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The polycomb repressive complex 2 (PRC2) is a conserved

multiprotein, repressive chromatin complex essential for

development and maintenance of eukaryotic cellular identity.

PRC2 comprises a trimeric core of SUZ12, EED and EZH1/2,

which together with RBBP4/7 is sufficient to catalyse mono-

methylation, di-methylation and tri-methylation of histone H3 at

lysine 27 (H3K27me1/2/3). These histone methyltransferase

activities of PRC2 are deregulated in several human cancers

and certain developmental disorders, such as Weaver

Syndrome. Core PRC2 associates with several accessory

proteins, which organise to define two main subassemblies,

PRC2.1 and PRC2.2. Here we review new biochemical and

structural studies that are providing critical insights into how

core and accessory PRC2 subunits coordinate the faithful

deposition of H3K27 methylations genome-wide.
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Introduction
Polycomb proteins are chromatin repressors required for

maintaining cellular identity during differentiation and

development [1]. They assemble into two distinct mul-

tiprotein complexes, called polycomb repressive com-

plex-1 (PRC1) and complex-2 (PRC2). Taking into

account their association with various substoichiometric

components, these are further subdivided into distinct

biochemical subassemblies; canonical and variant PRC1

(cPRC1 and vPRC1), as well as PRC2.1 and PRC2.2 [2].

The core of PRC2 contains EED, SUZ12 and one of two

histone methyltransferases (HMT), EZH1 or EZH2,

and, in association with RBBP4/7 is sufficient to mediate

all mono-methylation, di-methylation and tri-methyla-

tion of lysine 27 on Histone H3 (H3K27me1/2/3) [3–5].
www.sciencedirect.com 
The PRC2-mediated H3K27me3 contributes to gene

repression by promoting the recruitment of cPRC1 to

chromatin via specific binding of chromodomains

within its CBX subunits [6,7]. Once associated, the

PHC and CBX2 components of cPRC1 are thought

to promote stable repression via long range chromatin

interactions [8,9]. The vPRC1 complexes deposit

H2AK119ub1, which in turn promotes association of

PRC2.2, and to a lesser extent PRC2.1 [10–13,64]

(Figure 1a). However, it is becoming increasingly clear

that vPRC1-mediated H2AK119ub1 also has a role in

gene repression that is independent of PRC2 and

cPRC1 [13–16]. While, the various PRC2 and PRC1

complexes are highly abundant at CpG islands located

near developmentally repressed gene promoters, the

majority of global H3K27me3 deposition occurs else-

where in the genome, in the absence of stable PRC2

binding [4,12,17]. Similarly, H3K27me2 is observed

throughout the genome. It is possible that these dis-

persed H3K27me2 and H3K27me3  depositions act as a

repressive blanket to prevent aberrant transcriptional

activity [3,18]. Importantly, this pervasive deposition of

H3K27me2 and H3K27me3 implies that PRC2 also

engages with chromatin outside of traditional Polycomb

target genes, potentially in a less stable, more transient

fashion.

PRC2 folds into two functionally distinct lobes, a cata-

lytic lobe comprising EZH2, EED and the VEFS

domain of SUZ12, as well as a targeting lobe composed

of the N-terminal region of SUZ12, RBBP4/7 and

various associated accessory proteins [19,20,21��]
(Figure 1b). These PRC2 accessory subunits compete

for interaction with the N-terminal region of SUZ12 to

define the PRC2.1 and PRC2.2 subcomplexes [19,22]

(Figure 1b–c). PRC2.1 contains one polycomb-like

protein (either PHF1, MTF2 or PHF19) together with

either PALI1/2 or EPOP [23–25], while PRC2.2 con-

tains JARID2 and AEBP2 [26,27] (Figure 1c). The most

recently described eutherian-specific EZHIP/CATA-

COMB accessory protein is believed to interact with

core PRC2 to inhibit its histone methyltransferase

activity [28–31]. The subdivision of PRC2 is con-

served in Drosophila, which have mutually exclusive

Pcl–PRC2 and Jarid2–PRC2 subcomplexes [2].

The PRC2.1-specific and PRC2.2-specific accessory pro-

teins modulate the targeting and enzymatic activity of

core PRC2 at repressed gene promoters [4,12,17], and

some may also act to bridge PRC2 with other transcrip-

tional regulators [24,32,33]. While a minimal catalytically

active PRC2 comprising EZH2, EED and the SUZ12–
Current Opinion in Structural Biology 2021, 67:135–144
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Figure 1
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How polycomb repressive complexes are targeted to chromatin and the structure of PRC2.

