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Summary 
Statistical parametric speech synthesis (SPSS) offers a means of generating synthetic speech 

without the need for complex and extensive rules. One way in which this approach is sometimes 

lacking is through the use of simple excitation models that may result in unnatural, robotic 

sounding synthetic speech. A further limitation is that these systems tend to lack prosodic variation. 

For example, they do not capture the expressive nature of human spoken interaction. This is 

something that would be highly desirable for applications utilising speech synthesis, such as 

educational games or synthetic voices for people with disordered speech. The use of a more 

complex excitation model could offer the flexibility in the voice source that could provide a basis 

for more adequate modelling of prosody. However, acoustic models of the voice source entail 

many potentially important parameters and controlling these could be a challenge. 

The main aims of this work were to: investigate how an acoustic glottal model could be used to 

manipulate aspects of linguistic and paralinguistic prosody of synthetic speech using a minimal set 

of control parameters; implement the knowledge gained from this investigation into an analysis-

and-synthesis system; use this system in SPSS; and conduct pilot tests to demonstrate how the 

system can be used to explore the voice source correlates of prosody, through user-driven 

manipulation tasks. 

To achieve the first goal, experiments were carried out to explore how the global waveshape 

parameter, Rd (Fant, 1995), could be used to control aspects of linguistic and paralinguistic 

prosody. This parameter can be used to generate glottal pulse shapes that result in voice qualities 

ranging from breathy to tense. As the tense-lax dimension of voice quality is important in prosodic 

modulation, Rd appears to be ideal for minimising the number of control parameters needed to 

transform voice quality. 

To allow control of this parameter, the glottal source, and the vocal tract filter that shapes it, must 

be modelled using the principles of the source-filter model of speech production. These speech 

components must be separated effectively to do this. Inverse filtering was used to obtain estimates 

of the source signal by removing the effects of the vocal tract transfer function from the speech 

signal. An acoustic glottal model, the Liljencrants-Fant (LF) model (Fant et al., 1985), was then 

used to parameterise the glottal source. 

Three experiments were carried out, using manually inverse filtered data, to investigate how Rd 

could be used as a control parameter for linguistic and paralinguistic prosody, even in the absence 

of f0 modulation. Experiment 1 examined how manipulating Rd could be used to control where 

focal prominence (an aspect of linguistic prosody) occurs in an utterance. Experiment 2 explored 

how Rd could be used as a control parameter for perceived affect. Experiment 3 built upon the 

results of Experiment 1 to optimise the implementation of the Rd parameter contour. 

The results of these experiments confirmed that Rd can serve as a control parameter to generate 

linguistic prominence as well as paralinguistic modification of affective colouring. The results 
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confirmed, and elaborated on, the findings of earlier research, suggesting that tense-lax modulation 

of voice quality is important in prosodic expression. They indicated that a more tense phonation on 

the focally accented item can be used to signal prominence, while laxer phonation of post-focal 

material provides source deaccentuation that further enhances the perceived prominence. 

These experiments provided information concerning Rd ranges and settings that fed into the 

development of the second goal of this work, i.e. an analysis-and-synthesis system, called GlórCáil, 

for the control of parameters for prosodic variation in synthesis. The system also allows for some 

speaker characteristic transformation, letting the user manipulate both voice source and vocal tract 

parameters before resynthesis. This provides the means to alter the prosodic pattern and speaker 

characteristics of an utterance. The interface allows the user to listen to any changes they make 

after resynthesis, to see if they have the desired effect or if further manipulations are required.  

The third goal was achieved by integrating the finished system into a DNN-based speech synthesis 

framework so that it could be used to generate unseen synthetic speech. 

The final goal of this work was achieved by demonstrating the system’s ability to transform 

linguistic and paralinguistic prosody, as well as speaker characteristics, in copy synthesis. Two 

manipulation tasks were carried out using purpose-built interfaces developed for these experiments. 

Experiment 4 involved participants modifying an utterance so that it sounded like an appropriate 

response to a given question by moving sliders that controlled the Rd parameter. Experiment 5 

involved participants manipulating parameters to make an utterance sound like it was being spoken 

by a particular speaker in a particular affective state. The responses were then used to modify the 

default parameters generated by the DNN-based speech synthesis system, by multiplying them by a 

scaling factor, to create a set of stimuli. These stimuli were used in the listening test of Experiment 

6, where participants were asked to identify the speaker, the emotion of the speaker, and rate the 

magnitude of the emotion and naturalness of the utterance on five-point scales. Although 

participants identified sad stimuli successfully, this was not the case for happy stimuli. It is likely 

that additional modifications of the vocal tract and f0 contour are needed to improve identification 

rates. 

The last two experiments were intended as pilot demonstrations: given that the focus of the thesis is 

on the voice quality dimension, and the inclusion of vocal tract and f0 modulation is beyond the 

intended scope of the work. Using the GlórCáil system, future work is planned which will explore 

how the voice quality dimension combines with f0 in both linguistic and paralinguistic prosodic 

expression. How these combine in speaker voice transformation is another area which will be of 

interest. 

The GlórCáil system experiments reported here are seen as a contribution not only towards better 

control of the voice quality dimension of prosody in speech synthesis, but also towards research 

methodologies that will enhance our understanding of this vital dimension of human 

communication. 
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Chapter 1. Introduction 

1.1 Rationale for this work 

Statistical parametric speech synthesis (SPSS) currently offers the highest degree of 

parametric control without the need for expertly derived rules. If an overly simple 

excitation model is used the resulting synthetic speech can sound rather robotic and 

unnatural. This is also an issue when it comes to transforming aspects of speech such as, 

the type of phonation, speaker characteristics, or affective state. These are important 

elements to control when using synthetic voices in educational software, video games, or 

other applications where expressive speech is required. While parametric flexibility is 

important for the above-mentioned applications, the naturalness of the synthesised speech 

is an important factor to consider due to how sensitive listeners are to the slightest 

distortions in speech. In order to further improve the expressiveness of these synthesis 

systems, an excitation model of higher complexity must be used. A downside to using a 

more complicated excitation model is that controlling and transforming it also becomes 

more complicated. This becomes an issue when these transformations are being carried out 

by a nonexpert user, or in time sensitive cases where synthetic speech material needs to be 

generated quickly. 

One major goal of this work is to develop a system that will allow for the transformation of 

the voice in synthetic speech, by utilising our understanding of speech production. One 

way of integrating knowledge of speech production into a synthesis system would involve 

the use of an acoustic glottal model-based excitation that more closely models the natural 

glottal source. Many state-of-the-art speech modelling methods that implement improved 

excitation models focus on either improving the naturalness of synthetic speech with little 

control of the source parameters or implementing full parametric control at a cost to the 

naturalness of the synthesised speech. 

The ability to transform the quality of the voice in synthetic speech in a way that is guided 

by knowledge of speech production would offer many advantages. Firstly, it would allow 

us to take a given synthetic voice and from it generate multiple new voices (sounding like 

different speakers) by altering the production characteristics. Currently, the most widely 
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used method for transforming voices in SPSS is through speaker adaptation, covered in 

detail in Yamagishi et al. (2009). This method involves the transformation of acoustic 

models between speakers to impart characteristics of one speaker to the other. To reduce 

the specificity of a particular voice an average voice is created that is trained using data 

from many speakers. This method is not however based on our knowledge of speech 

production, and for many languages, especially minority and low resource languages, it 

requires specific databases of spoken language that are typically not available. 

As mentioned, even if the baseline voice in a speech synthesis system is quite natural, the 

output tends to be monotonous as it lacks the kinds of prosodic modulations that are a 

defining feature of natural speech in human interactions. These prosodic modulations are 

often seen as being of two kinds, linguistic and paralinguistic. 

• Linguistic prosody: this is the aspect of prosody that has been studied within 

linguistics for many decades, described mostly in terms of the intonational, melodic 

modulation of running speech. Linguistic prosody is seen to serve a number of different 

functions: it helps cue grammatical structure; it helps cue the listener on the 

information structure, i.e. which parts of an utterance they need to particularly attend 

to; it helps regulate discourse so that listeners know whether the speaker’s turn is 

coming to an end and whether the floor is being yielded or not. 

Although the vast majority of work in this field has been focussed on f0 modulation, 

recent research has indicated that other parameters of the voice, pertaining to the 

quality of the voice, are also modulated as part of linguistic prosody. In the present 

work, it is this voice quality dimension of the voice source that is focussed on. 

• Paralinguistic/affective prosody: this is the aspect of prosody that carries the crucial 

affective and attitudinal information of the message. When we decode speech, we 

decode not just the string of words, but also the emotion and mood of the speaker 

(angry, sad, bored) and their attitudes and relationship to us (friendly, condescending, 

sarcastic, polite). This aspect of prosody has frequently tended to be regarded as 

outside the scope of linguistic investigation and has been a topic pursued more in the 

field of psychology – with little cross-reference to the linguistic aspects of prosody. 

Although the voice quality dimension of the voice source is appreciated to be 

fundamentally important to the affective, paralinguistic prosody, it is nonetheless true 
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that most of the empirical research carried out to date has been focussed on f0, intensity 

and timing of speech. 

Another goal of this work is to develop a system that will allow control of the voice source 

in speech synthesis. It is intended as a contribution towards more flexible control of the 

voice source in synthesis. Based on our current understanding of the voice source and 

speech production theory, some recent research on aspects of voice modulation in prosody 

will be taken as a starting point. The system is also intended as a tool for future exploration 

that will extend our understanding of the voice source, on how voice source modulations 

contribute to the prosodic expression of utterances and how such modulations might be 

incorporated into speech synthesis systems. 

The system should allow voice source modifications that can serve both to transform the 

speaker-specific baseline voice quality (an extralinguistic aspect of voice) and the prosodic 

characteristics of utterances (including linguistic and/or paralinguistic features of the 

voice). In this work, the main focus is on the on the latter, prosodic dimension of voice 

source modulation. Based on studies on specific aspects of prosodic variation, a number of 

experiments are undertaken to see how such modulations may be controlled in speech 

synthesis. In later pilot experiments, modifications of the speaker-baseline characteristics 

are also included, but are not treated in depth. 

The need for a flexible system to control voice quality in speech synthesis can be 

illustrated in terms of parallel research that is ongoing in the ABAIR Irish synthesis project 

in Trinity College Dublin (Ní Chasaide et al., 2011a, 2017) to which this work is linked. 

This project is concerned with the development of speech technology for Irish, an 

endangered minority language. Synthetic voices have been developed for the three main 

dialects of Irish, and these are currently being used in applications for users with 

disabilities (such as visual impairment) as well as in Irish language learning applications, 

such as interactive multimodal educational games. A means to flexibly and easily control 

the voice source and filter characteristics of the synthetic speech output would be of major 

benefit in this context. The ability to build many voices for a particular dialect by 

transforming an available voice is important. It would enable for the population of 

educational games with a cast of different characters who have sufficiently differentiated 

voices. To date, the project has generated such differentiated characters using relatively 

simple transforms. Results are often rather poor, and while such transformations have 
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served the purpose up to a point, they are never going to come close to modelling the 

diversity and natural quality of different human voices. The ideal would be a system that 

allows for control of both the source and filter, thus allowing for the generation of, from 

first principles of speech production, any number of voices. These voices could differ in 

subtle or major ways from each other. It would also provide a means to personalise 

synthetic voices for use in communication systems for those with disordered speech. 

The other aspects where flexibility in the generation of synthetic speech is important 

concerns the linguistic and paralinguistic/affective prosody. Currently, they are both 

difficult to approximate using mainstream synthesis techniques. Gaining full control of the 

voice source is an important step towards this goal. The characters in interactive games 

need expression in their voices that matches the contexts of the scenarios within the games. 

For example, at certain times the characters in a game need to sound angry, friendly, or 

secretive, to suit the storyline. 

Likewise, in many contexts where people with disabilities use synthetic speech, the need to 

control these same features will have a major impact. Being able to personalise and fine-

tune a voice for a user is an important goal, which it is hoped that this work will contribute 

to. Furthermore, the ability to control linguistic prosody and the ability to modulate the 

voice to carry the affective dimension of a message would greatly enhance the use of 

speech synthesis as a communication device. 

All these factors show that there are still many improvements that can be made to create a 

fully flexible system, with parametric control over the voice source signal and vocal tract 

filter and narrow the gap between synthesised and natural speech. 

Another issue is the vast number of voice source parameters to choose from. A problem 

with rule-based formant synthesisers is the need for extensive expert knowledge in order to 

produce speech with natural sounding prosody. It is very desirable to simplify the control 

parameter scheme of expressive speech synthesis so that the manipulation of a minimal set 

of values equates to useful changes in prosody. For this reason, this work will investigate 

the use of the global waveshape parameter, Rd (Fant, 1995, 1997), as a means to control the 

voice source, and therefore, voice quality. This parameter captures the covariance of other 

model parameters, while reducing the overall number of parameters needed to generate a 

synthetic source signal. 
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1.2 Aims and objectives 

The aims of this work were to: 

• Investigate how a small set of parameters could be used to control aspects of 

linguistic and paralinguistic prosody. Specifically, the use of the Rd parameter is 

explored as the parameter that might effectively capture the tense-lax dimension of 

voice quality, found to vary in previous studies with specific aspects of prosodic 

expression. 

• Implement a speech analysis-and-synthesis system that allows a user to easily 

control Rd and other voice source parameters, as well as vocal tract characteristics. 

• Integrate the system into an SPSS system. 

• Demonstrate how the system can be effectively used through a set of user-driven 

manipulation tasks. 

The research carried out aimed to answer the following question: 

To what extent can control of both linguistic and paralinguistic 

prosody be achieved by manipulating the voice source and vocal tract 

in statistical parametric speech synthesis utilising an acoustic glottal 

source model with a minimal set of control parameters? 

Answering this question is intended to contribute to the area of linguistic and paralinguistic 

prosody, to a voice control system for voice modulation/transformation in synthesis with 

its basis in speech production theory and towards a more prosodically adequate, expressive 

speech synthesis that is needed for many speech technology applications. 

To address the research question proposed above, a set of experiments was devised that 

would demonstrate different dimensions of control that might be offered by the system. 

1.3 Outline 

This thesis is organised in the following way: Chapter 2 outlines the principles of speech 

production, including descriptions of the components involved. It also introduces the 

acoustic theory of speech production, which acts as the basis for many of the analysis and 

synthesis methods discussed in the work. Chapter 3 describes methods of analysing and 
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parameterising the voice source, with a particular focus on acoustic glottal models. Chapter 

4 describes several different approaches to speech synthesis and introduces the concept of 

neural networks and how they are utilised in speech synthesis systems. Chapter 5 describes 

and discusses a number of different speech modelling techniques that are used in speech 

synthesis. Chapter 6 is concerned with the role of voice quality in signalling prosody and 

considers ways in which prosodic variation might be incorporated in speech synthesis. 

Chapter 7 details three experiments that were carried out to explore how voice source 

manipulations linked with voice quality shifts along the tense-lax continuum could signal 

prominence, as well as perceived affect, in synthetic speech. Chapter 8 details the 

development of an analysis-and-synthesis system, GlórCáil, including control interfaces 

for analysis, synthesis and carrying out perception experiments. This chapter also describes 

how the system was integrated into a DNN-based speech synthesis framework. Chapter 9 

describes three experiments that were carried out to demonstrate the functions of the 

GlórCáil system in copy-synthesis applications and when it is used in an SPSS framework. 

Finally, Chapter 10 presents and discusses the conclusions made about this research and 

lists possible avenues of future work that could be carried out. 

Portions of the work carried out as part this thesis were reported in the following list of 

publications1: 

1) Yanushevskaya, I., Murphy, A., Gobl, C. and Ní Chasaide, A. (2016) ‘Perceptual 

Salience of Voice Source Parameters in Signalling Focal Prominence’, in 

Proceedings of INTERSPEECH. San Francisco, USA, pp. 3161–3165. doi: 

10.21437/Interspeech.2016-1160. 

2) Murphy, A., Yanushevskaya, I., Ní Chasaide, A. and Gobl, C. (2017) ‘Rd as a control 

parameter to explore affective correlates of the tense-lax continuum’, in 

Proceedings of INTERSPEECH. Stockholm, Sweden, pp. 3916–3920. doi: 

10.21437/Interspeech.2017-1448. 

3) Murphy, A., Yanushevskaya, I., Ní Chasaide, A. and Gobl, C. (2018) ‘Voice Source 

Contribution to Prominence Perception: Rd Implementation’, in Proceedings of 

INTERSPEECH. Hyderabad, India, pp. 217–221. doi: 10.21437/Interspeech.2018-

2352. 

4) Murphy, A., Yanushevskaya, I., Ní Chasaide, A. and Gobl, C. (2019) ‘The Role of 

Voice Quality in the Perception of Prominence in Synthetic Speech’, in 

 
1 The design and execution of these studies was carried out principally by the author of this thesis. 

This work built on earlier research by the co-authors, and they were also involved in the planning 

and interpretation of the data. 
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Proceedings of INTERSPEECH. Gratz, Austria, pp. 2543–2547. doi: 

10.21437/Interspeech.2019-2761. 
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Chapter 2. Speech production, acoustics 

and voice source modelling 

2.1 Speech production 

From a physiological point of view it is useful to describe the speech production system as 

comprising of three parts; the subglottal respiratory system, the larynx, and the supra-

glottal vocal tract (Lieberman and Blumstein, 1988, pp. 3–13). The subglottal respiratory 

system contains the lungs and respiratory control muscles. The tensing and relaxing of 

these muscles cause the lungs to expand and contract, producing a flow of air through the 

trachea, which not only sustains life but also can also act as the power source for speech. 

The next part of the system is the larynx, positioned in the neck, between the respiratory 

system and the vocal tract. Muscles within the larynx control the tension and position of 

two folds of tissue, the vocal folds. These folds can be employed to modulate the flow of 

air coming from the lungs into what becomes a source excitation for speech. The next 

element in the speech production system is the vocal tract. The vocal tract (see Figure 2.1) 

is comprised of the pharynx and oronasal cavities. Here, the source excitation, generated 

by the vocal folds, is modified by the resonances and antiresonances created by the varying 

geometries of the cavities. Finally, speech is emitted through the lips and nostrils as an 

acoustic signal. 
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1. Nasal cavity 

2. Oral cavity 

3. Hard palate 

4. Soft palate 

5. Teeth 

6. Uvula 

7. Lips 

8. Pharynx 

9. Tip of tongue 

10. Epiglottis 

11. Blade of tongue 

12. Vocal cords 

13. Front of tongue 

14. Glottis 

15. Back of tongue 

16. Trachea 

17. Larynx 

 Figure 2.1: Midsagittal cross-section of the head, including the larynx and vocal tract. By 

Tavin, licensed under CC-BY-3.0 

The two main categories of speech sounds are voiced and unvoiced. Voiced speech is 

produced with the modulated airflow excitation, generated through the vibratory action of 

the vocal folds. Unvoiced speech is produced in the absence of quasi-periodic vibration of 

the vocal folds. The airflow is constricted within the vocal tract, generating a noise 

excitation with no periodicity.  

2.1.1 The larynx, vocal folds and glottal flow 

The larynx is an adjustable cartilaginous tubular organ at the top of the trachea (Reetz and 

Jongman, 2008). Figure 2.2 illustrates the muscles and cartilages that form the larynx. The 

main structure of the larynx is made up of the thyroid and cricoid cartilages, which are 

attached together through the cricothyroid muscle. Within the larynx lie the vocal folds. 

The vocal folds are two protruding folds of tissue that stretch between the thyroid and 

arytenoid cartilages (see Figure 2.2). The open area between the vocal folds, allowing air 

to flow through from the lungs, is called the glottis. Interaction between the glottis and the 

pulmonic airstream can cause the vocal folds to vibrate (Reetz and Jongman, 2008). 

Intrinsic laryngeal muscles can control the tension of the vocal folds laterally and 

longitudinally, changing their vibratory behaviour and the dimensions of the glottis.  

https://commons.wikimedia.org/wiki/User:Tavin
https://creativecommons.org/licenses/by/3.0/deed.en
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Figure 2.2: Diagram of the larynx and vocal folds as viewed from the side, rear and above. 

Adapted from Laver (1980) 

The oscillatory action of the vocal folds when they are employed for voiced speech, 

referred to as phonation (Ladefoged and Johnson, 2010), modulates the size of the glottis 

and converts the steady airflow from the lungs into a quasi-periodic series of pulses. These 

glottal pulses are known as the glottal source or the voice source. 

 

Figure 2.3: Diagram of an idealised single cycle of vocal fold vibration. Adapted from Story 

(2002) 

The myoelastic-aerodynamic theory (van den Berg, 1958) is regularly used to explain the 

mechanism of vibration of the vocal folds. This theory combines knowledge of the elastic 

properties of the vocal folds with the aerodynamic characteristics of the glottis to account 

for some of the behaviour of the vocal folds. In order to explain how the folds are able to 

completely close, the two-mass model (Ishizaka and Flanagan, 1972) must also be 
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considered. Additionally, the muco-viscose (Broad, 1979) and flow-separation (Ishizaka 

and Matsudaira, 1968) theories account for other details in the oscillatory behaviour of the 

vocal folds. Figure 2.3 illustrates the vocal folds in the coronal plane during an idealised 

single cycle of their vibration (Story, 2002): 

1. At the beginning of the glottal cycle the vocal folds are adducted (i.e. brought 

together) by muscular tension acting upon them (Laver, 1980). This closes off the 

airway resulting in an increase in subglottal pressure below the vocal folds. 

2. The lower portions of the folds begin to move away from each other laterally due to 

the increased subglottal pressure (Hardcastle, 1976). 

3. The lateral movement continues until the folds separate, opening the airway. 

4. They continue to move until maximum lateral travel has been reached. 

5. The folds begin to move closer together, due to elastic forces and the Bernoulli 

effect, caused by the increase in airflow velocity (Lieberman and Blumstein, 1988). 

6. The lower portions of the folds come together, closing off the airway.  

7. The upper portions of the folds also come together so they are fully adducted. 

8. The subglottal pressure increases, and the cycle begins again. 

The rate of vocal fold vibration determines the fundamental frequency (f0), which 

correlates closely with the perceived pitch. This rate is governed by the mass, length and 

tension of the vocal folds. These dimensions differ for males and females, with men 

tending to have longer vocal folds of a higher mass and thus a lower f0. The average f0 

values for males and females are approximately 120 Hz and 220 Hz respectively (Fant, 

1956). Children have even shorter vocal folds and therefore a higher average f0 

(approximately 260 Hz (Peterson and Barney, 1952)). 

Laryngeal adjustments (e.g., increased tension of the vocal folds) not only affect the pitch, 

but also the mode of vibration of the vocal folds. These adjustments can be described, as in 

Laver (1980) in terms of three main parameters illustrated in Figure 2.4: 

1. Adductive tension – this tension brings the arytenoid cartilages together. 

2. Medial compression – this tension closes the ligamental glottis. 

3. Longitudinal tension – this controls the tension along the length of the vocal folds.  
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Figure 2.4: Schematic of the main dimensions of vocal fold tension: (1) Adductive tension. 

(2) Medial compression. (3) Longitudinal tension. Based on Laver (1980) 

2.1.2 Phonatory settings and voice quality 

To avoid confusion, this thesis uses the descriptive framework proposed by Laver (1980), 

where voice quality is described as auditory colouring of an individual speaker’s voice. 

Short and long term changes in voice quality can serve a linguistic purpose such as 

differentiating between speech units (Laver and Trudgill, 1979), or making a particular 

syllable or word stand out in a sentence. Voice quality can also communicate information 

about a speaker, such as their age, sex, size and affective state. These features are often 

referred to as being extralinguistic, or paralinguistic in the case of affect, as they are 

beyond the normal scope of linguistics (Gobl, 2003). This work will be mainly focus on 

the laryngeal contribution to voice quality, brought on by changes in muscular adjustments 

within the larynx. 

Modal voice can be defined as the neutral phonation setting. The vocal folds function in an 

efficient manner, using moderate adductive tension, medial compression and longitudinal 

tension. The complete closure of the glottis produces a quasi-periodic glottal flow with 

minimal aspiration noise (Gobl, 1989). This voice quality can be used as a baseline from 

which to describe the range of voice qualities relevant to this work along a lax to tense 

continuum with regards to laryngeal muscle tension.  

Whisper is generated with a triangular opening in the glottis at the arytenoid cartilages. 

This opening is formed with low adductive tension, moderate medial compression of the 

vocal folds. The opening produces a turbulent flow of air with no periodic component. This 

quality can be combined with modal voice to produce whispery voice, which includes a 

periodic component introduced by vibration along parts of the vocal folds (Laver, 1980). 



 

 

Chapter 2. Speech production, acoustics and voice source modelling 14 

 

 

Breathy voice involves less efficient vibration of the vocal folds with a higher rate of 

airflow when compared to modal voice. It includes strong aspiration noise with incomplete 

closure of the glottis due to low muscular effort in the larynx. This incomplete, and more 

gradual compared to modal voice, closure leads to more rounded glottal pulses. These 

more rounded pulses exhibit a steeper spectral slope resulting from lower amplitudes of 

higher frequency harmonics. 

Tense voice results from higher adduction of the vocal folds when compared to modal 

voice. The higher tension results in sharper pulses passing through the glottis, in which the 

vocal folds close more abruptly than in modal voice. This sharpness leads to increased 

harmonic amplitudes at higher frequencies and a shallower spectral tilt. 

Harsh voice is produced by applying extreme adductive tension and medial compression to 

the vocal folds. This tension causes the vocal folds to vibrate in an irregular manner, 

introducing aperiodicities into the glottal flow. This produces an unpleasant, raspy sound. 

Creaky voice is another voice quality that will be mentioned in the later experiments. 

Catford (1964) describes creaky voice as sounding like a rapid series of taps. It is thought 

to originate from a small section of the ligamental glottis, near the thyroid, when high 

adductive tension, medial compression, and low longitudinal tension are applied to the 

vocal folds (Fónagy, 1962) in combination with low subglottal pressure (Monsen and 

Engebretson, 1977). 

Modulations in voice quality can be used by speakers for several communicative purposes. 

Some languages use voice quality to signal phonemic differences (Laver and Trudgill, 

1979; Gordon and Ladefoged, 2001). In several tonal languages, different voice qualities 

can be used to signify certain tones (Huffman, 1987; Jianfen and Maddieson, 1992). Voice 

quality can serve a paralinguistic function by communicating the affective state of a 

speaker (Ladd et al., 1985; Gobl and Ní Chasaide, 2003). 

Chapter 4 contains a more details description of how voice quality contributes to linguistic 

and paralinguistic prosody. 

2.1.3 The vocal tract 

The glottal flow is an excitation signal that acts as the basis for speech. If we were to hear 

the excitation signal in its raw form, we would perceive it as a harmonically rich, but 
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unintelligible buzz. In order for this signal to be shaped into the sounds that humans use in 

spoken communication it must be filtered by the supra-glottal vocal tract. 

The supraglottal vocal tract – comprised of the laryngeal cavity, the pharynx, the oral 

cavity and the nasal cavity – acts as an acoustic filter. The glottal source is filtered by the 

vocal tract filter, and the resonances of this filter produce peaks in the speech output 

spectrum known as formants.  

The geometry of the vocal tract changes when a speaker changes the position of their 

articulatory organs, namely, the jaw, tongue and lips. Furthermore, the larynx may be 

raised or lowered, effectively changing the length of the vocal tract. The velum can also be 

controlled, opening and closing airflow into the nasal cavity. These changes in the 

geometry result in changes in the acoustic properties of the vocal tract, which modify the 

source signal into the different sounds that make up speech. For voiced speech, the glottal 

source signal is modified by the resonances of the vocal tract. Fricatives are produced by a 

noise source of turbulent airflow caused by constrictions in the vocal tract. If vocal fold 

vibrations occur alongside the noise source, voiced fricatives are produced. Voiceless 

fricative are produced when only the noise source is used (Flanagan, 1972). Stop 

consonants are produced when the vocal tract is fully closed at a point, allowing for the 

build-up and sudden release of air pressure. The location of the closure determines the 

sound produced. Nasal consonants are produced when the velum, also known as the soft 

palate, is opened, while the vocal tract is closed off by the tongue.  

Just as with the vocal folds, age and gender affects the properties of the vocal tract. Fitch 

and Giedd (1999) found the average vocal tract length to be 16.1 cm for adult males, 14.6 

cm for adult females, and the average values for children between ages 2 and 12 ranged 

between 10.4 cm and 13.4 cm. The variation in vocal tract dimensions between people is 

what, along with features of the voice source, gives each person their own characteristic 

timbre or recognisable quality to their speech. 

2.2 The acoustic theory of speech production 

Although, in reality, speech production is carried out by a series of continuous 

physiological processes, from an engineering point of view it can be very useful to 

describe these processes individually. Doing so allows for the examination of each 

component independently of others. It is for this reason that it is favourable to view speech 
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production in terms of a source and filter. The source component, produced by the vocal 

folds, is filtered, by the vocal tract in this case, and the resulting output is speech (see 

Figure 2.5). 

 

Figure 2.5:A schematic illustration of the source-filter model of speech production. From 

(Gobl and Ní Chasaide, 2010) 

This theory forms the basis of Fant’s (1960) “Acoustic Theory of Speech Production”. This 

theory describes speech production in a way that is closer to the concepts usually 

encountered in digital signal processing. It is for this reason that many speech synthesis 

systems employ this theory in their speech modelling methods. This theory can be 

represented schematically (see Figure 2.6) as the voice source signal being filtered by the 

transfer function of the vocal tract filter, resulting in the speech signal. 

 

Figure 2.6. Schematic of the production of speech as a filtering process. Based on Fant 

(1960) 

The system can be described in the z-domain as seen in Equation (2.1), where 𝐺(𝑧) is the 

spectrum of the glottal source signal, 𝑔(𝑡), 𝑉(𝑧) is the transfer function of the vocal tract 

filter, 𝑅(𝑧) is the radiation characteristics of the lips, and 𝑆(𝑧) is the spectrum of the 

speech signal output, 𝑠(𝑡). 

 𝑆(𝑧) = 𝐺(𝑧)𝑉(𝑧)𝑅(𝑧) (2.1) 

Separating speech production into these separate parts allows for much easier analysis of 

each individual component. Application of this theory allows us to separate the source 

component from the filter component (discussed in Section 2.3). 
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A limitation of this model is that it does not take any subglottal interactions into account. It 

assumes that the vocal tract is a tube, closed at the glottis and open at the mouth, and the 

source signal originates at the closed end of this tube. Also, the source and filter are 

assumed to be completely independent of each other with no interactions between them. 

More detail on these interactions can be found in Gobl (2003). The following two sections 

will discuss the individual components of the source-filter theory. 

2.2.1 The source 

The source, written in the time-domain as 𝑔(𝑡), acts as the excitation signal to the vocal 

tract filter in the source-filter model of speech production. It is the approximation of the 

glottal airflow waveform that is produced by air travelling from the lungs and shaped by 

the opening and closing of the glottis. The source signal can be treated as an individual 

component of the source-filter system, independent of changes made to the vocal tract 

filter. The source can be divided into two main categories, voiced and unvoiced. When the 

source is voiced it consists of quasi-periodic pulses with a harmonic structure that usually 

sounds like a coarse buzz. This is the glottal source used to produce sounds like vowels 

and voiced consonants (e.g., [m] and [l]). The unvoiced source consists of noise produced 

by turbulent airflow at the glottal constriction (Lieberman and Blumstein, 1988) or another 

location within the vocal tract, e.g. the labiodental and dental constrictions for [f] and [θ] 

respectively. 

2.2.2 The filter 

The vocal tract filter, 𝑉(𝑧), is what shapes the glottal source into the sounds we hear as 

speech. It can be modelled using a number of complex-conjugate poles and zeros. An all-

pole model is usually used to model vowel sounds, which consists of a set of resonators, 

called formants. In theory, the number of formants is infinite (Kent and Read, 1992, chap. 

2; Stevens, 1998), but only the first few formants are perceptually relevant. Each formant 

has two characteristics, the centre frequency (often referred to as the formant frequency) 

and bandwidth. The centre frequency of a formant defines the point of strongest resonance 

in the frequency domain, while the formant bandwidth is a measure of the damping rate in 

the time domain. In combination, these formants make up the transfer function of the vocal 

tract. 
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2.2.3 Radiation 

The final component of the source-filter model to mention is the radiation characteristic of 

the lips and nostrils, 𝑅(𝑧). This has the approximate effect of raising the spectral amplitude 

of the output speech signal by 6 dB per octave, which can be represented as a first-order 

differentiator as shown in Equation (2.2) (Rabiner and Schafer, 1978), where α is usually 

set to a value just below 1 (Deller et al., 1999, chap. 3), corresponding to a real zero just 

inside the unit circle. 

 𝑅(𝑧)  =  1 −  𝛼𝑧−1 (2.2) 

This differentiator effect can be incorporated into the glottal source so that the source-filter 

model can be expressed in the form shown in Equation (2.3), where 𝐺′(𝑧) is the spectrum 

of the glottal source derivative. 

 𝑆(𝑧) = 𝐺′(𝑧)𝑉(𝑧) (2.3) 

This can be convenient as several glottal source models are, in fact, modelling the glottal 

flow derivative (Fant, Liljencrants and Lin, 1985). 

2.3 Voice source analysis 

The previous sections in this chapter detailed how the speech production system can be 

described using the source-filter theory. The following section describes several commonly 

used techniques for voice source analysis that exploit the principles of this theory to 

separate speech into its source and filter components. This section also includes 

descriptions of the processes and models used to parameterise the voice source and vocal 

tract once they have been estimated. 

2.3.1 Glottal inverse filtering 

The process of glottal inverse filtering involves estimating the vocal tract filter transfer 

function and removing its effects from a speech signal to obtain an estimate of the glottal 

source. The coefficients of the vocal tract transfer function can be estimated both 

automatically and manually. Automatic approaches use techniques such as linear 

predictive coding (LPC) to approximate the shape of the vocal tract transfer function. 

