Image Decomposition using Geometric Region Colour Unmixing

Mairéad Grogan
Trinity College Dublin
mgrogan@tcd.ie

Aljosa Smolic
Trinity College Dublin
smolica@scss.tcd.ie

Input image
and palette

Layers generated

Edited images

Figure 1: Left: input image with palette generated using our palette estimation step; Middle: the layers generated using our
image decomposition method; Right: Some recolouring and compositing results achieved using our layers.

ABSTRACT

In this paper, we propose a new geometric approach for image
decomposition which aims to combine the advantages of two state
of the art techniques. Given an input image, we first compute a
palette of colours from the image and use it to split the RGB space
into a number of different regions. Depending on which region a
given pixel lies in, different geometric methods are used to unmix
the pixel’s colour into a number of colours, where each colour is
associated with a different layer. The layers created are smooth and
homogeneous in colour, and have no reconstruction error when
recombined. Our layer decomposition technique is fast to compute
and the layers created can be used successfully in several applica-
tions, including layer compositing and recolouring.

CCS CONCEPTS

« Computing methodologies — Image processing; Image ma-
nipulation; Image processing.

KEYWORDS

Layer decomposition, compositing, colour unmixing, segmentation.

ACM Reference Format:

Mairéad Grogan and Aljosa Smolic. 2020. Image Decomposition using Geo-
metric Region Colour Unmixing. In European Conference on Visual Media
Production (CVMP °20), December 7-8, 2020, Virtual Event, United Kingdom.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3429341.3429354

This work is licensed under a Creative Commons Attribution International
4.0 License.

CVMP °20, December 7-8, 2020, Virtual Event, United Kingdom
2020. ACM ISBN 978-1-4503-8198-7/20/12.
https://doi.org/10.1145/3429341.3429354

1 INTRODUCTION

To create complex image edits, artists often use layer based editing
tools to composite or remove image layers or change the colours
of objects in a scene. Layers can be created by analysing differ-
ent image aspects including colour [Aksoy et al. 2017; Tan et al.
2018], shading and reflection [Bell et al. 2014], or foreground and
background objects [Levin et al. 2008]. In this paper, we propose a
method that decomposes an image into several semi transparent
layers based on colour, with each layer associated with one of the
dominant colours in the image. When recombined, layers recon-
struct the input image without error, are homogeneous in colour
and spatially smooth. Similar decomposition methods use per pixel
non-linear optimisation, which can be very computationally de-
manding [Aksoy et al. 2017; Koyama and Goto 2018]. Recently, a
geometric approach was proposed which unmixes a pixel based
on its position in RGBXY space [Tan et al. 2018]. Even in higher
dimensional spaces their geometric approach is computationally ef-
ficient, a clear advantage over non-linear optimisation approaches.
However, Tan et al’s method can create layers with colours that are
very different from those in the input image. and introduce a re-
construction error when recombined. Taking inspiration from this
recent geometric approach, we propose a new geometric strategy
for layer decomposition that creates layers that are homogeneous
in colour and faithful to the colours in the input image, with no
reconstruction error when recombined. We also propose a new
palette extraction method with colours representative of the image
that lie at strategically chosen positions in RGB space to ensure
high quality layers are created using our geometric decomposition.
When colour changes in the input image create small discontinu-
ities in the layers, we propose an optional postprocessing filtering
step for further smoothing.

After the state of the art (Sec. 2), we describe our layer decompo-
sition strategy (Sec. 3) followed by our palette extraction (Sec. 4)

https://doi.org/10.1145/3429341.3429354
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3429341.3429354

CVMP 20, December 7-8, 2020, Virtual Event, United Kingdom

and filtering steps (Sec. 5). Finally, we give an in depth evaluation of
our method in comparison to other state of the art methods (Sec. 6).

2 STATE OF THE ART
2.1 Palette Extraction

Palette extraction involves estimating a small sample of colours
that represent the colours in an image. Early works trained models
on user rated palettes but were slow to compute and only gener-
ated palettes with 5 colours [Lin and Hanrahan 2013; O’Donovan
et al. 2011]. Models based on Gaussian Mixture Models were also
proposed, but again were slow [Shapira et al. 2009]. More recently,
k-means variants were proposed [Chang et al. 2015; Phan et al.
2018; Zhang et al. 2017], but require a predefined palette size and
often miss more vibrant image colours since they favour colours
at the centre of the RGB space. The opposite is true of Tan et al.
[2018, 2016], who use the image colours convex hull in RGB space
to compute the palette. Vibrant colours dominate their palettes
even though they may not be present in the input image. Their later
work proposed a way to automatically estimate the optimal palette
size [Tan et al. 2018]. Aksoy et al. [2017] also proposed a way to
automatically detects the size of the palette, while also capturing
colours similar to those in the input image. Unlike k-means based
approaches, they succeed in capturing the more vibrant colours in
the image. In this paper, we propose a palette extraction method
based on that of Aksoy et al, and refined so that it will create high
quality layers with our image decomposition strategy. We have also
reduced the computation time of this step, which is quite computa-
tionally intensive.