(a) Polycomb repressive complexes are targeted to chromatin by multiple pathways. vPRC1.1 binds CpG islands and vPRC1.3/5/6 harbour

sequence specific DNA binding proteins to promote targeting and deposition of H2AK119ub1. Components within PRC2.1 (polycomb-like proteins

and PALI1) also interact with DNA, while PRC2.2 components (AEBP2 and JARID2) directly bind H2AK119ub1. PRC2.1 and PRC2.2 mediate

H3K27me3 deposition, facilitating recruitment of cPRC1 through CBX proteins which bind this modification. cPRC1 can subsequently compact

chromatin through polymerisation.
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VEFS domain is sufficient to maintain global levels of

H3K27me1/2/3, the N-terminal region of SUZ12 is

required to interact with RBBP4/7 and additional acces-

sory proteins to accurately target PRC2 to polycomb-

repressed gene promoters [4,12,17]. PRC2.1-specific

and PRC2.2-specific accessory proteins co-occupy the

majority of polycomb target genes, where they synergise

to coordinate deposition of H3K27me3 [12]. The poly-

comb-like proteins in PRC2.1, and JARID2 in PRC2.2,

are key for targeting their respective subcomplexes and

loss of these accessory proteins leads to mis-localisation of

PRC2 [12,17,34]. In this review, we will focus on recent

structural studies highlighting how core PRC2 binds

DNA, senses histone modifications, and how the respec-

tive architecture of PRC2.1 and PRC2.2 facilitate engage-

ment with chromatin by independent, but complimentary

mechanisms.

Core PRC2 assembly and interaction with
chromatin
The core members of PRC2 directly engage with chro-

matin via interactions with histone tails [35–38] and

DNA [39��,40��]. Initial studies revealed that core

PRC2 member EED binds to H3K27me3 and this

interaction allosterically promotes PRC2 histone

methyltransferase (HMT) activity [34,36,41]. The struc-

tural basis for this allosteric activation was initially

described in fungi (Chaetomium thermophilum) by X-ray

crystallography [35]. This revealed that the stabilisation

of the EZH2–SRM domain is a key defining character-

istic towards the achievement of a stimulated state [35].

The structural organisation within core PRC2 and its

allosteric activation have been comprehensively

reviewed previously [42,43].

Recent cryo-EM structures of PRC2 together with mono-

nucleosomes or di-nucleosomes revealed an extensive

three-way interaction between CXC/SET domains of

EZH2, nucleosomal DNA and the H3 N-terminus, which

serve to position the H3 tail into the methyltransferase

active site (Figure 2a–b) [39��,44��]. It is clear that core

PRC2 members are involved in several electrostatic inter-

actions with nucleosomal and linker DNA

[39��,40��,45�,46]. Structural characterisation of these inter-

actions has highlighted their critical role in regulating

HMT activity and nucleosome binding (Figure 2b). For
(b) Cryo-EM structure of PRC2 containing core complex members EZH2, S

(yellow) which threads through both the catalytic and targeting moieties of P

VEFS region of SUZ12 (yellow) to form the catalytic moiety. RBBP4 (orange

moiety. Dashed red circles indicate regions of special interest, including the

catalytic activity), the EZH2 SET domain (catalytic domain), and the SUZ12 

with PRC2.1 and PRC2.2 specific accessory proteins.

(c) Schematic representation of the compositions of PRC2.1 and PRC2.2. M

PHF19) in complex with either EPOP or PALI1/2. PRC2.2 contains JARID2 a

specific accessory protein JARID2 likely compete for the neck region (NR) o

AEBP2 compete for SUZ12 C2 region. It is not yet known structurally where
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example, interaction between specific lysine and arginine

residues within the EZH2–CXC domains, and the sub-

strate nucleosomal DNA are critical for PRC2 activity

[39��]. While a lysine patch within EED provides an

electrostatic interface for interaction with the allosteric

nucleosomal DNA (Figure 2b). These data provide new

insights into specific interactions between core PRC2

members and nucleosomal DNA, which regulate two

key aspects of PRC2 biology — chromatin engagement

and methyltransferase activity.

