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Abstract

The two most common approaches for estimating the number of distinct classes

within a population are either to use sampling data directly with combinatorial

arguments or to extrapolate historical discovery data. However, in the former

case, such detailed sampling data is often unavailable, while the latter approach

makes assumptions on the form of parametric curves used to fit the discovery

data, that are often lacking in theoretical justification. Instead, we propose an

integrated transdisciplinary framework that dissolves the boundaries between the

above two approaches. This is achieved by directly describing the sampling-

discovery process in parallel with describing a co-variate latent e↵ort process,

where we have historical discovery data for the former process and some proxy

data for the latent process. The linkage between these two processes allows one to

form data on sampling records by forcing some constraints on how many samples

were taken over time. Due to the nature of the constrained data, many infer-

ence techniques become infeasible. However, simulation-based methods such as

Approximate Bayesian Computation remain available. Our proposed approach

is demonstrated and analysed through many simulation experiments, and finally

applied in the ecology field to estimate the number of species as an example of

the number of classes problem.
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Chapter 1

Introduction

1.1 Generic Background

In many life situations we would be interested in estimating the number of items

within pre-specified classes and how these items are distributed among these

classes, such as the number of students over grading scale, or the number of

children over IQ levels. However, there are other situations where we would be in-

terested in estimating the number of classes themselves within known or unknown

sizes of population.

The problem of estimating the number of distinct classes, also known as

‘the number of kinds problem’, is an important statistical challenge and has been

an active area of study for a long time, as first dated to the 1713 publication of

Jacob Bernoulli’s Ars Conjectandi. At its most basic level, it is usually presented

as the problem of estimating the number of di↵erent colours of balls in an urn.

The question being: as balls are removed from the urn and their colours observed

and recorded, how many di↵erent yet unseen colours remain?

Moving beyond this thought experiment, the problem has a broad range of

practical applications. For example, in ecology, maintaining biodiversity has been

a critical issue so that estimating the number of species in a given community

became an important tool to serve this goal [1] [2]. In reliability, it is impor-

tant to estimate the types of defect that could be faced during product testing

operation. This should be important information for the quality control and re-

liability department in any given factory. One example of this field is software

engineering, where releasing new software in the market is expected to be com-

bined with some technical problems. Thus, estimating the kinds of bugs that
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could be reported is important information in order to enhance the performance

of the software [3] [4] [5]. In psycholinguistics or sociolinguistics, a linguist may be

interested in estimating number of vocabularies that a famous author like Shake-

speare knew. This is not because they are necessarily interested in the vocabulary

knowledge of the great bard himself, but because answers to such types of ques-

tions help us to understand better how languages develop or evolve [6] [7].

As there are a variety of ways in which the number of kinds/classes problem

may be posed, there are di↵erent formats of methods for attempting its solution.

With reference to the urn example, di↵ering assumptions concerning the nature of

the urn and/or the form of data recorded will determine the approach taken. For

example, does the urn contain an infinite number of balls, or only a finite (either

known or unknown) number? In terms of possible information available, we could

have access to the full sample sequence in which the i -th colour was observed,

or it could possibly be that only the number of balls sampled and the number

of colours within that sample is recorded, etc. Most methodologies, in general,

can be labelled under one of two approaches, namely the ‘Sampling-Theoretic Ap-

proach’ which derives a solution through combinatorics and sampling theory by

focusing on the ‘sampling action’, and the ‘Data-Analytic Approach’ that seeks to

extrapolate data by considering the ‘discovery curve’ of the classes [8]. However,

many of these methods are associated with assumptions that restrain them from

being practical or generic approaches over di↵erent types of applications. Yet, the

number of classes area is still a subject of argumentation and investigation.

1.2 Problem Statement and Scope

Looking closely at the above two approaches, we found that sampling methods

tackle the problem from a cross-sectional point of view, while those considering

discovery rates extend this perspective to include longitudinal analysis. Again,

using the coloured balls example, the former approach will give focus to counting

the sampled balls as they are drawn and their colours determined and employ re-

sults within combinatorics along with related assumptions (e.g. the distribution

of colour abundance) to estimate the number of undiscovered colours [9].
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Alternatively, methods focusing on a discovery curve assume the existence

of a pattern in the colour discovery process to extrapolate the expected number

of the remaining colours yet to be seen. The benefit of this is that predictions

can be made without having access to the data concerning numbers of samples

taken over time [10]. This pattern may be based on a temporal behaviour or a

correlation with some attributes of the classes which make them more or less likely

to be sampled. For example, the size of the coloured ball in which the likelihood

of a ball being sampled will be a↵ected by its size, especially if di↵ering sizes are

associated with specific colours [11] [12].

However, none of the above approaches seem to be generic or realistically

practical over di↵erent applications. In the sampling methods case such detailed

sampling data is often unavailable, while the discovery curve methods make as-

sumptions on the form of parametric curves used to fit the discovery data that is

often lacking in theoretical justification. An additional common drawback is that

the attention in all these methods is concentrated only on one main variable, the

number of classes, without considering other covariates in the background that

influence the variable of interest.

In the current study we focus our attention in solving the number of kinds/

classes problem in the ecology field, particularly in biodiversity. The most practi-

cal and commonly used indicator for speculating the extent of biodiversity is esti-

mating ‘the number of species ’ and measuring the uncertainty around it. Methods

in this field covered both the sampling-theoretic approach and the data-analytic

approach, and inherit the same drawbacks as mentioned above. Most of them

are performed on a limited scale such as localised geographical levels or a specific

taxon while, on a global scale, estimates have collectively ranged from 1.5 to over

100 million species on Earth [13]. This significant gap indicates a lack of integra-

tion and consistency in the conclusions of the estimation methods, and provokes

the need to seek more applicable and adequate alternative approaches.
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1.3 Purpose and Methodology

The current study proposes an integrated transdisciplinary approach for estimat-

ing the number of classes, specifically implemented for estimating the number of

species. It involves formulating a novel model, along with the use of Bayesian in-

ference, and implemented by using Approximate Bayesian Computation (ABC).

It represents a framework that aims to bridge the gap between the sampling action

and discovery curve approaches. In doing so, we are able to utilise assumptions

that are more realistic and underpin the combinatorial arguments of the sampling

methods within a restricted form of data that is seen in discovery curves.

This is achieved by introducing the concept of a domain-specific ‘latent ef-

fort ’ behind the sampling and discovery process. While we may not be able

to record precisely how many samples had been taken, we make use of avail-

able information concerning the e↵ort put into such sampling, for example, we

may have knowledge of the number of person-hours employed in the sampling-

discovery and how that altered over time. This then allows us to model a system

of inter-relationships occurring in the environment of the class discovery process

by including a covariate - the latent e↵ort process - that could be described by

how it is related to other observable records we obtain. For example, in software

reliability, a latent e↵ort in seeking to find software bugs could be connected to

the number of users or licence holders registered with the software over the time

that faults are being reported [14]. In biodiversity, the latent e↵ort in seeking

to discover new species could be connected to the number of active taxonomists,

i.e., the number of authors involved in species description publications [13], the

amount of research funding awarded, or the number of field excursions performed

over time, etc. In general, any observable record that is somehow related to the

true but latent e↵ort process in sampling observations will be su�cient as a proxy.

1.4 Motivations within Species Context

Speculating about the extent of biodiversity is of critical importance if we wish to

ensure its perseverance. It is not only to serve our planet, but also to serve human-
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ity, as maintaining biodiversity is required for sustaining our existence. Human

motives to maintain biodiversity vary from those of high moral levels to those of

basic human needs. In fact, they can be categorized in a similar way to Maslow’s

Hierarchy of needs in his theory of human motivation [15] [16], shown in Figure 1.1.

Figure 1.1: In a broad sense,

the hierarchy of the motiva-

tions for biodiversity (discov-

ery and maintenance). It heads

up with the need of knowing

versus ethical responsibilities,

and ends up with the basic

needs of our survival, moving

through the fact of the global

safety issues.

Starting from the higher level of the hierarchy in Figure 1.1, it may require

a profound and thorough rationalisation to realize the significance of maintain-

ing biodiversity. Biodiversity is a natural outcome of ongoing bio-interaction on

Earth. Over 3 billion years since the emergence of life, the Earth as an ecosystem

has been patronizing such a creative interaction. Although we as humans are the

most intelligent and productive creatures on Earth, we are still miniscule in terms

of this great creativity of life. Our slow research and discovery in the field and

our detrimental behaviour towards the ecosystem seem to ignore the importance

of biodiversity to life on Earth. A responsible reaction would instead be to save

it from our own negative influence.

Ethical implications aside, biodiversity is a subject of scientific research,

an interesting area to invest our rational thinking and problem-solving strategies

upon. Delving into the study of biodiversity satisfies our curiosity and expands

our knowledge about our surroundings. Such investment is our way to fulfil the

need for knowledge and understanding (as referred to by Maslow’s hierarchy [15])

as this gives us the power to adapt, develop, and control. The implications are

further clarified in the other two levels discussed in the following paragraphs.
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The middle level of the hierarchy, Figure 1.1, highlights how biodiversity

enriches the ecosystem to make it able to adapt to changing conditions; such

adaptation has been necessary since the emergence of life. In other words, bio-

diversity is a critical balancing mechanism of our ecosystem, involving a cyclical

process that passes through genetic diversity and natural selection, as shown in

Figure 1.2.

Figure 1.2: The balance mech-

anism of the ecosystem that

runs within higher and lower

levels of the biodiversity. This

process can be maintained if

we keep sustaining the biodi-

versity.

Genetic diversity empowers species with a variety of inheritable traits which

allows them to adapt in adverse circumstances, thus qualifying species for natural

selection. Natural selection promotes biodiversity which in turn empowers the

ecosystem with adaptive features so as to maintain balance. A balanced ecosys-

tem, in turn, represents a rich habitat and a driving force for genetic diversity.

However, one species in the ecosystem, the human species, has played a negative

role in the natural evolutionary cycle by accelerating deteriorative e↵ects. Con-

sidering this state of influence, it is challenging for the ecosystem to continue in

its natural rate of adaptation. It is thus crucial to preserve biodiversity, including

genetic diversity, in order to ensure proper adaptation for rapid changes in the

ecosystem.

An important issue a↵ecting the ecosystem’s balance is global warming

caused by the ongoing increases in the levels of CO2 in the atmosphere. This

has been the case since the industrial revolution. However, the good news is that

biodiversity can have a great contribution in controlling biogeochemical cycling

of gases. For example, marine biodiversity aids in controlling CO2 in the oceans.
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One particular marine species, Phytoplankton (a microscopic plant-like organism

that makes its own food from sunlight through photosynthesis), plays its part by

removing CO2 from the surface of the oceans by absorbing it and releasing O2.

Moreover, when Phytoplankton die they sink to the bottom of the oceans keeping

the CO2 far away from the atmosphere. This is known as a Biological Pump [17].

Hence, neglecting or misbehaving in preserving marine biodiversity a↵ects the ef-

ficiency of the Biological Pump in balancing the biogeochemical cycling of gases.

At the lowest level of the hierarchy of Figure 1.1, and taking marine biodi-

versity as an example, seas and oceans host enormous kinds of resources related to

medication, food and nourishment, as well as raw materials obtained from coral

rock and sand used for building materials etc. The high biochemical diversity that

the marine world has, makes it a substantial source for manufacturing pharma-

ceuticals. For example, the oceans’ sessile animals produce chemicals to defend

themselves, from which pharmaceuticals can be made, as is the case with sessile

land plants. As a further example, seaweed provides Polysaccharide, an important

substance for humans which can also be used as food for livestock.

Concerning nourishment, finfish, shellfish, invertebrates, algae etc represent

a great source of nutrients and protein as low calorie food for a healthy life style.

It is quite ironic how a wide range of the oceans, rich in these resources, are not

really utilized. Conserving marine biodiversity and promoting proper awareness

o↵ers opportunities to utilize these precious resources and potentially balance fish-

ing practices throughout oceans. [18] [19] [1]

To conclude, every species in the biodiversity system has its important role

on Earth. Hence, it is an obligation on us to maintain biodiversity. This can be

achieved through a proactive approach towards species discovering, understand-

ing, taxonomizing, and respecting their space on Earth. The current study serves

in satisfying this achievement.
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1.5 Contribution of this Dissertation

The contribution of the current study can be summarized in the following aspects:

⌅ Introducing a novel framework in response to solving the number of kinds/

classes problem.

⌅ Developing the proposed model for generic implementation, and particularly

within the ecological field (estimating the number of species).

⌅ Implementing probabilistic inference for the proposed model with an Ap-

proximate Bayesian Computation approach.

⌅ Exploring the properties of the proposed model and implementation through

multiple simulation experiments, as well as model validation.

⌅ Applying the proposed model to real ecological datasets and providing con-

clusions that may be useful for decision makers in the field (personal commu-

nications are on-going with Biodiversity specialists from the New Zealand

National Institute of Water and Atmospheric Research).

1.6 Outline of Dissertation Chapters

The current study is divided into two parts. Part I covers the generic context

and the theory of the proposed model (represented in Chapter 2 and Chapter

3), while Part II concentrates on implementing the proposed model within the

species context (represented in Chapter 4, Chapter 5, and Chapter 6). The study

is concluded with Chapter 7, followed by three Appendices. All are summarized

as follows:

⌅ Chapter 2 provides a literature review of the methods used in estimating

the number of classes in general, as well as the ones used specifically in esti-

mating the number of species. This includes most of the known methods of

both the sampling-theoretic and the data-analytic approaches. The chapter

also explores some relevant concepts of Bayesian inference and computing

techniques.
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⌅ Chapter 3 introduces our proposed approach, explaining its model formula-

tion, distributional assumptions, and parameter specifications. The chapter

also explains the justification and the mechanism of the chosen approximate

Bayesian computing techniques (ABC), how it is used in the fitting stage of

our model.

⌅ Chapter 4 introduces the formulation of the proposed model according to

the distributional assumptions of the species context. It explains the model

validation through simulation experiments, generating artificial worlds and

fitting them according to our model. It also illustrates the fitting e�ciency

of the model through using the ABC technique.

⌅ Chapter 5 evaluates the performance of our model and showing more as-

pects of its characteristics throughout di↵erent scenarios. This is done by

measuring the model in terms of three main criteria: accuracy, sensitivity

(robustness), and additivity.

⌅ Chapter 6 presents some applications of our model on real data in the bio-

diversity field such as the ones retrieved from the Catalogue of Life (CoL)

and World Register of Marine Species (WoRMS) databases. This involves

checking some criteria and making some comparisons with a related previous

approach applied to the same datasets.

⌅ Chapter 7 summarises and concludes the study with the main findings, and

highlights some suggestions for the future work.

⌅ Appendices A, B, and C provides some equations of the literature and the

current model, extra plots and tables related to the artificial and real data

experiments, and pseudo codes, respectively.
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Figure 1.3: The Structure of the Dissertation
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Part I

Theoretical Phase of The

Proposed Approach
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Chapter 2

Literature Review

As introduced in Chapter 1, most of the attempts that have been proposed for

estimating the number of classes can be classified under two main approaches, the

sampling-theoretic and the data-analytic. Each comes with justifications and some

good properties but neither are free from drawbacks and limitations. Though,

there are also other passive attempts in which scientists provided a range of es-

timates about the number of kinds based only on their expertise in fields such

as those in biodiversity [20]. However, in the light of the current development

in statistics and technology, expert guesses without solid quantitative analysis

becomes outdated and unreliable. For example, in the number of species estima-

tion, this kind of attempt lacks accuracy and results in providing a huge interval

of estimates ranging from 33% underestimation to 16% overestimation [21]. The

current chapter starts with exploring those active methods of estimating the num-

ber of classes in general and the number of species in particular, and ends with

presenting some relevant concepts of Bayesian inference and computation tech-

niques. It is worth presenting a holistic view of the existing approaches along

with the proposed one, as is seen in Figure 2.1.

2.1 Methods of Estimating Number of Classes

In this section we illustrate two main active approaches in estimating the number

of classes. The methods under these approaches are generally implemented on a

variety of applications, including the biodiversity field.

2.1.1 Sampling-Theoretic Approach

This section is based on a review conducted by [8]. Before detailing the methods

of this approach, we illustrate the general setting of the problem in the sampling-
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Figure 2.1: A holistic view of the existing approaches of estimating number of classes along with the proposed

approach. Most of the attempts in the species context are under the data-analytic approaches.

theoretic approach. Assume that we sampled n items (specimens, in our biodi-

versity context) at random from a population which is partitioned into C classes

(species, in the biodiversity context). Suppose that these classes have the following

proportions (relative abundances, in the biodiversity context) p = [p1, p2, ..., pC ]T ,

where
PC

i=1 pi = 1. In theory, the sample n should represent the population

such that it includes all the classes in the population i.e. n =
PC

i=1 ni , where

ni is the number of the sampled items from the ith class. This theoretical ran-

dom sample can be presented as a collection of sub-samples ni and written as

a random vector n = [n1, n2, ..., nC ]T . However, in reality n is not observable

because not all ni’s are expected to appear in the drawn sample. Instead, we

can use an observable related random vector c = [c1, c2, ..., cn]T , where cj is the

number of the classes involving j items in the drawn sample. The total number

of classes in the sample is c =
Pn

j=1 cj. It is worthwhile noting that n can be

represented exclusively from C; n =
Pn

j=1 j cj, and by definition, the probability

mass function (PMF) of the observable random vector c is simply the sum of the
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PMF of n over all points in n corresponding to c, i.e P (c) =
P

⌦ P (n), where

⌦ = {n : #{ni = j} = cj, j = 1, ..., n}. The main challenge in all the sampling-

theoretic methods is that P (c) =
P

⌦ P (n) does not have a closed-form expression.

Hence, in light of this challenge and knowledge limitation, authors of this field ap-

proached other various ways of estimating the number of classes based on a variety

of combinatorics along with some related assumptions. Some of these methods are

related to the finite-population assumption such as Multi-Hypergeometric sample

and Multiple Binomial sample methods, while others are related to the infinite

ones such as Multinomial sample, Multiple Poisson sample, and Multiple Bernoulli

sample methods. Note, some of the equations are not included within the text

but they are available in Appendix A, Section A.1.

Finite-Population Methods

In this approach we assume that the size of the population, N , is known and

it is partitioned into C classes. The number of items in the ith class is de-

noted by Ni where, N =
PC

i=1 Ni. If we randomly sample n items without

replacement from this population, then n has a Multi-Hypergeometric distribu-

tion, P (n) =
QC

i=1

�
Ni

ni

�
/
�
N
n

�
. According to [9], only under the assumption that

n � M ; M = max
1iC

(Ni), a unique unbiased estimator for C exists, denoted

by ĈGoodman1. As we mentioned, above the formula of ĈGoodman1 involves com-

binatorics using the known components N, n, and c. Although this estimator

is unique and a uniformly minimum-variance unbiased estimator, it su↵ers from

several drawbacks: its variance is still very high in many cases such that estima-

tions become useless (noted also by [22] [23]), its formula also allows for obtaining

negative estimates which are meaningless, and its convergence behaviour is incon-

sistent and influenced by the sampling fraction [24] [25]. Independent of the above

estimation e↵orts, an attempt (based on asymptotic behaviour) took place in [26],

where the sampling fraction approaches a value 2 (0, 1) as N and n ! 1 in a way

that ensures the fraction to be within this interval. For a small sampling fraction

such as 0.1, the resulting estimator, ĈShlosser ; where ĈShlosser � c , performed

reasonably well on simulated data, although it is a biased estimator and its vari-

ance had not been calculated. However, that simulation was not extensive enough

for su�cient assessment and no formal comparison had been done with ĈGoodman1.
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On the other hand, if we randomly sampled n items with replacement from

this population, then n has a Multiple Binomial distribution, P (n) =
QC

i=1

�
Ni

ni

�
pn

(1�p)N�n, in which each ith class independently contributes as being in the sample

n with the same probability p, i.e. each ni follows a Binomial distribution with

parameters (Ni, p). Again, [9] derived an unbiased estimator, ĈGoodman2, under

the assumption of knowing the value of p. Unfortunately, ĈGoodman2 shared the

same drawbacks of ĈGoodman1. Another attempt proposed is, under the assumption

of having small p and large N , an approximate moment method estimator but

which also allows estimates less than c, like ĈGoodman2, [27]. There are suggested

alternatives in which n1, n2, ..., nC are considered as iid Negative Binomial random

variables, but they are still associated with some problems (see [28] for more

details).

Infinite-Population Methods:

In this approach the size of the population is assumed to be unknown, but the pop-

ulation is still partitioned into C classes. We explore three main methods taking

three perspective levels of analysis. Under the assumption that these partitions

have the proportions p = [p1, p2, ..., pC ]T , and randomly sample n items from

this population, then n has a Multinomial distribution, P (n) =
QC

i=1

�
n

n1,...,nC

�
pni
i .

However, P (c) =
P

P (n) still does not have a closed-form expression. There are

two branches of work done on this method, one assumes that the parameter vector

p has a pattern that can be described and used along with c to estimate the total

number of classes C. The other branch, does not have any assumption about p

but still benefits from the observed pi’s that appear in the drawn sample along

with c to estimate C. The former branch is titled as a parametric model, while

the latter is a non-parametric model.

In the parametric models, the first assumption starts with saying that pi’s

have a functional form that can be modelled and parametrized possibly by a small

number of parameters, say �. [29] suggested some models for this function and

derived families of estimators for � and C using the moment method. However,

these estimators are complicated and their variances have not been calculated in

order to assess them. Independently, [7] followed asymptotic approximations for
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the pi’s models and derived an estimator, ĈMcNeil, which depends on an asymp-

totic distribution of some function. Unfortunately, this estimator is not better

than the previous ones. It is also complicated and its behaviour is not well un-

derstood in the small samples context.

The second assumption proposed in the parametric models is that pi’s have

a histogram which can be approximately fitted by a probability density function

depending on some parameters, say ✓. [30] [31] [32] developed such a model for

this function and estimated ✓ based on c. Hence, based on ✓ the authors derived

an estimator, ĈSichel, for C. The asymptotic bias and variance of ĈSichel were

addressed. However, it su↵ered from strong bias in the small samples context.

For this purpose, in [31], it was suggested that the sample size should be greater

than 1500. It seemed that the second assumption estimation was more preferable

than the first one in theory and in applications where there are no restrictions in

specifying exact values for pi’s.

Regarding the non-parametric models where there is no assumption about

p, it seems that there is no unbiased estimate that exists. In other words, having

no assumption about pi’s resulted in having unbounded bias of any estimator of

C. However, an estimator, ĈChao1, for the lower bound of C is obtained by [33]

along with associated bootstrap confidence intervals. Later, a non-parametric es-

timator, ĈChao2, was derived for C based on c and the coverage of the pi’s (the

sum of the pi’s that correspond to the observed classes in the sample) [34]. The

later estimator is still biased but according to some empirical and theoretical evi-

dence carried out at that time, ĈChao2 is preferable over ĈChao1 although the two

estimators have not been formally compared. In the same year and also based

on the coverage idea, another attempt separately took place by [35] at which the

coe�cient of variation (CV) of the class sizes is shown to play an important role.

However, CV ends up being underestimated in this method and causing biased

estimation for C when pi’s are not equal.

In the above, the authors discussed the problem from a higher level, say

n-level, at which they are concerned with describing the distribution of the to-

tal sample n as a whole (including all the classes available in the population).
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In this level, a sample randomly drawn from an infinite population partitioned

into C non-overlapping classes follows a C-dimensional Multinomial distribution.

Later, a di↵erent approach is of discussing one sampled-class at a time, ni-level.

In this the number of items ni of the ith class follows a Poisson distribution

with mean �i. Since these classes are non-overlapping, we have C indepen-

dent Poisson random variables so that n has a Multiple Poisson distribution,

P (n) =
QC

i=1 e
��i �ni

i /ni! [36]. Here also, since P (c) =
P

P (n) has no closed

form expression, the e↵orts towards estimating C are through �i’s, the param-

eters of the distribution of n. The assumption of this method is that the �i’s

themselves constitute a random sample coming from a distribution function, say

F , that has its own parameters. Hence, the estimator, ĈPoisson, can be obtained

based on c and estimating 1 � P0(F ), where 1 � P0(F ) is an F -mixed Poisson

distribution of the class-abundance that is truncated at zero. And P0(F ) is the

probability that an arbitrary class will occur zero times in the drawn sample,

which is governed by the distribution F that describes the �i’s.

[37] derived an estimate for P0(F ) based on c, where F represents the in-

verse Gaussian distribution, and estimated its parameters using the Maximum

Likelihood method. This method provides a model that is considered as a special

case of the one in the Multinomial sample method (done independently of the

e↵orts in the ĈSichel estimator). The authors of this method applied the Poisson-

inverse Gaussian estimation of P0(F ) in the ecological field on several well-known

datasets (all are di↵erent groups of insects), and they noticed poor performance

of their model on some datasets due to the influence of the trapping mechanism

and classification errors that can distort the observed abundance counts. As a

result of such errors, it may happen that no single model will emerge as the best

one for a broad class of applications. In conclusion, the authors described the

performance of their suggested model as follows: “The fit of the Poisson-inverse

Gaussian distribution to the several well-known data sets examined here suggests

that it may be an appropriate model for species abundance data under specific con-

ditions but will not always be the clear choice”.

Independent of all the above, [38] gave an alternative family of estimators

for P0(F ) based on c which seemed to be robust in keeping the variance of F
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not too large, and hence used them in the ĈPoisson estimator. The asymptotic,

robustness, and e�ciency of these estimators had been discussed and concluded

that they can be useful but still only under very specific conditions, as it was

with [37]. However, no formal comparison has been done between the two ver-

sions of ĈPoisson.

Unlike the two levels of analysis discussed so far, the final method in the

infinite-population setting is on the level of the drawn items that constitute the

total sample n, denoted by Iij-level. Here Iij = 1 indicates that the ith class is

observed on the jth drawn of the items, where i = 1, ..., C and j = 1, ..., n. The

drawn items can be represented by a C ⇥ n matrix [Iij]. It is worth mentioning

that this method is based on the ‘Capture-Recapture Sampling’ that is commonly

used in the ecological field to estimate the population size. In the current use

of this method of sampling, Iij represents the ith individual (an arbitrary item

that represents a class i) that is caught in the jth trapping occasion, n is the

trapping occasions, and the number of classes C represents the population size.

Under the assumption that these draws are independent within each class with

P (Iij = 1) = pi, then each of ni constitutes a sum of Multiple Bernoulli ran-

dom variables, ni =
Pn

j=1 Iij. Hence, P (n) =
QC

i=1

�
n
ni

�
pni
i (1� pi)n�ni , but again

P (c) =
P

P (n) has no closed form expression.

Likewise the previous attempts in the same infinite-population context, [39]

[40] assumed that the parameters pi’s themselves constitute a random sample

coming from a distribution function, say F . They developed an estimator ĈBOk

that depends on some component k, and provided a technique to choose the op-

timal k. They also computed the mean and variance of their estimator based on

F . However, ĈBOk is biased and the fact that it depends on k makes it unsta-

ble because it acts as an alternating series in k. [41] proposed using an estimator

ĈChao1 for the current model, while the same estimator was obtained in absence of

any assumptions for the ni proportions. Using a dataset provided by [42], which

is conducted by a capture-recapture experiment on the taxicab population of Ed-

inburgh (Scotland), it is found that on average ĈChao1 provided closer estimation

to the true value of the given dataset than ĈBOk. In addition, through a small

simulation study at which three trapping occasions are examined (n = 5, 7, 10),
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it was found that ĈChao1 is better than ĈBOk in some situations where n = 5, 7,

as the ĈBOk estimations showed severely negative bias and their coverage proba-

bilities are much lower than the nominal level (0.95) especially when the average

pij = 0.05. However, when n = 10, ĈBOk performed better than ĈChao1. Moreover,

according to [41], when n is getting larger and the average pij is also relatively

large (e.g. when pi’s constitute random variable coming from Uniform (0, 1) or

Beta (2, 2)), ĈChao1 will fail to work.

2.1.2 Data-Analytic Approach

The target of this approach is mainly focused on analysing the given data to

find some correlation or temporal pattern and use them for extrapolating the

expected number of classes in a given population. In such a scenario, we can

think of the expected number of classes as a function of some measurable vari-

able, i.e. E(c(x)) = f(x;✓), where ✓ is some parameter vector and c(x) is the

observed classes under the variable x such that as the value of x is asymptoti-

cally increasing, the function f(x;✓) approaches the target number of classes C,

(a detailed explanation of this formulation is provided in Section 6.6.1, at which

E(c(x)) = f(x;✓) represents a logistic function to estimate the number of species).

Note that c =
Pn

j=1 cj as mentioned in the previous section, and cj is the number

of the classes involving j items in a drawn sample.

Under the correlation assumption, x could be a measure of the sample size

(not necessarily the count of items within a sample) where we can correlate be-

tween the sample sizes and the number of classes. This is implemented in the

linguistic field where x is chosen to be the number of words in a text used for

predicting the literary vocabulary. In this application, f(x; ✓) is formulated (in

one of the simplest forms) as a geometric series, and ✓ is estimated by ad hoc

methods. The target prediction is obtained as ĈBR = 1/(1 � ✓̂) [43]. Another

implementation is in the ecological field, in particular the paleontological research,

at which a maximum amount of material (mass, volume, area, etc.) is examined

to detect the number of species included in that material. In this application, [44]

decided that x represents a mass of beach sand sampled for predicting the di-
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versity of species in a given lithologic unit or fossil community. Here, f(x;✓) is

formulated as a hyperbolic model (i.e. f(x;✓) = ✓1 x/(1 + ✓2 x)), and the vector

✓ = {✓1, ✓2} is estimated by some transformation of linear regression to obtain

the target prediction ĈDCLH = ✓̂1/✓̂2. However, according to [8], such a correla-

tion assumption with the sample sizes leads to deriving f(x;✓) from a sampling

model in a way that seems to be di�cult to justify. Other types of correlation as-

sumptions are presented in the biodiversity field and explained in the next section.

With respect to the temporal behaviour, one can consider x as a time com-

ponent at which the classes are discovered. A range of examples is also available

within the biodiversity context, explained in the next section.

2.2 Methods of Estimating Number of Species

As the species problem is an example of the number of kind/classes problem, the

sampling-theoretic and the data-analytic approaches are still the umbrella of the

methods of estimating the number of species. However, among this broad range

of literature in classes/species estimation methods, we will highlight only some of

the relevant methods paving the way to our proposed approach.

Under the sampling-theoretic methods, a Bayesian approach is suggested

by [45] [46] in which a joint prior model,
�
N�1
C�1

��1
f(C,N), is adapted for C and

N1, N2, ... , NC , where f(C,N) is an arbitrary distribution, N =
PC

i=1 Ni is a

finite-population, and N1, N2, ..., NC are equally likely. Using this prior, a poste-

rior model of C and N given c is derived from which the target estimation, ĈHill,

is represented by the mode of this posterior model, where c =
Pn

j=1 cj. However,

the chosen prior is non-informative and it turns out that this posterior depends

only on the data through c not c = [c1, c2, ..., cn]T . This makes it subject to a

confusion with a specified loss function [45] which was of a very di↵erent purpose.

For the infinite-population case, the same author suggested a di↵erent prior

for only C to be a truncated Negative Binomial with parameter vector ✓ =

{✓1, ✓2}, where ✓1 2 (0,1) and ✓2 2 (0, 1], and the posterior model for estimating

C is obtained by allowing N ! 1. This work is extended by suggesting that the
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prior includes a C-dimension symmetric Dirichlet density and also use the mode of

the posterior model as an estimate for C, see [47] [8] for more details. The above

is an addition to the attempts [36] [37] that are already explained previously in

the Section 2.1.1 (in the infinite-population case), which are implemented within

the species context.

With respect to the data-analytic approach, two methods are explored in

the current study: extrapolation using some kinds of correlations such as species

richness versus the body size or species richness versus the geographic location.

The second is extrapolation using the past description of the species richness.

This will be illustrated in the following subsections.

2.2.1 Extrapolation Based on Some Correlations

This section is based on a review conducted by [21]. The first method is based on

the assumption that there is a relationship between the species’ body size and their

richness. In various marine and terrestrial taxa, it has been found that species

with larger body size tend to be easily recognized and described [11] [12] [48].

Moreover, in a study on Holoplankton and fish species, it was also found that

species with a larger body size, in addition to being endemic to a larger (in width

and depth) geographic range, have also been described earlier [19] [49] [50]. Hence,

in light of the above correlations, species of a given taxon could be represented

by a frequency distribution in which having gaps in the distribution may suggest

as yet undescribed species [51] [52] [53] [54]. Therefore, estimating the size of the

gaps leads to estimating the number of unknown species. However, the basis of

using the body size versus species richness relationships to predict the number of

species is not solid enough for all species. In fact, there seems to be no relationship

between them in a study done on marine metazoan species [55]. It also requires

good knowledge of the taxon richness in advance which is unlikely to be available

for all species but even when it is, such knowledge defeats the purpose of using

such techniques. In addition, according to a study on tropical fish [50], prediction

based on the body size versus species richness relationships results in poor pre-

dictors. Besides, this type of analysis needs to consider the size-variation of one
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species growth in addition to the habitat-variation during the growth stages [21].

This may cause a confusion in recognizing new species as well as in modelling the

distribution of the species’ body sizes.

On the other hand, the second attempt neglected the species’ body sizes and

only considered the assumption that there is a high influence of the geographic

locations on the species richness. The idea is to study species proportions of a

given taxa across di↵erent areas. Hence, if there is a high correlation between

these proportions, this implies that there is a high correlation between these areas

so that we can extrapolate species richness from one well known area to another.

However, the reality is more complicated especially when we talk about extrap-

olation from local to global scales. Many reasons are raised against the validity

of this method. According to [56] most of these attempts su↵er from weak or

unevidential relationships between species proportions across di↵erent areas. A

justification of this suggested by [48] that the factors influencing species richness

may operate di↵erently in di↵erent environments, and it can be seen between

di↵erent regions or between local such as a continent and the whole globe. This

makes species vary in their endemicity to a particular habitat and consequently

vary in their proportions within a given taxa between habitats. This means that

the current method is not valid in this context. Moreover, from an analysis across

24 regions of the world [57] it is found that there is variability in the relative num-

ber of marine species across phyla and classes, and that is not yet clear whether it

is a reflection of di↵erent species evolution influenced by the environment or just a

bias in taxonomic e↵ort and knowledge. Thus, there is a lack of clear correlations

between these proportions across geographic locations which compromises using

such a method.

In addition, since even within one taxa there is a variation among species in

their endemicity and pandemicity, there is no possibility to have su�cient knowl-

edge about relationships among alpha, beta, and gamma biodiversity1 neither in

marine [59] nor in terrestrial [60] environments. For example, species richness may

1Alpha diversity refers to species richness within-community such as in a habitat, while beta

diversity is richness between-community excluding overlapping. Gamma diversity is the total

richness such as across regional or global areas. [58]
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be low in some habitats but high in the region including such habitats, because in

total this region has a large variety of habitats with a little overlap in species i.e.

this region has small alpha but large gamma diversity due to large beta diversity.

On the other hand, other regions may have similar gamma diversity but large

alpha and small beta diversity. Therefore, such geographical variation in these

relationships challenges the attempts to predict global from local richness [61].

Another argument against the validity of the current method, is that it has been

noticed, through many sampling e↵orts done on local scales, that there is a pat-

tern of finding few species which are abundant while more species are rare. While

the sampling methods take into account the abundance property in their local

predictions, the current extrapolation method from local to global areas results

in a shortage in capturing this property on the global scale. Moreover, [62] con-

cluded that extrapolation based on the geographic location versus species richness

correlation is the poorest method of estimating species richness on a wider scale.

2.2.2 Extrapolation Based on Temporal Component

Another direction for a data analytic approach is extrapolation based on the past

behaviour of species richness. The main idea is to estimate the total number of

species in a community by extrapolation from a temporal pattern of known species

description. Species description refers to either species discovery events or species

discovery rate. In such attempts, accurate estimates could be expected, but in

applications it is subject to much uncertainty. Hence, many statistical methods

in this field have been used to estimate species richness and assess the estimation

in a variety of means.

One of these methods was done by [63], in which sighting a species has been

treated as a non-homogeneous Poisson process (a type of point process). The rate

parameter of this process is defined as a function which depends on two compo-

nents: the first one is a constant that measures the visibility of a species, and the

second is a function that captures the trend of the sighting skill and e↵ort over

time. The sighting skill/e↵ort is defined as an exponential function with param-

eter �, while the species visibility is defined as realizations from an exponential

distribution with parameter ✓. The analysis was based on modelling the discovery
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time (the time of the first sighting of a species) ti, such that it depends on above

two components (including ✓ and �) while following an Exponential distribution,

p(ti). The maximum likelihood method was used to estimate ✓ and �. In light

of the above setting, it is assumed that the number of discovered species follows

a Binomial distribution such that the number of trials is represented by the total

number of species (known n and unknown m), and the probability of success is

given by the cumulative distribution of the discovery time, P (ti). Therefore, the

discovery rate is fitted by the Binomial mean curve (m+ n)P (ti), from which the

point and interval estimations of the unknown number of species are derived.