2.2 Computing Layers

Unmixing based layer decomposition attempts to unmix pixel colours
into several layers using a colour model for each layer [Aksoy et al.
2017; Lin et al. 2017; Tai et al. 2005; Tan et al. 2018]. Tai et al. [2005]
alternately estimate layer colour, alpha values, and colour model
parameters but their layer alpha values can have unnatural gradi-
ents. Tan et al. [2018, 2016] create layers that consist of only one
colour, meaning there is no colour variation across layers. In their
earlier work [Tan et al. 2016], a non-linear optimisation scheme is
used to estimate layers with regularisation terms enforcing alpha
sparsity and spatial coherence across layers, which is quite slow.
This was extended in [Tan et al. 2018] to a purely geometric method
using a pixel’s location in RGBXY space to determine how it will
be unmixed. This extension greatly decreases the computational
complexity and ensures that spatial coherence is enforced without
complex optimisations in 5D space. However, the layers estimated
can still have colours that are very different to those on the input
image, and suffer from reconstruction errors when combined.

In their earlier work, Aksoy et al. [2016] used a local colour model
to estimate layers but layer gradients were not always smooth. This
method was extended to region-based layer decomposition [Ak-
soy et al. 2017], with a sparsity term ensuring layers capture local
regions of similar colour. Layers contain colours similar to the
input image and are smoothed to remove harsh edges. However,
computation is quite slow. This method was recently extended to
allow for the inclusion of advanced alpha blend modes [Koyama
and Goto 2018]. In this paper, we propose a layer decomposition

Grogan and Smolic

approach that aims to combine the advantages of Tan et al. and
Aksoy et al’s most recent approaches, creating layers that are homo-
geneous in colour, smooth and create no reconstruction error, using
a geometric unmixing approach that is much faster than non-linear
optimisation approaches [Aksoy et al. 2017].

3 IMAGE DECOMPOSITION

In this section we describe how, given a palette of n colours {x; };=1,..n,
n > 4, we decompose an image into n semi-transparent layers
{Li}i=1,..n, with each layer having homogeneous colours similar
to one of the colours in the palette. For a pixel p in the image, we

will define opacity values a‘? and layer colours u‘? such that

Z a‘fuf =c? Wp (1)
i

where c? is the colour of the pixel p in RGB space. We also assume
that the input image is opaque, and impose the constraint:

D=1 vp.)

i
Finally, we constrain the range of layer colours and alpha values:
of Wl ef0,1] Vi,p. 3)

For convenience, we will drop the superscript p throughout the
rest of the paper and present our approach at a pixel level unless
specified otherwise.

Equation 1 defines the alpha-add representation for overlaying
layers. While other overlay representations are available, similar
to Aksoy et al. [2017], Tan et al. [2018] and Chen et al. [2013] we
chose the alpha-add layer representation but it can be converted to
the overlay [Porter and Duff 1984] representation using the method
described in [Aksoy et al. 2017].

Next, we describe how we decompose an image into layers given
an input palette of n colours.

3.1 Delaunay Triangulation

Given an input image and palette of n colours {x;};=1,..n, with
n > 4, the Delaunay Triangulation of the palette colours {x;} is
first computed. This returns a list of nt tetrahedra connecting the
palette colours {x; }. The nt tetrahedra have 4 vertices each and are
defined by the n X 4 matrix of vertex indices T. This triangulation
is used to define several different types of regions in RGB space. For
each region, we define a method to decompose the pixel colours
that lie within it, in a way that ensures layer colours and alpha
values stay smooth across different regions in RGB space.

3.2 Region 1: Inside the Convex Hull

The first region that we consider is the area within the convex
hull of the colours {x;} in RGB space. All colours lying within the
convex hull of {x;} fall within one of the tetrahedra ¢ described
by T, and for a given tetrahedron ¢t we denote these colours as
c!. Each tetrahedron ¢ has four vertices {vf}i=1,_4 € {xi}i=1..n-
For a colour ¢! lying within a tetrahedron ¢, its unique normalised
barycentric coordinates {w; };=1,..4 can be computed with respect
to the four vertices {Vf}i=1,_.4 of t such that:
4

o= Z w,-vl?. 4)
i=1

Image Decomposition using Geometric Region Colour Unmixing

These normalised barycentric coordinates satisfy the following
constraints:

4
ZWFL wi € [0,1]. (5)
i=1

For the points ¢! we define the alpha values and layer colours as
{ai}i=1,..a = {wi}i=1,..4 and {u;};=1,..4 = {vi}i=1, 4, since they
satisfy the layer and alpha constraints given in Equations 1-3. This
decomposition is used for all colours that lie within the convex hull
of {x;} and therefore all of these colours are unmixed into 4 layers.

3.3 Region 2: Perpendicular to a Face

The second type of regions we consider are those that lie external
to the convex hull of the colours {x;}, and perpendicular to one of
the faces on the boundary of the Delaunay Triangulation described
by T (see Fig. 2). Each face f on the boundary of the Delaunay
Triangulation has three vertices {v{}i=1,,_3 € {xj}i=1..n and a
normal vector n/ , where nf points in the direction away from the
convex hull (Fig. 2 (a)). For each face f, we consider the region
bounded by the following four planes:

p=n - ®-v)=0 ©)
pri= (W +n)x o —v)) . @-v)=0)

1

p3i= (W +n)x o D)) @ -v])=0 ()

2

pai= (v + 0y x) -vh)) @ -vl)=0 ©)

3

where ¥ = (x, y, z), the variable used to represent any point on the
given plane. The first plane p; contains the face f, while the other
three planes are orthogonal to f and contain one of its edges (see
Fig. 2 (b) and (c)). Simple planar checks are used to find all of the
colours {c¢/} that lie between these four planes.