These approaches can be very inaccurate when carried out on speech recorded using 

inadequate equipment (which may introduce phase distortion) or in an unideal environment 

(too much noise, reverberation, etc.)(Alku, 2011), but can be used to analyse large amounts 

of data in a relatively short amount of time. Manual approaches usually involve an 
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automatic or semi-automatic analysis stage to obtain initial estimates of the vocal tract 

transfer function. These values are then manually corrected by an expert. Although systems 

that use these methods (Gobl and Ní Chasaide, 1999a; Kane and Gobl, 2013) can 

potentially yield very accurate estimates of the vocal tract transfer function and the glottal 

source signal, they are very slow and laborious, and so cannot be used on large data sets. 

Even using state-of-the-art approaches, obtaining an accurate estimation can be difficult. 

The following sections briefly describe several commonly used methods of glottal inverse 

filtering including some of their variants.  

2.3.1.1 Inverse filtering with pre-emphasis 

When standard LPC analysis is performed on speech it is likely to estimate the spectral 

envelope of the whole speech signal rather than just the vocal tract transfer function. This 

envelope includes the effects of the vocal tract, radiation at the lips and nostrils, plus the 

spectral characteristics of the glottal source. The signal obtained when the inverse of this 

spectral envelope is applied to a speech waveform is not an accurate representation of the 

voice source, but rather just an error-based residual with an approximately flat spectrum, as 

long as the LPC order is sufficiently high.  

One technique that can be used to help obtain an estimation of the voice source signal is to 

pass the speech signal through a pre-emphasis filter before it is inverse filtered. This 

process acts to boost the higher frequency components of the speech spectrum – in effect 

compensating for the drop in the higher frequency components due to the combined 

spectral contributions of the voice source spectrum and the lip radiation. A discrete-time 

filter of the following format is usually used for pre-emphasis, 

 𝐻(𝑧) = 1 − 𝛼𝑧−1 (2.4) 

where α is typically in the range of 0.95 to 0.99. A problem with using a pre-emphasis 

filter in this way is that although it improves the accuracy of glottal inverse filtering, due to 

its stationary nature it will not properly compensate for the varying glottal source spectrum 

of continuous speech. Methods have been described to vary this filter across time in order 

to improve upon this e.g., (Schnell and Lacroix, 2007). 

A discrete all-pole (DAP) filter (El-Jaroudi and Makhoul, 1991) can be used in place of the 

usual all-pole filter for the inverse filtering. This type of modelling has been shown to 

provide more accurate estimates of the formants of the vocal tract than an all-pole model, 
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reducing the amount of harmonic interference, especially at higher fundamental 

frequencies (Alku et al., 1998). 

2.3.1.2 Closed-phase inverse filtering 

Another way of estimating the voice source is through the use of closed-phase inverse 

filtering introduced by Strube (1974) and Wong et al. (1979). In this case, rather than 

estimating the vocal tract filter of an analysis window of several glottal pulses, only 

regions where the glottis is closed are used. This is advantageous because when the glottis 

is closed there is minimal interaction between the subglottal areas and the vocal tract 

transfer function. If these closed regions can be accurately detected, a more accurate 

estimation of the vocal tract transfer function can be obtained using the covariance method 

of LPC analysis (Rabiner and Schafer, 1978).  

This method of analysis can still be problematic. One problem is when this method is used 

for speech with a high f0. The closed-phase duration in such speech may be too short to 

accurately estimate the transfer function of the vocal tract. Methods have been proposed to 

overcome this problem by carrying out analysis over several glottal cycles (Brookes and 

Chan, 1994; Yegnanarayana and Veldhuis, 1998; Plumpe et al., 1999). Another problem 

with this technique is the difficulty in detecting the closed-phase to begin with. Alku et al. 

(2009) proposed a method that constrained inverse filtering parameters prior to 

optimization to account for errors introduced by analysis frame position and to provide a 

model of the vocal tract that more accurately follows the source-filter theory. 

Improvements in estimating the location of the closed-phase have been proposed in 

Thomas et al. (2012) and Drugman et al. (2012), but this still remains a difficult task. 

Laxer voice qualities (e.g., breathy voice) also pose a problem for this form of inverse 

filtering as the vocal folds may not completely close, making detection of a fully closed-

phase next to impossible.  

2.3.1.3 Iterative and adaptive inverse filtering 

Iterative adaptive inverse filtering (IAIF) is an automatic method of estimating the glottal 

flow waveform by cancelling the effects of the vocal tract and lip radiation. 

Figure 2.7 shows a flowchart of all the stages of the IAIF method. The process starts by 

high-pass filtering the speech signal using a linear phase finite impulse response (FIR) 
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filter with a cut-off frequency of 30 Hz. This removes any low-frequency distortions from 

the signal. This is followed by several iterations of LPC analysis, inverse filtering, and 

integration. The first LPC analysis step (block 2) estimates the combined effect of the 

vocal tract and lip radiation (Hg1) of the speech signal using 1st order LPC analysis. This 

estimation is then used to inverse filter the signal in the next step (block 3). This signal is 

then analysed using pth order LPC (block 4). The LPC order, p, can be calculated using the 

equation, 

 

Figure 2.7: Flowchart of IAIF method for estimating the voice source excitation g(n) from 

an input speech signal s(n). p = (fs/1000) + 4 and g = (fs/2000), where fs is the sampling 

frequency. From Alku et al.(1999) 

 p = (
fs

1000
) +  4 (2.5) 

where fs is the sampling frequency of the signal. This obtains an estimate of the effects of 

the vocal tract (Hvt1), which is then removed from the signal in the next inverse filtering 
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step (block 5). A glottal flow estimate is then acquired from the resulting signal by 

integrating (block 6), thus removing the lip radiation effect. The updated glottal flow 

estimate is then analysed using a gth order LPC (block 7), where g is calculated as, 

 g = (
𝑓𝑠

2000
).  (2.6) 

An updated estimate of the vocal tract transfer function (Hvt2) is then created by removing 

the glottal flow effect (block 8), lip radiation (block 9), and performing a pth order LPC 

analysis (block 10). A final inverse filtering (block 11) and integration (block 12) gives the 

final estimate of the glottal waveform. 

As with the other inverse filtering methods described in this section, DAP modelling can 

be used in place of the LPC analysis to improve the modelling of the vocal tract filter. The 

study by Alku and Vilkman (1994) demonstrated that using DAP modelling in place of 

LPC improved the accuracy of modelling the vocal tract transfer function of voices with 

higher f0 values. This resulted in estimated glottal pulses containing less formant ripple in 

their closed phases when compared to conventional LPC analysis. 

The iterative optimal pre-emphasis (IOP) (Mokhtari and Ando, 2017) algorithm is an 

adaptation to the IAIF method which, when combined, forms the IOP-IAIF method of 

inverse filtering. 

 

Figure 2.8 Block diagram of the IOP-IAIF method. From Mokhtari et al. (2018) 

It replaces the initial LPC estimation and inverse filtering stage (blocks 2 and 3) of the 

standard IAIF process with an iterative algorithm that aims to provide a spectrally flat 

input to the first vocal tract modelling stage. It achieves this by performing a 1st order 

linear prediction on the signal and checking the absolute value of the prediction coefficient, 

α1, against a threshold. If that threshold is not met, then the signal is inverse filtered using 
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the value of α1. This process is repeated until the threshold value is reached, which should 

mean that the output signal passing to the first vocal tract modelling stage is spectrally flat. 

The threshold value is set to 0.01, which is small enough to ensure that any further values 

would have an insignificant effect on the estimated spectrum, while keeping the number of 

iterations within a reasonable limit. Due to its design, this process attributes most of the 

spectral tilt of a speech signal to the glottal spectrum, while treating the vocal tract as a 

resonator with little to no spectral tilt. A block diagram of this process is shown in Figure 

2.8. 

Another proposed improvement to IAIF is the Iterative Adaptive Inverse Filtering with 

Glottal Flow Model (GFM-IAIF) approach (Perrotin and McLoughlin, 2017, 2019). 

Similar to IAIF-IOP, this method replaces the initial source modelling step of IAIF. 

 

Figure 2.9: Flowchart of the GFM-IAIF method. The stages that differ from standard IAIF 

are highlighted in red. From Perrotin and McLoughlin (2019) 

Figure 2.9 shows the architecture of this method. The speech signal is first integrated to 

remove the effects of lip radiation. The integrated signal is then passed through 3 

successive 1st order LPC analysis and inverse filtering iterations, rather than just the one 

used in standard IAIF or the threshold dependent number in IOP-IAIF (Although the first 

integration step would be effectively undone by the first 1st order LPC analysis and inverse 

filtering stage, it was included so that the overall process matched the description of speech 

production presented in Section 2.2.). The signal is then passed to the initial vocal tract 

modelling step. During the second source estimation (G2(z)) step, a 3rd order LPC analysis 

is carried out to account for the characteristics of the glottal flow spectrum. The results 

presented by Perrotin and McLoughlin (2019) show this method to perform equally well  
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as IAIF and IOP-IAIF at estimating the low frequency regions of the glottal source 

spectrum, but to outperform the other methods at higher frequencies and relative to a range 

of voice quality variations. 

2.3.1.4 Quasi-closed phase inverse filtering 

The Quasi-closed phase (QCP) method of inverse filtering (Airaksinen et al., 2014) 

involves performing closed phase analysis over several glottal pulse frames using weighted 

linear prediction (WLP) (Ma et al., 1993). The effects of the open portion of the glottal 

pulse are lessened by applying an attenuated main excitation (AME) weight function (Alku 

et al., 2013), producing an estimate of the vocal tract transfer function with fewer effects of 

the source excitation. This approach works on the assumption that, during the closed phase, 

there is minimal coupling between the source and the speech signal (Plumpe et al., 1999), 

thus, the speech signal is mainly defined by the resonances of the vocal tract. 

 

Figure 2.10: LF-model waveform and AME weight function between two GCIs. From 

Airaksinen et al.(2014) 

The AME function (see Figure 2.10) is constructed for each glottal cycle and consists of a 

region of Ndq samples with values of 1 and a region of Npq samples close to the GCI where 

it reaches a small positive value, d, close to zero. To avoid discontinuities, a gradual linear 

ramp, of Nramp samples, is used to transition between these regions. When this function is 

applied to the speech signal, it attenuates the effects of the open phase, while leaving the 

closed phase mostly unaffected. This allows for the autocorrelation method of LPC 

analysis to be used, which requires a longer analysis window, but yields more consistent 

results when compared to the covariance method (Rabiner and Schafer, 1978). Figure 2.11 

shows a block diagram of the QCP analysis process. 
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Figure 2.11: Block diagram of the QCP method. From Airaksinen et al.(2014) 

The QCP process consists of four steps. The first step is GCI detection. The estimated 

GCIs are then used to construct the AME functions. WLP is then carried out on the pre-

emphasised speech signal to estimate the vocal tract model. The vocal tract model is then 

used to obtain an estimate of the differentiated glottal flow by inverse filtering the speech 

signal. The results presented in Airaksinen et al. (2014) show that QCP outperforms four 

commonly used methods of inverse filtering, including IAIF and closed-phase inverse 

filtering, in several test cases, although its dependence on GCI positioning make it less 

reliable in real-world scenarios, where GCI estimation might be less accurate. 

Although the methods described in this section may be sensitive to external noise and 

distortions, they provide a reasonably robust method of estimating the voice source without 

being invasive. These attributes are vital when processing large amounts of data for 

applications in speech technology, such as the work carried out in this thesis. 

2.3.2 Direct measures of the glottal source 

Some methods for analysing the voice source do not estimate the signal, but directly 

measure it. Although these methods can give very accurate measures of the voice source, 

they are impractical for collecting large amounts of data. Even still, applying these 

approaches can improve our understanding of the voice source in ways that inverse 

filtering techniques simply cannot, due to the fact that they provide estimates rather than 

direct measures of the voice source. 

Sondhi Tube 

The technique described by Sondhi (1975) involves a speaker producing a vowel into a 1.8 

metre long brass tube with a fibreglass wedge at the other end to suppress reflections. This 
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long tube reduces the resonant effects of the vocal tract on the source signal without the 

need to perform inverse filtering. This method can also be carried out in a room with no 

acoustic treatment because the recording microphone is enclosed within the tube, making it 

robust to outside noise. Downsides of this technique include the facts that it is only suitable 

for static vowel sounds, and obviously cannot be applied to pre-recorded audio. 

Pressure transducers 

Another way with which the voice source signal can be measured directly is by using 

pressure transducers introduced into the larynx in several locations using a catheter or by 

some other means. This method can be considered quite invasive as it is an uncomfortable 

process for the participant, involving medical supervision and local anaesthetic. One such 

study that employed this technique is Cranen and Boves (1985). Another method involves 

measuring oesophageal pressure using a small balloon placed in the oesophagus directly 

below the vocal folds (Ladefoged, 1972), although this method yields an approximation of 

the voice source rather than a direct measure. 

2.3.3 Glottal source models 

Once the glottal source is estimated using inverse filtering, or another approach, it is useful 

to fit a parametric model to this waveform so that it can be quantified by easily 

representable numerical values. It also allows for the production of an excitation signal that 

closely matches the natural voice source, for resynthesis purposes, while also giving the 

option to transform this signal. This allows for modifications of voice quality and speaker 

characteristics. The following section briefly describes several commonly used glottal 

source models.  

2.3.3.1 Rosenberg model 

The Rosenberg B glottal pulse (Rosenberg, 1971)(see Figure 2.12) is comprised of the 

polynomials, 

𝑔𝑅(𝑡) =  

{
 
 

 
 

    

𝛼 [3 (
𝑡

𝑇𝑝
)

2

− 2(
𝑡

𝑇𝑝
)

3

] 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 𝑇𝑝                   𝑜𝑝𝑒𝑛𝑖𝑛𝑔  𝑝ℎ𝑎𝑠𝑒

𝛼 [1 − (
𝑡 − 𝑇𝑝

𝑇𝑁
)
2

] 𝑓𝑜𝑟  𝑇𝑝 < 𝑡 ≤  𝑇 𝑝 + 𝑇 𝑁   𝑐𝑙𝑜𝑠𝑖𝑛𝑔  𝑝ℎ𝑎𝑠𝑒

 (2.7) 
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where 𝑇p is the percentage of the pulse with a positive slope that corresponds to the 

opening phase,  𝑇N is the percentage of the pulse with a negative slope that corresponds to 

the closing phase, and 𝛼 is the peak amplitude of the pulse. 

 

Figure 2.12: Illustration of the Rosenberg model 

This model was ranked the highest, in terms of preference scores, among a set of 

difference pulse shapes, including triangular, trigonometric and trapezoidal shapes 

(Rosenberg, 1971). This model has no return phase and a set relationship for deriving 𝑇p, 

which heavily limits its flexibility (Veldhuis, 1998). 

2.3.3.2 LF-model 

The Liljencrants-Fant (LF) model (Fant et al., 1985) is a four-parameter model of the 

differentiated glottal flow. Figure 2.13 shows an example of two LF-model pulses (bottom) 

and their corresponding integrated forms (top). 
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Figure 2.13: Example of two LF-model pulses (bottom) and their corresponding integrated 

forms. Adapted from Gobl (2003) 

The model is calculated in two phases, the open phase (an exponentially growing 

sinusoidal function) and the return phase (an exponential function) using the following 

equations,  

 
𝑔𝐿𝐹
′ (𝑡) = {    

𝐸0𝑒
𝛼𝑡𝑠𝑖𝑛𝜔𝑔𝑡 𝑓𝑜𝑟 𝑡0 ≤ 𝑡 ≤ 𝑡𝑒     𝑜𝑝𝑒𝑛 𝑝ℎ𝑎𝑠𝑒

−𝐸𝑒
𝜀𝑇𝑎

(𝑒−𝜀(𝑡−𝑡𝑒) − 𝑒−𝜀𝑇𝑏) 𝑓𝑜𝑟  𝑡𝑒 < 𝑡 < 𝑡 𝑐  𝑟𝑒𝑡𝑢𝑟𝑛 𝑝ℎ𝑎𝑠𝑒
 (2.8) 

where 𝜔𝑔 is 
𝜋

𝑇p
 and 𝑇b = 𝑡𝑐 − 𝑡𝑒. 𝐸0 is a scaling factor that is needed to achieve area 

balance (the absolute area of the two phases are equal) in the model, and α is a coefficient 

that determines the rate of amplitude increase in the open-phase sinusoid. The constant 𝜀 in 

the return-phase can be derived iteratively using Equation (2.9). 

 𝜀 =  
1

𝑇𝑎
(1 − 𝑒−𝜀𝑇𝑏). (2.9) 

A detailed description of calculating α and ε can be found in Gobl (2003, 2017), see also 

Fant et al. (1985a). 

Another way in which the LF-model pulse can be characterised is by using the three glottal 

R-parameters: Ra, Rk, and Rg. Ra describes the return-phase and the degree of high-

frequency attenuation in the model spectrum. Ra is linked to the amount of dynamic 
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leakage, or the airflow present during the return-phase (Gobl, 1988) and is calculated 

using, 

 𝑅𝑎 =
𝑇𝑎
𝑇0

 (2.10) 

where 𝑇a is the duration of the return phase. Rg is the f0 normalised glottal frequency and is 

defined as, 

 𝑅𝑔 =
𝑇0
2𝑇𝑝

 (2.11) 

where 𝑇p is the duration from the glottal opening, 𝑡o, to the time point of the peak 

amplitude of the LF glottal flow, 𝑡p. Rk is a measure of the glottal skew and is defined as, 

 𝑅𝑘 =
𝑡𝑒 − 𝑡𝑝

𝑡𝑝
 (2.12) 

where 𝑡𝑒 is the time point of the main excitation. 

Through analytical studies, it was found that many of these voice source parameters tend to 

covary (Gobl, 1988; Pierrehumbert, 1989; Fant, 1993) which led to the development of an 

alternate method of expressing and controlling the LF-model using a global waveshape 

parameter, Rd (Fant, 1995). This parameter describes the overall shape of an LF-model 

pulse, and is related to the effective pulse declination time (see Figure 2.13), 

 𝑇𝑑 =
𝑈𝑝

𝐸𝑒
 (2.13) 

where Up is the peak glottal flow and 𝐸e is the maximum negative value of the LF-model 

pulse. Rd can be expressed as, 

 𝑅𝑑 = 1000 ∙
𝑈𝑝

𝐸𝑒
∙
𝑓0
110

=
1

0.11
∙
𝑇𝑑
𝑇0

 (2.14) 

where T0 is the pulse period and the scaling factor of 1000/110 means that the value of Rd 

is equal to 𝑇d in milliseconds when f0 is 110 Hz. The Rd value can then be used to predict 

values of Ra and Rk (i.e. Rap and Rkp) with the following equations derived using statistical 

analysis performed on data extracted from a set of vowels and voiced consonants (Fant and 

Kruckenberg, 1994), 

 𝑅𝑎𝑝 = (−1 + 4.8𝑅𝑑)/100 (2.15) 

 𝑅𝑘𝑝 = (22.4 + 11.8𝑅𝑑)/100. (2.16) 

Based on a geometrical simplification of the LF waveform, the relationship 

between Rd, Ra, Rk and Rg can be expressed approximately as (Fant, 1997): 

 𝑅𝑑 =
1

0.11
∙ (0.5 + 1.2𝑅𝑘) (

𝑅𝑘
4𝑅𝑔

+ 𝑅𝑎) (2.17) 
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This equation can then be rewritten to predict Rg, 

  
𝑅𝑔𝑝 =

𝑅𝑘𝑝

4 (
0.11𝑅𝑑

0.5 + 1.2𝑅𝑘𝑝
− 𝑅𝑎𝑝)

. 
(2.18) 

The normal range for Rd is between 0.3 and 2.7, while values above 2.7 produce a very 

abducted pulse shape suitable for modelling pre-pause voice terminations (Fant, 1995). Rd 

has been shown to be a very effective parameter for describing voice qualities and 

simplifying control of the voice source in text-to-speech (TTS) synthesis (Fant, 1995). A 

more detailed description of how this parameter can be implemented in speech synthesis 

can be found in Section 2.3.5. 

2.3.3.3 FL model 

The Fujisaki-Ljungqvist (FL) model (Fujisaki and Ljungqvist, 1986)(see Figure 2.14), 

𝑔𝐹𝐿(𝑡), consists of 4 polynomial segments (see Equation (2.19)). 

 

Figure 2.14: Illustration of the Fujisaki-Ljunqvist model. Adapted from Fujisaki and 

Ljungqvist (1986). 

It is controlled using 3 timing parameters: open phase duration, W, pulse skew, S, and the 

time from glottal closure to the maximum negative flow, D, and 3 amplitude parameters 

controlling slope at glottal opening, A, slope prior to closure, B, and slope following 

closure, C. 

𝑔𝐹𝐿(𝑡) =

{
 
 
 

 
 
 𝐴 −

2𝐴 + 𝑅𝛼

𝑅
+
𝐴 + 𝑅𝛼

𝑅
𝑡2, 0 < 𝑡 ≤ 𝑅

𝛼(𝑡 − 𝑅) +
3𝐵 − 2𝐹𝛼

𝐹2
(𝑡 − 𝑅)2 −

2𝐵 − 𝐹𝛼

𝐹3
(𝑡 − 𝑅)3, 𝑅 < 𝑡 ≤ 𝑊

𝐶 −
2(𝐶 − 𝛽)

𝐷
(𝑡 −𝑊) +

𝐶 − 𝛽

𝐷2
(𝑡 −𝑊)2 𝑊 < 𝑡 ≤ 𝑊 + 𝐷

𝛽 𝑊 + 𝐷 < 𝑡 ≤ 𝑇

 

𝑤ℎ𝑒𝑟𝑒 𝛼 =
4𝐴𝑅 − 6𝐹𝐵

𝐹2 − 2𝑅2
 𝑎𝑛𝑑 𝛽 =

𝐶𝐷

𝐷 − 3(𝑇 −𝑊)
 , 𝑇 = 𝑓𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙 𝑝𝑒𝑟𝑖𝑜𝑑. 

(2.19) 
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What makes this model different from the others described in this section is that one of the 

amplitude parameters controls the slope of the waveform at glottal opening. This allows for 

the inclusion of discontinuities at the glottal opening and closing. 

2.3.3.4 Other glottal source models 

The Rosenberg++ (R++) model (Veldhuis, 1998) is a computationally more efficient 

alternative to the LF-model, based on an extension of the Rosenberg model. It uses the 

same time and R-parameters as the LF-model and can be used to produce perceptually 

equivalent synthetic speech. Although it is more computationally efficient the LF-model is 

used by researchers more frequently. 

Shue and Alwan (2010) proposed a glottal flow model (see Figure 2.15), based on 

observations made from imaging of the glottis. 

 

Figure 2.15: Glottal model proposed by Shue and Alwan. From Shue and Alwan (2010) 

The model is derived from the integrated LF-model and includes a higher level of 

flexibility in defining the opening and closing phase durations. It has five control 

parameters: the fundamental period, T0, open quotient, OQ, asymmetry coefficient (α), 

speed of opening phase, Sop, and speed of closing phase, Scp. The values are derived from 

the times shown in Figure 2.15. 𝑂𝑄 =
𝑡𝑜𝑡𝑐

𝑇0
, 𝛼 =

𝑡𝑜

𝑡𝑜+𝑡𝑐
, 𝑆𝑜𝑝 =

𝑡𝑜ℎ

𝑡𝑜
 and 𝑆𝑐𝑝 = 1 −

𝑡𝑐ℎ

𝑡𝑐
, where 

tch and toh are at 50% of the amplitude of the model pulse. The model is defined as: 

 

𝑔𝑆𝐴(𝑡) =

{
 

 𝑓 (𝛽𝑜𝑡, 𝜆𝑆𝑜𝑝) , 0 ≤ 𝑡 ≤ 𝛼𝑂𝑄 ∙ 𝑇0

𝑓 (𝛽𝑐(𝑂𝑄 ∙ 𝑇0 − 𝑡), 𝜆𝑆𝑐𝑝) , 𝛼𝑂𝑄 ∙ 𝑇0 < 𝑡 ≤ 𝑂𝑄 ∙ 𝑇0

0, 𝑂𝑄 ∙ 𝑇0 < 𝑡 ≤ 𝑇0

 (2.20) 

where 

 𝑓(𝑥, 𝜆∗) = 𝐴(𝜆∗)[𝑒𝜆
∗𝑥(𝜆∗ sin(𝜋𝑥) − 𝜋 cos(𝜋𝑥)) + 𝜋] (2.21) 

and 
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𝜆∗ = 𝑎𝑟𝑔𝜆𝑚𝑖𝑛𝐴(𝜆

∗) |
𝑒𝜆𝑠(𝜆 𝑠𝑖𝑛(𝜋𝑠) − 𝜋 𝑐𝑜𝑠(𝜋𝑠))

𝜋(𝑒𝜆 + 1)
+

1

𝑒𝜆 + 1
−
1

2
| (2.22) 

with 𝐴(𝜆∗) = (𝜋(𝑒𝜆∗ + 1))
−1

, 𝑠 = 𝑆𝑜𝑝 or 𝑆𝑐𝑝, 𝛽𝑜 = (𝛼𝑂𝑄 ∙ 𝑇0)
−1, and 𝛽𝑐 =

((1 − 𝛼)𝑂𝑄 ∙ 𝑇0)
−1

. Results from a model fitting test showed that this model 

outperformed the LF-model, in terms of a mean squared error criterion, on the test material 

used (Shue and Alwan, 2010). 

A perceptual evaluation of voice source models carried out by Kreiman et al.(2015) found 

that synthetic stimuli generated using the LF-model, and Shue and Alwan models were 

perceptually closer to target stimuli than the FL and Rosenberg models. This, in addition to 

its extensive use in the literature and lower number of control parameters are reasons that 

the LF-model was selected for use as the basis for synthetic voice source signals in this 

work. The latter reason, of having few control parameters, aligns with one of the main 

goals of this work, to investigate further reduction of model parameter dimensionality for 

voice quality control leading to possible control of prosodic features. 

2.3.4 Parameterising the voice source 

There are several approaches that have been explored when it comes to parameterising the 

glottal source signal. These approaches usually involve either directly measuring the glottal 

source signal or fitting a parametric model to the glottal source signal and taking 

measurements from that. This section will describe several parameterisation methods 

proposed in the literature. 

2.3.4.1 Direct measures 

Direct measurements of the time domain glottal source can offer important temporal 

information about different events within the glottal cycle. The measurements are usually 

expressed in terms of ratios or quotients relative to the glottal cycle period. The three main 

time-domain parameters that are used are the open quotient (OQ) and speed quotient (SQ), 

both proposed by Timcke et al. (1958), and the closing quotient (ClQ) (Monsen et al., 

1978). OQ is the ratio between the open phase and the total period of the glottal pulse. ClQ 

is the ratio between the closing phase and the glottal period. SQ is the ratio between the 

opening and closing phases of the glottal pulse. These measurements are sensitive to 

formant effects still present in the signal after inverse filtering, and possible noise 
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introduced by recording equipment or environment, making it difficult to ascertain exact 

timing locations. A more robust approach has been found to use amplitude-based 

measurements that relate to the time domain parameters. The normalised amplitude 

quotient (NAQ) (Alku et al., 2002) is defined as, 

 𝑁𝐴𝑄 =
𝑓𝑎𝑐

𝑑𝑝𝑒𝑎𝑘 ∙ 𝑇0
 (2.23) 

where fac is the peak amplitude of the glottal pulse and dpeak is the maximum negative 

amplitude of the differentiated glottal pulse. This measure correlates closely with the ClQ 

and OQ. It can also be seen that this parameter is very similar to Rd: note that Up is 

equivalent to fac and the value of Ee is in most cases the same as dpeak (see Equation (2.14). 

 

Figure 2.16: Glottal pulse and differentiated glottal pulse illustrating NAQ and QOQ 

measurements. 

Another measure used is the quasi-open quotient (QOQ) (Hacki, 1989). It is measured by 

finding the peak amplitude of a glottal pulse and locating points to either side of it with 

50% of the peak amplitude.  

A frequency-domain measure often used involves calculating the difference in amplitude 

level between the first and second harmonic (H1-H2) in the spectrum of the differentiated 

glottal source. 

Another frequency domain measurement is the so-called, harmonic richness factor (HRF) 

(Childers and Lee, 1991). This parameter is the ratio of the summed amplitudes of 

harmonics above the fundamental (usually 10) and the amplitude of the fundamental. 
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The main problem with taking direct measurements from the voice source is that they rely 

on accurate estimation of the voice source. Recording conditions and the method of inverse 

filtering used can degrade the accuracy of these measures. 

2.3.4.2 Phase minimisation 

Degottex et al. (2011) proposed a method of estimating Rd directly from the speech signal 

without the need for inverse filtering. This method is based on minimising a phase-based 

criterion called the mean squared phase difference (MSPD), independent of glottal pulse 

position. Rd can be derived by minimising the equation, 

 
𝑀𝑆𝑃𝐷2(𝜃, 𝑁) =

1

𝑁
∑(∆−1∆2∠𝑅𝑘

𝜃)
2

𝑁

𝑘=1

 (2.24) 

where N = |flim/f0|, flim is the Nyquist frequency, k is the harmonic number and 𝜃 is 

Rd. Computing this objective function is carried out using the second-order phase 

difference, ∆2, and the anti-difference operator,  ∆−1, with the convolutive residual, 𝑅𝑘
𝜃. 𝑅𝑘

𝜃 

is the ratio of the spectrum of a speech segment, 𝑆𝑘, with that of a model spectrum. The 

model spectrum consists of an LF pulse spectrum, 𝐺𝑘
𝜃, and a minimum phase vocal tract 

model 𝜀
(𝑆𝑘/𝐺𝑘

𝜃∙𝑗𝑘)
, where 𝜀  is a minimum phase version of the model spectrum and jk is 

the filter corresponding to lip radiation. 

This method was further developed in Huber et al. (2012) and Huber and Roebel (2015), 

with the latter describing how the method was incorporated into a speech analysis-and-

synthesis system. 

A significant advantage to this approach is that it avoids the need to inverse filter the 

speech signal before carrying it out, avoiding possible errors in glottal flow estimation. A 

disadvantage is its reliance on the phase characteristics of the speech signal. Phase errors 

or distortions introduced by the recording environment or the equipment could lead to 

inaccuracies in the parameter estimation. 

2.3.4.3 Model matching 

Another method of parameterising the voice source is to match and fit models to each 

glottal pulse. The method described in Strik et al. (1993) and Strik (1998) fits LF-model to 

differentiated glottal flow pulses. This method involves first low-pass filtering the signal 

and then estimating GCI values. For each GCI a search is made for a nearby maximum 
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negative peak. The amplitude of this peak and the timepoint it occurs at are taken as Ee and 

te respectively (see Figure 2.13). Then, the closest zero-crossing point to the left of te is 

directly measured and taken as being tp. The next point that is found is to, which is taken as 

the point to the left of tp that falls below a certain threshold. Ta is determined by fitting an 

LF-model derived from the other already estimated parameters. An optimisation procedure 

is then carried out to refine the parameter estimates. Similar model-fitting approaches are 

used in the systems described in Kreiman et al. (2006) and Airas (2008).  

The extended Kalman filtering method (EKFM), described in Li et al. (2011), estimates 

LF-model parameters (Tp, Te, Ta, α and ε) by dividing a differentiated glottal pulse into an 

open and closed phase and applying a Kalman filter (Kalman, 1960) iteratively to each 

phase. The parameters are then optimised by minimising the mean square error between 

the open and closed phases of an LF pulse generated using the parameters and the original 

differentiated glottal pulse. The results of the evaluations carried out in Li et al. (2011) 

show that EKFM outperforms a standard time-domain approach (Airas, 2008) in terms of 

estimation accuracy and computational efficiency. 

Another method of model matching, called DyProg-LF, is described in Kane and Gobl 

(2013). This approach consists of an exhaustive search of Rd parameter values, followed by 

a dynamic programming step, and finally, an optimisation step is carried out. The 

exhaustive search involves taking a three-pulse long GCI centred frame of the 

differentiated glottal source and calculating its amplitude spectrum. GCI centred synthetic 

source segments of three concatenated LF pulses for a range of Rd values (0.3-5 in steps of 

0.1) are generated using f0 and Ee values measured from the differentiated glottal source. 

The amplitude spectrum of each synthetic segment (corresponding to each Rd step) is 

calculated and an error measure is derived using the following: 

 𝑠𝑝𝑒𝑐𝑒𝑟𝑟 = {1 − |𝑐𝑜𝑟{ℎ𝑔′(𝑙), ℎ𝐿𝐹(𝑙)}|} · 𝑤𝑠, 1 ≤ 𝑙 ≤ 𝐿 ∈ [0,1] (2.25) 

Where ℎ𝑔′(𝑙) and ℎ𝐿𝐹(𝑙) are the harmonic amplitudes of the differentiated glottal source 

and LF pulse segment respectively, L is the number of harmonics up to a maximum 

frequency of 3 kHz, cor{∙} is the Pearson correlation between the harmonic amplitudes, 

and ws is a weight constant. A time-domain error is also calculated using: 

 𝑡𝑖𝑚𝑒𝑒𝑟𝑟 = {1 − |𝑐𝑜𝑟{𝑔
′, 𝑔𝐿𝐹}|} · 𝑤𝑡 , ∈ [0,1] (2.26) 

Where g’ and gLF are the current frame of the differentiated glottal flow signal and the 

synthetic LF segment respectively, and wt is a weight constant. The two weight constants, 
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ws and wt, determine the relative importance each error value has in the dynamic 

programming step. The five candidates saved for the dynamic programming step are those 

that minimise the total error function: 

 𝑡𝑜𝑡𝑎𝑙𝑒𝑟𝑟 =
𝑠𝑝𝑒𝑐𝑒𝑟𝑟 + 𝑡𝑖𝑚𝑒𝑒𝑟𝑟

2
, ∈ [0,1] (2.27)  

The dynamic programming stage (Ney, 1983) is carried out to find the optimum path of Rd 

values across the speech signal. The target cost, d(i,j), is the total_err calculated in the 

exhaustive search using Equation (2.27) for each of its LF candidates, where 1 ≤ i ≤ M, 1 ≤ 

j ≤ N, and M and N are the number of analysis frames and candidates respectively. The 

transition cost is expressed as: 

 𝛿 𝑖,𝑗,𝑘 = {1 − 𝑐𝑜𝑟 {𝑠𝑒𝑔𝑖.𝑗 , 𝑠𝑒𝑔𝑖−𝑖,𝑘}} · 𝑤𝑡𝑟 · 𝑠𝑠, ∈ [0,1] (2.28) 

where segi,j is a single LF pulse generated using the R-parameters from the jth Rd candidate 

of analysis frame i, and segi-1,k is an LF pulse generated using the kth Rd candidate of the 

previous analysis frame. wtr and ss are the transition weight constant and the inverse of the 

Itakura distortion (Itakura, 1975b), referred to as the spectral stationarity. This ss measure 

tends towards 1 when adjacent frames are spectrally similar and goes towards 0 when they 

are different. This lessens the effect of the transition costs, 𝛿𝑖,𝑗,𝑘, in regions of rapid change, 

such as consonant to vowel transitions, or voice onsets and offsets. 