However, although this method included an additional variable (the sighting

skill/e↵ort), rather than the discovery rate only, this variable was not assumed

to be a random variable and was just represented by a mathematical function

that does not capture the variability existing in reality. This leads to having a

very smooth fitting curve for the discovery rate that does not account for the

fluctuating behaviour occurring in the actual data. In addition, the used dataset

in this work is not representative, it was very few (only 100 large marine species)

and limited to only 169 years (from 1828 to 1996). Since the authors believe that

their model seemed to work well, no estimation for the prediction error has been

made, which is another drawback.

Moreover, the assumption of representing the data by the non-homogeneous

Poisson process does not really capture the variation in the given data despite its

changing parameter over time. The reason is that the Poisson process has one

parameter in which the dispersion (variance) is equal to the mean. However, the

changing pattern in the mean is di↵erent from the changing pattern of the disper-

sion of the discovery process. This is influenced by many factors such as changes

in the speed of the ecosystem evolution, developing technology, availability of tax-

onomists etc. Hence, it is normal to observe under-dispersion and over-dispersion2

in the behaviour of the discovery process.

In the same year, other work was published by [64] in which the discovery

2The under-dispersion occurs when the variance is less than the mean, while it is the opposite

for the over-dispersion case.
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process was also considered as a point process, but treated in a di↵erent way. The

analysis was based on the discovery dates, since each discovery event is mainly

recognized by its discovery date. The non-homogeneous Renewal process was the

assumption for the given data to overcome some drawbacks of implementing the

non-homogeneous Poisson process. The benefits of using the non-homogeneous

Renewal process is to allow, in principle, the inter-discovery time to be repre-

sented by any distribution that has support [0,1). However, for mathematical

convenience the Gamma distribution was used here since it is a generalisation of

the Exponential distribution and has two parameters ✓1 and ✓2 that are enough to

capture the mean and the under-dispersion/over-dispersion behaviour. The Re-

newal process was modelled with mean parameter changing over time and it was

represented as a logistic function. The logistic function is linked to the Gamma

parameters, and it depends on two parameters  1 and  2 that control the rate

of discovery. The logistic curve was used to fit the given data and to predict the

remaining number of species yet to be discovered. A Bayesian approach along

with MCMC sampling was used to estimate the above parameters and do the

required prediction.

The fitted curve was based on the cumulative data, which was still very

smooth and did not capture the fluctuating behaviour occurring in the actual

data. However, adopting the Bayesian approach allowed for estimating the un-

certainty of the prediction by giving a posterior distribution for the remaining

number of species yet to be discovered. Despite the fact that the data used were

verifiable (the first list of marine species in Europe [65]), this list was limited to

Europe and to the marine species, hence the performance of the proposed method

on the global scale was not known at that time. In addition, the analysis has been

made separately on four big taxa, thus the performance of this method is also not

known in the case of taxa aggregation.

Two years later, a completely di↵erent method was published by [10] though

the form of the data being used was still the discovery dates. In this work, the

expected number of species remaining to be discovered at time t is considered as

some fraction k of the number of species that have not yet been discovered at

previous time t � 1. This fraction represents the discovery curve and depends
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on several interacting factors such as visibility of new species, discovery e↵ort,

expertise in identifying new species, and the proportion of habitat remaining un-

explored. The value of k decreases and increases according to the dominant factor,

for example, if most of the easily visible species have already been discovered and

the visibility of new species becomes less, then k will decrease, on the other hand,

if the discovery e↵orts increased within a restricted area of unexplored habitat,

consequently k will increase. However, k has been taken as a constant for sim-

plicity, under the assumption that over time new species yet to be discovered is

eventually decreasing regardless of the variation in the above factors. A gener-

alized linear model was formulated for the species remaining to be discovered at

time t regressed on the cumulative discoveries up to time t�1, with an error term

assumed to be a quasi-Poisson. The parameters of the model were estimated using

maximum likelihood, and from which confidence intervals were derived.

This study concluded that unless the inventory of a given community is

nearly complete, estimating the total number of species is associated with very

large margins of error, and using the discovery curves of such incomplete inven-

tory for estimation is largely futile. However, the resulting margins of error were

large according to the suggested model of this study. Although this paper did not

take into account the e↵ect of the discovery e↵ort by considering k as constant,

it emphasized that in addition to the discovery curve being governed by the re-

maining number of species to be discovered, the discovery curve is also governed

by the variability of the discovery e↵ort. Moreover, it is indicated that even for

completed inventories, what is required is only an e↵ort in a variety of means to

discover new species.

Later in [21], the work published by [64] was applied on a wider collection

of marine datasets, and was contrasted with other related approaches, though not

with formal statistical inference. Then in [13], the work on the same model was

extended globally to include terrestrial species in addition to marine ones. The

real contribution of the later paper is involving the number of authors along with

the discovery curve. The number of authors is used as a proxy for the latent

taxonomic e↵ort, which is an important indicator for estimating the total number

of species on the globe. For example, a high trend for the marine discovery rate
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is generally noticed after about 1950, while the trend for the terrestrial discovery

rate was stationary. Simultaneously, the average number of authors describing

species each year was increasing in both cases reflecting an increased amount of

e↵ort. For the terrestrial species, this might be an indicator that it is getting

harder to discover new species possibly due to fewer of them remaining to be

discovered or they were being localized such that in each year there are still some

localities that need to be explored. On the other hand, in the marine case, this

might be an indicator that there is still great opportunity to find new species

in the oceans and implementing more e↵orts probably will help to discover most

of them. However, the latent taxonomic e↵ort was contrasted with the discovery

curve only by general observation and description, not through a formal statistical

perspective, unlike the current proposal which introduces a statistically rigorous

framework by including this factor.

In conclusion, the field of estimating the number of classes in general and

species in particular has witnessed two main approaches: the sampling-theoretic

and the data-analytical. This is in addition to the subjective attempts (e.g. expert

opinion) that do not seem to be reliable, because experts may not have su�ciently

complete knowledge of all the available species to provide reasonable estimates.

However, the two approaches are not without some shortcomings as shown above.

The sampling-theoretic methods mainly relied on the sampling action which

required assumptions about the class-abundance and detailed sampling data.

Therefore, such methods are highly influenced by the sampling mechanism and

classification errors that a↵ect the observed abundance counts and therefore af-

fect the accuracy and the consistency of the estimation. In addition, such detailed

sampling data is often not available especially in large-size communities that in-

clude a variety of classification groups (e.g. in the ecological field we might be

interested in the animal kingdom where our target community includes insects,

reptiles, and birds groups). Hence, employing such methods at a global scale

seems to be unrealistic.

Similarly, the data-analytical methods that are based on some correlations

also su↵er from some subjective assumptions such as that one ecosystem is similar
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to another and thus can be used for extrapolation of the species richness etc. On

the other hand, the advanced contribution o↵ered by the statistical modelling is

implemented by the data-analytical methods that are based on a temporal com-

ponent. These methods relied on studying the cumulative pattern of a given

discovery dataset, at which the given data is treated as a noisy process that is

assumed to follow some parametric process (e.g. a non-homogeneous Renewal pro-

cess). The goal is to fit a mean curve for the given data, and the fitting process

is formulated by some representative function (e.g. logistic function). However,

these methods seem to su↵er from some drawbacks and limitations. In all these

methods, the process of the curve fitting is still data-specific i.e. very limited to

the undertaken dataset and cannot be generalized to another datasets that might

have di↵erent patterns and therefore di↵erent fitting models.

Instead, we introduce a novel approach of estimating the number of classes/

species that provides an integrated framework using Bayesian modelling. Our pro-

posed modelling is not exclusively subject to the class-abundance influence (which

is a drawback of the sampling-theoretic methods), but includes other variables in

context. Moreover, our proposed modelling is not formulated as a data-specific

problem (which is a drawback of the data-analytical methods), it is formulated

as a flexible framework that can be adjusted to take into account a variety of

datasets. Our proposed model does not only account for a point and interval es-

timations, but also accounts for a posterior probability distribution that provides

a better measurement of the estimation accuracy.

2.3 Bayesian Inference and Techniques

Statistical inference is the process of making statistical propositions about a popu-

lation using a dataset sampled from that population. In most cases the statistical

proposition is operationally defined by an unobserved quantity about which we

wish to learn. It is worth distinguishing between two types of these unobserved

quantities: first, the potentially observable ones such as predictions (future ob-

servations of a given process), and second, the quantities that are not directly

observable such as parameters governing a hypothetical process leading to the
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current observed dataset. For instance, when applying our proposed model on

the biodiversity field, the number of species along with how they abound repre-

sents a parameter that contributes to governing the underlying process leading to

the observed number of discoveries.

While statistical inference makes a wide range of types of conclusions, Bayesian

inference makes its conclusions in terms of probability statements. The probabil-

ity statements are basically conditional on the observed dataset. There are some

situations where these probabilities are also conditional on observable values of

covariates such as the number of authors in the biodiversity field. The main com-

ponent in the Bayesian inference is the posterior probability which, proportionally,

can be derived from the following formula using Bayes’ rule:

P (H | x ) =
P (x , H)R

H P (x , H) dH

=
P (x |H)⇥ P (H)R

H P (x |H)⇥ P (H) dH

) P (H | x ) / P (x |H)⇥ P (H) (2.1)

where, ‘H ’ stands for a hypothesis or a belief around the unobserved quantity

that is subject of the inference, ‘x ’ refers to the observed dataset used to make

the inference, P (H) is the prior probability which expresses our hypothesis/belief

before using the observed dataset. Such a prior hypothesis can be based on either a

previous estimation or an expert opinion. P (x|H) is the likelihood of observing the

dataset under the umbrella of the given hypothesis, P (x , H) is the full probability

model that joins all the observable and unobservable quantities (dataset and given

hypothesis, in the simplest case), and finally P (H | x ) is the posterior probability
of updating our hypothesis/belief after observing the dataset. Note that since

‘x ’ is observed and considered as fixed values and ‘H ’ is unobserved and it is

the random quantity, the likelihood P (x | H) can be expressed as a function of

the random quantity denoted by L(H| x ). Hence, the posterior probability in

equation (2.1) can be re-written as:

P (H | x ) / L(H | x )⇥ P (H) (2.2)
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Bayesian inference of a given hypothesis can be generally summarized in three

steps as follows:

1. Setting up a full probability model of the observed dataset and any other

unobserved quantity in problem context, P (x , H).

2. Deriving posterior probability, P (H | x ), by conditioning on the observed

dataset and incorporating any prior knowledge about the given hypothesis.

3. Calculating some statistical properties and evaluating the quality of the fitting.

However, in complex cases setting up a full probability model is not an

easy step and needs the aid of clarification such as employing Bayesian Network.

Moreover, in most applications deriving the posterior probability model involves

marginalization of the joint full probability model which in turn includes high

dimensional integration. This complexity forces us to approximate the posterior

probability model by some numerical techniques instead of computing it analyti-

cally. [66]

2.3.1 Bayesian Estimation

Since our target of study - the number of classes C - is of the second type of the

unobservable quantity, we focus our attention on how to estimate a parameter.

Typically, focus is on two types of estimation: point estimation and interval es-

timation. However, in both cases we need to consider the posterior probability

distribution of our targeted parameter from which we derive our estimates.

Every point estimation is associated with a risk that should be minimized

over all possible values in the realm of the targeted parameter. This risk is de-

fined as the expected loss when we use a specific estimator for our parameter,

E[L(C, Ĉ)], where L(C, Ĉ) is the loss function that measures the distance be-

tween the targeted parameter C and its estimator Ĉ. Thus, a point estimator can

be expressed in its simplest case as the following:

Ĉ = arg min
Ĉ

Z
L(C, Ĉ)⇥ P (C | x ) dC (2.3)
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There are di↵erent forms of the loss function from which we can derive di↵erent

forms of estimators. In our study, we are interested in two types of the central

tendency estimators, the Bayesian posterior mean and mode, which can be derived

from the quadratic and hit-or-miss loss functions, respectively.

Ĉ = arg min
Ĉ

Z
(C � Ĉ)2 ⇥ P (C | x ) dC (2.4)

Minimizing the above integral can be derived by first using simple derivative with

respect to Ĉ:

@

@Ĉ

Z
(C � Ĉ)2 ⇥ P (C | x ) dC =

Z
�2(C � Ĉ)⇥ P (C | x ) dC (2.5)

Then, setting the above result to be equal to zero:
Z

�2(C � Ĉ)⇥ P (C | x ) dC = 0

)
Z

2ĈP (C | x ) dC =

Z
2CP (C | x ) dC

) Ĉ

Z
P (C | x ) dC =

Z
CP (C | x ) dC

) Ĉ =

Z
CP (C | x ) dC , (2.6)

which is the mean and is called the ‘minimum mean square error ’ estimator,

ĈMMSE.

On the other hand, if we wish to use the hit-or-miss loss where L(C, Ĉ) = 1 if

|C � Ĉ| � " and zero otherwise, our Bayesian posterior mode is defined as follows:

Ĉ = arg min
Ĉ

"Z Ĉ�"

�1
1⇥ P (C | x ) dC +

Z 1

Ĉ+"

1⇥ P (C | x ) dC

#

= arg min
Ĉ

"
1�

Z Ĉ+"

Ĉ�"

1⇥ P (C | x ) dC

#
(2.7)

where, minimizing this formula can be simplified to just maximizing the above

integral. Hence, for small " and smooth P (C | x ) the maximum of the integral

occurs at the maximum of P (C | x ) which is the mode and called the ‘maximum

a posteriori ’ estimator, ĈMAP .
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With respect to the interval estimation, Bayesian inference introduces the

concept of the ‘credible interval ’ within which the value of a targeted parameter

falls, with a particular probability (1 � ↵). This interval is defined on the realm

of our targeted parameter as a subset from the support (domain) of its posterior

probability distribution function,
Z b

a

P (C | x ) dC = 1� ↵ (2.8)

where, ↵ is called the‘significance level’ which is the probability of committing

a Type I error3. Note that ↵ defines the amount of uncertainty, and contributes

in fixing the bounds [a, b] of the credible interval.

There are several ways to specify a and b. The usual practice is to specify

their values such that the probability of being below a is as likely as being above

b. Such interval is called ‘central interval’, which is in most cases (including

our current case) ensures that our credible interval will include all the central

tendency measures. However, in some situations, especially when the distribution

is skewed, it would be interesting to study the narrowest interval which involves

those values of highest probability density (including the mode), such an interval

is called ‘highest posterior density interval’ and denoted by (HPDI). [66]

2.3.2 Bayesian Network

A Bayesian Network is a combination of elements of both graph and probability

theories. In graph theory, a graphical model is used as a tool to visually illustrate

a set of variables and their dependencies/conditional dependencies. It is composed

of a set of nodes and edges connecting them, the nodes represent the variables

while the edges describe relationships among them. According to the nature of

the relationships, edges could be cyclic4 or acyclic and directed or undirected. If

there is a causal relationship between given two variables, the edge will be direc-

tional from the cause variable to the e↵ect variable. On the other hand, if there

3 A Type I error occurs when the researcher rejects a null hypothesis when it is true.
4 A cycle exists in a graph, if we can start from a given node and travel along with a set of

edges and arrive back to the starting node. Note that travelling must be in the correct direction

if the edges are directed.
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is just a correlation between the two variables, then the edge will be undirected.

Figure 2.2 shows four types of graphical networks where plots (a), (b) and

(c) represent acyclic graphs, while plot (d) for example includes a cycle among the

variables X, Y, and Z. On the other hand, plots (a) and (c) are directed graphs

showing causal relationships, while plots (b) and (d) are undirected ones. With

respect to the dependencies and conditional dependencies, we can say, for exam-

ple, that the variables X and Y are conditionally independent given Z in plots

(a) and (b), while these three variables are dependent on each other in plot (d).

However, the variable U is conditionally independent of the set {X,Z} given the

variable Y in both plots (c) and (d).

Figure 2.2: Examples of graphical models, presenting the cyclic/acyclic and directed/undirected properties of

the graphical models.

The probability theory part is incorporated in the graphical network when

there is a probability model for each variable in the graph. These probability mod-

els are defined according to the situation of the edges among their variables. For

example, in Figure 2.2, there are joint probability models defined on plots (a) and

(c) and can be respectively expressed as P (X, Y, Z) = P (Z)P (X|Z)P (Y |Z) and
P (X, Y, Z, U) = P (Z)P (Y |Z)P (X,U |Y ) = P (Z)P (Y |Z)P (X|Y )P (U |Y ). How-

ever, in the undirected graphs, we can only proportionally factorize the joint prob-

ability model into individual potential functions, �(·)’s, corresponding to each

clique5. For example, in Figure 2.2 - plots (b) and (d), the joint probability

5 A clique, in an undirected graph, is a subset of adjacent nodes such that for every two

nodes in this subset there exists an edge connecting them.
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models can be expressed as P (X, Y, Z) _ �(X,Z)�(Y, Z) and P (X, Y, Z, U) _
�(X, Y, Z)�(Y, U), respectively.

‘Bayesian network ’ is a specific type of probabilistic graphical model in

which the nodes (variables) have probability distributions and the edges (rela-

tionships) are directed and acyclic. This makes it a useful tool to illustrate our

proposed model. A Bayesian network is also called a directed acyclic graph (DAG).

However, the undirected and cyclic graphs are such models that obey Markov

property indicating that any variable is conditionally independent of any other

variables given its neighbours. These models are called ‘Markov Random Fields ’,

but they are out of the context of the current study. [67]

2.3.3 Bayesian Computation Techniques

Bayesian computation mainly revolves around integrations used for computing

marginals or expectations of distributions, usually a posterior or a posterior pre-

dictive. In most cases where the complexity, high dimensionality, and the absence

of closed-form expressions exist, these computations start to be cumbersome and

unable to be implemented analytically. Alternatively, numerical or distributional

approximation techniques can help to approximate such distributions. Figure 2.3

shows a holistic view of the most used methods in this field. Since the number

of classes or species problem represents a parameter in our model, we are only

interested in the computations of the posterior distribution and the joint poste-

rior distribution which are all about the parameters. Note that the joint posterior

distribution is the full model, and the posterior distribution is usually a marginal

of the full model computed with respect to a specific parameter or subset of pa-

rameters.

In the distributional approximation methods, the main purpose is to ap-

proximate a given posterior model by some simpler parametric distribution, or

factorize it to a collection of parametric distributions. These techniques di↵er ac-

cording to a spectrum of complexity and multiple dimensionality of the targeted

model and the possible number of modes included. It is mainly based on finding
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Figure 2.3: A holistic view of the most commonly used techniques of the Bayesian computation that are used for

the integration and marginalization problems.

the modes as a way to begin mapping the posterior density/mass, and using some

asymptotic expansions for the given integrals. Laplace, Lindaley, and Normal

approximations are examples of these methods [68] [66]. However, in the high di-

mensional cases, the above examples are not su�cient to solve the approximation

problem and there is a need for iterative approaches such as the variational Bayes

(VB) and the expectation propagation (EP) algorithms [66].

When the complexity of the integration problem prevents us from imple-

menting the distributional approximation methods, due to being a computation-

ally prohibitive or a costly process, we can find an escape in the numerical so-

lutions. Numerical methods can be classified into deterministic and stochastic

algorithms. The deterministic ones, also called quadrature, are based on evaluat-

ing the integrands on a finite set of points using some quadrature integration rules

which are deterministic in nature, and then combining these evaluations through

a weighted sum to be an approximation of the targeted integral. The quadrature

rules are derived by constructing interpolating functions (polynomials) that are

easy to integrate. These rules vary according to the order/degree of the polynomi-
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als. For example, the rectangle rule is based on a constant interpolating function

(a polynomial of degree zero), the trapezoidal rule is based on a straight line in-

terpolating function (a polynomial of order 1), while Simpson’s rule is based on a

polynomial of order 2. All these rules are titled under the Newton-Cotes quadra-

tures [69] [66]. There are other rules such as Chebyshev and Clenshaw-Curtis

rules that come under the Gaussian quadrature, or the Gauss-Hermite rule which

is a result of integration of a product of some other functions; see [69] [68] for

more details. These methods are usually performed for one-dimensional integrals,

and they are required to be iterated in the case of multiple dimensions. However,

when the dimensionality become higher, it becomes di�cult to implement the

deterministic techniques and result in a low accuracy of approximation. A better

solution is to turn to the stochastic techniques.

Stochastic methods, also called Monte Carlo methods, are a collection of

simulation algorithms based on iterated sampling techniques. Here, the marginal-

izations or the integration of the targeted model is formulated as an expectation,

which is in turn, approximated by averaging over randomly drawn samples from

the targeted model. This approximation is supported by the law of large num-

bers and the central limit theorem [70]. The stochastic methods can be devided

into Basic Monte Carlo (MC) and Markov chain Monte Carlo (MCMC) tech-

niques. Examples of the the Basic Monte Carlo techniques are rejection sampling,

importance sampling, and the direct simulation which is based on pseudo ran-

dom generators and some transformation functions. These techniques are used

in the low dimensional problems where it is easy to produce independent sam-

ples, while the MCMC are adapted for high dimensional and more complex cases

where dependence is included in the sampling as a way to improve simulation pro-

cess. However, the dependence will be disposed of by filtering the generated sam-

ples in such a way that their distribution asymptotically approaches the targeted

posterior distribution. Gibbs and Metropolis-Hastings samplers are examples of

MCMC [66].

There are also combined approaches of all or some of the above techniques.

Integrated nested Laplace approximations (INLA) and central composite design

integration (CCD) are examples of such approaches that combine the distribu-
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tional approximation methods and deterministic numerical solutions [66]. An-

other interesting approach, which is based on a set of stochastic techniques, is the

approximate Bayesian computation (ABC). It solves another challenge which is

the absence of a tractable or analytic/closed form likelihood.

2.3.4 Approximate Bayesian Computation

In Bayesian inference, we start with specifying a prior model of the target parame-

ter and a likelihood model from which the dataset is assumed to be sampled under

this target parameter. However, in the high dimensional and complicated models

such as the ones represented by Bayesian network, it is the opposite as we have

the joint model at first and it should be possible to factorize it into the prior and

the likelihood. However, in most cases, deriving the likelihood involves complex

high-dimensional integrals and numerically evaluating them multiple times makes

them computationally challenging. The approximate Bayesian computation is one

of the approaches that is described as a likelihood-free inference approach and used

in such complex situations, especially when MCMC cannot be implemented as it

is the case of our proposed model (details will be explained in Section 3.2.2).

The basic idea of the ABC approach is to approximate the posterior model

P (C |x) by generating samples proportionally from a joint model using an accept-

reject decision rule (recall that x denotes the observed dataset). First, we gen-

erate several proposals for C, namely C⇤
1 , C

⇤
2 , ...., C

⇤
m. Then, simulated datasets

x⇤
1, x

⇤
2, ...,x

⇤
m are generated from a joint model M(x⇤ |C ) for each C⇤

i . A detailed

clarification of the ABC algorithm for the ith sample is provided below:

1. Draw a proposal value C ⇤
i from a prior model of C.

2. Draw a simulated dataset x⇤
i , called ‘replicated data’, from a joint model

M(x⇤ |C = C ⇤
i ).

3. Compute a distance metric, denoted by D(x⇤
i ,x ), that measures the distance

between the replicated and the observed datasets. This metric acts as a decision

rule where the lower distance indicates high closeness. For computational ease,

this metric is usually defined between su�cient6 summary statistics of the

6A su�cient statistic provides as much information about the target parameter as the whole

data set itself.
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observed dataset and the replicated one.

4. Accept C ⇤
i if D(x⇤

i ,x )  ✏ , and reject otherwise, where ✏ is a pre-specified

threshold.

By the end of the above algorithm, the output is a set of accepted samples

(C⇤
1 ,x

⇤
1), (C

⇤
2 ,x

⇤
2), . . . , (C

⇤
s ,x

⇤
s) that satisfies the constraint D(x⇤

i ,x )  ✏. The

ABC-approximation of the joint distribution of this accepted samples can be ex-

pressed as P✏(C, x⇤ | x ) := P (C ,x⇤ | x⇤ 2 ⌦✏(x) ), where ⌦✏(x) = {x⇤ 2 � :

D(x⇤,x )  ✏} and � is the observation space [71]. The above approximated dis-

tribution is called the ‘ABC - joint posterior ’, and by applying Bayes’ rule, it can

be factorized as,

P✏(C, x
⇤ | x ) / Pr✏(x | C, x⇤ )⇥M(x⇤ |C )⇥ P (C ) (2.9)

= Pr(x⇤ 2 ⌦✏(x) | x⇤ )⇥M(x⇤ |C )⇥ P (C )

where Pr(x⇤ 2 ⌦✏(x) | x⇤ ) is a kernel function that represents the probability of

the event x⇤ 2 ⌦✏(x). In our case, this kernel is defined as an indicator function

for the set ⌦✏(x) that assigns a value of 1 when D(x⇤,x )  ✏ and 0 otherwise, i.e.

Pr(x⇤ 2 ⌦✏(x) | x⇤ ) = ⌦✏(x)[x
⇤] =

8
><

>:

1 , if D(x⇤ ,x )  ✏

0 , otherwise
(2.10)

Under this kernel, the probability is reduced to either being 1 or 0, simply indicat-

ing whether the condition D(x⇤,x )  ✏ has been met or not [71] [74]. However,

more generally one can define a kernel that allows this probability to take other

values in [0, 1], for example making it a decreasing function of distance.

By plugging in equation (2.10), equation (2.9) can be re-written as,

P✏(C, x
⇤ | x ) / ⌦✏(x)[x

⇤]⇥M(x⇤ |C )⇥ P (C ) (2.11)

Therefore, the ABC-approximation of the target posterior of C is defined by,

P (C | x ) ⇡ P✏(C | x ) =

Z

x⇤
P✏(C, x

⇤ | x ) dx⇤ (2.12)

/
Z

x⇤
⌦✏(x)[x

⇤]⇥M(x⇤ |C ) dx⇤
�
⇥ P (C )
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where the quantity between the brackets in equation (2.12) represents the ABC-

approximation of the likelihood i.e.

L✏(C | x ) =

Z

x⇤
⌦✏(x)[x

⇤]⇥M(x⇤ |C ) dx⇤ (2.13)

ABC algorithms can take many forms. The simplest of them is the one

explained above and it is called the ‘ABC rejection sampling ’ (ABC-RS). However,

this algorithm might be ine�cient when the threshold value ✏ is too small so that

the rejection rate becomes too high, which means ✏ should be small enough but

in a degree that allows the data to provide information. The convergence of the

ABC approximation can be explained through equation (2.13) as follows:

If ✏! 1, this implies that D(x⇤,x )  1 is always true which results in,

L✏(C | x ) =

Z

x⇤
(1)⇥M(x⇤ |C ) dx⇤

= 1 (2.14)

Hence, substituting the result of (2.14) into equation (2.12) concludes that,

P✏(C | x ) / [ 1 ]⇥ P (C )

which implies that the ABC - posterior converges to the prior as (✏! 1) i.e.

P✏(C | x )
✏!1�������! P (C)

On the other hand, if ✏ ! 0, this implies that D(x⇤,x ) = 0 i.e. x⇤ = x and

therefore, the approximated likelihood will approach the exact likelihood,

L✏(C | x ) =

Z

x⇤
(1)⇥M(x⇤ = x |C ) dx⇤ (2.15)

/ M(x |C )

Thus, substituting the result of (2.15) in equation (2.12) concludes that,

P✏(C | x ) / [M(x |C ) ]⇥ P (C )

which implies that the ABC - posterior converges to the exact target posterior

as (✏! 0) i.e.

P✏(C | x )
✏!0�������! P (C | x )
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It is worth mentioning that the rejection rate is not only a↵ected by the

threshold ✏, but also by the choice of the prior model; a prior with considerably

broad support also results in high rejection rate. Thus, the support of P (C) and

✏ should be chosen carefully, and this can be achieved through pilot experiments.

For P (C), we can run multiple pilot simulations (with fewer iterations) of sug-

gested upper bound values of C. This is done until it appears that the right tail

of the approximate posterior distribution lies within the upper bound. This gives

us an indication that we reached the maximum possible value of C and there is

no point for exploring larger values in the prior support. After we specify the

right prior support, we can choose the value of ✏ based on the accepted posterior

distribution in the pilot experiments (more details on choosing ✏ are explained

in Section 3.2.3).

Another form of ABC is the ABC-MCMC algorithm. Briefly, MCMC sam-

pling is a process that filters proposed values for the target parameter to end up

with a sample of values assumed to be from the desired posterior distribution. The

most popular example is Metropolis-Hastings at which an ‘acceptance probability ’

needs to be determined by the likelihood which is itself an obstacle in our case.

However, the acceptance probability of the ABC-MCMC is modified to include

the decision rule D(x⇤,x) and, therefore, skip computing the likelihood as follows:

A(Ci�1, C
⇤
i ) =

8
><

>:

min

✓
1 ,

P (C⇤
i )/Q(C⇤

i | Ci�1)

P (Ci�1)/Q(Ci�1| C⇤
i )

◆
, if D(x⇤

i ,x )  ✏

0 , otherwise

(2.16)

where, Q(·) is a proposal kernel distribution for the posterior, which should be

easier to deal with. Now, the modified acceptance probability involves two steps

of filtering. First, C⇤
i is used to sample x⇤

i from the joint model, and when

D(x⇤
i ,x )  ✏, then C⇤

i is initially accepted to go through the next step. In

the next step, A(Ci�1, C⇤
i ) is computed and if it is greater than a randomly sam-

pled uniform[0,1] value, then C⇤
i is finally accepted where Ci = C⇤

i with proba-

bility A(Ci�1, C⇤
i ), otherwise no move is taken and Ci = Ci�1 with probability

1�A(Ci�1, C⇤
i ) .
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However, ABC-MCMC algorithm could be worse than the simpler ABC-

RS if the chain is trapped in low-probability regions of the proposed kernel at

which the rejection rate becomes extremely high. Also, proposing a kernel can

be a highly challenging step by itself in our context. Moreover, the ABC-MCMC

algorithm cannot be parallelized, unlike the ABC-RS which can be easily imple-

mented simultaneously. This makes the ABC-RS algorithm a plausible solution

for our proposed model where the parallelization approach is essential in light of

the complexity and high dimensionality our model. There are other algorithms

such as ABC Partial rejection control (ABC-PRC), ABC population Monte Carlo

sampling (ABC-PMC), and ABC Sequential Monte Carlo sampling (ABC-SMC)

which are based on the ‘particle filtering ’7 concept. However, research in this area

are still ongoing and stimulated by practical challenges, and as with any developed

technique, there are pros and cons and possible limitations for these alghorithms.

For more details about the ABC algorithms see [71] [72] [73] [74].

2.4 Chapter Summary:

We started this chapter with exploring the literature of the active methods in es-

timating the number of classes as well as of estimating the number of species. We

saw that these methods can be classified into two main approaches, the sampling-

theoretic and data-analytic. However, most of the advanced statistical contribu-

tions, in the species context, are under the data-analytic approach. An interesting

one is provided by [13] which introduced the number of authors as a proxy of a

covariate factor, but not through a formal statistical perspective, unlike the cur-

rent proposal which introduces a statistically rigorous framework using Bayesian

inference by including this factor. The rest of the chapter covered some related

Bayesian concepts: Bayesian estimation, Bayesian Network, and Bayesian compu-

tation techniques. We ended this chapter by illustrating the approximate Bayesian

computation (ABC) which is used to implement our proposed framework.

7A way of simultaneously dealing with a large pool of proposal parameter values, called

‘particles’, instead of one at a time.
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Chapter 3

The Proposed Approach

As mentioned in Chapters 1 and 2, our proposed approach is comprehensive in

that it acts as a framework which integrates two main approaches in the number of

kinds problem by considering a covariate influence, and lends itself to di↵erent ap-

plications. To simplify the idea of our proposal, let us think of the number of kinds

problem as a black-box system which has an input and output, where the output

is obviously the number of kinds/classes. While the previous methods of the two

distinct approaches consider the number of discoveries as an input only, our pro-

posal takes the e↵ort employed on making discoveries (which should be - to some

extent - available information for us) as another input to that black-box. Figure

3.1 shows this simple idea that will be clarified and developed in more details in the

following sections. The sampling-theoretic approach utilizes only combinatorics

assumptions and the data-analytic approach utilizes only correlations/temporal

assumptions on the input (the number of discoveries) to model what is inside the

box in order to estimate the output (the number of kinds/classes). On the other

hand, our proposal integrates both assumptions in a flexible comprehensive way

on both inputs (the number of discoveries and the

Figure 3.1: The left hand side plot shows the Black-box concept of the number of kinds/classes problem in the

existing literature, while the right hand side shows this concept as proposed in our framework.
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employed e↵ort) to model what is inside the black-box using Bayesian modelling

and computations, in order to estimate the target output.

In this instance, we formulate a model that directly describes the process

of class sampling-discovery in parallel with a covariate e↵ort process which is de-

scribed by being ‘latent ’. The reason for this description is that in most cases

our main process, sampling-discovery, is unlikely to be completely explained by

the underlying covariate process. It is worth mentioning that the two concepts,

‘latent ’ and ‘e↵ort ’, are widely used in many branches of science. Intelligence and

verbal ability are examples of the latent variables in psychology and linguistics,

respectively [75]. On the other hand, voltage as introduced by the Maxwell anal-

ogy is considered as an e↵ort variable in physics and electrical engineering [76].

In addition, as the case of our model, the two concepts together are encountered

in ecological and angler processes [77].

The current chapter starts with describing the structure of the proposed

model and how it is built-up through linking the above two processes. Then, it

moves to discuss the model properties that may be required by the context of

the application, e.g., distributional assumptions, parameter selection, and proper

sampling methods. Finally, it ends with explaining the inferential attempts to

activate the proposed model.

3.1 Model Formulation

The model is introduced as a two-step built-up structure. In the first step, we

will illustrate the sampling-discovery process part, and in the second step, we

will illustrate the latent e↵ort process part. Then, we will explain how these two

parts are integrated to compose our model which represents what is inside the

black-box. Before explaining details about these two processes, we introduce the

setting of their environment as described below:

Suppose that our targeted community consists of an unknown finite number of

classes C with unknown finite abundances N1, ..., NC , so that the total popula-
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tion of this community is N =
PC

k=1 Nk. Since the circumstances of the sampling

experiment di↵er according to the targeted community and also according to the

type of e↵ort employed, it is more convenient for us as statisticians to adopt

the assumption that items are sampled with replacement so that each of them is

equally likely to be chosen. Hence, the probability that a sampled item will be of

i -th class is pi = Ni/N . This assumption helps to simplify the exposition without

loss of generality.

3.1.1 The Sampling-Discovery Process

In illustrating the class sampling and discovery process, we will start with a build-

ing unit called ‘discovery event ’. This event should be recognized by some record-

ing manner, for example, the recording manner could be a time point such as a

date at which a bug report is received in the software reliability context, or it

could be a location point such as a line in a book at which a new vocabulary is

found in the linguistics context. However, in our proposed model, and specifically

in the species context, we choose to recognize the discovery event in two dimen-

sions, location point and time point. This recording mechanism is explained in

the following:

As a sequence of samples is taken, the C classes will eventually be discovered.

Within this sequence, when an i -th class is flagged to be a new class representing

a discovery event, we define �i to hold the index which is the location point of this

new class, and ti to hold the time point at which this class is discovered. Note

that indexing the sequence of draws will begin from the first discovery, hence,

�1 = 1 indicates that the first draw is the first class to be discovered at a time

point t1. If the second draw was a repeat of this class but the third came from

a di↵erent class then we would have �2 = 3 at a time point t2, etc. However, in

most cases ti is the only available information, while �i is not and needs to be

estimated. For notational convenience, we define another variable di = �i � �i�1,

which is the number of draws between successive discovery events, namely the

‘inter-discovery sample’. Note that as we considered �1 = 1, then d1 = 1 as well.

Figure 3.2 shows an example of the sampling-discovery sequence of a total sample
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size
PT

j=1 nj = 30, and total discoveries
PT

j=1 ⌧j = 8 over three years T = 3,

where nj is the sample size within a time unit j, and ⌧j is the number of discover-

ies within the same time unit j (the latter two variables will be explained in the

next sections).

Figure 3.2: An example of a sampling-discovery sequence, with total sampling
P3

j=1 nj = 30, and total discoveries
P3

j=1 ⌧j = 8 over three years T = 3.

In such a setting, di acts as a Geometric random variable where the inter-

discovery sample represents the number of drawn items until meeting a discov-

ery. This process is governed by the number of classes C and their abundances

N1, ..., NC , so that the probability of success in meeting a new class i determined

by the abundance of that class and the abundances of the remaining classes

yet to be discovered. The mathematical representation of this probability is

(1 �
Pi�1

k=1 Nk/N), where N1 is the abundance of the first sampled item which

is already discovered and came from a known class, N2 is the abundance of the

second sampled item that is also already discovered and from a known class, and

so on Ni�1 is the abundance of the last known sampled class just before i -th class.