For every colour ¢ that lies orthogonal to the boundary face f,
the following equation is used to project ¢/ onto f (Fig. 3 (a)):

) o —v/)-nf

of =of - ﬁnf (10)
The projected point ¢/ now lies on the face f and since ¢/ and the
vertices {vjlr }i=1,..3 are coplanar, unique normalised barycentric
coordinates {w;};=1,..3 can be computed for the point & with

respect to the vertices {v{}i:L ..3,as in Fig. 3 (b). These coordinates

satisfy the equation: 5
= wivl (11)
i=1
We then translate & in the direction of n/ as follows:
of =& +an (12)

where

(f —v]) o
= | (13)

In the same way, we can translate the vertices {V{ Yi=1,..3 to:

v =V ran i (14)

as shown in Fig. 3 (c). Then the following equation holds:

3
o = Z wiel. (15)
i=1

CVMP 20, December 7-8, 2020, Virtual Event, United Kingdom

Therefore, for the points ¢/ that lie perpendicular to face f, we
can define the alpha values and layer colours as {a;}i=1,.3 =
{wi}ti=1,.3and {u;}i=1,. 3 = {\7{}1-:1,,,3. All of the colours in these
regions are then unmixed into 3 layers.

3.4 Region 3: Above Edges

The third type of region we consider are the regions in RGB space
that lie above an edge on the boundary of the Delaunay trian-
gulation. Any edge on this boundary connects two faces of the
triangulation, for example e = [v1 v2] is the edge connecting bound-
ary faces fi and f; in Fig. 4. For the edge e, the region we consider
is bounded by four planes as follows:

pri= (@) x () =v)) - R -v)) =0 (16)
p2 = (@) x (] —vD)) - @ -v]) =0 (17)
p3 = (@) x @) -X-v))=0 (18)
= (@) x@P) - @ -v) =0 (19)

Planes p; and p, contain the edge e while planes p3 and p4 are
perpendicular to e, and are highlighted in Fig. 4 (a) and (b). We let
c® denote the colours that lie in this region in RGB space (4 (c)). To
decompose the colours c® we use the colour line assumption [Ruzon
and Tomasi 2000] which states that the unmixed layer colours for a
pixel and the pixel colour itself should lie on the same line in RGB
space. Using a technique similar to that proposed by [Aksoy et al.
2017] in their projected colour unmixing step, for a given colour c¢,
we project it onto the planes p3 and p4 (Egs. 18 and 19) as follows:

(c® =vy,2}) - 0P

P
" n (20)

N _ e _

gt =c
where n? = (vi — v2)/||v1 — v2|| is the normal vector of planes p3
and py4. The colour value ¢ then lies on the line connecting & and

¢5, as shown in Fig. 4 (d). Scalars w; and w, can be computed as:

llc® — &gl
W)=, W2 =1-wi. (21)
lles — el
and satisfy the following equation:
c® = w1 + waés. (22)

Therefore we can define the alpha values and layer colours for
c®as agy gy = wyy gy and ug 5y = é?l,z}' The same procedure is
followed for all of the edges connecting two boundary faces of the
triangulation. All of the colours in these regions are then unmixed

into 2 layers.
3.5 Region 4: Near Points

The remaining colours in RGB space are associated with only one
palette colour x; lying on the convex hull of the Delaunay triangu-
lation. A given palette colour x; on the convex hull is connected to
three faces, for example x; = vy in Fig. 5 is connected to fi, f and
f3. Here, for the colour x; = v2 we define three planes bounding
the region of interest as follows :

= (@) x @) - R -v)) =0 (23)
pe = () x @) - R - v]) =0 (@)
ps = (@) x @) - R =v]) = 0 23)

CVMP 20, December 7-8, 2020, Virtual Event, United Kingdom Grogan and Smolic

(a) (b) (©

Figure 2: For simplicity, here we consider a palette with 4 colours only. (a) shows the tetrahedon t created by the Delaunay
triangulation with vertices {v;} = {x;} and boundary faces fi, f>, f3, fs with normal vectors n/i. For the face fi, (b) and (c) show
the planes p;, p2, p3 and p4 that bound the region perpendicular to fi. In (d), the regions we consider for faces fi, f> and f3 are
marked in green yellow and blue.

/ /
// ~_ //
P / / ~V3 /
/
/
/ / // //
“ / ‘ .
/ 4
/ //
wy ‘

(a) (b) ©

Figure 3: For a colour ¢/ that lies in the region perpendicular to fi, (a) & is the projection of ¢/ onto fi. (b) Barycentric
coordinates {w;} are then computed for ¢ with respect to {v;}. (c) The vertices {v;} are translated to {V;} and the barycentric
coordinates {w;} now relate to ¢/ and {vi}.