Incorporating the target and transition costs, a function can be defined as, 

 𝐷𝑖,𝑗 = 𝑑𝑖,𝑗 +𝑚𝑖𝑛
𝑘∈𝑁

{𝐷𝑖−1,𝑘 + 𝛿𝑖,𝑗,𝑘} ,   1 ≤ 𝑗 ≤ 𝑁 (2.29) 

initialised with, 

 𝐷𝑜,𝑗 =  0,   1 ≤ 𝑗 ≤ 𝑁 (2.30) 

The Rd candidates that minimise Di,j are saved. 

Once the closest matching Rd values have been selected they are used to derive values for 

the R-parameters: Ra, Rk and Rg, which are optimised using a simplex-based method 

(Nelder and Mead, 1965). This method allows for multi-variable optimisation. The R-

parameters are allowed to vary so that they minimise the error functions shown in 

Equations (2.25) and (2.26). The DyProg-LF method was found to outperform the 

traditional time-domain based methods (e.g. (Strik, 1998)) and a phase minimisation 

method of estimating Rd (Degottex et al., 2011a) when estimating OQ of reference data. 
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2.3.4.4 Interactive glottal source analysis 

A different approach to improving the accuracy of inverse filtering and voice source 

parameterisation involves manually adjusting values obtained from automatic analysis 

through an interactive interface. Several systems have been developed that employ this 

method (Ní Chasaide et al., 1992; Gobl and Ní Chasaide, 1999b; Kreiman et al., 2010; 

Kane and Gobl, 2013; Dalton et al., 2014). These systems employ some kind of automatic 

inverse filtering e.g. closed-phase inverse filtering (Ní Chasaide et al., 1992; Gobl and Ní 

Chasaide, 1999b) or IAIF (Dalton et al., 2014) to provide an initial estimate of the vocal 

tract transfer function. The formant frequencies and bandwidths can then be manually 

tuned to cancel their effects using visual feedback from frequency and time-domain plots. 

Once the inverse filtering process has been completed an automatic method initially fits the 

LF-model to the pulses of the estimated differentiated glottal waveform. The user can then 

manually optimise the model fit by adjusting its amplitude and time parameters. 

Although this method of glottal source analysis can provide very accurate results, it is 

incredibly time consuming. Each glottal pulse must be analysed individually where even a 

short one second utterance will usually contain at least one hundred pulses. Another 

problem with this approach is that the user needs to have experience of this type of 

analysis, and even with this, there is a certain level of subjectivity involved when a user is 

presented with an ambiguous signal to filter or model to fit. 

2.3.5 Rd as a control parameter for speech synthesis 

As described in Section2.3.3.2, the shape of the LF-model may be described by three R-

parameters Ra, Rk, and Rg. The global waveshape parameter, Rd, decreases the number of 

parameters required to define an LF pulse’s shape to one (Fant, 1995). This reduction in 

dimensionality is of benefit when trying to parametrise a glottal source pulse as it is easier 

to determine a single best matching parameter than several (Gobl, 2003). Another 

advantage in reducing the parameter set that describes the source is in the development of 

simple, robust systems for allowing naive user control of synthetic glottal source signals, 

which is an aim of this work. 

The equations for mapping Rd to the other R-parameters (Fant et al., 1994; Fant, 1995), 

were determined using linear regression analysis on R-parameters values extracted from 

real speech in Gobl (1988) and Karlsson (1990). These analyses captured the natural 
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covariation of the glottal shape parameters allowing them to be controlled with the Rd 

parameter. 

The voice qualities resulting from the pulse shapes determined by Rd tend along a 

continuum of tense to lax voice. Lower values of Rd correspond to tenser voice, high 

values correspond to laxer voice, while values in the middle of the range correspond to 

modal voice. This makes it a very useful parameter for controlling prosodic features such 

as focus, where, studies have suggested, speakers can use shifts to tenser phonation to 

signal focally accented syllables and laxer phonation for post-focal material 

(Yanushevskaya et al., 2010, 2016b). Focus, in this case, refers to the highlighting of a 

particular unit in a sentence, through some level of prominence, an accent for example. 

The study in Degottex et al. (2012) describes how the Rd parameter can be successfully 

used in the modification of breathiness in a HMM-based synthetic voice, while another 

study used variations in Rd to produce voice qualities from very tense to very lax (Huber 

and Roebel, 2015). The Rd parameter has also been used to modify voice qualities in 

concatenative synthesis systems. The work described in Sorin et al. (2017) used Rd 

manipulations as a means to transform the voice quality of synthetic speech by adjusting 

the source signal of voiced speech in a concatenative speech synthesis system, so that it 

became, what they called, semi parametric. Yanushevskaya et al. (2017) carried out a 

principle component analysis on various voice source parameters and found that Rd was 

important in describing cross-speaker differences in voice quality. 

The results of the studies outlined in the above paragraph reinforce the idea of using Rd as 

the main control parameter in a minimal set for controlling voice quality in an interactive 

system. Minimising the set of control parameters is helpful in systems that will be used by 

non-experts, disabled users or in instances where the application is being used through a 

simple or constrained interface. 

The concept of using Rd as a control parameter for linguistic and paralinguistic prosody 

will first be tested through a set of perception experiments based on manually inverse 

filtered data where Rd is the only parameter that is being manipulated. This will provide 

knowledge of the way Rd must be manipulated in order to elicit perceived prosodic 

changes, or whether or not this can even be achieved in the absence of other parameter 

effects, especially f0. 
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The knowledge gained from the results of the perception experiments will then be used to 

develop a speech analysis-and-synthesis system that allows a user to easily control the 

prosody of synthetic speech manually by manipulating Rd and other voice source 

parameters, as well as vocal tract characteristics. 

In order to generate unseen synthetic speech outputs for applications such as educational 

games or expressive TTS programmes/screen readers, the analysis-and-synthesis system 

needs to be integrated into an SPSS system. This is another advantage to using a small set 

of parameters because it is favourable to keep the input parameter sets of such system as 

small as possible to reduce analysis, training and synthesis times. 

The effectiveness of using the Rd parameter in the analysis and synthesis, and SPSS 

systems will also be demonstrated through a set of perception tests, including user driven 

tasks, with control interfaces developed as part of this work. 

2.3.6 Selection of model and methods 

Based on the review of the literature the following approaches were used for the work 

carried out in this thesis. 

The GFM-IAIF approach of inverse filtering with DAP was selected due to its robustness 

and greater accuracy at estimating the frequency response of the vocal tract. GFM-IAIF 

has been shown to outperform other methods of IAIF (Perrotin and McLoughlin, 2019). 

The LF-model was chosen to parameterise the differentiated glottal flow because of its 

wide use in literature and the fact that it can be expressed using the global waveshape 

parameter, Rd. This is beneficial when it comes to implementing control interfaces for 

voice quality transformation, where a more complex multidimensional description would 

be confusing to a user and might require expert knowledge to operate. 

The transformed LF-model was used in this work due to the fact that using a single 

waveshape parameter minimises the complexity of parameter selection and user control of 

voice quality in speech synthesis applications. 

The model matching approach described in Kane and Gobl (2013) was used to estimate 

this parameter from the differentiated glottal flow signals obtained from inverse filtering 

because it has been proven to perform better than traditional time-domain based and phase 
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minimisation methods and is better suited to parameterise large speech corpora than 

interactive methods. 

2.4 Chapter conclusions 

This chapter described aspects of the speech production system that are important in the 

context of understanding topics discussed in further chapters. The chapter began by 

outlining the anatomy related to the speech production system, then going into greater 

detail for the main structures involved. The process of vocal fold vibration, the resulting 

voice qualities, their function in linguistic and paralinguistic contexts and the vocal tract 

were discussed. The acoustic theory of speech production was also introduced, describing 

how speech can be represented as a source signal being passed through a vocal tract filter 

with the additional effects of lip radiation. Applying this model of speech production 

means that the individual components may be separated and analysed using digital signal 

processing techniques. 

This chapter also reviewed some of the main approaches for analysing and parameterising 

the voice source. The chapter also included a description of several glottal source models 

and how the waveshape parameter of the LF-model, Rd, can and has been used as a control 

parameter for voice quality in speech synthesis. The chapter finishes by listing the selected 

methods and model to be used in this work, based on their benefits and how well they fit 

this work’s aims. 
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Chapter 3. Speech synthesis 

With the advancements in technology over the past several decades, it has been possible to 

use analogue and digital electronics to synthesise speech. While vast improvements have 

been made to the naturalness, intelligibility and quality of synthesised speech, it has still 

yet to reach a level of expressivity comparable to the human voice. It is an important factor 

when considering the main applications of speech synthesis, such as assistive screen-

readers and text-to-speech programs for individuals with sight, speech or reading 

impairments, educational programs and games, and language processing programs on 

mobile devices, when being used in combination with speech recognition software. In all 

these applications the ability to synthesise speech with an expressivity and naturalness 

comparable to human speech would be a huge advantage. It is for this reason that the 

ultimate goal of speech synthesis research is to develop a method of synthesis that can 

closely replicate the qualities of natural speech, while still remaining practical in terms of 

computational and memory costs. While achieving this high level of natural expressiveness 

is of utmost importance, another crucial element to improve the functionality of speech 

synthesis is the implementation of a way with which to control this expression. This can 

only be achieved through a high degree of parametric flexibility. 

3.1 Methods of speech synthesis 

The following sections contain a brief description of the speech synthesis methods that are 

relevant to the research being carried out. The approaches discussed in this chapter can be 

separated into two main categories, rule-based and corpus-based. Rule-based approaches 

rely on understanding the principles of how the speech production system operates and 

modelling these principles in order to generate speech. Formant and articulatory synthesis 

are examples of rule-based approaches. On the other hand, corpus-based approaches utilise 

recordings of natural speech, directly using the audio waveforms, or parameterising and 

modelling them to train a statistical framework for example. Concatenative, statistical 

parametric and end-to-end speech synthesis are examples of corpus-based approaches. 

Each method tackles the problem of accurately synthesising natural speech in quite a 

different way and some of the advantages and disadvantages will be discussed. 
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3.1.1 Formant synthesis 

Formant synthesisers rely on a set of rules that describe the acoustic parameters of speech 

and the way that they vary over time. These rules must first be derived by experts through 

analysis of speech data and knowledge of the natural limits of speech production. These 

rules describe the way in which the acoustic parameters, such as 𝑓0 and formant/anti-

formant values, change over time. For voiced speech, a periodic signal is used to represent 

that glottal source. This can take the form of a simple pulse train, but more sophisticated 

glottal source models have been utilised to obtain much more natural sounding synthetic 

speech (Klatt, 1980). Noise is used as the source signal for unvoiced speech. 

Formant synthesis can produce perfectly intelligible speech, but the form of 

parameterisation used leads to somewhat ‘processed’ sounding speech that is easily 

identified as being synthetic. The rules that control the parameters also require expert 

linguistic knowledge when being defined. This is not always feasible for applications 

where many voices are required, due to time and cost constraints. 

3.1.2 Articulatory synthesis 

Articulatory speech synthesis is the method of speech synthesis that most closely models 

the human speech production process. The very first speech synthesiser, created by von 

Kemplen in the 18th century (von Kempelen, 1791), was an example of an articulatory 

synthesiser. It used a bellows in place of the lungs, and tubing, boxes and pipes in place of 

the rest of the speech production system. It could not produce actual speech, but speech-

like sounds. More recent synthesisers using this method model the physical processes 

involved in the articulation of speech and how they change with time digitally (see 

examples in (Rubin et al., 1981; Birkholz, 2005; Birkholz et al., 2015). In theory, this 

method should produce the most natural sounding speech, and it does so very well for 

static vowel sounds, but difficulties arise when it comes to obtaining the data to describe 

the dynamic movements and processes of the speech production system. This task is made 

easier with modern imaging techniques, such as magnetic resonance imaging (MRI) and 

ultrasound. There are still difficulties when trying to synthesise continuous speech due to 

problems when attempting to model intricate coarticulation effects. These lead to an 

overall lowering of naturalness in generated speech and make it less viable for 

implementation in commercial TTS systems. There is, however, a very vital need for this 
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method in the study of speech production, articulator physiology and audio-visual 

synthesis (Bailly et al., 2003; Taylor, 2009). 

3.1.3 Concatenative synthesis 

Concatenative speech synthesis builds speech by combining short segments of recorded 

speech selected from a corpus. One form of concatenative speech synthesis is diphone 

synthesis. This method involves constructing a collection of all the diphones (pairs of 

phones) that exist in a language, and concatenating them at synthesis time using some form 

of digital signal processing (e.g., linear prediction, pitch-synchronous overlap and add 

(PSOLA) (Hunt et al., 1989; Moulines and Charpentier, 1990; Moulines and Verhelst, 

1995; Compernolle and Wambacq, 2000; Hamon et al., 2003) ). 

Another method that is commonly used today is unit selection synthesis (Black and 

Campbell, 1995; Hunt and Black, 1996; Black and Taylor, 1997). Rather than using 

diphones, this method utilises a corpus containing a whole range of speech units, from 

whole sentences and phrases, down to sub-phone segments. These units are then clustered 

according to similar acoustic characteristics and linguistic contexts. At synthesis time, the 

best units are selected from the corpus by minimising a target cost associated with each 

unit and a concatenation cost between the selected units. The target cost is related to how 

well a unit fits in terms of acoustic and linguistic context. The concatenation cost is related 

to how well a particular unit matches the other units in the utterance to be synthesised. 

The relatively small amount of processing of the speech samples used in this method 

results in the most natural-sounding synthesised speech, but this naturalness comes at a 

cost. The use of recorded audio samples as the base unit for this synthesis means that it 

requires a large, memory-heavy database from which to work from. This can be somewhat 

of a restriction when it comes to applications based on embedded or mobile devices that 

only possess a limited amount of internal memory. Another issue with this synthesis 

method is that there is very limited control of the voice characteristics. The characteristics 

of the speech being synthesised will generally be similar to that of the database being used. 

A further issue is that although the speech may sound very natural, distortions may occur at 

the concatenation points between the speech units. This is caused by the differences 

between the phonetic units taken from different words, which can lead to prosodic and 

acoustic mismatches when the units are placed in the wrong context or come from different 
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utterances. These distortions can be quite jarring to a user and are undesirable in 

applications where smooth speech at a high playback speed might be required (e.g. screen-

readers). On the other hand, applications that require more natural-sounding speech (e.g. 

video games) can take full advantage of the high-quality of concatenative speech synthesis 

when implementing character voices with little concern over playback speed. 

3.1.4 Statistical parametric speech synthesis 

Statistical parametric speech synthesis (SPSS) uses statistical models to produce a best-fit 

speech sound by averaging out a set of similar sounding sections of speech (Zen et al., 

2009). This approach is a relatively recent development in speech synthesis and can 

produce high quality speech that is both intelligible and fully parametric. Up until recently 

the statistical models used in this form of synthesis were based on hidden Markov models 

(HMM), but now more commonly deep neural networks (DNN) are used in their place. 

Most SPSS systems consist of three stages. The first stage involves analysing and 

extracting acoustic parameters from a speech corpus using a vocoder. These parameters are 

then used in the second stage, where statistical models are trained (e.g. HMMs, DNNs, 

etc.). These models can then generate parameters corresponding to the desired sequence of 

phonemes specified by the synthesiser front-end (text to phoneme interpreter). Some 

systems then use a smoothing method to produce more natural parameter trajectories 

(Tokuda et al., 2000). These parameters are then used by the vocoder to generate the 

synthetic speech waveform. 

SPSS systems require less speech material than unit-selection systems and can produce 

speech not present in the corpora they are built with, due to the modelling methods used. 

They also have a much smaller footprint, meaning they can be used on embedded devices 

with low resources. The approach taken with SPSS also means that there is the possibility 

of transforming the synthetic speech. Yamagishi et al. (2009) describes a method that 

allows for the transformation of a synthetic voice so that it sounds like a different speaker. 

Speaker styles and emotions can also be transformed as described in Yamagishi et al. 

(2004) and using DNNs as described in Takaki et al. (2016). 

SPSS can be used to produce more natural-sounding speech than some rule-based 

synthesisers and is now coming close to comparing with state-of-the-art unit-selection 

concatenative speech synthesis. The level of naturalness is mainly dictated by the way the 
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speech is modelled. Earlier speech modelling techniques, such as the Pulse-train or noise 

model (see Section 3.3.1), produced very buzzy sounding speech due to the simplistic way 

in which the source is represented. More sophisticated modelling methods have been 

proposed that improve the naturalness of speech synthesised using SPSS (see Sections 

3.3.2-3.3.5). The HMM-based Speech Synthesis System (HTS) (Tokuda et al., 2002) and 

Merlin (Wu et al., 2016) are widely used for SPSS. 

3.1.5 End-to-end speech synthesis 

End-to-end speech synthesis involves directly modelling a speech waveform from text. 

Systems based on this method seek to reduce or remove the need for expert intervention in 

defining linguistic rules and annotation and allow deep learning approaches to take care of 

these matters. WaveNet (Oord et al., 2016) is a deep neural network architecture for 

generating raw audio and speech signals. It consists of convolutional neural networks 

(CNN) that can be conditioned (i.e. trained) from acoustic or linguistic features of speech 

and can be integrated into TTS systems. Other end-to-end systems use some kind of 

intermediate representation of acoustic features. Char2Wav (Sotelo et al., 2017) uses 

traditional vocoder parameters as the output of a recurrent neural network (RNN), which 

are then used by a neural vocoder (Mehri et al., 2016) to produce the speech waveform. 

Tacotron (Wang et al., 2017) and Tacotron 2 (Shen et al., 2018) both use spectrograms as 

their intermediate features, with Tacotron 2 adding a WaveNet based vocoder to convert 

the spectrograms into audio signals. These systems can produce very natural sounding 

speech but require a large amount of speech to train them on. The direct mapping from text 

to speech also makes it difficult to allow for parametric control of voice quality. 

3.1.6 Conclusions 

Each of these methods of speech synthesis have their own advantages and disadvantages. 

While both formant and articulatory synthesis are incredibly flexible in terms of parametric 

control, defining these parameters, and the rules that govern how they change over time is 

very difficult. These synthesisers tend to have a ‘processed’ characteristic to their voices 

that can easily distinguish them from natural speech. 

Concatenative-based unit selection synthesis systems can produce very natural sounding 

speech but are very limited when it comes to controlling speaker characteristics and voice 

quality. These systems can also suffer from concatenation errors between speech units that 
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can be detrimental to their use in applications where a high speech rate is required. The 

speech database required for unit-selection voices is also quite large, which can limit their 

application. 

The end-to-end approach to speech synthesis can produce extremely natural speech, but the 

implementations are less interested in implementing control of voice quality 

characteristics, and more in producing a very natural and intelligible speech. 

SPSS systems offer a high level of parametric control, but also the ability to produce 

natural sounding synthetic speech without the need for complex previously designed rules. 

They also require a very small amount of memory in comparison to unit-selection systems. 

That being said, there are still many improvements that could be made to narrow the gap 

between the somewhat buzzy voices that they produce, and natural speech. The main 

benefit of this method in the context of the current work is that the parametric control 

allows for the manipulation of voice source and vocal tract filter parameter with relative 

ease. 

3.2 DNN-based statistical parametric speech synthesis 

Up until quite recently, most SPSS systems used HMMs as their main statistical modelling 

component. With the increases in computational power available to researchers and the use 

of graphical processing units (GPUs) to speed up calculations, DNNs are now a viable 

alternative that can yield better results. 

3.2.1 Artificial neural networks 

This section will introduce the concept of artificial neural networks (ANNs). ANNs are 

made up of units called neurons. Figure 3.1 shows the structure of one of these neurons. 

The process within a neuron involves multiplying each input, xn, by a weight, wn, and 

summing them with a bias term, b. Next, an activation function, 𝑓(∙) , is applied, such as a 

hyperbolic tangent or sigmoid function. This whole process can be expressed as, 

 
𝑦 = 𝑓 (∑𝑤𝑛𝑥𝑛 + 𝑏

𝑛

) (3.1) 

where y is the output of the neuron. The activation function acts as a kind of classifier, 

distributing the output values according to its shape. 
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Figure 3.1: Artificial neuron. 

Combinations of neurons can be arranged in an interlinked network to be used to model 

complex patterns and problems. The first layer of neurons is referred to as the input layer 

and the final layer is the output layer. In the example shown in Figure 3.2, the input layer is 

connected directly to the output layer. 

 

Figure 3.2: Neural network with two layers of neurons. 

For more complex tasks additional hidden layers of neurons can be added to the network. 

Figure 3.3 shows an example of an ANN with two hidden layers. The outputs of each layer 

feed into the next layer in the network until the output layer is reached. ANNs with several 

hidden layers are referred to as deep neural networks (DNNs). 

The usual way DNNs are trained is using an iterative process called back-propagation. This 

involves fine-tuning the weights of the neural network by considering the error in the 

output of previous training steps. The first step in the process is to feed inputs forward 

through the network, obtaining the weighted sum with the applied bias, and then passing 

these values through the activation function. The error calculated from this output is then 

fed back through the network to adjust the weights in the network so that it will output a 

more accurate value with the next training step (epoch). This cycle repeats until either a 
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pre-set maximum number of epochs is reached, or the error of the output falls below a set 

threshold (see Goodfellow et al. (2016, chap. 6) for a detailed account). 

 

Figure 3.3: Neural network with two hidden layers. 

When dealing with temporal sequences, such as speech, it can be useful to include 

information from previous epochs when calculating the weights of the current state. 

Recurrent neural networks do just that by taking into account inputs from the past few 

epochs (Goodfellow et al., 2016, chap. 10). Although this additional temporal feature 

improves modelling of short time sequences, when it is applied to longer sequences 

problems can occur. A way to circumvent these problems is to use an improved neural 

network unit like long short-term memory cells. 

3.2.2 Long short-term memory 

Long short-term memory (LSTM) cells can model long term dependencies very well which 

makes them perfect for modelling speech. A full description of LSTM cell structure and 

their underlying mathematics can be found in Hochreiter and Schmidhuber (1997). In 

addition to the input and output of a usual neuron, LSTM cells also have three gates: an in-

gate, a forget-gate, and an out-gate. The in-gate determines when an input is relevant 

enough to the problem to be remembered. The forget gate controls how long an input 

should be remembered or when it should be forgotten. The out gate determines when the 

cell should output a value. 
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Figure 3.4: Schematic of an LSTM cell 

These operations can be formulated as: 

 𝑖(𝑡) = 𝑠𝑖𝑔 (𝑊𝑖𝑥(𝑡) + 𝑅𝑖ℎ(𝑡 − 1) + 𝑝𝑖⨀𝑐(𝑡 − 1) + 𝑏𝑖) (3.2) 

 𝑓(𝑡) = 𝑠𝑖𝑔 (𝑊𝑓𝑥(𝑡) + 𝑅𝑓ℎ(𝑡 − 1) + 𝑝𝑓⨀𝑐(𝑡 − 1) + 𝑏𝑓) (3.3) 

 𝑐(𝑡) = 𝑓(𝑡)⨀𝑐(𝑡 − 1)

+ 𝑖(𝑡)⨀𝑡𝑎𝑛ℎ(𝑊𝑐𝑥(𝑡) + 𝑅𝑐ℎ(𝑡 − 1) + 𝑏𝑐) 

(3.4) 

 𝑜(𝑡) = 𝑠𝑖𝑔 (𝑊𝑜𝑥(𝑡) + 𝑅𝑜ℎ(𝑡 − 1) + 𝑝𝑜⨀𝑐(𝑡) + 𝑏𝑜) (3.5) 

 ℎ(𝑡) = 𝑜(𝑡)⨀𝑡𝑎𝑛ℎ(𝑐(𝑡)) (3.6) 

Where 𝑖(t),𝑓(t), and 𝑜(t) are the in, forget and out gates respectively; 𝑐(t) is the memory 

cell; ℎ(t) is the hidden activation at time t; 𝑥(t) is the input; 𝑊∗ and 𝑅∗ are the weights 

applied to inputs and recurrent hidden units respectively; 𝑝∗ and 𝑏∗ are the peep-hole 

connections and biases respectively; sig(∙) and tanh(∙) are the sigmoid and hyperbolic 

tangent activation functions respectively. The ⊙ symbol denotes an element-wise product. 

The DNN architecture of particular interest in this work is that of the bidirectional LSTM 

RNN (BLSTM-RNN)(Graves and Schmidhuber, 2005). This neural network structure is a 

combination of a bidirectional recurrent neural network (BRNN)(Schuster and Paliwal, 

1997) with LSTM cells. 
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Figure 3.5: Architecture of a bidirectional-LSTM RNN 

This type of network can model features over a long time span, is capable of modelling 

signals with combinations of low and high frequency components, and outperforms both 

HMM and regular DNN in a TTS system (Fan et al., 2014). 

3.2.3 DNNs in SPSS  

Zen et al. (2013) proposed an SPSS system that used DNNs to model acoustic features. As 

shown in Figure 3.6, this approach replaces the HMMs by DNNs in the training stage of 

the system. Although in this case phoneme durations from natural speech are used, the 

authors state that a separate DNN could be used to model these.  

 

Figure 3.6: Speech synthesis system using a DNN. From Zen et al. (2013) 
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DNNs are able to model much more complex relationships when compared to HMMs. 

Other DNN-based speech synthesis systems include those described in Qian et al. (2014), 

Hu et al.(2015), Hashimoto et al. (2015), and Wu et al. (2016). As the benefits of using 

DNNs have been demonstrated by the systems listed above, they were chosen as the 

method of statistical modelling for the SPSS framework that the analysis-and-synthesis 

system developed in this work would be integrated into. 

3.3 Speech modelling in speech synthesis 

The following section describes several state-of-the-art methods for modelling speech in 

statistical speech synthesis that have been developed in recent years. The following 

sections will highlight the advantages and differences between each, as well as some of 

their limitations. 

3.3.1 Pulse-train or noise 

The most basic method used for modelling speech in SPSS involves filtering a simple 

excitation. This excitation consists of an impulse train for voiced segments of speech and 

white noise for unvoiced segments. A Mel-log spectrum approximation (MLSA) filter is 

most commonly used to filter this excitation and produce synthetic speech. 

The analysis stage of this method involves extracting 𝑓0 and spectral parameters, as well as 

carrying out voiced/unvoiced detection. 

The synthesis stage of the pulse-train or noise vocoder is shown in Figure 3.7. To create 

the excitation, the 𝑓0 parameter is used to determine the period between generated impulses 

for voiced speech. The amplitudes of the impulses are scaled so that their overall energy is 

equal to that of the noise being generated. This excitation is then filtered using the 

extracted spectral parameters. 
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Figure 3.7: Flowchart of the pulse-train or noise vocoder 

Although this method is simple, robust and produces intelligible speech, it has a certain 

‘buzzy’ characteristic. This is due to the flatness of the spectrum of the impulse train 

excitation. Some elements of the higher harmonics of the source signal are still present in 

the speech output. This may be due to differences in the spectral shape of the original voice 

source and the pulse train excitation. Another shortcoming of this model is its inability to 

create an accurate excitation for mixed sounds that contain a periodic element with added 

noise (i.e. voiced fricatives). It also does not allow for any voice quality transformation. 

3.3.2 Multi-band excitation 

Multi-band excitation (MBE) models are used in SPSS as a method of reducing the 

inherent ‘buzziness’ that comes with using a simple impulse/noise model vocoder. This is 

achieved by combining spectral regions of a periodic signal with noise. This section will 

review several relevant MBE methods that are used for SPSS. 

3.3.2.1 STRAIGHT 

Speech Transformation and Representation using Adaptive Interpolation of weiGHTed 

spectrum (STRAIGHT), is a set of procedures developed by Kawahara et al. (1999) for use 

in speech modification applications. It is also well suited as an improvement on the basic 

impulse/noise vocoder for SPSS systems such as HTS. A modification of the original 

STRAIGHT programme, which we will call STRAIGHT-HTS, uses a mixed excitation 

model that includes aperiodicity parameters that act to scale the periodic and noise 

component (Zen et al., 2007). 
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STRAIGHT-HTS has been used for parameter extraction and resynthesis in several 

successful HMM-based synthesis systems, for example, NITECH-HTS-2005 (Zen et al., 

2007) Nitech-Naist-HTS-2006 (Zen et al., 2008) and HTS-2007 (Yamagishi et al., 2009). 

The original implementation of STRAIGHT uses fast Fourier transforms (FFT) 

coefficients to represent spectral and aperiodicity parameters. The high-dimensionality of 

these coefficients means that they are not suited to the modelling methods used in HMM-

based synthesis. The STRAIGHT-HTS vocoder, used in the NITECH-HTS-2005 system, 

solved this problem by first extracting the FFT coefficients using the standard STRAIGHT 

method and then converting the spectral values to Mel-cepstral coefficients. The 

aperiodicity values are grouped and averaged across a set of five frequency sub-bands (0-1, 

1-2, 2-4, 4-6, and 6-8 kHz). This band aperiodicity is then calibrated against a table-look-

up based on results from known aperiodic signals. 

 

Figure 3.8: Flowchart of the synthesis stage of the NITECH-HTS-2005 system 

Figure 3.8 shows a flowchart of the synthesis stage of the NITECH-HTS-2005 that uses 

the STRAIGHT-HTS vocoding method. For voiced segments, a mixed excitation is 

generated by combining an impulse with a noise component. Frames are generated pitch-

synchronously with a length equal to twice that of the pitch period for both the impulse and 
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noise components. The amplitude spectra of the separate frames are then weighted by 

multiplying them by two different frequency dependent stepwise functions. These 

functions are determined by the corresponding aperiodicity parameters for each of the five 

sub-bands. The impulse frame is then phase manipulated to compensate for the delay 

introduced by the system as described in Kawahara et al. (2001). The impulse and noise 

component are then combined and filtered using a Mel-log spectrum approximation 

(MLSA) synthesis filter, controlled by generated Mel-cepstral coefficients. This use of an 

MLSA filter and Mel-cepstral coefficients significantly reduces the computational cost 

compared to the FFT-based processing used in standard STRAIGHT. Finally, the filter 

frames are concatenated together using pitch synchronous overlap and add (PSOLA) to 

produce the synthetic speech waveform. 

3.3.2.2 WORLD vocoder 

WORLD (Morise et al., 2016) is vocoder-based speech synthesis system similar to 

STRAIGHT (see Section 3.3.2.1). It consists of algorithms for extracting f0, spectral 

envelope and aperiodicity values from speech, as well as a resynthesis algorithm. The f0 

extractor, called Harvest (Morise, 2017), works by first band-pass filtering speech with a 

number of filters, each with a different centre frequency. A fundamental component is 

obtained from these filters and f0 candidates are selected based on the distances between 

zero-crossing points, adjacent waveform maxima and adjacent waveform minima in a three 

pitch-period frame. Selected candidates are refined by removing rapid changes above a set 

threshold, removal of very short voiced regions, with interpolation and smoothing as a 

final step. The spectral envelope estimation, CheapTrick (Morise, 2015), is made up of 

three steps: f0-adaptive windowing using a three pitch-period Hanning window, frequency 

domain smoothing of the power spectrum, and finally, liftering in the quefrency domain to 

remove frequency fluctuations introduced by quantisation. The band aperiodicity is 

calculated using the Definitive Decomposition Derived Dirt-Cheap (D4C) estimator 

(Morise, 2016). D4C estimates the power ratio between the periodic and aperiodic 

components of speech for different frequency bands using a temporally static parameter 

calculated on the basis of group delay. The extracted parameters related to the source 

signal are then used to generate an excitation which is convolved with a minimum phase 

response derived from the extracted spectral envelope. WORLD was found to perform 
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better than a STRAIGHT based vocoder in terms of computation time and speech quality 

(Morise et al., 2016). 

3.3.2.3 Harmonic-plus-noise model 

The speech synthesiser detailed in Erro et al. (2011, 2014) uses a harmonics plus noise 

model (HNM)-based vocoder to extract three features from analysed speech signals: 𝑓0, 

maximum voiced frequency (MVF) (Stylianou, 2001; Kim and Hahn, 2007), and spectrum. 

MVF is the frequency that defines the split between the harmonic and upper noise 

components of voiced speech segments. The spectrum is represented by cepstral 

coefficients. Analysis is performed on voiced frames that determine the amplitudes of the 

harmonics at integer multiples of the detected 𝑓0 value. Unvoiced frames are analysed 

using fast Fourier transform (FFT). Cepstral coefficients are then extracted and warped to 

the Mel scale. 

For resynthesis, each frame is constructed individually and then concatenated by overlap-

and-add. The noise component for both voiced and unvoiced speech frames is generated by 

sampling the cepstral envelope. For voiced frames, the noise is then high-pass filtered 

using the MVF as the cut-off frequency. The harmonic components of voiced frames are 

then obtained using harmonic amplitudes determined by cepstral envelope values at 

multiples of 𝑓0. A minimum phase approach is used to determine the phase, and phase 

coherence is maintained across frames by the addition of a linear-in-frequency phase term. 

