-line,(2)(x) ≡ π2

ϵ
B⃗3-line,(2)(x) . (7.86)

The resulting boundary conditions at x = 0 are given in Appendix C.1. Using these
boundary conditions, and using Eqns. (7.39) and (3.31), we may solve all the cuts in
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terms of the iterated integrals of modular forms that were defined in Eq. (7.45). We
provide the results up to order ϵ2 in Appendix C.2. Orders three and four in ϵ can be
obtained upon request to the author.

7.5.1 Relations between the cuts

Since there are three master integrals, we expect to find two Q-linear relations between
the cut integral families, bringing the number of independent contours down to three
as well. We will consider such relations modulo π. Therefore, we look for relations of
the form

cuncut
⃗̃Buncut + c1-line

⃗̃B1-line + c2-line
⃗̃B2-line

+ c3-line,(1)
⃗̃B3-line,(1) + c3-line,(2)

⃗̃B3-line,(2) = 0 (mod π) , (7.87)

where c(...) ∈ Q, and where not all c(...) are zero. Note that both the two-line cuts and
the maximal cuts on the second contour are divergent in the limit x → 0, while the
other families are finite. If there is a relation between the divergent families and the
finite families, we should be able to construct a finite quantity from a combination of
the two-line cut family and the maximal cut family on second contour. By comparing
the coefficients of the logarithms in ⃗̃B2-line and ⃗̃B3-line,(2), we quickly see that the
combination 3

2
⃗̃B2-line + ⃗̃B3-line,(2) is finite. Furthermore, we find that what is left is

proportional to π, so that:

3
2
⃗̃B2-line + ⃗̃B3-line,(2) = 0 (mod π) . (7.88)

Any remaining non-trivial relations of the type of Eq. (7.87), should thus be between
⃗̃Buncut, ⃗̃B1-line, and ⃗̃B3-line,(1). We may search for such combinations modulo π by using
the PSLQ algorithm to find a Q-linear combination of ⃗̃Buncut, ⃗̃B1-line, and ⃗̃B3-line,(1),
and any combination of transcendental constants that carry a factor π. In particular,
we consider the set of independent combinations of the terms

π, log(2), log(3), ζ3,Lik
(
−i

√
3
)
,Lik

(
i
√

3
)
,Lik

(
1 + i

√
3

1 + i
√

3

)
, (7.89)

up to weight 3, and multiply each element in the set by π. We then give this set to the
PSLQ algorithm. As a result, we find the relation:

⃗̃Buncut − 3
2
⃗̃B1-line = 0 (mod π) (7.90)
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No additional relations were found using this approach. Thus, we have obtained three
independent sets of cut families, in line with the fact that we have three families
of master integrals. We could have found these relations in an even faster way by
comparing only the leading coefficients of the cuts. Lastly, it is instructive to write out
the linear relations in the basis without the normalizations introduced in Eq. (7.86).
This leads to:

B⃗uncut − 3
2ϵB⃗

1-line = 0 (mod π) , 3
2iπB⃗

2-line + π2B⃗3-line,(2) = 0 (mod π) . (7.91)

Note that the equation between B⃗2-line and B⃗3-line,(2) contains explicit factors of iπ on
the left-hand side, while the right-hand side is defined modulo π. While this may looks
strange, note that B⃗2-line carries an overall 1/iπ, and B⃗3-line,(2) carries an overall 1/π2,
so that these powers of iπ cancel out.

7.5.2 Diagrammatic coaction

We saw in the previous sections that three independent cuts are given by the uncut
integral family, and the two maximal cut integral families. Let

(γ1, γ2, γ3) =
(
γuncut,

iπ

ϵ2 γ3-line,(1),
π2

ϵ
γ3-line,(2)

)
, (7.92)

be the contours associated to our cuts. Here γuncut , γ3-line,(1) and γ3-line,(2) are given
by the integration contours in Eq. (7.26), where in addition we consider the residue
operations to be part of the contours. Furthermore, let


ω1

ω2

ω3

 =


4ϵ2ωsym

110

ϵ2 π
ψ1
ωsym

111[
ϵ i

2ψ2
1

(
dψ1
dτ

)
ωsym

111 + ϵ iψ1
2W

(
1
x
ωsym

111 − 3
x
ωsym

211

)
−ϵ2 iψ1

2W

(
1

x−1 + 1
x−9 − 5

2x

)
ωsym

111

]

 (7.93)

be the basis of integrands corresponding to Eq. (7.32). Then we have that:

P(0)
ij =

(∫
γj

ωi

)(0)

=


4 0 0
0 − i

2 0
0 i

4
3i
4


ij

, (7.94)

where the superscript (0) indicates that we are considering the expressions at finite
order in ϵ. Next, consider the following change of basis of the integrands / master
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integrals:

ω̃1 = 1
4ω1 , ω̃2 = 2iω2 , ω̃3 = −4

3iω3 − 2
3iω2 . (7.95)

Explicitly, this works out to:


ω̃1

ω̃2

ω̃3

 =


ϵ2ωsym

110

2ϵ2 πi
ψ1
ωsym

111[
ϵ 2

3ψ2
1

(
dψ1
dτ

)
ωsym

111 + ϵ2ψ1
3W

(
1
x
ωsym

111 − 3
x
ωsym

211

)
−ϵ2 2ψ1

3W

(
1

x−1 + 1
x−9 − 5

2x

)
ωsym

111 − 2
3ϵ

2 πi
ψ1
ωsym

111

]

 (7.96)

We then have that:

P̃(0)
ij =

(∫
γj

ω̃i

)(0)

= δij . (7.97)

We will now use the master formula Eq. (7.7) with cij = 1, to make a conjecture for
the diagrammatic coaction. In particular, we have that:

∆
(∫

γi

ω̃j

)
=
∫
γi

ω̃1 ⊗
∫
γ1
ω̃j +

∫
γi

ω̃2 ⊗
∫
γ2
ω̃j +

∫
γi

ω̃3 ⊗
∫
γ3
ω̃j . (7.98)

The right-hand entries are considered modulo π, while π is kept on the left-hand side.
We have checked the formula for all i, j = 1, 2, 3 by expanding up to weight ϵ4, and by
using the coaction of iterated integrals of modular forms defined in Ref. [30].

We may schematically depict the integrals in the following diagrammatic way:

∫
γ1
ω̃1 =

Can.

,
∫
γ1
ω̃2 =

Can.

,
∫
γ1
ω̃3 =

Can.

,

∫
γ2
ω̃2 =

Can. (C1)

,
∫
γ2
ω̃3 =

Can. (C1)

,
∫
γ3
ω̃2 =

Can. (C2)

,

∫
γ3
ω̃3 =

Can. (C2)

,
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where we added the label ‘Can.’ to indicate that these integrals correspond to the
canonical basis given in Eq (7.96). In particular, the dotted master integral in the
above picture is really a combination of the undotted and the dotted master integral.
We may then write out Eq. (7.98) in a diagrammatic form. For example, we have
that:

∆

Can.

=

Can.

⊗

Can.

,

∆

Can.

=

Can.

⊗

Can.

+

Can.

⊗

Can. (C1)

+

Can.

⊗

Can. (C2)

,

∆

Can.

=

Can.

⊗

Can.

+

Can.

⊗

Can. (C1)

+

Can.

⊗

Can. (C2)

. (7.99)

Note that by using the relation in Eq. (7.90) we could replace the uncut integrals on
the right-hand side of the tensor product by one-line cuts, so that only cut integrals
appear on the right-hand side. This would be more in line with the presentation of the
diagrammatic coaction in the one-loop case.

In the future, we aim to repeat the calculations for the unequal-mass sunrise fam-
ily.





Chapter 8

Conclusion and outlook

In this thesis, we have developed new methods for the efficient and analytic computation
of Feynman integrals. Feynman integrals are an important subject of study, as their
evaluation forms a bottleneck for the computation of higher order corrections to
processes in the Standard Model. We started this thesis with a general review of
scalar Feynman integrals, and iterated integrals. In particular, we reviewed multiple
polylogarithms and elliptic multiple polylogarithms, in terms of which many Feynman
integrals can be expressed. Thereafter, we reviewed the direct integration method and
the differential equations method, which are methods for obtaining analytic results for
Feynman integrals in terms such functions.

In Chapter 4, we defined linearly reducible elliptic Feynman integrals [1], which are
Feynman integrals associated with elliptic maximal cuts, and which can be written
as one-fold integrals over a polylogarithmic integrand which we called the inner
polylogarithmic part (IPP). The IPP can be identified with a (generalized) Feynman
integral family, which may be solved using the method of differential equations. A
novel aspect of this approach is that it allows for elliptic Feynman integrals to be solved
from differential equations in canonical form which do not involve elliptic integration
kernels, such as in the approach of Refs. [34, 35, 37, 143]. On the other hand, our
representations involve an additional integration parameter which shows up in the
differential equations, and which has to be integrated out at the end. If the Feynman
integrals depend on a single elliptic curve, this last integration can be performed in
terms of elliptic multiple polylogarithms.

Next, we discussed methods for solving Feynman integrals from their differential
equations in terms of one-dimensional series expansions [2–4, 40, 47]. By computing
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series solutions along multiple connected line segments, the method allows us to obtain
high-precision numerical results for Feynman integrals at arbitrary points in phase-
space. The approach outperforms numerical integration methods by several orders
of magnitudes, and can be applied to families of integrals for which fully analytic
computations are currently out of reach. We introduced the novel Mathematica package
DiffExp which provides a general implementation of these series expansion methods.
To develop the package, we provided some novel improvements compared to Refs.
[2, 3, 40]. Firstly, we showed how the integration order of the master integrals can
be read off from the differential equations using basic graph theory. Secondly, we
derived an optimized integration strategy for solving sectors where many integrals are
coupled. Lastly, we worked out explicit formulas for the matching of neighbouring line
segments.