P3

Figure 4: For the edge e = [v;v2], (a) highlights the planes p; and py, and (b) highlights ps and p,. (c) depicts the region bounded
by these planes and any colours here are denoted c®. In (d), the projection of c® onto p3 and p4 create ¢{ and ¢5.

/ y
// -
n/t / nfs 7
vl ; \\
(a) (b) © (d)

Figure 5: For the vertex vy, (a) highlights the plane p;, (b) highlight p,, (c) highlights p3, and (d) the region bounded by these
planes.

Image Decomposition using Geometric Region Colour Unmixing

These planes are highlighted in Figure 5. For all colours ¢* that
lie in this region, we define their alpha and colour values as a1 = 1
and u; = x;. Therefore these colours remain fully opaque.

3.6 Overlap and Consistency between regions

Colours that lie on the boundary of two different regions can be-
long to either region type, but our use of barycentric coordinates
when decomposing pixels ensures consistent pixel unmixing across
region boundaries. For example, colours that lie on a face on the
boundary of the Delaunay Triangulation can be considered within
the convex hull of the palette colours (as in Section 3.2) as well as
the region perpendicular to the face it lies on (as in Section 3.3).
But both of these decomposition methods will result in the pixel
being unmixed into 3 colours since only three non-zero barycentric
coordinates exist for points lying on the face of a tetrahedron in
3D. This consistency across region boundaries ensures that there
are no discontinuities in the decomposition of colours that lie close
together but across different types of regions in RGB space.

3.7 Edges of the RGB cube

In some cases, when the pixel colour ¢? lies near the edge of the RGB
cube, equations 14 and 20 will create layer colours lying outside
RGB space. Therefore, we add an additional step to overcome this
issue. For estimated layer colours {u;};=1..m, when some u; lie
outside of the RGB cube we first crop the values of u; above 1 or
below 0 to 1 and 0. If ¢ lies on the new line/triangle created by the
cropped {u;}, we unmix c? (see Fig. 6 (a)). Otherwise, we translate
the scaled {u;} so that the line/triangle formed by them contains
the pixel colour ¢?. If any colour u; is mapped outside of the RGB
cube during this step, we refine u; so that it becomes the point of

intersection between the RGB cube boundary and the vector cf’_uj) .
This ensures that the new line/triangle will still contain c? (see Fig.
6 (b)). Finally, if {u;} form a triangle, the alpha values {@;}i=1..3
are the barycentric coordinates of ¢? with respect to {u;}. If {u;}
form a line, equation 21 is used to compute {a;}i=1,2.

We also found that in order to successfully unmix colours that
lie on the boundary of the RGB cube using lines/triangles (Fig. 6
(c)), the lines/triangles must contain the colour ¢ and be tangent
to the boundary of the RGB space. Therefore, for colours ¢ that lie
very close to the RGB cube boundary (with values > 0.98 or < 0.02),
rather than scaling out of range values to 1 and 0, we project those
vertices {u;} that lie close to ¢ onto the plane parallel to the RGB
boundary containing c” (see Fig. 6 (c)). This ensures that these
colours are unmixed successfully.

4 PALETTE ESTIMATION

When computing a suitable palette of colours for our layer decom-
position, we began by testing Aksoy et al. [2017] palette extraction
method since it both computes a suitable palette size and extracts
good palette colours. While we found that in some cases our decom-
position technique created nice layers with Aksoy et al’s palette,
in others, layers displayed blocky artifacts with sharp discontinu-
ities in alpha values (see Fig. 7). This was due to the relationship
between the position of the palette colours in RGB space and the
types of tetrahedra that are created by the Delaunay triangulation
step. Tetrahedra that are too flat, too large or too small can create
undesirable changes in alpha values across layers (see Section 4.2

CVMP 20, December 7-8, 2020, Virtual Event, United Kingdom

for more detail). We therefore split our palette estimation into two
steps - a palette extraction step based on [Aksoy et al. 2017], fol-
lowed by a palette refinement step, both of which are described
below.

4.1 Initial Palette

When estimating a palette, Aksoy et al. [2017] associate each pixel p
with a representation score r?, where r” indicates how well a pixel
is represented by the colours in the palette (see [Aksoy et al. 2017]
for details computing r?). They then use a greedy iterative scheme
to add colours to the palette until the majority of pixels in the image
are well represented. To compute the representation score r?, each
palette colour is represented by a normal distribution with a unique
covariance matrix. We follow the same procedure when computing
our palette, but instead assign the same variance 0.0001 * I to each
colour x!. This computes a larger palette of colours from the image
which can be refined to ensure optimal results from our geometric
layer decomposition. The elimination of unique covariance matrices
also greatly reduces the computational cost of this step.

4.2 Palette Refinement

4.2.1 Removing nearby colours. We found that when palette colours
lie too close together in RGB space, very small tetrahedra are cre-
ated. This causes alpha values across layers to change too quickly
from transparent to opaque, creating blocky edges in layers as seen
in Fig 7). To avoid this, starting from the first palette colour, we
remove any palette colours that are too close to it (within a distance
d = 0.28 in RGB space, where all colour values are in the range
[0, 1]). By starting with the first palette colour, we ensure that the
most prevalent colours in the image take highest priority.