3.3.3 Residual modelling 

An improvement to the simple pulse-train excitation is to use the residual signal obtained 

from an inverse filtered speech signal. This removes the effects of the vocal tract filter 

from the speech signal. The remaining signal is the residual, and it may contain more 

source information when compared to the impulse train, depending on the method of 

inverse filtering carried out. This includes variations in energy, that represent features of 

the natural source to a better extent, as well as including phase information. 

3.3.3.1 Mixed excitation by residual modelling 

Maia et al.(2007a) describes a speech synthesis system that utilises an excitation model 

based upon the input of pulse train and white noise into two state dependent filters. This 
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model follows a similar approach to the Code Excited Linear Prediction (CELP) speech 

coding algorithms (Guerchi and Mermelstein, 2000), but focuses on the linear prediction 

residual rather than speech, and takes the error of the system to be the unvoiced component 

of waveform generation. A flowchart of the excitation model for this system is shown in 

Figure 3.9. The voiced part of the excitation, v(n), is constructed by filtering a pulse train 

of varying positions and amplitudes, t(n), by the voiced filter, Hv(z). The output of the 

voiced filter, v(n), is meant to resemble the residual as closely as possible. The unvoiced 

part of the excitation, u(n), is constructed by filtering white noise, w(n), by the unvoiced 

filter, Hu(z).  

 

Figure 3.9: Flowchart of the Mixed excitation generation model 

Figure 3.10 shows the system used to determine the filter coefficients and optimise the 

pulse train, t(n). In this case, the inputs of the system are the voiced excitation, v(n), and 

the residual, e(n), and the error of the system is w(n). Therefore, the error can be 

minimized through the systematic modification of the filter coefficients and the positions, 

{p1,…,pz}, and amplitudes, {a1,…,az}, of pulses within the pulse train, t(n). 

 

Figure 3.10: System for determining the most likely residual using the given excitation 

model. From Maia et al.(2007b) 

As seen in Figure 3.9, at synthesis, pulses and white noise are filtered by the voiced and 

unvoiced filters respectively. The white noise component is fist high-pass filtered with a 

cutoff of 2 kHz to account for limitations in the excitation model and improve the 

naturalness of the resultant synthetic speech. The voiced and unvoiced excitations are then 
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added together and filtered by an MLSA synthesis filter. This system was later augmented 

by including a multipulse model at synthesis time (Maia et al., 2011). 

3.3.3.2 Deterministic-plus-stochastic model 

The deterministic plus stochastic modelling (DSM) of the residual signal was developed by 

Drugman et al. (2009; 2012). This method was shown to significantly improve the 

naturalness of statistical parametric speech synthesis, particularly in terms of reducing the 

’buzziness’. Since then it has been demonstrated that this can be adapted to provide a 

natural rendering of creaky voice (Raitio et al., 2013). Although this method does not 

allow for full parametric control over the glottal source it does offer a successful example 

of voice characteristic transformation. 

 

Figure 3.11: Flowchart of the synthesis stage of the DSM vocoder. From Drugman and 

Dutoit (2012) 

A flowchart of the DSM vocoder can be seen in Figure 3.11. This vocoder creates residual 

pulses to act as the voiced excitation. These pulses contain two elements, a deterministic 

component made by performing principal component analysis of a set of residual frames, 

and a stochastic component made by applying an energy envelope and filtering noise. The 

deterministic component has been coined as the eigenresidual. Several of the parameters 

used in the vocoder are precomputed from a training data set of speech and then used at 

synthesis time. These are the MVF (represented as Fm), the eigenresidual, the estimated 

pitch of the residual, and the energy envelope and LPC coefficients of the noise 

component. This means that only two parameter streams are used as external inputs at 

synthesis time: 𝑓0 values of the source and Mel-generalised cepstral (MGC) coefficients for 

the synthesis filter. The pre-computed features are used to compose residual frames which 
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are then joined, using pitch-synchronous overlap-and-add (PSOLA), to produce the voiced 

excitation. White Gaussian noise is used as the excitation for unvoiced segments. 

3.3.4 Formant modelling 

The formant modelling approach to statistical speech synthesis integrates elements of the 

old formant synthesisers with the newer statistical parametric method. Formant values are 

extracted and directly modelled using HMMs, along with information about the source and 

several other speech descriptors that were used in the original formant synthesiser 

implementations. 

3.3.4.1 KlaTTStat 

The so-called KlaTTStat method (Anumanchipalli et al., 2010) is also close to the research 

interests presented in this thesis. This method involves parametrising speech (i.e. both 

source and filter components) using a similar method to that in the KLSYN88 speech 

synthesiser (Klatt and Klatt, 1990). This parametrisation then replaces the standard MGC 

coefficients or line spectral frequencies (LSF) modelling in the building of the statistical 

speech synthesis system. Although this method shows considerable promise, it still 

produces a distinct “processed” quality to the synthesised speech. Furthermore, the glottal 

source model used does not offer the same level of flexibility as, for instance, the LF-

model. 

This system first extracts the formant values from windowed speech samples. These values 

are then used to obtain formant amplitudes from an FFT magnitude spectrum of the same 

speech sample. The original KLYSYN88 proposed the use of coefficients to describe 

nasality, aspiration and frication. The KlaTTStat system uses a discriminative approach to 

classify these features in the data. Gaussian mixture models (GMMs) are used to find the 

probability of these articulatory phenomena occurring. This classification is performed on 

the appropriate phonemes for each feature (i.e. nasality, [n, m, ŋ]; frication, [f, h, s, ʃ, θ, v, 

z, ʒ]; and aspiration, [h]). The output of this detector can then be used to determine 

whether, and the degree to which one of these features occur. The original synthesiser also 

included parameters for gain, skew and aturb (amplitude of turbulence). These were set in 

such a way that synthesised speech sounded as similar as possible to the original speaker. 



 

 

Chapter 3. Speech synthesis 59 

 

 

 

The system trained voices using the 40 parameters suggested for the KLYSYN88, with 

statistical modelling being carried out by the CLUSTERGEN synthesiser (Black, 2006). 

Once the voice has been trained, a C implementation of the original KLSYN88 synthesiser 

is used to resynthesise from generated parameters. Although this method produced 

intelligible speech, the authors state that it retains the robotic sound of the original Klatt-

based synthesisers. 

3.3.5 Glottal source modelling 

Another method to improve the naturalness of synthetic speech is to try and replicate the 

exact details of the glottal source. This can be achieved by either using estimated samples 

of the real glottal flow or by closely modelling it. By using estimates of the real glottal 

flow, a high level of naturalness can be achieved, but this approach lacks the level of 

parametric flexibility offered by a model. This section describes three methods that utilise 

both of these approaches. 

3.3.5.1 HTS-LF 

The HTS-LF synthesis system involves parametric modelling of the glottal source signal, 

using the LF-model (Cabral, 2010; Cabral et al., 2011, 2014). The effects of the estimated 

glottal source signal are then removed from the speech signal and the remainder is 

modelled using the STRAIGHT spectral envelope. 
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Figure 3.12: Flowchart of the analysis stage of the HTS-LF vocoder. From Cabral (2010) 

The basis of the vocoder used in this synthesiser is a process coined glottal spectral 

separation (GSS). The first step of GSS is to estimate the glottal flow derivative by 

performing inverse filtering, using the IAIF method, on the speech signal. LF-model pulses 

are then estimated, using an optimization method, to the glottal cycles of the derivative 

signal. Next, the spectral parameters are estimated. A cycle of the estimated LF-model is 

then calculated, and its amplitude spectrum is used to remove the source model effects 

from the speech spectrum. STRAIGHT is then used to extract the spectral envelope of the 

signal resulting from the separation of the estimated LF-model spectrum from the speech 

spectrum. 
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Figure 3.13: Flowchart of synthesis stage of the HTS-LF vocoder. From Cabral (2010) 

For the synthesis stage, each frame of voiced speech uses two pitch cycles, starting from 

the time of the main excitation of the first cycle. This signal is then multiplied by a 

Hamming window and its spectrum calculated using fast Fourier transform (FFT). This 

spectrum is then multiplied by the amplitude spectrum obtained from the spectral 

parameters extracted during the analysis stage. The waveform is then generated by 

calculating the inverse FFT of the resulting spectrum and phase of the excitation signal, 

along with removing the DC offset and effects of the Hamming window. The final frames 

are multiplied by asymmetric windows and concatenated using PSOLA. 

3.3.5.2 GlottHMM 

The GlottHMM synthesis system (Raitio, 2008; Raitio et al., 2011) uses inverse filtering to 

obtain an estimate of the glottal source, similar to the HTS-LF method. However, unlike 

the HTS-LF method, this method involves storing glottal source frames. At synthesis time 

these frames are resampled to meet the f0 specifications and combined with a vocal tract 

filter. This approach has been shown to produce very high-quality synthesised speech, with 

subjective evaluation showing better levels of naturalness than both standard vocoders and 

the state-of-the-art STRAIGHT-HTS vocoder. Although glottal pulse frames can be 

modified at synthesis time, as they are explicitly modelled, comprehensive parametric 

flexibility is not available. 
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Figure 3.14: Flowchart of the analysis stage of the GlottHMM vocoder. From Raitio et al. 

(2011) 

The analysis stage involves parametrisation of the training data. The glottal source and the 

vocal tract models are separated using IAIF. The signal is first high-pass filtered with a 

cut-off frequency of 60Hz to remove any low frequency components that might interfere 

with the inverse filtering of the glottal source. IAIF is used to remove the spectral effects 

of the vocal tract and lips from the speech waveform. The output of this filter is the 

estimated glottal flow signal and a linear predictive coding (LPC) representation of the 

vocal tract filter. 

 

Figure 3.15: Flowchart of the synthesis stage of the GlottHMM vocoder. From Raitio et al. 

(2011) 
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During analysis, LPC representations of the glottal flow and unvoiced parts of the training 

data are also extracted. In order for these LPC models to be more robust to the statistical 

modelling that takes place within HTS, they are converted to Line Spectral Frequency 

(LSF) representations (Soong and Juang, 1984), as well as being adapted to the Mel-scale, 

a frequency scale which more closely represents the perceived pitch scale. Autocorrelation 

is used to calculate the 𝑓0, and FFT is used to calculate the spectral energy of speech 

frames to generate the correct unvoiced excitation at synthesis time. This set of extracted 

parameters is then used in the training stage as described below. 

An improved version of this vocoder was introduced in Airaksinen et al. (2016) called 

GlottDNN. As the name suggests, this vocoding method generates a glottal excitation 

signal using a DNN-based approach, and also uses the QCP method of inverse filtering 

(see Section 2.3.1.4) in place of IAIF. 

3.3.5.3 SVLN 

Glottal source modelling is also utilised in the procedure called Separation of the Vocal-

tract with the Liljencrants-Fant model plus Noise (SVLN) (Degottex, 2010; Degottex et 

al., 2012). This procedure involves analysis and parameterisation of the glottal source and 

estimation of the vocal tract. Resynthesis involves concatenating LF pulses, along with an 

amplitude modulated noise component, for voiced speech, and windowed frames of noise 

for unvoiced. 

During analysis, this method assumes that the glottal source spectrum can be divided into a 

deterministic part and a random part. The split of voiced/unvoiced takes place at the MVF, 

which can be estimated using established methods (Stylianou, 2001; Kim and Hahn, 2007). 

Rd values for each glottal source pulse are estimated using phase minimisation (Degottex et 

al., 2011a)(see also Section 2.3.4.2). The noise components of each glottal source pulse are 

also estimated along. The vocal tract filter is represented in two parts split at the MVF, a 

True-Envelope (Villavicencio et al., 2006) cepstral envelope for the harmonic component, 

and a cepstral envelope for the noise component. For unvoiced speech the MVF is reduced 

to zero, meaning that the vocal tract filter is represented purely by a cepstral envelope. 

At synthesis the signal is reconstructed in the spectral domain by mixing filtered and 

modulated noise components with generated LF-model pulses. Each pulse is then 

convolved with the estimated vocal tract filter and radiation characteristics before being 
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transformed to the time domain using envelope inverse fast Fourier transform. The filtered 

pulses are then concatenated using PSOLA. 

This method has been found to successfully transform the pitch and breathiness of 

synthetic speech (Degottex et al., 2011b). Although it was originally found to be lower 

quality than STRAIGHT when used for HMM-based speech synthesis (Degottex, 2010), a 

later adaptation of this method did provide better results (Degottex et al., 2018). 

3.3.6 Glottal source modelling in concatenative synthesis 

All the speech modelling methods discussed in the previous sections are designed to be 

used in SPSS systems that generate synthesis parameters from statistical models trained on 

a speech corpus. The following methods are designed to be used with concatenative 

systems to allow for the manipulation of the voice source, and in the case of the method 

described in Section 3.3.6.1, manipulation of filter parameters also. These methods have 

similarities to the method proposed in this thesis but differ in the fact that their aim is to 

allow flexible control in concatenative synthesis rather than in SPSS. 

3.3.6.1 IBM TTS - Semi Parametric Concatenative TTS 

Researchers at IBM have integrated a glottal vocoder into their Concatenative synthesis 

system that allows for the transformation of speech at synthesis time (Sorin et al., 2017). 

After a pitch contour has been extracted, analysis is performed pitch synchronously on 

each voiced frame, while unvoiced frames are ignored.  For each voiced frame, the 

differentiated glottal pulse is estimated using IAIF. This pulse is then parameterized by 

fitting to it an LF-model pulse that most closely correlates to it. Aspiration noise is 

calculated by subtracting the LF-model pulse from the differentiated glottal pulse. The 

vocal tract transfer function is obtained by removing the combined effects of the LF-model 

pulse and aspiration noise from the original speech and using LPC analysis to model the 

resulting vocal tract estimation. 

3.3.6.2 CerePulse 

CerePulse (Buchanan et al., 2018) is another example of a glottal model being used to 

modify speech for unit selection synthesis. In this case, voice quality modifications are 



 

 

Chapter 3. Speech synthesis 65 

 

 

 

carried out on suitable regions of voiced speech to increase the expressive range of a 

speech corpus. 

The process uses pitch-synchronous IAIF to obtain the raw differentiated glottal flow 

estimate. Areas deemed suitable for modification are found by finding the likelihood of 

them matching LF-model parameter contours. 

 

Figure 3.16 Flowchart of the CerePulse speech modification system. From Buchanan et al. 

(2018) 

Once the suitable regions have been found, optimal LF pulses are found for each pitch 

frame by using a set of LF parameters that maximises the correlation between them. These 

LF-model parameters can then be modified and used to generate pulses that would result in 

different voice qualities. This allows for the generation of several different voice quality 

sub-corpora, in this case for tense and lax voice. Aspiration noise is also added to the pulse 

frames by high-pass filtering white noise and weighting it according to the specific voice 

quality. 

It was found that although this approach is useful for generating sub-corpora of differing 

voice qualities where otherwise they would not be available, the lower level of naturalness 

means that it cannot fully replace the approach of recording sub-corpora for unit-selection 

voices. 
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3.4 Chapter conclusions 

This chapter briefly described the methods of speech synthesis relevant to the research 

carried out in this work. Formant and articulatory synthesis are examples of rule-based 

approaches, while concatenative, SPSS and end-to-end speech synthesis are examples of 

corpus-based approaches. Each of these approaches attempts to solve the problem of 

synthesising natural speech in quite a different way. The approach adopted in this work 

was based on SPSS due to the following points: 

• It offers a high level of parametric control. 

• Its ability to produce natural sounding synthetic speech without the need for 

complex previously designed rules. 

• It requires a very small amount of memory in comparison to unit-selection systems. 

• The ability to incorporate a more sophisticated source model to allow for the 

transformation of voice quality. 

While up until recently HMMs were used as the basis for statistical modelling within SPSS 

systems, they have now been mostly replaced by DNN-based approaches. This is mainly 

due to their ability to model more complex relationships than HMMs. This chapter 

included an introduction into the concepts of artificial neural networks, long short-term 

memory and systems that utilise DNNs within SPSS. 

This chapter also included a review of several of the main methods of speech modelling in 

speech synthesis. Each of the methods presented approaches the problem of synthesising 

speech in a different way. Some can create very natural speech, while others offer a high 

level of parametric flexibility that can be used to transform aspects of the voice. The 

methods of speech modelling that generate synthetic glottal source signals are the most 

promising methods when it comes to controlling voice quality and speaker characteristics. 

GlottHMM/DNN produce voices with a very high level of naturalness but require a library 

of glottal pulses rather than allowing for full parametric control of the source signal. The 

HTS-LF and SVLN approaches offer both high levels of naturalness and a degree of 

parametric flexibility, but they lack a direct interface for straightforward user control of 

their underlying source parameters. The concatenative speech synthesis methods require 

large speech corpora and have a much larger memory footprint. The proposed system will 

include a user interface, allowing for intuitive control of parametric features related to the 
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voice source and voice quality. It is hoped that by controlling these dimensions the user 

will also be able to control the prosody of synthetic utterances. The next chapter will go on 

to discuss the links between voice quality and prosody. 
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Chapter 4. Voice quality and prosody 

One of the main goals of this work is to investigate how a small set of parameters can be 

used to control linguistic and paralinguistic prosody in speech synthesis. This chapter will 

introduce the aspects of prosody that are focused on in this thesis, discussing how the voice 

source contributes to it, and how it is implemented in speech synthesis. 

Prosody can be thought of as the music-like modulations of speech. Just as music has 

dynamic modulations of pitch and timbre, along with temporal/rhythmic properties, spoken 

language also entails modulations of pitch, voice quality (of which intensity is one 

component) and timing/rhythmic properties. In speech research, there has been an 

overwhelming emphasis on the melodic dimension, i.e., the modulation of f0. Prosody 

operates at the suprasegmental level and contributes to the information content of an 

utterance in various ways, some of which are dealt with here. 

Broadly speaking, prosody can be seen as having two types of communicative function, 

linguistic and paralinguistic. The term ‘linguistic prosody’ includes the melodic variations 

that are associated with different sentence modes (statements, questions, etc.); the location 

of stress (which in English differentiates word classes, e.g., REBel vs. reBEL, (Gay, 

1978)), and in languages with fixed stress, helps the listener identify word boundaries. 

Focal accentuation on a given syllable in a phrase (WE were away a year ago vs. we were 

AWAY a year ago) (Ladd and Morton, 1997), enables the listener to identify the most 

important item in the utterance. Prosody also enables the listener to chunk and segment the 

phrase (Jusczyk et al., 1992). 

The term ‘paralinguistic prosody’ is often used to refer to quite a different signalling 

function of prosody, which includes information of the speakers’ emotional state, his/her 

attitude and relationship to the interlocutor. Prosody contains vital parallel strands of 

information about the way in which a speaker wishes their speech to be interpreted, 

whether it be providing specific information to a listener, and/or carrying an emotional 

message. 

In human interaction, prosody is very important to the meaning the listener takes from the 

message. In synthetic speech, inadequate prosody can not only have an impact on the 
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meaning of the utterance, but it can also reduce its intelligibility and naturalness, making it 

harder to listen to for extended periods of time. For these reasons it important to generate 

convincing prosodic patterns when synthesising speech. 

Given that the vast majority of linguistic research has been directed at understanding f0 and 

timing aspects of prosody, research on speech synthesis technology has likewise focused 

on analysing and modelling f0 modulations as a means of introducing prosody into 

synthetic speech. However, research such as that reviewed above, highlights the 

fundamental importance of all dimensions of the voice source and not only f0. Relative to 

the other parameters involved in prosody, voice quality has the least amount of associated 

research. This is mainly due to the difficulty in analysing the voice source when compared 

to analysing the parameters associated with the other dimensions of prosody. For the 

purposes of this work, the term voice prosody will be used to describe aspects of prosody 

related to the voice source. 

One of the goals of this work is to investigate the role of voice quality modulation in 

prosody and to explore how voice source modulation might be controlled, in order to 

incorporate it into speech synthesis. This work focuses on the voice quality dimension and 

sets out to develop an easy to use analysis-and-synthesis system that allows a user to 

manually control this feature. Most speech synthesis methods focus on extracting 

information about prosody from text, but it is the goal of this work to build a system that 

allows for the production of prosodic patterns that are defined by the user through a 

graphical user interface. 

One point to note is that the present work deals with voice quality mostly in the absence of 

f0 variation. Clearly both melodic and voice quality dimensions work together, but the 

focus here is on expanding our understanding of the ‘missing dimension’ of voice quality. 

Detailed investigation of how these two dimensions work synergistically can then follow in 

future work. 

4.1 Voice quality in linguistic prosody 

The term linguistic prosody is used here to refer to the prosodic features that are described 

in mainstream linguistic research. These prosodic modulations serve a number of different 

functions: they help cue grammatical structure; they aid the listener in decoding the stream 



 

 

Chapter 4. Voice quality and prosody 71 

 

 

 

of speech into words, phrases, etc., they help cue the listener on the information structure, 

i.e. which parts of an utterance they need particularly to attend to; they help regulate 

discourse so that listeners know whether the speaker’s turn is coming to an end and 

whether the floor is being yielded or not (Cutler et al., 1997). 

There are many aspects of this vast area that could be examined, but in this work the focus 

is on one particularly important feature, prominence. Prominence can be defined as a 

prosodic property where a linguistic element is perceived as standing out from its 

environment (Terken and Hermes, 2000). Obtaining control of this prosodic dimension is 

important in the implementation of speech synthesis systems, as it allows for particular, 

distinct linguistic meanings to be derived from an originally neutral sentence, by the 

addition of emphasis to a syllable, word or phrase. As with other aspects of prosody, the 

majority of research into prominence has been focused on the contribution of f0 (Terken, 

1991, 1994; Gussenhoven et al., 1997; Hermes, 2006; Vainio and Järvikivi, 2006; Knight, 

2008), and until relatively recently the contribution of voice quality modulation was 

largely overlooked. The present work looks mainly at the influence of voice quality on 

prominence, and thus, the following section reviews studies concerned with voice quality 

and how it is connected with prosodic prominence. 

A study by Epstein (2003) found there to be differences in modal voice quality used to 

distinguish between prominent and non-prominent words. This study also found that 

speakers used tense voice to signal prominence, and that changes in voice quality tend to 

occur at phrase boundaries and on accented words. The statistical analysis of voice source 

parameters, carried out by Iseli et al. (2006), found that stressed syllables have less steep 

spectral slope, indicating relatively greater amplitude of higher harmonics (and suggesting 

tenser phonation). Pierrehumbert (1989) found that high pitch accents were distinguished 

by differences in voice source parameters that were not usually associated with high pitch. 

A study carried out by Yanushevskaya et al. (2010) describes an investigation into the role 

of source parameters in signalling focal prominence in English. The results indicate that 

both prominence-lending voice source adjustments (tenser phonation) of the focally 

accented item and deaccentuation in post-focal material, indicated by changes in several 

source parameters linked to a laxer voice quality, are used in signalling focal prominence 

in English. A further analysis of source parameters in utterances with varying focal 

placement and with falling and rising pitch was carried out in Ní Chasaide et al. (2011b). 
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This study again describes shifts to tenser phonation on the focally accented syllable, while 

post-focal material underwent a complementary deaccentuation shift towards laxer 

phonation. 

Results from production-based analyses of voice source correlates of accentuation led to 

the Voice Prominence Hypothesis (Ní Chasaide et al., 2013). This hypothesis proposes that 

different dimensions of the source – f0 and voice source settings governing phonatory 

quality – together contribute to our perception of prominence, whether on accented or on 

focally accented syllables. It further suggests that these dimensions allow a certain degree 

of freedom in realisations: a greater use of, say, tense voice to signal prominence ‘allows’ 

for less use of f0 cueing: it is proposed that the extent to which melodic or voice quality 

cues are used may depend on the speaker, or on the location of focal prominence in the 

utterance, and most likely other factors. 

A further production-based study (Ní Chasaide et al., 2015) demonstrated how declination, 

typically treated as a phenomenon involving f0, is similarly a matter of complex source 

changes, involving shifts in several source parameters, indicative of laxer phonation, along 

with the lowering of f0. This study also highlights the interaction of prominence and 

declination. Many of these source parameter adjustments take place along the tense-lax 

dimension of voice quality. 

The study of accentuation in Irish (Ní Chasaide et al., 2013) showed that, while there were 

consistent voice quality correlates of accentuation, f0 involvement was found to be a 

frequent, but not a necessary, associated feature, at least in the case of pre-nuclear position. 

As in focal accentuation, the prominence level of the accented syllable involves not only 

the source ‘boosting’ of the accented syllable but also the relative attenuation of adjacent 

syllables. 

Analytical studies exploring cross-speaker variation in the signalling of focus 

(Yanushevskaya et al., 2017) and source correlates of focal prominence across different 

voice qualities (Vainio et al., 2010; Yanushevskaya et al., 2016b) showed that baseline 

(speaker-specific, habitual) voice quality is likely to have an impact on speaker strategies 

in signalling focus. Although most recent similar studies appear to point to tense phonation 

as being associated with the focally accented syllable, a study carried out on Finnish found 

that prominence was associated rather with a laxer voice quality, as indicated by a higher 
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NAQ value (Vainio et al., 2010). This finding runs contrary to the findings for English and 

illustrates the fact that the use of a more tense voice quality in signalling prominence 

cannot be assumed to be a universal tendency. This points to a need for language specific 

‘rules’ when it comes to implementing prosodic variation in speech synthesis. 

Given the findings of the studies listed above, it can be seen that voice quality has a very 

important role to play in the production and perception of prominence. It is important to 

exploit our knowledge of the voice source to establish the effect of differences in voice 

quality on signalling prominence in synthetic speech so that it may be utilised in the 

system developed in this thesis. 

As part of this work, experiments were conducted to explore perceptual salience of voice 

quality modulations. In particular, it was of interest to establish if manipulations of the Rd 

parameter, without f0 salience, can be used to generate focal prominence in synthetic 

speech. Two experiments were conducted involving listening tests with synthetic stimuli. 

The first experiment used Irish English speech data and the second used Irish speech data. 

An additional experiment was also carried out to investigate if voice quality manipulations 

could be used to signal changes in paralinguistic prosody, and the background to this 

experiment is discussed in Section 4.2. 

4.2 Voice quality in paralinguistic prosody 

Paralinguistic, or affective, prosody can be thought of as the characteristic of the voice that 

carries the crucial affective and attitudinal information of a message. When we decode 

speech, we not only decode the string of words, but also other information about the 

speaker’s emotional state and mood (angry, sad, bored), along with their attitudes and 

relationship to us (friendly, condescending, sarcastic, polite) (Scherer, 2003). Until 

recently, this aspect was not included in most linguistic accounts of prosody and was more 

the domain of psychologists such as Scherer. The research has tended to be largely directed 

at f0, intensity and timing, although the contribution of voice quality is widely 

acknowledged as crucial, little information on this aspect has been available. 

Incorporating expressive, or affective prosody into speech synthesis is one of the most 

difficult problems that researchers encounter when trying to generate natural sounding 

synthetic speech. There are many reasons for this. One such reason is that speech synthesis 
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is normally based on a text input (text-to-speech), and while some (but by no means all) of 

linguistic prosody can be derived on the basis of text, paralinguistic prosody is a feature of 

spoken language which is not notated in written forms. A second reason is as mentioned, 

most research on this aspect of prosody was directed at global modifications of f0, intensity 

and speech rate – but perception studies by Scherer and colleagues report limited success 

in the modelling of paralinguistic prosody by incorporating just these modulations. 

Other approaches to implementing expressive prosody in speech synthesis involve 

complex speech parameter manipulations that require expert knowledge (Cahn, 1990; 

Murray and Arnott, 1993), the use of large emotional speech corpora (Douglas-Cowie et 

al., 2003; Iida et al., 2003), or utilizing model adaptation techniques and transformation 

methods (Tsuzuki et al., 2004; Yamagishi et al., 2005). These methods may require 

extensive resources, such as expressive speech corpora, that may not be available for many 

languages. This means that an alternative method is needed to achieve expressive speech 

synthesis. 

The need to explicitly incorporate voice quality modulation has been emphasised for many 

years, e.g., by Banse and Scherer (1996). This point is highlighted by Scherer (1996, p. 

1811): 

…much of speech synthesis is flawed by the lack of appropriate affective variation in 

prosody and voice quality which seems to be required for both intelligibility and 

acceptability. 

Studies carried out in the Phonetics and Speech Laboratory in Trinity College Dublin 

(Gobl et al., 2002; Gobl and Ní Chasaide, 2003; Ryan et al., 2003; Yanushevskaya et al., 

2011, 2018) showed that synthetic stimuli of basic voice quality types generated using the 

KLSYNN88 synthesizer (Klatt and Klatt, 1990) were consistently associated by listeners 

with particular affective states. Yanushevskaya et al. (2018) further points to a language 

dependency in the mapping of voice quality to affect: results of perception tests on 

speakers with different language backgrounds showed that languages could differ 

considerably in how a specific voice quality might be associated with affective states 

(although there were also many cases of cross-language similarity). Despite a number of 

studies pointing out the crucial role of voice quality in signalling speaker affect (Gobl and 

Ní Chasaide, 2003; Scherer, 2003; Patel et al., 2011; Sundberg et al., 2011), the data (from 

production and perception studies) are still very limited.  
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Control of the voice source is, therefore, an important aspect of building expressive speech 

synthesis systems. Being able to readily manipulate voice source parameters in synthetic 

speech is also important, offering a means to explore how this aspect of prosody works 

using perception tests. It should be noted that although several of the above studies have 

found that even though f0 and voice source parameters tend to covary to an extent, this is 

not always the case. This suggests that having the ability to control these parameters 

independently is necessary. 

For this reason, the goal of this work was to develop an interface that operates 

independently of specific affective labelling, that would give the user the freedom to 

manipulate and control voice source parameters in synthetic speech. Several of the studies 

mentioned above were based on synthetic stimuli generated using complex parameter 

manipulations e.g. (Gobl et al., 2002; Gobl and Ní Chasaide, 2003; Ryan et al., 2003; 

Yanushevskaya et al., 2018). This kind of approach may not be suited to real-time speech 

technology applications. An optimal solution could be to implement a control system that 

requires changing a minimal set of voice source parameters that translates to a change in 

the perceived affective colouring of the synthesized speech, which is one of the main goals 

of this work. This would have applications in developing realistic personalized and 

expressive voices, generating characters for educational games, and other software such as 

screen readers and spoken dialogue systems for low resource languages (Ní Chiaráin and 

Ní Chasaide, 2016a, 2016b). 

4.3 Voice quality in speech synthesis 

Although most models of prosody do not account for any voice source parameters other 

than f0, it is important to review some of the main methods used and how they have been 

implemented in TTS in order to understand how voice quality may be included in future 

models. 

The following studies are some examples of applications in which voice quality 

manipulations have been implemented into speech synthesis with the goal of producing 

more expressive synthetic voices. 

D’Alessandro and Doval (2003) discuss the importance of including voice quality 

modifications in emotional speech synthesis. They also suggest a way in which speech 
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units within a concatenative speech synthesiser could be modified by manipulating the 

magnitude spectrum of the periodic source components, therefore changing the spectral tilt 

and glottal formant of the source. The aperiodic component may be modified using the 

method described in Richard and D’Alessandro (1996). 

Cabral and Oliveira (2006) describes a method of expressive speech synthesis that uses 

pitch-synchronous time-scaling to modify the LPC residual of speech in order to transform 

f0 and other source parameters related to voice quality. Neutral speech samples were then 

resynthesised using voice source parameters derived from emotional speech data of several 

different affective states. This system lacked the flexibility of one that is fully parametric 

and performs global transformations of voice source parameters rather than allowing for 

fine-tuning of parameter contours. 

Another method, developed by Cabral et al. (2011) (see also 3.3.5.1), allows for the control 

and transformation of the voice source in SPSS by removing the effects of the source from 

speech, and then replacing it with a synthetic LF-model based source signal. This 

parameterised signal can be transformed to change the voice quality. This method still 

requires a level of expert knowledge to carry out any transformations as it does not include 

a control interface. In addition, the synthetic speech produced by this system contained 

distortions and was not rated as highly as the authors expected. It was their opinion that 

these discrepancies were due to errors in the analysis of the source. 

Buchanan et al. (2018) describes a system that allows for the control of voice quality in 

concatenative speech synthesis. This system substituted LF-model pulses in place of the 

voice source and it was found that it could transform the voice quality of synthetic speech 

along the tense-lax dimension, but the transformations lead to a substantial drop in 

perceived naturalness. 

This thesis sets out to develop a system that allows the user to manually manipulate the 

voice quality dimension of prosody of a synthetic utterance using a graphical interface. 

There are two main reasons for doing this. Firstly, by including a control interface, users 

will have the ability to easily alter synthetic utterances for their desired application. 

Secondly, the interface is intended as a research tool that allows perceptual testing of the 

role of the voice source in prosody, and the optimal settings that might be required to 

generate specific prosodic targets. 
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To be useful to a wide range of users, it was felt that the interface should be as simple as 

possible. The production and perception studies that led to this work (Gobl et al., 2002; 

Gobl and Ní Chasaide, 2003; Ryan et al., 2003; Yanushevskaya et al., 2011, 2018) involved 

the analysis and synthesis of many complex voice source parameters, many of which 

covary in natural speech production. Controlling such an array of complex parameters 

would make control in synthesis very difficult, and would render the system unusable by 

all but experts in the field. The approach taken in this work is to explore the use of the Rd 

parameter to control voice quality modulations in synthetic speech.  

The following chapter (Chapter 5) explores the use of the Rd parameter to control for the 

tense-lax dimension of voice quality in prosodic variation through perception experiments. 