We applied the package DiffExp to a number of examples. Firstly, we considered the
computation of the three-loop unequal-mass banana graph family, which has eleven
coupled integrals in the top sector. Previous applications of the method had only
considered sectors where at most two integral were coupled at the same time. The
unequal-mass banana integrals are at the edge of current analytic methods. Some
results are available in the literature in terms of A-hypergeometric series, which have a
limited range of convergence. By using DiffExp, we are able to obtain high-precision
results at arbitrary points in the physical region. We also applied DiffExp to two
examples in the literature. We cross-checked the numerical results for the planar
two-loop five-point one-mass integral families of Ref. [47], by taking the differential
equations and boundary conditions from the ancillary files of that paper. Similarly,
we cross-checked the numerical results given for the two-loop five-point non-planar
massless integrals of Ref. [48]. We expect that series expansion methods will play an
important role in future phenomenological computations, and that further performance
improvements of the method will be made in the future.

In the next chapter, we presented the computation of all non-planar master integrals
relevant for Higgs plus jet production at next-to-leading order (NLO) with full heavy
quark mass dependence [2, 3]. The planar families were already computed in Ref.
[19, 40]. The NLO corrections to Higgs plus jet production with full heavy quark
mass dependence are important for phenomenological predictions in the region where
the jet or Higgs transverse momenta are of the order or larger than the top mass. A
computation which includes the top quark mass dependence and neglects the bottom
quark has been performed in Ref. [163] using numerical integration methods. The



181

analytic computation of the non-planar master integrals presented here, in addition
to the computation of the planar ones in Refs. [19, 40], will make it possible to
compute the NLO corrections for other quark flavours too, and we aim to perform this
computation in the future and to compare the results to Ref. [163].

The non-planar integrals fitted into two integral families, which we labeled by the
letters F and G. We used the method of differential equations to solve both families
in essentially the same way. First, we found a basis that puts many of the subsectors
in a canonical d log-form, and we derived a minimal alphabet for these sector. The
alphabet contains multiple non-simultaneously rationalizable square roots, which makes
it unclear if the results can be expressed in terms of multiple polylogarithms at all
orders in ϵ. We showed for family F that we could obtain results at weight two for
these canonical sectors in terms of logarithms and dilogarithms, by integrating the
symbol using a suitable ansatz. The results at orders ϵ3 and ϵ4 are then written as
one-fold integrals. The remaining integral sectors are either associated with elliptic
maximal cuts, or coupled to sectors with elliptic maximal cuts, and for those we did
not find a canonical form. However, we showed that all integrals could nonetheless
be efficiently solved using series expansion methods. We illustrated the results by
providing three-dimensional plots of some of the integrals in the top sectors of family
F and G.

In the last chapter of this thesis we considered the diagrammatic coaction of the
equal-mass elliptic sunrise family. The diagrammatic coaction conjecture states that
there is a coaction operator acting on Feynman integrals and their cuts, which can
be depicted diagrammatically by drawing the associated Feynman diagrams. The
diagrammatic coaction is defined in such a way that when the Feynman integrals and
their cuts are expanded in the dimensional regulator ϵ, it reduces to the coaction on
the resulting iterated integrals. For example, if the coefficients of the integrals in the ϵ
expansion evaluate to multiple polylogarithms, the diagrammatic coaction agrees with
the coaction of multiple polylogarithms.

One of the main difficulties in setting up the diagrammatic coaction is the computation
of the cut integrals. We defined the cuts in the Baikov parametrization and obtained
closed-form results in kinematic limits where all integrations could be performed.
Making use of the fact that cuts satisfy the same differential equations as uncut
Feynman integrals, we used series expansion methods to transport all boundary
conditions to the same point. By considering the canonical basis derived in Ref. [143],
we could express the cut integrals in terms of iterated integrals of modular forms. By
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using an additional change of basis, we diagonalized the period matrix at leading order
in ϵ. We then used the coaction master formula, that was conjectured in Refs. [52, 217],
to define the diagrammatic coaction. This is the first time that the diagrammatic
coaction has been derived for an integral family that has elliptic maximal cuts. In
the future it would be interesting to extend these results to the unequal-mass family,
which has additional master integrals, and for which additional contours will need to
be considered in the coaction.
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Appendix A

Basis definitions of Higgs + jet
integrals

A.1 Family F

The top sector of family F is depicted in Fig. 6.1. The subsectors are obtained by
contracting propagators of the top sectors. The full integral family consists of 73 master
integrals. The first 65 master integrals can be chosen so that the differential equations
are in a canonical d log-form. In a slight abuse of terminology, we call these sectors
polylogarithmic sectors, even though it is not clear if these sectors may be solved in
terms of multiple polylogarithms at all orders in the dimensional regulator. We solve
these sectors explicitly in terms of polylogarithms at order ϵ2, in Section 6.3.3. The
basis choice for the polylogarithmic sectors is:

B1 = ϵ2I0,0,0,0,2,0,2,0,0 ,

B2 = tϵ2I0,2,0,1,0,0,2,0,0 ,

B3 = ϵ2r1r6I0,0,2,0,1,0,2,0,0 ,

B4 = sϵ2I1,0,2,0,0,2,0,0,0 ,

B5 = ϵ2r2r7

(1
2I1,0,2,0,0,2,0,0,0 + I2,0,2,0,0,1,0,0,0

)
,

B6 = tϵ2I0,0,2,1,0,0,2,0,0 ,

B7 = ϵ2r3r8

(1
2I0,0,2,1,0,0,2,0,0 + I0,0,2,2,0,0,1,0,0

)
,

B8 = ϵ2
(
−s− t+ p2

4

)
I1,0,0,0,2,0,2,0,0 ,
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B9 = ϵ2r5r10

(1
2I1,0,0,0,2,0,2,0,0 + I2,0,0,0,1,0,2,0,0

)
,

B10 = ϵ2p2
4I0,0,2,1,0,2,0,0,0 ,

B11 = ϵ2r1r6

(1
2I0,0,2,1,0,2,0,0,0 + I0,0,2,2,0,1,0,0,0

)
,

B12 = tϵ2r1r6I0,1,1,2,2,0,0,0,0 ,

B13 = sϵ3I1,0,2,0,0,1,1,0,0 ,

B14 = ϵ3
(
−s− t+ p2

4

)
I1,0,0,0,2,1,1,0,0 ,

B15 = ϵ3
(
p2

4 − t
)

I0,1,0,1,2,0,1,0,0 ,

B16 = ϵ2r4r9

(1
2I0,0,2,1,0,2,0,0,0 + I0,0,2,2,0,1,0,0,0 + tI0,2,0,1,2,0,1,0,0

)
,

B17 = ϵ3
(
p2

4 − t
)

I0,0,2,1,0,1,1,0,0 ,

B18 = ϵ3
(
p2

4 − s
)

I1,0,1,0,1,2,0,0,0 ,

B19 = ϵ2m2
(
p2

4 − s
)

I1,0,1,0,1,3,0,0,0 ,

B20 = ϵ2r1r6

p2
4 − 2s

((
p2

4 − s
) (

−3ϵ
2 I1,0,1,0,1,2,0,0,0 +m2I1,0,1,0,1,3,0,0,0

)
−

− 3
4sI1,0,2,0,0,2,0,0,0 +

(
s2 − p2

4s+m2p2
4

)
I1,0,2,0,1,2,0,0,0

)
,

B21 = ϵ3
(
p2

4 − t
)

I0,0,1,1,1,0,2,0,0 ,

B22 = ϵ2m2
(
p2

4 − t
)

I0,0,1,1,1,0,3,0,0 ,

B23 = ϵ2r1r6

p2
4 − 2t

((
p2

4 − t
) (

−3ϵ
2 I0,0,1,1,1,0,2,0,0 +m2I0,0,1,1,1,0,3,0,0

)
−

− 3
4tI0,0,2,1,0,0,2,0,0 +

(
t2 − p2

4t+m2p2
4

)
I0,0,2,1,1,0,2,0,0

)
,

B24 = (s+ t)ϵ3I1,0,1,0,1,0,2,0,0 ,

B25 = (s+ t)ϵ2m2I1,0,1,0,1,0,3,0,0 ,

B26 = ϵ2r1r6

−2s− 2t+ p2
4

(3
4
(
−s− t+ p2

4

)
I1,0,0,0,2,0,2,0,0 + (s+ t)

(3ϵ
2 ×

× I1,0,1,0,1,0,2,0,0 −m2I1,0,1,0,1,0,3,0,0

)
+
((
s+ t−m2

)
p2

4 − (s+ t)2
)

I1,0,1,0,2,0,2,0,0

)
,

B27 = ϵ4
(
p2

4 − t
)

I0,1,0,1,1,1,1,0,0 ,

B28 = ϵ4
(
p2

4 − t
)

I0,1,1,1,1,0,1,0,0 ,

B29 = ϵ3
(
p2

4 − t
)
r1r6I0,1,1,1,2,0,1,0,0 ,

B30 = −2p2
4I0,1,1,1,1,0,1,0,0ϵ

4 +
(
t+ 4m2 − 3p2

4

)
I0,1,0,1,1,0,2,0,0ϵ

3 + tm2I0,1,1,1,1,0,2,0,0ϵ
2+
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+
(
t+ 4m2 − p2

4

)(
−1

2I0,0,2,1,0,2,0,0,0 − ϵI0,1,1,1,0,2,0,0,0 − tI0,1,1,2,0,2,0,0,0

)
ϵ2+

+
(
4m2 − p2

4

) (
−1

2I0,0,2,0,1,0,2,0,0 + 1
4I0,1,0,0,2,0,2,0,0 + 1

2ϵ
(
t+ p2

4

)
I0,1,1,1,2,0,1,0,0+

+ tI0,2,2,1,1,0,0,0,0

)
ϵ2 + ϵ2

p2
4 − 2t

(1
2ϵ
(
5
(
p2

4

)
2 − 7tp2

4 − 12m2p2
4 + 12tm2

)
I0,0,1,1,1,0,2,0,0+

+
(
4m2 − p2

4

)(
m2

(
p2

4 − t
)