Note that if, for example, the first and second items came from the same known

class, then we should consider that N1 = N2 in calculating the probability of

success.

However, the extent to which we can know the class-abundances is limited to
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only specifying their probability distribution which varies according to the context

of the application in use. For generality, we will assume that Nk follows some

probability distribution FN parametrized by ✓N which could be a representation

for a single or vector of parameters. Thus, by expanding our view from just

one discovery event to a sequence of these discovery events until we get D total

number of discoveries, then we have {di}i=1:D that can be described as a stochastic

process following a joint Geometric distribution conditioned on the knowledge of

the distribution of the class-abundances {Nk}k=1:C up to time tD,

P (d2:D|N1:C) =
DY

i=2

 Pi�1
k=1 Nk

N

!di�1 
1�

Pi�1
k=1 Nk

N

!
(3.1)

Figure 3.3 shows Bayesian network representation for the conditional relationships

within the sampling-discovery process. Up to this point, we explained one aspect

of recognizing the discovery events which is the location dimension, {di}i=1:D =

{�i � �i�1}i=1:D. The time dimension {ti}i=1:D is a following incidence to the

location dimension i.e. there is no ti unless we have �i. However, di or �i are

not the only elements that contribute in formulating ti, hence, we will discuss

the details about formulating ti when we introduce the linkage node between the

sampling-discovery process and the latent e↵ort process.

Figure 3.3: A Bayesian network vi-

sually displaying the probabilistic

relationships within the sampling-

discovery process. The square

node refers to available data, while

circle nodes correspond to un-

known variables.

3.1.2 The Latent E↵ort Process

It is a fact that there is an e↵ort employed in the sampling and discovery process,

which we should utilize in the number of kinds/classes problem. Therefore, our
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proposed framework assumes that this underlying e↵ort comes as a temporal latent

process {lj}j=1:T evolving over discrete units of time j and co-varying with the

sampling-discovery process, where T being the time length in which the whole

sampling has occurred. Although this process is latent, it can be characterized by

some probability distribution Fl with parameter(s) ✓l suggested by the context of

the application. However, being unable to measure this process directly, obliges

the use of a measurable proxy through which we can infer about {lj}j=1:T . Hence,

this proxy, denoted by {xj}j=1:T , represents now available information for us to be

used as an input for our black-box of the number of kinds/classes problem. Figure

3.4 shows Bayesian network representation for the conditional relationships within

the latent e↵ort process.

Figure 3.4: A Bayesian network vi-

sually displaying the probabilistic

representation of the latent e↵ort

process and its proxy. The square

node refers to available data, while

the circle refers to unknown data

that needs to be estimated.

3.1.3 Linkage Node of the Two processes

To incorporate the latent e↵ort process to the sampling-discovery process, we

introduce a linkage node which represents the sizes of the samples, nj’s, within

which the discoveries are revealed. These samples are assumed to be collected

within each time unit j as a result of the e↵ort employed. There are two perspec-

tives in achieving this linkage, one is from the sampling-discovery point of view,

while the other is from the latent e↵ort point of view.

In the first perspective, we can see that each sample size nj is built-up

by the discovery events and the inter-discovery samples that are accumulated by

time j. Consequently, this provides an upper bound on the possible values of

{di}i=1:D = {�i � �i�1}i=1:D in that we must have the constraints, �i 
Pj

r=1 nr,

which contributes to shape the natural mechanism of the geometric sampling and

discovery process but within the collected samples nj’s. The inequality simply
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states that the index of the current draw in which the i -th class is discovered

must be less than or equal to the total number of samples accumulated up-to the

time unit j. In this instant, as �i is constrained by
Pj

r=1 nr, at the same time ti

is constrained by j in that it is formulated as a following resultant:

ti = j ⇥ (�i 
jX

r=1

nr) (3.2)

where, (·) is an indicator function (1 if true, 0 if not), i = 1, 2, ..., D and j =

1, 2, ..., T such that i is a free index, while j moves from one value to another only

when it violates the constraints. In other words, ti’s are time points within each

time unit j. Hence, if we, for example, found three discoveries within the first

sample size n1 in the first time unit j = 1, then t1 = t2 = t3 = 1. And, if we found

two discoveries within the second sample size n2 in the second time unit j = 2,

then t4 = t5 = 2, etc. Therefore, conditioned on {di}i=1:D = {�i � �i�1}i=1:D and

{nj}j=1:T - through the above constraints - each time point ti follows a Degenerate

distribution that represents these constraints and can be expressed as,

P (ti|di, n1:j) =

8
><

>:

1, if di 
Pj

r=1 nr � �i�1

0, otherwise
(3.3)

As we in the stage of linking the sampling-discovery and the latent e↵ort, It should

be more convenient to synchronize the evolving time of these two processes. Hence,

we define ⌧j to represent the number of discoveries evolving over the time unit j

such that ⌧j = [
P

8i (j � 1 < ti  j) ]8j, where (·) is an indicator function (1 if

true, 0 if not). This will count all discoveries to occur within each time unit j.

However, although nj’s play important role in describing di and formulating

ti, in most cases nj’s are not available information and need to be estimated

which leads us to the second point of view. In the second perspective, the sample

sizes can themselves be considered as ‘noisy ’ realisations of the underlying e↵ort

process. In other words, since the sample sizes are outcomes of a counting action,

it should be more convenient to assume that {nj}j=1:T is a Non-Homogeneous

Poisson process parametrized somehow by the latent e↵ort process {lj}j=1:T , and
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can be generally expressed as follows,

P (n1:T |l1:T ) =
TY

j=1

[f(lj)]
nj

exp [�f(lj)]

nj!
(3.4)

where, f(lj) is some function of the latent e↵ort and represents a parameter of

modelling {nj}j=1:T .

To sum up, we have a system of two main processes linked to each other,

which are the sampling-discovery and the latent e↵ort. Under the umbrella of both

processes we have four factors: the class-abundances Nk, sampling action (covered

by di, ti, and nj), discovery curve ⌧j, and the employed e↵ort (the latent lj and

its proxy xj). This umbrella reflects the integration of the sampling-theoretic and

the data-analytic approaches as we can see the sampling action and the discovery

curve, Figure 3.5 - left hand side. Among this set of variables, we have two of them

as given information which are the number of discoveries {⌧j}j=1:T and the proxy

of the e↵ort employed on making discoveries {xj}j=1:T . Hence, when we go back

to the black-box concept of the number of kinds/classes problem, it is obvious

that the main variable {⌧j}j=1:T and the covariate {xj}j=1:T both represent inputs

to the box, as shown in Figure 3.5 - right hand side. The box itself represents the

integration of the above two processes which is modelled by a Bayesian network

as illustrated in the next subsection.

Figure 3.5: The left hand side plot shows the overlap between the integrated sampling-discovery and latent e↵ort

processes, and the set of factors they both include. The right hand side shows the black-box concept in its final

stage as proposed in our framework.
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3.1.4 Final Phase of the Proposed Model

In this stage we introduce the proposed integrated model as Bayesian Network

that captures a system of inter-relationships occurring in the environment of the

class discovery and influencing the estimation of the total number of classes C in

a given community, see Figure 3.6.

By defining ✓ := {✓N , ✓l, ✓x} and  := {N ,d ,n , l}, the model can be

mathematically represented as a full joint probability distribution,

P (C, t,x, ,✓) = P (t,x | ,✓, C)| {z }
Full likelihood given

both the target C and the
contextual variables  

⇥ P ( ,✓| C)| {z }
Distribution of the

contextual variables  
given the target C

⇥ P (C)| {z }
Prior distribution
of the target C

(3.5)

) P (C, t,x, ,✓) =

P (t | d,n) P (x | l , ✓x) P (✓x)⇥

P (n | l ) P (l | ✓l) P (✓l) P (d |N,n) P (N | C, ✓N) P (✓N)⇥

P (C)

(3.6)

where, N = {N1:C}, d = {d1:D}, t = {t1:D}, n = {n1:T}, l = {l1:T}, x = {x1:T}.
However, when the model satisfies the constraints di 

Pj
r=1 nr � �i�1, then

P (d | N,n) = P (d | N) and P (t | d,n) = 1. Moreover, if we take the hyper-

parameters set ✓ := {✓N , ✓l, ✓x} as a fixed set, then the full joint probability

distribution of our proposed model can be simplified to the following expression,

P (C, t,x, ) = P (x | l ) P (n | l ) P (l ) P (d |N) P (N | C) P (C) (3.7)

Therefore, given the knowledge of t and x, the posterior model of our target

variable which is the number of classes C can be approximately derived as follows,

P (C | t,x) =
Z

 

P (C | t,x, ) d /
Z

 

P (C, t,x, ) d (3.8)

The approximated distribution is assumed to be almost unimodal with support

C 2 {N � D}, where D is the number of classes that are already discovered.
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From this distribution, a point and interval estimation of C are expected to be

calculated.

Figure 3.6: A Bayesian network visually displaying the whole structure of the proposed model, and its probabilistic

causal relationships. The model is designed under the constraints di 
Pj

r=1 nr � �i�1, where di = �i � �i�1.

Note that as a result ti = j ⇥ (�i 
Pj

r=1 nr).

However, while C is 1-dimensional, the full joint distribution is of dimension

1 +C +D+ 2T and subject to D constraints (when we consider t and x as given

datasets, otherwise in the simulation experiments when they should be simulated,

the dimension is 1 + C + 2D + 3T ). Since a conjugate prior is not available,

the standard approach of performing inference is then to initiate some of the sam-

pling techniques which can be challenging, as will be explained in the next section.

3.2 Model Selection and Activation

The current section discuss two aspects of the proposed model. First, the flexibil-

ity in mathematically shaping the model as will be explained in the distributional

assumptions section. Second, the challenges in making this model actually work

as will be introduced in the inferential methods section.
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3.2.1 Distributional Assumptions

Only two out of six variables are available information for us which are the dis-

covery time points {ti}i=1:D (or cumulatively the number of discoveries {⌧j}j=1:T

over the time units j) and the proxy of the e↵orts employed in making discov-

eries {xj}j=1:T . This makes our proposed model subject to several distributional

assumptions and parameter specifications that vary according to the field in use.

However, even these two variables need to be simulated when implementing some

of the inferential methods. Simulating {xj}j=1:T requires a model suggestion which

depends on the chosen proxy and guided by the pattern of the observed data, while

{ti}i=1:D is resultant from satisfying the constraints and from simulating {di}i=1:D

and {nj}j=1:T .

On the other hand, although the joint Geometric distribution of the inter-

discovery samples, {di}i=1:D, should be a straightforward choice based on the

sampling theory, it would be subject for di↵erent model choices if we assume that

sampling from the C-partitioned population occurs randomly without replacement

so that draws from this population will not be equally likely to be sampled at any

point in time. In addition, the sample sizes {nj}j=1:T do not necessarily have

to follow the Non-Homogeneous Poisson process. It is still parametrized by the

covariate latent e↵ort, but it can be a process other than the Poisson such as the

Renewal process or the Point process.

The covariate e↵ort process, as described in the introduction of the current

chapter, is latent and cannot be directly measured. Therefore, several assumptions

might be considered for modeling it, and all of them are subject to the field con-

venience and the expert knowledge. One may assume independence between the

events of the latent e↵ort process, while others may assume the Markov property

or even more as it is the case in ARIMA models of higher orders [78]. Regard-

less of the dependency issue, one may suggest the truncated Gaussian model, or

the half-Gaussian model to ensure positive support since logically the e↵ort is

something that cannot be negative. Moreover, one may suggest just the Gaussian

model and use some kind of transformation such as log-transformation or linear

transformation to ensure positive support for the latent e↵ort etc.
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Regarding the distribution of class-abundances, also known as commonness

and rarity distribution or count data distribution, there are several suggestions

in the literature of this context. It varies according to the application in use, for

example, the Lognormal, Poisson Lognormal, and Double-Geometric distributions

are used a lot in the number of species problem [79], while the Zip’f distribution

is more convenient to apply in the linguistics field [80]. In the software reliabil-

ity field, we can see the Negative Binomial as well as the Poisson distributions [81].

Figure 3.7 shows a simple chart that describes the change in the range of

choices for modelling the six variables included in our framework. The bottom

level of the chart represents the observable variables where we can have actual

datasets. Having available data helps to recognize patterns and therefore narrow

the range of model choices. In the middle level we have the variables that are

supported by the theoretical logic but no concrete datasets which may widen the

range of making decision about the model choices. Finally, in the top of the chart,

we have a broad range of choices to make for modelling the class-abundances and

latent e↵ort which is mainly up to the experts and the field of application.

Figure 3.7: A chart of describing the range of model choices, which ranges from narrow (when we have actual

datasets to guide the distributional assumptions) to broad (when the situation is subject to expert of the field).

In the absence of concrete data (as in the middle), the theoretical logic is still good support for model choice.

As we are using Bayesian inference to model our proposal, the distribu-

tional assumptions are not restricted to the above six variables, but also reaches

the prior distribution of C, and it is not restricted to the model choice only but

also reaches the parameter specifications within a model. The prior distribution

could be informative such as Poisson or truncated Poisson distributions as the
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rational assumption is that C follows almost unimodel, or non-informative such

as the discrete uniform distribution. With respect to the parameter specifications

of ✓ := {✓N , ✓l, ✓x}, there is a flexibility to incorporate either a simple Bayesian

model with fixed parameters suggested by experts or by some other means, or an

empirical Bayesian model guided by estimated parameters from the given data.

Another possibility is to adopt a complex hierarchical model by considering hyper-

parametrization where the parameters are variables and have their own distribu-

tions. [66]

3.2.2 Inferential Methods

As C is a random variable with altering dimension, the gold-standard approach for

obtaining its posterior distribution (which is a proportional to the full joint distri-

bution) is to employ a Reversible-Jump Markov Chain Monte Carlo (RJ-MCMC)

sampler [82]. In doing so, we need to derive full conditional distributions for each

variable in the proposed model which requires acceptance-rejection techniques

such as Metropolis-Hastings. It also requires simultaneous updating techniques

such as Gibbs for the full joint distribution, see Figure 3.8.

The standard Metropolis-Hastings is used to simulate P (n|rest) and P (l|rest),
while the reversible jump Metropolis-Hastings is used to simulate P (C | rest),
P (N | rest) and P (d | rest), as N and d are a↵ected by C which has altering

dimension. Figure 3.8 shows which probability models (in circles) are needed to

derive each full conditional distributions given the rest, for example, P (N|rest) can
be derived from the proportionality to the product of P (N | C) and P (d |N,n).

Unfortunately we now encounter a limitation in implementing these techniques

in light of holding the model constraints. Even if exploring a 1 + C + D + 2T

dimensional space su�ciently were not a limiting factor on its own, the proba-

bility of simultaneously satisfying all of the D constraints when proposing a new

move/jump along the {di}i=1:D and {nj}j=1:T dimensions is extremely small. This

hampers the sampling convergence hence making such an approach impossible in

practice.

54



Figure 3.8: A diagram to simplify the idea of implementing the RJ-MCMC.

to make a space only to make a space only to make a space only

Another approach is to obtain a coarser approximation for the posterior

distribution of C, based on iterative use of Bayes factor [83]. The idea is to sug-

gest di↵erent values for C from its realm, ranging from D to multiple mD, where

m 2 Z+, and perform the Bayes factor which is the posterior distributions ratio

for each two successive candidates. Then, the posterior can be approximated by

invoking that
Pm

r=1 P (C = rD | t,x) = 1.

In the simplest case when using a uniform prior, the Bayes factor will be

reduced to the likelihood ratio. For that we need to obtain the marginal likelihoods

which is intractable in our case, and one way is to approximate it as follows,

P (t,x | C) =

Z

 
P (t,x | , C) P ( | C) d 

= E{ P (t,x | , C) }

t 1

R

RX

r=1

P (t,x | r, C)

(3.9)

where, { 1, 2, ..., R} can be sampled from P ( |C). The above approximation

(3.9) is supported by the law of large numbers, where the above estimation con-

verges as R ! 1. Such approximation is called the ‘arithmetic mean’ estimation

of the marginal likelihood, at which P ( | C) represents a prior joint model of

the set of the contextual variables  given a proposed value of C. On the other

hand, if we are interested in sampling the  ’s from their posterior joint model
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P ( |t,x, C), then the marginal likelihood will be approximated by the ‘harmonic

mean’,

P (t,x | C) t
 

1

R

RX

r=1

1

P (t,x | r, C)

!�1

(3.10)

However, estimating the marginal likelihood through such sampling meth-

ods is still a di�cult area due to the high variance of the estimator and its slow

convergence to the true integral. Moreover, [84] conducted a comparison study

of multiple computation methods for estimating the marginal likelihood, and the

author concluded the following: “The main finding is that both the method of

computing the marginal likelihood as the expectation of the likelihood under the

prior, as the method of computing the harmonic mean of likelihood values when

sampling from the posterior, are not trustworthy....” (see more details in [84]).

However, even if the estimation issue were not a limiting factor on its own,

sampling from P ( | C) or P ( | t,x, C) returns us to the same limitation that

we encountered in the RJ-MCMC, which is the complexity of high dimensional

sampling along with satisfying the model constraints.

Subsequently, to overcome the above drawbacks we adopted the Approx-

imate Bayesian Computation (ABC) approach (illustrated in Section 2.3.4), in

particular the ABC rejection sampling algorithm. The idea of implementing this

algorithm has similarities with the iterative implementation of Bayes factor in

that it starts with proposing a range of values for C. However, in Bayes factor

we can check only two proposed values for C at a time and we need to derive

or approximate the likelihood, while in the ABC we skip obtaining the likelihood

and we can check a set of proposals for C simultaneously.

The distinguishing property of this approach is that instead of iteratively es-

timating the posterior distribution of C by sampling through RJ-MCMC or Bayes

Factors, we derive a posterior distribution approximation by sampling datasets.

In the current study we adopt a parallel implementation of this approach in that;

several ‘artificial worlds ’ are generated according to our proposed framework and
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a suggested range of values for C drawn from its prior distribution. Only those

worlds which result in ‘artificial datasets ’, ⌧ ⇤ 1 and x⇤, that are su�ciently close

to the observed actual data, ⌧ and x , are accepted. Hence, the empirical distribu-

tion of the proposed C ⇤ values that correspond to the accepted artificial datasets,

is taken as an approximation of the targeted posterior of C. Figure 3.9 shows a

simple illustration of the parallel implementation of this algorithm.

Figure 3.9: A diagram of simultaneously implementing the ABC rejection sampling algorithm.

D(
�
⌧⇤
i , x⇤i

 
, {⌧ , x }) is a notation for measuring the closeness between the artificial datasets and the actual

given ones.

However, our implementation of the ABC rejection sampling algorithm is

slightly di↵erent. As the proposed model includes two observed datasets ⌧ and

x , our implementation includes two filtering steps. Since ⌧ is resultant of almost

all other variables in the model, while the covariate x can be simulated indepen-

dently of them except for one, the latent e↵ort, the first filtering is applied only

on x , while the second filtering is applied on a combination of both (⌧ ,x ). Note

that the purpose of the first filtering is to speed up the computation time, while

the second filtering is for approaching the accuracy of the estimation. Obtaining

a filtering threshold requires running a pilot experiment (including 10, 000 iter-

ations) which is explained in details along with the main fitting in the next section.

1For more convenience in the rest of the dissertation, we will use the number of discoveries

{⌧j}j=1:T instead of the discovery time points {ti}i=1:D.
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3.2.3 The Adopted ABC Algorithm

ABC Algorithm of the Pilot Experiment:

1. Import the given observed data, the number of discoveries ⌧ and the e↵ort

proxy x . Note that the total number of the current discoveries D is determined

by the sum of ⌧ , and the time length T (in which the whole sampling and

discovery process has occurred) is determined by the length of x .

2. Determine fixed values for the hyper-parameters set ✓ := {✓N , ✓l, ✓x}. Note

that we choose to consider this set as fixed in the current study for the purpose

of simplicity.

3. Generate a range of proposed values C ⇤ = {C ⇤
1 , C

⇤
2 , ..., C

⇤
10,000} from a sug-

gested prior distribution of the number of classes C (given the total number of

current discoveries D). Note that each value of C ⇤ directly feeds into generat-

ing N.

4. Within the 10, 000 - iteration loop and for each value of C ⇤, generate values for

the replicated variables {⌧ ⇤,x⇤} and for ; each from its suggested distribution

(examples of suggested distributions will be introduced in the species context

in the next chapter). The generation is implemented sequentially, following

the arrows in the Bayesian network graph of our proposed model, such that

generating N feeds into generating d which in turns feeds into generating ⌧ ⇤,

and generating l feeds into generating n and x⇤. However, by imposing the

model constraints, d is not only a↵ected by N but also by n, consequently, ⌧ ⇤

is not only a↵ected by d but also by n .

5. Compute a distance metric between the observed dataset and the generated

one for each replicated variable separately then add them i.e. D(⌧ ⇤ , ⌧ ) +

D(x⇤,x). The chosen distance metric in the current study is the ‘Euclidean’. It

is worth mentioning that through an additional pilot experiment in the species

context, we checked whether the performance of the model is a↵ected by the

distance metric choice, and we found that there are no significant di↵erences

between metrics such as Manhattan, Minkowski, Canberra, and the Euclidean,

see Group B.25 of Section B.6 in Appendix B. In fact, most of these metrics are

equivalently monotonic transformations except for some such as the Maximum.
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However, the choice of the distance metric might be important according to

the applied field, which is not in our case.

6. End up the loop with a list of primary distances D(⌧ ⇤ , ⌧ ) + D(x⇤,x ) with

their corresponding C ⇤ values. This list is sorted ascendingly according to the

distances.

7. Select the smallest 1000 distances, denoted by {D(⌧ ⇤ , ⌧ ) +D(x⇤,x )}1000,
from which the threshold value is defined as ✏ := max {D(x⇤,x )}1000, to be

used in the main fitting experiment.

It is worth mentioning that the selected datasets (which have the smallest

1000 distances) represent 10% of the generated datasets, and they should be close

enough to the given data if the model parameters are successfully specified. As

will be illustrated through experimentation in the next chapters, we used a plot of

accepted and rejected samples of x⇤ and ⌧ ⇤ as guidance for checking the closeness

of the selected datasets. The closeness is defined by that the accepted area of

the generated data should cover the given data (so that the given data is roughly

placed in the middle of the accepted area), and should capture the annual pattern

of the given data. For example, in the bottom panel of Figure 4.8 on page 76, we

have two plots, the right-side represents the number of discoveries, while the left-

side represents the number of authors. These plots show how the 1000 selected

datasets (dark grey) are close to the given data (red), while the rejected datasets

(light grey) are clearly far away. However, when the dark grey area of the selected

datasets appear to be far away and does not cover the given data as shown in the

right-side plots (a, b, c, and d) of Group B.17 in Appendix B on page 223, this is

a clear indication of mis-parametrization which needs to be reconsidered.

ABC Algorithm of the Main Fitting Experiment:

1. Import the same given observed data, the number of discoveries ⌧ and the

e↵ort proxy x , where D = sum(⌧ ) and T = length(x). In addition, import the

threshold value ✏ := max {D(x⇤,x )}1000 from the pilot experiment.

2. Determine the same fixed values for the hyper-parameters set ✓ := {✓N , ✓l, ✓x}
that is used in the pilot experiment.
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3. Generate a range of proposed values C ⇤ = {C ⇤
1 , C

⇤
2 , ..., C

⇤
m} from the same

suggested prior distribution of C that is used in the pilot experiment.

4. Within a loop over a large number of iterations and for each value of C ⇤,

generate values for the replicated variables {⌧ ⇤,x⇤} and for  from the same

suggested distributions that are used in the pilot experiment. However, here

the generation process is implemented in two steps, where the second step

depends on the filtering output of the first step. In the first, the value of

the latent e↵ort l is generated and feeds into generating a value of the proxy

variable.

5. At a given index i, compute the Euclidean distance metric between the given

observed dataset of the proxy variable and the generated one i.e. D(x⇤
i ,x ).

6. Accept x⇤
i if D(x⇤

i ,x )  ✏ , and proceed to the next step of generating ⌧ ⇤
i .

Reject otherwise, and go back for new generation.

7. Within the same loop and for the same value of C ⇤, based on the previous

filtering step, continue generating the rest of the variables  from the same

suggested distributions that are used in the pilot experiment. Here, N is

generated and feeds into generating d which in turns feeds into generating ⌧ ⇤,

also, the already generated l proceed to feed into generating n. Then, impose

the model constraints so that d is not only a↵ected by N but also by n, and,

⌧ ⇤ is not only a↵ected by d but also by n .

8. End up the loop with a list of primary distances that passed the first filtering

step along with their corresponding C ⇤ values. This list is sorted ascendingly

according to the distances.

9. The second filtering step is represented by selecting a sample of size ‘s’ of

the smallest distance values, denoted by {D(⌧ ⇤, ⌧ ) +D(x⇤,x )}s , so that the

empirical distribution of their corresponding C ⇤
s is taken as an approxima-

tion of the target posterior distribution of C, from which a point and interval

estimation can be calculated. As indicated in section 3.1.4, The rational as-

sumption is to assume that C follows almost a uni-model distribution, where

C 2 {N � D}.
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The pseudo code of the above algorithm is explained in (Appendix C, Section

C.1, Algorithm 1). This algorithm is implemented with specified distributions

and parameter-values in the ecological context to estimate the number of species

in the next chapter.

3.3 Chapter Summary:

We started this chapter by describing the number of kinds problem as a black-box

and we attempted to model what is inside that box. In the first section, we illus-

trated the structure of our proposed model which includes: the sampling-discovery

process, the latent e↵ort process, the linkage node of these two processes, and the

final phase of the model. As our proposed framework is subject to modelling

and parameter specifications, in the second section of the chapter, we discussed

a variety of possible distributional assumptions. We also explored the challenges

associated with well known inferential methods that are considered to activate the

proposed model. We ended this chapter by explaining the ABC rejection sampling

method which is the one found necessary to run our model.
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Part II

Implementation Phase of The

Proposed Approach

Evaluating our proposed model will be done through a case study in the ecology

field which is estimating the number of species that exist on Earth. It is a typical

indicator that is used to measure the extent of biodiversity on Earth which is of

critical importance if we wish to ensure its perseverance. Though attempts to

measure biodiversity extent are normally performed on a taxon or a localised geo-

graphical level, applied on a global scale, estimates have collectively ranged from

1.5 to over 100 million species on Earth, throughout the species literature [13],

which is clearly a large range of estimates. These estimates are highly dependent

on the methodology and data used to derive them. A common perspective of

most of these attempts is that they have relied on one of two approaches, either

the sampling actions or the discovery curves, neither of which considers associ-

ated factors linked to species discovery such as the discovery e↵orts. However,

we believe that through our proposed framework a comprehensive analysis for the

situation is undertaken to provide worthy and reliable estimates of species richness.
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Our proposed model will be analysed, characterized, implemented, and vali-

dated through artificial and real datasets. The artificial data have been generated

by the model, while the real data can be retrieved from many biodiversity infor-

mation systems such as the Catalogue of Life (CoL) [85] and the World Register

of Marine Species (WoRMS) [86]. Through these inventory systems, it is shown

that the number of species descriptions has been growing over years. Figure II

shows an example of such data that we are dealing with in the species discovery

field.

Figure II: To the left is a subset of data from WoRMS, while to right is from CoL. These represent the number

of discovered species {⌧j}j=1:T over T = 240 years, from 1761 to 2000.

The following three chapters concern the model formulation and activation

within the species context. Several artificial worlds are generated according to

the distributional assumptions related to the species field. The main artificial

worlds are covered in Chapter 4 to validate our proposed model, while the rest

are branches of them that are covered by Chapter 5 to evaluate the model. Fi-

nally, our proposed model is implemented on a real world of species in Chapter 6.
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Chapter 4

Model Formulation & Simulation

The current chapter involves two main sections: the first section introduces the

mathematical formula of our model according to the distributional assumptions

of species richness and discovery, while the second section concerns the model

validation through simulation experiments.

4.1 Distributional Specifications

As stated in Section 3.2.1, our model is subject to several distributional assump-

tions and parameter specifications. However, in the current case study we keep

adopting the equally likely sampling setting. Therefore, in the sampling and

discovery process, the inter-discovery samples {di}i=1:D = {�i � �i�1}i=1:D are

still following a joint Geometric distribution conditioned on the knowledge of the

species abundances {Nk}k=1:C up to time tD,

P (d2:D|N1:C) =
DY

i=2

 Pi�1
k=1 Nk

N

!di�1 
1�

Pi�1
k=1 Nk

N

!
(4.1)

where, based on species literature [79] [87], we choose one of the distributional

assumptions of the species abundances {Nk}k=1:C which is the Log-Normal distri-

bution with parameters ✓N = {µ, �},

P (N1:C |µ, �) =
CY

k=1

1

Nk

1p
2⇡�2

exp

"
�1

2

✓
log(Nk)� µ

�

◆2
#

(4.2)

In the latent e↵ort process {lj}j=1:T , the annual amount of taxonomic e↵ort

is found to be more informative covariate factor in the environment of species

discovery. One suggestion that seems more natural and computationally con-
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venient is to assume that this process is characterized by a Gaussian Markov

property, evolving smoothly over years. However, since the Gaussian distribution

has infinite support (�1,+1), but as the e↵ort is something that should not

be negative, it is plausible to apply the Gaussian model on a log-scale to ensure

that lj > 0, i.e. on a log-scale, {lj}j=1:T is assumed to be a discrete Log-Gaussian

Markov process. For notational convenience, we define another variable Lj such

that Lj = log(lj), so that {Lj}j=1:T itself evolves as a discrete Gaussian Markov

process with mean Lj�1 and standard deviation �L, where ✓L = {Lj�1, �L},

P (L2:T |L1, �L) =
TY

j=2

1p
2⇡�2

L

exp

"
�1

2

✓
Lj � Lj�1

�L

◆2
#

(4.3)

Note that the starting point L1 has a high influence on the above process. How-

ever, since it has no specified prior distribution, the given joint distribution in

equation (4.3) is not well-defined. Such a distribution is called an Intrinsic Gaus-

sian Markov process (more details about such a case is discussed in [88]).

With respect to the proxy of the latent taxonomic e↵orts process, several

choices could be made. For example, the number of authors involved in species de-

scription, the number of publications in this field, the amount of research funding

awarded, or the number of excursions performed over time, etc. However, choos-

ing a proxy is sometimes influenced by the availability of its data with respect to

the targeted community of species. In our case study, the number of authors has

some justification as a good choice due to its availability (as the number of authors

is the most available information over several taxa compared to other factors such

as the expeditions funding which is limitedly available to some taxa only) and

due to its co-varying behaviour with the number of discoveries [13]. Although

there is a high correlation between the number of publications and the number

of authors [89], we believe that the latter includes a wider range of discoveries

because there are some discovered species not being associated with publications,

but recognized by other authorities such as museums. Figure 4.1 shows the same

example of the CoL subset data and WoRMS subset data that was shown previ-

ously in Figure II in the introduction of Part II, but now with the inclusion of the

number of authors {xj}j=1:T in addition to the discoveries {⌧j}j=1:T .
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Figure 4.1: The data subset from the WoRMS and the CoL inventories, after including the proxy variable. These

represent the number of discovered species {⌧j}j=1:240 (grey) and the number of authors (proxy) {xj}j=1:240

(orange), from 1761 to 2000.

We can consider the number of authors as a result of counting action, hence,

we can fairly assume that it evolves as a Non-Homogeneous Poisson process with

a changing rate [ exp(Lj)/ exp(↵) ],

P (x1:T |L1:T ,↵) =
TY

j=1


exp(Lj)

exp(↵)

�xj

exp


� exp(Lj)

exp(↵)

�
/xj! (4.4)

Note that exp(↵) is the expected number of specimens to be collected per author

per year j, while exp(Lj) is the e↵ort rate.

This leads us to characterize the distribution of the linkage node which

represents the sample sizes {nj}j=1:T . As introduced in Section 3.1.3, it is more

convenient to assume that the sample sizes follow a Non-Homogeneous Poisson

process that is parametrized somehow by the latent e↵ort process. However, after

setting the distributional selection for the latent e↵ort in equation (4.3), it is now

clear that the distribution of {nj}j=1:T is parametrized by the e↵ort rate exp(Lj),

P (n1:T |L1:T ) =
TY

j=1

[ exp(Lj) ]
nj

exp [� exp(Lj)]

nj!
(4.5)

As indicated in Section 3.1.3, the discovery index �i is constrained by
Pj

r=1 nr,

and the discovery time point ti is constrained by j and also by {nj}j=1:T through

{di}i=1:D = {�i � �i�1}i=1:D so that ti = j ⇥ (�i 
Pj

r=1 nr), where the distribu-

tion of each time point ti follows a Degenerate distribution that parametrized by
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these constraints di 
Pj

r=1 nr� �i�1, see equations (3.2) and (3.3). However, un-

der satisfying the constraints, the distribution of {ti}i=1:D will be P (t1:D|d1:D, n1:T ) =

1. It is worth remembering that, as indicated in Section 3.1.3, for notational con-

venience, ⌧j = [
P

8i (j � 1 < ti  j) ]8j is used instead of ti to synchronize the

evolving time of the sampling-discovery and the latent e↵ort processes.

At this stage, we specified the species distributional assumptions of the six

variables that are included in our proposed model, in equations (4.1) to (4.6).

With respect to the prior distribution of C, we choose a Uniform distribution

defined on the support [D,mD], where m is a multiple for the total number of the

discoveries, and can be selected according to the applied experiment as we will see

in the artificial worlds in the next section and the real worlds in the next chapter.

Therefore, by combining the equations (3.2), (3.3), and (4.1) to (4.6) along with

satisfying the constraints di 
Pj

r=1 nr��i�1, and fixing the hyper-parameters set

✓ := {µ, �, L1, �L,↵}, the final mathematical formula of the full joint probability

distribution provided by our model within the species context is:

P (C,N,d,L,n,x, t ) =

P (C)⇥ P (N | C)⇥ P (d |N)⇥ P (L )⇥ P (n | L )⇥ P (x | L )⇥ P (t | d,n) =

n 1
mD �D
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By excluding the fixed values from the above expression and rearranging some

terms, the full joint distribution can be proportionally simplified to the following,

P (C,N,d,L,n,x, t ) /
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Therefore, given the knowledge of the number of discoveries t and the num-

ber of authors x, the posterior model of our target variable, the number of

species C, should be derived by integrating out all the contextual variables  :=

{N ,d ,L ,n},

P (C | t,x) =
Z

 

P (C, | t,x) d (4.8)

where, N = {N1:C}, d = {d1:D}, t = {t1:D}, n = {n1:T}, l = {l1:T}, x = {x1:T}.
However, due to the complexity and high dimensionality of this model, the pos-

terior will be approximated by using our suggested ABC algorithm (Section 3.2.3

and Algorithm 1 of Section C.1 in Appendix C). More details about moving from

equation (4.6) to equation (4.7) are available in Appendix A, Section A.2. Fig-

ure 4.2, shows our proposed model with the selected distributions in the species

context. These distributions will be adopted throughout all the simulation exper-

iments in the rest of the thesis.

Figure 4.2: A Bayesian network displaying our proposed model within the species’ distributional assumption.
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4.2 Simulation and Generic Characteristics

Several simulation experiments have been conducted within the above distribu-

tional assumptions. They are used as an independent benchmark to evaluate the

performance of our proposed model and describe its main properties. Three artifi-

cial worlds - namelyWorld-A,World-B, andWorld-C - are generated according to

three combinations of parametrizations and three selected values for the number

of species, tabulated (Table 4.1) as follows:

Table 4.1: Parametrization set of three generated artificial worlds.

These worlds are generated over a specified time length T = 250 years. The an-

nual datasets of the number of discoveries {⌧j}j=1:250 and the number of authors

{xj}j=1:250 of each world are plotted, along with recording the total number of

population N , the total drawn sample n, and the current number of discoveries

D that resulted from each simulation, as shown in Figure 4.3.

The three worlds are generated to represent three di↵erent patterns of the

discovery e↵ort. Although, they all start from similar angles which is high num-

ber of discoveries and low number of authors, they progress and finish di↵erently,

as shown in Figure 4.3. The logical justification of this start up pattern is to

reflect the fact that with the ‘Linnaean taxonomy ’ initiation in 1735, the already

available species (which are many) are considered new as they are described for

first time, while the taxonomic e↵ort was at its beginnings. However, Figure 4.1

does not show this start up pattern in the given real data, as it is neglected in

the selected subsets of the CoL and WoRMS data bases (more explanation will be

in Chapter 6). In World-A, the number of discoveries and the number of authors
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Figure 4.3: The annual number of discoveries (Black) and the number of authors (Green) over 250 years, along

with basic information about the three artificial worlds.

stay adjacently stationary almost during the last 100 years with a very slight de-

crease at the end, while it is completely the opposite in World-B and World-C at

which the number of authors is growing further from the number of discoveries.