4.2.2 Removing flat tetrahedra. Flat tetrahedra with vertices that
are practically coplanar can result in large discontinuities in alpha
values across layers. Therefore, if three colinear palette colours are
found (or nearly colinear, up to a given tolerance), we remove the
middle colour along the line. This middle palette colour is somewhat
redundant in any case since the colour line assumption [Ruzon and
Tomasi 2000] states that if a colour is to be unmixed into two colours,
it should be colinear to those two colours. Since the middle colour
is colinear to two other palette colours, it can be easily unmixed
using them and does not need to be represented in the palette. If,
after this first step, a tetrahedron is still almost flat, we apply a
small translation to one of its palette colours in the direction of the
tetrahedron normal.

4.2.3 Dark/Bright colours. We found that if too many palette colours
lie close to black/white, blocky artifacts such as those in Fig. 7 can
be created, and so we add a constraint that ensures only one palette
colour lies in the regions near white/black.

In Fig. 8 we show some palettes before and after refinement. We
can see that these refinement steps do not remove any important
colours from the palette, only those very similar to others. This
step also ensures that the selected palette colours are strategically
placed in RGB space for our layer decomposition method.

5 LAYER FILTERING

Although our layer colours change smoothly across the image, small
spatial inconsistencies can be created by compression artifacts or

CVMP 20, December 7-8, 2020, Virtual Event, United Kingdom

-

U3

@ (b)

Uy
. Uy S us B3
N } \ A
u, u;
u; uz & us
uy <::| cf
u
u, u; "2 2

Grogan and Smolic

l

©

Figure 6: Steps followed when a pixel colour ¢/ lies close to the RGB cube boundary. (a) Any layer colours {u;} outside the
RGB cube are scaled to lie inside it. If ¢/ now lies on the new triangle, ¢/ is unmixed by computing its barycentric coordinates
with respect to the new {u;}. (b) If ¢/ does not lie on the triangle after scaling, {u;} are translated so that they contain of. 1f
the translated points u; are mapped outside of the RGB cube, they are shifted so that they are within it.(c) If the colour ¢/ is
on the RGB boundary, nearby {u;} are first translated so that they lie on the same plane as .

Figure 7: Rows 1-2: Input image and layers generated using
our layer decomposition. The palette was extracted using
the method in [Aksoy et al. 2017]. Row 3: Close up of layers
show blocky discontinuities. Close ups are on white back-
grounds for clarity.

Figure 8: Images with palettes generated by our palette esti-
mation method before (top) and after refinement (bottom).

colour variation along edges. To combat these spatial inconsisten-
cies, we present an optional post-processing filtering step to smooth

the alpha values of the layers. Similar to previous methods [Aksoy
et al. 2017; Koyama and Goto 2018], we first apply a guided image
filter to the alpha channel of each layer. Since filtering can cause
alpha values of zero to become non-zero, some pixels may now
have more than four non-zero alpha values across the layers. In
this case, we keep only the four largest non-zero alpha values and
discard the rest. We then normalise the sum of the alpha values for
each pixel to ensure they sum to unity.

While previous methods proposed an optimisation framework to
refine layer colours at this point [Aksoy et al. 2017], this can be very
computationally intensive. To avoid this and maintain the advan-
tages of our geometric approach, we instead follow the procedure
outlined in Algorithm 1 to refine the colours of each layer given the
new filtered alpha values. For each pixel, we iteratively recompute
each of the layer colours using the remaining alpha values and layer
colours, while ensuring that the new layer colours do not differ too
much from the original layer colours before filtering. The alpha
values are then recomputed given the new layer colours. We found
that this process creates layers that are very similar in structure to
the layers created by our initial decomposition step, but with any
discontinuities created by quantisation artifacts or colour changes
along edges removed (see Fig. 9).

Figure 9: Our layers before (top) and after filtering (bottom).
A close up of one of the layers is shown in red on the right.
Zoom in to see quantisation artifacts.

Image Decomposition using Geometric Region Colour Unmixing

For each pixel p in the image ;

input :Pixel p with colour ¢
m non zero filtered alpha values {&; }i=1..m
m layer colours {u; };—;

output :m refined alpha values {«; }i=1..m
m refined layer colours {u; };—; ,,

if m = 1 then
ar=ad=1;
up =¢;
end

if m =2, 3, 4 then
Define {i; }i=1..m = {Ui}i=1..m;
/* Compute new colours using {a&;} */
fori=1:mdo
4= Zj:'fi &jﬁj;
aj
/* Ensure u; not far from u; */
a; = refine(d;, u;) ;
end
if m = 3, 4 then
/* Get bary. coord. of ¢ wrt u; */
{wi}iz=1..m = computeBary(c, {Ui; }iz=1..m) ;
{aiti=t..m = {wi}ti=1.m
Wi tiztm = {Giti=1..m
end
if m = 2 then
/* Get weights as in Eq 21 */
{wi }i=1..m = computeLinear(c, {Q; }i=1..m) ;
{aiti=1..m = {witi=1.m;
{uitizt.m = {Ui ti=1..m

end

end
Algorithm 1: Method used to compute the new alpha values
and layer colours for a pixel p taking as input the filtered alpha
values and layer colours as computed in Section 3. Here, refine()
is a function ensuring that the new layer colour @; does not
differ much (less than distance of 0.03) from the previously
estimated colour u;.