I0,0,1,1,1,0,3,0,0 +
(
t2 − p2

4t+m2p2
4

)
I0,0,2,1,1,0,2,0,0−

− 3
4tI0,1,0,0,2,2,0,0,0

))
+ ϵ2

p2
4 − t

(
t
(
t+ 4m2 − p2

4

)
I0,0,2,2,0,1,0,0,0 + 1

2
((
p2

4

)
2−

− tp2
4 − 4m2p2

4 − 4tm2
)

I0,2,0,0,1,0,2,0,0

)
,

B31 = ϵ4
(
p2

4 − t
)

I0,0,1,1,1,1,1,0,0 ,

B32 = ϵ3
(
p2

4 − t
)
r1r6I0,0,2,1,1,1,1,0,0 ,

B33 = tϵ3r2r7I1,1,1,1,0,2,0,0,0 ,

B34 = tϵ2
(
ϵ
(
(−1 + 2ϵ)I1,1,1,1,0,1,0,0,0 +

(
−4m2 + s

)
I1,1,1,1,0,2,0,0,0

)
− I0,1,2,2,0,0,0,0,0

)
,

B35 = tϵ3r5r10I1,1,0,1,2,0,1,0,0 ,

B36 = tϵ2
(
ϵ
(
(−1 + 2ϵ)I1,1,0,1,1,0,1,0,0 +

(
−4m2 + p2

4 − s− t
)

I1,1,0,1,2,0,1,0,0
)

− I0,2,0,1,0,0,2,0,0
)
,

B37 = ϵ4
(
−s− t+ p2

4

)
I1,0,1,1,0,1,1,0,0 ,

B38 = ϵ3r2r3r11I1,0,2,1,0,1,1,0,0 ,

B39 = sϵ4I1,1,0,0,1,1,1,0,0 ,

B40 = ϵ3r3r5r13I1,1,0,0,2,1,1,0,0 ,

B41 = (s+ t)ϵ4I1,1,1,0,1,1,0,0,0 ,

B42 = ϵ3r2r3r11I1,1,1,0,1,2,0,0,0 ,

B43 =
(

1
2
(
−st+ 2m2t+ 2sm2

)
I1,1,1,0,1,2,0,0,0 + m2s2 + 2tm2s− tp2

4s+ t2m2

s
×

× I1,1,1,0,2,1,0,0,0

)
ϵ3 +

(
2sm2 + 2tm2 − sp2

4

)( 1
s (p2

4 − 2t)

(3
4tI0,1,0,0,2,2,0,0,0+

+
(
p2

4 − t
)(3

2ϵI0,1,1,0,1,2,0,0,0 −m2I0,1,1,0,1,3,0,0,0

)
+
(
−t2 + p2

4t−m2p2
4

)
I0,1,1,0,2,2,0,0,0

)
+

+ 1
p2

4 − 2s

(1
s

((
p2

4 − s
)(

m2I1,0,1,0,1,3,0,0,0 − 3
2ϵI1,0,1,0,1,2,0,0,0

)
+

+
(
s2 − p2

4s+m2p2
4

)
I1,0,2,0,1,2,0,0,0

)
− 3

4I1,0,2,0,0,2,0,0,0

)ϵ2 ,

B44 = ϵ4
(
p2

4 − s
)

I1,0,1,1,1,0,1,0,0 ,
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B45 = ϵ3r3r5r13I1,0,1,1,1,0,2,0,0 ,

B46 = ϵ2
(

−2sm2 + 2p2
4m

2 − tp2
4

p2
4 − 2t

(1
t

((
p2

4 − t
) (

m2I0,0,1,1,1,0,3,0,0 − 3
2ϵI0,0,1,1,1,0,2,0,0

)
+

+
(
t2 − p2

4t+m2p2
4

)
I0,0,2,1,1,0,2,0,0

)
− 3

4I0,0,2,1,0,0,2,0,0

)
+ −2sm2 + 2p2

4m
2 − tp2

4
t (2s+ 2t− p2

4)
×

×
(3

4
(
−s− t+ p2

4

)
I1,0,0,0,2,0,2,0,0 + (s+ t)

(3
2ϵI1,0,1,0,1,0,2,0,0 −m2I1,0,1,0,1,0,3,0,0

)
+

+
(
−s2 − 2ts+ p2

4s− t2 + tp2
4 −m2p2

4

)
I1,0,1,0,2,0,2,0,0

)
+ 1

2ϵ
(
t2 + st− p2

4t− 2sm2+

+ 2m2p2
4

)
I1,0,1,1,1,0,2,0,0 + ϵ

m2s2 + tp2
4s− 2m2p2

4s− t (p2
4) 2 +m2 (p2

4) 2 + t2p2
4

t
×

× I1,0,1,1,2,0,1,0,0

)
,

B47 = ϵ4
(
p2

4 − t
)

I1,0,1,0,1,1,1,0,0 ,

B48 = ϵ3r1r6
((
s+ t− p2

4

)
I1,0,1,0,2,1,1,0,0 + sI1,0,2,0,1,1,1,0,0

)
,

B49 = ϵ3r2r5r12I2,0,1,0,1,1,1,0,0 ,

B50 = 1
2ϵ

3
((

−p4
4 +

(
2m2 + s+ t

)
p2

4 − 2m2t
)

I1,0,1,0,2,1,1,0,0

+
((

2m2 − s
)
p2

4 − 2m2t
)

I1,0,2,0,1,1,1,0,0
)
,

B51 = ϵ2
(
2
(
s+ p2

4

) (
−ϵI1,0,1,0,1,0,2,0,0 +m2I1,0,1,0,1,0,3,0,0

)
+ ϵ

(
p2

4 − t
)

I2,0,1,0,1,1,1,−1,0
)
,

B52 = stϵ4I1,1,1,1,0,1,1,0,0 ,

B53 = tϵ4
(
−s− t+ p2

4

)
I1,1,0,1,1,1,1,0,0 ,

B54 = tϵ4
(
p2

4 − s
)

I1,1,1,1,1,1,0,0,0 ,

B55 = tϵ3r1r6
(
−I1,1,1,0,1,2,0,0,0 + 2I1,1,1,1,0,2,0,0,0 +

(
p2

4 − s
)

I1,1,2,1,1,1,0,0,0
)
,

B56 = t(s+ t)ϵ4I1,1,1,1,1,0,1,0,0 ,

B57 = tϵ3r1r6 (−I1,0,1,1,1,0,2,0,0 + 2I1,1,0,1,1,0,2,0,0 + (s+ t)I1,1,1,1,2,0,1,0,0) ,
B58 = ϵ4r5r15I1,0,1,1,1,1,1,0,0 ,

B59 = ϵ4
(
p2

4 − t
)

(I1,0,1,1,0,1,1,0,0 − I1,0,1,1,1,1,1,−1,0) ,

B60 = s2 − p2
4s+ t2 − tp2

4
p2

4 − s
I1,0,1,0,1,1,1,0,0ϵ

4 +
(
−p2

4 + s+ t
)

(I1,−1,1,1,1,1,1,0,0+

+ tI1,0,1,1,1,1,1,0,0) ϵ4 + t

p2
4 − s

(1
4(B6 +B10) + 1

2(B8 −B13 −B14+

+B18 +B21) −B22 −B44 +B46 +B50 −B59

)
,

B61 = ϵ3r1r6
((

−s− t+ p2
4

)
((−2ϵ)I1,0,1,1,1,1,1,0,0 − I1,0,1,1,1,0,2,0,0) + sI1,0,2,1,0,1,1,0,0+
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+
(
t− p2

4

)
I1,0,2,1,1,1,1,−1,0

)
,

B62 = ϵ4r2r14I1,1,1,0,1,1,1,0,0 ,

B63 = ϵ4
(
p2

4 − t
)

(I1,1,1,0,1,1,0,0,0 − I1,1,1,0,1,1,1,0,−1) ,

B64 = sI1,1,1,−1,1,1,1,0,0ϵ
4 + (st)I1,1,1,0,1,1,1,0,0ϵ

4 + t

s+ t

(1
4(−B6 −B10) +B22+

+ 1
2(−B4 +B13 +B14 −B21 −B24) −B31 +B41 −B43 −B50

)
+

+ 1
s+ t

((
−s2 − ts− 2t2 + 2tp2

4

)
I1,0,1,0,1,1,1,0,0ϵ

4 + sB63
)
,

B65 = r1r6
(
s (I1,1,0,0,2,1,1,0,0 + 2ϵI1,1,1,0,1,1,1,0,0 + I1,1,1,0,1,2,0,0,0) +

(
t− p2

4

)
(I1,0,1,0,2,1,1,0,0−

− I1,1,1,0,2,1,0,0,0 + I1,1,1,0,2,1,1,0,−1)) ϵ3 + ϵ2 (p2
4 − t) (2sm2 + 2tm2 − sp2

4) r1r6

(p2
4 − 2t) (m2s2 + 2tm2s− tp2

4s+ t2m2)×

×
(3

4t (I0,1,0,0,2,2,0,0,0 − I0,0,2,1,0,0,2,0,0) +
(
p2

4 − t
) (

−3
2ϵI0,0,1,1,1,0,2,0,0+

+m2I0,0,1,1,1,0,3,0,0 + 3
2ϵI0,1,1,0,1,2,0,0,0 −m2I0,1,1,0,1,3,0,0,0

)
+

+
(
t2 − p2

4t+m2p2
4

)
(I0,0,2,1,1,0,2,0,0 − I0,1,1,0,2,2,0,0,0)