These experiments also serve to perceptually test the production findings, reviewed in the 

above sections, concerning the tense-lax source modulations associated with 

accentuation/focalisation, and with certain affective states. It should be noted that voice 

quality alone is manipulated in these experiments. This is in order to demonstrate the 

importance of this dimension of prosody – even in the absence of the f0 cues with which 

voice quality is modulated in real speech. Clearly in real speech production, both f0 and 

voice quality dimensions work together (Ní Chasaide et al., 2013), but a deeper 

investigation of the complementary use of both dimensions will need to form part of future 

explorations. 

The findings of the experiments in Chapter 5 guide the building of the analysis-synthesis 

GUI, which is then outlined in the following Chapter 6. The effectiveness of this system is 

then illustrated through further experiments in which it is deployed, and these are described 

in Chapter 7. 

4.4 Chapter conclusions 

This chapter discussed the challenges of modelling linguistic and paralinguistic prosody 

for incorporation into text-to-speech synthesis. The vast majority of research on prosody 

has been limited to linguistic prosody and to the modulation of the f0 contour. It is 

therefore not surprising that most models of prosody for synthesis have been directed at 

generating the f0 contour. Nonetheless there is growing recognition of the need to 

incorporate the voice quality dimension for the generation of more adequate linguistic and 

paralinguistic prosody.  
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Having the ability to control the voice source will be a key factor in providing speech 

synthesis that meets the needs of real-world applications, such as, language learning games 

or communication systems for people with disordered speech. By including voice quality 

in the description and implementation of prosodic models the goal is that another degree of 

detail and control is made available. 

The topics covered within this chapter act as a background for the experiments described in 

Chapter 5, where perception experiments explore how effectively complex source 

parameters can be simply controlled by using the Rd parameter, while demonstrating the 

perceptual relevance of the tense-lax dimension of the voice in signalling aspects of 

linguistic and paralinguistic prosody in synthetic speech.
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Chapter 5. Exploring Rd as a control 

parameter for voice prosody 

This chapter describes three experiments that were carried out to examine how the Rd 

parameter may be used for controlling aspects of linguistic and paralinguistic voice 

prosody in speech synthesis. The aim was to establish whether the tense-lax modulation 

described in earlier production studies could be approximated by using the Rd parameter, 

and to explore its effectiveness in cueing the prosodic effects described. 

The first experiment explores the perceptual salience of Rd modulation to cue focal 

prominence in English. Experiment 2 examines the correlation between the tense-lax 

continuum (controlled by Rd) and affect. Experiment 3 builds upon the findings of 

Experiment 1, to further explore how and where focal prominence may be achieved 

through Rd manipulation, and optimising the way in which Rd is recalculated after the 

manipulations have been carried out. Experiment 3 used Irish speech data. 

5.1 Experiment 1: Rd in the signalling of focal 

prominence 

One of the goals of this work was to investigate how an acoustic glottal model could be 

used to manipulate linguistic prosody of synthetic speech using a minimal set of control 

parameters. This experiment focused on the feature of focal prominence, where earlier 

production studies highlighted important voice source modulations related to voice quality 

in the tense-lax domain. 

This experiment examined whether the manipulation of Rd can achieve the source variation 

capable of signalling focal prominence2. Earlier analytical studies of production data (see 

Section 4.1 for a description of relevant studies) found that voice quality plays an 

important role in the perceived prominence of focally accented syllables in combination 

with f0 salience. In this experiment the perceptual importance of voice source adjustments 

 
2 Presented in Yanushevskaya et al. (2016) 
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made using a minimal set of control parameters is explored. These adjustments were made 

based on observations from previous studies (Yanushevskaya et al., 2010, 2016b), in 

sentences with variable locations of focal accent. Further exploration was carried out as to 

whether such voice source adjustments on their own might be capable of shifting the 

perception of the location of focal accent within the sentence without f0 salience. 

In this experiment, a recording of the sentence ‘We were away a year ago’, produced with 

broad focus, was analysed and subsequently manipulated so that the two accentable 

syllables WAY and YEAR were (subjectively) deemed to have the same degree of 

prominence. Broad focus can be seen as when an utterance is produced where no particular 

part of the utterance stands out when compared to the other parts (Ladd, 1980). This served 

as the baseline stimulus. Voice source characteristics were then further manipulated in 

ways that should enhance the prominence of one or other of these syllables. Stimuli were 

constructed in which the voice source was manipulated (i) in the potentially accentable 

syllables WAY and YEAR as well as (ii) in the portion of the utterance following the 

manipulated syllable. The manipulations of (i) and (ii) were carried out individually and in 

combination. The questions that were set out to be answered were: 

• Can such source manipulations induce the perception of focal accent on one or 

other syllable? (This essentially covers the question as to whether voice-quality 

changes alone might suffice to cue focal prominence, and the question of whether 

Rd is effective in controlling the tense-lax dimension of voice quality.) 

• Which of the source manipulations (or which combinations of source 

manipulations) were most effective in cueing focal accentuation? 

In these tests, f0 did not vary across the stimulus set. This is not to suggest that f0 does not 

play a major role in cueing focus, but rather represents an attempt to explore how voice 

source features other than f0 might be contributing towards perceived prominence, and to 

see whether source variations alone (without f0 variation) can alter the perception of where 

the focal accent lies in a phrase. 

5.1.1 Materials 

The stimuli for this experiment were based on an all-voiced utterance ‘We were away a 

year ago’ produced by a male speaker of Irish English. The utterance was elicited with 

broad focus, and was recorded as part of an earlier study (Gobl et al., 2015). The utterance 
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was manually inverse filtered using an interactive inverse filtering system (see Section 

2.3.4 and Ní Chasaide et al. (1992); Gobl and Ní Chasaide (1999a)). The system first 

carried out automatic closed-phase inverse filtering to obtain estimates of formant 

frequencies and bandwidths. These estimates were then manually optimised in order to 

fully cancel the effects of the formants from the speech spectrum, resulting in an estimate 

of the voice source signal. The system was then used to carry out voice source 

parameterisation by first automatically approximating and then manually fitting the LF-

model (Fant et al., 1985) to each differentiated glottal pulse. In the construction of the 

synthesised stimuli, only the Rd parameter was varied. 

As explained in Section 2.3.3.2, variation in Rd tends to reflect voice source variation along 

the tense-lax continuum; the values typically range between 0.5 (tense voice) to 2.5 

(breathy voice). As mentioned, earlier analyses of speech data of the speaker used3 

suggested that the speaker shifted towards tenser phonation in focally accented syllables 

(Yanushevskaya et al., 2010, 2016b) and towards laxer phonation in the post-focal 

material. These effects were mimicked in the stimuli by lowering the values of Rd in the 

potentially accented syllables and raising them in the post-focal part of the utterance 

respectively. Increased phonatory tension tends to correspond to a drop in Rd, but that for 

the purpose of the illustration in Figure 5.1, Rd drops are referred to as peaks, as it seems 

intuitively easier for a reader to associate increased tenseness of the voice with positive 

values. 

In the synthesis manipulations, f0 and Up were kept constant, which means that changes in 

Rd were reflected by changes in Ee. By changing Rd, other parameters of the glottal source 

such as Ra and Rk also vary, and these changes can be predicted from Rd. To synthesize the 

LF-model waveform, data for the full set of parameters are required. In this case, the 

transformed LF-model parameters were obtained from Rd using the parameter correlations 

described in Section 2.3.3.2. Once the source signal had been generated it was filtered by a 

set of formant filters, arranged in cascade, with formant and bandwidth values obtained in 

the inverse filtering step. 

For the ‘baseline’ stimulus, the values of f0, Rd and Ee were set to their average values 

across the utterance (f0 = 120 Hz, Rd = 0.86, Ee = 69.8 dB). As this produced a stimulus 

 
3 Renditions of the utterance ‘We were away a year ago’ in which the focus placement was varied. 



 

 

Chapter 5. Exploring Rd as a control parameter for voice prosody 82 

 

 

 

that sounded rather tense, f0 and Rd were adjusted to make it sound laxer and improve the 

naturalness: f0 was increased by 5 percent to 127 Hz and Rd was increased by 50 percent to 

1.3. These changes resulted in an Ee value of 67.2 dB. f0 was flattened in order to reduce, or 

remove, its contributions to the perceived prominence of syllables so that the effects of Rd 

manipulations could be examined in isolation. This stimulus served as the baseline for 

further manipulations of the magnitude and timing of peaks (located relative to the 

midpoint of the vowels in the syllables WAY and YEAR) as well as deaccentuation in the 

post-focal material. These manipulations are described in the following paragraphs (see 

also Figure 5.1 and Table 5.1). The ranges of values used in the manipulations were based 

on analysis of the speaker in earlier studies (Yanushevskaya et al., 2010, 2016b; Ní 

Chasaide et al., 2011b). Note that f0 values were not manipulated and were kept constant in 

all the syllables of the stimuli. 

Table 5.1: Manipulation combinations used in the construction of stimuli. 

 N Peak magn. Peak timing Deaccent. 

Baseline 0 0 0 0 

Peak 1 Low (LP) 0 0 

2 High (HP) 0 0 

Peak + timing 3 Low Early 0 

4 Low  Late 0 

5 High Early 0 

6 High Late  

Deaccent. 7 0 0 Shallow 

8 0 0 Steep 

Peak + 

deaccent. 

9 Low 0 Shallow 

10 Low 0 Steep 

11 High 0 Shallow 

12 High 0 Steep 

Peak + timing  

+ deaccent. 

13 Low Early Shallow 

14 Low Late Shallow 

15 High Early Shallow 

16 High Late Shallow 

17 Low Early Steep 

18 Low Late Steep 

19 High Early Steep 

20 High Late Steep 
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Peak height (magnitude) in focal syllables, Figure 5.1 (a) 

Three levels of peak magnitude were used: no peak (indicated as 0 in Table 5.1), low peak 

and high peak. The Rd values were set as follows: no peak, Rd = 1.3; low peak, Rd = 1.1; 

high peak, Rd = 0.9. These changes in Rd resulted in the following Ee values: no peak, Ee = 

67.2 dB; low peak, Ee = 68.6 dB; high peak, Ee = 70.3 dB. 

 

Figure 5.1: Schematic of parameter manipulation in the synthesized stimuli: (a) peak height; 

(b) peak timing (rate of change); (c) post-focal deaccentuation. 

Peak timing, Figure 5.1 (b) 

Stimuli were also generated where peak timing was changed relative to the vowel 

midpoints in the syllables WAY and YEAR. Two peak timing settings were used, early 

peak and late peak; the values of the peak time instants were negatively and positively 

shifted by 20% of the duration of the vowel for early and late peak respectively. Early peak 

corresponds to faster increase to the peak value and slower decrease of parameter values 

within the syllable; late peak corresponds to a slower rate of change of parameter values to 

the peak and a faster decrease of the values after the peak. These manipulations were 

added, as earlier studies of focal accentuation (Gobl, 1988; Yanushevskaya et al., 2010; Ní 

Chasaide et al., 2011b) suggested that source dynamics are heightened at the edge of the 

focally accented syllable. 

Source deaccentuation in post-focal material, Figure 5.1 (c) 

Three levels of deaccentuation in the post-focal material were used: no deaccentuation, 

shallow deaccentuation and steep deaccentuation. Note that for the WAY-manipulated 
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sentences, deaccentuation pertains to the entire sequence ‘a year ago’, whereas, for the 

sentence where YEAR is manipulated, deaccentuation is necessarily limited to the 

syllables of ‘ago’. 

The Rd values were as follows: no deaccentuation, final Rd value = 1.3; shallow 

deaccentuation, final Rd value = 1.1 (deaccentuation rate 0.6 units/s); steep deaccentuation, 

final Rd value = 0.9 (rate 1.3 units/s). These changes in Rd resulted in following changes is 

Ee: no deaccentuation, final Ee value = 67.2 dB; shallow deaccentuation, final Ee value = 

65.6 dB (5.1 dB/s); steep, final value = 64.3 dB (9.4 dB/s). 

Peak magnitude, peak timing and deaccentuation were manipulated individually and in 

combinations. The combinations of parameters are shown in Table 5.1. Overall, 20 

combinations were synthesized for each of the two syllables WAY and YEAR. The total 

number of stimuli used in the listening test was 41 (2 syllables x 20 combinations + 1 

baseline stimulus). It should be noted that in perceptual terms, differences in peak 

magnitude and peak timing are registered in terms of the rate of signal change. 

5.1.2 Listening tests 

Two online listening tests were carried out where the 41 synthesized stimuli were 

presented to the participants in random order. Participants were instructed to use high 

quality headphones and to complete the test in a quiet environment. The participants were 

told that they would hear several utterances in which the syllables WAY or YEAR may or 

may not be prominent. The participants were asked to listen to each stimulus as many 

times as they wish and to complete a number of tasks. Two listening tests were carried out 

to examine how participants responded to two different tasks. Listening test 1 involved 

simply identifying and rating the level of prominence of a syllable in an utterance. 

Listening test 2 was a more complex task that required participants to rate the prominence 

of a syllable relative to adjacent syllables. 

In listening test 1 (see Figure 5.2), the participants’ tasks were as follows: 

1. Select the prominent syllable: “Which word is the most important” (WAY, 

YEAR, None). 

2. For the prominent syllable, indicate the magnitude of prominence: “Please mark 

the prominence of this word” (using a slider on a continuous analogue visual 

scale). 
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3. Indicate how confident they were: “How confident are you in your decision?” (on 

a continuous visual analogue scale, ‘not at all confident – very confident’). 

4. Indicate how natural the utterance sounded: “How natural did the audio sound?” 

(on a continuous visual analogue scale, ‘not at all natural – very natural’). 

 

Figure 5.2: Interface of listening test 1. 

In listening test 2 (see Figure 5.3), the participants were asked to mark the relative 

prominence of each syllable in the utterance by adjusting sliders on a continuous analogue 

visual scale (any value between 0 and 100 could be selected, although participants were 

not shown numbers). They were also asked to rate the naturalness of the stimuli and to 

indicate how confident they were in their judgment on a continuous analogue visual scale. 

The first experiment was completed by 29 participants; the second experiment was 

completed by 18 participants. 
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Figure 5.3: Interface of listening test 2. 

5.1.3 Results 

Listening test 1 

It was expected that the syllables WAY and YEAR in the sentences where the voice source 

for those syllables and for the following material was manipulated would tend to be 

identified as more prominent. It was also expected that the degree of prominence perceived 

on the targeted syllable would correlate with the magnitude of the source manipulation 

carried out. The results show a clear difference in how the two syllables were rated. The 

overall confusion matrix is given in Table 5.2. In most cases, the WAY-manipulated 

sentences (those in which the WAY syllable and following material were manipulated) 

were identified as having prominence on WAY (64%). For the YEAR sentences (those 

where the YEAR syllable and subsequent material were similarly manipulated), listeners 

were as likely to hear prominence on WAY as on YEAR – in other words, these sentences 

were heard to be much the same as the baseline stimulus. 
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Table 5.2: Overall confusion matrix of perception of the stimuli in the listening test. 

  Modified sentences and baseline 

P
er

c
ei

v
ed

 

P
ro

m
in

en
t 

 

 WAY YEAR BASELINE 

WAY 64% 37% 38% 

YEAR 19% 39% 38% 

Neither 17% 23% 24% 

 

The full set of results for Listening Test 1 are shown in Figure 5.4. This heatmap illustrates 

the frequency of which each syllable was marked as prominent for each stimulus (WAY 

stimuli on the left and YEAR on the right, with the baseline frequencies at the bottom of 

both). The results are grouped according to the manipulations carried out on the stimuli. 

There is a clear trend that more stimuli were selected as having a prominent WAY syllable 

in the WAY sentences than YEAR in the YEAR sentences. For the WAY sentences, the 

stimuli in which WAY was selected most frequently correspond mainly to stimuli with 

high peak magnitude and steep post-focal deaccentuation. On the other hand, the stimuli 

with shallow deaccentuation alone, or manipulations involving a low peak, were identified 

as prominent by fewer participants. For the stimuli containing manipulations to the YEAR 

syllable and following material, results were very different. There were only relatively 

minor shifts from the baseline stimulus results. 



 

 

Chapter 5. Exploring Rd as a control parameter for voice prosody 88 

 

 

 

 

Figure 5.4: Frequencies with which WAY, YEAR and Neither selected as prominent for WAY 

(left) and YEAR (right) stimuli. HP = high peak and LP = low peak. 

Figure 5.4 shows the frequencies with which WAY, YEAR or Neither were selected as 

being prominent for the WAY and YEAR stimuli. It can clearly be seen that WAY is 

mostly selected as being prominent for the WAY stimuli, with the only exception being for 

the stimulus with a low peak and late peak timing. It can also be seen that the high peak 

stimuli were the most effective at signalling prominence in the WAY syllable, followed by 

the low peak stimuli with post-focal deaccentuation. YEAR was much less frequently 

selected as being prominent for the YEAR stimuli, with the exception being three of the 

high peak stimuli that had slightly higher counts. 

Figure 5.5 shows the mean ratings and 95% confidence intervals of prominence magnitude 

as well as confidence and naturalness ratings for those cases where the syllable WAY was 

deemed prominent by 70% or more of listeners (grey bars). 
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Figure 5.5: Prominence magnitude (red), confidence (black) and naturalness (white) for 

cases where WAY deemed prominent by 70% or more (grey bars).  

The peak height appears to be the main determinant of perceived prominence. There is a 

significant positive correlation between listeners’ judgments on the degree of prominence 

and their confidence in such judgments (r = 0.91, n = 8, p < 0.05) and a less consistent 

negative correlation with naturalness (r = -0.59, n = 8, p = 0.06). The naturalness ratings 

were rather low. This is hardly surprising, considering that the f0 was constant throughout 

the phrase, something that does not occur in natural productions. Another factor that could 

have lead to low naturalness ratings was the loss in signal detail caused by the analysis and 

synthesis method. Auditory analysis carried out by the author and other expert listeners did 

not find any other factors that may have affected the naturalness of the stimuli. 

A 3 x 3 (peak height, peak timing, deaccentuation slope) factorial analysis was conducted 

to establish the contribution of the type of parameter manipulation to the prominence 

magnitude rating. Results indicated a significant main effect of peak F(2,583) = 15.31, p < 

0.01 and deaccentuation F(2,583) = 10.35, p < 0.01. There was also a weak but significant 

interaction effect of peak and deaccentuation F(4,583) = 2.45, p = 0.046. The effect of 

peak timing was not significant F(2,583) = 1.46, p = 0.23. 

Listening test 2 

For this test, participants marked the relative prominence of all the syllables in the 

utterance. Figure 5.6 illustrates the results, in terms of the difference in the perceived 

magnitude of the WAY and YEAR syllables within each of the stimulus sentences. 

(Positive values = WAY perceived as more prominent; negative values = YEAR perceived 

as more prominent. Blue and red bars indicate sentences with manipulations that should in 

principle enhance prominence of WAY and YEAR respectively. The cases where the 
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difference in the magnitude of perceived prominence of WAY and YEAR is significant are 

shown by asterisks.) 

The results, once again, show a clear difference in how prominence is rated in the two 

cases. In the case of the WAY sentences, most manipulations did enhance the relative 

prominence of the WAY syllable. The most striking (and statistically significant) effects 

are found when there is both a high peak on the syllable WAY, alongside deaccentuation 

of the post-focal material. The steepness of the deaccentuation (shallow or steep) in these 

cases does not appear to matter. Where the peak on WAY is lower, the effects on 

magnitude difference are less, and only achieve significance when the low peak combines 

with deaccentuation, steep or shallow. Manipulation to the height of the WAY peak, on its 

own, does increase that syllable’s relative prominence.  This increase only makes it 

significantly different in prominence from YEAR when the peak magnitude is high, and 

the timing is early or late. Manipulating the deaccentuation on its own (without adjusting 

the WAY peak height) is effective only when a steep deaccentuation slope is used. 

 

Figure 5.6: The WAY-YEAR difference in magnitude of perceived prominence. Stimuli where 

there is a significant difference between WAY and YEAR in the same utterance are marked 

with *. 

Ratings for the sentences where manipulations should in principle lead to enhancing the 

prominence of YEAR are very different (red bars). Although a few stimuli shifted the 

balance somewhat (e.g., some cases where YEAR had a high peak) there was not a single 

case where such a shift was significant. In most cases, the relative prominence of the two 

syllables was rather similar to the baseline stimulus. 
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5.1.4 Discussion 

It is clear in these data that the cueing of focal accentuation can vary depending on its 

location in the utterance. For the non-final syllable, WAY, even relatively small changes in 

the source parameter values appear to make a difference and can tip the balance in terms of 

where focal accent is likely to be perceived. It is also clear that there is a synergy between 

the local prominence on the syllable and deaccentuation in the post-focal material. 

In the final accentable syllable (YEAR) the findings were not symmetrical. A low peak has 

a negligible effect: a high peak can raise the perceived prominence, but the effects are not 

significant. Furthermore, post-focal source deaccentuation does not appear to play a role. 

The lack of a deaccentuation effect here may simply reflect the fact that there are only two 

unstressed syllables for deaccentuation to play out, and that this is insufficient, and not 

comparable to the case of WAY. 

It is likely that the differences observed here between the final (YEAR) and non-final 

(WAY) syllables have to do with what was not included in these tests, i.e. manipulations to 

f0. The f0 was kept constant in these stimuli as the objective was to ascertain the role of 

other voice source effects. However, in normal speech production f0 movement occurs 

alongside the kinds of source effects implemented here and it is very likely that f0 

movement is far more crucial in final than in non-final syllables. In a production study of 

focus (Ní Chasaide et al., 2011b) an f0 fall was found in both WAY and YEAR syllables 

when focally accented, but the fall was greater and more rapid in YEAR. A further study of 

source correlates of accentuation (Ní Chasaide et al., 2013) indicated that while accented 

syllables in non-final position may, but need not, exhibit f0 movement, a sharp f0 fall 

always characterized the final accented syllable. To the extent that this fall is missing in the 

present stimuli, it is likely to militate strongly against the perception of greater prominence 

on YEAR, regardless of the other voice source (voice quality) changes that occur. 

5.1.5 Conclusions 

These tests indicated that voice source modulations of the type observed in earlier 

production data can cue focal prominence. They also suggest that having a source 

prominence peak on the focally accented syllable may work together with a degree of 

source deaccentuation in the post-focal material. 
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The manipulations that signalled the perception of focal accentuation in the non-final 

syllable had much less effect on the final syllable, where focal accentuation was not as well 

cued. The cueing of focal prominence may depend on its location in the utterance, and that 

in the case of the final accented syllable f0 movement (which was not included) is a 

necessary component. Further research is necessary to examine the interplay of source 

parameters with f0 in final and non-final syllables, and also the effects of deaccentuation 

when the post-focal portion of the utterance is longer. Control for vowel quality in focally 

accented syllables is also required (comparing like vowel with like by using the same 

vowel in all accentable syllables). 

5.2 Experiment 2: Rd as a control parameter for 

affective prosody 

In addition to being able to signal prominence, tenser phonation is also associated with 

certain affective states, both of positive valence (e.g., elation, joy) and negative valence 

(e.g., fear, anger)(Scherer, 1986). Similar results are reported in Gobl and Ní Chasaide 

(2003) and Yanushevskaya et al. (2018). The same is true in the opposite direction, 

towards laxer phonation. These two opposite directions form a tense-lax continuum with a 

multitude of possible voice quality settings along its length, each with one, or possibly 

many, associated affective states. These associated affective states are by no means 

universal across languages. Yanushevskaya et al. (2018) demonstrated cases where 

subjects with different language backgrounds associated the same voice quality with 

different affects. As one of the goals of this work was to investigate a means of controlling 

paralinguistic prosody using a minimal set of voice source parameters, control along this 

continuum is an important element to investigate in terms of controlling the affective 

colouring of synthetic speech. 

This experiment used the Rd parameter to simulate the phonatory tense-lax continuum and 

to explore its affective correlates in terms of activation and valence4. A range of synthetic 

stimuli were generated varying along the tense-lax continuum using Rd as a control 

parameter. These stimuli were based on a natural utterance which was inverse filtered and 

source-parameterised. Two additional stimuli were included, which were versions of the 

 
4 Presented in Murphy et al. (2017) 
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laxest stimuli with additional creak (lax-creaky voice). These last two stimuli were 

motivated by the findings of Gobl and Ní Chasaide (2003) and Yanushevskaya et al. 

(2018), where the creaky feature combined with lax voice yielded the most extreme low 

activation responses. The generated stimuli were presented in a listening test where 

participants chose an emotion from a set of affective labels and indicated its perceived 

strength for each stimulus. Participants also indicated the naturalness of each stimulus and 

their confidence in their judgment. 

5.2.1 Materials 

Synthetic stimuli 

The stimuli were constructed on the basis of an all-voiced utterance ‘We were away a year 

ago’ spoken by a male speaker of Irish English in a modal voice. The utterance was 

produced with narrow focus on the WAY syllable. According to Ladd (1980), narrow 

focus can be defined as when one section of an utterance is more prominent than the rest of 

the utterance. The utterance was originally recorded for another study, where other 

versions of the sentence, with differing focal placement, were also obtained and their 

source parameters analysed (Gobl et al., 2015). The utterance was inverse filtered using 

interactive manual inverse filtering software (Gobl and Ní Chasaide, 1999a). 

Parameterization of the voice source was then carried out using the LF-model (Fant et al., 

1985; Fant, 1995), on a pulse-by-pulse basis. Based on the analysed utterance, a modal 

voice stimulus was first generated. The synthetic stimuli, varying along the tense-lax 

continuum, as well as lax-creaky stimuli, were then produced using a range of values for 

the Rd parameter. Rd was manipulated within the range observed for the speaker analysed 

(0.49 – 2.84). This range was determined by taking the minimum and maximum values 

from the data presented in the original study (Gobl et al., 2015). 

Modal stimulus 

A synthetic stimulus for modal voice was generated using parameter values obtained from 

the prior inverse filtering and source parameterization. The resulting stimulus sounded 

rather tense; the average parameter values for this stimulus (f0 = 120 Hz, Rd = 0.8, Ee = 71 

dB) also corresponded to a tense phonation type. To make the voice sound less tense and 

more like modal voice the Rd parameter values were increased by 25% to a mean value of 

1.0. These parameters were then used to recalculate Ee, resulting in an average value of 63 
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dB. Up was set to its average value and kept constant across the utterance. The contour of 

the original utterance was stylized by taking values of f0, Ee and Rd at vowel midpoints in 

each syllable and interpolating between them. The resulting contour for the Rd parameter is 

shown in Figure 5.7 (black line). The stimulus was synthesized using cascade formant 

synthesis. 

Lax and tense stimuli 

Once the modal stimulus had been created, its parameter values were used as the basis for 

synthesizing the remaining stimuli. Due to the greater range between the modal and upper 

Rd limit (1 to 2.84) compared to the range between the modal and lower Rd limit (1 to 

0.49), a logarithmic scale was used to establish four steps that would be approximately 

equidistant in the direction of both tense and lax voice. The steps are shown in Figure 5.7. 

 

Figure 5.7: log10Rd values of the synthetic stimuli. The lax and tense stimuli are shown in 

blue and red respectively. The modal stimulus is shown in black. The values used for the two 

lax-creaky stimuli are indicated by the blue dashed lines. 

For all the stimuli, f0 values were kept the same as those of the modal stimulus. Ee was 

recalculated according to the new Rd values for each stimulus. The stimuli were labelled as 

tense1, tense2, tense3, tense4, lax1, lax2, lax3, and lax4, where tense4 and lax4 had the 

lowest and highest values of Rd respectively. To improve the naturalness of the stimuli 

aspiration noise was added to the source waveform using the method described in Gobl 

(2006). This method automatically determines the overall amplitude and modulation of the 

added aspiration noise based on the shape of LF-model waveform. 
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Lax-creaky stimuli 

Two further stimuli were generated by adding aperiodicity to the source signal of lax3 and 

lax4. This effectively mimicked a lax-creaky voice quality. This was achieved by using a 

method similar to the one with which diplophonic double pulsing is produced in the 

KLSYN88 synthesizer. These lax-creaky stimuli were included here based on the findings 

of a previous study (Gobl and Ní Chasaide, 2003) where this voice quality was found to 

yield high ratings for low activation affective states such as bored, intimate, relaxed, and 

content. The addition of creak to an already lax synthetic stimulus would not require much 

more in terms of parameter input but could add an extra dimension of affective control. 

To generate creak, the source signal was divided into frames so that each frame contained 

two glottal pulses. The first pulse of each frame was shifted towards the second pulse and 

its amplitude was attenuated by an equal percentage. This percentage was determined by 

normalizing and scaling the f0 contour of the utterance to the range of 0 to 10%. These 

values were then inverted. This corresponded to a 10% shift and attenuation at the points in 

the synthetic stimuli with the lowest f0 values, and no shift or attenuation at the points with 

the highest f0. This method, along with a reduction in aspiration noise, produced 

satisfactory lax-creaky stimuli, labelled as lax3+c and lax4+c. 

The total number of stimuli generated was 11 (modal, 4 x tense, 4 x lax, 2 x lax-creaky). 

5.2.2 Listening test 

The 11 synthetic stimuli, as well as the original natural utterance, were presented to 30 

participants (all native speakers of English) in a listening test. The listening test was 

carried out in a quiet environment using high quality headphones, via an interactive GUI. 

The participants were presented with 60 synthesized stimuli (5 repetitions of the 12 

stimuli) in random order. An additional 5 random stimuli were added at the beginning of 

the test so that the participants could become accustomed to the process involved. The 

results of these first 5 stimuli were discarded. The participants were informed that they 

were going to hear a number of different sound files and that they could listen to each file 

as many times as they wished in order to answer the following questions for each stimulus: 

1. How does the speaker sound? [the subject chose from a selection of radio buttons 

with affective labels]; 



 

 

Chapter 5. Exploring Rd as a control parameter for voice prosody 96 

 

 

 

2. To what extent? [a continuous analogue visual scale ranging from ‘Not at all’ to ‘A 

lot’]; 

3. How confident are you in your judgment? [a continuous visual analogue scale 

ranging from ‘Not at all confident’ to ‘Very confident’]; 

4. How natural does the audio sound? [a continuous visual analogue scale ranging 

from ‘Not at all natural’ to ‘Very natural’]. 

Participants were given eight affective labels to choose from for question 1. These were: 

relaxed, angry, content, upset, happy, sad, excited and bored. These emotional states were 

chosen to give a balanced set in terms of high and low activation, and positive and negative 

valence emotional dimensions (see Figure 5.8). Affect labels were chosen, rather than 

using an activation level scale, in order to simplify the task by using emotional categories 

that the listeners may be more familiar with. Participants were also given the options of 

other and no emotion. The continuous visual analogue scale (Streiner and Norman, 2008) 

used to measure the magnitude of the affective colouring present as well as the listener’s 

confidence and the naturalness of the stimuli (questions 2-4) was interpreted as ranging 

from 1 to 100. The confidence score covered questions 1 and 2. 

 

Figure 5.8: Affective labels used in the listening test in the two-dimensional model of affect. 

There were no major expectations that a particular stimulus would be associated with a 

particular affect (prior studies showed that the same voice quality can cue a number of 

different affects, e.g., (Gobl and Ní Chasaide, 2003; Yanushevskaya et al., 2011, 2018). 

Clear cut categorical differentiation of the selected affects was not expected either. Support 

was expected for earlier findings (Ryan et al., 2003) that tenser voice quality would tend to 

be associated with high activation states and laxer and creakier voice quality with low 

activation states. Although positive high activation states (happy and excited) were 
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included to ensure a balanced representation, it was not expected that high percentages of 

stimulus to affect association would be achieved in these cases (happiness is an affect that 

has consistently been difficult to model in many, especially in the absence of f0 modulation 

(Gobl and Ní Chasaide, 2003; Grichkovtsova et al., 2012)). The type of manipulations 

used in the construction of the stimuli did not include large dynamic variation of f0 and did 

not include any adjustments to the filter settings. These are known to be necessary in 

generating the impression of excitement and happiness (shorter vocal tract, higher 

frequency of the second formant for smiling speech)(Tartter, 1980). 

5.2.3 Results and discussion 

Table 5.3 shows the percentage of cases in which a particular stimulus was associated with 

each of the options in the listening test. 

Table 5.3: Cases (%) in which the stimuli were associated with the affects in the listening 

test. The most frequent case for each stimulus is underlined and emboldened. 
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natural 31 7 8 12 17 7 1 5 3 9 

tense4 27 6 21 11 13 5 1 3 3 12 

tense3 26 8 12 9 16 6 3 1 2 17 

tense2 21 10 10 10 17 4 5 5 2 16 

tense1 15 12 4 6 21 9 5 4 2 21 

modal 14 10 8 9 23 6 5 1 4 19 

lax1 2 16 3 3 21 7 16 13 1 17 

lax2 3 16 1 1 7 15 19 22 2 13 

lax3 5 21 1 0 5 12 18 23 2 13 

lax4 3 20 1 1 5 7 19 34 1 8 

lax3+c 5 15 0 1 3 4 17 30 2 22 

lax4+c 7 14 1 3 1 8 13 29 3 22 

Overall, tense voices (except tense1) as well as the natural production were mainly 

associated with the angry affect, lax-creaky and lax voices (except lax1) were associated 

with the sad affect. Modal voice as well as the least extreme cases of lax and tense voices 

(lax1 and tense1) were associated with content. It is interesting to note that the natural 

recording was selected as angry in more cases than any of the tense stimuli. This could be 

due to some factor present in the original recording that was lost through the analysis and 

synthesis process. 



 

 

Chapter 5. Exploring Rd as a control parameter for voice prosody 98 

 

 

 

Looking at the two most frequently selected affects (Figure 5.9), a clear trend can be 

observed. The degree of tenseness/laxness in the synthetic stimuli is correlated with the 

frequency with which a particular stimulus is associated with anger/sadness. No one-to-one 

mapping was found between voice quality and affect. For example, the most frequent 

response for the lax stimuli was sad, but bored and upset were also often chosen. 

 

Figure 5.9: Frequency of responses associating the stimuli with the angry and sad affects. 

Due to the wide distribution of affect selections per synthetic stimuli, affects with similar 

valence and activation were grouped (see Figure 5.8). The results are plotted in Figure 

5.10. 