The core members of PRC2 can also sense the methyl-

ation status of H3K4 and H3K36, which in turn influence

HMT activity [37,38,39��]. The abovementioned recent

structural studies illustrating how H3 is threaded into the

PRC2 active site hint at a mechanism through which

EZH2 senses the methylation status of the histone H3 tail

[39��]. These findings supported previous biochemical

evidence that active chromatin marks, including

H3K4me3 and H3K36me2/3, competitively inhibit

PRC2 HMT activity [37,38,47]. The presence of

H3K36me3 inhibits PRC2 in cis and thereby prevents

accumulation of H3K27me3 [37,38]. Therefore, the

H3K27me3 and H3K36me3 modifications never co-local-

ise across the genome [48,49]. The correct balance

between their deposition profiles is essential for mainte-

nance of gene expression patterns during development

[39��]. Recent work by Finogenova et al. [39��],
highlighted the role of unmodified H3K36 in feeding

the substrate histone tail into the PRC2 active site via

contact with the DNA backbone, which is less favourable

in the presence of H3K36me3 [39��] (Figure 2c). It is

likely that the structural constraints of the nucleosome

also contribute to the allosteric inhibition by H3K36me3

as the inhibition was lost on peptide substrates [39��].
Although H3K36me3 and H3K27me3 never co-localise, it

is interesting to consider that perhaps H3K36me2 could

still allow for some, albeit lower, PRC2 activity. Support-

ing this theory, the inhibition of H3K27me3 and

H3K27me2 deposition was less pronounced on

H3K36me2 nucleosomes than on H3K36me3 nucleo-

somes [37]. Taken together, these data could help ratio-

nalise why genome-wide low levels of H3K27me2, and to

a lesser extent, H3K27me3 can exist in the presence of

H3K36me2. It is likely that these effects result from

changes in the dynamics of the H3 tail alignment on
UZ12 and EED (PDB: 6C24, EMDB-7335 Ref. [21��]). Shown is SUZ12

RC2. EZH2 (green) folds around EED (dark blue) and interacts with

) and the N-terminal region of SUZ12 (yellow) form the targeting

 SUZ12–VEFS domain (minimal region of SUZ12 required for PRC2

C2 and NR regions within the targeting moiety that facilitate interaction

ammalian PRC2.1 contains one of three PCL proteins (PHF1, MTF2 or

nd AEBP2. PRC2.1-specific accessory protein EPOP and PRC2.2-

f SUZ12, while PRC2.1-specific PCL proteins and PRC2.2-specific

 PRC2.1-specific PALI1 interacts with SUZ12.
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Figure 2
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Core PRC2 members interact with nucleosomal DNA to direct the H3 tail into its active site.

(a) Domain architecture of the catalytic moiety of core PRC2 included in the cryo-EM structures of panels (b) and (c). The domains in EZH2 are

highlighted in green, EED in dark blue and SUZ12–VEFS domain in yellow.

(b) Cryo-EM reconstruction of the catalytic moiety of PRC2 engaged with a dinucleosome separated by 35 base pair of linker DNA (EMDB-7306

Ref. [40��]). Density is coloured as in (A) to show PRC2 subunits, DNA (cream) and histone octamers (purple). The DNA exiting the substrate
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the EZH2 surface during the enzymatic cycle, and dif-

ferences in the residence time of the tail in a conformation

where K27 can enter the catalytic site.

How PRC2.2 reads vPRC1-mediated
H2AK119ub1 and interacts with DNA
The PRC2.2-specific accessory proteins JARID2 and

AEBP2 interact with chromatin and contribute to direct-

ing H3K27 methylations. The deposition of

H2AK119ub1 is essential for Polycomb-mediated gene

repression and serves, at least in part, to stabilise PRC2.2

at target genes [12–16]. A recent cryo-EM study of

PRC2.2 bound to a H2AK119ub1-modified nucleosome

structurally confirmed the interaction between ubiquitin

and the putative ubiquitin interacting motif (UIM) in the

N-terminus of JARID2 [44��,50,64], while also revealing

for the first time that AEBP2 can engage ubiquitin [44��].
The JARID2–UIM is sandwiched between the histone

core and the ubiquitin molecule and interacts with both

the ubiquitin molecule and the H2A–H2B acidic patch

[44��] (Figure 3b). Two C2H2 zinc-fingers in AEBP2

interact with ubiquitin and the H2A–H2B surface

[44��] (Figure 3b–c). Interestingly, the relatively large

distance between ubiquitin and the NR region of SUZ12

that is known to interact with JARID2 implies the struc-

ture may have partially captured the engagement of two

separate JARID2 molecules [44��,51]. This could support

previous reports of PRC2 existing in a dimer formation

[52,53]. The cryo-EM structure also highlighted the

interaction between AEBP2 and nucleosomal DNA

[44��] (Figure 3b–c), supporting previous biochemical

and functional data which uncovered a lysine–arginine

motif (KR-motif) within AEBP2 capable of boosting

PRC2 HMT activity [54]. Future studies that succeed

in including the N-terminal region of JARID2 and C-

terminal region of AEBP2 not yet structurally charac-

terised may further elucidate their roles in PRC2’s

engagement with chromatin.