)
. (A.1)

In addition we consider the following choice of basis for the elliptic sectors,

B66 = sϵ4r2I0,1,1,1,1,1,1,0,0 ,

B67 = ϵ4r2I−2,1,1,1,1,1,1,0,0 ,

B68 = tϵ4
(
p2

4 − t
)

(I1,1,1,1,1,1,1,−1,0 − I1,1,1,1,1,1,1,0,−1) ,

B69 = tϵ4 (I1,1,1,1,1,1,1,−2,0 − I1,1,1,1,1,1,1,0,−2 + s (I1,1,1,1,1,1,1,−1,0 − I1,1,1,1,1,1,1,0,−1)) ,
B70 = tϵ4r16 (I1,1,1,1,1,1,1,−1,0 + I1,1,1,1,1,1,1,0,−1) ,

B71 = tϵ4 (p2
4 − t) 2

(2s+ t− p2
4) r16

I1,1,1,1,1,1,1,−1,−1 ,

B72 = tϵ4r2r5r12I1,1,1,1,1,1,1,0,0 ,

B73 = tϵ4
(

I1,1,1,1,1,1,1,−2,0 + 4s
−p2

4 + 2s+ t
I1,1,1,1,1,1,1,−1,−1 + I1,1,1,1,1,1,1,0,−2+

+ 1
4
(
4s+ t− p2

4

)
(I1,1,1,1,1,1,1,−1,0 + I1,1,1,1,1,1,1,0,−1)

)
. (A.2)
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The terms labeled by ri are square roots, given by:

r1 =
√

−p2
4 , r2 =

√
−s ,

r3 =
√

−t , r4 =
√
t− p2

4 ,

r5 =
√
s+ t− p2

4 , r6 =
√

4m2 − p2
4 ,

r7 =
√

4m2 − s , r8 =
√

4m2 − t ,

r9 =
√

4m2 − p2
4 + t , r10 =

√
4m2 − p2

4 + s+ t ,

r11 =
√

4m2(p2
4 − s− t) + st , r12 =

√
4m2t+ s(p2

4 − s− t) ,

r13 =
√

4m2s+ t(p2
4 − s− t) , r14 =

√
4m2t(s+ t− p2

4) − (p2
4)

2
s ,

r15 =
√

−4m2st+ (p2
4)

2 (s+ t− p2
4) , r16 =

√
16m2t+ (p2

4 − t)2
.

(A.3)

The square roots r1, . . . , r15 appear in the polylogarithmic sectors, while r16 appears only
in the elliptic sectors. The square roots have been chosen such that their arguments are
irreducible polynomials (over the real numbers.) In the polylogarithmic basis elements
B1, . . . , B65, the square roots only appear in the combination:

{r1r6, r2r7, r3r8, r4r9, r5r10, r2r3r11, r2r5r12, r3r5r13, r2r14, r5r15} . (A.4)

These same 10 combinations are sufficient to express all ratios of roots appearing in
the letters as well. However, keeping the roots separated is beneficial in the context of
the expansion method, see Section 5.2.6. In the choice of basis for the elliptic sectors,
roots r2 and r16 appear separately. Therefore, there are 12 independent combinations
of roots in the full basis.

A.2 Family G

In this section we provide the choice of 84 master integrals for family G. The top
sector of family G is depicted in Fig. 6.1. The subsectors are obtained by contracting
propagators of the top sectors. The first 71 master integrals can be chosen so that
the differential equations are in a canonical d log-form. Similar to what we did for
family F, we call these sectors polylogarithmic sectors, even though it is not clear if
these sectors may be solved in terms of multiple polylogarithms at all orders in the
dimensional regulator.

We will again use the notation Bi, to refer to the canonical integrals, and use the
notation ri to refer to square roots in the basis definition. It is important to note that
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the square roots ri are defined differently than they were for family F. The canonical
basis of the first 71 integrals is given by:

B1 = ϵ2I0,2,0,0,2,0,0,0,0 ,

B2 = ϵ2r2r6I0,2,0,0,2,0,1,0,0 ,

B3 = ϵ2r1r5I0,2,0,1,0,2,0,0,0 ,

B4 = ϵ2sI1,2,0,0,2,0,0,0,0 ,

B5 = ϵ2r2r6

(1
2I1,2,0,0,2,0,0,0,0 + I2,2,0,0,1,0,0,0,0

)
,

B6 = ϵ2tI0,2,1,0,0,2,0,0,0 ,

B7 = ϵ2r3r7

(1
2I0,2,1,0,0,2,0,0,0 + I0,2,2,0,0,1,0,0,0

)
,

B8 = ϵ2(p2
4 − s− t)I1,0,0,2,0,2,0,0,0 ,

B9 = ϵ2r4r8

(1
2I1,0,0,2,0,2,0,0,0 + I2,0,0,1,0,2,0,0,0

)
,

B10 = ϵ2p2
4I0,2,1,0,2,0,0,0,0 ,

B11 = ϵ2r1r5

(1
2I0,2,1,0,2,0,0,0,0 + I0,2,2,0,1,0,0,0,0

)
,

B12 = ϵ3sI0,2,0,0,1,1,1,0,0 ,

B13 = −ϵ2r1r2r5r6I0,2,0,1,2,0,1,0,0 ,

B14 = ϵ3sI1,2,0,0,1,1,0,0,0 ,

B15 = ϵ3tI0,2,1,0,0,1,1,0,0 ,

B16 = ϵ3(p2
4 − s− t)I1,0,0,2,1,1,0,0,0 ,

B17 = ϵ3(p2
4 − t)I0,2,1,0,1,1,0,0,0 ,

B18 = ϵ3(s+ t)I1,0,0,2,0,1,1,0,0 ,

B19 = ϵ3(s− p2
4)I0,2,1,0,1,0,1,0,0 ,

B20 = ϵ2m2(s− p2
4)I0,3,1,0,1,0,1,0,0 ,

B21 = ϵ2 r2r6

4(s− 2p2
4)
(
4
(
m2s+ p4

4 − p2
4s
)

I0,2,1,0,2,0,1,0,0+

+ 4m2(s− p2
4)I0,3,1,0,1,0,1,0,0 + 6ϵ(p2

4 − s)I0,2,1,0,1,0,1,0,0 − 3p2
4I0,2,1,0,2,0,0,0,0

)
,

B22 = ϵ3(p2
4 − s)I1,1,0,1,2,0,0,0,0 ,

B23 = ϵ2m2(p2
4 − s)I1,1,0,1,3,0,0,0,0 ,

B24 = ϵ2 r1r5

4(p2
4 − 2s)

(
4m2I1,1,0,1,3,0,0,0,0(p2

4 − s) + 4m2p2
4I1,2,0,1,2,0,0,0,0 +

+6ϵ(s− p2
4)I1,1,0,1,2,0,0,0,0 − 4p2

4sI1,2,0,1,2,0,0,0,0+
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+ 4s2I1,2,0,1,2,0,0,0,0 − 3sI1,2,0,0,2,0,0,0,0
)
,

B25 = ϵ3(p2
4 − t)I0,1,1,1,0,2,0,0,0 ,

B26 = ϵ2m2(p2
4 − t)I0,1,1,1,0,3,0,0,0 ,

B27 = ϵ2 r1r5

4(p2
4 − 2t)

(
4m2(p2

4 − t)I0,1,1,1,0,3,0,0,0 + 4m2p2
4I0,2,1,1,0,2,0,0,0

+ 6ϵ(t− p2
4)I0,1,1,1,0,2,0,0,0 − 4p2

4tI0,2,1,1,0,2,0,0,0+
+ 4t2I0,2,1,1,0,2,0,0,0 − 3tI0,2,1,0,0,2,0,0,0

)
,

B28 = ϵ3(s+ t)I1,1,0,1,0,2,0,0,0 ,

B29 = ϵ2m2(s+ t)I1,1,0,1,0,3,0,0,0 ,

B30 = −ϵ2 r1r5

4(p2
4 − 2(s+ t))

(
4(m2p2

4 − (s+ t)(p2
4 − s− t))I1,1,0,2,0,2,0,0,0

+ 4m2(s+ t)I1,1,0,1,0,3,0,0,0 + 3(−p2
4 + s+ t)I1,0,0,2,0,2,0,0,0−

− 6ϵ(s+ t)I1,1,0,1,0,2,0,0,0) ,
B31 = ϵ3sr1r5I0,2,0,1,1,1,1,0,0 ,

B32 = ϵ4(p2
4 − t)I0,1,1,1,1,1,0,0,0 ,

B33 = ϵ3(p2
4 − t)r1r5I0,2,1,1,1,1,0,0,0 ,

B34 = ϵ4(s+ t)I1,1,0,1,0,1,1,0,0 ,

B35 = ϵ3(s+ t)r1r5I1,1,0,2,0,1,1,0,0 ,

B36 = ϵ4(p2
4 − s− t)I1,1,1,0,1,1,0,0,0 ,

B37 = −ϵ3r2r3r9I1,2,1,0,1,1,0,0,0 ,

B38 = ϵ4tI1,0,1,1,0,1,1,0,0 ,

B39 = −ϵ3r2r4r10I1,0,1,2,0,1,1,0,0 ,

B40 = ϵ4(p2
4 − s)I1,1,1,1,0,1,0,0,0 ,

B41 = ϵ3r3r4r11I1,1,1,1,0,2,0,0,0 ,

B42 = 1
4ϵ

2
(

4ϵ1
t

(
m2(p2

4 − s)2 + p2
4t(−p2

4 + s+ t)
)