6 RESULTS AND EVALUATION

6.1 Qualitative Assesment

6.1.1 Palette Estimation. In Fig. 10, we compare our palettes to
those created by other state of the art techniques [Aksoy et al. 2017;
Chang et al. 2015; Tan et al. 2018]. We found that our palettes are
well aligned with those created by Aksoy et al. [2017]!, although
they can differ in size (the hexagonal palette representation for
Aksoy et al. indicates the colour variation estimated for each palette
colour, as mentioned in Sec. 4.1). In contrast to our approach, the
palettes generated by Tan et al. [2018] contain colours that are very
different to those in the input images, such as the bright red that
appears in the second image’s palette. Similar to other k-means
approaches, Chang et al. [2015] require the palette size n to be
defined by the user, while our approach, similar to Aksoy et al. and
Tan et al., estimates n automatically. It is also clear that Chang et

1 All results presented in this paper for [Aksoy et al. 2017] were provided by the
authors. Our own implementation of [Aksoy et al. 2017] is also available at https:
//github.com/V-Sense/soft_segmentation

CVMP 20, December 7-8, 2020, Virtual Event, United Kingdom

al’s k-means method captures ‘duller’ colours since the clustering
energy favours colours lying further within the RGB cube (see
the first and third image in Fig. 10). The voting scheme proposed
by Aksoy et al. [2017] and implemented in our approach ensures
that more vivid image colours are captured by our palette.

6.1.2 Layer Decomposition. In Fig. 16 we compare our layers to
those of Tan et al. [2018] and Aksoy et al. [2017]. We present our
layers without any filtering (Sec. 5) to highlight the smoothness
of our layers in general. We found that our layers display similar
qualities to both Tan et al. and Aksoy et al. When images contain
colours that are vibrant and near the edge of the RGB cube, all three
methods create similar layers, although Tan et al’s layer/palette
colours can still differ from those in the input image (see the red
layer in Fig. 16, example 4). Our layers are similar in colour to those
of Aksoy et al., with layer colours that are more faithful to the
colours in the image (see Tan et al’s bright red and yellow layers
in Fig. 16 example 1, in comparison to Aksoy et al. and our orange
layers). Our layers also display the same colour variation as those
proposed by Aksoy et al, even though we do not explicitly estimate
colour variances when estimating the colour palette (see Fig. 16
example 2, highlighted in blue). In fact, we found that our colour
variation was smaller than that of Aksoy et al. (see Sec. 6.2). To
highlight this, in Fig. 11 we present the colour values of three of the
layers presented in example 2 of Fig. 16 without the alpha channel,
highlighting that the colours captured by both methods are similar
but with less variation in our layers. In comparison to Tan et al.,
both methods create colours more faithful to those in the original
image.

We also found that layers by Aksoy et al. are more region based
due to their sparsity constraint. When a palette colour appears in
only a small portion of the image, only this section of the image
will appear in their layer (see Fig. 16, example 3, circled in green).
Our method is more global in nature and similar to that of Tan et
al, pixels across the image are unmixed onto this red layer. We also
applied our layer decomposition to a selection of digital paintings
and again found that our method created smooth, homogeneous in
colour layers (see example in Fig. 9). More layer results before and
after filtering can be found in the supplementary material.

6.2 Quantitative assessment

6.2.1 Layer Analysis. Next we evaluate the three methods using
three metrics proposed by Aksoy et al. [2017] to assess layer quality.

(1) Reconstruction error: Assesses the reconstruction error of
the layers. The mean squared error between the input image
and the sum of the alpha weighted colour layers is computed.

(2) Gradient Correlation: Assesses whether the texture content
of the layers is similar to that of the input image. The correla-
tion coefficient between the gradient of every colour channel
of the input image with the gradient of the alpha channel of
every layer is computed and averaged.

(3) Colour Variance: Assesses the colour homogeneity of lay-
ers. It returns the sum of the individual variances of RGB
channels averaged over all layers of the input image.

We computed and averaged these metrics for 60 images using our
methods, before and after filtering, and those of Tan et al. [2018]
and Aksoy et al. [2017], with the results in Table 1. Colour and

https://github.com/V-Sense/soft_segmentation
https://github.com/V-Sense/soft_segmentation

CVMP 20, December 7-8, 2020, Virtual Event, United Kingdom

@0l 000 0000 O e

Tan

¢ o0
w -

Chang Chang

Grogan and Smolic

o [T TR
v 00000 © O 00 10009

or TN

PN PE -E "PE "mw
Ll [[W |] | [[]

Figure 10: Palettes generated by our approach, Aksoy et al. [2017], Tan et al. [2018] and Chang et al. [2015].