Polycomb-like protein of PRC2.1 can
recognise DNA and histone modifications
Polycomb-like proteins are vital for the interaction of

PRC2.1 with chromatin [12,17,45�,55�,56]. However, to

date, efforts to study the structure of the polycomb-like

protein (PCL) containing PRC2.1 have proven chal-

lenging. In fact, PCL proteins are difficult to purify due

to their largely unstructured C-terminal region [57]

(Figure 4a). Even when successfully purified, it has
(Figure 2 Legend Continued) nucleosome on the left interacts with the CX

representation of positively charged amino acids in EZH2–CXC (green) capa

highlighted. On the right, a zoomed in ribbon representation of allosteric nu

electrostatic interface. Positively charged residues of EED are highlighted (r

(c) Cryo-EM reconstruction of the catalytic moiety of PRC2 engaged with a

kindly provided by the Müller lab). Density is coloured as in A and B. A zoo

(green) illustrates how an unmodified H3K36 facilitates feeding of the H3 tai

backbone (pale yellow).
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been difficult to precisely localise the PCL

component within the electron density of structures

of PCL–PRC2.1 containing complexes [39��]. Despite

these challenges, the Liu group determined  the crystal

structure of the C-terminal region of PHF19 interacting

with SUZ12, reporting an analogous interaction to that

seen for AEBP2–SUZ12 [52]. In addition, work from

the Müller and Wang labs, presented the crystal struc-

ture of the N-terminal region of Drosophila (Dm) Pcl

[45�], human (Hs) PCL1/PHF1, and Hs-PCL2/MTF2

[55�]. These studies revealed an extended homologous

region (EH) that adopts a winged helix-like structure

capable of binding DNA with high affinity (Figure 4b)

[45�,55�]. While, polycomb-like proteins are thought to

interact with DNA and stabilise PRC2.1 on chromatin

by increasing the residency time, their ability to recog-

nise specific DNA sequences is disputed [45�,55�].
Since the addition of PHF1/PCL1 increases the

PRC2 residency time on nucleosomal substrates

[45�], it is possible to conceive that stable PRC2.1

binding occurs via an avidity-based mechanism in

which a minimum threshold of DNA binding must

be reached. Polycomb-like proteins can also bind

H3K36me2/3 via an aromatic cage in the N-terminal

TUDOR domain [58–60]. While the functional rele-

vance of this interaction remains unknown, one possi-

bility is that PCL–PRC2 engages with and reads

H3K36me2/3 throughout the genome and that this

contributes to the demarcation of H3K27 and H3K36

methylation boundaries on chromatin.

JARID2 and PALI1 interact with EED through a
strikingly similar structural mechanism to
promote enzymatic activity
The JARID2 (PRC2.2) and PALI1 (PRC2.1) accessory

proteins stimulate PRC2 activity in vitro and are direct

substrates for PRC2 [24,26,61,62�]. JARID2 is methylated

by PRC2 at K116 in vitro and in vivo, which has an

allosteric stimulatory effect on PRC2 HMT activity

though recognition by EED [61]. A similar accessory

protein-induced mechanism of allosteric activation for

PRC2 has now been described for the first time in the

context of PRC2.1 [62�]. PALI1–K1219 and PALI1–

K1241 are substrates for EZH2, and when methylated

can allosterically activate the complex when bound to

EED [62�], through a similar mechanism to that proposed

for JARID2-K116me3 [61] (Figure 4c). However, the

mode by which methylated JARID2 and PALI1 proteins
C domain of EZH2 (green). On the left, a zoomed in ribbon

ble of forming electrostatic interactions with nucleosomal DNA are

cleosomal DNA interacting with EED (dark blue) creating an

ed) as likely interactors with the negatively charged DNA backbone.

 dinucleosome separated by 35 base pair of linker DNA [39��] (structure

med in view of the H3 tail (purple) threading into the EZH2 active site

l (purple) into EZH2 active site (green) through interaction with the DNA
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Figure 3
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Both JARID2 and AEBP2 of PRC2.2 can interact directly with H2AK119ub1.