I1,1,1,2,0,1,0,0,0 +

+ 2ϵ(2m2(p2
4 − s) + t(−p2

4 + s+ t))I1,1,1,1,0,2,0,0,0+

+ 3(−2m2p2
4 + 2m2s+ p2

4t)
p2

4 − 2t I0,2,1,0,0,2,0,0,0 −

− 6ϵ (p2
4 − t)(2m2(p2

4 − s) − p2
4t)

t(p2
4 − 2t) I0,1,1,1,0,2,0,0,0 +

+ 4m2(p2
4 − t)(2m2(p2

4 − s) − p2
4t)

t(p2
4 − 2t) I0,1,1,1,0,3,0,0,0 +
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+ 4(m2p2
4 + t(t− p2

4))(2m2(p2
4 − s) − p2

4t)
t(p2

4 − 2t) I0,2,1,1,0,2,0,0,0 +

+ 6ϵ (s+ t)(−2m2p2
4 + 2m2s+ p2

4t)
t(p2

4 − 2(s+ t)) I1,1,0,1,0,2,0,0,0 +

+ 3(p2
4 − s− t)(−2m2p2

4 + 2m2s+ p2
4t)

t(p2
4 − 2(s+ t)) I1,0,0,2,0,2,0,0,0 −

− 4m2(s+ t)(−2m2p2
4 + 2m2s+ p2

4t)
t(p2

4 − 2(s+ t)) I1,1,0,1,0,3,0,0,0 +

+ 4(2m2(p2
4 − s) − p2

4t)(m2p2
4 − (s+ t)(p2

4 − s− t))
t(p2

4 − 2(s+ t)) I1,1,0,2,0,2,0,0,0

)
,

B43 = ϵ4(p2
4 − s)I0,1,1,1,1,0,1,0,0 ,

B44 = ϵ3(s− p2
4)r2r6I0,1,1,1,1,0,2,0,0 ,

B45 = ϵ3(p2
4 − s)r1r5I0,2,1,1,1,0,1,0,0 ,

B46 = ϵ2
(
m2(p2

4 − s)2I0,2,1,1,1,0,2,0,0 − 2(2m2p2
4 + 2m2s− p2

4s)I0,1,0,2,1,0,2,0,0 +

+ ϵ(p2
4 − s)

(
sI0,1,1,1,1,0,2,0,0 − p2

4I0,2,1,1,1,0,1,0,0
))

,

B47 = −ϵ3r2r14I0,2,1,0,1,1,1,0,0 ,

B48 = −ϵ2r2r3r9
(
m2I0,3,1,0,1,1,1,0,0 − ϵI0,2,1,0,1,1,1,0,0

)
,

B49 = sϵ3
(
(−m2 − p2

4 + s)I0,2,1,0,1,1,1,0,0 − I−1,2,1,0,1,1,1,0,0 + I0,2,0,0,1,1,1,0,0−

− I0,2,1,−1,1,1,1,0,0 + I0,2,1,0,1,1,0,0,0 + I0,2,1,0,1,1,1,−1,0) ,
B50 = −ϵ3r2r15I1,0,0,2,1,1,1,0,0 ,

B51 = −ϵ2r2r4r10
(
m2I1,0,0,3,1,1,1,0,0 − ϵI1,0,0,2,1,1,1,0,0

)
,

B52 = ϵ3s
(
−m2I1,0,0,2,1,1,1,0,0 + I0,0,0,2,1,1,1,0,0 − I1,0,−1,2,1,1,1,0,0 + I1,0,0,1,1,1,1,0,0+

+ I1,0,0,2,0,1,1,0,0 − I1,0,0,2,1,1,1,−1,0) ,
B53 = ϵ4I0,1,1,1,0,1,1,0,0(s+ t) ,
B54 = ϵ3r1r5 (sI0,1,1,2,0,1,1,0,0 − tI0,2,1,1,0,1,1,0,0) ,
B55 = −ϵ3r2r3r9I0,1,2,1,0,1,1,0,0 ,

B56 = 1
2ϵ

3
(
(2m2s+ 2m2t− p2

4s)I0,1,1,2,0,1,1,0,0 + (2m2s+ 2m2t− p2
4t)I0,2,1,1,0,1,1,0,0

)
,

B57 = ϵ2
(
2(p2

4 + s)
(
m2I0,1,1,1,0,3,0,0,0 − ϵI0,1,1,1,0,2,0,0,0

)
+

+ ϵ(s+ t)
(
(p2

4 − s)I0,1,2,1,0,1,1,0,0 + I0,0,2,1,0,1,1,0,0+ + I0,1,2,0,0,1,1,0,0 − I0,1,2,1,0,1,1,−1,0
)
,

B58 = ϵ4(p2
4 − t)I1,1,0,1,1,1,0,0,0 ,

B59 = ϵ3r1r5
(
(−p2

4 + s+ t)I1,1,0,2,1,1,0,0,0 + sI1,2,0,1,1,1,0,0,0
)
,

B60 = −ϵ3r2r4r10I2,1,0,1,1,1,0,0,0 ,
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B61 = 1
2ϵ

3
(
(2m2(p2

4 − t) + p2
4(−p2

4 + s+ t))I1,1,0,2,1,1,0,0,0+

+ (2m2p2
4 − 2m2t− p2

4s)I1,2,0,1,1,1,0,0,0
)
,

B62 = −ϵ2
(
−2m2(p2

4 + s)I1,1,0,1,0,3,0,0,0+

+ 2p2
4ϵI1,1,0,1,0,2,0,0,0 − p2

4ϵI2,1,0,1,1,1,0,−1,0 + 2sϵI1,1,0,1,0,2,0,0,0 + tϵI2,1,0,1,1,1,0,−1,0
)
,

B63 = ϵ4I1,1,1,1,1,0,1,0,0(s− p2
4)2 ,

B64 = r3r12ϵ
4I1,1,1,1,0,1,1,0,0 ,

B65 = ϵ2
{
ϵ
(3m2(p2

4 − s) + t(−2p2
4 + s+ t))

p2
4 − 2(s+ t) I1,1,0,1,0,2,0,0,0 +

+ (p2
4 − s− t)(3m2(p2

4 − s) + t(−2p2
4 + s+ t))

2(s+ t)(p2
4 − 2(s+ t)) I1,0,0,2,0,2,0,0,0 −

− (2m2(p2
4 − s) − p2

4t)(m2p2
4 − (s+ t)(p2

4 − s− t))
(s+ t)(p2

4 − 2(s+ t)) I1,1,0,2,0,2,0,0,0 −

− 1
4(p2

4 − 2t)(s+ t)
[
6ϵ(p2

4 − t)(2m2(s− p2
4) + p2

4t)I0,1,1,1,0,2,0,0,0+

+ 4m2(p2
4 − t)(2m2(s− p2

4) + p2
4t)I0,1,1,1,0,3,0,0,0 +

+ t(6m2(p2
4 − s) + t(4t− 5p2

4))I0,2,1,0,0,2,0,0,0 −
− 2(m2p2

4 + t(t− p2
4))(2m2(p2

4 − s) − p2
4t)I0,2,1,1,0,2,0,0,0

]
−

− ϵ2t(I1,1,0,1,0,1,1,0,0 + I1,1,1,1,−1,1,1,0,0 + (s− p2
4)I1,1,1,1,0,1,1,0,0)+

+ ϵ
1

2(s+ t)
[
2ϵt(p2

4 + s+ 2t)I0,1,1,1,0,1,1,0,0 + 2ϵt(p2
4 − 2s− t)I1,1,1,1,0,1,0,0,0 +

+ 2ϵt(s− p2
4)I1,1,1,1,0,1,1,0,−1 + t(p2

4s− 2m2(s+ t))I0,1,1,2,0,1,1,0,0 +
+ t(p2

4t− 2m2(s+ t))I0,2,1,1,0,1,1,0,0 + t(s− p2
4)I1,1,0,1,2,0,0,0,0 −

− 1
2p

2
4tI0,2,1,0,2,0,0,0,0 + t2I0,2,1,0,0,1,1,0,0 + stI1,2,0,0,1,1,0,0,0 −

− t(2m2(p2
4 − s) + t(−p2

4 + s+ t))I1,1,1,1,0,2,0,0,0 −
− (m2(p2

4 − s)2 + p2
4t(−p2

4 + s+ t)I1,1,1,2,0,1,0,0,0
]

+

+ m2
(

2m2(s− p2
4) + p2

4t

p2
4 − 2(s+ t) + t

)
I1,1,0,1,0,3,0,0,0

}
,

B66 = −2ϵ4((s− p2
4)I1,1,1,1,0,1,1,0,−1 + (p2

4 + t)I0,1,1,1,0,1,1,0,0) ,

B67 = r1r5ϵ
2
[
− 2m2(s+ t)
p2

4 − 2(s+ t)I1,1,0,1,0,3,0,0,0 −

− 2(m2p2
4 − (s+ t)(p2

4 − s− t))
p2

4 − 2(s+ t) I1,1,0,2,0,2,0,0,0 +
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+ 2m2(t− p2
4)

p2
4 − 2t I0,1,1,1,0,3,0,0,0 + 3(p2

4 − s− t)
2(p2

4 − 2(s+ t))I1,0,0,2,0,2,0,0,0 −

− 2(m2p2
4 + t(t− p2

4))
p2

4 − 2t I0,2,1,1,0,2,0,0,0 + 3t
2p2

4 − 4tI0,2,1,0,0,2,0,0,0 +

+ ϵ

(
3(s+ t)

p2
4 − 2(s+ t)I1,1,0,1,0,2,0,0,0 + (s− p2

4)(I1,1,1,2,0,1,0,0,0 + I1,1,1,2,0,1,1,0,−1) +

+ 2t(ϵI1,1,1,1,0,1,1,0,0 + I0,1,2,1,0,1,1,0,0 − I0,2,1,1,0,1,1,0,0 + I1,0,1,2,0,1,1,0,0) +

+ p2
4I0,1,1,2,0,1,1,0,0 + 3(p2

4 − t)
p2

4 − 2t I0,1,1,1,0,2,0,0,0

)]
,

B68 = ϵ4
(
(p2

4 − s− t)I1,1,1,1,1,1,−1,0,0 − (p2
4 − s)(p2

4 − s− t)I1,1,1,1,1,1,0,0,0 +

+ (p2
4 − t)I1,1,1,0,1,1,0,0,0 + tI1,1,1,1,0,1,0,0,0 +

+ s(I0,1,1,1,1,1,0,0,0 − I1,1,0,1,1,1,0,0,0 − I1,1,1,1,1,1,0,−1,0)) ,
B69 = ϵ4(p2

4 − t) (I1,1,1,1,1,1,0,−1,0 − I1,1,1,0,1,1,0,0,0) ,
B70 = ϵ4r4r13I1,1,1,1,1,1,0,0,0 ,

B71 = ϵ3r1r5
(
2ϵ(p2

4 − s− t)I1,1,1,1,1,1,0,0,0 + (p2
4 − s− t)I1,1,1,1,0,2,0,0,0 +

+ (p2
4 − t)I1,2,1,1,1,1,0,−1,0 − sI1,2,1,0,1,1,0,0,0

)
.