In World-B the two curves witness big fluctuations that end up with a noticeable

increase in both the number of discoveries and the number of authors, while in

World-C the increase in the number of authors is associated with a decrease in

the number of discoveries.

We believe that these three artificial worlds reflect three distinct patterns

that can fairly capture a su�cient variety of scenarios, in order to objectively

evaluate our proposed model. From these three patterns, we can understand the
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benefit of exploiting the latent e↵ort process in explaining the discovery process,

and therefore estimating the remaining number of species yet to be discovered.

By the end of year 250, the total number of discoveries is almost half in World-A

at which the number of authors and the number of discoveries are both end up

with a stationary pattern. This pattern indicates that the employed e↵orts is just

enough to keep the same level of the discovery rate, and there is a potential of

revealing more discoveries if we increased the rate of the e↵ort. This interpreta-

tion is approved by having just 44.7% total discoveries in World-A. The curves in

World-B reflect that there are still more species to be discovered, as the number

of discoveries increases along with the high increase of the number of authors.

This interpretation is approved by the low number of total discoveries 31.9% by

the end of year 250. On the other hand, World-C shows that when the number of

discoveries decreases while the number of authors highly increases, this is a reflec-

tion of making a lot of discoveries and what is left is few to be discovered. This

interpretation is also approved by the high number of total discoveries 83.24% by

the end of year 250.

E�ciency Development:

After generating an artificial world, the generated data are fitted to the model with

our suggested ABC algorithm. It is worth mentioning that the fitting performance

itself went through stages of e�ciency development. The first transformation was

made when we adopted the ABC approach instead of the RJ-MCMC and the

iterative implementation of the Bayes factor. We started the ABC coding using

nested loops which took a huge amount of computation time. There were one

main loop, and two sub-loops for generating �i and ti. Then, we replaced the

two sub-loops with small routines that accomplish tasks simultaneously, but kept

the main loop, which extremely enhanced the computation time. However, we

made a considerable reduction in the computation time by implementing the par-

allelization scheme instead of the sequential main loop. The last enhancement we

considered is by including two filtering steps (as explained in Section 3.2.3 in the

main fitting experiment) instead of one at which we exploited the existence of the

latent e↵ort proxy by establishing a threshold based on the generated values of

the number of authors {xj}j=1:T .
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Figure 4.4 shows an example of the last four stages of the e�ciency de-

velopment measured in seconds. This example is made on fitting World-A with

only 10, 000 iterations. Through several experiments we notice that the com-

putation time is linearly increased with the number of iterations with order 10,

which means when we increase the number of iterations from 10, 000 to 1, 000, 000

the computation time will be increased by 100-times. The fitting time on the

‘one-loop’ code takes more than 2.5 hours with 1, 000, 000 iterations, while on the

‘Parallel+2 filters ’ code takes only 0.5 hours with the same number of iterations

and same world. Therefore, although in the figure it seems that the di↵erence is

little among the last three schemes, it in fact becomes huge in serious experiments

when we implement higher number of iterations.

Figure 4.4: The huge di↵erence be-

tween the Nested-loops scheme and

the last three schemes in the com-

putation time (seconds) measured

on a log scale. However, there is

still a considrable di↵erence among

the last three.

Threshold Justification:

The decision to include this additional filter is supported by noticing a high corre-

lation between the distance values measured on the number of authors D(x⇤,x ),

and the total distance values of adding both the number of authors and the num-

ber of discoveries {D(⌧ ⇤, ⌧ ) +D(x⇤,x )}. Figure 4.5 shows this correlation as

witnessed in the pilot experiments of the three artificial worlds.

However, this pattern does not mean that D(x⇤,x ) is the dominant in

measuring the total distances, we still need to include D(⌧ ⇤, ⌧ ) in order to es-

timate the posterior distribution of the number of species. It is just that the
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Figure 4.5: Scatter plots of the pilot experiments of the three artificial worlds, that show the correlation between

distances of the number of authors D(x⇤, x ), and the total distances {D(⌧⇤, ⌧ ) +D(x⇤, x )}.

scale at which D(⌧ ⇤, ⌧ ) varies is smaller than the scale of D(x⇤,x ). Moreover,

this pattern is noticed in the pilot experiments that only involve 10, 000 itera-

tions, while in the main experiments where the number of iterations is 102 times

higher, the correlation pattern becomes obvious between the number of discover-

ies D(⌧ ⇤, ⌧ ), and the total distance values {D(⌧ ⇤, ⌧ ) +D(x⇤,x )}, as shown in

Figure 4.6. Note that these main experiments are not only higher in the number

of iterations but also involve the threshold that we based on D(x⇤,x ).

It is worth mentioning that this correlation pattern with the total distances

becomes equivalent forD(x⇤,x) andD(⌧ ⇤, ⌧ ) in the results of the final sample that

is used to represent the posterior distribution of C, as shown in Figure 4.7. This

sample is of size 1000 in all the three artificial worlds, as explained in the adopted

ABC algorithm (Section 3.2.3 and Algorithm 1 of Section C.1 in Appendix C).
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Figure 4.6: Scatter plots of the main experiments of the three artificial worlds. The left panel shows the

correlation between distances of the number of authors D(x⇤, x ), and the total distances out of the sum

{D(⌧⇤, ⌧ ) +D(x⇤, x )}, while the right panel shows the correlation between distances of the number of dis-

coveries D(⌧⇤, ⌧ ), and the total distances {D(⌧⇤, ⌧ ) +D(x⇤, x )}.

In the following subsections, we explore the model main characteristics through

fitting the three artificial worlds after adopting the ‘Parallel+2 filters ’ scheme in

the ABC algorithm:

4.2.1 Fitting Artificial World-A:

We fitted the given data set of the artificial World-A according to the ABC al-

gorithm with 1, 000, 000 iterations. This fitting is based on using a uniform prior

support at which C 2 [D, 5D], where D = 4, 468 and C = 10, 000. The upper

bound of the prior support is specified through a few trials of pilot experiments,
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Figure 4.7: Scatter plots of the resultant final sample in the three artificial worlds. The left panel shows

the correlation between distances of the number of authors D(x⇤, x ), and the total distances out of the sum

{D(⌧⇤, ⌧ ) +D(x⇤, x )}, while the right panel shows the correlation between distances of the number of discoveries

D(⌧⇤, ⌧ ), and the total distances {D(⌧⇤, ⌧ ) +D(x⇤, x )}.

and then detecting when the right-side tail of the estimated posterior distribution

is getting lighter. As we can see in the top-right plot of Figure 4.8, the maximum

possible value of C (shown in the x-axis) is 18, 000 which is less than the upper

bound of the support 5D = 22, 340. This gives us an indication that there is no

point to explore larger values in the C support, which explains our choice of the

prior support [D, 5D]. The estimation of the posterior distribution of the number

of species C is based on a final selected sample of size s = 1000 (as explained in

Section 3.2.3). A point estimation (posterior mean and mode) of C is derived as

well as a 95% credible interval, as shown in Table 4.2.
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Table 4.2: Artificial World-A of total number of species C = 10, 000.

Figure 4.8, the top-right plot, shows that the estimated posterior distribu-

tion of the number of species in the World-A seems to be a unimodel symmetric

distribution but left-truncated which is justifiable since the support of C is al-

ready left-truncated by D i.e. C 2 {N � D}. The distribution is concentrated

around the true value of C at which the posterior mean = 10, 320 and the posterior

mode = 9, 970, which are very close to the true value. According to this fitting,

with a probability = 0.95 the estimated value of C is greater than the current dis-

coveries D by almost 3, 000, but at most it roughly does not exceed 14, 000 species.

Figure 4.8: Fitting results of the World-A.

In other words and from another angle, this 95% credible interval tells us

that we have at least roughly D/2 remaining species yet to be discovered and at
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most roughly 2D unknown species. Therefore, having this narrow interval, along

with having a stationary pattern of discoveries that is associated with a stationary

curve for the authors, indicates that what we have discovered is still beyond half

of the available species. If we pretended that we did not know the true value of

C in the World-A, we can see that this speculation is consistent with the fact of

having about 45% discoveries (which is a fact that we do not know if we are in a

real world).

The bottom panel of Figure 4.8 shows about half of the 1, 000, 000 generated

series from which only 1000 series are accepted (dark grey) which are the closet

ones to the true given series (red) for both the number of discoveries {⌧j}j=1:250

and the number of authors {xj}j=1:250.

4.2.2 Fitting Artificial World-B:

We fitted the data set of the artificial World-B according to the ABC algorithm

also with 1, 000, 000 iterations as in the first case. This fitting is based on using a

uniform prior support at which C 2 [D, 8D], where D = 31, 865 and C = 100, 000.

Here as well, we specified the upper bound of the prior support through multiple

trials. We started with prior support [D, 5D], and we found that it was not suf-

ficient to explore the entire support of C as the estimated posterior distribution

looks to have a heavy-tail or truncated on the right-side. Thus, we explored wider

ranges until we found that the prior support [D, 8D] is the su�cient one. The

estimation of the posterior distribution of the number of species C is also based

on a final selected sample of size s = 1000. A point estimation (mean and mode)

of C is derived as well as a 95% credible interval, as shown in Table 4.3.

Table 4.3: Artificial World-B of total number of species C = 100, 000.
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Figure 4.9, the top-right plot, shows that the estimated posterior distri-

bution of the number of species in the World-B seems to be also a unimodel

symmetric left-truncated distribution that is concentrated around the true value

of C at which the posterior mean = 109, 793 and the posterior mode = 97, 160.

According to this fitting, with a probability = 0.95 the estimated value of C is

greater than the current discoveries D by more than 17, 000, and at most it does

not exceed 189, 000 species.

Figure 4.9: Fitting results of the World-B.

Also like World-A, this 95% credible interval of the World-B tells us that

we have at least almost D/2 remaining species yet to be discovered. However,

at the maximum limit of this interval there are roughly up to 5D species are

still to be discovered, which reflects a very wide credible interval. Hence, having

this big range, along with having an increasing pattern of the late discoveries

that is associated with an increasing curve for the authors, indicate that there

are still large amount of species waiting to be revealed. Again, if we pretended

that we did not know the true value of C in the World-B, we can see that this

speculation is consistent with the fact of having just 32% discoveries in this world.
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The bottom panel of Figure 4.9 shows about third of the 1, 000, 000 gen-

erated series from which only 1000 series are accepted (dark grey) which are

the closet ones to the true given series (red) for both the number of discoveries

{⌧j}j=1:250 and the number of authors {xj}j=1:250.

4.2.3 Fitting Artificial World-C:

We fitted the given data set of the artificial World-C according to the ABC algo-

rithm again with 1, 000, 000 iterations. Through several trials with di↵erent upper

bounds on the support of C, this fitting is based on using a uniform prior support

at which C 2 [D, 3D], where D = 41, 620 and C = 50, 000. The estimation of

the posterior probability distribution of the number of species C is again based

on a final selected sample of size s = 1000. A point estimation (posterior mean

and posterior mode) of C is derived as well as a 95% credible interval, as shown

in Table 4.4.

Table 4.4: Artificial World-C of total number of species C = 50, 000.

Figure 4.10, the top-right plot, shows that the estimated posterior distri-

bution of the number of species in the World-C is a right-skewed distribution,

but both the posterior mean = 53, 161 and the posterior mode = 48, 969 are still

around the true value of C. According to this fitting, with a probability = 0.95

the estimated value of C is greater than the current discoveries by just nearly 600,

and at most it roughly does not exceed 70, 000 species, if we consider the central

credible interval (shown in red lines). On the other hand, the 95% HPD interval

ranges from 41, 711 (which is just about 90 species higher than what is already

discovered) to 67, 333 total number of species (shown in blue lines).
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Figure 4.10: Fitting results of the World-C.

As we see, both the 95% credible intervals of the World-C are very nar-

row so that at the maximum limit of these intervals there are only around 2D/3

remaining species yet to be discovered. Thus, having these small ranges, along

with having a decreasing pattern of the late discoveries that is associated with an

increasing curve for the authors, indicates that what is left for future discovery is

just a few number of species. Again, if we pretended that we did not know the

true value of C in the World-C, we can see that this speculation is consistent with

the fact of having discovered 83% of all species in this artificial world.

The bottom panel of Figure 4.10 shows about half of the 1, 000, 000 gen-

erated series from which only 1000 series are accepted (dark grey) which are

the closest ones to the true given series (red) for both the number of discoveries

{⌧j}j=1:250 and the number of authors {xj}j=1:250.

4.2.4 Investigating Standardized Distance Metric:

In the adopted algorithm and within the pilot experiment (involving 10, 000 itera-

tions), after generating the annual datasets of the number of authors [x⇤]r and the
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number of discoveries [⌧ ⇤]r (where r = 1 : 10000, x⇤ = {x⇤
j}j=1:T , ⌧ ⇤ = {⌧ ⇤j }j=1:T ,

and T = 250 years), we computed our distance metric in the following steps:

First version of Distance Metric:

1. Compute distances of authors [D(x⇤,x )]r.

2. Compute distances of discoveries [D(⌧ ⇤, ⌧ )]r.

3. Add the above: [Total]r = [D(⌧ ⇤, ⌧ ) +D(x⇤,x )]r, and sort them ascendingly.

4. Accept the smallest 1000 of them i.e. [Total]1:1000. Note that the accepted

maximum total distance Total1000 does not imply that D(x⇤,x )1000 is also the

maximum among the accepted authors distances, thus, we need the next step.

5. Go back to the accepted [D(x⇤,x )]1:1000, and choose the maximum one of them

as threshold i.e. Threshold= Max([D(x⇤,x )]1:1000). This threshold is used in

the main experiment as a first filtering step to filter the generated [x⇤]r before

proceeding to generate [⌧ ⇤]r. The reason is to speed up the code performance,

because generating [⌧ ⇤]r is computationally demanding, while generating [x⇤]r

is much easier.

The main experiment also includes computing total distances and sorting

them ascendingly. The second filtering step is only accepting the smallest 1000

total distances out of 1, 000, 000, at which the distribution of their C’s is the

estimation of our target variable. We adopted the above algorithm in fitting

the three artificial worlds as we explained in the previous subsections and we

found good results with e�cient performance. However, we also investigated the

standardized version of our distance metric, as explained next. Again, within the

pilot experiment that involves 10, 000 iterations and after generating the annual

datasets of the number of authors and the number of discoveries, the standardized

distance metric is computed as follows:

Standardized Distance Metric:

1. Derive mean and standard deviation of the distances i.e. µx =mean ([D(x⇤,x)]r),

�x =sd([D(x⇤,x )]r), µ⌧ =mean([D(⌧ ⇤, ⌧ )]r), and �⌧ =sd([D(⌧ ⇤, ⌧ )]r).

2. Compute standardized distances of authors [Dz
x]r = {[D(x⇤,x )]r � µx}/�x.

3. Compute standardized distances of discoveries [Dz
⌧ ]r = {[D(⌧ ⇤, ⌧ )]r�µ⌧}/�⌧ .
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4. Add the above: [Totalz]r = [Dz
x +Dz

⌧ ]r, and sort them ascendingly.

5. Accept the smallest 1000 of them i.e. [Totalz]1:1000.

6. Go back to the accepted [Dz
x]1:1000, and select Max([Dz

x]1:1000) to derive our

threshold i.e. Thresholdz=Max([Dz
x]1:1000) ⇥�x+µx which is used in the main

experiment as a first filtering step to filter the generated [x⇤]r. Note that in the

main experiments, the standardization treatment is applied after computing

the distances.

We applied the above standardized distance metric on fitting the three arti-

ficial worlds, and we found that there is no significant di↵erence in the results of

the first version of our distance metric and the results of the standardized distance

metric. For example, the top panel of Figure 4.11 shows the estimated posterior

distributions of C (in Word-A) using the first version of our distance metric (left

plot) and the standardized distance metric (right plot), and the bottom panel

shows their box-plots and CDF’s which indicate that there is no significant dif-

ference between the two distributions.

Figure 4.11: Fitting results of World-A, using the first version of distance metric versus the standardized distance

metric. Note that the green vertical lines represents the 95% central credible interval, while the blue vertical

lines represents the 95% HPD interval.

Although there are some di↵erences in their scatter plots, the fact that we

rely only on the smallest 1000 total distances out of 1, 0000, 0000 makes the final
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estimation similar, as show in Figure 4.12. We can see from the top panel of

Figure 4.12 that there is a high correlation between the total distances and the

discovery distances in both treatments (1st version distance metric and standard-

ized distance metric) of the main experiments, though the correlation seems to be

much higher without standardization. However, we can see in the bottom panel

that this correlation becomes similar in both treatments in the final accepted

sample that make the final estimation of our target. The similarity appears in

having equivalent correlation pattern (i.e. equivalent slope) in both the discovery

distances and the authors distances with the total distances.

Figure 4.12: Scatter plots of the main experiments of fitting World-A, using the first version of distance metric

(black for discoveries and green for authors) versus the standardized distance metric (blue for discoveries and red

for authors). The bottom panel shows the scatter plots of the final samples in both treatments.

We found similar resulting patterns in both World-B and World-C as shown

in (Figure 4.13 and Figure 4.14) and (Figure 4.15 and Figure 4.16), respectively.

This concludes that there is no significant di↵erences in the results between using

our 1st version of the distance metric and the standardized version. However,

there are some di↵erences in the computation time which justify adopting our

1st version of the distance metric in the rest of the experimentations. These

di↵erences are summarized in the next comments.
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Figure 4.13: Fitting results of World-B, using the first version of distance metric versus the standardized distance

metric. Note that the green vertical lines represents the 95% central credible interval, while the blue vertical

lines represents the 95% HPD interval.

Figure 4.14: Scatter plots of the main experiments of fitting World-B, using the first version of distance metric

(black for discoveries and green for authors) versus the standardized distance metric (blue for discoveries and red

for authors). The bottom panel shows the scatter plots of the final samples in both treatments.
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Figure 4.15: Fitting results of World-C, using the first version of distance metric versus the standardized distance

metric. Note that the green vertical lines represents the 95% central credible interval, while the blue vertical

lines represents the 95% HPD interval.

Figure 4.16: Scatter plots of the main experiments of fitting World-C, using the first version of distance metric

(black for discoveries and green for authors) versus the standardized distance metric (blue for discoveries and red

for authors). The bottom panel shows the scatter plots of the final samples in both treatments.
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Comments on the Di↵erences between the Two Treatments:

⌅ In the artificial World-A, we found that the threshold of the 1st version treat-

ment is Max([D(x⇤,x )]1:1000) = 160, while the threshold of the standardized

treatment is Max([Dz
x]1:1000) ⇥�x+µx = 246 (where Max([Dz

x]1:1000) = 0.1046).

Since the standardized treatment implies a larger threshold, a larger number

of the generated datasets passed this threshold (about 360, 000 extra datasets

compared to the 1st version treatment). Therefore, extra computation time is

spent on these extra datasets with no added benefit as they are rejected in the

final filtering step.

⌅ In the artificial World-B, we also found that the threshold of the standardized

treatment (Max([Dz
x]1:1000) ⇥�x + µx = 6, 148) is larger than the threshold of

the 1st version treatment (Max([D(x⇤,x )]1:1000) = 2, 853). It also allowed for

about 690, 000 extra generated datasets to pass its threshold, and, therefore,

extra computation time spent with no added benefit.

⌅ In the artificial World-C, we found a special situation at which the threshold

of the standardized treatment is equal to the threshold of the 1st version treat-

ment (Max([Dz
x]1:1000) ⇥�x + µx = Max([D(x⇤,x )]1:1000) = 3, 604). Therefore,

same expected computing time for both treatments.

The interpretation of having the above fewer thresholds and shorter compu-

tation times in World-A and World-B in the 1st version distance metric is that:

in these worlds where the influence of the number of authors is higher (see Fig-

ure 4.3), the correlation between the authors distances and total distances are

higher in the pilot experiments, and result in usefully tight thresholds. On the

other hand, in World-C where the number of authors ends up with less influence

(decreasing discoveries with increasing number of authors, see Figure 4.3), the

correlation between the authors distances and total distances is lower in the pilot

experiment compared to World-A and World-B, and results in a threshold that is

as the same as the one of the standardized treatment. However, we should empha-

size on the fact that such correlations will diminish with increasing the number

of iterations as we saw in the main experiments.
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The right panel of Figure 4.17 shows the threshold values of the three

artificial worlds within the context of the scatter plot of the authors distances

[D(x⇤,x )]r and discovery distances [D(⌧ ⇤, ⌧ )]r in the main experiments, where

r = 1 : 1000000. The green vertical line represents the 1st version threshold

(Max([D(x⇤,x )]1:1000)), while the blue vertical line represents the standardized

threshold (Max([Dz
x]1:1000) ⇥�x + µx). The left-side area of the vertical lines rep-

resents the datasets that pass through the specified thresholds. The right panel

also shows the accepted final sample (black area) whereby the red diagonal line

represents the maximum accepted total distance i.e. (D(⌧ ⇤, ⌧ ) +D(x⇤,x ))1000.

The left panel of Figure 4.17 shows a zoomed-in view of the accepted final sample.

Figure 4.17: Scatter plots of the main experiments of fitting the three artificial worlds (focusing on the accepted

final area and ignoring the rest of x-axis and y-axis). The left panel shows a zoom-in view of the accepted final

sample, while the right panel shows a zoom-out view where the thresholds lines are appeared. The green vertical

line represents the 1st version threshold, while the blue vertical line represents the standardized threshold.
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In conclusion, there are no significant di↵erences in the results with or

without the standardization. If the pilot experiments show a higher correlation

between the author distances and total distances, it is preferable not to standard-

ize the distance metric to allow for having a tight threshold and therefore e�cient

computation time. Increasing the number of iterations in the main experiment

as the one that we adopted (1, 000, 000) and accepting small size final sample is

important for accurate results.

4.3 Chapter Summary:

We started this chapter by setting up the distributional assumptions of our pro-

posed model within the species context, as explained in the first section. Then

this model is validated, in solving the number of kind (species) problem, through

three simulation experiments (generating artificial worlds and fitting them accord-

ing to the proposed model), as shown in the second section, also see Group B.1

of Section B.1 in Appendix B for more details. This section also explained the

e�ciency development of the fitting stage through using the ABC algorithm with

an additional filtering step. Evaluating the performance of the model in di↵erent

scenarios and according to some criteria will be introduced in the next chapter.

88



Chapter 5

Model Performance & Evaluation

The current chapter is concerned with describing and evaluating the performance

of our proposed model through refitting the artificial worlds (introduced in Chap-

ter 4) in di↵erent scenarios. In three sections of the current chapter, we attempt

to seek answers of three question-form criteria about our model:

⌅ To what extent is our model accurate in estimating the number of species?

⌅ How sensitive or robust is our model against mis-parametrization?

⌅ Can we describe our model as being additive (either completely or partially

additive)? How much di↵erence is there between applying the model on the

whole dataset, and applying the model on subsets of data then aggregating?

5.1 Model Accuracy

In this section, we are trying to answer the first question in our criteria list: To

what extent is our model accurate in estimating the number of species? As the

ABC algorithm is basically a set of Monte Carlo techniques, it is subject to the

Monte Carlo error. This error is expressed in the variation of the Monte Carlo

estimator that is taken across hypothetical repetitions of the simulation, where

each simulation is based on the same design and number of replications. How-

ever, in our case, we are estimating a probability distribution in addition to the

point and interval estimation. Therefore, we performed two types of simulation

experiments in the accuracy context to explore two aspects of the Monte Carlo

error. The first aspect is an error due to the taken number of replications (sample

size), while the second aspect is an error due to the adopted number of iterations

(simulation repetition).
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In the light of checking the first aspect error, we fitted the given ‘artificial’

data set according to ABC approach (explained in Section 3.2.3) at which we

fixed the number of iteration to be 1, 000, 000, while we checked three sample

sizes: s = 100, s = 1000, and s = 10, 000. The fitting experiment is repeated ten

times for the same artificial world (same seed). On the other hand, in checking

the second aspect error, we fixed the final selected sample size to be s = 1000,

while we checked four values of iterations: iter = 100, 000, iter = 500, 000, iter =

1, 000, 000, and iter = 1, 500, 000. This type of experiment is repeated over 500

artificial worlds of the same design (di↵erent seeds but same parametrization).

These two types of simulation experiments are implemented over the design of

the three artificial worlds (introduced in Chapter 4) as illustrated in the next

subsections. Note that detailed results with holistic-view plots are available in

Appendix B, Section B.2.

5.1.1 Accuracy in World-A Design:

In Section 4.3.1 we saw good results in fitting the artificial World-A. However, for

checking the accuracy of the estimation, that fitting is repeated ten times for the

same artificial World-A, but three di↵erent sample sizes are considered, as shown

in Figure 5.1. We can see that as the sample size increases from 100 to 10, 000,

the MC error (represented in the estimator’s standard deviation) decreases for

both the estimated posterior mean and mode, and the estimated curves of the

posterior probability distributions become closer. However, although these esti-

mators seem to be more consistent with increasing the sample size, they tend to

overestimate behaviour. Therefore, choosing the sample size s = 1000 seems to

be a balanced trade-o↵ to provide a relatively less MC error with a relatively less

biased estimation.

Moving to the second type of the simulation experiments, we generated 500

artificial worlds according to the World-A parametrization design but with di↵er-

ent generating seeds. These worlds are fitted according to the ABC algorithm and

from each fitting, 500 posterior means and 500 posterior modes are derived. The

distribution, average, variance/standard deviation, and the 95% credible interval

of these posterior means and modes are obtained. These 500 fittings and results
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are repeated four times for di↵erent number of iterations with fixed sample size.

Figure 5.1: Fitting artificial World-A for 10 times with 3 di↵erent sample sizes and fixed number of iterations,

to explore the first aspect of MC error due to the selected sample size. Note that each color represents a fitting

trial. The circles represent the estimated means, they are aligned above each other just to clarify there position

relative to the true value C = 10, 000.

Figure 5.2 shows four distributions with their 95% credible intervals of the

posterior means over the four number of iterations in the left top plot, while the

left bottom belong to the posterior modes. The plots also include the average of

the estimators (posterior means and modes) marked in dots aligned above each

other. We can see that the distributions along with their credible intervals become
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tighter and concentrated around the true value of C as we increase the number of

iterations. Consequently, The MC error decreases as shown in the right top plot

for both the posterior means (top curve) and posterior modes (bottom curve).

However, in the current design it seems that the enhancement in the estimation is

not that significant after 1, 000, 000. Therefore, choosing the number of iterations

to be 1, 000, 000 in the fitting stage with selecting a final sample of size 1000 seems

to be su�cient to achieve a relatively less MC error with a relatively less biased

estimation, where E(C⇤
mean) = 10, 083 with percent bias = 0.83% when we adopt

the posterior mean, and E(C⇤
mode) = 9, 763 with percent bias = 2.4% when we

adopt the posterior mode, while the true C = 10, 000. See Group B.4, Appendix

B for details.

Figure 5.2: Fitting 500 artificial worlds of design World-A with 4 di↵erent simulation iterations and fixed sample

size, to explore the second aspect of MC error that results in the adopted number of iterations. The left top is

the distribution of the posterior means, while left bottom is the distribution of the posterior modes. The right

top is the changing rate in the variance of the estimators in which the top curve belongs to the posterior means,

while the bottom curve belongs to the posterior modes.

5.1.2 Accuracy in World-B Design:

Here as well, the artificial World-B is fitted ten times and for each fitting three

di↵erent sample sizes are considered, as shown in Figure 5.3. We can see that as
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Figure 5.3: Fitting artificial World-B for 10 times with 3 di↵erent sample sizes and fixed number of iterations,

to explore the first aspect of MC error due to the selected sample size. Note that each color represents a fitting

trial. The circles represent the estimated means, they are aligned above each other just to clarify there position

relative to the true value C = 10, 000.

the sample size increases from 100 to 10, 000, the estimated curves of the posterior

probability distributions become closer, and the MC error (represented in the

estimator standard deviation) decreases for both the estimated posterior mean

and mode. Also, these estimators tend towards overestimation as the sample size

increases. Therefore, choosing the sample size s = 1000 still seems to be a balanced

trade-o↵ situation that provides a relatively less MC error with a relatively less

biased estimation.
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Moving to the second type of the simulation experiments in the accu-

racy context, we also generated 500 artificial worlds according to the World-B

parametrization design but with di↵erent generating seeds. These worlds are fit-

ted according to the ABC algorithm and from each fitting, 500 posterior means

and 500 posterior modes are derived. The distribution, the average, the vari-

ance/standard deviation, and 95% credible interval of the posterior means and

modes are obtained. These 500 fittings and results are repeated four times for

di↵erent number of iterations with fixed sample size s = 1000, as shown in Figure

5.4 (the same plot description of World-A is also applied here).

Figure 5.4: Fitting 500 artificial worlds of design World-B with 4 di↵erent simulation iterations and fixed sample

size, to explore the second aspect of MC error due to the adopted number of iterations. The left top is the

distribution of the posterior means, while the left bottom is the distribution of the posterior modes. The right

top is the changing rate in the variance of the estimators in which the top curve belongs to the posterior means,

while the bottom curve belongs to the posterior modes.

However, although there is a decrease in the MC error along with increasing

the number of iterations, there is still a consistently some bias in the average of

the posterior means and the average of the posterior modes. Hence, increasing the

number of iterations in fitting World-B does not make a significant enhancement

in the MC error especially after 1, 000, 000.
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With respect to the bias issue, it can be explained by the fact that there is

a high variation in the 500 generated datasets (the number of discoveries and the

number of authors) under the World-B design, see Group B.3 and Group B.4 in

Appendix B for details. By checking the current discoveries D of these 500 gener-

ated artificial worlds, we found that the values range between 2000 to over 50, 000

discovered species with 60% coe�cient of variation. However, in the artificial

World-B that we already adapted in Figure 4.9, the value of the current discov-

eries is D = 31, 865. Therefore, by allowing this value to vary by 20, 000 species

higher and lower, we found that there is 300 out of the 500 of the generated artifi-

cial worlds that have D’s ranging between 12, 000 and 50, 000 discovered species.

By checking the distribution of posterior means and modes, it seems that the bias

is significantly reduced, where E(C⇤
mean) = 98, 125 with percent bias = 1.9% when

we adopt the posterior mean, and E(C⇤
mode) = 95, 492 with percent bias = 4.5%

when we adopt the posterior mode, while the true C = 100, 000. See Figure 5.5.

Figure 5.5: Fitting 300 artificial worlds of design World-B with 4 di↵erent simulation iterations and fixed sample

size, to explore the second aspect of MC error due to the adopted number of iterations. The left top is the

distribution of the posterior means, while the left bottom is the distribution of the posterior modes. The right

top is the changing rate in the variance of the estimators in which the top curve belongs to the posterior means,

while the bottom curve belongs to the posterior modes.
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5.1.3 Accuracy in World-C Design:

Again, we made the same types of experiments to explore the two aspect of the MC

error in World-C. Figure 5.6 shows that with increasing the sample size from s =

100 to s = 10, 000, the estimated curves of the posterior probability distributions

become closer, and the MC error (represented in the estimator standard deviation)

decreases for both the estimated posterior mean and mode. However, the decrease

in the MC error is not consistent in the case of the posterior mode, though the

Figure 5.6: Fitting artificial World-C for 10 times with 3 di↵erent sample sizes and fixed number of iterations,

to explore the first aspect of MC error due to the selected sample size. Note that each color represents a fitting

trial. The circles represent the estimated means, they are aligned above each other just to clarify there position

relative to the true value C = 10, 000.
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di↵erence is small. The mean estimator slightly tends to overestimated behaviour

as we increase the sample size, while it is the opposite case for the mode. There-

fore, the sample size s = 1000 still seems to be a balanced trade-o↵ situation that

provides a relatively less MC error with a relatively less biased estimation.

Figure 5.7: Fitting 500 artificial worlds of design World-C with 4 di↵erent simulation iterations and fixed sample

size, to explore the second aspect of MC error due to the adopted number of iterations. The left top is the

distribution of the posterior means, while left bottom is the distribution of the posterior modes. The right top is

the changing rate in the variance of the estimators in which the top curve belongs to the posterior means, while

the bottom curve belongs to the posterior modes.

Figure 5.7 shows the results of inspecting the second aspect of MC error. We

can see that the distributions of the 500 posterior means and 500 posterior modes

along with their credible intervals become tighter and concentrated around the

true value of C, as we increase the number of iterations, which leads to decrease

the MC error. Again, as the same as the previous worlds, the enhancement in the

estimation is not that significant after 1, 000, 000. Therefore, choosing the number

of iterations to be 1, 000, 000 in the fitting stage with selecting a final sample of size

1000 seems to be su�cient to achieve a relatively less MC error with a relatively

less biased estimation, where E(C⇤
mean) = 50, 383 with percent bias = 0.77% when

we adopt the posterior mean, and E(C⇤
mode) = 48, 776 with percent bias = 2.45%

when we adopt the posterior mode, while the true C = 50, 000. More details are

available in Appendix B, Group B.4.
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5.2 Model Sensitivity

In this section, we are trying to answer the second question in our criteria list: How

sensitive or robust is our model against mis-parametrization? As we mentioned

previously in Section 3.2.1, our proposed model is subject to parameter specifica-

tions. However, these parameters may be mis-specified. Our model includes a set

of five parameters, ✓ := {µ, �, L1, �L,↵}, that each needs to be specified, either

by a fixed one value or a range of values, or even by a probability distribution. In

the current case study, we already fixed them to certain values in generating and

fitting the three artificial worlds.

However, we re-fitted these worlds against di↵erent parametrizations, to

check on the estimation sensitivity to changes in the parameter values. We tested

one parameter at a time and fixed all the others on their true values. We be-

lieve that 20% deviation from the true parameters is enough to test this aspect

of our model. Thus, for each parameter we performed a re-fitting experiment

against two other values, one is 20% over-parametrization and the other is 20%

under-parametrization. In doing so, we performed ten re-fitting experiments us-

ing 1, 000, 000 iterations each time and the sample size of 1000 for each artificial

world as will be illustrated in the next subsections. Note that detailed results

with holistic-view plots are available in Appendix B, Section B.3.

5.2.1 Sensitivity in World-A Design:

Table 5.1 introduces the true values for each parameter along with the chosen 20%

over and under parametrization in World-A. After the re-fitting experiments, we

found that there are almost two levels of sensitivity in our proposed model. Figure

5.8, shows the fitting results in estimating the true value C by the posterior mean

and mode along with their 95% credible intervals against mis-parametrization of

the five parameters, each at a time. Looking at the plots from bottom to up, we

can see that our model is almost robust against the mean of the species abun-

dances, µN , and the deviation of the latent e↵orts, �L. The point estimations

(posterior mean and mode) of C seems very close to the true value, as well as
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their 95% credible intervals which are within the 95% credible intervals of C.

Table 5.1: Under/over-parametrization within artificial World-A.

Figure 5.8: Model sensitivity in estimating the posterior mean and mode against mis-parametrization of five

parameters in World-A. The solid green line represents the true value of C, while the dashed green lines represent

the 95% credible interval of C. The (blue) dots along with the blue horizontal lines represent the point estimations

given the over-parametrization and their 95% credible intervals, respectively, while the (red) dots along with the

red horizontal lines represent the point estimations given the under-parametrization and their 95% credible

intervals, respectively.

However, the mean of latent e↵ort of the first year, µL1 , seems to have some

influence on the e↵orts of the rest of the years so that a mis-parametrization in

this value might lead to a relatively small deviation in the estimation from the

true value of C. In spite of that, the point estimations (both posterior mean and

mode) are still within the 95% credible interval of C, with being very close to C

in the mean estimation, also, most of their credible intervals are still within the

95% credible intervals of the true value of C. Thus, we can say that our model is

slightly sensitive to µL1 in World-A.
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On the other hand, our model seems to be highly sensitive to two parameters

in World-A, which are the variation of the species abundances, �N , and the ex-

pected number of specimens to be collected per author per year (on a log-scale), ↵.

Although, with over-parametrizing ↵ the point estimations (posterior mean and

mode) of C is still within the 95% credible interval of C, the rest of estimations

due to under-parametrizing ↵ and over/under-parametrizing �N all exceeded the

95% credible interval of the true value of C. The interpretation of the high sen-

sitivity of ↵ can be explained as: increasing the value of ↵ (with fixing all other

parameters) means that the current amount of discoveries D is associated with a

higher e↵orts than the actual one. This indicates that what is left to be discov-

ered is few and therefore the total number of species should be under-estimated.

With respect to �N , the higher variation in the species abundance with having

the same D (in light of fixing all other parameters), indicates that it is expected

to discover more species and the total number of species is assumed to be higher,

and therefore it is over-estimated. Therefore, we should be careful in choosing

the values of these two parameters. Finally, it is worth mentioning that there is a

general behaviour of these parameters which is the negative relationship between

them and the estimate of C, except for �N ; see Group B.6, Appendix B for details.