Tense voice was most commonly associated with high activation affects and lax-creaky 

and lax voices with low activation affects. Modal voice was almost equally associated with 

high and low activation affects. 

The natural utterance was more commonly associated with high activation states. This is 

most likely caused by the fact that it has a lower Rd value (between tense1 and tense2) than 

the modal synthetic stimulus. 

In terms of valence, the lax voice stimuli were mainly associated with negative affects, 

whereas tense, natural and modal stimuli were equally associated with both negative and 

positive affects. 
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Figure 5.10: Percentage of instances where the synthetic stimuli were associated with affects 

of particular activation (panel a) or valence (panel b) group. 

This even distribution agrees with the initial predictions that additional manipulations of 

the vocal tract are necessary to differentiate between positive and negative valence states 

for stimuli representing tenser phonation types. 

 

Figure 5.11: Magnitude of most frequently selected affects for each stimulus (mean and 

standard error). 

The magnitude of the manipulation correlated with the perceived strength of affect, 

particularly with the stimuli at the limits of the tense-lax range. The addition of creak did 

not yield consistent results: it seemed to increase the magnitude slightly in the case of lax3 

but reduced the magnitude in lax4. 
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The modal stimulus was associated with a different affect than the natural utterance. This 

is most likely due to the fact that the source parameter values used to generate the modal 

stimulus were altered to produce a less tense voice quality. The natural stimulus had 

parameter values between the tense1 and tense2 stimuli. It is not surprising that these 

stimuli were associated with affects of the same valence/activation, and that the magnitude 

of the perceived affects was also similar for these stimuli. The small discrepancy between 

them is perhaps due to artefacts introduced by the analysis and synthesis process (see 

Section 5.1.1 for a description of this system). 

Table 5.4: Mean naturalness and confidence score for each stimulus (scale range 0-100). 

 Naturalness Confidence 

natural 76 65 

tense4 57 56 

tense3 57 57 

tense2 59 56 

tense1 63 57 

modal 62 54 

lax1 62 55 

lax2 61 55 

lax3 58 56 

lax4 58 61 

lax3+c 42 58 

lax4+c 43 58 

 

The mean naturalness score for each stimulus can be seen in Table 5.4. The natural 

stimulus was found to have the highest naturalness at 76. This result would be expected to 

be higher, but may be due to participants not using the full range of the continuous 

analogue visual scale. Modal, tense1, lax1, and lax2 follow this with values between 61 

and 63. As the stimuli become more lax or tense, there is a slight drop in naturalness, but 

the values are still well above 50. The two lax-creaky stimuli show the lowest naturalness 

score. This is likely due to the values used in the generation of these stimuli which may not 

have been optimal despite the fact that creak was varied dynamically. More research is 

needed to improve this feature. 
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All the mean confidence score values were above 54, with the natural stimulus having the 

highest confidence score of 65. 

5.2.4 Conclusions 

The study showed that stimuli ranging in the tense-lax continuum generated by 

manipulating the Rd parameter can evoke an affective response and that the response 

correlates with the magnitude of the manipulation. Thus, the tenser the voice, the higher 

the perceived magnitude of, say, anger. 

Although manipulations of Rd were effective in evoking an affective response in terms of 

activation, they were not so successful in distinguishing between valence states. This is 

most likely due to the lack of vocal tract parameter manipulations. Future work will 

explore control of these parameters. It will also include improving the quality of the 

synthetic creak, as the synthetic creaky stimuli were perhaps too regular to be perceived as 

being natural. 

Overall these results show that Rd can be used as a single control parameter to generate 

variation along the tense-lax continuum of phonation. This has potential uses in the 

development of expressive speech technology applications. 

5.3 Experiment 3: Rd and focal prominence: further 

exploration 

This experiment also examined the perceptual salience of voice source parameters in 

signalling focal prominence, acting as a follow up to Experiment 1 using Irish speech 

data5. The findings of Experiment 1 (see Section 5.1) led to considerations as to whether 

phrasal position is important to the realization of prominence. A phrase-final (default 

nuclear) accent may simply require f0 salience (e.g., a falling tone) to be prominent, where 

other source boosting changes alone may suffice in other positions – something suggested 

by the production data in Ní Chasaide et al. (2013). Furthermore, in the above experiment, 

the short tail following ‘year’ might have reduced the potential for post-accent attenuation 

 
5 Presented in Murphy et al. (2018) 
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to have an effect. Other factors in Experiment 1, not related to phrasal position, may also 

have contributed, such as the difference in the vowel qualities in ‘way’ and ‘year’. 

To mitigate some of the above factors, this experiment uses a baseline sentence of Irish 

with three accented syllables (referred to as P1, P2 and P3), all with the same vowel. The 

source parameters of the baseline were initially ‘flattened’, and a slight declination 

imposed to improve overall naturalness (see details in Section 5.3.1). The manipulations 

(source boosting of the accented syllable and attenuation in preceding or following 

material) targeted only P1 and P2, avoiding the final accented syllable. The prediction was 

that the source manipulations would have roughly similar effects on their perceived 

prominence relative to each other. 

The voice source manipulations for the individual stimuli were implemented using Rd to 

control the tense-lax dimension of voice variation. As the objective of this experiment was 

to examine the role of voice source parameters (other than f0) in prominence perception, 

the manipulations for the individual stimuli did not include f0 manipulation. 

5.3.1 Materials 

Baseline stimulus 

The baseline stimulus was generated based on the following declarative sentence of Irish 

(the accented syllables are shown in bold caps): 

“Bhí CÁIT cúpla LÁ ar an TRÁlaer” 

[vʲi kɑtʲ kʊplˠə lˠɑ əɾˠ ənˠ tɾˠɑlˠəɾˠ] 

“was Kate couple days on the trawler” (word gloss) 

“Kate was a couple of days on the trawler” (translation) 

The sentence was produced by a male speaker of Irish (Kerry dialect) and was elicited with 

broad focus. The utterance was analysed, parameterised and synthesised using the same 

methods as described in Experiment 1 (see Section 5.1.1). Initially, in the baseline 

stimulus, all source parameters were flattened, i.e. the f0 and Rd values were set to the 

averaged values across the original utterance. Following this, to improve naturalness, 

sentence declination effects were included, entailing a drop of 5% (3.24 Hz/s) in f0 over the 

utterance, along with an increasingly laxer phonation (which corresponds here to a rise in 
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Rd of 20% or 0.114 units/s). An analysis of declination (Ní Chasaide et al., 2015) shows 

that phonatory quality also alters with declination, and not simply f0. 

Rd is determined by Ee, Up and f0 and to effect variation in Rd changes to these parameters 

are required. Given that the intention was not to vary f0 (other than for the sentence 

declination baseline as explained above), to implement the Rd variation in these stimuli, 

one can vary either Ee or Up, or a combination of the two. In Experiment 1, only Ee was 

allowed to vary. For this experiment, two series were prepared. For the Ee stimuli, changes 

to Rd were implemented by varying Ee, while not modifying Up. For the Up stimuli, 

changes to Rd were implemented by varying Up without modifying Ee. 

Prominence-varying stimuli 

Source manipulations for each series of stimuli entailed changes to the source that should 

boost the salience (through tenser phonation) of the accented syllable (i.e. targeting P1-Cáit 

or P2-Lá) and/or attenuate, reduce the salience (through laxer phonation) of those portions 

of the utterance before (Pre) or after (Post) the syllable in question (P1-Cáit or P2-Lá).  

The labels used for the individual stimuli and the specific Rd adjustments involved are 

outlined in Table 5.5 and illustrated schematically in Figure 5.12. 

Table 5.5: Rd stimulus manipulations and labels used. 

Stimulus label Rd adjustments 

Baseline No salience-lending adjustments 

Peak Tenser phonation (lower Rd) in P1 or P2 

Post 
Laxer phonation (raised Rd) after the 

targeted syllable (P1 or P2)  

Pre 
Laxer phonation (raised Rd) before the 

targeted syllable (P1 or P2) 

Peak+Post 

Pre+Peak 

Pre+Post 

Pre+Peak+Post 

Combinations of above adjustments 

The Rd parameter was manipulated in three ways, using values prompted by earlier analytic 

studies (Yanushevskaya et al., 2010, 2017; Ní Chasaide et al., 2011b). For the Peak 

stimuli, Rd was lowered by 33% in the targeted syllable (whether P1 or P2). In the Peak 

stimuli targeting P1-Cáit, the Rd value for P1 was 0.8 (compared to the P1 baseline value of 

1.14). For the Peak stimuli targeting P2-Lá, the Rd value for P2 was 0.85 (compared to its 
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baseline value of 1.27). Recall that lower Rd values correspond to tenser phonation. These 

values reflect the influence of the Rd declination already applied to the baseline stimulus, 

as explained above. 

 

Figure 5.12: Phonatory shifts from the baseline (solid black): Peak (P1 or P2) = tenser 

phonation (dotted black); Pre (solid grey) or Post (dotted grey) = laxer phonation. 

In the Post stimuli, Rd was raised by 30% relative to the baseline value in the syllable 

immediately following the peak target. This was followed by a further 20% rise over the 

remainder of the utterance. Pre-target attenuation involved raising Rd in pre-target material 

by 20% relative to the baseline, with a lowering of Rd across the final pre-target syllable. 

The combined stimuli simply involved the combination of these adjustments. 

Discontinuities were avoided in the Rd parameter contours by applying spline interpolation 

between the parameter transition points. 

Two sets were produced, the Ee stimuli and the Up stimuli, with 13 stimuli in each set. 

Each set included, in addition to the Baseline stimulus, a range of stimuli that would 

potentially entail enhancement to prominence on either the P1-Cáit target or the P2-Lá 

target: Peak, Post, Peak+Post, Pre+Peak, Pre+Post, and Pre+Peak+Post. The Pre stimulus 

on its own was not included. 

5.3.2 Listening test 

The listening test was carried out with 29 participants, speakers of Irish, over headphones. 

In the test, the Up stimuli were first presented in random order, followed by the Ee stimuli, 

also in random order. Listeners heard each stimulus four times with a two second gap 

between each repetition, and there was a 15 second gap before the next stimulus was 

presented. The participants were asked to: 



 

 

Chapter 5. Exploring Rd as a control parameter for voice prosody 105 

 

 

 

1. Indicate the perceived prominence of each syllable in the utterance on a continuous 

visual analogue scale (any value between 0 and 100 could be selected, although 

participants were not shown numbers). 

2. Indicate how natural the audio sounded on a scale from 1 (not natural) to 5 

(natural).  

Each new stimulus was introduced with a beep followed by the number of the stimulus, as 

well as a beep 10 seconds before a new stimulus was introduced. Five random stimuli were 

included at the beginning of the test to allow the participants to get used to the procedure; 

these responses were not included in the analysis. 

5.3.3 Results 

The syllable prominence magnitude values obtained for each stimulus were min-max 

normalized per participant to account for the variation in the use of the scale range. Figure 

5.13 shows the difference in perceived prominence of the two accents P1 and P2 (within 

the same stimulus) for the Ee stimuli (upper panel) and Up stimuli (lower panel). Blue bars 

show the P1 minus P2 difference for those manipulations targeting P1-Cáit. Green bars 

show P2 minus P1 values for manipulations targeting P2-Lá. Thus, blue bars above zero 

indicate that P1 in the P1-Cáit stimuli is perceived as more prominent than P2; green bars 

above zero show where P2 (in the stimuli targeting P2-Lá) is deemed the more prominent. 

Black asterisks indicate significant differences in the magnitude of P1 and P2 within the 

same stimulus established by a one-way ANOVA. 

Figure 5.13 shows the Ee stimuli (upper panel) to be much more effective in achieving 

prominence than the Up stimuli (lower panel), and discussion will therefore focus on the 

former. 

P1 is deemed more prominent than P2 in most cases: P2 is judged more prominent than P1 

in only two P2-Lá targeted stimuli (Ee: Pre+Peak and Pre+Peak+Post). 

It is also clear from responses that in the baseline stimulus, P1 was perceived to be more 

prominent than P2. Red asterisks show where the magnitude of the difference between P1 

and P2 is significantly different from the magnitude of the difference between them in the 

baseline stimulus. If the perceived differences in prominence are examined relative to the 

baseline results it can be seen that the Rd manipulations have a greater and more significant 

effect on P2 perception – even if the baseline bias towards P1 prominence means that P2 
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still rarely emerges as more prominent than P1. When the baseline difference is 

considered, the ‘enhancement’ of P1 brought about by the P1-Cáít manipulations appear 

less dramatic. Despite this factor, P1 emerges as both intrinsically more prominent and 

more readily enhanced perceptually. 

 

Figure 5.13: P1-P2 differences for P1-Cáit stimuli (blue), and P2-P1 differences for P2-Lá 

stimuli (green).  

Figure 5.14 provides a more detailed view of the effects on the overall P1 P2 P3 contour of 

the P1-Cáit targeted manipulations (left panels) and the P2-Lá targeted manipulations 

(right panels). 

Panel (a) of Figure 5.14 shows, relative to the baseline (black dashed line), values for those 

stimuli with peak-boosting, and those with post-attenuation. For P1, peak-boosting has the 

effect, not only of raising prominence on P1, but also of lowering it on P2. The Peak 

stimulus yields essentially the same contour as the Post stimulus. This suggests the 

functional equivalence of these two source adjustments in the utterance, the local and the 

global. In the case of the P2-Lá targeted stimuli, these two effects do not appear to be 

equivalent. Peak-boosting does raise the prominence of P2 relative to P1 and P3, but post-

attenuation has little effect on the contour (though there is a drop in overall level). 
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Panel (b) of Figure 5.14 illustrates the additive effect of peak-boosting and post-

attenuation. When targeting P1-Cáit, the effects are additive, increasing the perceived 

prominence of P1 beyond that achieved by either of the individual source adjustments. 

This is not so for the P2-Lá targeted stimulus: the contour is much like that of the peak-

boosted P2, indicating again that post-attenuation is not contributing much. 

 

Figure 5.14: P1 P2 P3 prominence for stimuli targeting P1-Cáit (left) and P2-Lá (right). 

Panel (c) compares Pre+Peak (pre-attenuation in combination with peak-boosting) and 

peak-boosting on its own. The effects on perceived prominence magnitude are apparent for 

both P1 and P2 targets. This was unexpected in the case of P1, given that the pre-

attenuation for P1 pertained only to a single short unaccented syllable. 

Panel (d) illustrates the combined effect of all three manipulations: Pre+Peak+Post (pre-

attenuation, peak-boosting and post-attenuation). While this complex manipulation is 

effective for both P1 and P2, it looks like the combination of pre- and post-attenuation with 
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peak-boosting is not necessarily more effective than the simpler combination of Peak+Post 

(peak-boosting and post-attenuation) for P1, and only marginally more effective than the 

combination of pre-attenuation and peak-boosting for P2. 

The naturalness of the Ee and Up varying stimuli was not significantly different. The 

average naturalness of the Ee stimuli was rated 3.2 (range 2.89-3.54), the average 

naturalness of the Up stimuli was 3.1 (range 2.78-3.26). 

5.3.4 Discussion 

Although there is extensive research into the contribution of f0 to prominence, far less is 

known about the contribution of other source parameters. Production studies of 

accentuation and focalization (see Section 4.1), which demonstrated the involvement of the 

entire source signal in prominence, indicated that f0 and other source parameters work 

together. The combined source effects involve local salience boosting to enhance 

prominence on the accented syllable, as well as more global, phrase-level source 

attenuations in other areas of the utterance. The results of this experiment illustrate how the 

phrase level pre- and post-attenuation may be perceptually equivalent to the peak-boosting 

source adjustments. 

Initial expectations that the effects of source prominence manipulation on P1 and P2 would 

be the same were not borne out, as P1 was deemed to be the more prominent of the two. In 

all the P1-Cáit targeted stimuli and in all but two of the P2-Lá targeted stimuli, P1 was 

judged the more prominent. Furthermore, these two possible targets differed in the extent 

to which they were influenced by phrase-level attenuation. For P2, pre-attenuation 

emerged as being very effective: P2 was perceived as more prominent than P1 only in the 

two stimuli where pre-attenuation was present. Surprisingly, post-attenuation appeared to 

contribute relatively little. In the case of P1 it was very different in that both pre- and post-

attenuation were effective in conferring prominence. 

P1 is very clear more dominant in the baseline values. Two possible explanations exist. It 

may simply be that a phrase-initial accent is inherently more prominent, with some sort of 

perceptual or contextual bias favouring the phrase-initial location. On the other hand, it 

may be that the declination included in these stimuli introduced a P1 bias, conferring 

greater prominence in the order of P1>P2>P3. These two explanations could be 

complementary: an inherent prominence of the phrase-initial accent may be linked to the 
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declination across the phrase. To date, it was thought that declination in itself may not 

confer prominence, and that accentuation is judged relative to the declination line, but this 

assumption may need to be explored further. It may in fact be the case that the declination-

prominence ‘adds’ a natural prominence bias to the initial prenuclear accent of a phrase. It 

is worth noting, however, that in Experiment 1 (see Section 5.1), there was no declination 

included in the stimuli, and judgements also indicated a similar disparity in the prominence 

ratings of consecutive accents. 

Of the two Rd implementations used in this experiment, the one involving variation of Ee 

was considerably more effective in achieving prominence than the implementation 

involving variation of Up. When considering the spectral correlates of Up and Ee variation, 

this finding was expected. Up is associated primarily with the level of the first harmonic, 

and the lower frequency components of the source spectrum, while Ee has a more 

pervasive influence on overall spectral levels above H1. 

5.3.5 Conclusions 

This experiment demonstrates how voice source modulations affecting phonatory quality 

are perceptually important in signalling prominence, operating both at a local level in 

boosting the prominence of the accented syllable and at a global level in attenuating the 

prominence of other portions of the utterance. 

The results also suggest that the location of a syllable within the phrase may be important, 

revealing a bias towards greater prominence on the phrase-initial prenuclear accent, when 

compared to the following one. It is unclear from these data whether this bias results from 

the effects of voice source declination (described in Ní Chasaide et al. (2015)). 

The results of this experiment support previous findings that Rd has potential as a useful 

parameter for controlling linguistic focus in speech synthesis, even in the absence of f0 

manipulation. Two implementations of the Rd variation were used in this study and it was 

found that the method where Ee was allowed to vary was much more effective at signalling 

prominence. A fuller elaboration of how to optimally control this parameter may also be 

the focus of future work beyond this thesis. 
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5.4 Chapter conclusions 

The findings from the experiments discussed in this chapter suggest that Rd is a useful 

parameter for controlling both linguistic and paralinguistic prosody in synthetic speech. 

Due to the extensive amount of work required in performing manual inverse filtering and 

glottal source parameterisation the experiments focused on single speakers and utterances. 

Although this means that the results cannot be viewed as a complete generalisation, it is 

thought that they offer a deep insight into voice prosody control. Experiments 1 and 3 

found that it was much easier to signal prominence in a syllable towards the beginning of 

an utterance by manipulating Rd alone, but it becomes more difficult with syllables towards 

the end of an utterance. This could be due to several factors, including: the lack of f0 

manipulation in the stimuli; the lack of, or lesser amount of, post-focal material in the 

stimuli; or the perceived prominence in the baseline stimuli overriding any effects of 

parameter manipulations. Experiment 2 showed that stimuli ranging in the tense-lax 

continuum generated by manipulating the Rd parameter can evoke an affective response, 

but that distinguishing between valence states may require additional parameter 

manipulation. 

The findings from these studies acted as the basis for the design and development of an 

analysis-and-synthesis system described in the next chapter (see Chapter 6). This system 

has the ability to be integrated into a speech synthesis system, which allows users to 

manipulate voice source parameters in order to change perceived prosody in synthetic 

speech. These initial studies used manual analysis techniques and formant synthesis. The 

system outlined in Chapter 6 performs both analysis and synthesis automatically but 

incorporates a means to manually adjust voice source parameter contours to alter synthetic 

speech in a way desired by the user. 

The main points that will be taken into account in the design of the system are that:  

• Control of the voice source parameters – Ee and Rd in this case – is required across 

whole utterances to successfully elicit prominence in different locations. 

• Control of Ee and Rd is sometimes sufficient to signal prominence, even without f0 

salience in some case, and to alter the perceived affect of an utterance.  
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• An additional important point that was taken into account in the design of  the 

analysis-and-synthesis system is to allow for immediate feedback to the user, in 

experiments (see Sections 7.1 and 7.2) where they are asked to modify a speech 

signal. There is no use developing a system that allows for the modification of 

speech if the user is required to wait in order to hear the result. 
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Chapter 6. The GlórCáil analysis-and-

synthesis system 

One of the main goals of this work was to implement a speech analysis-and-synthesis 

system that allowed a user to easily control a minimal set of voice source parameters, as 

well as vocal tract characteristics, in order to transform linguistic and paralinguistic 

prosody, as well as speaker characteristics. These kinds of transformations would prove 

very useful in the generation of characters in educational games for low resource languages 

where large amounts of speech data are unavailable. 

This chapter describes the setup and methods involved in the GlórCáil6 analysis-and-

synthesis system. The graphical user interfaces for the analysis and synthesis stages and a 

specific implementation of the synthesis interface for use in a manipulation task perception 

test outlined in Chapter 7 are also discussed. 

The GlórCáil system is an application developed for the analysis and resynthesis of speech 

with a particular focus on control of the voice source parameters. It is implemented in the 

MATLAB environment (The Mathworks Inc., 2018). Vocal tract and voice source 

parameters are first estimated during the analysis stage. Speech is then resynthesised using 

an acoustic glottal source model in place of the original glottal source. This allows users to 

change the perceived voice quality of an utterance by manipulating voice source parameter 

contours in an interactive GUI. Changes in voice quality can lead to changes in the 

perceived prominence of words/syllables (see Experiment 1 and 3, Sections 5.1 and 

5.3)(Yanushevskaya et al., 2016a; Murphy et al., 2018), and even changes in the perceived 

affect of an utterance (see Experiment 2, Section 5.2)(Murphy et al., 2017). As mentioned 

previously, an earlier study carried out a principle component analysis on various voice 

source parameter and found that Rd was important in describing cross-speaker differences 

in voice quality (Yanushevskaya et al., 2017). These studies suggest that Rd is an effective 

voice quality control parameter, and by reducing the dimension of source parameters to a 

 
6 The name comes from the Irish words for voice (glór [ˈɡ l̪ˠ oː ɾˠ]) and quality (cáilíocht [ˈk ɑː 

lʲ iː x t̪ˠ]). 
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minimal set, the process of parameter manipulation is simplified. This is an important 

factor when considering usability and the integration of the system into an SPSS system. 

Another main aim of this work was to integrate the GlórCáil system into a DNN-based 

SPSS system. This chapter also includes a description of this process, outlining the SPSS 

system that was used and how it was adapted to accommodate the GlórCáil system. 

The findings from the studies detailed in Chapter 5 indicate that components of this system 

would be useful tools when exploring the correlates of linguistic and paralinguistic 

prosody. There are also possible applications in the generation of varied prosody including 

expressive speech for languages or voices where there are limited, or no, expressive speech 

corpora available. When integrated into an SPSS system, the tool could be used to create 

utterances with particular prosodic patterns that are missing from the original speech 

corpus. 

6.1 Analysis Stage 

A flowchart of the analysis stage is shown in Figure 6.1. The first step of the analysis stage 

is the polarity check. This is followed by the estimation of f0, GCI locations and 

voiced/unvoiced (VUV) regions of a recorded speech signal. This is carried out using the 

REAPER programme created by Talkin (2015). The next step is to perform inverse 

filtering on voiced regions to obtain an estimate of the glottal source. This signal is then 

parameterised by fitting the LF-model to each differentiated glottal flow (DGF) pulse. LPC 

analysis is performed on unvoiced regions of speech to obtain an estimate of the vocal tract 

transfer function. 
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Figure 6.1: Flowchart of the GlórCáil analysis stage 

6.1.1 Polarity check 

The first step of the GlórCáil analysis stage is to check the polarity of the signal being 

analysed. The use of varying microphones and recording equipment results in speech data 

with different polarities. Correcting the polarity of a signal is important due to the fact that 

the accuracy and performance of many analysis techniques may be negatively affected if 

the polarity of the signal is inverted. In the case of this work, the LF-model matching 

process, described in Section 6.1.4, could provide less accurate results due to its use of 

polarity sensitive time domain measures. The polarity check is carried out using the 

method described in Drugman (2013). This method determines the polarity of a signal by 

first calculating the residual of the signal and a rough estimation of the glottal flow 

derivative. The skewness of the sample distributions of each signal are then calculate and 

subtracted from each other. The sign of the result is the polarity of the signal, with a 

negative value signifying an inverted or negative polarity meaning the signal must be 

multiplied by -1 to correct it. 
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6.1.2 f0, GCI and voiced/unvoiced estimation 

The next step is to estimate f0, GCI locations, and VUV regions using the REAPER 

programme (Talkin, 2015). This programme is called from the MATLAB environment 

using a system call and it extracts the desired parameters to binary files which are then 

loaded into MATLAB. The process REAPER uses involves first removing low frequency 

noise and any DC component from the speech signal using high-pass filtering. A Hilbert 

transform can be applied that may reduce phase distortion in the signal by calculating its 

analytic representation. This analytic signal is a complex-valued function that has no 

negative frequency components (Smith, 2007). Next, the linear prediction residual is 

extracted and a set of normalised cross-correlation functions (NCCFs) are calculated from 

weighted combinations of the speech signal and the LP residual. Correlations are 

calculated for each possible fundamental period within the whole pitch range, defined by 

specified minimum and maximum f0 bounds. A lattice of GCI candidates is constructed 

with associated costs derived from the NCCFs, and additional values representing the 

likelihood of a frame being voiced or unvoiced. These costs are then used in the dynamic 

programming step, where the candidates with the minimum cost are selected, considering 

the costs associated with the previous and following pulse candidates. The f0 values are 

calculated by taking the maxima points of NCCF frames closest to the corresponding GCIs 

and computing the periods between the adjacent points. 

6.1.3 Inverse filtering of voiced speech 

Inverse filtering is then carried out on a frame-by-frame basis using the modified version 

of IAIF, GFM-IAIF (described in Section 2.3.1.3), with a frame length of 25 ms, a 

frameshift of 5 ms, and an order defined as ⌊𝑓s/1000⌋ + 4. DAP is used in place of LPC 

modelling in the GFM-IAIF process as it provides better estimations of the vocal tract 

transfer function (Alku and Vilkman, 1994). This analysis provides estimations of the DGF 

and the filter coefficients describing the vocal tract transfer function. The filter coefficients 

are converted to line spectral frequencies (LSFs) to make them less susceptible to 

distortions introduced by later processing steps and to make them more robust to statistical 

modelling in the cases where the vocoder is used in conjunction with an SPSS system. 
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LSFs are the roots of the line spectral pair (LSP) polynomial described in Itakura (1975a) 

and Soong and Juang (1984). The inverse filter resulting from an LPC analysis can be 

expressed in the Z domain by the mth order polynomial: 

 𝐴(𝑧) = 1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 + 𝑎3𝑧
−3 +⋯+ 𝑎𝑚𝑧

−𝑚  (6.1) 

The LPC coefficients (𝑎1, 𝑎2, 𝑎3…𝑎𝑚) are very sensitive to quantisation errors, which can 

lead to filter instabilities. The A(z) polynomial can instead be expressed as: 

 𝐴(𝑧) = 1/2[𝑃(𝑧) + 𝑄(𝑧)] (6.2) 

 Where P(z) and Q(z) are symmetric and anti-symmetric LSP polynomials respectively. 

These polynomials are defined as: 

 𝑃(𝑧) = 𝐴(𝑧) (1 + 𝑧−(𝑚+1)
𝐴(𝑧−1)

𝐴(𝑧)
) (6.3) 

 𝑄(𝑧) = 𝐴(𝑧) (1 − 𝑧−(𝑚+1)
𝐴(𝑧−1)

𝐴(𝑧)
) (6.4) 

The polynomials have the following properties when A(z) has all roots within the unit 

circle: 

1. Their zeros all fall on the unit circle; 

2. Their zeros are interlaced with each other; 

3. The minimum phase property of A(z) is maintained after the zeros of P(z) and Q(z) 

are quantised. 

The first two properties are valuable when calculating the zeros of P(z) and Q(z), and the 

third property guarantees the stability of the filter derived from the polynomials (Soong 

and Juang, 1984).  

6.1.4 Glottal source parameterisation 

Once the differentiated glottal waveform has been obtained, model fitting is performed to 

parameterise each pulse using a method similar to that described in Kane and Gobl (2013) 

(see Section 2.3.4.3). Each analysis frame consists of a GCI(n) centred glottal pulse that 

extends from GCI(n-1) to GCI(n+1) and is windowed using a Hann window. 

A range of pulses are generated using Rd values between 0.3 and 2.7 in 0.05 increments 

and an Ee value measured as the maximum negative value of the DGF pulse. Ee, as well as 

f0 are used to calculate a set of default R-parameter and generate the corresponding LF 

pulse for each incremental value of Rd within the range. The time domain and spectral 

(amplitude and phase) correlation coefficients of the DGF pulses, when compared with the 
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generated LF pulses, are calculated and subtracted from 1 to give an error value for each of 

these measures. These error values are then sorted according to increasing error. The top 

ten Rd candidates that minimise the error values are selected for the next stage of the 

process. The next stage involves using a dynamic programming method (Ney, 1983) to 

calculate the optimum path of Rd values through the utterance. This is achieved by 

selecting the values that minimise target, transition and spectral stationarity costs (see 

Section 2.3.4.3). This method considers the context of a particular Rd value in relation to 

previous values as well as the effect of transitional regions of speech like vowel onsets and 

offsets. The optimal Rd values are then combined with their corresponding Ee and f0 values 

as the source parameters. The extracted voice source parameters are then smoothed using a 

5th order median filter followed by a 5th order moving average filter before being saved. 

6.1.5 Analysis of unvoiced speech and parameter output 

LPC analysis is carried out for unvoiced frames to approximate the unvoiced spectrum. 

The gain of the unvoiced frames is measured by taking the root-mean-square of the 

prediction error. The unvoiced LPCs are also converted to LSFs. 

6.2 Synthesis Stage 

Once parameters have been extracted from an utterance in the analysis stage, the GlórCáil 

synthesis stage (see Figure 6.2) can be used to resynthesise it. This stage includes an option 

to manipulate the voice source parameter contours of an utterance so that it can be 

resynthesised, and the results of the manipulations can be listened to straight away. Users 

can also compare a manipulated utterance with the original unmanipulated version directly 

in the interface. The process of parameter control will be discussed in more detail in 

Section 6.3.2. 
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Figure 6.2: Flowchart of the GlórCáil synthesis stage 

6.2.1 Excitation generation 

The process of resynthesis begins by generating the voiced and unvoiced excitations. 

Voiced regions are defined by frames with f0 values above and below a minimum and 

maximum frequency (default 50 and 500 Hz respectively). The voiced excitation consists 

of LF pulses with the addition of amplitude modulated Gaussian white noise. 

The f0 value from the first voiced frame is used to calculate the period of the first LF pulse 

using the relationship of f0 = 1/T0. The period is used to define the start and end points of 

the pulse frame within the voiced excitation. The parameters Ee, Rd and f0 are used to 

generate the full set of LF-model parameters using the correlations outlined in Fant (1995), 

which are in turn used to generate the corresponding LF pulse. Amplitude modulated noise 

is added to the pulse according to the method described in Gobl (2006). The level of this 

noise is modulated according to the shape of the pulse. A pulse corresponding to a tense 

voice quality will have little to no added noise, while a pulse corresponding to a lax voice 

quality will have a considerable amount of aspiration noise added to it. There is an 

additional scaling factor that allows the noise level to be increased or decreased 

independently of pulse shape. Note, however, that this scaling factor is mainly used to 

calibrate the overall noise level. Once set, further adjustments should normally not be 
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necessary, as the noise level is automatically modulated depending on the shape and 

amplitude of the pulse. 

This first pulse is placed within the start and end indexes that have already been defined, 

and the next pulse is calculated using parameter values from the closest frame to the end of 

the previous pulse. This process continues until the current voiced region has been filled 

with pulses. The pulses start and finish at values of zero, so no windowing is required to 

prevent discontinuities in the signal. 

Frames with values of f0 below the minimum f0 threshold are treated as unvoiced regions. 

White Gaussian noise is used as the excitation signal in these areas. 

6.2.2 Filtering of excitation 

Once the excitation signals have been generated, they are filtered by a filter that represents 

the vocal tract transfer function. The voiced excitation is filtered using the LPC filter 

coefficients that are converted back from the LSFs that were output from the synthesis 

stage. A scaling factor may be applied to the filter coefficients to effectively shorten or 

lengthen the vocal tract. The frequencies of the poles are warped by performing a bilinear 

transformation in the z-domain. This approach involves substituting the original filter 

coefficients with first order all-pass elements using the mapping shown in Equation (6.5) 

(Härmä et al., 2000), 

 𝑧−1 → 𝑧̃−1 =
𝑧−1 − 𝜆

1 − 𝜆𝑧−1
 (6.5) 

where 𝑧−1 is the original filter coefficient, 𝑧̃−1 is the transformed coefficient, and 𝜆 is the 

warping factor. The range of the warping factor is limited to between -0.1 and 0.1, where 

negative and positive values effectively shorten or lengthen the vocal tract respectively. 

This method is based on the implementation provided by Ellis (2004). This ability to scale 

the resonant peaks of the vocal tract adds an extra dimension of control and allows for 

further transformations to be made to the synthetic speech. The unvoiced excitation is 

filtered using filter coefficients and gain values obtained from LPC analysis. The final 

speech signal is then created by overlap-adding each of the filtered frames. 
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6.3 GlórCáil interfaces 

An important element of this system is the user control interface. It allows a user to easily 

analyse speech and extract parameters which can then be used to resynthesise speech with 

or without voice quality manipulations. The GUI was created using the MATLAB GUI 

Design Editor (GUIDE) and is split into two stages, analysis and synthesis. Key points in 

the design process of these interfaces, particularly the synthesis interface, were gleaned 

from the results of the experiments described in Chapter 5. These points were that: 

• Full and flexible control of the voice source parameters is required across a whole 

utterance to successfully elicit prominence in different locations. 