Figure 11: Colours of the layers created for an image using
Aksoy et al’s method (top) and our method (bottom). Pixels
with an alpha value of zeros are shown in black since their
colours do not matter. The variance of colours in the layers
created using our approach is very similar, if not more com-
pact, than those created using Aksoy et al’s method.

alpha values were in the range [0, 1]. In terms of reconstruction
error, Tan et al’s layers have an average reconstruction error of
0.015, while our method and that of Aksoy et al. have errors below
the quantisation limit. In terms of colour variance, our layers have
a lower variance than those of Aksoy et al., as shown in Fig. 11.
Since Tan et al’s layers are all the same colour, their variance is zero.
Finally, our layers score higher than Tan et al. in terms of gradient
correlation both before and after filtering, and Aksoy et al. performs
the best. While Aksoy et al’s layers are very smooth, this is due to
their heavy reliance on a filtering step to remove the strong alpha
changes that often occur in their layers during the initial estimation
step (see Fig. 12). In contrast, the layers generated by our approach
before filtering, have alpha values that change smoothly across the
image, with only small discontinuities appearing in some cases.

Table 1: Here we present the results of each method with
respect to the three metrics used to assess layer quality.

Tan et al. | Aksoy et al. Ours Ours
(no filter) | (with filter)
Rec. Error 0.0149 0.0005 0.0019 0.0027
Grad. Corr. 0.66 0.70 0.67 0.69
Col. Var. 0 0.005 0.0006 0.0007

6.2.2 Speed. Next, we compare the computation time of our method
to [Aksoy et al. 2017; Tan et al. 2018]. Both ours and [Tan et al. 2018]

-

Input Aksoy et al. Aksoy et al. Ours
image (before filter) (after filter) | (before filter)

Figure 12: Here, we show the reliance of Aksoy et al. [2017]
on heavy filtering to remove strong changes in the alpha
channels of their initial layer estimation step. In contrast,
our layers are smooth before filtering is applied.

were implemented on an Alienware Aurora-A5 PC with 4GHz Intel
Core i7-6700K CPU and 16GB RAM. Tan et al’s implementation is
the non-parallelised Python version made available by the authors.
Aksoy et al’s performance is as reported in their paper, and their
implementation is parallelised C++. Both our computation times
(computed in MATLAB) and those of Tan et al. are on a single core.
Since each pixel in our approach can be unmixed independently, a
CPU or GPU parallelisation could speed up computation time. We
downsize all input images before computing the palette extraction
step, which takes 3 seconds. In Fig. 13 we analyse the computa-
tion time for our full palette extraction and image decomposition
method (without the optional filtering step) across a variety of dif-
ferent image sizes. On the right, we analyse the computation time
of our method when images with varying palette sizes are chosen.
In both diagrams, our method is shown in red, Aksoy et al. [2017]
in blue and Tan et al. [2018] in black. Overall, our method is as
computationally efficient as Tan et al, and performs significantly
better than Aksoy et al.

6.3 Applications

Recolouring and compositing results with our layers can be seen in
Fig. 1 and 14 and show that our layers provide more flexibility to
the user when editing images. Our layers successfully unmix semi-
transparent objects such as fire and smoke, and blurred regions
such as aesthetic bokeh. In Fig. 15, we also show some results on
green screen keying examples. We found that in some cases, other
scene objects can appear in our green layer, not just the background.

Image Decomposition using Geometric Region Colour Unmixing

3 10

10 .
. .
* . . .
(] ° 1]
E . ’ £
= . =
= 10% . .
. . 10' : :
$. . 3 : .
.
004 008 016 031 063 125 5.00 4 5 6 7 8
Image Size (MP) Palette Size

Figure 13: Computation times of our method (red), ver-
sus Tan et al. [2018] (black) and Aksoy et al. [2017](blue).
Left: Time taken for each method using different input im-
age sizes; Right: Time taken for each method decomposing
images with different palette sizes.

When the green layer is removed, unexpected colour changes can
then appear in other scene objects (see Fig 15 where green was
found to be part of the hair in (b) and (c), which now appears to
have a green or pink hue). While [Aksoy et al. 2016] was designed
for keying applications and does not suffer from this issue, Tan
et al’s results show similar colour changes to ours (see Fig 15). In
future, we will consider sparsity constraints to overcome this issue,
similar to Aksoy et al. [2017].

Figure 14: Input images (top row) with recolouring (columns
1-2) and compositing results (column 3) using our layers.

(a) Aksoy et al.

(b) Tan et al.

(c) Ours

Figure 15: Keying results of our method, Aksoy et al. [2017]
and Tan et al. [2018]. Input image is shown at top of Fig. 16.

7 CONCLUSIONS

We have presented a new geometric image decomposition method
which estimates a palette of colours from an image and uses this

CVMP 20, December 7-8, 2020, Virtual Event, United Kingdom

palette to geometrically unmix the pixels in the image into a number
of different layers. We have defined a technique to compute an
optimal colour palette for our layer decomposition, which is used
to split the RGB space into a number of different regions, with the
unmixing technique for a given pixel colour defined by the region in
which it lies. We have shown that our alpha values change smoothly
across the layers, and in cases where quantisation errors or small
discontinuities are present, we have proposed a filtering step for
further smoothing. We have shown that our layers can be used for
several applications including image recolouring and compositing,
and have shown that we are the only layer decomposition method
to efficiently create layers that are homogeneous in colour and
create zero reconstruction error at a low computational cost. In
future work, we would like to investigate how this method could
be extended to higher dimensional space such as RGBXY.