5.2.2 Sensitivity in World-B Design:

Table 5.2 introduces the true values for each parameter along with the chosen 20%

over and under parameters in World-B. Again, after the re-fitting experiments,

we found that the sensitivity of our model in World-B is similar to the one in

World-A. However, as shown in Figure 5.9, it seems that the mis-parametrization

of ↵ has little influence in World-B, as we can see that the point estimations (pos-

terior mean and mode) of the true value of C is still within the true 95% credible

interval of C. In addition, the estimated credible intervals of the altered values of

↵ covers the true C. As well as World-A, the general negative relation between

the chosen values of these parameters and the estimation of C (except for �N)

exist. See Group B.6, Appendix B for details.
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Table 5.2: Under/over-parametrization within artificial World-B.

Figure 5.9: Model sensitivity in estimating the posterior mean and mode against mis-parametrization of five

parameters in World-B. The solid green line represents the true value of C, while the dashed green lines represent

the 95% credible interval of C. The (blue) dots along with the blue horizontal lines represent the point estimations

given the over-parametrization and their 95% credible intervals, respectively, while the (red) dots along with the

red horizontal lines represent the point estimations given the under-parametrization and their 95% credible

intervals, respectively.

5.2.3 Sensitivity in World-C Design:

Table 5.3 introduces the true values for each parameter along with the chosen

20% over and under parameters in World-C. However, in World-C, we found a

slightly di↵erent pattern of sensitivity than World-A and World-B, as shown in

Figure 5.10. It seems that with a high proportion of discoveries (83%) at which

the posterior distribution of C becomes skewed, the sensitivity of our model be-

come generally less against the mis-parametrization. As we see, all the point

estimations (posterior mean and mode) for all parameters are within the 95%

credible intervals of the true C. In addition, all the estimated credible intervals

of all parameters cover the true value of C. See Group B.6, Appendix B for details.
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Table 5.3: Under/over-parametrization within artificial World-C.

Figure 5.10: Model sensitivity in estimating the posterior mean and mode against mis-parametrization of five

parameters in World-C. The solid green line represents the true value of C, while the dashed green lines represent

the 95% credible interval of C. The (blue) dots along with the blue horizontal lines represent the point estimations

given the over-parametrization and their 95% credible intervals, respectively, while the (red) dots along with the

red horizontal lines represent the point estimations given the under-parametrization and their 95% credible

intervals, respectively.

However the skewness, associated with a high proportion of the total dis-

coveries, highly influenced the log-scale parameters (µL1 and �L) especially with

the under-parametrization case. This leads to having deviations in the sensitivity

of these two parameters higher than their case in World-A and World-B. There-

fore, having skewness in the posterior distribution of C should flag a caution in

selecting the values of the parameters µL1 and �L.
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5.3 Model Additivity

In cases where some estimates are already made on sub-groups of a target com-

munity, it seems a desirable property that the estimate for the total number of

classes in that community should be consistent with an estimate made by ag-

gregating these estimates of sub-groups. Such a property is called ‘additivity’,

and it is worth mentioning that this property can be described in di↵erent de-

grees. The complete additivity appears when the estimated distributions of the

integrated sub-groups and the whole community are not significantly di↵erent (at

which all the statistical properties of the two are significantly equal), while the

partial additivity appears when only some of the statistical properties of them are

significantly equal. Therefore, in this section, we are trying to answer the third

question in our criteria list: Can we describe our model as being additive (either

completely or partially additive)? How much di↵erence is there between applying

the model on the whole dataset, and applying the model on subsets of data then

aggregating?

Due to the complexity and high dimensionality of our proposed model, it

is di�cult to theoretically verify the additive property. Therefore, we restrict

ourselves to looking at this issue empirically through simulation. However, there

is no clear cut methodology in doing so, besides that, such as in species estima-

tion, sub-groups used for estimation are somewhat arbitrary and can be done at

di↵erent levels of the taxonomic hierarchy (genus, family, phylum etc.), and it is

well known that conclusions drawn from data can change according to how that

data is aggregated [90]. Hence, we followed two schemes of creating subgroups

from the already available design of the three artificial worlds in order to provide

a comprehensive analysis of the situation. One scheme is based on generating

one whole group then splitting it into two subgroups, while the other scheme is

based on generating two subgroups then merging them into a whole one. As we

are in the species context, we consider each given artificial world as a whole cat-

egory that includes multiple taxa on di↵erent levels. In the current study, in the

splitting scheme we decided to split each category (artificial world) into two taxa

(subgroups), while in the merging scheme we independently create two taxa (two

di↵erent sub-artificial worlds but same design as the whole category) to be merged
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into one whole category.

The main idea of testing the model additivity revolves around checking

whether the posterior estimation of the whole category is equivalent to the ag-

gregation of the posterior estimates of the two taxa. Therefore, we investigated

main summary statistics such as the posterior mean, posterior mode, 95% cred-

ible interval, and the deviation measure which is reflected by the CDFs curves

and box-plots. An additional statistical tool, Kullback-Leibler divergence metric

(KLD)1 [66], is also computed to measure the di↵erence between the probability

distributions of the whole category and the combined taxa. We computed this

measure in two directions; one is when we consider the distribution of the whole

category as a true distribution and the distribution of the combined taxa as an

approximation of it, while in the other direction we consider the distribution of

the combined taxa as a true distribution and the distribution of the whole cate-

gory as an approximation of it. Our insight of applying the two directions is that

the minimum di↵erence between the two directions indicates the higher closeness

between the two distributions.

The adopted two schemes are performed as follows:

Splitting Scheme:

1. Given a generated artificial world, randomly split it into two taxa - namely S1

and S2. In this process, we split the number of authors and the number of

discoveries, as well as splitting the number of species into CS1 and CS2, where

C = CS1 + CS2.

2. Fit each taxon separately, then derive the posterior distribution of CS1 and CS2

and compute their posterior of estimation C⇤
S1 and C⇤

S2, respectively. However,

the fitting stage of the subgroups is a challenging one due to the change in their

distributional structure resulting from the splitting procedure. Although the

1KLD evaluates the di↵erence between two distributions, say P (x) and P (y), by measuring

the information loss when using one distribution instead of the other. Note that the notation

KLD(P (x) |P (y)) is used to express the amount of the information lost when using P (y) instead

of P (x). It is mathematically defined as the expectation of the logarithmic di↵erence between

P (x) and P (y), calculated with respect to P (x).
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random splitting of the number of discoveries can be considered as a random

sampling from the species population (i.e. the parameters values of the species

abundances are kept the same in the taxa as in the whole category), the random

splitting of the number of authors does not imply that the latent e↵ort is the

same in the taxa as the whole category. Therefore, we need to consider splitting

the e↵ort mean as well. As indicated in Section 4.1, the latent e↵ort {lj}j=1:T

is applied on a log-scale, Lj = log(lj), so that Lj acts as a discrete Gaussian

Markov process and lj as a discrete Log-Gaussian Markov process, where the

e↵ort mean = exp(µL1 + �2
L/2). Note that the log-e↵ort process is an Intrinsic

Gaussian Markov process where its mean Lj�1 is determined by the mean

of the first variable, µL1 . Hence, when we do the fitting for each taxon, we

choose values of their log-e↵ort parameters (i.e. µL1 and �2
L of each taxon)

such that the sum of their e↵ort means is equal to the e↵ort mean of the whole

category i.e. exp(µL1 + �2
L/2)whole ' exp(µL1 + �2

L/2)S1 + exp(µL1 + �2
L/2)S2 .

However, since the e↵ort mean is just one equation in two variables, the number

of solutions are infinite. Thus, we considered an additional constraint that

maintains the percentage of discoveries in the data; more explanatory details

will be illustrated within the artificial worlds examples in the next subsections.

Note that such practices are not going to be applied in the reality, because

in reality if we already have the estimation of the whole category, there is no

point of doing the splitting scheme. These suggested scenarios are explained

here just to investigate the additivity property which is a desirable property

to save our time and e↵ort in the case where there are already estimations

of sub-groups and we would like to aggregate them. It is worth mentioning

that fitting a sub-group is subject to same principles of fitting whole group in

that we should refer to the species literature, expert opinion, and statistical

assumptions, along with pilot experimentations for specifying the distributional

assumptions and parameters’ values.

3. Combine the resultant samples of the fitting, and check how much the di↵erence

would be between C⇤ ( out of the usual fitting of the whole category) and

C⇤
S1 + S2 (out of the combined fitting of the two splitted taxa).
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Merging Scheme:

1. At a given design (such as the design of World-A), generate two other artificial

worlds (as subgroups or taxa) independently - namely M1 and M2 - according

to the same design of the given world but with di↵erent number of species

denoted by CM1 and CM2 for each taxon respectively, where C = CM1 + CM2.

However, the generating stage of the subgroups is a challenging stage in this

scheme due to the ambiguity in how to create a subgroup of the same design of

the whole category. Therefore, in addition to using two di↵erent values of the

number of species (CM1 and CM2) in generating the subgroups, three attempts

are made to approach what we call it “same design”:

⌅ Treatment (1): For generating each taxon, keep the same seed and same

parametrization of the given whole category, except for the parameters of

the latent log-e↵ort process. For the parameters of this process, choose

values such that the sum of the e↵orts means of the two taxa equals the

e↵ort mean of the whole category i.e. exp(µL1 + �2
L/2)whole = exp(µL1 +

�2
L/2)M1+exp(µL1+�

2
L/2)M2. We borrowed this treatment from the splitting

scheme, which is motivated by the idea of splitting the e↵ort mean of the

whole category over the two taxa so that, in the aggregating stage, the

parametrization of the whole category will be kept in the combined taxa.

⌅ Treatment (2): For generating each taxon, keep the same parametrization

of the given whole category, but use di↵erent seeds. This treatment is moti-

vated by the idea of using the parametrization of the given whole category

as a reference point in characterizing the subgroups to be able to perform

the fitting stage for these subgroups.

⌅ Treatment (3): For generating each taxon, keep the same seed and same

parametrization of the given whole category. This treatment is motivated

by the idea of achieving P (CM1 | all data) and P (CM2 | all data) in order to

check the additivity property through checking whether that P (C |all data)
= P (CM1 + CM2 | all data). In generating each taxon, fixing every thing

(the seed and the parametrization) to be the same as the ones of the whole

category should, in theory, provide us with “all data”. However, satisfying

this is not completely achievable since the number of discoveries is directly
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a↵ected by the number of species which is di↵erent in the two taxa from the

whole category i.e. {all data}whole > {all data}Mi since {all data}whole =

{t,x}, while {all data}Mi = {ti,x}, where i = 1, 2.

2. Fit each taxon separately, then derive the posterior distribution of CM1 and

CM2 and compute their posterior of estimation C⇤
M1 and C⇤

M2, respectively.

3. Merge the two taxa by combining their resultant samples of the fitting, and

check how much the di↵erence between C⇤ (out of the usual fitting of the whole

category) and C⇤
M1 +M2 (out of the merged fitting of the two taxa).

The above two schemes are exactly followed in World-A and World-B as will

be detailed in the following Section 5.3.1 and Section 5.3.2, respectively. In World-

C, we faced some challenges due to having skewness in the estimated posterior

distribution, and adapting the (50%, 50%) division in creating two subgroups.

Thus, we followed a special treatment for World-C to measure the additivity

property as will be explained in Section 5.3.3. However, this part motivated some

extended analysis for World-A and World-B as we will see in the last Section 5.3.4.

Note that holistic-view plots and results are available in Appendix B, Section B.4.

5.3.1 Additivity in World-A Design:

In the Splitting Scheme, World-A is randomly split into taxon S1 and taxon

S2 which represent 70% and 30%, respectively, of the whole category (World-A),

so that CS1 = 7000 and CS2 = 3000. Figure 5.11 shows the number of discoveries

Figure 5.11: The resulting data of the Splitting Scheme of World-A.
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and the number of authors of the two taxa after the splitting procedure. As

we mentioned in the introduction of the splitting scheme, we need to choose

di↵erent parameters for the e↵ort process in the two taxa such that the e↵ort

mean after the aggregation stage would be the same as the e↵ort mean of the

whole category. The e↵ort mean of World-A ' exp(5 + (0.1)2/2)whole ' 149.2,

thus we need to specify values for µL1 and �L in taxon S1 such that its e↵ort

mean = exp(µL1 +�
2
L/2)S1 ' 70%⇥ exp(5+(0.1)2/2)whole ' 104.4, and values for

µL1 and �L in taxon S2 such that its e↵ort mean = exp(µL1 + �2
L/2)S2 = 30% ⇥

exp(5+ (0.1)2/2)whole ' 44.7. However, since the e↵ort mean is just one equation

in two variables, the number of solutions are infinite. Thus, we needed to consider

additional constraints which is “approximately maintaining the percentage of the

discoveries”. In World-A, the percentage of the discoveries ' 44.7%, and after the

splitting the percentage of the discoveries ' 45.4% and 42.9% in taxon S1 and S2,

respectively. Therefore, we need to specify values for µL1 and �L in taxon S1 and

taxon S2 such that we can closely maintain the above percentages, individually at

each taxon and totally after aggregating the two taxa. After several trials (that

include proposing a set of parameters’ values, re-generating S1 and S2 under

the candidate values, and verifying the e↵ort means and the percentage of the

discoveries), we found that the following parametrization (Table 5.4) seems to be

the best choice that approximately maintain the targeted e↵ort mean and the

percentage of the discoveries.

Table 5.4: Parametrization of whole category vs. two taxa of World-A.

In taxon S1, the e↵ort mean ' exp(4.64 + (0.094)2/2)S1 ' 104 and the dis-

covery percentage ' 46.2%, while in taxon S2, the e↵ort mean ' exp(3.82 +

(0.089)2/2)S2 ' 45.8 and the discovery percentage ' 40.4%. Hence, in this

selected parametrization, after aggregating the two taxa, the total e↵ort mean

' exp(4.64 + (0.094)2/2)S1 + exp(3.82 + (0.089)2/2)S2 ' 149.8 with total discov-

ery percentage ' (46.2% + 40.4%)/2 ' 43.3% which are very close to the given

ones (149.2 and 44.7%, respectively) in the whole category of World-A. Figure
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5.12 shows the fitting results (according to the above selected parametrization) of

each taxon, which seem to be successful estimations at which the posterior mean

and mode are close to the true values in both taxa, more details are available in

Group B.8, Appendix B.

Figure 5.12: The fitting stage in the Splitting Scheme of the two taxa in World-A.

Going to the final stage of the splitting scheme, we got very close results

between the fitted whole category and the aggregated fitted taxa, as shown in

Figure 5.13. It seems that the central tendency measures of the whole category

and the aggregated fitted taxa are very close especially the posterior means at

Figure 5.13: The aggregating stage of the Splitting Scheme showing the final results of fitting the whole category

and the combined fitting of the two taxa in World-A.
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which C⇤ = 10, 320 for the whole category, while C⇤
S1+S2 = 10, 436. Although

the aggregation treatment includes more uncertainty due to fitting two distribu-

tions that are associated with two Monte Carlo errors instead of one, it seems

that the successful fitting of both resulted in less variational estimation (about

2.4 million) compared to the whole category fitting (about 3.4 million). This

di↵erence in the variation justifies the little di↵erence in the CDFs curves of the

whole category and the aggregated taxa fitting, in the right bottom of Figure 5.13.

With respect to the KLD metric, is computed in both directions and we found that

KLD(P (C|rest)|P (CS1+S2|rest)) = 0.003035 and KLD(P (CS1+S2|rest)|P (C|rest))
= 0.003163 i.e. the amount of the information lost when using the whole category

distribution instead of the combined taxa distribution is approximately similar to

vice versa, which indicates the very closeness of these two distributions.

In the Merging Scheme - Treatment (1), we adopted the same idea of split-

ting the e↵ort mean, as explained in the introduction of the current section. Two

sub-artificial worlds, taxon M1 T(1) and taxon M2 T(1), are generated “indepen-

dently” according to the same parametrization of S1 and S2, respectively, that

are used in Table 5.4, where CM1 T (1) = 7000 and CM2 T (1) = 3000, as shown in

Figure 5.14.

Figure 5.14: The resulting data of the Merging Scheme - Treatment (1) of World-A design.
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It is worth mentioning that M1 T(1) and M2 T(1) are generated with the

same seed that is used in generating the whole category (World-A). By compar-

ing the top plot with the bottom plot of the left panel in this figure, we can

see that there are still some di↵erences between the observed data resulting from

aggregating taxon M1 T(1) and taxon M2 T(1), and the data of the original

world (World-A), where the current number of discoveries of the original world is

D = 4, 468, while in the combined world is DM1 T (1)+M2 T (1) = 4, 448. However,

they are similar in the general pattern and they both share the same seed, same

parameters of the sampling-discovery process, and almost the same e↵ort mean,

where exp(4.64 + (0.094)2/2)M1 T (1) + exp(3.82 + (0.089)2/2)M2 T (1) ' 149.8 and

exp(5+ (0.1)2/2)whole ' 149.2. Figure 5.15 shows the fitting results of each taxon

which seem to be successful estimations, but with little over-estimation in taxon

M1 T(1) and little under-estimation in M2 T(1), see Group B.8, Appendix B.

Figure 5.15: The fitting stage in the Merging Scheme - Treatment (1) of the two taxa in World-A.

Going to the final stage of the merging scheme - treatment (1), we also got

close results between the fitted whole category and the aggregated fitted taxa,

as shown in Figure 5.16, but with little over-estimation at which the posterior

means C⇤ = 10, 320 for the whole category and C⇤
M1 T (1)+M2 T (1) = 10, 738 for

the combined taxa. Again, it seems that the aggregated fitting resulted in less

variational estimation (about 2.6 million) compared to the fitting of the whole

category (about 3.4 million), which justifies the di↵erence in the CDFs curves of

the whole category and the aggregated taxa fitting, in the right bottom of Figure

5.16. We also computed the KLD metric in both directions and we found that

KLD(P (C|rest)|P (CM1 T (1)+M2 T (1)|rest)) = 0.001066 and KLD(P (CM1 T (1)+M2 T (1)

|rest) | P (C|rest) ) = 0.001061 which means that the amount of the information
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lost when using the whole category distribution instead of the combined taxa dis-

tribution is approximately close to vice versa, therefore, indicating the closeness

of these two distributions.

Figure 5.16: The aggregating stage of the Merging Scheme - Treatment (1) showing the final results of fitting

the whole category and the combined fitting of the two taxa in World-A.

In the Merging Scheme - Treatment (2), two sub-artificial worlds, taxon

M1 T(2) and taxon M2 T(2), of the same design as World-A are generated inde-

pendently such that CM1 T (2) = 7000 and CM2 T (2) = 3000. They have the exact

parametrization of World-A, but di↵erent seeds. After multiple trials with a vari-

ety of seeds, we managed to create two worlds that are close enough to represent

subgroups of the whole category (World-A), taxon M1 T(2) with seed=94 and

taxon M2 T(2) with seed= 76, while the whole category is of seed=1, as shown

in Figure 5.17. By comparing the top plot with the bottom plot of the left panel

in this figure, we can see that the observed data resulting from aggregating taxon

M1 T(2) and taxon M2 T(2) is di↵erent in details from the data of the original

world (World-A), where the current number of discoveries of the original world is

D = 4, 468, while in the combined world is DM1 T (2)+M2 T (2) = 4, 924. However,

they are similar in the general pattern and they are considered samples from the
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same underlying process.

Figure 5.17: The resulting data of the Merging Scheme - Treatment (2) of World-A design.

Figure 5.18 shows the fitting results of each taxon which seem to be successful

estimations at which the posterior mean and mode are close to the true values in

both taxa, more details are available in Group B.9, Appendix B.

Figure 5.18: The fitting stage in the Merging Scheme - Treatment (2) of the two taxa in World-A.

Going to the final stage of the merging scheme - treatment (2), we also

got close results between the fitted whole category and the aggregated fitted

taxa, as shown in Figure 5.19. It seems that the central tendency measures

are very close with posterior means C⇤ = 10, 320 for the whole category, and

C⇤
M1 T (2)+M2 T (2) = 10, 517 for the combined taxa. Again, it seems that the aggre-

gated fitting resulted in less variational estimation (about 2.4 million) compared
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to the fitting of the whole category (about 3.4 million), which justifies the little dif-

ference in the CDFs curves of the whole category and the aggregated taxa fitting,

in the right bottom of Figure 5.19. We also computed the KLD metric in both di-

rections and we found that KLD(P (C|rest) |P (CM1 T (2)+M2 T (2)|rest)) = 0.003933

and KLD( P (CM1 T (2)+M2 T (2) |rest) | P (C|rest) ) = 0.003968 which means that

the amount of the information lost when using the whole category distribution

instead of the combined taxa distribution is approximately similar to vice versa,

therefore, indicating the closeness of these two distributions.

Figure 5.19: The aggregating stage of the Merging Scheme - Treatment (2) showing the final results of fitting

the whole category and the combined fitting of the two taxa in World-A.

In the Merging Scheme - Treatment (3), again two sub-artificial worlds,

taxon M1 T(3) and taxon M2 T(3), of the same design as World-A are gener-

ated independently such that CM1 T (3) = 7000 and CM2 T (3) = 3000. They have

the exact parametrization of World-A with the same seed=1. Figure 5.20 shows

the generated number of discoveries and the number of authors of the two taxa,

as well as the fitting results of each taxon which seem to be successful estima-

tions, more details are available in Group B.9, Appendix B. In this treatment, the

current number of discoveries of the original world (World-A) is D = 4, 468, while

in the combined world is DM1 T (3)+M2 T (3) = 5, 166. In addition, we can see in
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the top panel of Figure 5.20 that the number of authors is the same in both taxa,

which is a results of conditioning on the whole data as detailed previously in the

explanation of Treatment (3). However, in the aggregating stage, we are inter-

ested in combining the fitting results i.e. combining the posterior distributions of

the two taxa not combining the given datasets.

Figure 5.20: The generated data and the results of the fitting stage of the Merging Scheme - Treatment (3) of

World-A design. The left panel belongs to taxon M1 T(3), while the right panel belongs to taxon M2 T(3).

Going to the final stage of the merging scheme - treatment (3), we also

got very close results between the fitted whole category and the aggregated fit-

ted taxa, as shown in Figure 5.19. It seems that the central tendency measures

are very close with posterior means C⇤ = 10, 320 for the whole category, and

C⇤
M1 T (3)+M2 T (3) = 10, 397 for the combined taxa. Unlike the previous treat-

ments, it seems that the aggregated fitting resulted in estimated variation that

is equivalent to the one of fitting the whole category, where the former is about

3.6 million, while the latter is about 3.4 million. This reflects having the almost

identical CDFs curves of the whole category and the aggregated taxa fitting, in

the right bottom of Figure 5.21. We also computed the KLD metric in both direc-

tions and we found that KLD( P (C|rest) | P (CM1 T (3)+M2 T (3) |rest) ) = 0.002981

and KLD(P (CM1 T (3)+M2 T (3)|rest) |P (C|rest) ) = 0.002918 which means that the

amount of the information lost when using the whole category distribution in-
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stead of the combined taxa distribution is almost as the same as vice versa, and

therefore, indicates the high closeness of these two distributions.

Figure 5.21: The aggregating stage of the Merging Scheme - Treatment (3) showing the final results of fitting

the whole category and the combined fitting of the two taxa in World-A.

5.3.2 Additivity in World-B Design:

In the Splitting Scheme, World-B is randomly split into taxon S1 and taxon

S2 which represent 60% and 40%, respectively, of the whole category (World-B), so

that CS1 = 60, 000 and CS2 = 40, 000. Figure 5.22 shows the number of discoveries

and the number of authors of the two taxa after the splitting procedure. As we did

in World-A, we need to choose di↵erent parameters for the e↵ort process in the

two taxa such that the e↵ort mean after the aggregation stage would be the same

as the e↵ort mean of the whole category. The e↵ort mean of World-B ' exp(7 +

(0.15)2/2)whole ' 1109, thus we need to specify values for µL1 and �L in taxon S1

such that its e↵ort mean = exp(µL1 + �2
L/2)S1 ' 60%⇥ exp(7 + (0.15)2/2)whole '

665.4, and values for µL1 and �L in taxon S2 such that its e↵ort mean = exp(µL1+

�2
L/2)S2 = 40%⇥ exp(7 + (0.15)2/2)whole ' 443.6. However, since the e↵ort mean

is just one equation in two variables, the number of solutions are infinite. Thus,
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we needed to consider additional constraints which is “approximately maintaining

the percentage of the discoveries”. In World-B, the percentage of the discoveries

' 31.9%, and after splitting the percentage of the discoveries ' 31.9% and 31.8%

in taxon S1 and S2, respectively. Therefore, we need to specify values for µL1

and �L in taxon S1 and taxon S2 such that we can closely maintain the above

percentages, individually at each taxon and totally after aggregating the two taxa.

Figure 5.22: The resulting data of the Splitting Scheme of World-B.

After several trials (that include proposing a set of parameters’ values, re-

generating S1 and S2 under the candidate values, and verifying the e↵ort means

and the percentage of the discoveries), we found that the parametrization shown

in Table 5.5 seems to be the best choice that approximately maintain the targeted

e↵ort mean and the percentage of the discoveries. In taxon S1, the e↵ort mean

' exp(6.49+ (0.146)2/2)S1 ' 665.6 and the discovery percentage ' 29.3%, while

Table 5.5: Parametrization of whole category vs. two taxa of World-B.

in taxon S2, the e↵ort mean ' exp(6.08+(0.142)2/2)S2 ' 441.5 and the discovery

percentage ' 31.8%. Hence, in this selected parameters, after aggregating the two

taxa, the total e↵ort mean ' exp(6.49+(0.146)2/2)S1+exp(6.08+(0.142)2/2)S2 '
1107 with total discovery percentage ' ( 29.3% + 31.8% )/2 ' 30.6% which

are very close to the given ones (1109 and 31.9%, respectively) in the whole

category. Figure 5.23 shows the fitting results (according to the above selected
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parametrization) of each taxon, which seem to be successful estimations at which

the posterior mean and mode are close to the true values in both taxa, more

details are available in Group B.11, Appendix B

Figure 5.23: The fitting stage in the Splitting Scheme of the two taxa in World-B.

Going to the final stage of the splitting scheme, we got close results between

the fitted whole category and the aggregated fitted taxa, as shown in Figure

5.24. It seems that the central tendency measures of the whole category and the

aggregated fitted taxa are close where, for example, the posterior means C⇤ =

109, 793 for the whole category and C⇤
S1+S2 = 107, 554 for the combined fitting.

In addition, the successful fitting of both resulted in less variational estimation

Figure 5.24: The aggregating stage of the Splitting Scheme showing the final results of fitting the whole category

and the combined fitting of the two taxa in World-B.
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(about 0.75 billion) compared to the whole category fitting (about 1.4 billion).

The di↵erence in the variation justifies the di↵erence in the CDFs curves of the

whole category and the aggregated taxa fitting, in the right bottom of Figure 5.24.

With respect to the KLD metric, it is computed in both directions and found that

KLD(P (C|rest)|P (CS1+S2|rest)) = 0.001677, while KLD(P (CS1+S2|rest)|P (C|rest)
) = 0.001777 i.e. the amount of the information lost when using the whole cate-

gory distribution instead of the combined one is close to vice versa, which indicates

the closeness of these two distributions.

In the Merging Scheme - Treatment (1), we adopted the same idea of split-

ting the e↵ort mean. Two sub-artificial worlds, taxon M1 T(1) and taxon M2 T(1),

are generated “independently” according to the same parametrization of S1 and

S2, respectively, that are used in Table 5.5, where CM1 T (1) = 60, 000 and CM2 T (1)

= 40, 000. M1 T(1) and M2 T(1) are generated with the same seed that is used

in generating the whole category (World-B), see Figure 5.25.

Figure 5.25: The resulting data of the Merging Scheme - Treatment (1) of World-B design.

By comparing the top plot with the bottom plot of the left panel in this

figure, we can see that there are still some di↵erences between the observed data

resulting from aggregating taxon M1 T(1) and taxon M2 T(1) and the data of the
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original world (World-B), where the current number of discoveries of the original

world is D = 31, 865, while in the combined world is DM1 T (1)+M2 T (1) = 30, 269.

However, they are similar in the general pattern and they both share the same

seed, same parameters of the sampling-discovery process, and almost the same

e↵ort mean, where exp(6.49+(0.146)2/2)M1 T (1)+exp(6.08+(0.142)2/2)M2 T (1) '
1107 and exp(7 + (0.15)2/2)whole ' 1109. Figure 5.26 shows the fitting results of

each taxon which seem to be successful estimations, see Group B.11, Appendix B

for more details.

Figure 5.26: The fitting stage in the Merging Scheme - Treatment (1) of the two taxa in World-B.

Going to the final stage of the merging scheme - treatment (1), we also got

approximately close results between the fitted whole category and the aggregated

fitted taxa, as shown in Figure 5.27, at which the posterior means C⇤ = 109, 793

for the whole category and C⇤
M1 T (1)+M2 T (1) = 105, 199 for the combined taxa.

Again, it seems that the aggregated fitting resulted in less variational estimation

(about 0.64 billion) compared to the fitting of the whole category (about 1.4 bil-

lion), which justifies the di↵erence in the CDFs curves of the whole category and

the aggregated taxa fitting, in the right bottom of Figure 5.27. We also com-

puted the KLD metric in both directions and we found that in one direction the

KLD( P (C|rest) | P (CM1 T (1)+M2 T (1)|rest) ) = 0.001512, while in the other direc-

tion the KLD( P (CM1 T (1)+M2 T (1)|rest) |P (C|rest)) = 0.001554 which means that

the amount of the information lost when using the whole category distribution

instead of the combined taxa distribution is approximately close to vice versa, and

therefore, indicating the closeness of these two distributions.
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Figure 5.27: The aggregating stage of the Merging Scheme - Treatment (1) showing the final results of fitting

the whole category and the combined fitting of the two taxa in World-B.

In the Merging Scheme - Treatment (2), two sub-artificial worlds, taxon

M1 T(2) and taxon M2 T(2), of the same design as World-B are generated in-

dependently such that CM1 T (2) = 60, 000 and CM2 T (2) = 40, 000. They have

the exact parametrization of World-B, but di↵erent seeds. After multiple trials

with a variety of seeds, we managed to create two worlds that are close enough

to represent subgroups of the whole category (World-B), taxon M1 T(2) with

seed=�1365400275 and taxon M2 T(2) with seed= �1365400324, while the whole

category is of seed= �1365400193, as shown in Figure 5.28. By comparing the

top plot with the bottom plot of the left panel in this figure, we can see that

the observed data resulting from aggregating taxon M1 T(2) and taxon M2 T(2)

are di↵erent in details from the data of the original world (World-B), where the

current number of discoveries of the original world is D = 31, 865, while in the

combined world is DM1 T (2)+M2 T (2) = 30, 963. However, they are similar in the

general pattern and they both are considered as samples from the same underly-

ing process. Figure 5.29 shows the fitting results of each taxon which seem to be
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successful estimations, but with little under-estimation in the posterior mode of

both taxon M1 T(2) and taxon M2 T(2), see Group B.12, Appendix B.

Figure 5.28: The resulting data of the Merging Scheme - Treatment (2) of World-B design.

Figure 5.29: The fitting stage in the Merging Scheme - Treatment (2) of the two taxa in World-B.

Going to the final stage of the merging scheme - treatment (2), we also got

approximately close results between the fitted whole category and the aggregated

fitted taxa, as shown in Figure 5.30. It seems that the central tendency measures

are very close with posterior means C⇤ = 109, 793 for the whole category, and

C⇤
M1 T (2)+M2 T (2) = 101, 513 for the combined taxa. Again, it seems that the

aggregated fitting resulted in a less variational estimation (about 0.62 billion)

compared to the fitting of the whole category (about 1.4 billion), which justifies

the di↵erence in the CDFs curves of the whole category and the aggregated taxa

fitting, in the right bottom of Figure 5.30. We also computed the KLD metric in
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both directions and we found that KLD( P (C| rest) | P (CM1 T (2)+M2 T (2)|rest) ) =
0.001933 and KLD(P (CM1 T (2)+M2 T (2)|rest)|P (C|rest) ) = 0.002066 which means

that the amount of the information lost when using the whole category distribution

instead of the combined taxa distribution is not that far to vice versa situation,

and therefore, indicating a sort of closeness of these two distributions.

Figure 5.30: The aggregating stage of the Merging Scheme - Treatment (2) showing the final results of fitting

the whole category and the combined fitting of the two taxa in World-B.

In the Merging Scheme - Treatment (3), again two sub-artificial worlds,

taxon M1 T(3) and taxon M2 T(3), of the same design as World-B are gener-

ated independently such that CM1 T (3) = 60, 000 and CM2 T (3) = 40, 000. They

have the exact parametrization of World-B with the same seed=�1365400193.

Figure 5.31 shows the generated number of discoveries and the number of authors

of the two taxa, as well as the fitting results of each taxon which seem to be

successful estimations, more details are available in Group B.12, Appendix B. In

this treatment, the current number of discoveries of the original world (World-B)

is D = 31, 865, while in the combined world is DM1 T (3)+M2 T (3) = 39, 412. In

addition, we can see in the top panel of Figure 5.31 that the number of authors

is the same in both taxa, which is the result of conditioning on the whole data as

detailed previously in the explanation of Treatment (3). However, in the aggre-
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gating stage, we are interested in combining the fitting results i.e. combining the

posterior distributions of the two taxa not combining the given datasets.

Figure 5.31: The generated data and the results of the fitting stage of the Merging Scheme - Treatment (3) of

World-B design. The left panel belongs to taxon M1 T(3), while the right panel belongs to taxon M2 T(3).

Going to the final stage of the merging scheme - treatment (3), we also

got very close results between the fitted whole category and the aggregated fit-

ted taxa, as shown in Figure 5.32. It seems that the central tendency measures

are very close with posterior means C⇤ = 109, 793 for the whole category, and

C⇤
M1 T (3)+M2 T (3) = 108, 551 for the combined taxa. Compared with the previ-

ous treatments, it seems that the aggregated fitting resulted in estimated varia-

tion that is closer to the one of fitting the whole category, where the former is

about 1.4 billion, while the latter is about 0.85 billion. This reflects the high

closeness in the CDFs curves of the whole category and the aggregated taxa fit-

ting (closer than the ones of the previous treatments in World-B), in the right

bottom of Figure 5.32. We also computed the KLD metric in both directions

and we found that KLD( P (C|rest) | P (CM1 T (3)+M2 T (3)|rest) ) = 0.002033 and

KLD( P (CM1 T (3)+M2 T (3)| rest) | P (C|rest) ) = 0.002003 which means that the

amount of the information lost when using the whole category distribution in-

stead of the combined taxa distribution is approximately similar to the vice versa,

and therefore, indicating the very closeness of these two distributions.
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Figure 5.32: The aggregating stage of the Merging Scheme - Treatment (3) showing the final results of fitting

the whole category and the combined fitting of the two taxa in World-B.

5.3.3 Additivity in World-C Design:

In the Splitting Scheme, World-C is randomly split into taxon S1 and taxon

S2, at which each taxon represents 50% of the whole category (World-C), so that

CS1 = CS2 = 25, 000. Figure 5.33 shows the number of discoveries and the num-

ber of authors of the two taxa after the splitting procedure. Again, we need to

choose di↵erent parameters for the e↵ort process in the two taxa such that the ef-

fort mean after the aggregation stage would be the same as the e↵ort mean of the

whole category. The e↵ort mean of World-C ' exp(7+(0.08)2/2)whole ' 1100, and

since we are splitting into equal portions taxa (50% & 50%), we need to specify

values for µL1 and �L only once for both taxon S1 and taxon S2 at which the e↵ort

mean = exp(µL1+�
2
L/2)S1 = exp(µL1+�

2
L/2)S2 ' 50%⇥exp(7+(0.08)2/2)whole '

550. Again, the e↵ort mean is just one equation in two variables, so the num-

ber of solutions are infinite. Thus, we need to consider additional constraints
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Figure 5.33: The resulting data of the Splitting Scheme of World-C.

which “approximately maintains the percentage of the discoveries”. In World-C,

the percentage of the discoveries ' 83%, and after the splitting the percentage of

the discoveries ' 82.6% and 83.9% in taxon S1 and S2, respectively. Therefore,

we need to specify values for µL1 and �L in both taxa such that we can closely

maintain the above percentages, individually at each taxon and totally after ag-

gregating the two taxa.

After several trials (that include proposing a set of parameters’ values, re-

generating S1 and S2 under the candidate values, and verifying the e↵ort means

and the percentage of the discoveries), we found that the parametrization shown

in Table 5.6 seems to be the best choice that approximately maintain the targeted

e↵ort mean and the percentage of the discoveries. In both taxa, the e↵ort mean

' exp(6.31 + (0.078)2/2) ' 551.7 and the discovery percentage ' 83.3%. Hence,

in this selected parametrization, after aggregating the two taxa, the total e↵ort

mean ' exp(6.31 + (0.078)2/2)S1 + exp(6.31 + (0.078)2/2)S2 ' 1103 with total

discovery percentage ' (83.3% + 83.3%)/2 ' 83.3% which are very close to the

given ones (1100 and 83%, respectively) in the whole category.