• Ee and Rd were found to be effective in signalling prominence. 

• Immediate feedback for the user is important when modifying a speech signal. 

Each of these points were considered important features for inclusion in the synthesis 

interface that will be discussed in Section 6.3.2. 

This section also details a modified version of the synthesis stage interface that was used in 

an experiment to test the effectiveness of the parameter control in signalling prominence in 

synthetic speech. The experiment is discussed in Section 7.1. 

6.3.1 Analysis interface 

The analysis interface (see Figure 6.3)(layout based on Dalton et al. (2014)) lets the user 

pick the directory containing the speech data that they wish to analyse. There is an option 

to check the polarity of either only the first file, or of each file in the directory individually. 

This option is useful if the user knows that all the speech data were recorded under the 

same conditions, as it saves time. 
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Figure 6.3: GlórCáil analysis GUI 

Once the user has selected the correct directory and options, they can click the Process 

button to analyse the speech. A file containing the values of analysed parameters for each 

file is generated and saved in the same directory as the original speech data. 

This interface is simple and easy to use, enabling users with any level of experience to 

analyse the speech data that they wish and obtain estimates of a small set of voice source 

parameters, Rd, Ee and f0. 

6.3.2 Synthesis interface 

Once the analysis files have been generated the user can resynthesise speech using the 

synthesis interface (see Figure 6.4). After an analysis file is loaded into the interface, the 

user can manipulate Rd and Ee – two voice source parameters that were found to be 

effective at signalling prominence and changes in affective state in the experiments 

described in Chapter 5, as well as f0. This level of control enables a user to manipulate the 

voice quality along the tense-lax continuum. 
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Figure 6.4: GlórCáil synthesis GUI 

The user is presented with three frames, each containing a parameter contour that they can 

manipulate to create a desired output. The parameter contours can be manipulated by first 

clicking the SET button associated with each parameter, then left clicking within the 

parameter box along the length of the utterance, creating a stylised parameter contour. 

Once the chosen contour has been created, the user right clicks at the final point they wish 

to define. These points are used to generate a new parameter contour using linear 

interpolation. Areas of the original contour that have not been manipulated by the user 

remain unchanged. 

An example of how a parameter contour, Rd in this case, may be set is shown in Figure 6.5. 

(1) Rd is lowered within a region marked by the blue circles in an attempt to make this 

unit more prominent. The circles are defined by the user by clicking with the 

mouse. This has the result of making this region more tense. 

(2) Rd is increased in the region after the section defined in step (1). This has the effect 

of making this region progressively more lax. 
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(3) A slope is defined preceding the section defined in step (1), lowering Rd and 

resulting in the voice quality transitioning from lax to tense. 

 

Figure 6.5: Illustration of contour setting in the GlórCáil synthesis GUI. The original 

parameter contour is shown in black, the set contour in red and the user defined points are 

circled in blue. 

The ranges of each of the parameter frames can be changed by clicking the RANGES 

button at the top right of the respective frame. At the bottom of the window is a 

spectrogram so that the user can establish their position within the utterance. The user can 

also control the vocal tract warping factor using the slider marked VT WARP. By moving 

this slider from its default position, it is possible to simulate the acoustic effect of a change 

in vocal tract length. 

The user can apply the changes they have made to synthesise a modified utterance. This is 

achieved by pressing the MODIFY SPEECH button. This utterance can then be listened to 

by pressing the PLAY MODIFIED button in order to compare it to the unmodified 

resynthesised utterance (PLAY RESYNTH), or the original speech file (PLAY .wav). This 

feature is useful when attempting to create a particular transform or shift in the modified 

utterance. The user can also choose to save the modified and unmodified resynthesised 

utterances to WAV files for later use through a dropdown menu at the top left of the 

window. 

This interface allows the user to easily control Rd and the other voice source parameters, Ee 

and f0, as well as vocal tract characteristics. It accomplishes this by enabling the user to 

define parameter contours using computer mouse controls and interactive frames. 
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6.3.3 Interface for perception experiments 

One of the aims of this work was to demonstrate the effectiveness of the GlórCáil system 

using user-driven manipulation tasks. These are perception tests where the participants are 

given an objective and manipulate a parameter/parameters until they reach that objective. 

Another variant of the synthesis interface was developed for use in these manipulation-

based perception tests. It is hoped that these types of test will prove useful, not only in the 

context of this work, but also in future work that is carried out in this area. Data obtained 

through user-driven tasks may give a more accurate representation of what the users are 

perceiving. It is also hoped that these types of interactive tests will be more enjoyable and 

less fatiguing for participants than some traditional perception tests, due to their level of 

involvement and engagement with the tasks. 

Any desired utterance can be parameterised using the GlórCáil analysis stage and passed 

into this interface, along with temporal information, such as word or vowel boundaries. 

This temporal information is used to indicate the regions in which the researcher wishes to 

manipulate a voice source parameter/parameters. The temporal information is currently 

notated using Praat (Boersma and Weenink, 2019), but it is hoped that it will be integrated 

into the analysis stage of the system as future work. 

The sliders used to control each region can be customised using any rectangular block 

images. The example in Figure 6.6 uses a set of sliding blocks corresponding to each word 

in an utterance “We were away a day ago”. The blocks in this example can be moved up 

and down in order to manipulate the Rd parameter contour. 
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Figure 6.6: GUI for manipulation task perception task. Participants are presented with a 

synthetic sample to manipulate using the sliding blocks. 

The responses of participants and the number of times they listen to each utterance are 

recorded each time the Next page button is pressed. This also moves onto the next sample 

and resets the slider blocks to their original positions. 

6.4 GlórCáil-DNN 

The previous sections in this chapter have discussed the GlórCáil system in the context of 

copy-synthesis or copy-synthesis with feature transformation. This section will describe 

how the system was integrated into a DNN-based SPSS framework. 

6.4.1 Baseline system 

The baseline SPSS system used in this work was built using the nnmnkwii python library 

(Yamamoto, 2017). This library makes prototyping of speech synthesis systems fast and 

easy due to its simplicity and transparent design. Some of the system’s scripts are based on 

Merlin (Wu et al., 2016) speech synthesis system demo scripts. 

Speech corpora of Irish and Irish-English audio with a sampling rate of 16 kHz and a bit 

depth of 16 bits were used to train this system. Table 6.1 lists the corpora used, their 

biographical information and the number of utterances they contain. 
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Table 6.1: Speech corpora used to train DNN-based speech synthesis system 

Language Variety Speaker Gender Number of utterances 

Irish Kerry CMG M 1452 

 

 

 

 

Irish-English Donegal ANB F 1122 

The WORLD vocoder is used to extract log f0, spectral and aperiodicity parameters. The 

spectral parameters are in the form of 60-dimensional MFCCs. An aperiodicity value is 

also extracted. These features, along with their first and second derivatives, are combined 

with a voiced/unvoiced measure to form the full acoustic feature set of 187 parameters. 

Full context linguistic labels in the HTS format are converted into vectors suitable as 

neural network inputs. The acoustic and linguistic features are then normalised to make 

them compatible with neural network training. The linguistic features are min-max 

normalised, while the acoustic features are normalised to zero mean and unit variance. 

Two BLSTM networks are used by this system, one to model the duration and one to 

model acoustic features. Each BLSTM network consists of three hidden layers with 512 

neurons in each layer implemented using PyTorch (Paszke et al., 2017). The networks are 

trained by feeding utterance-wise sequences into the network and the Adam optimizer 

(Kingma and Ba, 2014) is used to update the network’s weights after each training 

iteration. 

Once the networks have been trained, maximum likelihood parameter generation (MLPG) 

(Tokuda et al., 2000) is used to produce a smooth parameter contour from the values and 

their corresponding dynamic features of the neural network output. The generated 

parameters are then used by the WORLD vocoder to construct the synthetic speech 

waveform as described in Section 3.3.2.2. 

6.4.2 Proposed system 

The analysis in the proposed system is carried out in the MATLAB environment using the 

GlórCáil analysis interface (see Section 6.3.1). The extracted parameters are loaded and 

used to train the BLSTM network in place of the parameters extracted by the WORLD 

vocoder in the baseline system. The DAP and LPC coefficients are converted to LSFs, and 

f0 values are converted to log f0 and when combined with their first and second derivatives 

forms an acoustic feature set with a dimension of 249. The same network architecture is 
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used as in the baseline system with a network to model duration and one to model acoustic 

features, each containing three BLSTM layers with 512 cells in each layer. 

Parameters are generated using MLPG in the same manner as the baseline system. The 

parameter generation stage remains the same as the baseline system except for slight 

modifications made to account for the different parameter dimensions used. 

The parameters are then input into the GlórCáil synthesis stage and synthetic speech is 

generated using the method described in Section 6.2, where a user has the ability to  

manipulate voice source parameters prior to synthesis using the synthesis interface 

described in Section 6.3.2. 

6.5 Chapter conclusions 

This chapter described the GlórCáil system which allows for the manipulation of voice 

source and vocal tract parameters of synthetic speech. The analysis stage separates speech 

into its voice source and vocal tract filter components using established methods. The 

voice source signal is modelled using a glottal model controlled by a minimal set of 

parameters, which simplifies integration into SPSS systems. This reduced parameter set 

also means that direct control of voice quality manipulations is simplified for users of the 

GlórCáil system. 

The synthesis stage reconstructs the source signal using a glottal source model and 

aspiration noise for voiced speech and scaled Gaussian noise for unvoiced speech. The 

source signal is then filtered by a filter that approximates the effects of vocal tract 

resonances. 

The control interfaces created to control the two stages were also explained. The synthesis 

interface allows users to manipulate the voice source parameters and scale the vocal tract 

filter coefficients before resynthesis. The development of an interface for manipulation 

task perception experiments was also outlined and its use will be explained in more detail 

in Chapter 7. 

This chapter also described how the analysis-and-synthesis system were integrated into a 

DNN-based speech synthesis framework. 
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Chapter 7. Transforming voice prosody 

and speaker characteristics 

of synthetic speech 

This chapter outlines three experiments that were carried out to test the usability of the 

GlórCáil analysis-and-synthesis system as well as the user interfaces described in Chapter 

6. These experiments are intended to illustrate how the system can be used to derive user-

defined settings for prosodic signalling. They also demonstrate how the source might be 

controlled in speech synthesis and how the system can be integrated with a DNN-based 

SPSS system. 

7.1 Experiment 4: Deriving user-defined settings for 

linguistic prosody 

An experiment was carried out to investigate how voice source parameters would be 

manipulated to elicit focal prominence in a synthetic utterance7. An additional aim of this 

experiment was to demonstrate the effectiveness of the GlórCáil system at transforming 

linguistic prosody through the manipulation task interfaces described in Section 6.3.3. 

The aim of this experiment was to obtain optimal user-defined settings for Rd that would 

signal focal prominence. This was carried out on an utterance synthesised with three voice 

qualities (breathy, modal and tense). It was hypothesised that the baseline voice quality of 

the utterance would influence the extent of Rd variation required to signal prominence. 

The approach adopted in this experiment differs from previous studies: rather than rating 

premade stimuli, participants were asked to actively manipulate the Rd parameter, to 

generate the appropriate response to a question, i.e. with perceived prominence on a 

specific item in the utterance. The methodology is similar (though not identical) to an 

adjustment task used in Kreiman et al. (2007), where the listeners were asked to adjust 

 
7 Presented in Murphy et al. (2019) 
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jitter, shimmer and Harmonics-to-Noise ratio in synthetic stimuli to match natural voice 

samples or to the quasi-adjustment task used by Gussenhoven et al. (1997), involving 

judgment of the relative prominence of f0 peaks. A manipulation task rather than an 

adjustment task was used here, that is, the participants were not given a naturally produced 

example sentence to match. Instead, they were presented with mini-dialogues constructed 

to elicit narrow focus and were asked to manipulate utterances synthesised with different 

voice qualities so that they sounded acceptable/natural as a response to a given question. 

The objective is to establish what degree of Rd salience is required to make a particular 

syllable prominent, and whether the Rd values required differ for the three voice qualities. 

By giving subjects direct control over acoustic parameters, it is hoped that one is obtaining 

indicators as to the actual Rd values that are optimal for signalling prominence. 

The stimuli for the perception test were based on a recording of an all-voiced sentence ‘We 

were away a day ago’ spoken by a male Irish English speaker. The vowel quality in the 

potentially accentable syllables WAY and DAY was the same; in the original recording the 

duration of the vowels in these syllables was approximately the same (162 ms and 170 ms 

respectively). The reasoning for selecting just this single utterance was to allow for direct 

comparison between the results of this experiment and those described in Chapter 5 (see 

Sections 5.1 and 5.3). 

The utterance was analysed and parameterised using the GlórCáil system. Three baseline 

sentences were created representing breathy, modal, and tense voice quality. The Rd values 

in each of these sentences were kept constant and were set to 1.6 for breathy, 1 for modal, 

and 0.7 for tense voice (based on the production data in Yanushevskaya et al., (2016b) and 

auditory analysis). f0 was set to its average value (104 Hz) with the addition of a degree of 

declination (8.5 Hz/s) and was kept the same in all three sentences. Amplitude modulated 

aspiration noise was added to each sentence according to the method described in Gobl 

(2006). Duration was not manipulated. 

An informal auditory analysis, carried out by the author, confirmed that there was no 

prominence on the potentially accentable syllables in the resulting sentences; in other 

words, they were both equally non-prominent. 
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As the intention was not to vary f0 and given the results of Experiment 3 (see Section 5.3), 

which suggested that a more perceptually effective Rd implementation involves fixed Up 

and varying Ee, these were the settings used in the current experiment. 

Word boundaries within the utterance were annotated in Praat (Boersma and Weenink, 

2019) along with vowel midpoints and vowel boundaries. The Rd values were kept constant 

at word boundaries but were allowed to vary across the vowel segments during the 

manipulation task. Vowel midpoints were used to extract Rd values obtained as a result of 

the listening test described in Section 7.1.2. Rd was allowed to vary within ranges set for 

each phonation type and using scaling factors that were applied across vowel segments in 

manipulated words. Note that in away and ago only the initial vowels were manipulated. 

7.1.1 Synthesis user interface 

A user interface (introduced in Section 6.3.3) was designed for the manipulation task (see 

Figure 7.1). Each word was represented by a sliding block which, when dragged up and 

down, controlled a scaling factor. This factor was then multiplied by the corresponding 

region of the original (baseline) Rd contour. The scaling factors ranged between 0.5 and 2, 

so that the baseline Rd value could be halved or doubled at either end of the scale. 

 

Figure 7.1: User interface for the prominence manipulation task. 

Constraints were also applied so that the Rd values remained inside the ranges set for each 

voice quality: 1-2.3 for breathy voice, 0.6-1.4 for modal voice, and 0.35-1.4 for tense 

voice. These values were derived from data examined in Yanushevskaya et al. (2016b). 
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7.1.2 Listening test 

42 participants (all native speakers of English) took part in the test. The participants were 

asked to manipulate the blocks/words in the utterances so that the resulting sentence could 

be an acceptable/natural sounding response in a mini-dialogue involving narrow focus, e.g. 

Dialogue 1: 
Q: What did you do a day ago? 

A: We were aWAY a day ago 

Dialogue 2: 
Q: When were you away? 

A: We were away a DAY ago. 

There were eight utterances to manipulate. These included three instances of each of the 

dialogues, one for each of the three different voice qualities, in random order. Two more 

utterances were included at the beginning of the test to allow the participants to familiarise 

themselves with the procedure; the results from these were discarded. The participants 

were allowed to listen to the results of their manipulation and make changes as many times 

as they wished. The stimuli were presented through high quality closed back headphones in 

a quiet environment. The test took approximately 10 minutes to complete. 

The specific hypotheses were that: 

• Perceptually salient prominence can be generated by manipulating Rd (in the 

absence of f0 variation). 

• The magnitude of Rd excursions in the accented syllables would be different for 

different baseline qualities. 

• Manipulations of Rd would differ depending on the location of the focally accented 

syllable in the utterance. 

7.1.3 Results and discussion 

The Rd values at vowel midpoints were extracted from each response (42 participants x 6 

utterances = 252 responses). The average Rd contours and 95% confidence intervals of 

response sentences in which WAY and DAY were made prominent are shown in Figure 

7.2. Note that the increased values of Rd correspond to laxer/breathier phonation and lower 

values of Rd to tenser phonation. Thus, the peaks in Figure 7.2 show an increase in 

phonatory tension. 
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Figure 7.2: Mean Rd contours for WAY and DAY responses. Baseline values are shown by 

dotted lines. Shaded regions indicate 95% confidence intervals. 

It is clear in Figure 7.2 that: 

• The direction of Rd manipulation is the same across the three phonation types – 

towards lowering Rd /increasing tension relative to the baseline. 

• The magnitude of Rd manipulation/excursion from the baseline varies with voice 

quality when plotted on a linear scale: the largest for breathy voice and the smallest 

for tense. 

• Rd manipulation in pre- and post-focal material corresponds to changes towards 

breathier/laxer phonation relative to the original baseline. 

• There is a considerable drop in phonatory tension/rise in Rd in the post-focal word 

ago when the focal syllable is WAY. 

The magnitude of Rd manipulation/excursions in the focal syllables was measured as local 

‘protrusions’ relative to the adjacent unaccented syllables (calculated as the difference 

between the focal Rd value and the average of the Rd values in the adjacent unaccented 

syllables and expressed as percentages relative to the ranges of Rd values). 

Linear mixed-effect model analysis was used to test if the magnitude of Rd excursion is 

affected significantly by the baseline voice quality (VQ) and the location of the focal 

syllable (Focus) in the utterance. Analyses were conducted in the R environment (R Core 

Team, 2019) using the lme4 [version 1.1-20] package (Bates et al., 2015) for model fitting. 

The lmerTest package (Kuznetsova et al., 2017) was used for step-down model 

simplification by eliminating non-significant effects and for calculating denominator 

degrees of freedom using Satterthwaite’s approximations. The models were fitted using the 
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maximum likelihood (ML) method. The initial model included VQ and Focus as the main 

predictor variables (fixed effects) as well as their interaction; random effects included by-

subject random intercepts and slopes: [Rd~VQ*Focus +(1+VQ|Participant)]. The final 

reduced model included VQ as the only fixed predictor and by-subject random intercept 

[Rd~VQ+(1|Participant)]. The location of the focal syllable (Focus) and the VQ*Focus 

interaction were not significant and were excluded from the model. ICC (indicative of the 

correlation of the items within a cluster) as well as marginal and conditional R-squared 

statistics (Nakagawa et al., 2017) were obtained using the sjPlot package (Lüdecke, 2018). 

Marginal R-squared describes the proportion of the variance explained by the fixed effects; 

conditional R-squared indicates the variance explained by both fixed and random effects. 

The summary of the estimated coefficients of the mixed effect model fitted to the Rd values 

(calculated as local ‘protrusions’ relative to the voice quality specific Rd ranges) obtained 

in the listening test is given in Table 7.1 (see also Figure 7.3). Based on marginal and 

conditional R2 values, the amount of variance explained by the random effects amounted to 

about 40% of the variance. Fixed effect of baseline voice quality accounts for about 14% 

of the variance. Analysis of the fixed effects suggests a statistically significant association 

between perceptually salient Rd values in the focal syllables and baseline voice quality. 

While there is a drop in Rd across all voice qualities in the focal syllable, the magnitude of 

this drop is significantly less for tense voice compared to modal and breathy voice (β = 

21.62, p<0.001 and β = 17.73, p<0.001 respectively, where β is the intercept and p is the p-

value). The magnitude of perceptually salient Rd lowering is not significantly different in 

modal and breathy voice. As mentioned earlier, the location of the focal syllable in the 

utterance (earlier or later) has no significant effect on the magnitude of Rd excursions 

associated with that syllable within the same voice quality type. 
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Table 7.1: Estimated coefficients, confidence intervals and t-values (β, CI and t respectively) 

for the mixed effect model fitted to obtained Rd local protrusion values. 

Mean (Intercept) β0 CI t p 

breathy -44.71 -50.68 – -38.74 -14.67 <0.001 

modal -48.60 -54.57 – -42.63 -15.95 <0.001 

tense -26.98 -32.96 – -21.01 -8.85 <0.001 

Contrasts β1 CI t p 

breathy vs. modal -3.89 -9.07 – 1.29  -1.47 0.142 

breathy vs. tense 17.73 12.55 – 22.90 6.71 <0.001 

modal vs. tense 21.62 16.44 – 26.80 8.18 <0.001 

Random effects     

ICC Participant 0.45    

Observations 252    

Marginal R2 / Conditional R2 0.142/ 0.531 

 

 

Figure 7.3: Predicted values of Rd and 95% CI (local protrusions relative to adjacent 

unaccented syllables expressed as % relative to voice quality Rd range). 

Based on the analysis and given the initial difference in the Rd ranges across voice 

qualities, it appears that a higher degree of manipulation is required for modal and breathy 

voice than for tense voice. However, applying a logarithmic scale to the data would result 

in a closer representation of perceptually meaningful distances between voice qualities (see 

Figure 7.4). Mixed model analysis of the log-transformed data confirmed that the 

difference in the magnitude of manipulation across different voice qualities is not 

statistically significant. This suggests that, when using Rd as a control parameter in 

synthesis, logarithmic manipulations will be more appropriate. 



 

 

Chapter 7. Transforming voice prosody and speaker characteristics of synthetic 

speech 

136 

 

 

 

 

Figure 7.4: Mean log10 Rd contours for WAY and DAY responses. Baseline values are shown 

by dotted lines. Shaded regions indicate 95% confidence intervals. 

The results support the initial hypothesis that perceptually salient prominence can be 

generated by manipulating Rd (in the absence of f0 variation). It appears that this 

manipulation is not confined to the focal syllable alone but affects the pre- and post-focal 

material and as a result, the overall contour of the utterance. The direction of the 

excursions was the same across synthetic qualities: the changes of the control parameter 

made by the participants in the focal syllable were all towards lowering Rd (perceptually 

tenser voice). Earlier studies with ready-made, predefined stimuli showed similar findings 

– that manipulating Rd towards tenser settings result in signalling prominence (at least for 

speakers of English and Irish who were participants in those earlier studies). Production 

data in Gobl (1988) also support these findings. However, this trend may not necessarily be 

independent of language, as is illustrated by the results in Vainio et al. (2010) for Finnish 

where focal syllables were characterized by higher NAQ values (laxer breathier phonation) 

(Alku and Vilkman, 1996). 

The hypothesis that the magnitude of Rd excursions in the accented syllables would differ 

for different baseline qualities was supported when the values were normalized to the voice 

quality specific range and a linear scale was used. This is in keeping with the fact that the 

range of Rd values for laxer, breathier voice relative to modal (1-2.5) is larger than that for 

tense voice (0.3-1), meaning there is more room for adjustment when the Rd is in the 

lax/breathy range. This non-linear relationship was accounted for in Experiment 2 (see 

Section 5.2) by log-transforming the Rd values. In this study, the differences in the 

magnitude of Rd excursions were not statistically significant when the values were scaled 

logarithmically. 
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Manipulations of Rd did not differ depending on the location of the focally accented 

syllable in the utterance. The modelling of prominence using Rd in Experiments 1 and 3 

(see Sections 5.1 and 5.3) was carried out by adding Rd excursions on top of an overall Rd 

declination, and the results of perception tests showed a significant difference in the 

perceptual prominence of a syllable depending on its phrase location (an earlier focal 

syllable was perceived as relatively more prominent than the one located later in the 

utterance). This trend did not emerge in the present results. The nature of task in this study 

was quite different from the previous studies insofar as the participants were tasked with 

generating an utterance with a prominent syllable rather than rating perceived prominence 

of predefined stimuli. It might be the case that additional Rd declination used in 

Experiments 1 and 3 (see Sections 5.1 and 5.3) plays a role in this difference, and it 

requires further exploration. 

7.1.4 Conclusions 

This experiment involved a user-driven manipulation task experiment in an effort to obtain 

and analyse perceptually salient Rd parameter contours that signal focal prominence. This 

experiment also aimed to demonstrate the capability of the GlórCáil system to transform 

the linguistic prosody of an utterance and demonstrate the manipulation task interface that 

was also developed in this work.  

This type of experimental setup has not been widely used. Since the results represent the 

output of active manipulation of acoustic parameters, they can potentially give a more 

accurate picture of the extent of manipulation that would be required. Experiments 1 and 2 

(see Section 5.1 and 5.3) found that pre and post-focal deaccentuation of Rd may increase 

the perceived prominence of a syllable. The findings of this experiment support these 

earlier results as the participants chose to manipulate not only the focal syllables but the 

pre- and post-focal material as well. The results clearly show that it is not enough to simply 

scale the overall contour linearly; as would be expected, the magnitude of the focal Rd peak 

needs to be scaled in proportion to the baseline Rd value. Although it has not been directly 

assessed in this experiment, it would be interesting to test and compare the relative 

importance of the extent of Rd decrease in the focal syllable (tenser phonation) and of the 

Rd increase (laxer phonation) in the pre-/post-focal material (deaccentuation) in signalling 

focal prominence. 
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The results of this experiment demonstrated that the GlórCáil system can be successfully 

used to transform linguistic prominence of a synthetic utterance. Additionally, the 

manipulation task interface developed in this work has proven to be a useful tool for 

carrying out user-driven listening tests. Participants informally reported to the author that 

they found this kind of test much more engaging and less fatiguing than the type of 

perception test carried out in Experiments 1, 2 and 3. It is hoped that by providing a more 

engaging task to participants a clearer representation of their perception will be obtained. 

This in itself is an interesting topic worth further future research. 

7.2 Experiment 5: User control of paralinguistic 

prosody and speaker transformation 

Two other aspects of the GlórCáil system are demonstrated in this experiment: the 

possibility of transforming the paralinguistic prosody (affective colouring) of speech as 

well as the extralinguistic voice properties of the individual speaker. The need to be able to 

control for the expressive, paralinguistic dimension of prosody has been discussed in detail 

in chapter 6, and its potential use in applications, such as interactive educational games, 

where the characters need to sound appropriate to the context of the game (angry, sad, 

etc.). 

As mentioned in the introduction to this chapter, although not the main focus of the thesis, 

the current system allows for speaker transformation, i.e., the manipulation of voice quality 

in a way that would alter the perceived identity of the speaker. As discussed, the possibility 

of generating multiple characters/speakers from a single synthetic voice would be 

invaluable for interactive educational games/scenarios requiring diverse speakers in 

dialects, where currently a single voice is available, as is the case for Irish (Ní Chasaide et 

al., 2017). 

Both these aspects were tested in the following experiment. This experiment involved a 

manipulation task in which participants were asked to modulate a set of parameters in 

order to transform a baseline utterance to sound like (i) a target speaker (e.g., male, female, 

child), who is (ii) exhibiting a particular affect (e.g., sadness, anger). 

In this experiment, voice quality was one of three parameters that were manipulated. The 

others involved f0 and a parameter that controlled vocal tract size. These latter parameters 
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are particularly important in allowing for the transformation of targeted speaker-

characteristics. 

7.2.1 Materials 

The baseline stimulus for the manipulation task was based on a recording of an all-voiced 

sentence ‘We were away a day ago’ spoken by a male Irish English speaker. The utterance 

was analysed and parameterised using the GlórCáil analysis stage (see Section 6.1). The 

extracted f0 and Rd parameter contours were not modified. The average f0 and Rd values 

were 104 Hz and 0.94 respectively. The stimulus was then resynthesised using the 

GlórCáil synthesis stage (see Section 6.2 for a description of this process). 

7.2.2 Synthesis user interface 

A user interface (introduced in Section 6.3.3) was designed for the manipulation task (see 

Figure 7.5). This interface allowed users to alter the parameter contours of the baseline 

stimulus. Three parameters were represented by the sliding blocks, which when dragged up 

and down controlled scaling factors. These blocks were labelled Voice, Pitch and Size. The 

Voice block controlled a scaling factor for the Rd parameter contour, Pitch controlled an f0
 

scaling factor and Size manipulated a scaling factor for the length of the vocal tract. The 

first two factors were multiplied by the original (baseline) Rd and f0 contours. The scaling 

factor for Rd ranged between 0.5 and 2, so that the baseline values could be halved or 

doubled at either end of the scale. The scaling factor for f0 was between 0.667 and 3, as this 

approximated the range of f0 values from adult male to child.The vocal tract scaling factor 

was used to modify the vocal tract transfer function in order to simulate changes in vocal 

tract length (see Section 6.2.2). The vocal tract scaling factor ranged between -0.1 and 0.1, 

with negative values effectively shortening the vocal tract and positive values lengthening 

it. 
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Figure 7.5: User interface for voice transformation task. 

Constraints were also applied so that the Rd values remained inside its usual range of 0.3-

2.7. Participants could listen to how their manipulations changed the utterance by pressing 

the Listen button, reset the sliders to their starting position by pressing the Reset sliders 

button, and move on to the next page by clicking the Next Page button. 

7.2.3 Listening test 

Eight participants, all native speakers of English, took part in the test. The participants 

were asked to manipulate the sliding blocks so that the resulting sentence sounded like it 

was being spoken by a particular speaker in a certain affective state, e.g., an angry woman, 

or a sad child. A full list of possible speaker and affect combinations is shown in Table 7.2. 

Two more utterances were included at the beginning of the test to allow the participants to 

familiarise themselves with the procedure; the results from these were discarded. The 

participants were allowed to listen to the results of their manipulations and make changes 

as many times as they wished. The stimuli were presented through high quality closed-

back headphones in a quiet environment. The test took approximately 10 minutes to 

complete. 
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Table 7.2: List of speaker and affect combinations for manipulation task 

Speaker Affect 

man angry 

 sad 

 no emotion 

woman angry 

 sad 

 no emotion 

child angry 

 sad 

 no emotion 

A large body of research has established how male, female and child speech characteristics 

differ in terms of voice quality, f0 and the size of the vocal tract. The goal of the test was to 

examine how the system parameter manipulations could be used to generate speech with 

gender/age specific characteristics and also with some degree of affect colouring. 

Based on the descriptions of male, female and child speech characteristics in the literature, 

it was expected that: 

• Participants would use higher f0 scaling values when transforming to child than to 

woman. 

• A negative vocal tract warping factor would be used for woman and child. 

• A higher Rd scaling value would be used for sad voice. 

• A lower Rd scaling value would be used for angry voice. 

7.2.4 Results and discussion 

The results of all adjustments are shown in Table 7.3 and Figure 7.6. It can be seen that, as 

expected, a larger increase in f0 scaling is used to transform the speaker to child for each 

affect, but the values were not as high as expected. The case of woman, no emotion had the 

lowest scaling factor applied, whereas angry and sad woman had very similar f0 scaling 

values. These values were also very close to sad child and child with no emotion. The 

highest f0 scaling factor used was for angry child. The f0 scaling values for man were very 

similar across affects. 
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Table 7.3: Average scaling factor adjustments. 

Speaker Affect Rd scaling factor f0 scaling factor VT warping factor 

child angry 0.66 2.28 -0.057 

 sad 1.65 2.11 -0.062 

 no emotion 1.09 1.97 -0.06 

woman angry 0.77 1.98 -0.05 

 sad 1.63 2.01 -0.014 

 no emotion 1.13 1.59 -0.047 

man angry 0.63 0.98 0.059 

 sad 1.56 0.94 0.029 

 no emotion 1.02 0.98 0.012 

 

Figure 7.6: Average scaling factor adjustments of f0 (top panel), Rd (middle panel), and 

vocal tract length warping factor (bottom panel) for each speaker type and emotion. Vertical 

bars show the standard error of the mean. 

The vocal tract warping factor values exhibited a similar grouping. Similar values were 

used for both woman and child, excluding sad woman, where the warping factor was only 
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slightly lower than the baseline setting. One surprising result was that the highest vocal 

tract warping factor (longest vocal tract length) was seen for angry man. The author had 

predicted that the tenser voice normally associated with anger would lead to an effective 

shortening of the vocal tract due to an increase in muscular tension resulting in a slightly 

raised larynx, but the exact opposite was observed in this experiment. However, this could 

make sense if the proposed link between a larger size being perceived as more dominant 

and angrier (Ohala, 1984; Chuenwattanapranithi et al., 2008) is considered. 

The results for the Rd adjustments were just as expected, with higher scaling used to 

produce sad, and lower scaling used to produce angry. These values were largely 

independent of gender, with just angry woman showing a relatively high standard error of 

the mean, indicating a wider spread of values being used to produce this voice. 

7.2.5 Conclusions 

The goal of this experiment was to examine how the GlórCáil system parameter 

manipulations can be used generate speech with gender/age specific characteristics and 

affective colouring. The range of target speakers and affects that were specified for this 

voice transformation task was small, but was deemed sufficient as a proof of concept in the 

initial demonstration of the system. 

The parameters appear to work in combination, and manipulations performed by the 

participants were mainly in the expected direction. 

The results show that transformation of affective colouring was mainly dependent on the 

voice quality related parameter, Rd. Speaker gender/age transformation were mainly 

dependent on f0 and vocal tract length. 

As this experiment was an exploratory pilot demo of the system, conclusions based on the 

results could only be made tentatively. However, the results do indicate that participants 

usually made manipulations in the expected directions. It was therefore deemed acceptable 

to use the scaling factors gained from this experiment as the values for stimuli generation 

in Experiment 6, where the proposed system was tested when integrated into a DNN-based 

speech synthesis system. 
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7.3 Experiment 6: Voice quality control in a DNN-TTS 

framework 

This experiment implemented the parameter manipulations found in Experiment 5 (see 

Section 7.2) into utterances synthesised using the proposed analysis and resynthesis system 

integrated into a DNN-based speech synthesis framework. This was in order to 

demonstrate how the system can be used to transform the paralinguistic prosody of 

synthetic speech, as well as speaker characteristics. 