(a) Domain architecture of PRC2.2-specific accessory proteins JARID2 (red) and AEBP2 (pink). UIM; ubiquitin interaction motif, TR; trans

repression domain, ZF; zinc finger.

(b) Cryo-EM structure of PRC2.2 bound to H2AK119ub1 modified nucleosome [44��] (structure kindly provided by the Nogales Lab). Subunit

colours are highlighted, EZH2 (green), EED (dark blue), SUZ12 (yellow), JARID2 (red), AEBP2 (pink), Histone octamer (purple), Ubiquitin (light blue).

Both JARID2 (red) and AEBP2 (pink) interact with ubiquitin (light blue). AEBP2 (pink) has addition contacts with nucleosomal DNA via a lysine

arginine rich region.
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(c) JARID2 (red) interacts with ubiquitin (light blue) through its UIM domain in its N-terminus. Amino acids 24–40, corresponding to the previously

annotated UIM [50], interact directly with the ubiquitin molecule (light blue), while amino acids 41–57 engage with acidic patch of H2A–H2B

(purple).

(d) AEBP2 (pink) interacts with ubiquitin (light blue) through the first two of its three ZF domains. The first ZF domain at amino acid 50 interacts

with the ubiquitin molecule (light blue) and DNA while the second ZF domain at amino acid 116 engages H2A–H2B (purple).

Figure 4
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PRC2.1 members can interact with DNA and also allosterically activate PRC2.

(a) Domain architecture of Drosophila Pcl (green) and human MTF2 (PCL2) (purple). Dashed box highlights the region of the solved crystal

structures of the extended helix (EH) domain.

(b) Superimposition of the crystal structure of dPcl WH (green) (PDB: 5OQD Ref. [45�]) and human MTF2 (purple) (PDB: 5XRF Ref. [55�]). While

there is high structural conservation between the two domains their reported regions of interactions with DNA differ. hMTF2 is reported to interact

with DNA major groove via the w1 region [55�], while dPcl is reported to interact with DNA by insertion of the a three helix in the DNA major

groove [45�].
(c) PRC2 can be allosterically activated by the PALI1 and JARID2 accessory proteins in PRC2.1 and PRC2.2, respectively. Crystal structures of

EED (dark blue) with either PALI1-K1219me3 (orange) (PDB 6V37; [62�]), PALI1 K1241me3 (yellow) (PDB 6V3X [62�]), JARID2–K116me3 (red) (PDB

4X33; [61]) or H3K27me3 (Purple) (PDB3IIW; [36]) are represented in cartoon formation. The structure of the PALI1–K1219me3 and PALI1–

K1241me3 peptides was kindly provided by the Davidovich Lab. EED aromatic cage amino acids are highlighted in cyan. The aromatic residue +1

amino acid to the methylated peptides for JARID2 (PRC2.2) and PALI1 (PRC2.1) provides an extra contact with EED, a feature not present in the

H3K27me3–EED interaction.
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bind to EED is slightly different than that described for

H3K27me3, whereby both utilise an additional aromatic

residue [36,61], which increases the contact with EED

(Figure 4c). The cryo-EM structure describing JARID2

bound to the allosteric and stimulatory sites of PRC2

advanced our understanding of allosteric activation of

PRC2 [21��]. This revealed two co-existing stimulated

states of PRC2: compact-active and extended-active,

which differ in the conformation of the EZH2–SBD

and EZH2–SRM. Therefore, it is possible these struc-

tures have captured different stages of activation; the

initial binding of a stimulating repressive peptide and

SRM stabilisation followed by bending of the SBD

towards SANT1. Interestingly, independent of its allo-

steric activation function, PALI1 substantially increased

the affinity of PRC2 for DNA relative to core PRC2 alone,

in a non-sequence specific manner [62�].

Perspectives
Recent advances in mass spectrometry and structural

biology techniques have led to an explosion of studies

revealing novel insights into PRC2 organisation and

engagement with chromatin. The emerging picture tells

us that it is most likely a series of multivalent interactions

including but not limited to, core PRC2 members inter-

acting with nucleosomal DNA and histone tails, as well as

the specific accessory proteins of PRC2.1 and PRC2.2,

that serve to both direct and modulate enzymatic activity

across the genome. These new insights will aid us in

mapping key causative mutations in diseases where

PRC2 function is perturbed, including cancer and devel-

opmental disorders [3,63]. This is an excellent example of

how cross-disciplinary biology can marry functional, bio-

chemical and structural information to bridge key con-

ceptual gaps providing a framework for drug design and

future mechanistic studies.
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