Table 5.6: Parametrization of whole category vs. two taxa of World-C.

Figure 5.34 shows the fitting results (according to the above selected parametriza-

tion) of each taxon, which seem to be successful estimations at which the posterior
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mean and mode are close to the true values in both taxa, more details are available

in Group B.14, Appendix B.

Figure 5.34: The fitting stage in the Splitting Scheme of the two taxa in World-C.

Going to the final stage of the splitting scheme, we got acceptable re-

sults, as shown in Figure 5.35. Although, we could not maintain the skewness

in the aggregated fitting, the central tendency measures of the whole category

and the aggregated fitted taxa are very close, at which the posterior means are

C⇤
whole (mean) = 53, 161 and C⇤

S1+S2 (mean) = 53, 442, while the posterior modes are

Figure 5.35: The aggregating stage of the Splitting Scheme showing the final results of fitting the whole category

and the combined fitting of the two taxa in World-C.
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C⇤
whole (mode) = 48, 969 and C⇤

S1+S2 (mode) = 51, 834 for the whole category and

the aggregated fitting, respectively. Again, the aggregation treatment includes

more uncertainty due to fitting two distributions that are associated with two

Monte Carlo errors instead of one, but it seems that the successful fitting of

both resulted in less variational estimation (about 36 million) compared to the

whole category fitting (about 59 million). The di↵erence in the variation justi-

fies the di↵erence in the CDFs curves of the whole category and the aggregated

taxa fitting, in the right bottom of Figure 5.35. With respect to the KLD met-

ric, it is computed in both directions and we found that in one direction the

KLD( P (C|rest) | P (CS1+S2|rest) ) = 0.010169, while in the other direction the

KLD(P (CS1+S2|rest) |P (C|rest) ) = 0.011392 i.e. the amount of the information

loss when using the whole category distribution instead of the combined taxa dis-

tribution is not that far to vice versa situation, which indicates a sort of closeness

of these two distributions.

In the Merging Scheme - Treatment (1), we adopted the same idea of split-

ting the e↵ort mean. Since we are adopting equal portions of taxa (50% & 50%),

where the number of species in the two taxa are equal, their e↵ort means are

equal, and all the parametrization sets are equal, the generated two taxa will be

identical. Therefore, we only need to generate one sub-artificial world to repre-

sent both taxon M1 T(1) and taxon M2 T(1). This taxon is generated according

to the same parametrization of both S1 and S2 that is used in Table 5.6, where

CM1 T (1) = CM2 T (1) = 25, 000, and with the same seed that is used in generating

the whole category (World-C), as shown in Figure 5.36. Note that since M1 T(1)

= M2 T(1), we will use one notation M T(1) for both of them. By comparing the

top plot with the bottom plot of the left panel in this figure, we can see that the

di↵erences are very small between the observed data resulting from aggregating

two identical taxa i.e. 2 ⇥ M T(1) and the data of the original world (World-

C), where the current number of discoveries of the original world is D = 41, 620,

while in the combined world is DM T (1)+M T (1) = 41, 630. In addition, they are

very similar in the general pattern and they both share the same seed, same

parameters of the sampling-discovery process, and almost the same e↵ort mean,

where 2⇥exp(6.31+(0.078)2/2)M T (1) ' 1103 and exp(7+(0.08)2/2)whole ' 1100.
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The right bottom plot of Figure 5.36 shows the fitting results of M T(1) which

seems to be successful estimation, see details in Group B.14, Appendix B.

Figure 5.36: The resulting data of the Merging Scheme - Treatment (1) of World-C design.

Going to the final stage of the merging scheme - treatment (1), we got al-

most identical results between the fitted whole category and the aggregated fitted

taxa, as shown in Figure 5.37, at which the posterior means C⇤ = 53, 161 for

the whole category and C⇤
M T (1)+M T (1) = 53, 376 for the combined taxa. Unlike

World-A and World-B, when we used two identical taxa, the aggregated fitting

resulted in equivalent variation to the one of the whole category, which is a re-

flection of having equivalent CDFs curves of the whole category and the aggre-

gated taxa fitting, in the right bottom of Figure 5.37. With respect to the KLD

metric, it also reflects this high closeness of these two distributions, at which

KLD(P (C|rest) |P (CM T (1)+M T (1)|rest) ) = 0.000758 and KLD(P (CM T (1)+M T (1)

|rest) | P (C|rest) ) = 0.000720.
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Figure 5.37: The aggregating stage of the Merging Scheme - Treatment (1) showing the final results of fitting

the whole category and the combined fitting of the two taxa in World-C.

In the Merging Scheme - Treatment (2), we also adopted the same idea of

generating two identical sub-artificial worlds to represent taxon M1 T(2) and

taxon M2 T(2). For simplicity, we will use one notation, M T(2), to express

both of them since they are identical. This sub-artificial world is independently

generated from the same design as World-C such that CM T (2) = 25, 000. It has

the exact parametrization of World-C, but with di↵erent seed. After multiple tri-

als with a variety of seeds, we managed to create a world that is close enough to

represent a subgroup that occupies 50% of the whole category (World-C). Taxon

M T(2) is of seed=209523980, while the whole category is of seed=209522386, as

shown in Figure 5.38. By comparing the top plot with the bottom plot of the

left panel in this figure, we can see that the observed data resulting from aggre-

gating the two identical taxa is di↵erent in details from the data of the original

world (World-C), where the current number of discoveries of the original world is

D = 41, 620, while in the combined world is DM T (2)+M T (2) = 41, 904. However,

they are similar in the general pattern and they both are considered as samples

from the same underlying process. The right bottom plot of Figure 5.38 shows
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the fitting results of M T(2) which seems to be successful estimation, more details

are available in Group B.14, Appendix B.

Figure 5.38: The resulting data of the Merging Scheme - Treatment (2) of World-C design.

Going to the final stage of the merging scheme - treatment (2), we also got

almost identical results for the fitted whole category and the aggregated fitted

taxa, as shown in Figure 5.39, at which the posterior means C⇤ = 53, 161 for the

whole category and C⇤
M T (2)+M T (2) = 52, 594 for the combined taxa. Again, when

we used two identical taxa, the aggregated fitting resulted in equivalent variation

to the one of the whole category, which reflects having equivalent CDFs curves of

the whole category and the aggregated taxa fitting, in the right bottom of Figure

5.39. With respect to the KLD metric, it also reflects this high closeness of these

two distributions, at which KLD( P (C|rest) |P (CM T (2)+M T (2)|rest) ) = 0.002563

and KLD( P (CM T (2)+M T (2)|rest) | P (C|rest) ) = 0.002525.
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Figure 5.39: The aggregating stage of the Merging Scheme - Treatment (2) showing the final results of fitting

the whole category and the combined fitting of the two taxa in World-C.

In the Merging Scheme - Treatment (3), two identical sub-artificial worlds

are created to represent taxon M1 T(3) and taxon M2 T(3), and also we used

a single notation, M T(3), to express both. The taxon M T(3) is independently

generated from the same design as World-C and has the exact parametrization

of World-C with the same seed=209522386, such that CM T (3) = 25, 000. Figure

5.40 shows the generated number of discoveries and the number of authors of the

Figure 5.40: The generated data and the fitting results of the Merging Scheme - Treatment (3) of World-C.
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taxon M T(3), as well as the fitting results which seems to be successful estima-

tion, see more details in Group B.14, Appendix B. As we mentioned before, in

the current treatment we are interested in combining the fitting results i.e. com-

bining the posterior distributions of the two taxa not combining the given datasets.

Going to the final stage of the merging scheme - treatment (3), we got

close (but a sort of truncated) results between the fitted whole category and the

aggregated fitted taxa, as shown in Figure 5.41. The interpretation of this trun-

cated pattern is that while the original artificial world (World-C) involves a high

percentage of discoveries 83.24% at which D = 41, 620 out of number of species

C = 50, 000, generating 50% subgroup from this world (under treatment (3))

resulted in a much higher number of discoveries 90.5% at which D = 22, 617

out of a number of species C = 25, 000. Therefore, the skewness in the sub-

group is much higher than it is in the original world, where the concentration

around the actual value of the number of species is very close to the left-end of

the distribution. Consequently, in the aggregation stage, the combined number

of discoveries DMT (3)+MT (3) = 45, 234 is much higher than the one of the original

Figure 5.41: The aggregating stage of the Merging Scheme - Treatment (3), first trial, showing the final results

of fitting the whole category and the combined fitting of the two taxa in World-C.
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world D = 41, 620, and is very close to the true value C = 50, 000, which justifies

the missing of the first bar in the left-end of the combined distribution. In other

words, this bar covers the range [40, 000 � 45, 000], while the support of com-

bined distribution starts beyond this range from DMT (3)+MT (3) = 45, 234. This

reflects getting almost identical (but shifted) CDFs curves and box-plots of the

whole category and the aggregated taxa fitting, in the bottom panel of Figure 5.41.

Despite of the truncated and shifted patterns, it seems that the central ten-

dency measures are still correctly informative, indicating very close results for

the whole category (e.g. posterior means C⇤ = 53, 161) and the combined taxa

(e.g. posterior means C⇤
M T (3)+M T (3) = 57, 159). We also computed the KLD

metric in both directions and we found that KLD( P (C|rest) | P (CM T (3)+M T (3)|
rest)) = 0.005493 and KLD(P (CM T (3)+M T (3)|rest) |P (C|rest)) = 0.005747 which

means that the amount of the information loss when using the whole category dis-

tribution instead of the combined taxa distribution is approximately close to vice

versa, and therefore, indicates the closeness of these two distributions, where the

shape of the CDFs are very close except that the aggregated one is shifted due

the support issue that explained above.

To remedy the issue due to skewness, an attempt is made by re-fitting taxon

M T(3) but with wider range starting from 21, 000 instead of 22, 617 so that in the

aggregation stage, we get a distribution that has a support starting from 42, 000

instead of 45, 234 to be able to include the missing bar in the above distribution,

as shown in Figure 5.42. Although, we got tidier shape of the combined distribu-

tion, enlarging the range of the fitting resulted in having higher variation (about

89 million) in the combined distribution than the one in the original distribution

(about 59 million). This reflects having the di↵erences in CDFs curves and box-

plots between the whole category and the aggregated taxa fitting, in the bottom

panel of Figure 5.42. However, it seems that the central tendency measures of the

combined fitting are still very close to the whole category with posterior means

C⇤
M1 T (3)+M2 T (3) = 55, 385, and the KLD metric still reflects a closeness in these

two distributions, where KLD(P (C|rest) |P (CM T (3)+M T (3)|rest)) = 0.002093 and

KLD( P (CM T (3)+M T (3)| rest) | P (C|rest) ) = 0.002150.
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Figure 5.42: The aggregating stage of the Merging Scheme - Treatment (3), second trial, showing the final results

of fitting the whole category and the combined fitting of the two taxa in World-C.

to make a space only to make a space only to make a space only

5.3.4 Additional Attempts in World-A & World-B:

Since measuring the model additivity is a challenging task in light of the complex-

ity and high dimensionality of our proposed model, we tried to seek multiple ways

to accomplish this task comprehensively. Throughout Section 5.3, we already

adopted two main schemes with three treatments in one of them. However, we

saw a noticeable performance in World-C when we adopted the idea of creating

50%&50% two identical sup-groups in the merging scheme - treatment (1), which

made us curious about using the same procedure in World-A and World-B.

Therefore, in World-A, we generated two identical taxa at which C50%A =

5000 for each, using the same seed and the same parametrization set of the whole

category except for the e↵ort mean where we used only the half i.e. {µL1 =

4.31, �L = 0.092}. In the fitting stage, we also got almost identical results be-

tween the aggregated posterior distribution and the whole category posterior dis-

tribution, as shown in Figure 5.43. Again, the central tendency measures of
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the whole category and the aggregated fitted taxa are very close, at which the

posterior means are C⇤
whole (mean) = 10, 320 and C⇤

50%A (mean) = 10, 269, while

the posterior modes are C⇤
whole (mode) = 9, 970 and C⇤

50%A (mode) = 9, 994 for the

whole category and the aggregated fitting, respectively. With respect to the KLD

metric, it also reflects this high similarity of these two distributions, at which

KLD(P (C|rest)|P (C50%A+50%A|rest)) = 0.0011372 and KLD(P (C50%A+50%A|rest)|
P (C|rest) ) = 0.0011375.

Figure 5.43: The aggregating stage of the Merging Scheme - Treatment (1) with 50% & 50% taxa of World-A,

showing the final results of fitting the whole category and the combined fitting of the two taxa.

In World-B, we also generated two identical taxa at which C50%B = 50, 000

for each, using the same seed and the same parametrization set of the whole

category except for the e↵ort mean where we used only the half i.e. {µL1 =

6.31, �L = 0.143}. In the fitting stage, we got almost identical results between

the aggregated posterior distribution and the whole category posterior distri-

bution, as shown in Figure 5.44. The central tendency measures of the whole

category and the aggregated fitted taxa are very close, at which the posterior

means are C⇤
whole (mean) = 109, 793 and C⇤

50%B (mean) = 110, 030, while the pos-

terior modes are C⇤
whole (mode) = 97, 160 and C⇤

50%B (mode) = 101, 192 for the
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whole category and the aggregated fitting, respectively. With respect to the KLD

metric, it also reflects the very closeness of these two distributions, at which

KLD(P (C|rest) |P (C50%B+50%B|rest) ) = 0.002610 and KLD(P (C50%B+50%B|rest)
| P (C|rest) ) = 0.002677.

Figure 5.44: The aggregating stage of the Merging Scheme - Treatment (1) with 50% & 50% taxa of World-B,

showing the final results of fitting the whole category and the combined fitting of the two taxa.

5.4 Chapter Summary:

This chapter involves three main measurements (accuracy, sensitivity, and ad-

ditivity) in order to describe and evaluate our proposed model. Three artificial

worlds (World-A, World-B, and World-C) are used as subjects of the measuring

experiments to capture a wide range of scenarios in the model performance. In

most of these experiments, the behaviour of the model is generally similar over

the three artificial worlds. However, the similarity is higher between modelling

World-A and World-B, while modelling World-C is slightly distinguished in the

performance due to its skewness that is associated with high proportion of dis-

coveries.
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In the accuracy measure, we explored two aspects of the MC error. The first

one is related to the selected final sample size used for estimating the number of

species, while the second aspect is related to the number of iterations used in the

fitting stage of modelling the number of species from which we obtain our estima-

tion. Through the experiments, we found that all the three artificial worlds share

a similar pattern in which that the estimation seems to be more consistent with

increasing the sample size. However, a slightly biased estimation (overestimation)

occurred with a sample size greater than 1000. It also appears that no significant

enhancement can be made on this estimation beyond the number of iterations

=1, 000, 000. Therefore, choosing the number of iterations to be 1, 000, 000 in the

fitting stage with selecting a final sample of size s = 1000 seems to be a balanced

trade-o↵ to achieve a relatively less MC error with a relatively less biased estima-

tion. See Appendix B, Section B.2 (Groups B.2 to Groups B.5) for more details

and a comprehensive view.

In the sensitivity measure, we explored the behaviour of the estimation

against the mis-parametrization, where we specified 20% over/under the actual

values of the given five parameters, and tested each one at a time with fixing the

rest. Through the experiments, we found that World-C is less sensitive against the

mis-parametrization overall, while World-A and World-B share a similar pattern

of being highly sensitive to the mis-parametrization of two parameters. These two

parameters are the variation of the species abundances, and the expected number

of specimens to be collected per author per year (on a log-scale). Therefore, we

should be careful in choosing the values of these two in such a situation that is sim-

ilar to World-A and World-B. However, although the sensitivity is generally less in

World-C, the existence of the skewness caused relative deviations in the sensitivity

of the log-scale parameters of the latent e↵ort to be slightly higher than their case

in World-A and World-B. Thus, caution is also needed in selecting the values of

these parameters when having skewness in the distribution. See Appendix B, Sec-

tion B.3 (Groups B.6 and Groups B.7) for more details and a comprehensive view.

In the additivity measure, we adopted two main schemes (splitting and

merging), and the merging itself is branches into three treatments. We tried three

di↵erent proportion-divisions in creating sub-groups out of the design of the given
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three artificial worlds. Through the analysis we focused on the results of three

main statistical tools (the summary statistics especially the central tendency ones,

the CDFs curves and box-plots which also reflect the deviation measure, and the

KLD metric). Focusing on the central tendency statistics, we found that in all

the three artificial worlds, all the posterior means and modes values that are ob-

tained from the aggregation step are very close to the true values of the number of

species and to the estimated ones out of the whole category fitting. The derived

values of KLD metric also provided similar implications; a closeness between the

distributions out of the aggregation and the whole category distributions. With

respect to the CDFs curves and box-plots, we found a variation in the results due

to the variation in the standard deviations between the aggregated distributions

and whole category distributions. However, by checking the 95% credible inter-

vals of all these attempts (as shown in Group B.10, Group B.13, and Group B.15

in Appendix B, Section B.4), we found that the limits of the credible intervals

resulting from the aggregation stage are either close our within the credible limits

of the intervals resulting from the whole category fitting.

World-A and World-B are similar in response to the splitting and merging

schemes, while World-C is distinguished in response due to its skewness. There-

fore, in light of the complexity and high dimensionality of our proposed model

and based on the current attempts, it might not be an easy statement to say that

our model is additive, but our approach definitely provides alternative aggregated

estimation that is equivalent to the whole category estimation and within 95%

credible interval of the whole category estimation. However, this is not guaran-

teed without the need for some manual tuning to achieve this result especially in

a real data scenarios (where there might be other hidden factors influencing the

aggregation or estimation). See Appendix B, Section B.4 (Groups B.8 to Groups

B.15) for more details and a comprehensive view.
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Chapter 6

Model Application on Real Data

Heretofore, our proposed model has been analysed, characterized, implemented,

and validated through artificial data in Chapter 4 and Chapter 5. In the cur-

rent chapter, we will continue this process but through real data. In particu-

lar, datasets that are retrieved from two well known inventory systems of bio-

diversity: the Catalogue of Life (CoL) [85] and the World Register of Marine

Species (WoRMS) [86]. The WoRMS contains contributions from 119 overlapped

databases, while the CoL contains contributions from 164 distinct taxonomic

databases, some of them are included in the WoRMS. Each of these inventory

systems involves several attributes to describe species, however, the main ones

are: classification, species name, authority, publication year, and habitat. The

number of species descriptions has been growing since 1735 (the beginning of the

Linnaean taxonomy), in WoRMS, it reached about 460, 722 marine species names,

including synonyms from which 235, 608 are accepted as unique species. In CoL,

it reached about 1, 829, 341 living and 38, 145 extinct species, including common

and synonyms1.

However, two refined non-overlapping subsets from each WoRMS and CoL

are currently available to be a subject of experimentation for our proposed model.

It comprises 426, 815 unique (no synonyms) terrestrial species from CoL databases

including freshwater species, and 173, 401 unique marine species from WoRMS

databases. These species were discovered and for first-time described over 240

years, in the period between 1761 and 2000. The annual numbers of authors

who were involved in these discoveries are also included in these subsets, where

the total number of authors is 505, 372 in the CoL, while it is 62, 285 in the

WoRMS, as shown in Figure 6.1. In the following sections, and based on these

1Data websites are accessed on 2 Sep. 2020.
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given datasets, our proposed model is applied to estimate the number of terrestrial

species (including freshwater) and the number of marine species, in sections 6.1

and 6.4, respectively. Then, in Section 6.5, we seek for a global estimation by

aggregating the above two estimates. This is followed by making comparisons

with some previous work in Section 6.6. However, the CoL dataset is taken in

particular as an example for a chronological analysis and validation of our model

in Section 6.2 and Section 6.3, respectively.

Figure 6.1: Two refined non-overlapping subsets from WoRMS (left) and CoL (right) inventory systems, over

240 years from 1761 to 2000, showing a big di↵erence in the discovery and e↵ort scales between the two subsets.

6.1 Model Fitting for CoL Data

In this section, we apply our model on the CoL dataset, at which we followed

the same distributional specifications that we have detailed in Section 4.1 and

shown in Figure 4.2. Although these specifications are justified by the species

literature, expert opinion, and statistical assumptions, we faced some challenges

in determining some of them such as the size of the domain (determined by the

upper bound of the support, while the lower bound is always determined by the

current number of discoveries D) of the prior uniform distribution for the number

of species and the values of the model parameters. We also faced challenges in

operating the model fitting itself due to computing-wise issues associated with

the parallelization scheme. These two types of challenges are addressed in the

following subsections.
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6.1.1 Challenges in Model specifications

Since we adopted a simple case of dealing with fixed-value parametrization in the

current implementation of our model, we need to elicit five values for the model

parameters, and a value for the size of the prior support. In most cases, it is

not a guarantee to have certain and complete information about these distribu-

tional specifications, thus we started with initial values and operated several pilot

experiments for changing or tuning the selected values. As we learned from the

sensitivity analysis in Section 5.2.1, our model is more sensitive to the variation

of the species abundances �N and the expected number of specimens to be col-

lected per author per year exp(↵). Therefore, we tried to carefully specify those

two parameters by referring to the species literature and the field expert guidance2.

However, it is tricky to summarize exp(↵) in just one fixed value in order to

capture the annual individual taxonomic productivity over 240 years for a large

inventory system such as CoL. Although [1] optimistically stated that a full-time

author might examine a few thousand species in a year, this is not representa-

tive in our situation if we consider at least two main factors: first, the di↵ering

circumstances a↵ecting the number of authors and their taxonomic productivity

over a very long period such as 240 years (some of them are prolific and full-time,

while others are not during such a period); the second factor is the broad variety

of species that are included in the CoL (ranging from minuscule insects to gigantic

animals or plants). Therefore, in the light of these two broad factors, we could

say that exp(↵) might be ranging from few hundred to few thousand species, as

a start we choose exp(↵) = 100.

With respect to the species abundance variation, [87] found that on a log

scale (base 2), species abundances followed a normal distribution with a standard

deviation of approximately 3.5 3. On a natural logarithm scale which we are

currently using, this value transforms to approximately 2.45 (details about the

transformation is available in Appendix A, Section A.3). Although [87] is an old

2via personal communication with M.J. Costello.
3In [87], a slightly di↵erent terminology was used to represent the variation and it is referred

to by a parameter called ‘a’ that typically observed to be of value close to 0.2.
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literature and the environmental circumstances probably developed over time, we

relied on its suggestion as a start and choose �N = 2.45.

Regarding the other three parameters of our model, we relied on our in-

tuition in noticing some similarity aspects between the given data of CoL and

the ones of the artificial World-B and World-C. Thus we elicited values for those

parameters that are close to the ones of the artificial World-B and World-C, so

that µN = 10, µL1 = 7, and �L = 0.2. We started with prior support at which

C 2 [D, 30D] and applied a small number of iterations (iter = 10, 000). Dur-

ing the pilot experiments, we were monitoring the general pattern and scale of

the change in the ABC generated datasets along with the given ones for chang-

ing/tuning the elicited parameter-values. However, after many trials between

failed and close estimation (some samples of these results are available in Ap-

pendix B, Group B.17 - Group B.19), we changed some of our first parameter

choices and end up with the best elicitation of parametrization for modelling the

CoL dataset, as shown later in Section 6.1.3.

6.1.2 Challenges in Model Fitting

In the model fitting, we followed the same ABC algorithm that is detailed in Sec-

tion 3.2.3, and implemented throughout Chapter 4 and Chapter 5. However, due

to the large scale of occurrence in the given data of the CoL (i.e. large dataset

in which the values of the number of discoveries and number of authors are large

values, which are located on a large scale of the y-axis on Figure 6.1), we faced

serious memory-consuming problem in the parallel computation, which caused

task termination even in small number of iterations such as 10, 000. A Windows

machine with a six-core processor is robust against such issue, but we faced limita-

tions in finding Windows-computing resources. Most of available resources are in

Linux system which tends to terminate the coding task encountering the memory

consumption. Developing the code to include error detection and track correction

for such issues was not enough, because one of the errors cannot be technically

tolerated in the Linux environment. This error mainly associated with one source,

the generated linkage node (the sizes of the samples {nj}j=1:T ), in particular, as-

sociated with their sum which became very large in the current application so that
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when it was used later to generate {⌧j}j=1:T , it consumed a huge size of memory.

Therefore, to remedy this situation, we made two alterations to our adopted

ABC algorithm: first, since the rate parameter became large in the current appli-

cation, we used the Normal approximation of the Poisson process for generating

nj’s instead of just Poisson. Second, we included additional threshold to filter the

sum of the generated nj’s in the main experiment, based on extracted informa-

tion from the pilot experiment. We followed the exact ABC algorithm of the pilot

experiment (Section 3.2.3), but with additional 8th step in which we employed

the given data of CoL to create an acceptable interval for
PT

j=1 nj which involves

values that are small enough to consumes less computational memory, but large

enough to capture all the variety of patterns that represent the given data and

so that guarantees the same accuracy of the final estimation. Thus, after obtain-

ing the final acceptable 1000 samples, we compute
PT

j=1 xj for each of the 1000

generated number of authors. Then, we compute the standard deviation of these

sums i.e sd({
PT

j=1 xj}1:1000). Finally, the acceptable interval of
PT

j=1 nj of the

given CoL dataset can be estimated as follows:

↵ (
TX

j=1

xj)CoL ± 3↵ sd({
TX

j=1

xj}1:1000) (6.1)

where, on estimation (
PT

j=1 nj)CoL = ↵ (
PT

j=1 xj)CoL , and (
PT

j=1 xj)CoL is the

given sum of the number of authors in the CoL dataset, while {
PT

j=1 xj}1:1000 is

a set of sums in which each sum belongs to each generated series of the number

of authors (in the final acceptable 1000 samples). The limits of the above interval

represent our new threshold that is employed in the 7th step of the ABC algorithm

of the main experiment (Section 3.2.3). We apply the same step but with di↵erent

order, as here, we first start with generating n from l, then accept sum(n) and

proceed to the next step of generating N, d, and ⌧ ⇤, if the sum(n) is within the

above limits in (formula 6.1). Reject otherwise, and go back for new generation,

see Algorithm 2 of Section C.2 in Appendix C. It is worth mentioning that this

new threshold is implemented on the three artificial worlds (World-A, World-B,

and World-C from Chapter 4), and shown similar results to ones in Chapter 4,

see Group B.16 in Appendix B, Section B.5.
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6.1.3 Fitting Results of CoL

Table 6.1 shows best elicited parameters of modelling the CoL dataset, as well as

the fitting results. After operating the pilot experiment and deriving the thresh-

olds, we implemented intermediate main experiment on just 100, 000 iterations to

make sure that we are on the right track of our distributional specifications, see

the fitting details and plots of the pilot and the intermediate experiments in Ap-

pendix B, Group B.20. This is followed by the final main experiment of 1, 000, 000

iterations, from which we estimated the number of terrestrial species (including

freshwater).

Table 6.1: Parametrization and resulting statistics of modelling CoL dataset.

Figure 6.2, right top plot, shows that the total number of terrestrial species

(including freshwater) follows a skewed distribution, with a 95% probability in-

terval ranging from about 7.6 to 64 million or 5 to 52 million species, according

to the central (red lines) or 95% HPD nterval (blue lines), respectively. The high-

est concentration of posterior mass is between 10 and 30 million species. If we

adopted the posterior mode as point estimation for the total number of terrestrial

species, we can say that about 19, 405, 390 species are yet to be discovered, which

is about 45 times the current discoveries. In the bottom panel of Figure 6.2, we

can see that the acceptable dark grey area (the generated number of authors and

the number of the discoveries) is a good representative of the given CoL dataset.

It captures the annual fluctuating behaviour of the given data at which a peak

occurs around the 150th year (1910), and a trough around the 185th year (1945),

followed by a recovery pattern.

If we track the fitting performance over the three number of iterations

(iter = 10, 000, iter = 100, 000, and iter = 1, 000, 000) by comparing Figure

6.2 with the figures in Group B.20 of Section B.5 in Appendix B, we can see the
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Figure 6.2: Fitting results of CoL dataset.

enhancement of the fitting associated with increasing the number of iterations;

the shape of the posterior distribution becomes more tied with lighter tails. In

addition, by observing the plots of the bottom panels, we can see that the gener-

ated data in the acceptable dark grey area are getting closer with increasing the

number of iterations and better capturing the behaviour of the given CoL data.

6.2 Model Chronological Analysis

Since the type of our given data is a time series, and as time brings us two aspects

of the information (accumulated knowledge and varying pattern), it is a subject

of interest to measure to what extent our model is influenced by the time factor.

In this section, we track our model performance (on CoL dataset) over time to

check how our model is a↵ected by the accumulated information over time and its

varying pattern. As we noticed in the CoL dataset, there are two obvious turns

in its pattern over 240 years, one is a peak around the 150th year (1910), and the

other is a trough around the 185th year (1945). Therefore, we truncated the data

twice at these turns as the following:
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⌅ At the first turn, from the 240-year data points, we obtained the first 150-

year data points, and re-fitted this part of data pretending that we do not

know the last 90-year data points.

⌅ At the second turn, from the 240-year data points, we obtained the first

185-year data points, and re-fitted this part of data pretending that we do

not know the last 55-year data points.

After re-fitting the truncated data, we confronted their fitting results with the

fitting result of the whole data points over 240 years, as shown in Table 6.2 and

Figure 6.3. In general, looking at the top right plot of Figure 6.3, we can see that

in all the three time periods, the estimated posterior distributions of the number

of terrestrial species are positively skewed, with peaks concentrated in the interval

between 10 million and 30 million. However, considering the detailed behaviour

of the estimation in the three time periods, there are some specific patterns ad-

dressed as follows:

Table 6.2: Statistics of fitting results of CoL dataset over the first 150 years, the first 185 years, and the whole

period which is 240 years.

1. With including more data over time, the pattern of the estimated distributions

are moderately shifting to the right side over the number of species domain,

as shown in the top right plot of Figure 6.3. This is justified by the fact

that the prior domain (support) of the distribution starts from the current

number of discoveries, D, which is di↵erent over these three time periods,

where D150 < D185 < D240, as shown in Table 6.2.

2. Considering the point estimation C⇤, the ratio of the number of the undiscov-

ered species to the number of the already discovered ones, R = (C⇤ �D)/D,

is getting smaller over time and decreasing with almost the same rate, where
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Figure 6.3: Plots of fitting results of CoL dataset over the first 150 years (Red), over the first 185 years (Blue),

and over the whole period which is 240 years (Green).

R150 = 98, R185 = 75, and R240 = 57 if we considered the posterior mean as our

target estimation, while R150 = 72, R185 = 56, and R240 = 45 if we considered

the posterior mode as our target estimation.

3. The estimation of the 240-year period seems closer to the 185-year estimation,

than the 150-year estimation, as shown in the bottom panel plots of Figure 6.3,

and according to the summary statistics in Table 6.2. This is justified, since

the knowledge di↵erence in the former estimations is accounted for 55 years,

while in the latter is accounted for 90 years.

4. Although in the 150-year period it seems that the number of discoveries is

reaching a peak with increasing the number of authors (which may indicate that

there are more species left to be discovered), the total estimation of the number

of species out of this period, C⇤
150, does not exceed the actual recent estimation

C⇤
240. On the other hand, having decreasing curves at the last pattern of the

185-year period did not conclude a less estimation for the number of species

than C⇤
150, instead with including more information over time, C⇤

185 is getting

closer to C⇤
240 regardless of the trough occurrence. This might be an indication
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that fitting our model using the ABC algorithm is getting more refined with

the accumulated knowledge, but it is still robust against the big fluctuations

in the varying pattern of the given data.

To sum up, in spite of the above specifications associated with time, the

peak estimations of the 150-year and 185-year periods are still within the 95%

credible interval of the 240-year time period. In addition, the prediction of these

truncated periods, C⇤
150 and C⇤

185, exceed the recent discoveries D240, which meet

our expectations that the prediction of a smaller previous period should at least

reach the recent number of discoveries. All this indicate the consistency of our

estimation over time.

6.3 Model Validation

In many cases, evaluating the model performance in the real-data context is not

a straightforward task since we do not know the ground-truth. However, in our

case it is beyond this due to the complexity and the high dimensionality of our

model. Determining a ground-truth involves a validation itself which we will try

to achieve in the next subsection. In addition, the conventional methods used to

validate a model are not possible to be applied in our case. Therefore, we had

to innovate a special way to validate our model, which is similar in principle to

the residual diagnostic method of the regression analysis. However, we do not

actually have residuals in the exact meaning, since a residual is a di↵erence com-

puted between a single-point observation and a single-point estimation, while in

our case we are dealing with time series, where one time series is considered as

one observation. Therefore, the Euclidean distance that we already used in our

implementation of the ABC algorithm, which is computed between the observed

time series and the estimated time series, is defined as a residual in our context

to be employed for validating our model. In the current section we approach two

point of views in validating our model, explained as follows:

149



6.3.1 Cross-sectional Validation

In this method, we focus our attention on the cross-sectional performance of our

model, which is based on accumulated dataset up to date (in our case, it is the 240-

year dataset of the CoL). We already obtained the fitting results of this dataset

in Section 6.1.3, as shown in Table 6.1 and Figure 6.2. Since the posterior dis-

tribution of the number of terrestrial species is positively skewed, we believe that

the posterior mode represents a better point estimation for the number of species.

Therefore, we will validate our model through validating its point estimation (the

posterior mode). In this process, we replaced the prior distribution of the num-

ber of species with a fixed value which is the estimated posterior mode C⇤
240 , and

re-fitted the given dataset according to this new update in the model parametriza-

tion, as shown in Figure 6.4. The purpose of this fitting is to check the following

two aspects:

⌅ whether the point-estimate fitting is going to generate a dataset that is

narrower or at least similar to the one generated by the original fitting of

Section 6.1.3, i.e. check if

{Accepted(⌧ ⇤,x⇤)1000|C⇤
240} ⇡ {Accepted(⌧ ⇤,x⇤)1000|P (C)} , where P (C) is

the prior distribution of C, and the number 1000 is the size of the accepted

sample that contributes in estimating the posterior distribution of C.

⌅ whether the distribution of the accepted total Euclidean distances out of

the point-estimate fitting is similar or close to the one out of the original

fitting, i.e. check if:

P ( {D(⌧ ⇤, ⌧ ) +D(x⇤,x)}1000 |C⇤
240) ⇡ P ( {D(⌧ ⇤, ⌧ ) +D(x⇤,x)}1000 |P (C)),

where {D(⌧ ⇤, ⌧ ) +D(x⇤,x)}1000 is the accepted total Euclidean distances,

explained previously in the ABC algorithm in Section 3.2.3.

If we verified the above two aspect, we can say that the point estimate of our

model is valid which indicates the validation of our model in a cross-sectional

point of view.

Figure 6.4 shows four plots of the accepted dark grey areas (for the number

of discoveries and the number of authors of two ways of fitting) which represent
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Figure 6.4: Fitting results of CoL dataset, the top panel belongs to the original fitting, while the bottom panel

belongs to the point-estimate fitting.

the data that contribute in estimating the posterior distribution of the number

of species. By comparing the accepted dark grey areas of the bottom panel plots

with their confronted plots of the top panel, we can see that the results of the

point-estimate fitting are as much as the original fitting results in capturing the

general annual pattern of the given dataset, but narrower in enveloping this given

dataset. This is an indication of valid estimation, as we expect the point estimate

to generate data-series that are closer to the given one.

In addition, when we check the Euclidean distances, Figure 6.5 shows that

the distribution of the Euclidean distances (measured in a standardized scale) of

the point-estimate fitting is identical to the distribution of the ones of the origi-

nal fitting. Note that before the standardization, the Euclidean distances of the

point-estimate fitting is varying in a smaller scale than the one of the original

fitting, since the point-estimate fitting results in generating data-series that are

closer to the given CoL dataset than the ones generated by the original fitting.

Therefore, we used the standardized scale to be able to make a fair comparison.
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Figure 6.5: Distributions properties of the Euclidean distances (as a residual diagnostic) of the original fitting

and the point-estimate fitting of the CoL dataset.

to make a space only to make a space only to make a space only

6.3.2 Longitudinal Validation

In the current method, we focus our attention on the longitudinal performance of

our model, which is based on the model estimations over specific periods of time.

Therefore, we will validate our model through validating its point estimates over

the 150-year time period and the 185-year time period. Since the point estimation

of 240-year time period is validated in the above method (Section 6.3.1), it will be

taken as a ground-truth in the longitudinal validation. In each validation process,

we replaced the prior distribution of the number of species with a fixed value

which is the estimated posterior mode (C⇤
150 for the 150-year time period and

C⇤
185 for the 185-year time period), and re-fitted the whole given dataset (over

240 years) according to this new update in the model parametrization. Such as

the cross-sectional validation fitting, the purpose of the current fitting is also to

check two aspects, one is related to the pattern of the accepted generated data

and the other is related to the distribution of Euclidean distances that decided the
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accepted data. However, here we applied two types of treatments in computing

the Euclidean distances of the truncated past period, and each treatment branches

into two parts, explained as follows:

First Treatment (FT):

⌅ (FT.1): Computing the total Euclidean distances based on the whole given

dataset (over 240 years), i.e. {D(⌧ ⇤
1:240, ⌧1:240) +D(x⇤

1:240,x1:240)}1000 |C⇤
T

, then select the accepted ones which decide the accepted dataset, where

T = 150, 185.