7.3.1 Materials 

The stimuli for this experiment were generated by the baseline and proposed systems 

discussed in Sections 6.4.1 and 6.4.2 respectively. Both systems were trained using a 

corpus of 1452 utterances spoken by a male speaker of Irish (Kerry dialect) in his mid-20s. 

The audio was originally recorded in a semi-anechoic chamber using a B & K microphone 

at 44.1 kHz with a bit depth of 16, then resampled to 16 kHz before being used to train the 

speech synthesis systems. 

Two sentences that were not used in the training of the systems were selected randomly 

and used as the text input to generate the stimuli for this experiment: 

Sentence 1: 

“Tá rang feadóg stáin ag tosnú ar an Máirt.”  

[t̪ˠaː ɾˠauŋɡ fʲad̪ˠoːɡ  sˠt̪ˠaːnʲ əɟ  t̪ˠosˠnˠuː əɾˠ  ənˠ mˠaːɾˠtʲ] 

“Is class whistle tin starting on the Tuesday.” (word gloss) 

“A tin whistle class begins on Tuesday.” (translation) 

     Sentence 2: 

 “Tá cúrsa nua á sheoladh i gColáiste na Tríonóide, Baile Átha Cliath.” 

[t̪ˠaː kuːɾˠsˠə nˠoː aː çoːlˠə I ɡolˠaːʃtʲə nˠə tʲɾʲiːnˠoːdʲə bˠalʲə aːhə clʲiə] 

“Is course new being launched in College of Trinity, Dublin.” (word gloss) 

“A new course is being launched in Trinity College Dublin.” (translation) 
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18 stimuli were generated using the proposed system (nine versions of each sentence). The 

stimuli were synthesised using the scaling factors obtained in Experiment 5 (see Section 

7.2) to modify the voice source parameter contours of sentences 1 and 2 generated by 

GlórCáil-DNN. These corresponded to three different speakers (child, woman and man) in 

three different affective states (angry, sad and no emotion). The parameter contours that 

were scaled were Rd and f0, as well as an overall vocal tract warping coefficient. Table 7.4 

shows the full list of stimuli categories along with each of the scaling factors used. Two 

additional versions of sentences 1 and 2 were synthesised using the baseline system (see 

Section 6.4.1) making the total number of stimuli 20. 

Table 7.4: Stimuli categories and their scaling factors  

Speaker Affect Rd scaling factor f0 scaling factor VT warping factor 

baseline - - - - 

child angry 0.66 2.28 -0.057 

 sad 1.65 2.11 -0.062 

 no emotion 1.09 1.97 -0.06 

woman angry 0.77 1.98 -0.05 

 sad 1.63 2.01 -0.014 

 no emotion 1.13 1.59 -0.047 

man angry 0.63 0.98 0.059 

 sad 1.56 0.94 0.029 

 no emotion 1.02 0.98 0.012 

7.3.2 Listening test 

40 synthetic stimuli (two repetitions of the set of 20 stimuli) were presented to 20 Irish 

speaking participants in a listening test. The listening test was carried out using online 

survey software (Limesurvey GmbH., 2012) and participants were asked to take the test in 

a quiet environment using headphones. The stimuli were presented in a random order. The 

participants were informed that they would hear a number of different utterances, and that 

they could listen to each file as many times as they wished in order to answer the following 

questions for each stimulus: 

1. Who is the speaker? [the participants chose from a selection of radio buttons with 

the options child, woman or man] 

2. How does the speaker sound? [the participants chose from a selection of radio 

buttons with the affective labels angry, sad and no emotion]; 
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3. To what extent emotion is present in the utterance? [a five-point scale ranging from 

‘Not at all’ to ‘A lot’]; 

4. How natural is the speech? [a five-point scale ranging from ‘Not at all natural’ to 

‘Very natural’]. 

Through auditory analysis carried out by the author, and another expert researcher, it was 

expected that: 

• The stimuli generated with a particular target affect would be perceived as being 

coloured with that affect. 

• The participants would be less likely to distinguish between the woman and child 

voices due to the similarity in the scaling factors. 

• The participants would be less likely to label stimuli as angry than sad and no 

emotion. 

7.3.3 Results and discussion 

The responses from the listening test were divided into two main categories, related to 

speaker and affect identification. Speaker identification just involved the responses from 

question 1 of the listening test. Affect classification not only involved labelling of the 

perceived affect (question 2), but also the magnitude of the affect they perceived in the 

utterance (question 3). The naturalness rating (question 4) is an overall measure that 

incorporates both the speaker and affect transformation. 

The results of the speaker identification are shown in the form of a confusion matrix in 

Figure 7.7. The results are presented as percentages of the total correct and incorrect 

identification of each group of stimuli (i.e. across each row). As was expected, the man 

stimuli were mostly correctly identified as being male. Both woman and child stimuli were 

often confused with each other. This was expected from the author’s own auditory analysis 

of the stimuli. Even though the transformation scaling values were obtained from the 

manipulation task described in Section 7.2, they were often very similar. This resulted in 

producing stimuli that were difficult to categorise as being spoken by either a female or 

child speaker. 

Based on the author’s experience this appears to be the case when male voices are 

transformed using this method. This tendency is an interesting point in itself and could be 
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useful in the development of voices for applications where gender fluid voices are 

required, or a single voice could be used to represent characters with different genders and 

ages. Based on informal listening test carried out by the author transforming a female voice 

to male and child does seem to produce voices that are more readily identified ‘correctly’ 

in terms of target age and gender, but that was not the task of this experiment and will be 

explored in future work. 

 

Figure 7.7: Confusion matrix of speaker identification 

The results of the affect classification are shown in Figure 7.8 for the cases where the 

speaker was also correctly labelled. The no emotion stimuli were correctly identified 45% 

of the time, while sad stimuli were identified in 64.5% of the cases. The angry stimuli 

were only correctly classified 32.1% of the time. 

 

Figure 7.8: Confusion matrix of affect predictions for cases where the speaker was also 

identified correctly. 

There are two factors that may account for the poor rate of identification of the affect 

angry in this experiment. First of all, the present implementation was of a simple, global 

kind of manipulation over the entire utterance. Past analytic work (Yanushevskaya et al., 
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2009) indicates that within-utterance dynamic range of source modulations are also 

different for angry voice, and context-sensitive manipulations that capture these will need 

to be considered for future attempts. The very simple global application of a linear scaling 

across the utterance is clearly not enough.  

A further factor that may have influenced the identification rates of angry may be the 

underlying meaning of the sentences. An angry rendition of these sentences requires 

considerable imagination. 

Misidentification of one or more of the speaker (man, woman, child) stimuli could have 

contributed to lowering the rate of ‘correct’ affect identification. To see if this was the case 

the affect identification results were examined on a per-speaker basis. Figure 7.9 shows the 

results of the affect identification task for each speaker stimulus set. 

 

Figure 7.9: Confusion matrix of affect predictions for each target speaker set 

Child stimuli 

The sad child targeted stimuli were identified an almost equal percentage as no emotion 

and sad, but almost never as angry. The no emotion child stimuli were often correctly 
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identified (47.6%), but also frequency identified as sad (38.2%). The angry child stimuli 

were most often identified ‘correctly’ (43.6%): these were often (32.7%) identified as 

having no-emotion, but infrequently (23.6%) as sad. 

Woman stimuli 

The no emotion and sad woman stimuli were both identified an equal percentage as sad, 

with a lower identification of no emotion. The angry woman stimuli were correctly 

identified 44% of the time. 

Man stimuli 

Angry man stimuli had a very poor rate of correct classification. This poor rating is what 

brought down the overall rate of classification of angry when the data is pooled across 

speakers, as in Figure 7.8. This suggests that one or more of the scaling parameters applied 

to these stimuli was far from optimal in signalling angry. Sad man stimuli had a very high 

rate of ‘correct’ identification (76.3%). The no emotion man stimuli were almost as often 

identified as sad as they were with their target affect. 

Table 7.5: Mean magnitude for cases where speaker and emotion were correctly identified. 

Speaker Emotion Magnitude N Std. Deviation 

child angry 3.13 24 .900 

sad 2.84 19 1.167 

woman 

 

angry 2.36 11 .924 

sad 3.00 23 .905 

man angry 2.47 15 .834 

sad 3.05 58 .963 

The results of the affect magnitude rating for the responses where both speaker and affect 

were identified correctly are shown in Table 7.5 and Figure 7.10. The angry child stimuli 

were rated as having the highest affect magnitude, while angry woman and angry man had 

the lowest magnitude ratings. Conversely, sad woman and sad man were rated as having 

higher magnitudes than sad child. 
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Figure 7.10: Mean magnitude of emotion ratings and their standard errors. 

The results of the five-point naturalness rating for the responses where both speaker and 

affect were identified correctly are shown in Table 7.6 and Figure 7.11. The baseline 

stimuli had the highest naturalness rating at 3.96. This was closely followed by angry man 

at 3.93. The other man stimuli also had higher naturalness ratings than the woman and 

child stimuli; 3.81 and 3.74 for sad and no emotion respectively. 

Table 7.6: Mean naturalness for cases where speaker and emotion were correctly identified. 

Speaker Emotion Naturalness N Std. Deviation 

baseline no emotion 3.96 53 .999 

child angry 2.75 24 .608 

no emotion 3.05 20 .605 

sad 3.47 19 .841 

woman 

 

 

angry 3.00 11 .632 

no emotion 3.40 10 .516 

sad 3.13 23 .968 

man angry 3.93 15 .594 

no emotion 3.74 38 .921 

sad 3.81 58 .805 

Both child and woman voices had lower naturalness ratings, with angry stimuli having the 

lowest ratings: 2.75 and 3 for child and woman respectively. 
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Figure 7.11: Mean naturalness rating of the stimuli 

7.3.4 Conclusions 

The aim of this experiment was to demonstrate the GlórCáil system in transforming a 

speaker into another target speaker with a different age/gender and affective state. Scaling 

factors were applied to voice source parameter contours as well as to the vocal tract filter, 

changing its perceived length. These scaling factors were obtained in the experiment 

described in Section 7.2. Some of the user-defined parameter scaling factors applied to the 

baseline utterances were not enough to differentiate between a woman and child speaker. 

This could be beneficial in applications where a voice is needed for a character with an 

undefined gender or age. 

When all the responses where speaker identification was correct were examined it was 

found that there is some confusion between the no emotion stimuli being identified as both 

no emotion and sad an equal percentage of times. 

The sad stimuli were identified correctly more often than not, and the angry stimuli were 

correctly identified at a rate just above chance. 

When the responses are looked at for each individual speaker, a different pattern can be 

seen. Both angry child and angry woman were correctly identified a much higher 

percentage of the time when compared to the overall response. The angry man stimuli 

were only identified correctly 19.7% of the time. 

The magnitudes of affect for angry man and angry woman were much lower than that of 

sad man and sad woman. The opposite trend is observed in the child stimuli. 
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The baseline system was found to produce the most natural utterances, closely followed by 

the male voice in all affective states produced by the proposed system. The woman and 

child voices were found to be less natural, but only by a small margin for certain affects. 

The angry child stimuli were rated as being the least natural. This could be due to high 

degree of vocal tract warping applied. Transforming the speaker gender, age and emotion 

tended to lower the perceived naturalness of the stimuli. Overall, these results are very 

promising and future research will be invested in increasing the level of naturalness so that 

it becomes more in line with the baseline example. 

Although some of the samples produced by the proposed system were not correctly 

identified as being produced by the intended target speaker and/or with the intended target 

affect, they were identified as being different from the baseline. The present results should 

be viewed as an initial pilot test, that serves to illustrate how the system can be used to 

explore these aspects of speaker and affect transformation in synthetic speech. Future 

research will need to employ more context-sensitive transformations with the guidance of 

more detailed analysis of speech production data. 

7.4 Chapter conclusions 

This chapter described three experiments that were aimed at: 

(i) Illustrating the use of the GlórCáil system as an experimental tool to explore the 

use of, and to obtain user-defined settings for, voice quality modulation in prosodic 

expression. 

(ii) Exploring how the system might be used to transform the voice source in synthesis, 

both in the modulation of affect and in the transformation of speaker 

characteristics. 

Experient 4 further investigated the findings of two of the experiments carried out in 

Chapter 5 concerning Rd settings for focal prominence. A manipulation task was created 

where participants controlled the Rd contour of an utterance and attempted to create focal 

prominence as appropriate in a previously given (written) scenario. This task was carried 

out using utterances with breathy, modal and tense voice qualities. One of the advantages 

of this type of user-driven experiment is that it can potentially provide a more accurate 
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estimation of the optimal manipulations required for signalling focal prominence in 

utterances with different voice qualities. Results indicate that it is not enough to simply 

scale the overall contour linearly, but to scale the magnitude of the focal Rd peak in 

proportion to a given baseline Rd value. Using this approach, it is hoped that it will be 

possible to devise initial recommendations regarding the types of scaling factors that will 

be required to generate the appropriate shifts in focal accentuation in speech synthesis. 

Experiment 5 was a pilot experiment, aimed at illustrating how the users could readily 

manipulate parameters with which to transform speaker type and speaker affect using the 

GlórCáil system. This involved participants carrying out a task where parameter scaling 

factors were manipulated in order to transform the speaker and affective characteristics of 

a baseline utterance, produced by an adult male speaker of Kerry Irish. Instructions to 

participants were to vary acoustic parameters (Rd, f0 and a vocal tract scaling factor). The 

results of this experiment were mostly as expected. A higher Rd scaling factor was used to 

transform the baseline to sad, a lower Rd was used for angry, and minimal scaling was used 

to produce no emotion. f0 and vocal tract scaling were mostly used to transform the 

speaker: higher f0 and shorter vocal tract scaling were used for producing woman and child. 

The exception to this was for sad woman where the vocal tract was not shortened as much 

as for woman in the other affective conditions. The angry man condition also produced 

unusual results, with the mean value of the vocal tract scaling factor acting to lengthen 

rather than shorten the vocal tract as had been expected 

Experiment 6 was a further pilot exploration of how the speaker affect and speaker type 

might be altered in the context of a DNN-based speech synthesis system. It consisted of 

participants categorising stimuli constructed to target differences in terms of speaker and 

affect, while rating the magnitude of affect and naturalness of the stimuli. The stimuli were 

generated using the results of Experiment 5 to scale the Rd, f0 and vocal tract parameters. 

The child and woman stimuli were most often confused with each other. The sad and no 

emotion stimuli were also frequently confused with each other for the stimuli targeted as 

child and woman. In the case of man targeted stimuli, sad was correctly identified a high 

percentage of the time, but angry was poorly identified. Overall, the naturalness ratings 

were quite high, with the baseline and man stimuli being rated the highest. The results 

indicate that the types of transforms that will be required to signal affect will probably 
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need to be more complex, entailing context-sensitive differences of voice source dynamics, 

as suggested in earlier research (Gobl and Ní Chasaide, 2002; Yanushevskaya et al., 2009). 

Nonetheless these experiments establish how the system can be deployed as a research tool 

to investigate the voice source correlates of prosodic features such as focal prominence, in 

a way that can be directly implemented in synthesis. They also illustrate how this system 

can be used to control affect and speaker characteristics in the generation of synthetic 

speech. Although the experiments focused on only male speakers and a small number of 

utterances, this allowed for an in-depth examination of voice prosody control in these 

cases. 

It is hoped that this system will provide a basis for the research that will be required for the 

provision of the complex prosodic realisations needed in future speech technology 

applications. By being explicitly based on a voice source model and on our understanding 

of speech production, this approach also has the advantage of permitting the experimental 

basis for future exploration into speaker-specific characteristics. 
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Chapter 8. Discussion and conclusions 

This thesis explores how linguistic and paralinguistic prosody might be controlled in 

speech synthesis using the global waveshape parameter, Rd, as the primary control 

parameter. This parameter may be used to modify the voice quality of synthetic speech 

along the tense-lax continuum. 

The background chapters (Chapters 2-6) introduced and described the topics of speech 

production, voice source analysis, speech synthesis, speech modelling in speech synthesis 

and the role of voice source in prosody. Chapter 5 describes a set of analytical experiments 

involving synthetic stimuli, and perception tests, carried out to test various control schema 

for the Rd parameter. Chapter 6 outlines the analysis and resynthesis system that was 

developed. The knowledge gained from the results of the experiments described in Chapter 

5 provided the basis for several design features. This system allows a user to control 

linguistic and paralinguistic prosody in synthetic speech. The system includes a visual 

interface where users can easily manipulate voice source parameters by manually 

“drawing” contours. Interfaces were also created for use in the experiments described in 

the subsequent chapter, which allow for intuitive user control in order to determine optimal 

Rd settings for voice source manipulation. Chapter 6 also describes how the GlórCáil 

analysis-and-synthesis system was integrated into a DNN-based speech synthesis 

framework. Chapter 7 described three experiments that were carried out, demonstrating 

how the GlórCáil system may be used to modify linguistic and paralinguistic prosody, as 

well as demonstrating the voice quality control capabilities of the system when integrated 

into an SPSS framework. 

This work began by carrying out three experiments exploring how the global waveshape 

parameter, Rd, could be used to control linguistic and paralinguistic prosody. Experiment 1 

explored the perceptual importance of voice source adjustments, namely in Rd, which have 

been observed in sentences with variable location of focal accent. It also examined whether 

such voice source adjustments on their own might be capable of shifting the perception of 

the location of focal accent within the sentence. The results of Experiment 1 (see Section 

5.1.3) indicated that Rd was effective at signalling focal prominence but suggested that 
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phrasal position is important to the realisation, as the signalling of prominence was 

relatively ineffective for the phrase-final accent. It was considered that a phrase-final 

(default nuclear) accent may simply require f0 salience (e.g., a falling tone) in order to be 

perceived as prominent, whereas source boosting changes alone (without f0 salience) may 

suffice in other positions. It was also suggested that, the source deaccentuation (shift 

towards a lax voice quality) in the tail is an important aspect of signalling focus, and that 

the shorter tail available in the phrase-final condition may have been a factor in the 

reduced signalling effect of the source manipulations. The possibility of other factors (not 

related to phrasal position) having influenced results is also discussed – such as the 

difference in the vowel qualities (of ‘way’ and ‘year’) in the targets for focal accentuation. 

Experiment 2 involved the modification of Rd parameter contours to simulate the 

phonatory tense-lax continuum and to explore its affective correlates in terms of activation 

and valence. A range of synthetic stimuli were generated varying along the tense-lax 

continuum using Rd as a control parameter. These stimuli were based on a natural utterance 

which was inverse filtered and source-parameterised. The generated stimuli were presented 

in a listening test where participants chose an emotion from a set of affective labels and 

indicated its perceived strength for each stimulus. Participants also indicated the 

naturalness of each stimulus and their confidence in their judgment. This experiment 

demonstrated that stimuli ranging in the tense-lax continuum generated by manipulating Rd 

can evoke an affective response and that the magnitude of the response corresponds to the 

magnitude of the manipulation. Even though manipulations of Rd were effective in evoking 

an affective response in terms of activation, they were not so successful in distinguishing 

between valence states. It is thought that this is most likely due to the lack of vocal tract 

parameter manipulations. 

Experiment 3 further examined the potential of Rd to lend the perceptual salience that can 

signal focal prominence. It followed on from Experiment 1 and looked at the extent to 

which Rd might signal focal shifts within non-final elements of an utterance. It also 

explored the different ways of calculating Rd changes. This was achieved by generating the 

two series of stimuli incorporating the two possible alternatives to test the effectiveness of 

each implementation. A series of stimuli where Up was kept constant and Ee could vary and 

another series where Ee was kept constant and Up could vary were generated. The results of 

this experiment once again demonstrated that Rd can be used as an effective way of 



 

 

Chapter 8. Discussion and conclusions 157 

 

 

 

controlling of focal prominence. However, it also showed that it again depends on the 

phrasal location of the focal accent. It was also found that, of the two possible 

implementations of Rd, the implementation where Ee was allowed to vary was far more 

effective at signalling prominence. 

Overall, the results of these experiments suggest that Rd is a useful control parameter to 

generate linguistic prominence and affective colouring. The results also confirmed the 

findings of earlier studies, that suggested that tenser phonation is used to signal focal 

prominence, and that source deaccentuation of post-focal material towards laxer phonation 

also has strong prominence-lending effects. They also pointed to the likelihood that there is 

an interaction with the overall phrase prosody, in that the location of the focal accent in the 

intonational phrase appears to be important. 

The knowledge gained from the results of the initial three experiments fed into the 

development and construction of an analysis-and-synthesis system, GlórCáil, that could be 

integrated into a text-to-speech synthesis framework, and that allows for the control of 

parameters for prosodic and speaker characteristic transformation. To gain control of these 

parameters, the glottal source, and the vocal tract filter that shapes it must first be 

modelled. These speech components must be separated effectively to do this. Inverse 

filtering was used to remove the effects of the vocal tract transfer function from the speech 

signal, thus giving the source signal, plus the filter coefficients of the vocal tract. An 

acoustic glottal model was then used to parameterise the periodic component of the source 

signal in voiced speech. 

A set of GUIs were developed that allow the user to analyse and resynthesise speech. 

Before resynthesis is carried out, the user has the ability to manipulate the voice source and 

vocal tract parameters of an utterance to alter its prosodic pattern and perceived speaker 

characteristics. The interface also allows the user to instantly listen to any changes they 

make, to see if they had the desired effect or if further manipulations deemed necessary. 

This finished system was integrated into a DNN-based speech synthesis framework so that 

it could be used to generate unseen utterances. Unlike other approaches of speech synthesis 

incorporating acoustic glottal models, this system includes a user interface that allows for 

the transformation of voice source parameters that may be used to alter the linguistic and 

paralinguistic baseline of an utterance. It also focuses on simplifying the control scheme by 
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using a minimal set of control parameters to allow the system to be integrated into 

applications used by non-experts. 

The system’s ability to transform linguistic and paralinguistic prosody, as well as speaker 

characteristics, in copy-synthesis was demonstrated in Chapter 7, through two 

manipulation task listening tests. These manipulation tasks used interfaces developed as 

part of this work. In the first test, participants were asked to modify an utterance so that it 

sounded like an appropriate response (in terms of the location of focal accentuation) to a 

given question by moving sliders that controlled the Rd parameter contour of the utterance. 

For the second experiment, participants were asked to move three sliders to make an 

utterance sound like it was being spoken by a given speaker (child, woman or man) in a 

given emotional state (angry, sad or no emotion). The sliders controlled scaling factors that 

were applied to the Rd and f0 contours, as well as the vocal tract filter coefficients that 

determined the perceived length of the vocal tract. The responses from this task were then 

used to modify the default parameters generated by the DNN-based speech synthesis 

system to create a set of stimuli. These stimuli were used in a listening test, where 

participants were asked to identify the speaker, the emotion of the speaker, and rate the 

magnitude of the emotion and naturalness of the utterance on five-point scales. 

The results of the experiments discussed in Chapter 7 indicated that the GlórCáil system 

can be used to transform the linguistic and paralinguistic prosody of speech. The results of 

transforming the speaker characteristics of synthetic speech were less successful in terms 

of the rated naturalness of, and differentiation between female and child voice. The affect-

transformations for a male speaker are promising but indicate that further exploration of 

parameter configurations is necessary. It should be noted that the last two experiments 

concerning affective and speaker transformation are intended as initial explorations, using 

a limited amount of test data, with the goal of illustrating the use of the system rather than 

as in-depth studies of these transformations. As such they provide a direction for how 

future studies may be possible using the system developed here. 

The original aims of this work were to: 

• Investigate how a global waveshape parameter, Rd, might allow for control of 

linguistic and paralinguistic prosody in speech synthesis.  
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• Implement a speech analysis-and-synthesis system that would allow a user to easily 

control Rd and other voice source parameters, as well as vocal tract characteristics. 

• Integrate the system into an SPSS system. 

• Demonstrate the effective use of this system through a set of user-driven 

manipulation tasks. 

All of these tasks were accomplished within this work in the pursuit of answering the 

following question: 

To what extent can control of both linguistic and paralinguistic 

prosody be achieved by manipulating the voice source and vocal tract 

in statistical parametric speech synthesis utilising an acoustic glottal 

source model with a minimal set of control parameters? 

One of the main findings of this work is that the Rd parameter does affect the voice quality 

modulations in the tense-lax dimension that impact on the baseline prosodic pattern. It is a 

useful control mechanism in working towards a better control of linguistic and 

paralinguistic (expressive) prosody in speech synthesis. The fact that changes in perceived 

linguistic and paralinguistic prosody can be elicited through manipulation of this single 

voice parameter – even in the absence of f0 modulation – is very promising in terms of 

being able to implement very minimalistic and simple control schema for linguistic and 

paralinguistic prosody in speech synthesis.  

Future work will be needed to explore the voice quality dimension of other aspects of 

prosody not addressed in this thesis. It will also be important to examine how voice source 

variations combine with the (relatively well understood) melodic aspects of prosody (f0 

modulation). Ideally, we seek to define a model of prosody that will encompass the 

different dimensions of the voice source, as well as methods that will enable them to be 

effectively controlled within speech synthesis systems. Ultimately a better understanding 

of human prosody will pave the way towards speech technology applications that are more 

adapted to users’ needs and the contexts of use. 

Unlike some other examples of analysis-and-synthesis systems that employ acoustic glottal 

source models (Cabral et al., 2011; Degottex et al., 2011b; Huber and Roebel, 2015), 

GlórCáil offers an intuitive and easy to use interface where users may make changes to a 
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small set of voice source parameters that can result in prosodic changes and some level of 

affective colouring being applied to synthetic speech produced by an SPSS system. 

Although the system described in Sorin et al. (2017) does offer voice quality and speaker 

characteristic transformation through a web-based GUI, it uses proprietary software and 

synthetic voices, as well as being based upon unit selection speech synthesis rather than 

SPSS. 

Although synthetic speech produced by the system was rated as being comparatively 

natural to a baseline DNN-based speech synthesis system, the naturalness dropped relative 

to the magnitude of vocal tract and f0 transformations. This may be due to the derived 

transformation scaling factors being inadequate, the transformation process introducing 

distortions or artefacts that reduced the perceived naturalness – or to a number of other 

unknown factors. Another point to mention is that, while the synthesis interface of 

GlórCáil does offer a reasonably high level of control over a minimal set of voice source 

parameters, improvements could be made to the way in which the parameter contours are 

generated. One such improvement would be to form an integrated control scheme, 

controlling the parameters using a two-dimensional spidergram configuration. The user 

would be presented with a multi axis spidergram, defining the control parameters for a 

particular frame or region of an utterance. By moving a cursor around the spidergram the 

user could control multiple parameters at once. This method has been used to visualise 

voice source parameters (Yanushevskaya et al., 2010), but it also offers an interesting 

approach to parameter control that warrants future investigation. 

In its current iteration, the manipulation tasks using the present system and interface still 

rely on external timing annotations from Praat in order to be set up. Integrating this process 

into the system would be far more convenient. The system also lacks the means for 

applying global dynamic control of parameter contours, which may be necessary to quickly 

apply affective colouring to a synthetic utterance. A user may apply these transformations 

manually, but a semiautomated method would be optimal. The addition of these features 

and functions will be considered in future work. 
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8.1 Contributions of this work 

8.1.1 Knowledge of voice quality and prosody 

Experiments were carried out to establish how modifications of voice quality, using a small 

set of voice source parameters, can be used to control linguistic and paralinguistic prosody. 

Experiments 1 (see Section 5.1) indicated that Rd was an effective control parameter in 

cueing focal prominence in the example utterance used, and that peaks in Rd (towards 

tenser phonation) on focally accented syllables may work with source deaccentuation in 

the post-focal material to enhance perceived prominence. Another point indicated by the 

experiments was that the magnitude of perceived prominence may depend on location 

within an utterance. When attempting to cue focal prominence towards the end of an 

utterance, an f0 contribution, along with an Rd peak, may also be required. 

Experiment 2 (see Section 5.2) showed that Rd could also be used as a control parameter 

for paralinguistic prosody. A set of Rd values were used to generate stimuli ranging along 

the tense-lax continuum. It was found that these stimuli could evoke an affective response 

and that the response correlated with the magnitude of the Rd modification relative to the 

baseline. Thus, the tenser the voice, the higher the perceived magnitude of, say, anger  

Experiment 3 (see Section 5.3) demonstrated how voice source modulations affecting 

phonatory quality are perceptually important in signalling prominence, operating both at a 

local level in boosting the prominence of the accented syllable and at a global level in 

attenuating the prominence of other portions of the utterance. Two implementations of the 

Rd variation were used in this study and it was found that the method where Ee was allowed 

to vary was much more effective at signalling prominence. A fuller elaboration of how to 

optimally control this parameter may also be the focus of future work beyond this thesis. 

The knowledge gained from these experiments is extremely useful in furthering our 

understanding of how the voice source contributes to prosody, and how important a factor 

it is when attempting to include expression in speech synthesis. Using only modifications 

of a small set off voice source parameters, and with minimal f0 salience, prominence and 

affective colouring were successfully evoked in synthetic utterances. 
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8.1.2 Analysis-and-synthesis system and interfaces 

The GlórCáil analysis-and-synthesis system was developed as part of this work. This 

system includes a graphical interface that allows the user to easily and directly control 

voice source parameter contours of synthetic speech. Manipulating these voice source 

parameter contours gives control of dimensions of voice quality (tense-lax voice) to the 

user through an intuitive mouse-controlled environment. The experiments in Chapter 5 

have demonstrated that this sort of voice quality control may be used to produce 

prominence or impart affective colouring on a synthetic utterance. Users also have the 

ability to listen to the changes they have made to an utterance immediately. This allows the 

user to compare their synthetic utterance to the original unmodified utterance, or in the 

case of copy-synthesis, the original audio file. The system also has the capability of 

transforming the vocal tract transfer filter. This means that the system can be used to 

transform speaker characteristics to generate new voices and characters that can be used in 

applications such as computer assisted language learning games. This is especially useful 

for low resource languages that might not have access to a large amount of speech data. 

The system was also integrated into a DNN-based SPSS framework, allowing for the 

generation of almost any utterance. 

8.1.3 Manipulation task interface 

This work included the development and implementation of a manipulation task interface 

for carrying out user-driven perception experiments and listening test. Versions of this 

interface were applied successfully in Experiments 4 and 5 (see Sections 7.1 and 7.2). It is 

hoped that this style of perception experiment will prove useful in future work that is 

carried out in this area. Data obtained through user-driven tasks may give a more accurate 

representation of participants true perception, as giving them a manipulation task may 

prove more engaging and therefore more enjoyable. These factors would make the task less 

fatiguing than traditional perception tests that involve listening to countless stimuli. 

8.1.4 Identification of future research in voice quality and prosody 

The findings of this research have led to the identification of several avenues of future 

research into voice quality manipulation using a limited set of control parameters. 
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In terms of perceived focal prominence and position within an utterance, it was shown that 

voice quality without f0 salience was capable of producing perceived prominence when the 

focal syllable was towards the front of an utterance. This was not the case when the focal 

prominence was towards the end of the utterance. Further study into the interplay of f0 and 

other voice source parameters is necessary.  

8.2 Future work 

Despite the extensive research into expressive speech synthesis, there still remains a 

plethora of unanswered research questions and goals to achieve. Within the scope of this 

work there are several possible improvements and avenues of future research that will need 

to be investigated. 

In terms of analysis of the glottal source, the main problem that still exists concerns the 

inaccuracy of performing automatic inverse filtering on continuous speech. It is hoped that 

future work will be carried out in order to reduce or negate this problem using a 

combination of modern methods of machine learning and knowledge-based approaches. It 

is also hoped to improve the naturalness of the synthetic speech produced by this system 

by experimenting with the use of different representations of the vocal tract filter. 

Although the modelling approaches used in this work simplified the process of obtaining 

an estimate of the voice source and vocal tract transfer function and suited the purposes of 

this research, using a different spectral model may improve the perceived naturalness of 

the synthetic speech. Another area of research that will need to be investigated is that of 

developing a comprehensive predictive prosodic model for voice quality similar to the 

Fujisaki (Fujisaki and Hirose, 1984) or Tilt (Taylor, 1992) models for f0. 

As mentioned in the previous section, the current versions of the system and manipulation 

task interfaces rely on timing annotations being carried out using the Praat programme. 

Ideally this step should be carried out within the system, and this is intended in the future 

further development of the system. When it has been used more, and user feedback 

obtained, other refinements to the controls of the interface are intended. A feature that will 

be added at a later date is that of batch processing – to allow the user to set certain global 

settings to either make synthetic speech more lax or more tenser, or transform the vocal 

tract characteristics of multiple utterances in a single step. 
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The results of Experiment 6 (see Section 7.3) indicated that the parameter manipulations 

made were not enough to effectively transform a baseline utterance into one that is 

perceived as angry. This is mostly likely due to factors such as a lack of dynamic voice 

source parameter manipulation, or indeed, inadequate vocal tract transformations. Future 

development of the GlórCáil system will attempt to rectify these problems by including 

dynamic global scaling of parameter contours and improving the manner in which vocal 

tract transformations are carried out. 

These improvements should also address the problem of effectively transforming a male 

voice to a female or child’s voice. This matter will lead to additional future work into 

investigating the most optimal voices to use as baselines for transformation. 

Although the system functions well and the control interface is straightforward to use, 

being bound to a proprietary environment and programming language such as MATLAB is 

not ideal. Reprogramming the system in language such as Python or C would be beneficial, 

not only in terms of a possible increase in computational speed, but also in the open use of 

a compiled system written in these languages. 

It is thought that elements of this work will be helpful in applications developed in the 

Phonetics and Speech Laboratory in Trinity College Dublin, where the ABAIR project is 

engaged in the development and delivery of speech technology for Irish. Currently, voices 

have been produced for the three main dialects of Irish. It is hoped that the GlórCáil 

analysis-and-synthesis system will allow for the generation of multiple voices/characters 

from a single synthetic voice, as well as the generation of some expressive speech material. 

Both of these features are important for applications such as educational interactive games 

in the Irish language. 
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