In addition, we made the following choice of basis for the elliptic sectors,

B72 = ϵ4sr2I0,1,1,1,1,1,1,0,0 ,

B73 = ϵ4sI0,1,1,1,1,1,1,0,−1 ,

B74 = ϵ3s2I0,2,1,1,1,1,1,0,0 ,

B75 = ϵ4sr2I0,1,1,1,1,1,2,0,0 ,

B76 = ϵ4sr2I1,1,0,1,1,1,1,0,0 ,

B77 = ϵ4sI1,1,−1,1,1,1,1,0,0 ,

B78 = ϵ3s2I2,1,0,1,1,1,1,0,0 ,

B79 = ϵ4sr2I1,1,0,1,2,1,1,0,0 ,

B80 = ϵ4s
(
I1,1,1,1,1,1,1,−1,0(s− p2

4) + I1,1,1,1,1,1,1,−2,0
)
,

B81 = 1
2ϵ

4s
(
(s− p2

4)I1,1,1,1,1,1,1,0,−1 + tI1,1,1,1,1,1,1,−1,0 + 2I1,1,1,1,1,1,1,−1,−1
)
,

B82 = ϵ4r2r4r10
(
(p2

4 − s)I1,1,1,1,1,1,1,0,0 − I1,1,1,1,1,1,1,−1,0
)
,

B83 = ϵ4r2r6
(
(s− p2

4)I1,1,1,1,1,1,1,0,−1 − tI1,1,1,1,1,1,1,−1,0
)
,

B84 = −ϵ4r2r3r9I1,1,1,1,1,1,1,−1,0 .
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The square roots ri are given by:

r1 =
√

−p2
4 , r2 =

√
−s ,

r3 =
√

−t , r4 =
√

−p2
4 + s+ t ,

r5 =
√

4m2 − p2
4 , r6 =

√
4m2 − s ,

r7 =
√

4m2 − t , r8 =
√

4m2 − p2
4 + s+ t ,

r9 =
√

4m2 (p2
4 − s− t) + st , r10 =

√
4m2s+ t (p2

4 − s− t) ,

r11 =
√

4m2t+ p2
4s− s2 − st , r12 =

√
4m2s (−p2

4 + s+ t) − p4
4t ,

r13 =
√

−4m2st+ p4
4(s+ t) − p6

4 , r14 =
√
m4(−s) + 2m2t (−2p2

4 + s+ 2t) − st2 ,

r15 =
√
m4(−s) + 2m2(s+ 2t) (−p2

4 + s+ t) − s (−p2
4 + s+ t) 2 (A.5)

In the basis elements of the polylogarithmic sectors, namely B1, . . . , B71, the 15 roots
only appear in the following 11 combinations:

{r2r6, r1r5, r3r7, r4r8, r2r3r9, r2r4r11, r3r4r10, r2r14, r2r15, r3r12, r4r13} . (A.6)

In the choice of basis for the elliptic sectors, the root r2 appears separately. Therefore,
there are 12 independent combinations of roots in the full basis of the family.



Appendix B

Polylogarithmic sectors of Higgs +
jet integral family F

B.1 Alphabet

In this appendix, we give a set of independent letters in which we can express the
d log-forms appearing in the canonical matrix elements of the polylogarithmic sectors
of family F. The full alphabet is given by the following 69 letters:

l1 = m2 , l2 = p2
4 ,

l3 = s , l4 = t ,

l5 = s+ t , l6 = −4m2 + p2
4 ,

l7 = −s+ p2
4 , l8 = −t+ p2

4 ,

l9 = s+ t− p2
4 , l10 = 4m2 − s ,

l11 = 4m2 − t , l12 = 4m2 + t− p2
4 ,

l13 = 4m2 + s+ t− p2
4 , l14 = s2 +m2p2

4 − sp2
4 ,

l15 = t2 +m2p2
4 − tp2

4 , l16 = −4m2s− 4m2t+ st+ 4m2p2
4 ,

l17 = −s2 + 4m2t− st+ sp2
4 , l18 = 4m2s− st− t2 + tp2

4 ,

l19 = m2s2 + 2m2st+m2t2 − stp2
4 , l20 = s2 + 2st+ t2 +m2p2

4 − sp2
4 − tp2

4 ,

l21 = −4m2st− 4m2t2 + 4m2tp2
4 + sp4

4 , l22 = 4m2st− sp4
4 − tp4

4 + p6
4 ,

l23 = q11 , l24 = q12 ,

l25 =
1 + r7

r2

1 − r7

r2

, l26 =
1 + r8

r3

1 − r8

r3

,
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l27 = −p2
4 + r1r6

−p2
4 − r1r6

, l28 =
1 + r5

r10

1 − r5

r10

,

l29 = (t− p2
4) + r4r9

(t− p2
4) − r4r9

, l30 = (p2
4 − 2s) + r1r6

(p2
4 − 2s) − r1r6

,

l31 = (p2
4 − 2s− 2t) + r1r6

(p2
4 − 2s− 2t) − r1r6

, l32 =

2m2 − t

t
+ r6

r1
2m2 − t

t
− r6

r1

,

l33 =
1 + r11

r2r3

1 − r11

r2r3

, l34 =
−q1

t
+ r1r6

−q1

t
− r1r6

,

l35 =

1
p2

4
+ r2

r14
1
p2

4
− r2

r14

, l36 =
2m2s+ 2m2t− tp2

4
t

+ r1r6

2m2s+ 2m2t− tp2
4

t
− r1r6

,

l37 =

2s+ t− p2
4

t− p2
4

+ r6

r1
2s+ t− p2

4
t− p2

4
− r6

r1

, l38 =
1 + r12

r2r5

1 − r12

r2r5

,

l39 =
1 + r11

r2r8

1 − r11

r2r8

, l40 =
1 + r11

r3r7

1 − r11

r3r7

,

l41 =
1 + r13

r3r5

1 − r13

r3r5

, l42 =

1
p2

4
+ r5

r15
1
p2

4
− r5

r15

,

l43 =
1 + r2r6

r1r7

1 − r2r6

r1r7

, l44 =
1 + r3r6

r1r8

1 − r3r6

r1r8

,

l45 =
1 + r4r7

r2r9

1 − r4r7

r2r9

, l46 =
1 + r12

r2r10

1 − r12

r2r10

,

l47 = (st− 2m2s− 2m2t) + r2r3r11

(st− 2m2s− 2m2t) − r2r3r11
, l48 =

1 + r5r6

r1r10

1 − r5r6

r1r10

,
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l49 =
1 + r12

r5r7

1 − r12

r5r7

, l50 =
1 + r4r10

r5r9

1 − r4r10

r5r9

,

l51 =
− t+ p2

4
t− p2

4
+ r12

r2r5

− t+ p2
4

t− p2
4

− r12

r2r5

, l52 =
−s+ p2

4
s− p2

4
+ r13

r3r5

−s+ p2
4

s− p2
4

− r13

r3r5

,

l53 =
1 + r1r11

r2r3r6

1 − r1r11

r2r3r6

, l54 = −q2 + r1r4r6r9

−q2 − r1r4r6r9
,

l55 = (2m2t−2m2s+st+t2−tp2
4) + r3r10r13

(2m2t−2m2s+st+t2−tp2
4) − r3r10r13

, l56 = −q4 + r5r8r13

−q4 − r5r8r13
,

l57 = −q8 + r1r2r3r6r11

−q8 − r1r2r3r6r11
, l58 = q7 + r1r2r6r14

q7 − r1r2r6r14
,

l59 = −q13 + r1r5r6r15

−q13 − r1r5r6r15
, l60 = −q15 + r1r3r5r6r13

−q15 − r1r3r5r6r13
,

l61 = −q14 + r1r2r5r6r12

−q14 − r1r2r5r6r12
, l62 = −q16 + r1r3r5r6r13

−q16 − r1r3r5r6r13
,

l63 =

(−q3

2 + r3r11r14

)(−q17

p2
4

+ r3r11r14

)
(−q3

2 − r3r11r14

)(−q17

p2
4

− r3r11r14

) , l64 =

(
−q5

p2
4

+ r2r12r15

)(
−q9

2 + r2r12r15

)
(

−q5

p2
4

− r2r12r15

)(
−q9

2 − r2r12r15

) ,

l65 =

(
−q6

p2
4

+ r3r13r15

)(
−q10

2 + r3r13r15

)
(

−q6

p2
4

− r3r13r15

)(
−q10

2 − r3r13r15

) , l66 =

q24

(2s+ t− p2
4) (t+ p2

4)
+ r1r2r5r6r12

q24

(2s+ t− p2
4) (t+ p2

4)
− r1r2r5r6r12

,

l67 =

(
q18

2 + r5r12r14

)(
−q19

p2
4

+ r5r12r14

)
(
q18

2 − r5r12r14

)(
−q19

p2
4

− r5r12r14

) ,
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l68 =

(
q20

2 + r2r3r5r11r15

)(
q22

p2
4

+ r2r3r5r11r15

)
(
q20

2 − r2r3r5r11r15

)(
q22

p2
4

− r2r3r5r11r15

) ,

l69 =

(
q21

2 + r2r3r5r13r14

)(
q23

p2
4

+ r2r3r5r13r14

)
(
q21

2 − r2r3r5r13r14

)(
q23

p2
4

− r2r3r5r13r14

) .