⌅ (FT.2): From the above accepted dataset, re-compute the total Euclidean

distances based on just the last part of the data that represent the future

to the truncated periods, i.e.

{D(⌧ ⇤
T :240, ⌧T :240) +D(x⇤

T :240,xT :240)}1000 | {Accepted(⌧ ⇤
1:240,x

⇤
1:240)1000|C⇤

T}

Second Treatment (ST):

⌅ (ST.1): Computing the total Euclidean distances based on the truncated

dataset, i.e. {D(⌧ ⇤
1:T , ⌧1:T ) +D(x⇤

1:T ,x1:T )}1000 |C⇤
T , then select the accepted

ones which decide the accepted dataset (note that the accepted dataset is

over 240 years but its Euclidean distances are computed on truncated part

of the dataset).

⌅ (ST.2): From the above accepted dataset, re-compute the total Euclidean

distances based on just the last part of the data that represent the future

to the truncated periods, i.e.

{D(⌧ ⇤
T :240, ⌧T :240) +D(x⇤

T :240,xT :240)}1000 | {Accepted(⌧ ⇤
1:T ,x

⇤
1:T )1000|C⇤

T}

If we verified the two targeted aspects related to the generated data pattern and

the Euclidean distances distribution in the above two treatments, we can say

that chronologically the point estimates of our model are valid which indicate the

validation of our model on a longitudinal point of view. In the following, we will

explore these aspects and treatments for both T = 150 and T = 185, in which we

replaced the prior distribution of C by a fixed value C⇤
150 and C⇤

185, respectively.

For simplicity, we will check two treatments at a time, first the treatments (FT.1)

and (ST.1) together, then the treatments (FT.2) and (ST.2).
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In the 150-year time period, Figure 6.6 shows the generated datasets of the

treatments (FT.1) and (ST.1) in the middle and bottom panels, respectively,

against the generated dataset of the ground-truth fitting (given C⇤
240) in the top

panel. By comparing the accepted dark grey areas (for the number of discoveries

and the number of authors) of the middle panel plots with their confronted plots

of the top panel, we can see that the results of the (FT.1) fitting are very close

to the C⇤
240 fitting results in capturing the general annual pattern and enveloping

the given dataset. On the other hand, when we based the Euclidean distance

computing only on the truncated dataset i.e. the first 150 data points (ST.1) as

shown in the bottom panel, we can see some diversions in predicting the future

Figure 6.6: Fitting results of CoL, the top panel belongs to the ground-truth given C⇤
240, while the middle and

bottom panel belongs to the (FT.1) and (ST.1) given C⇤
150, respectively. Note that the green lines in the bottom

panel represent the 95% credible interval.
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dataset (last 90 data points) especially in the number of authors in the right bot-

tom plot. That is justified by the way that we applied the ABC algorithm, which

is relied on computing the Euclidean distances on the given raw data, not on a

su�cient statistic. However, when we check the Euclidean distances, Figure 6.7

shows that the distribution of the Euclidean distances (measured in a standard-

ized scale) of the (FT.1) fitting and the (ST.1) fitting given C⇤
150 are both identical

to the distribution of the ground-truth fitting given C⇤
240, which is a reflection of

a valid estimation.

Figure 6.7: Distributions properties of the Euclidean distances (as a residual diagnostic) of the ground-truth

fitting given C⇤
240, and the (FT.1) and (ST.1) fittings given C⇤

150.

With respect to the (FT.2) and (ST.2) treatments, after cutting-out the

first 150 data points from the generated data (dark grey areas) in Figure 6.6, and

re-computing the Euclidean distances only on the last 90 data points, Figure 6.8

shows that the distribution of the Euclidean distances (measured in a standardized

scale) of the ground-truth fitting given C⇤
240 is identical to the distribution of

the (FT.2) fitting given C⇤
150. Moreover, it is very close (almost similar) to the

distribution of the (ST.2) fitting given C⇤
150, in spite of the higher variation in

predicting the future dataset.
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Figure 6.8: Distributions properties of the Euclidean distances (re-computed only on the last 90 data points of

the generated datasets) of the ground-truth fitting given C⇤
240, and the (FT.2) and (ST.2) fittings given C⇤

150.

The 185-year time period, Figure 6.9 shows the generated datasets of the

treatments (FT.1) and (ST.1) in the middle and bottom panels, respectively,

against the generated dataset of the ground-truth fitting (given C⇤
240) in the top

panel. By comparing the accepted dark grey areas (for the number of discoveries

and the number of authors) of the middle panel plots with their confronted plots

of the top panel, we can see that the results of the (FT.1) fitting are almost as

the same as the C⇤
240 fitting results in capturing the general annual pattern and

enveloping the given dataset. On the other hand, when we based the Euclidean

distance computing only on the truncated dataset i.e. the first 185 data points

(ST.1) as shown in the bottom panel, we can see some diversions in predicting the

future dataset (last 55 data points) especially in the number of authors in the right

bottom plot, which is justified by the way that we applied the ABC algorithm,

which is relied on computing the Euclidean distances on the given raw data, not

on a su�cient statistic. However, when we check the Euclidean distances, Figure

6.10 shows that the distribution of the Euclidean distances (measured in a stan-

dardized scale) of the (FT.1) fitting and the (ST.1) fitting given C⇤
185 are both
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identical to the distribution of the ground-truth fitting given C⇤
240, which is a

reflection of a valid estimation.

Figure 6.9: Fitting results of CoL, the top panel belongs to the ground-truth given C⇤
240, while the middle and

bottom panel belongs to the (FT.1) and (ST.1) given C⇤
185, respectively. Note that the green lines in the bottom

panel represent the 95% credible interval.

With respect to the (FT.2) and (ST.2) treatments, after cutting-out the

first 185 data points from the generated data (dark grey areas) in Figure 6.9, and

re-computing the Euclidean distances only on the last 55 data points, Figure 6.11

shows that the distribution of the Euclidean distances (measured in a standard-

ized scale) of the ground-truth fitting given C⇤
240 is identical to the distributions

of both the (FT.2) and (ST.2) fittings given C⇤
185, in spite of the higher variation

in generating (predicting) the future dataset in (ST.2).
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Figure 6.10: Distributions properties of the Euclidean distances (as a residual diagnostic) of the ground-truth

fitting given C⇤
240, and the (FT.1) and (ST.1) fittings given C⇤

185.

Figure 6.11: Distributions properties of the Euclidean distances (re-computed only on the last 55 data points of

the generated datasets) of the ground-truth fitting given C⇤
240, and the (FT.2) and (ST.2) fittings given C⇤

185.
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To sum up the longitudinal validation, it is worth emphasizing that

the purpose of our model is to predict the number of species (given the annual

observed dataset and considering all the other variables in the context of species

discovery), not to predict the dataset itself in future time, and not to predict

other variables in the context. Therefore, in our aim to validate our model in this

respect, we tried to basically achieve this through implementing the first treat-

ment (FT) in particular rather than the second treatment (ST). This is justified

by the way that we applied the ABC algorithm, which relied on computing the

Euclidean distances on the given raw dataset (the dataset in its exact nature as

time series), not on a su�cient statistic. This way of implementation forces us to

use the whole dataset (over 240 years) to compute the Euclidean distances even in

the situations that we are using truncated period estimates (e.g. C⇤
150). In these

situations, our concern is to check the model performance with using the ABC

algorithm applied on raw datasets, not to pretend that we do not know the data

of the cut-o↵ period (e.g. the last 90 data-points in the case of 150-time period)

and try to predict this dataset (the last 90 data-points represents the future of

the 150-time period dataset, which we may wish to predict). However, out of

curiosity, we approached the second treatment (ST) that deals with predicting

future dataset, which appeared to provide acceptable results although it is not

really a benchmark to judge our model performance.

6.4 Model Fitting for WoRMS Data

In this section, we apply our model on the WoRMS dataset, at which we also

followed the same distributional specifications that we have applied on CoL in

Section 6.1, and previously detailed in Section 4.1 and shown in Figure 4.2. Since

we noticed a good performance of the altered ABC algorithm (explained in Section

6.1.2, and Algorithm 2 of Section C.2 in Appendix C) on the CoL and the artificial

worlds, we adopted the same algorithm for the WoRMS dataset. With respect to

the distributional parametrizations, we faced some struggles (see Group B.21 of

Section B.5 in Appendix B) until we end up with rational assumptions, explained

in Section 6.4.1.
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6.4.1 Model Parametrizations

For the parameters values, we based our choices on assuming that the commu-

nity of the marine species (recorded in WoRMS databases) is just a sample from

the same population of the terrestrial and freshwater species (recorded in CoL

database). Therefore, the WoRMS dataset is assumed to be governed by the same

distributional parametrizations of the species abundances of the CoL dataset, but

they di↵er in the latent e↵ort. Refering to Figure 6.1, in spite of the di↵er-

ences in the taxonomic e↵orts (represented in the number of authors) between the

WoRMS and the CoL datasets, the “same population” assumption is supported

by the similarity between them in the pattern of the number of the discoveries,

if we neglected the occurrence scale, we can see the similarity pattern in Figure

6.12. Moreover, [13] (in which, one of the authors (M.J. Costello) is a biodiversity

specialist) indicated this similarity by stating that “As the marine environment

includes all but one of the phyla on Earth, it provides a unique perspective on bio-

diversity”. This may be interpreted as that we can consider the marine (recorded

in WoRMS) and the terrestrial species (recorded in CoL) as two equivalent com-

munities or samples coming from the same population.

Figure 6.12: Similarity between the WoRMS and the CoL datasets in the discovery curves.

Therefore, based on the above assumption and on noticing the ratio of the

di↵erence between the WoRMS and the CoL datasets in the number of authors

curves, we found that the total number of authors involved in discovering the

WoRMS species represents about 12.325% of the one of the CoL. This implies

that on a log-scale, the e↵ort mean in the WoRMS data equals 12.325% of the
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e↵ort mean in the CoL data, i.e.

exp(µL1 + �2
L/2)WoRMS = 12.325%⇥ exp(10.6 + 0.152/2)CoL ' 5002

Hence, we need to specify values for µL1 and �L in the WoRMS dataset such that

its e↵ort mean ' 5002. However, since the e↵ort mean is just one equation in two

variables, we had to make few multiple trials for tuning the selected values until

we end up with the best elicitation of parametrization as shown next.

6.4.2 Fitting Results of WoRMS

Table 6.3 shows the best elicited parameters of modelling the WoRMS dataset,

as well as the fitting results. After operating the pilot experiment and deriving

the thresholds, we implemented intermediate main experiment on just 100, 000

iterations to make sure that we are on the right track of our distributional speci-

fications, see the fitting details and plots of the pilot and the intermediate exper-

iments in Group B.23 of Section B.5, Appendix B. This is followed by the final

main experiment of 1, 000, 000 iterations, from which we estimated the number

of marine species. It is worth mentioning that, before reaching our final results,

we made an attempt at which C 2 [D, 300D]. However, it resulted in having a

posterior distribution that looked to be a heavy-tailed on the right-side i.e. the

distribution appears to be truncated (suddenly goes down to zero) at the upper

limit 300D, see Group B.22 in Appendix B. This motivated us to repeat the whole

experiments on a wider prior support, C 2 [D, 500D], which is the one that we

finally adopted in Figure 6.13 in the current section and Group B.23 - Appendix B.

Table 6.3: Parametrization and resulting statistics of modelling WoRMS dataset.

Figure 6.13, right top plot, shows that the total number of marine species

follows a skewed distribution, concentrated around 20 million species, ranging
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from 9.4 to 76.4 million species in 95% central credible interval (red lines), and

ranging from 6.3 to 71.9 million in a tighter 95% HPD interval (blue lines) with

a di↵erence of 1.4 million species between the two intervals. If we adopted the

mode as point estimation for the total number of marine species, we can say that

about 17, 478, 356 species are yet to be discovered, which is about 100 times the

current discoveries. In the bottom panel of Figure 6.13, we can see that the ac-

ceptable dark grey area (the generated number of authors and the number of the

discoveries) is a good representative of the given WoRMS dataset. It captures the

annual fluctuating behaviour of the given data at which a first local maximum

peak occurs around the 150th year (1910), followed by a deeper trough around

the 185th year (1945), and end up with an increasing pattern.

Figure 6.13: Fitting results of the CoL dataset.

If we track the fitting performance over the three number of iterations

(iter = 10, 000, iter = 100, 000, and iter = 1, 000, 000) by comparing Figure

6.13 with the figures in Group B.23 - Appendix B, we can see the enhancement

of the fitting associated with increasing the number of iterations; the shape of

the posterior distribution becomes more tied with lighter tails. In addition, by
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observing the plots of the bottom panels, we can see that the generated data in

the acceptable dark grey area are getting closer with increasing the number of

iterations and better capturing the behaviour of the given WoRMS data.

6.5 Global Estimation

In this section we attempt to estimate the number of species on a global scale

which includes the number of terrestrial, freshwater, and marines species. We

already estimated the number of terrestrial and freshwater species based on the

CoL dataset (Section 6.1.3), and estimated the number of marines species based

on WoRMS dataset (Section 6.4.2). In this instance, we shall recall the analysis we

accomplished in Section 5.3, and concluded in Section 5.4 (pages 138-139), which

stated that although we can not ultimately prove that our proposed model is addi-

tive, our approach definitely provides alternative aggregated estimation (through

aggregating multiple resulted estimates after performing multiple-group fittings)

that is equivalent to the whole category estimation (when we combine all datasets

together first, then preform one whole fitting).

The experiments based on the artificial worlds (Section 5.3) showed that in

all the three artificial worlds, all the central tendency statistics that are obtained

from the aggregating step are very close to the true values of the number of species

and to the estimated ones out of the whole category fitting. The derived values of

KLD metric also provided similar implications; a closeness between the distribu-

tions out of the aggregation and the whole category distributions. Therefore, we

will estimate the global number of species through aggregating the estimations

results of CoL and WoRMS i.e. aggregating their selected final samples, then

obtain the posterior distribution of total number of species CGlobal.

Figure 6.14 shows the subgroups estimations (of CoL and WoRMS datasets)

along with the global estimation of the number of species resulting from their

aggregating. From the bottom plots, we can see that the resulting posterior dis-

tribution of CGlobal is also positively skewed, with 95% central credible interval

(red lines) ranging from 25.3 to 111.7 million species, a slightly tighter 95% HPD
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interval (blue lines) ranging from 19.9 to 102.9 million species where the di↵erence

between the HPD and the central intervals is 3.4 million species, and inter-quartile

interval ranging from 39 to 70 million species. The point estimation states that

the total number of species on the global is C⇤
Global = 56, 634, 999 if we adopted

the posterior mean, C⇤
Global = 51, 580, 110 if we adopted the posterior median, and

C⇤
Global = 45, 784, 117 if we adopted the posterior model.

Figure 6.14: Global estimation results out of aggregating the estimation results of CoL and WoRMS datasets.

It is interesting to notice that the estimated global mean is exactly equal to

the sum of the estimated means of CoL and WoRMS which is (56, 634, 999) total

species, and the estimated global standard deviation is very close to the sum of

the estimated standard deviations of CoL and WoRMS as both of them around

22 million (�Global = 22, 998, 412 , while �CoL + �WoRMS = 22, 619, 187). However,

the estimated global mode is a slightly higher where C⇤
CoL (mode)+C⇤

WoRMS (mode) =

37, 483, 961 total species, and the estimated global 95% central credible and HPD

intervals are slightly wider with [16, 950, 990 � 140, 283, 839]CoL+WoRMS and

[11, 413, 877 � 124, 025, 173]CoL+WoRMS, respectively. These di↵erences are ex-

pected due to the skewness (asymmetry) of the estimated distributions.
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6.6 Comparing with Previous Work

As we explored in Section 2.1, there are two main approaches in the literature of

estimating the number of classes/species: the sampling-theoretic and the data-

analytic, where the former deals with cross-sectional datasets, while the latter

mostly deals with longitudinal. On the other hand, our proposed approach inte-

grates these two approaches in one comprehensive framework. However, the type

of the observed datasets that we are dealing with is longitudinal, which makes it

di�cult to compare our model with models of the sampling-theoretic approach.

Therefore, we will focus our attention to compare our model with ones of the data-

analytic approach, in particular the related recent work suggested by [64] [21] [13].

In these references, a model of non-homogeneous renewal process (NHRP)

was first suggested by [64] and applied on a selected dataset of European marine

species. Then, was contrasted with other related approaches, with application on

a wider collection of dataset from the European Register of Marine Species inven-

tory system (ERMS) [21]. Finally, this model was extended on a global scale to

include marine and terrestrial (with freshwater) species from WoRMS and CoL,

respectively, and its results were contrasted (by observing patterns, not rigorous

approach) with the taxonomic e↵ort curves [13].

6.6.1 Brief Description of NHRP Model

In this model, the discovery process is described by a non-homogeneous renewal

process (NHRP), a type of point process, in which t represents the time loca-

tion (discovery dates) at which the points (discovery events) occur, and N(t)

represents the cumulative number of points (discoveries) at a given time. This

process assumed to behave as “S-shape” patten fluctuating around a mean that

is formulated as logistic function,

E{N(t)} =
N

(1 + exp(� 1(t�  2))
(6.2)

In this function, there are two parameters  1 and  2 that control the rate of the

logistic growth which is in our case the rate of species discovery, where  2 is the
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time of greatest rate of discovery, and  1 is a scaling factor that determines how

quickly the curve reaches its maximum value. N is the maximum value of the curve

which is in our case the expected total number of species i.e. lim
t!1

E{N(t)} = N .

In this process, the times between discovery events are assumed to be independent

and identically distributed Gamma with parameters ✓1 and ✓2 which are linked to

 1 and  2 through the linkage between NHRP and Gamma distribution. As we

mentioned in Section 2.2.2 (pages 24-25), having the two Gamma parameter allow

to capture the mean and the under-dispersion/over-dispersion behaviour in the

process, unlike the exponential distribution that is used in the non-homogeneous

Poisson process which assumes that the dispersion is equal to the mean.

The Bayesian inference is applied in the NHRP modelling, in which there

is a joint posterior distribution that is used to estimate the model’s parameters

and simulate the inter-discovery times in order to predict the total number of

species. Through MCMC algorithms, a multiple of samples of { (i)
1 , (i)

2 , ✓(i)1 , ✓(i)2 }
; i = 1, 2, ...,m are generated, and at each sample i, these generated parameters

are used to simulate successive future inter-discovery times s(i)1 , s(i)2 , .... until we

face a very large simulated value such as s(i)n = 10, 000 years. At this point, the

simulation stops under the assumption that this time interval (10, 000 years) be-

tween discoveries is beyond human life expectancy, and consequently the eventual

time point is t(i)1 = t(i)n�1 + s(i)n . Finally, N(t)(i) is computed, and its distribution

(over the index i) is taken as an approximate of the predictive posterior distribu-

tion of the eventual future number of discoveries that is assumed to be the total

number of species, P{N(1)| t(i)1 , t(i)2 , ...., t(i)1}. From this distribution, summary

statistics (mean, mode, median, 95% credible interval) are derived as estimation

of the total number of species.

6.6.2 Our Model Results vs NHRP Model Results

Before going through the estimation results of the two models, it is worth men-

tioning that we aimed to use the same datasets that are used in the latest reference

that applied the NHRP model [13], in order to make fair comparisons. However,

due to noticing some di↵erences between datasets of that reference and the ones

that we are currently using (note that there is on-going update for these datasets
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in their inventory systems, and we have the recent updated version), we asked one

of the authors (S.P. Wilson) to re-fit the current datasets according to the NHRP

model and derive the required estimates. The way he implemented the fitting

process is explained in his words (via a personal communication) in the following:

“The code to implement the logistic function approach of [64] is written in

C. This is a pure curve-fitting approach and only uses the discovery times as its

input. It was applied to the CoL data. This data set was too large to be handled

by the code, which was solved by dividing the yearly discovery counts by 40 and

rounding to an integer, then fitting this smaller data set, obtaining an estimate

of the number of species remaining to be discovered and multiplying that back by

40. The WoRMS data had a similar problem and that was solved similarly, but

by dividing the number of discoveries per year by 10.”, S.P. Wilson.

With respect to the global estimation, since the logistic function is not addi-

tive, an alternative way that involves combining the CoL and the WoRMS datasets

first then fitting them according to the NHRP model is attempted. However, the

model failed in doing so, and consequently, another solution is provided by deriv-

ing the global estimations from the summary statistics of fitting CoL and WoRMS.

Therefore, the global mean can be obtained from just adding the estimated means

of the CoL and WoRMS datasets, and since the estimated posterior distribution

of each dataset seems symmetric (according to the NHRP model), the global

mode and median can also be obtained in the same way; by adding the estimated

modes and estimated medians of the CoL and WoRMS datasets. With respect to

the 95% credible interval, it is derived by adding ±2
p

sd(CoL)2 + sd(WoRMS)2

to the obtained global median, under the assumption that these variances can

be added, where the standard deviations sd(CoL) and sd(WoRMS) each can be

roughly computed as quarter the width of the 95% credible interval of CoL and

WoRMS datasets, respectively .

Table 6.4 shows the NHRPmodel fitting results of the CoL, WoRMS datasets,

and their global estimation confronted to the fitting results of our model, where

we can see huge di↵erences between the estimation of the two approaches. Our

proposed model suggests a positively skewed distribution for the given datasets,

while the NHRP model suggests a symmetric distribution for the same data. The
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results of our model are ranging on ten-million scale, while the NHRP results are

ranging on a hundred-thousands scale. The 95% credible interval provided by our

model is reasonably wide enough to describe a probability distribution, while 95%

credible interval provided by the NHRP model is very narrow, as shown in Fig-

ure 6.15. Moreover, the method used to derive the global credible interval in the

NHRP model is based on the assumption of adding the variances of the CoL and

WoRMS datasets, which can be considered only if there is no correlation between

the given datasets, and this not necessary to be always true. In fact, there is a

correlation in our case between the CoL and WoRMS datasets, as shown in Group

B.24 of Section B.5, Appendix B (top panel).

Table 6.4: Estimation results of our proposed model vs. NHRP model.

This substantially less estimation of NHRP model can be justified by the fact

that the main property of the Logistic function is that it is a function of “S-shape”

which means it should level up quickly at the end, representing a quick asymptotic

estimation. However, the cumulative curves of the given datasets especially the

WoRMS (in red color in the plots of the right panel of Figure 6.15) do not seem to

infer an anticipation of levelling up pattern by the year 2100, and it might be not

a representative assumption to enforce the Logistic function as a mean. Moreover,

the NHRP model estimated the total number of marine species to be roughly half

of the estimated total number of terrestrial species, which might be inconsistent

if we consider the fact that the range of biodiversity in marine species is almost

equivalent to the one of the terrestrial species [13], and the fact the number of

marine discoveries is still obviously less and what is left is expected to be much

more (see Figure 6.1). All this might invoke some doubts in the estimation results

of the NHRP model on the current datasets.
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Figure 6.15: Our Model results (left panel) vs the NHRP Model results (right panel) of fitting the CoL and

WoRMS datasets. The left panel shows the estimated posterior distributions, along with their 95% credible

intervals (red lines). In the right panel, the red lines represent the annual cumulative number of discovery curves,

the black solid lines represent the median fitting curves, and the black dashed lines represent the estimated 95%

credible intervals.

Comments on Similarities & Di↵erences

⌅ Both models adopt Bayesian inference and approximate a posterior distribution

for the target variable (total number of species), from which summary statistics

are derived as estimations. However, the size of the two models is completely

di↵erent, the NHRP model involves two variables and four parameters which

are considered random variables, while our model involves six variables and five

parameters which are considered fixed in the current implementation, though

they can be treated as random variables if we would like to capture more

variability.

⌅ Both models adopt Bayesian computation techniques. However, the MCMC

was the adopted algorithm in the NHRP model, while this algorithm was in-

e�cient to be applied in our case and instead we adopted the ABC algorithm.

⌅ The NHRP model predicts the number of species through predicting the even-
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tual number of discoveries i.e. the estimated number of discoveries in future

time (that assumed to be infinite) represents the estimated number of species.

In contrast, our model use the number of discoveries as an input and employs it

(along with a co-variate discovery e↵orts) to predict the number of species. In

doing this, our model assumes that the number of species has a fixed distribu-

tion. This assumption is based on the fact that the emergence of a new species

takes millions of years of bio-interactions which is beyond the human life ex-

pectancy so that, in our witness the number of species is time-fixed random

variable not time-varying random variable.

⌅ As a consequent result of the above explanation, the estimations of the NHRP

model must be directly associated with time, while the estimations of our model

are to some extent released from the time factor (we saw evidence from Section

6.2 when C⇤
150 and C⇤

185 are verified to be within the 95% credible interval of

C⇤
240).

⌅ Although the NHRP model assumed to capture under/over-dispersions, it deals

with cumulative curves of the given datasets and thereby ignores the annual

variation in the data-patterns, while our model deals with the original nature

of the given datasets and captures all the time variational patterns.

⌅ The current way of applying the NHRP model assumes symmetric pattern of

the posterior distribution, while it is not necessary a true reflection of the given

datasets, as we saw in the estimations of our model, the distribution of the CoL

and WoRMS datasets are positively skewed.

⌅ The NHRP model is limited in dealing with large datasets, which forced ad hoc

treatments to overcome such obstacles (e.g. dividing the annual data points by

40 in the CoL data), and also failed to perform a global fitting for the combined

datasets. In contrast, our model is robust in this respect and we only needed

to involve additional threshold to deal with the large dataset (as explained in

Section 6.1.2).

⌅ The NHRP model is obviously not additive model since it is based on the

Logistic function which is not closed under addition. On the other hand, our

170



model is not proved to be not additive. Hence, in cases where we have to employ

the additivity property such as the global estimation, the NHRP model can

only provides crude or compelled solutions, while our model can provides us

with promising alternative solutions (as explained in Section 5.3) though our

model is still capable of fitting a global combined datasets.

From the above description, we can see that there is a significant di↵erence

in the way of implementing the two models, di↵erence in their objectives, and

their fitting results. Due to these di↵erences, one of them cannot be considered a

benchmark to evaluate other models against and one can only consider the pos-

itive and negative aspects of each. However, if we consider the species global

estimates over the species literature that collectively ranged from 1.5 million to

100 million species on Earth [13], we can see that our global estimate (45 million

species on Earth) lies within this range, but in a more reasonable scale, see Table

6.5 for miscellaneous estimates and Table 6.6 for global estimates.

Table 6.5: Examples of miscellaneous species estimates (in millions) of di↵erent taxa levels.

Reference Estimate (millions)

Based on description rates using a subset of WoRMS 2009 [13]. 0.3 of marine

Based on NHRP model of [64] and using a subset of WoRMS 2012 [91]. 0.32�0.76 of marine

Based on expert opinion of proportions of undescribed species in regions

of the world [92].

> 1 of marine

By extrapolation from proportion of Brachyura in Europe [93]. 1.5 of marine

By assuming a global 6:1 ratio of fungi to vascular plants and that there

are up to 270, 000 species of vascular plants [94].

1.6 of fungi

Based on description rate using subset of CoL 2009 [13]. 1.6�1.7 of terrestrial

By extrapolation from Sulawesi rain forest Hemiptera [95]. 1.84 � 2.57 of global

terrestrial insect

By extrapolation from rate of discovery of higher taxa using classification

of valid species from WoRMS 2011 [2].

2.2 of marine

By extrapolation from a review of knowledge of insect families which

found that there is about 350, 000 described species of beetles [96].

1�3 of terrestrial in-

sect

By extrapolation from benthos samples o↵ Australia [97]. 1� 5 of marine

By extrapolation from host specificity of tropical floras and species rich-

ness of tropical insects to global patterns of biodiversity [98].

4�6 of global arthro-

pods

By extrapolation from known fauna and regions [99]. 4.9 � 6.6 of global

arthropods
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Reference Estimate (millions)

By extrapolation from ratios of insect to plant species [100]. 2.75 � 8.75 of global

arthropods

Reviewed by Sabrosky [101]. 2.5� 10 of global in-

sect

By extrapolation based on relationship between body size and abundance

[102].

10 of global arthro-

pods

By extrapolation from Extensive quantitative sampling of deep-sea

macrofaunal communities [103].

> 1� > 10 of marine

Based on two models at which most parameters are represented by prob-

ability distributions, and Latin hypercube sampling was applied to each

distribution [104] [105].

3.9 to 13.7 of terres-

trial tropical arthro-

pods

Based on a refined probabilistic models using Monte Carlo sampling and

a technique known as probability bounds analysis [106].

2.4�20 & median 6.1

of terrestrial tropical

arthropods

Estimation based on computational tool, called Prophinder, for predict-

ing prophage in prokaryotic genomes. This tool is based on algorithm

that uses the coding sequences CDS (a portion of a gene’s DNA or RNA

that codes for protein) [107].

cover 100 of phage

species

Estimation based on an analysis, at which all the phage-encoded ORFs

(a program that searches for open reading frames in the DNA sequence)

in Gen-Bank were compared against every other and grouped together

using a BLASTE (a program that searches protein databases using a

protein query) [108].

up to 100 of phage

species

Table 6.6: Examples of global species estimates (in millions).

Reference Estimate

(millions)

Reviewed and objected by Erwin [109]. 1.5

Estimation through aggregating description rates of two subsets of CoL and

WoRMS 2009 [13].

1.8� 2

Estimation by extrapolation from the better sampled temperate regions to the

tropics. Raven noted that for the well documented species of large organisms there

are roughly twice as many tropical as temperate species, and if the same ratio holds

true for other organisms (with what is already described and two-thirds of these

being temperate), then the true global total would be 3 -5 million or more [110].

3� 5
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Reference Estimate

(millions)

Estimation by extrapolation from rate of discovery of higher taxa using classifica-

tion of valid species from CoL 2010 [2].

8.7

Estimation by extrapolating from counts of beetle species in a Panamanian tree

species through estimates of total arthropod diversity per tree species to the per-

centages of species limited to each tree species to the total of tree species in tropical

rain forests. Erwin found that the beetle diversity suggest far higher levels of in-

sect and other arthropod diversity in tropical rain forests than had previously been

estimated for the entire world fauna and flora. He hypothesized that instead of

the current estimate of 1.5 million species on Earth, there are 30 million species of

insects alone so that the estimate would be globally higher [109].

> 30

Estimation by extrapolation from a review of knowledge of several factors: the

structure of food webs, the relative abundance of species, the number of species and

of individuals in di↵erent categories of body size, along with other determinants of

the commonness and rarity of organisms [48].

10� 50

Estimation based on re-analysis of Erwin’s calculation [109] (in essence agreed with

it), with using additional data from Indonesian forests [111].

10� 80

Estimation by extrapolation from a review of knowledge of several factors: esti-

mated current levels of biodiversity, the fact that the life of the planet remains

mostly unexplored at the species and infra-species levels, hyper-diversity in some

of taxa that are mostly targeted by study, the relatively little e↵ort that should be

expanded on some highly diverse taxa, and extinction rate [112].

100

6.7 Chapter Summary

In this chapter our model is applied on well known real datasets (CoL and

WoRMS), at which we estimated two main categories of species, the terrestrial and

marine (including freshwater). We faced two challenges in specifying the model

parametrization, and operating the adapted ABC algorithm due to the huge size

of the given datasets. However, we overcame the former obstacle by referring to

some resources in the field and performing several pilot experiments to determine

and refine our parameter-choices. With respect to the latter obstacle, we had to

alter the ABC algorithm by including additional threshold. By combining the
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fitting results of the given two datasets (CoL and WoRMS), we also performed a

global estimation for the number of species.

However, based on the CoL only, we performed some extra analysis on our

model (in addition to the one that we made in Chapter 5). First, we tracked the

model performance over truncated periods of time that are expected to make crit-

ical influence on shaping future prediction of our model. The analysis concluded

that our model is still capable of making desirable results. Second, we attempted

to validate our model in several ways: one by checking if the point estimation

would generate a range of data that is similar to the one which is originally used

to derive the point estimation itself, and the other by exploiting the Euclidean

distances as residuals, and checking their distributions. We ended this chapter by

making a comparison between our model and a previous work which is the NHRP

model. We believe that this comparison showed powerful points in our model as

explained in the last section.
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Chapter 7

Discussion and Conclusions

The number of kinds/classes problem has been defined and extensively analysed

in the literature (Chapter 2), and our proposed framework adds to it (Chapter 3).

Our model is a synthesis in response to the analysis of this problem, which went

through stages of an evaluation process (from Chapter 4, Chapter 5, to Chapter

6). This involves analysing, characterizing, validating, and implementing our pro-

posed model through artificial and real datasets. The following sections highlight

the main points of the current study:

7.1 Summary of the Study Analysis & Synthesis

The number of kinds/classes literature involved two perspectives in tackling this

problem either through sampling actions and employing combinatorics rules or

through class-discovery curves and employing extrapolation methods. These per-

spectives are provided by two main approaches: ‘Sampling-Theoretic Approach’

and ‘Data Analytic Approach’, respectively. The methods of the former approach

deals with cross-sectional data points, while the methods of the latter approach

extends the scope of the data type to also include longitudinal data points.

On the other hand, our proposal involves a comprehensive perspective in

tackling this problem by integrating the above two approaches in one framework

that comprises our target (Sampling-Discovery process) and a co-variate (Latent

E↵ort process). Under the umbrella of both processes we have four factors: the

class-abundances Nk which gives us a sampling probability for each class, sam-

pling action (covered by di, ti, and nj, where di is the number of samples until

facing ith new class, ti is the time point at which the ith new class is discovered,
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and nj is the sample size collected per time unit j), discovery curve ⌧j, and the

employed e↵ort in the discovery (covered by the latent e↵ort lj and its proxy xj).

Therefore, our model involves six variables with a set of parameters, in which (Nk,

di, ti) represent the cross-sectional variables, while (nj, lj, xj) represent the lon-

gitudinal variables. Recall that ⌧j is just another form of ti, but on a longitudinal

scale over the time units j.

The strength of our novel proposal is that it introduces an integrated trans-

disciplinary approach for estimating the number of classes, at which Bayesian

inference is used. However, this makes it subject to modelling and parameter

specifications which might be a di�cult task in some situations where our ig-

norance about the target problem exceeds our knowledge. Another trade-o↵ of

having a comprehensive approach, is dealing with a complex and high dimen-

sional model. However, while the well-known techniques such as Bayes factor and

MCMC were too di�cult to use for our model, we found that the approximate

Bayesian computation (ABC) can cope with such complexity and high dimen-

sionality, and it is e�ciently used to run our model. It is worth mentioning that

throughout developing our ABC algorithm, we concretely found how it is bene-

ficial to have a co-variate, not only as a main influence on our target variable,

but to be practically employed in creating threshold values in order to build an

e�cient computation code for operating our model.

In the current study, we implemented our model in the ecology field where

our target is to estimate the number of species C on a local scale (in certain

communities such as marine species) or on a global scale (all species that exist

on Earth). In this context, we adopted the following distributional assumptions

that are guided by statistical theories, species literature, and computational con-

venience:

⌅ Prior knowledge of C s Uniform[D, mD],

where D is the current number of discoveries, and (m > 1) is a scalar to

specify the width of the prior support (domain).

⌅ Species abundances {Nk}k=1:C s i.i.d Lognormal(µN , �N).

⌅ Inter-discovery samples {di}i=1:D s joint Geometric(1�
Pi�1

k=1 Nk/N).
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⌅ Latent e↵ort {Lj}j=1:T s Intrinsic Gaussian Markov process (Lj�1, �L),

where Lj = log(lj), and L1 is chosen to follow s Normal (µL1 , �L).

⌅ Sample sizes {nj}j=1:T s Non-Homogeneous Poisson process(exp(Lj)),

where T is the time length in years.

⌅ Proxy of latent e↵ort: Number of authors {xj}j=1:T s Non-Homogeneous

Poisson process(exp(Lj)/ exp(↵)),

where exp(↵) is the expected number of specimens to be collected per author

per year j, while exp(Lj) is the e↵ort rate.

⌅ Number of discoveries {⌧j}j=1:T are derived as ⌧j = [
P

8i (j � 1 < ti  j)]8j,

where ti s Degenerate distribution( (�i 
Pj

r=1 nr)), and {�i � �i�1} = di.

Recall that the parameter of the Degenerate distribution is just an indicator

of satisfying the model constraints i.e. under holding the model constraints

(�i 
Pj

r=1 nr) ⌘ (di 
Pj

r=1 nr � �i�1), the distribution of {ti}i=1:D will be

P (t1:D|d1:D, n1:T ) = 1.