ACKNOWLEDGMENTS

This publication emanated from research conducted with the fi-
nancial support of Science Foundation Ireland (SFI) under Grant
Number 15/RP/2776.

REFERENCES

Yagiz Aksoy, Tun¢ Ozan Aydin, Marc Pollefeys, and Aljosa Smoli¢. 2016. Interactive
High-Quality Green-Screen Keying via Color Unmixing. ACM Trans. Graph. 35, 5
(2016), 152:1-152:12.

Yagiz Aksoy, Tung Ozan Aydin, Aljosa Smoli¢, and Marc Pollefeys. 2017. Unmixing-
Based Soft Color Segmentation for Image Manipulation. ACM Trans. Graph. 36, 2
(2017), 19:1-19:19.

Sean Bell, Kavita Bala, and Noah Snavely. 2014. Intrinsic Images in the Wild. ACM
Trans. Graph. 33, 4, Article 159 (July 2014), 12 pages.

Huiwen Chang, Ohad Fried, Yiming Liu, Stephen DiVerdi, and Adam Finkelstein. 2015.
Palette-based Photo Recoloring. ACM Transactions on Graphics (Proc. SGGRAPH)
34, 4 (July 2015).

Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. 2013. KNN Matting. IEEE Trans.
Pattern Anal. Mach. Intell. 35, 9 (Sept. 2013), 2175-2188.

Yuki Koyama and Masataka Goto. 2018. Decomposing Images into Layers with
Advanced Color Blending. Computer Graphics Forum 37, 7 (2018), 397-407.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13577

A. Levin, D. Lischinski, and Y. Weiss. 2008. A Closed-Form Solution to Natural Image
Matting. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 2 (Feb
2008), 228-242.

Sharon Lin, Matthew Fisher, Angela Dai, and Pat Hanrahan. 2017. Layer-
Builder: Layer Decomposition for Interactive Image and Video Color Editing.
arXiv:1701.03754 [cs.GR]

Sharon Lin and Pat Hanrahan. 2013. Modeling How People Extract Color Themes from
Images. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Paris, France) (CHI '13). ACM, New York, NY, USA, 3101-3110.

Peter O’'Donovan, Aseem Agarwala, and Aaron Hertzmann. 2011. Color Compatibility
from Large Datasets. ACM Trans. Graph. 30, 4, Article 63 (July 2011), 12 pages.

H. Q. Phan, H. Fu, and A. B. Chan. 2018. Color Orchestra: Ordering Color Palettes
for Interpolation and Prediction. IEEE Transactions on Visualization and Computer
Graphics 24, 6 (June 2018), 1942-1955.

Thomas Porter and Tom Duff. 1984. Compositing Digital Images. SSIGGRAPH Comput.
Graph. 18, 3 (Jan. 1984), 253-259.

M. A. Ruzon and C. Tomasi. 2000. Alpha estimation in natural images. In Proceed-
ings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat.
No.PR00662), Vol. 1. 18-25 vol.1.

L. Shapira, A. Shamir, and D. Cohen-Or. 2009. Image Appearance Exploration by
Model-Based Navigation. Computer Graphics Forum 28, 2 (2009), 629-638.

Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. 2005. Local color transfer via proba-
bilistic segmentation by expectation-maximization. In 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR05), Vol. 1. 747-754.

Jianchao Tan, Jose Echevarria, and Yotam Gingold. 2018. Efficient palette-based decom-
position and recoloring of images via RGBXY-space geometry. ACM Transactions
on Graphics (TOG) 37, 6, Article 262 (Dec. 2018), 10 pages.

Jianchao Tan, Jyh-Ming Lien, and Yotam Gingold. 2016. Decomposing Images into
Layers via RGB-Space Geometry. ACM Trans. Graph. 36, 1, Article 61a (Nov. 2016).

Q. Zhang, C. Xiao, H. Sun, and F. Tang. 2017. Palette-Based Image Recoloring Using
Color Decomposition Optimization. IEEE Transactions on Image Processing 26, 4
(April 2017), 1952-1964.

https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13577
https://arxiv.org/abs/1701.03754

CVMP *20, December 7-8, 2020, Virtual Event, United Kingdom Grogan and Smolic

Figure 16: Palettes and layers generated using the approaches of Aksoy et al. [2017] (left), Tan et al. [2018] (middle) and our
approach (right). Input images are shown at the top of the figure (including the input image used to generate results in Fig. 15).

	Abstract
	1 Introduction
	2 State of the Art
	2.1 Palette Extraction
	2.2 Computing Layers

	3 Image decomposition
	3.1 Delaunay Triangulation
	3.2 Region 1: Inside the Convex Hull
	3.3 Region 2: Perpendicular to a Face
	3.4 Region 3: Above Edges
	3.5 Region 4: Near Points
	3.6 Overlap and Consistency between regions
	3.7 Edges of the RGB cube

	4 Palette Estimation
	4.1 Initial Palette
	4.2 Palette Refinement

	5 Layer Filtering
	6 Results and Evaluation
	6.1 Qualitative Assesment
	6.2 Quantitative assessment
	6.3 Applications

	7 Conclusions
	Acknowledgments
	References