The qi are given by the following polynomials:

q1 = −2m2p2
4 + 2m2s+ p2

4t

q2 = −4m2p2
4 + 2m2t− p2

4t+ p4
4

q3 = −8m2p2
4t+ 8m2st+ 8m2t2 + p4

4(−s) − st2

q4 = −2m2p2
4 + 4m2s+ 2m2t+ p2

4t− st− t2

q5 = 2m2p4
4t+ 2m2s2t− p4

4s
2 − p4

4st+ p6
4s

q6 = 2m2p4
4s+ 2m2st2 − p4

4st− p4
4t

2 + p6
4t

q7 = 2m2p2
4s− 2m2p2

4t+ 2m2st+ 2m2t2 + p4
4(−s)

q8 = −2m2p2
4s+ 2m2p2

4t+ 2m2s2 + 2m2st− p2
4st

q9 = 8m2st+ p2
4s

2 − p4
4s− p4

4t+ p6
4 − s3 − s2t

q10 = 8m2st− p4
4s+ p2

4t
2 − p4

4t+ p6
4 − st2 − t3

q11 = −2m2p2
4t+m2p4

4 +m2t2 + p2
4s

2 + p2
4st− p4

4s

q12 = −2m2p2
4s+m2p4

4 +m2s2 + p2
4st+ p2

4t
2 − p4

4t

q13 = 2m2p2
4s+ 2m2p2

4t− 2m2p4
4 + 2m2st− p4

4s− p4
4t+ p6

4

q14 = −2m2p2
4s+ 2m2p2

4t+ 2m2s2 + 2m2st− p2
4s

2 − p2
4st+ p4

4s

q15 = 2m2p2
4s− 2m2p2

4t+ 2m2st+ 2m2t2 − p2
4st− p2

4t
2 + p4

4t

q16 = 2m2p2
4s+ 2m2p2

4t− 2m2p4
4 + 2m2st− p2

4st− p2
4t

2 + p4
4t

q17 = 2m2p4
4s− 2m2p2

4t
2 + 2m2p4

4t− 2m2p6
4 + 2m2st2 + 2m2t3 − p4

4st

q18 = −8m2p2
4t+ 8m2st+ 8m2t2 + 2p2

4s
2 + 2p2

4st− 2p4
4s− s3 − 2s2t− st2

q19 = −4m2p2
4st− 4m2p2

4t
2 + 4m2p4

4t+ 2m2s2t+ 4m2st2 + 2m2t3 − p4
4s

2 − p4
4st+ p6

4s

q20 = −8m2p2
4st+ 8m2s2t+ 8m2st2 − p4

4s
2 − 2p4

4st+ 2p6
4s− p4

4t
2 + 2p6

4t− p8
4 − s2t2

q21 = −8m2p2
4st+ 8m2s2t+ 8m2st2 − p4

4s
2 + 2p2

4st
2 + 2p2

4t
3 − p4

4t
2 − s2t2 − 2st3 − t4

q22 = 2m2p4
4s

2 + 4m2p4
4st− 4m2p6

4s+ 2m2p4
4t

2 − 4m2p6
4t+ 2m2p8

4 + 2m2s2t2 − p4
4s

2t

− p4
4st

2 + p6
4st
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q23 = 2m2p4
4s

2 − 4m2p2
4st

2 − 4m2p2
4t

3 + 2m2p4
4t

2 + 2m2s2t2 + 4m2st3 + 2m2t4 − p4
4s

2t

− p4
4st

2 + p6
4st

q24 = 12m2p2
4s

2t+ 2m2p4
4s

2 + 10m2p2
4st

2 − 10m2p4
4st− 2m2p6

4s+ 2m2p2
4t

3 − 4m2p4
4t

2

+ 2m2p6
4t+ 2m2s2t2 + 2m2st3 − 2p2

4s
4 − 4p2

4s
3t+ 4p4

4s
3 − 3p2

4s
2t2 + 4p4

4s
2t− 3p6

4s
2

− p2
4st

3 + p4
4st

2 − p6
4st+ p8

4s .

The terms labeled by ri are square roots, which are given in Section A.1.

B.2 Polylogarithmic solutions

In this appendix we provide results for the canonical basis integrals of family F up
to weight 2 in terms of logarithms and dilogarithms, valid in the region R defined in
Eq. (6.16), where the results are manifestly real-valued. Note that the basis integrals
are defined in Appendix A.1. Expressions for the integrals at weight 3 and 4 may be
obtained as one-fold integrals over the weight 2 solutions, as described in Section 6.3.4.
Let B⃗ = ∑∞

k=0 B⃗
(k)ϵk. At weight 0 we have:

B
(0)
1 = 1 , B

(0)
2 = 1 , B

(0)
i = 0 for i = 3, . . . , 65. (B.1)

At weight 1 we have:

B
(1)
1 = −2 log (l1) , B

(1)
2 = − log (l1) − log (−l4) , B

(1)
3 = log (−l27) ,

B
(1)
5 = − log (−l25) , B

(1)
7 = − log (−l26) , B

(1)
9 = − log (l28) ,

B
(1)
11 = − log (−l27) , B

(1)
12 = log (−l27) , B

(1)
33 = − log (−l25) ,

B
(1)
35 = − log (l28) , B

(1)
55 = −2 log (−l27) , B

(1)
57 = −2 log (−l27) , (B.2)

and B
(1)
i = 0 for all other i ≤ 65. Finally, at weight 2 we have

B
(2)
1 = ζ2 + 2 log2 (l1)

B
(2)
2 = 1

2 log2 (l1) + 1
2 log2 (−l4) + log (−l4) log (l1)

B
(2)
3 = ζ2 + 2Li2

(
l−1
27

)
+ 1

2 log2 (−l27) − log (l1) log (−l27) − log (−l6) log (−l27)

B
(2)
4 = − log2 (−l25)

B
(2)
5 = −ζ2 − 6Li2

(
l−1
25

)
− 2Li2

(
−l−1

25

)
− 2 log2 (−l25) − 2 log (l1) log (−l25)

+ log (−l3) log (−l25) + 3 log (l10) log (−l25)
B

(2)
6 = − log2 (−l26)
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B
(2)
7 = −ζ2 − 6Li2

(
l−1
26

)
− 2Li2

(
−l−1

26

)
− 2 log2 (−l26) − 2 log (l1) log (−l26)

+ log (−l4) log (−l26) + 3 log (l11) log (−l26)
B

(2)
8 = − log2 (l28)

B
(2)
9 = −ζ2 − 2Li2

(
l−1
28

)
− 6Li2

(
−l−1

28

)
− 2 log2 (l28) − 2 log (l1) log (l28)

+ log (l9) log (l28) + 3 log (l13) log (l28)
B

(2)
10 = − log2 (−l27)

B
(2)
11 = −ζ2 − 2Li2

(
−l−1

27

)
− 6Li2

(
l−1
27

)
− 2 log2 (−l27) − 2 log (l1) log (−l27)

+ log (−l2) log (−l27) + 3 log (−l6) log (−l27)

B
(2)
12 = ζ2 + 2Li2

(
l−1
27

)
+ 1

2 log2 (−l27) − log (−l4) log (−l27) − log (−l6) log (−l27)

B
(2)
13 = 0

B
(2)
14 = 0

B
(2)
15 = 0

B
(2)
16 = Li2

(
l29l

−1
27

)
− Li2

(
l−1
27 l

−1
29

)
− log (−l27) log (−l29) − 1

2 log (−l27) log (l54)

B
(2)
17 = 0

B
(2)
18 = 0

B
(2)
19 = 1

4 log2 (−l25) − 1
4 log2 (−l27)

B
(2)
20 = ζ2 + Li2

(
−l−1

27

)
− Li2

(
l25l

−1
27

)
− Li2

(
l−1
25 l

−1
27

)
− 1

2 log2 (−l25)

− 1
4 log2 (−l27) + log (l43) log (−l25) − 1

2 log (l1) log (−l27) − 1
2 log (−l2) log (−l27)

+ log (−l7) log (−l27)
B

(2)
21 = 0

B
(2)
22 = 1

4 log2 (−l26) − 1
4 log2 (−l27)

B
(2)
23 = ζ2 + Li2

(
−l−1

27

)
− Li2

(
l26l

−1
27

)
− Li2

(
l−1
26 l

−1
27

)
− 1

2 log2 (−l26) − 1
4 log2 (−l27)

+ log (l44) log (−l26) − 1
2 log (l1) log (−l27) − 1

2 log (−l2) log (−l27)

+ log (−l8) log (−l27)
B

(2)
24 = 0

B
(2)
25 = 1

4 log2 (l28) − 1
4 log2 (−l27)

B
(2)
26 = ζ2 + Li2

(
−l−1

27

)
− Li2

(
−l28l

−1
27

)
− Li2

(
−l−1

27 l
−1
28

)
− 1

4 log2 (−l27) − 1
2 log2 (l28)
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− 1
2 log (l1) log (−l27) − 1

2 log (−l2) log (−l27) + log (−l5) log (−l27)

+ log (l28) log (l48)
B

(2)
27 = 0

B
(2)
28 = 0

B
(2)
29 = 0

B
(2)
30 = 1

2 log2 (−l26)