From the above six variables, {⌧j}j=1:T and {xj}j=1:T are given information rep-

resented in longitudinal datasets. In the current implementation of our model,

we chose the above five parameters {µN , �N , µL1 , �L,↵} to be fixed values. These

values are already known in the artificial worlds, while in the real worlds they are

determined by referring to species literature and specialist guidance along with

several pilot experiments for tuning their selected values.

7.2 Main Findings of the Study Evaluation

In this section we list the main points concluded from evaluating the performance

of our model while it was implemented on both real and artificial datasets. The

artificial datasets are represented by three artificial worlds (World-A, World-B,

and World-C) that allow to capture a wide range of scenarios for the model per-

formance. The real datasets are represented by terrestrial, freshwater, and marine

species datasets that are retrieved from two well known inventory systems of bio-

diversity (CoL and WoRMS). Through many experiments we made in the current

study, we conclude the following:
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7.2.1 Main findings from the artificial data experiments

⌅ Our model showed accurate performance in estimating the number of species.

However, ABC, as a simulation-based method, is subject to Monte Carlo error

and two aspects of this were investigated: one aspect is related to the number

of iterations used in the fitting stage of modelling the number of species from

which we obtain the target estimations, while the other aspect is associated

with the selected final sample size used for approximating the posterior distri-

bution of the number of species and deriving the point and interval estimations.

We found that our model provides consistent estimations with relatively small

MC error and relatively small biased estimation when we choose a number

of iterations (iter = 1, 000, 000) and a final sample size (s = 1000). With

achieving this degree of consistency and accuracy, we believe that our model

is reliable.

⌅ Our model showed a moderate degree of robustness in the light of model mis-

parametrization. In the current study, the source of sensitivity mainly appeared

against two parameters: the variation of the class-abundances (�N), and the

expected number of items to be collected per author per time-unit on a log-

scale (exp(↵)). In the former parameter, the model provides a relatively over-

estimation of the number of species associated with over-parametrization, and

under-estimation associated with under-parametrization. It is an opposite case

in the latter parameter, where the model provides a relatively over-estimation

of the number of species associated with under-parametrization, and under-

estimation associated with over-parametrization. However, there is a special

case (in World-C) where the degree of sensitivity became smaller when there is

a skewness associated with high proportion of discoveries. In general, caution

is needed in selecting the values of model parameters especially for (�N) and

(exp(↵)). Caution can be interpreted through referring to target literature,

specialist judgement, and pilot experiments.

⌅ Our model showed a degree of additivity property. We can describe the ad-

ditivity property on di↵erent degrees, where the complete additivity appears

when the distributions of the integrated sub-estimations and the whole esti-

mation are significantly equal (at which all the statistical properties of the two
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are significantly equal), while the partial additivity appears when only some of

the statistical properties of the integrated sub-estimations and the whole esti-

mation are significantly equal. In the current study, we measured the model

additivity through investigating its performance over two schemes (splitting

and merging) of creating subgroups from the already available design of the

three artificial worlds (where these worlds are used to represent the whole cat-

egories).

We found that the central tendency statistics that are obtained from

the aggregation step are very close to the true values of the number of species

(that are specified by the underling artificial world) and to the estimated ones

out of the whole category fitting. There are some di↵erences in their standard

deviations which justifies the di↵erences in their CDFs curves and box-plots.

These di↵erences might be due to the correlation that exists between the given

datasets (the number of discoveries and the number of authors) which can

not be avoided. However, when we used the KLD metric in two directions

(one direction is when we considered the whole category distribution as the

true model and the aggregated distribution as an approximation of it, while

the other direction is when we considered the aggregated distribution as the

true model and the whole category distribution as an approximation of it), we

found a closeness between the results of the two directions of the KLD metric,

indicating existence of additivity.

Although our model is not completely additive, it definitely provides

alternative aggregated estimations that are equivalent to the whole category

estimations, in which the point estimators are very close and the estimated 95%

credible intervals of the aggregated distributions are either close or within the

estimated 95% credible intervals of the whole category distributions. Therefore,

we believe that it is a minimum risk if we adopted the aggregated estimation

rather than the whole estimation, especially in cases when the sub-groups esti-

mations are already made, and the whole estimation is actually demanding (in

time, e↵ort, and computation), as we witnessed in modelling the real datasets.
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7.2.2 Main findings from the real data experiments

⌅ Our model showed a consistent performance over time. It is worth noticing

that time brings us two aspects of the information (accumulated knowledge

and varying pattern). However, as our main assumption is that the number

of species is a fixed-time variable, therefore, we expect two point: first, the

fluctuating pattern of the number of discoveries and the number of authors

should not have a great influence on estimating the number of species. Sec-

ond, the accumulated knowledge should contribute to refining the estimation

of the number of species. This seems to be what we achieved through the

chronological analysis of our model.

The first point appeared in the fact that the total estimation of the

number of species out of the 150-year period, C⇤
150, does not exceed the actual

recent estimation C⇤
240, although in this period it seems that the number of

discoveries is reaching a peak with increasing the number of authors, which may

indicate that there are a lot more species left to be discovered. In addition,

having decreasing curves at the last pattern of the 185-year period did not

conclude a less estimation for the number of species than C⇤
150, instead with

including more information over time, C⇤
185 is getting closer to C

⇤
240 regardless of

the trough occurrence. This might be an indication that fitting our model using

the ABC algorithm is getting more refined with the accumulated knowledge,

but it is still robust against the big fluctuations in the varying pattern of the

given data.

The second point appeared in the fact that the prediction of the trun-

cated periods, C⇤
150 and C⇤

185, do exceed the recent discoveries D240, which meet

our expectations that the prediction of a smaller previous period should at least

reach the recent number of discoveries (definitely not less). In addition, the

peak estimations of the 150-year and 185-year periods are still within the 95%

credible interval of the 240-year time period, in spite of the specific di↵erences

associated with time.

⌅ Our model showed a valid performance in the real data context. In the current

study, we verified our model validation from two point of view: cross-sectional
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validation and longitudinal validation. Since the conventional methods used

to validate a model can not be applied in our case, we had to innovate a

special way to validate our model, which is similar in principle to the residual

diagnostic method of regression analysis. In the cross-sectional validation, we

compared the usual method of our model fitting (in which we have a prior

uniform distribution for C) with the situation when we replaced the prior

distribution of C with the posterior point estimation, where the purpose is

to check the validation of the point estimation of our model. We found that

the distribution of the Euclidean distances (measured in a standardized scale)

of the point-estimate fitting is identical to the distribution of the ones of the

original fitting (the usual method). Moreover, the generated datasets out of

the point-estimate fitting are as much as the ones out of the original fitting

in capturing the general annual pattern of the given datasets, but narrower in

enveloping this given data, which is in line with our expectation that the point

estimate should generate data-series that are closer to the given one.

In the longitudinal validation, we replaced the prior distribution of C

by the posterior point estimation of the truncated dataset (once by C⇤
150 and

once by C⇤
185). Then, we compared the point-estimate fitting using C⇤

240 with

the point-estimate fitting using C⇤
150, and with the point-estimate fitting using

C⇤
185. The comparison was based on two ways of computing the Euclidean

distances: one was based on the whole-period data points, and the other was

based on the last predicted part of the datasets (the last 90 data-points in

the C⇤
150 case, and the last 55 data-points in the C⇤

185 case). We followed two

treatments denoted by (FT) and (ST), explained in details in Section 6.3.2. In

all of the treatments, we found that the distribution of the Euclidean distances

(measured in a standardized scale) of the point-estimate fitting given C⇤
240 is the

similar to the one given C⇤
150, and also similar to the one given C⇤

185. This is a

reflection of a valid estimation. It is worth emphasizing that the purpose of our

model is to predict the number of species (given the annual observed dataset,

and considering all the other variables in the context of species discovery), not

to predict the dataset itself in future time, and not to predict other variables

in the context. We basically achieved this through implementing (FT) way,

while the (ST) way is implemented just out of curiosity to predict the future
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datasets which appeared to be acceptable results although it is not really a

benchmark to judge our model performance.

⌅ Our model over-performs the NHRP model in multiple aspects. Through im-

plementing our model and the NHRP model on the same datasets (CoL and

WoRMS), we found that our model is more reflective in describing the target

problem including its context, more comprehensive in capturing the varying

patten of the given datasets, and more flexible and robust in dealing with large

datasets. With respect to the global estimation, the NHRP model failed in per-

forming a global estimation on the combined (CoL+WoRMS) dataset, while

our model is absolutely capable to perform such estimation (this is proofed

through some pilot experiments). However, due to the time limitation to

continue this attempt and go through additional fitting experiments for the

combined (CoL+WoRMS) dataset, we contented ourselves with making global

estimation based on the extensive aggregation analysis that we accomplished

on the artificial world setting. In conclusion, if we consider species estimates

over the species literature that collectively ranges from 1.5 million to over 100

million species on Earth [13], we can see that our estimations lie within this

range, but in a more reasonable scale.

7.3 Discussion & Suggestions for Future Work

Since our proposal is a comprehensive framework that covers multiple aspects

(statistical/computation-wise and application-wise), it o↵ers multiple research op-

portunities. To elaborate this statement, there are three aspects that shape our

framework, and a fourth aspect that represents the context of applying our frame-

work. The three aspects are: the structure of the model, the method of operating

the model, and a decision/monitorization rule, see Figure 7.1. The structural

aspect revolves around the number of variables a↵ecting our target, the distri-

butional assumptions of the adopted variables, the nature of the distributions’

parameters, and the prior support of our target. With respect to the operational

aspect, we adopted the ABC method which is subject to a distance metric, thresh-

old, and also a↵ected by the chosen prior support of our target.
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The third aspect is the decision/monitorization rule which is related to two

types of decisions (static and dynamic), and applied on the above two aspects.

Focusing on the structure, the static decisions are concerned with specifying the

number of variables and their distributional assumptions, also determining the

su�cient nature of the adopted parameters (e.g. determining whether a parameter

is su�cient to be fixed, or in form of a function, or it should be varying as a

hyper-parameter). Such decisions need a collaboration between statisticians and

specialists, in addition to pilot experiments. The pilot experiments can be made

through simulation (artificial data), or through complete real databases that can

be used as a learning data. Focusing on operating our model, the static decisions

are concerned with specifying the distance metric and determining the nature and

the number of the thresholds. This kind of decisions depends on the complexity of

the structure of the adopted model, and also needs aid from pilot experimentation.

Figure 7.1: The three aspects of our proposed model. The solid arrows represent the static decisions that should

be taken at the beginning of the modelling process, while the dashed arrows represent the dynamic decisions that

are taken for tuning the model and enhancing its performance. Note that the semi-static decisions appear in a

situation where we already specified the nature and number of the thresholds but for some specific occasions we

need an additional filtering step.

Once the static decisions are made, the role of the dynamic decisions comes

to monitor and tune the model performance. The dynamic decisions are concerned

with determining the su�cient prior support of our target, and determining the
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values of the adopted parameters. In some situations, some static decisions turn

to be dynamic such as determining whether to keep a fixed parameter or change it

to a hyper-parameter after multiple trials on a specific dataset, or determining the

number of the thresholds (as we faced in the WoRMS and CoL data) where it is

necessary to include additional threshold (filtering step) to overcome the memory

overflow problem (explained in details in Section 6.1.2)

In the following we are listing some examples of the research opportunities under

each aspect:

1. In the structural aspect:

⌅ In the adopted version of our proposed model there are six variables; how-

ever, it might be more accurate to include additional variables or use some

of them to replace existing ones. For example, in the species richness prob-

lem, the time factor might not be the only dominant influence on our target

variable, and the geographic location factor might have a high contribu-

tion in this problem. The number of discovered species might be highly

influenced by type-locality of the discovery locations. This variable can be

considered as an additional influence on the discovery events along with the

species abundances, or it can be considered as an influence factor on the

species-abundance itself. It would be interesting to investigate this aspect.

⌅ As mentioned earlier our model is subject to a variety of distributional

assumptions that can be selected for di↵erent reasons. Hence, it would

be interesting to explore other distributional specifications in the current

subject (species richness). For example, for simplicity and computational

convenience we chose the Uniform distribution as a prior knowledge of our

target variable C, and the Geometric distribution for the inter-discovery

samples di under the assumption of sampling with replacement so that the

samples are equally likely to be drawn. It would be interesting to try di↵er-

ent distributions such as the truncated Poisson as a prior distribution of C

where the parameter rate � � D, and Hyper-Geometric distribution for the

discovery events where we can sample without replacement. In addition,

the Lognormal distribution that we chose for the species abundances Nk is
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one of the suggestions in the species literature, and exploring other distribu-

tions such as Poisson Lognormal might be interesting. With respect to the

latent e↵ort proxy (the number of authors) xj and the sample sizes collected

annually nj, we chose them to be non-homogeneous Poisson processes, but

to include more variability especially in the number of authors, it might be

interesting to try the non-homogeneous renewal processes where the process

mean evolves di↵erently from its variance.

⌅ Since our model is represented as a high dimensional Bayesian network, this

allows for employing hyper-parametrization where the model parameters are

treated as random variables rather than fixed values. The current applica-

tion of our model includes five parameters, in which two of them (µN , �N)

have a static and timeless influence i.e. these parameters ultimately govern

the species-abundance distribution over all the time period, while the latent

e↵ort parameters (µL1 , �L) have a dynamic longitudinal influence through

the Markov property where the mean µL1 a↵ects the random variable L1

and the value taken for L1 will be used as a mean for the next L2 and so

on. On the other hand, the 5th parameter exp(↵) has a longitudinal influ-

ence on the number of authors but static at each time point. The inter-

discovery samples and the sample sizes are dynamically parametrized by

the species abundance and the latent e↵ort variables, respectively, through

the Bayesian network. However, we can increase the degree of dynamics

in our model by including hyper-parameters which means making some of

these parameters variables, especially �N and exp(↵) at which our model

seems to be highly sensitive. We can choose �N to be a random variable

from Uniform or Gamma distribution. With respect to exp(↵), we can cap-

ture more variability in the process governed by this parameter either by

treating the parameter as an exponential function or as a random variable

from Uniform or Exponential distributions.

However, when we adopt any of the suggested hyper-parametrization, dif-

ferent possible scenarios might occur. It could be possible to apply the

same ABC algorithm that is adopted in the current study, in which we

start to generate values for �N and exp(↵) from their specified distributions

and feed them into the network so that each generated ABC sample has
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di↵erent values of �N and exp(↵). This scenario might work well with a

similar accepting rate of the generated datasets, but presumably there will

be more variation in the estimated posterior of C due to adding more vari-

ation into the system through the hyper-parametrization. Another scenario

that might happen is that the generated values of �N and exp(↵) are not

consistent with the prior values of C so that the rejection rate becomes

higher. In this case, we might end up with significantly increasing the num-

ber of iterations to be able to reach certain number of su�ciently accepted

samples that contribute in estimating the posterior distribution of our tar-

get C, but this will probably lead to ine�cient computation time. Or, we

might end up with changing the way of applying the ABC algorithm either

by including another filtering steps or using a di↵erent type of ABC such

as ABC-PMC.

2. In the operational aspect:

⌅ The adopted version of the ABC algorithm is based on the Euclidean dis-

tance metric. In the light of the complexity and high dimensionality of our

model, we found di�culty to derive a su�cient statistic to be the base of

the distance measure. Hence, we computed this metric based on the exact

nature of the given annual datasets. It is worth mentioning that using the

data in this way helped us in selecting and tuning our parameters’ choices

through noticing how the annual patterns of the generated datasets can

capture the pattern of the given datasets (through the accepting/rejecting

plots). However, using such distance metric had to be associated with two

filtering steps: one is a threshold on the generated authors data, and the

second is a specified percentage to select the accepted final total data. In

addition, when applying our model on very large datasets such as the CoL

and WoRMS, we had to include a third filtering step to overcome the mem-

ory overflow problem. Thus, it would be interesting to develop our ABC

algorithm by investigating the possibility of deriving a su�cient statistic or

building a special formula for our distance metric or threshold and, there-

fore, create fewer number of filtering steps.
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⌅ Based on a pilot experiment of the current study (see Group B.25 of Section

B.6, Appendix B), we find that there are no significant di↵erences between

our adopted distance metric (Euclidean) and using other distance metrics

such as Manhattan and Minkowski. However, as a part of developing our

ABC algorithm, it might be interesting to investigate this aspect more with

other distributional assumptions or on other research subjects to check its

influence on the performance of our model.

⌅ The adopted version of the ABC algorithm provided us with the paralleliza-

tion process which is crucial in our high dimensional complex model. In the

case of small datasets (as the ones that we used in the artificial worlds), the

parallelization process helped us to make our model significantly e�cient,

while in case of large datasets (as the ones that we used in the real world),

the parallelization process is in fact essential to make our model operate

in the first place. However, as part of developing the operating method

of our model, we would be interested in applying other types of the ABC

algorithm such as ABC-PMC and ABC-SMC.

3. In the decisional aspect:

⌅ In the current study, our dynamic decisions to decide whether our choices

of the parameters’ values are representative, are made through observing

generated (accepting/rejecting) plots. Our rule is to check the closeness of

the generated datasets from the given ones. The closeness is defined by that

the accepted area of the generated data should cover the given data (so that

the given data is roughly placed in the middle of the accepted area), and

should capture the annual pattern of the given data. Obvious examples of

violating this rule are faced in the trials of selecting the parameters’ values

of the WoRMS dataset, see right-side plots (a, b, c, and d) of Group B.17

in Appendix B. The action to take when violating the rule is to re-consider

the chosen values or in the worst case changing the nature of the parameter

(e.g. change it from being fixed to be hyper-parameter). However, our cur-

rent decisions rule is still subjective, and it would be interesting to develop
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a sort of automated formula or test to assess the parameter specification

of our model. It is worth mentioning that even if we adopted the hyper-

parametrization, we would face similar challenges or might be worse due to

increasing the uncertainty level. Therefore, investigating the possibility of

developing an objective decision rule regarding the parameters would be of

great help in the case of hyper-parametrization.

⌅ Another subjective decision rule is determining su�cient prior support of

our target variable C. As we mentioned at the end of Section 2.3.4, we

can run multiple pilot simulations to suggest an upper bound of C, and our

current decision rule (to decided whether our suggestion is su�cient) is made

through observing the plot of the estimated posterior distribution of C. The

right-side tail of the distribution should be light (not heavy tail) such that

it is obviously no point for exploring larger values than the suggested upper

bound. However, it would be more convenient to derive an automated way

such as adding some constraints to make this task easier. Nevertheless, we

should emphasis that our proposed framework is meant to solve problems in

critical research-areas. Therefore, in spite of our ambitions to operate our

model in automated way, the judgement of a statistician and a specialists

is still of a high contribution.

4. In the application aspect:

⌅ With respect to the artificial worlds, in the current study, our model is ap-

plied on three di↵erent scenarios: one is when the discovery rate and the

number of authors are following each other in a stationary pattern as ap-

peared in World-A, and as an increasing pattern as shown in World-B. The

third scenario is when the discovery rate is increasing while the number

of authors is decreasing (shown in World-C). However, a fourth interest-

ing scenario to be explored is when the discovery rate is increasing while

the number of authors stays constant or stationary. However, this fourth

scenario is not possible to be well modelled in the light of our current pa-

rameters specifications, because we adopted a fixed value for exp(↵) which
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implies that the increase of the discovery rate is highly correlated with the

increased e↵ort that is interpreted by increasing the number of author (if

exp(↵) is fixed), i.e. with this high correlation, it seems impossible to see a

pattern in which the discovery rate increases and the authors numbers are

stationary. Thus, making exp(↵) as an exponent function or as a hyper-

parameter will ensure seeing this fourth scenario which will imply that the

increasing discovery rate is due to increasing the sampling action made by

an active author (not due to increasing the number of authors in the field).

⌅ With respect to the real world, in the current study, our model is applied on

one of the important research-areas (species richness) that witnessed inten-

sive and extensive research e↵orts. Although there are still many alternative

ways in operating our model in the species richness field, as indicated above,

it would be interesting to apply our model on other fields where we can deal

with other types of data, such as data of software-bugs discovery in software

engineering, where the latent e↵ort proxy could be the number of users or

licence holders registered with the software over the time that faults are be-

ing reported. Other interesting type of data is the oil-well discovery data in

the petroleum industry, where oil-wells can be classified into distinguished

types (classes) according to some major distinct characteristics, and the

latent e↵ort proxy could be the amount of funding spent on the discovery

process etc.
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Appendix A

Mathematical Equations

The current appendix includes three sections. In the first section, we introduce

some equations related to Chapter 2, Section 2.2.1. In the second section, we

introduce the equations of the proposed model of Chapter 4, Section 4.1. The

last section includes some equations related to Chapter 6, Section 6.1.1. These

equations explain the derivation of the standard deviation value of the species

abundances, as suggested by [87].

A.1 Some Equations from the Literature Review

Some of the estimators are explained in Chapter 2, particularly in Section 2.1.1

but without explicitly showing their formulas. However, they are listed below in

case they are subject of interest. The general setting of these equations is already

explained at the beginning of Section 2.1.1. Here are notations that are commonly

used for all these equations: n is the size of the sample drawn from a population of

size N and partitioned into C classes with proportions pi. Theoretically speaking,

this sample should represent the population such that n =
PC

i=1 ni, where ni is

the number of the sampled items from the ith class. The total number of classes

in the sample is c =
Pn

j=1 cj, where cj is the number of the classes involving j

items in the drawn sample.

ĈGoodman1 = c+
nX

j=1

(�1)j+1


(N � n+ j � 1)!(n� j)!

(N � n� 1)!n!

�
cj (A.1)

ĈShlosser = c+ c1

"
nX

i=1

iq(1� q)i�1ci

#�1 nX

j=1

(1� q)jcj (A.2)
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where q is the limit for the sampling fraction: n/N ! q 2 (0, 1).

ĈGoodman2 = c+
nX

j=1

(�1)j+1


1� p

p

�j
cj (A.3)

where p is the probability of being in sample n, and it is same for all classes.

ĈSichel =
2

✓̂1 ✓̂2
(A.4)

where ✓̂1 and ✓̂2 are the parameters of the Inverse Gaussian proposed as an ap-

proximate PDF for pi’s.

ĈChao1 = c+
c21
2 c2

(A.5)

ĈChao2 =
c

ûGood
+


n(1� ûGood)

ûGood

�
�̂2 ; ûGood = 1� c1

n
(A.6)

where �̂ is the estimated coe�cient of variance, and ûGood is the Good’s estimate

for coverage.

ĈPoisson =
c

1� \P0(F )
(A.7)

where \P0(F ) is the probability that an arbitrary class will occur zero times in the

drawn sample, which follows Poisson distribution (governed by a rate parameter

that is described by a distribution F).

A.2 Equation Explanation of the Proposed Model

Here is explanation of how we moved from equation (4.6) to equation (4.7) in

Chapter 4, Section 4.1:

The final mathematical formulation of the full joint probability distribution of our

model within the species context is given by,

P (C,N,d,L,n,x, t ) =

P (C)⇥ P (N | C)⇥ P (d |N)⇥ P (L )⇥ P (n | L )⇥ P (x | L )⇥ P (t | d,n) =
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By excluding the fixed values from the above expression, the full joint distribution

can be proportionally expressed as follows,
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⌅ Simplifying the 1st term from equation (A.9),
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⌅ Simplifying the 3rd term from equation (A.9),
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⌅ Simplifying the 4th term from equation (A.9),
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⌅ Simplifying the 5th term from equation (A.9),
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By substituting the 1st, 3rd, 4th, and 5th terms of equation (A.9) with equations

(A.10), (A.11), (A.12), and (A.13), respectively, and rearranging some terms, we

reach the final proportional formula of the full joint distribution,

P (C,N,d,L,n,x, t ) /
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(A.14)

A.3 Explanation of the Species Abundance Vari-

ation Provided by [87]

[87] found that on a log scale (base 2), species abundances followed a normal

distribution, at which he described the species abundances “commonness” as a

relative concept so that we can say one species is twice as common as another etc.

He suggested that a natural series of groups representing commonness would run

as a sequence of octaves of frequency. He justified his proposal as: “It is the most

natural grouping possible, but our ultimate justification for adopting it is not its

naturalness, but the fact that it works. It is a geometric, or logarithmic series, and

this paper produces evidence that commonness of species appears to be a simple
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Gaussian curve on a geometric base (i.e. “lognormal” curve)”. He formulated the

octave Gaussian curve as follows,

n = n0 e
�(aR)2 (A.15)

where ‘n0’ is the number of species in the octave, ‘R’ is the number of octaves to

left or right of the mode of the curve, ‘n’ is the number in an octave distance R

octaves from the mode, and ‘a’ is a constant to be calculated from the experimen-

tal evidence, which was noticed to be close to the value 0.2.

He explained that theoretically the curve extends to infinity so that the total

number of species theoretically available for observation can be expressed as,

N =

Z +1

�1
n dR = n0

p
⇡

a
(A.16)

By substituting the term n in equation (A.16) by its value in equation (A.15),

and re-write the result as an integral of the exponential part of the Gaussian

distribution (µ = 0, �) as shown in equation (A.18), we can derive the formula of

the standard deviation of species abundances:

Z +1

�1
e�(aR)2 dR =

p
⇡

✓
1

a

◆
(A.17)

Z +1

�1
e
�
 x

�
p
2

!2

dx =
p
⇡
⇣
�
p
2
⌘

(A.18)

Thus, the standard deviation of species abundances is given by: � = 1/a
p
2, and

by using the approximate value a = 0.2, the estimated standard deviation on a

log (base 2) scale is � = 3.54.

By using the transformation formula {loge(x) = log2(x)/ log2(e)}, we got our
estimated value of the standard deviation of species abundances (� = 3.54/ log2(e) =

2.45) on a natural logarithmic scale.
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Appendix B

Groups of Tables and Plots

The current appendix consists of six sections related to the artificial and real data

experiments. It involves mixed groups of plots and tables, at which each group is

presented in a manner that gives the reader a holistic view to allow for making

comparisons and noticing the related numerical values. Therefore, the used cap-

tion in this appendix is titled by the name ‘Group’.
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B.1 Simulation Results Related to Chapter 4

Group B.1: Summary information (design and results) of the three artificial worlds.
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B.2 Accuracy Results Related to Chapter 5

Group B.2: Summary of the accuracy measure (1st aspect of MC error) over the three artificial worlds.
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Group B.3: The 500 generated datasets of the three artificial worlds. In the current number of discoveries D,

the coe�cient of variation (CV) is higher in World-B at which CV = 60%, while CV = 30% in World-A and

CV = 20% in World-C.
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Group B.4: Summary (statistics) of the accuracy measure (2nd aspect of MC error) over the three artificial

worlds.
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Group B.5: Summary (plots) of the accuracy measure (2nd aspect of MC error) over the three artificial worlds.
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B.3 Sensitivity Results Related to Chapter 5

Group B.6: Summary (statistics) of the sensitivity measure over the three artificial worlds.
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Group B.7: Summary (plots) of the sensitivity measure over the three artificial worlds. In the middle and

bottom panels, the solid green line represents the true value of C, while the dashed green lines represent the 95%

credible interval of C. The (blue) dots along with the blue horizontal lines represent the point estimations given

the over-parametrization and their 95% credible intervals, respectively, while the (red) dots along with the red

horizontal lines represent the point estimations given the under-parametrization and their 95% credible intervals,

respectively.
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B.4 Additivity Results Related to Chapter 5

Group B.8: Summary of the parametrizations and the fitting results of the subgroups (S1 and S2) out of the

Splitting Scheme, and subgroups (M1 T(1) and M2 T(1)) out of the Merging Scheme - Treatment (1) of World-A.
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Group B.9: Summary of the parametrizations and the fitting results of the subgroups (M1 T(2) and M2 T(2))

out of the Merging Scheme - Treatment (2), and subgroups (M1 T(3) and M2 T(3)) out of the Merging Scheme

- Treatment (3) of World-A.
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Group B.10: Summary of the fitting results of the whole category (World-A) against all combined taxa: (S1+S2),

(M1 T (1) +M2 T (1)), (M1 T (2) +M2 T (2)), and (M1 T (3) +M2 T (3)).
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Group B.11: Summary of the parametrizations and the fitting results of the subgroups (S1 and S2) out of the

Splitting Scheme, and subgroups (M1 T(1) and M2 T(1)) out of the Merging Scheme - Treatment (1) of World-B.
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Group B.12: Summary of the parametrizations and the fitting results of the subgroups (M1 T(2) and M2 T(2))

out of the Merging Scheme - Treatment (2), and subgroups (M1 T(3) and M2 T(3)) out of the Merging Scheme

- Treatment (3) of World-B.
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Group B.13: Summary of the fitting results of the whole category (World-B) against all combined taxa: (S1+S2),

(M1 T (1) +M2 T (1)), (M1 T (2) +M2 T (2)), and (M1 T (3) +M2 T (3)).
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Group B.14: Summary of the parametrizations and the fitting results of the subgroups (S1 and S2) out of the

Splitting Scheme, subgroup (M T(1) out of the Merging Scheme - Treatment (1), subgroup (M T(2) out of the

Merging Scheme - Treatment (2), and subgroup (M T(3) out of the Merging Scheme - Treatment (3) of World-C.
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Group B.15: Summary of the fitting results of the whole category (World-C) against all combined taxa: (S1+S2),

(M1 T (1) +M2 T (1)), (M1 T (2) +M2 T (2)), and (M1 T (3) +M2 T (3)).
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B.5 Results Related to Chapter 6

Group B.16: Ten times-fitting results (out of 1, 000, 000 iterations, and selected final sample s=1000) showing

similar accuracy in the performance of both: the ABC algorithm that we adopted in all artificial experiments

(left panel), and the altered ABC algorithm that includes an additional filtering step and applied on the real

experiments (right panel).
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Group B.17: A sample of the CoL fitting trials (pilot experiments). The left plot from each figure belongs to the

number of discoveries (rejected (grey), accepted (dark grey), and true curve (red)), and the right plots belong to

the number of authors. The chosen parameters of each trial are shown next to each figure. Note that, we started

with 10,000 iterations with final sample size =1000 in the figures (a), (b) and (c), but then we found that 1000

iterations with final sample size =100 was enough to make decisions on the rest of the trials.
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Group B.18: Continue, a sample of the CoL fitting trials (pilot experiments). The left plot from each figure

belongs to the number of discoveries (rejected (grey), accepted (dark grey), and true curve (red)), and the right

plots belong to the number of authors. The chosen parameters of each trial are shown next to each figure.
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Group B.19: Continue, a sample of the CoL fitting trials (pilot experiments). The left plot from each figure

belongs to the number of discoveries (rejected (grey), accepted (dark grey), and true curve (red)), and the right

plots belong to the number of authors. The chosen parameters of each trial are shown next to each figure.
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Group B.20: The adopted fitting results of the CoL dataset, Figure (a) belongs to the 10,000 iterations, while

Figure (b) belongs to the 100,000 iterations.
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Group B.21: A sample of the WoRMS fitting trials (pilot experiments). The left plot from each figure belongs

to the number of discoveries (rejected (grey), accepted (dark grey), and true curve (red)), and the right plots

belong to the number of authors. The chosen parameters of each trial are shown next to each figure. Note that,

we started with 10,000 iterations with final sample size =1000 in the figures (a) and (b), but then we found that

1000 iterations with final sample size =100 was enough to make decisions on the rest of the trials.
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Group B.22: The first attempt of the fitting results of the WoRMS dataset with prior range [D, 300D], Figure

(a) belongs to the 10,000 iterations, Figure (b) belongs to the 100,000 iterations, while Figure (c) belongs to the

1,000,000 iterations.
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Group B.23: The adopted fitting results of the WoRMS dataset with prior range [D, 500D], Figure (a) belongs

to the 10,000 iterations, while Figure (b) belongs to the 100,000 iterations.
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Group B.24: Correlations among CoL and WoRMS datasets. The top panel reflects the correlations between the

CoL and WoRMS datasets, where the top left plot shows a significant correlation in the number of discoveries

(⇢ pearson = 0.71 and ⇢ spearman = 0.79), while the top right plot shows a significant correlation in the number of

authors (⇢ pearson = 0.67 and ⇢ spearman = 0.86). The bottom panel reflects the correlations between the number

of discoveries and the number of authors within each dataset, where the bottom left plot belongs to the CoL

with a significant correlation (⇢ pearson = 0.97 and ⇢ spearman = 0.97), while the bottom right plot belongs to the

WoRMS with a significant correlation (⇢ pearson = 0.90 and ⇢ spearman = 0.95).
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B.6 Distance Metric Results

Group B.25: An initial attempt for a small pilot experiments with just 10, 000 iterations and a final sample

size=100, to check whether there is another distance metric that over-performs the Euclidean distance metric.

The implemented artificial world parametrized by µN = 10, �N = 3, µL1 = 6, �L = 0.15, and ↵ = 5, where

T = 250, D = 4, 753, C = 10, 000. It seems that there is no significant di↵erence between them except for the

‘Maximum’ metric. This is justified by the fact that they all (except for the ‘Maximum’ metric) are equivalently

monotonic transformations.
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Appendix C

Pseudo Codes

The current appendix includes two sections. In the first section, we introduce the

pseudo code for the adopted ABC algorithm that is implemented on the artificial

datasets throughout Chapter 4 and Chapter 5. In the second section, we introduce

the pseudo code for the altered ABC algorithm that is implemented on the real

datasets in Chapter 6.
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C.1 Artificial-Data Algorithm

Algorithm 1 Pseudo code for the adopted ABC algorithm

1: Define: number of iterations (iter), and size of the accepted final sample (s).

2: Define: values for parameters (✓N , ✓l, ✓x), and upper limit (mD) for uniform

prior of C.

3: Define: distance metric threshold (✏). . // obtained via a pilot trial.

4: Import: data ⌧1:T and x1:T .

5: for (each iteration index i = 1, ..., iter) do

6: Simulate C(i) from P (C).

7: Simulate l(i)1:T from P (l1:T | ✓l).
8: Simulate x(i)

1:T from P (x1:T | l(i)1:T , ✓x).

9: Compute distance metric D
(i)
x between given x1:T and simulated x(i)

1:T .

10: if (D(i)
x > ✏) then

11: skip this step, and go back for a new iteration.

12: else . // continue simulating the rest.

13: Simulate N (i)

1:C(i) from P (N1:C(i) | C(i), ✓N).

14: Simulate n(i)
1:T from P (n1:T | l(i)1:T ).

15: Simulate d(i)1:D from P (d(i)1:D|N
(i)

1:C(i)).

16: Calculate ⌧ (i)1:T from d(i)1:D and n(i)
1:T . // using Equation 3.2.

17: Compute distance metric D
(i)
⌧ between given ⌧1:T and simulated ⌧ (i)1:T .

18: Calculate D
(i)
total = D

(i)
⌧ +D

(i)
x

19: Store {C⇤} = C(i) , and {D⇤
total} = D

(i)
total . // end of the for loop.

20: Take the s accepted {C⇤} with the smallest {D⇤
total} to be a final sample from

P (C | ⌧1:T , x1:T , ✓N , ✓l, ✓x).

21: Derive summary statistics and plots from the above final sample of size s.

C.2 Real-Data Algorithm
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Algorithm 2 Pseudo code for the (altered) ABC algorithm

1: Define: number of iterations (iter), and size of the accepted final sample (s).

2: Define: values for parameters (✓N , ✓l, ✓x), and upper limit (mD) for uniform

prior of C.

3: Define: distance metric threshold (✏0). . // obtained via a pilot trial.

4: Define: two limit thresholds (✏1) and (✏2). . // obtained via same pilot trial.

5: Import: data ⌧1:T and x1:T .

6: for (each iteration index i = 1, ..., iter) do

7: Simulate C(i) from P (C).

8: Simulate l(i)1:T from P (l1:T | ✓l).
9: Simulate x(i)

1:T from P (x1:T | l(i)1:T , ✓x).

10: Compute distance metric D
(i)
x between given x1:T and simulated x(i)

1:T .

11: if (D(i)
x > ✏0) then

12: skip this step, and go back for a new iteration.

13: else

14: Simulate n(i)
1:T from P (n1:T | l(i)1:T ).

15: if ((
PTj

r=1 n
(i)
r < ✏1) or (

PTj
r=1 n

(i)
r > ✏2)) then

16: skip this step, and go back for a new iteration.

17: else . // continue simulating the rest.

18: Simulate N (i)

1:C(i) from P (N1:C(i) | C(i), ✓N).

19: Simulate d(i)1:D from P (d(i)1:D|N
(i)

1:C(i)).

20: Calculate ⌧ (i)1:T from d(i)1:D and n(i)
1:T . // using Equation 3.2.

21: Compute distance metric D
(i)
⌧ between given ⌧1:T and ⌧ (i)1:T .

22: Calculate D
(i)
total = D

(i)
⌧ +D

(i)
x

23: Store {C⇤} = C(i) , and {D⇤
total} = D

(i)
total . // end of the for loop.

24: Take the s accepted {C⇤} with the smallest {D⇤
total} to be a final sample from

P (C | ⌧1:T , x1:T , ✓N , ✓l, ✓x).

25: Derive summary statistics and plots from the above final sample of size s.
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