B
(2)
31 = 0

B
(2)
32 = 0

B
(2)
33 = −ζ2 − 6Li2

(
l−1
25

)
− 2Li2

(
−l−1

25

)
− Li2

(
l25l

−1
27

)
+ Li2

(
l−1
25 l

−1
27

)
− 2 log2 (−l25)

− 2 log (l1) log (−l25) + log (−l3) log (−l25) + log (−l4) log (−l25)
− log (−l7) log (−l25) + 3 log (l10) log (−l25) + log (−l27) log (−l25)
− log (−l27) log (l43)

B
(2)
34 = 1

2 log2 (−l27) − log2 (−l25)

B
(2)
35 = −ζ2 − Li2

(
−l28l

−1
27

)
− 2Li2

(
l−1
28

)
− 6Li2

(
−l−1

28

)
+ Li2

(
−l−1

27 l
−1
28

)
− 2 log2 (l28)

− 2 log (l1) log (l28) + log (−l4) log (l28) − log (−l5) log (l28) + log (l9) log (l28)
+ 3 log (l13) log (l28) + log (−l27) log (l28) − log (−l27) log (l48)

B
(2)
36 = 1

2 log2 (−l27) − log2 (l28)

B
(2)
37 = 0

B
(2)
38 = −4Li2

(
−l−1

33

)
+ 2Li2

(
l25l

−1
33

)
+ 2Li2

(
l26l

−1
33

)
− 2Li2

(
l27l

−1
33

)
+ 2Li2

(
l−1
25 l

−1
33

)
+ 2Li2

(
l−1
26 l

−1
33

)
− 2Li2

(
l−1
27 l

−1
33

)
+ log2 (−l25) + log2 (−l26) − log2 (−l27)

− 2 log (l40) log (−l25) − 2 log (−l26) log (l39) + 2 log (−l27) log (l53)
B

(2)
39 = 0

B
(2)
40 = −4Li2

(
−l−1

41

)
+ 2Li2

(
l26l

−1
41

)
− 2Li2

(
l27l

−1
41

)
+ 2Li2

(
−l28l

−1
41

)
+ 2Li2

(
l−1
26 l

−1
41

)
− 2Li2

(
l−1
27 l

−1
41

)
+ 2Li2

(
−l−1

28 l
−1
41

)
+ log2 (−l26) − log2 (−l27) + log2 (l28)

+ log (l56) log (−l26) + log (l28) log (l55) + log (−l27) log (l60)
B

(2)
41 = 0

B
(2)
42 = −4Li2

(
−l−1

33

)
+ 2Li2

(
l25l

−1
33

)
+ 2Li2

(
l26l

−1
33

)
− 2Li2

(
l27l

−1
33

)
+ 2Li2

(
l−1
25 l

−1
33

)
+ 2Li2

(
l−1
26 l

−1
33

)
− 2Li2

(
l−1
27 l

−1
33

)
+ log2 (−l25) + log2 (−l26) − log2 (−l27)

− 2 log (l40) log (−l25) − 2 log (−l26) log (l39) + 2 log (−l27) log (l53)
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B
(2)
43 = 1

2 log2 (−l25) + 1
2 log2 (−l26)

B
(2)
44 = 0

B
(2)
45 = −4Li2

(
−l−1

41

)
+ 2Li2

(
l26l

−1
41

)
− 2Li2

(
l27l

−1
41

)
+ 2Li2

(
−l28l

−1
41

)
+ 2Li2

(
l−1
26 l

−1
41

)
− 2Li2

(
l−1
27 l

−1
41

)
+ 2Li2

(
−l−1

28 l
−1
41

)
+ log2 (−l26) − log2 (−l27) + log2 (l28)

+ log (l56) log (−l26) + log (l28) log (l55) + log (−l27) log (l60)

B
(2)
46 = 1

2 log2 (−l26) + 1
2 log2 (l28)

B
(2)
47 = 0

B
(2)
48 = 0

B
(2)
49 = −4Li2

(
−l−1

38

)
+ 2Li2

(
l25l

−1
38

)
− 2Li2

(
l27l

−1
38

)
+ 2Li2

(
−l28l

−1
38

)
+ 2Li2

(
l−1
25 l

−1
38

)
− 2Li2

(
l−1
27 l

−1
38

)
+ 2Li2

(
−l−1

28 l
−1
38

)
+ log2 (−l25) − log2 (−l27) + log2 (l28)

− 2 log (l49) log (−l25) − 2 log (l28) log (l46) + log (−l27) log (l61)
B

(2)
50 = 0

B
(2)
51 = 1

2 log2 (l28) − 1
2 log2 (−l27)

B
(2)
52 = 1

2 log2 (−l25)

B
(2)
53 = 1

2 log2 (l28)

B
(2)
54 = 1

2 log2 (−l27) − 1
2 log2 (−l25)

B
(2)
55 = 4Li2

(
−l−1

27

)
− 4Li2

(
l25l

−1
27

)
+ 2Li2

(
l26l

−1
27

)
− 4Li2

(
l−1
25 l

−1
27

)
+ 2Li2

(
l−1
26 l

−1
27

)
− 2 log2 (−l25) + log2 (−l26) + 4 log (l43) log (−l25)

+ 2 log (l1) log (−l27) − 2 log (−l2) log (−l27) + 2 log (−l4) log (−l27)
+ 4 log (−l7) log (−l27) − 2 log (−l8) log (−l27) − 2 log (−l26) log (l44)

B
(2)
56 = 1

2 log2 (−l27) − 1
2 log2 (l28)

B
(2)
57 = 4Li2

(
−l−1

27

)
+ 2Li2

(
l26l

−1
27

)
− 4Li2

(
−l28l

−1
27

)
+ 2Li2

(
l−1
26 l

−1
27

)
− 4Li2

(
−l−1

27 l
−1
28

)
+ log2 (−l26) − 2 log2 (l28) − 2 log (l44) log (−l26) + 2 log (l1) log (−l27)
− 2 log (−l2) log (−l27) + 2 log (−l4) log (−l27) + 4 log (−l5) log (−l27)
− 2 log (−l8) log (−l27) + 4 log (l28) log (l48)

B
(2)
58 = 0

B
(2)
59 = 0

B
(2)
60 = 0
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B
(2)
61 = 2ζ2 + 4Li2

(
−l−1

27

)
+ 4Li2

(
l−1
27

)
− 2Li2

(
l25l

−1
27

)
− 2Li2

(
l26l

−1
27

)
+ 2Li2

(
−l28l

−1
27

)
− 2Li2

(
l−1
25 l

−1
27

)
− 2Li2

(
l−1
26 l

−1
27

)
+ 2Li2

(
−l−1

27 l
−1
28

)
− log2 (−l25) − log2 (−l26)

+ log2 (−l27) + log2 (l28) + 2 log (l43) log (−l25) + 2 log (l1) log (−l27)
− 2 log (−l2) log (−l27) − 2 log (−l5) log (−l27) − 2 log (−l6) log (−l27)
+ 2 log (−l7) log (−l27) + 2 log (−l8) log (−l27) + 2 log (−l26) log (l44)
− 2 log (l28) log (l48)

B
(2)
62 = 0

B
(2)
63 = 0

B
(2)
64 = 0

B
(2)
65 = −2ζ2 − 4Li2

(
−l−1

27

)
− 4Li2

(
l−1
27

)
− 2Li2

(
l25l

−1
27

)
+ 2Li2

(
l26l

−1
27

)
+ 2Li2

(
−l28l

−1
27

)
− 2Li2

(
l−1
25 l

−1
27

)
+ 2Li2

(
l−1
26 l

−1
27

)
+ 2Li2

(
−l−1

27 l
−1
28

)
− log2 (−l25) + log2 (−l26)

− log2 (−l27) + log2 (l28) + 2 log (l43) log (−l25) − 2 log (l1) log (−l27)
+ 2 log (−l2) log (−l27) − 2 log (−l5) log (−l27) + 2 log (−l6) log (−l27)
+ 2 log (−l7) log (−l27) − 2 log (−l8) log (−l27) − 2 log (−l26) log (l44)
− 2 log (l28) log (l48) (B.3)





Appendix C

Results for cuts of the equal-mass
sunrise

C.1 Boundary conditions

In this appendix we give the boundary conditions of the cuts of the equal-mass sunrise
family in the point x = 0, where p2/m2 = x, up to order ϵ4. The results are given
for the basis of master integrals defined in Eq. (7.86). Some of the integrals are
(logarithmically) divergent in the limit x ↓ 0. In those cases we include the divergent
terms, which are proportional to log(x)k where k is a positive integer. We will use the
shorthand:

r3 = 1 + i
√

3
1 − i

√
3
, (C.1)

to refer to the cube root of unity. The boundary conditions are then given by:

B̃uncut
1 = 4 + ϵ2

(
2π2

3

)
+ ϵ3

(
− 8ζ(3)

3

)
+ ϵ4

(
7π4

90

)
+ O(ϵ5)

B̃uncut
2 = ϵ2

(
− 3iLi2 (r3) − iπ2

6

)
+ ϵ3

(
− 12

5 iLi3
(
−i

√
3
)

+ 12
5 iLi3

(
i
√

3
)

+ π3

9

+ 1
5π log2(3)

)
+ ϵ4

(
− 1

2iπ
2Li2 (r3) + 63iLi4 (r3)
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(C.6)

C.2 Iterated integrals of modular forms

In this appendix we give all of the cuts of the equal-mass sunrise family solved in terms
of iterated integrals of modular forms, in the basis of Eq. (7.86), and up to order ϵ2.
Orders three and four in ϵ can be obtained upon request to the author. Note that the
kernels f2, f3 and f4 are defined in Eq. (7.40), and the iterated integrals of modular
forms are defined in Eq. (7.45).
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