
Network interventions for managing the COVID-19
pandemic and sustaining economy
Akihiro Nishia,b,c,1, George Deweya,2, Akira Endod,e,2

, Sophia Nemanf
, Sage K. Iwamotog

, Michael Y. Nih,i,j,
Yusuke Tsugawak,l, Georgios Iosifidism, Justin D. Smithn,o,p,q, and Sean D. Youngr,s



aDepartment of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA 90095; bCalifornia Center for Population Research,
University of California, Los Angeles, CA 90095; cBedari Kindness Institute, University of California, Los Angeles, CA 90095; dDepartment of Infectious
Disease Epidemiology, London School of Hygiene & Tropical Medicine, WC1E 7HT London, United Kingdom; eThe Alan Turing Institute, NW1 2DB London,
United Kingdom; fSchool of Medicine, Medical College of Wisconsin, Wauwatosa, WI 53213; gCollege of Letters & Science, University of California, Berkeley,
CA 94720; hSchool of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong Special Administrative Region, China;
iThe State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, 999077, Hong Kong Special Administrative Region, China; jHealthy
High Density Cities Lab, HKUrbanLab, The University of Hong Kong, 999077, Hong Kong Special Administrative Region, China; kDivision of General Internal
Medicine and Health Services Research, David Geffen School of Medicine, University of California, Los Angeles, CA 90024; lDepartment of Health Policy and
Management, Fielding School of Public Health, University of California, Los Angeles, CA 90095; mSchool of Computer Science and Statistics, Trinity College
Dublin, Dublin 2, Ireland; nDepartment of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, UT 84108; oDepartment of
Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; pDepartment of Preventive Medicine, Feinberg
School of Medicine, Northwestern University, Chicago, IL 60611; qDepartment of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago,
IL 60611; rUniversity of California Institute for Prediction Technology, Department of Informatics, University of California, Irvine, CA 92617;
and sDepartment of Emergency Medicine, University of California, Irvine, CA 92868

Edited by Peter S. Bearman, Columbia University, New York, NY, and approved October 7, 2020 (received for review July 8, 2020)

Sustaining economic activities while curbing the number of new
coronavirus disease 2019 (COVID-19) cases until effective vaccines or
treatments become available is a major public health and policy
challenge. In this paper, we use agent-based simulations of a
network-based susceptible−exposed−infectious−recovered (SEIR)
model to investigate two network intervention strategies for miti-
gating the spread of transmission while maintaining economic ac-
tivities. In the simulations, we assume that people engage in group
activities in multiple sectors (e.g., going to work, going to a local
grocery store), where they interact with others in the same group
and potentially become infected. In the first strategy, each group is
divided into two subgroups (e.g., a group of customers can only go
to the grocery store in the morning, while another separate group
of customers can only go in the afternoon). In the second strategy,
we balance the number of group members across different groups
within the same sector (e.g., every grocery store has the same num-
ber of customers). The simulation results show that the dividing groups
strategy substantially reduces transmission, and the joint implementa-
tion of the two strategies could effectively bring the spread of trans-
mission under control (i.e., effective reproduction number ≈ 1.0).

COVID-19 | pandemic preparedness | agent-based simulation |
network interventions

Alteration of established network structures is one form of
Valente’s framework of network interventions (1, 2).

“Lockdowns” (or shelter-in-place orders, curfews, or mass quar-
antines) under the coronavirus disease 2019 (COVID-19) pan-
demic are an extreme case of alteration, in which all nonessential
economic activities that require physical interactions are sus-
pended and corresponding network ties are effectively dissolved
(3). Although nonpharmaceutical interventions (NPIs), including
lockdowns, have been shown to reduce the speed of the spread of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
(4–8), these interventions are not sustainable for a prolonged period
of time due to their detrimental impact on population health and
economies (9). Lockdowns have been shown to be associated with
physical inactivity (10), increased depression (10, 11), increased
domestic violence (12), and reduced access to healthcare (13).
Moreover, the main strategies employed in lockdowns [i.e., closing
schools, prohibiting gatherings, requiring people to stay at home,
closing nonessential businesses (7, 8, 14)] have a significant negative
impact on economies (15). For example, in the United States, 20.5
million jobs were lost in April 2020, peaking at an unemployment
rate of 14.7% (16, 17); moreover, the increases in unemployment

are associated with negative mental health outcomes (18). Although
lockdown and shelter-in-place policies have been shown to be ef-
fective in lowering the number of cases and deaths due to COVID-
19 (4–8, 19), governments in many countries are confronted by
significant political, economic, and social pressure to reopen their
economies and remove the restrictions imposed by lockdown orders
(19, 20).
As a result of this pressure, many governments are currently

looking for strategies that can achieve two conflicting goals: To
reopen economies while reducing and preventing transmission of
COVID-19 infections (i.e., keeping the effective reproduction
number [Reff: the average number of secondary transmissions
caused by a single primary case] of COVID-19 low). Here, we
illustrate two network intervention strategies for managing the
spread of transmission while allowing individuals to remain
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economically active (Fig. 1 C and D). The primary goal of each
strategy is to reduce the overall number of direct network ties by
reducing contacts between individuals and decreasing transmis-
sion of the infectious agent.
In the first strategy (“dividing groups”), a group is split into

two distinct subgroups such that individuals in different sub-
groups no longer physically interact (Fig. 1C). Here, we define a
group as a set of people who engage in the same activity (e.g.,
shopping) in a single sector at one specific location, which creates
the potential for physical contact and chance of transmissions.
Members of a subgroup engage in the same economic activities,
and each subgroup retains the same function as the original un-
divided group. For example, a cohort of 100 college students that
originally operated from 9 AM to 3 PM may be divided into two
subgroups: one subgroup of 60 students operating from 7 AM to
1 PM, and the other subgroup of the 40 remaining students op-
erating from 2 PM to 8 PM (21). Alternatively, the two subgroups
could operate simultaneously, but would be physically separated
and served by different staff [otherwise, staff may mediate trans-
missions between members of different groups (22, 23)]. Upon
reopening schools, France plans to cap class sizes at 15 people
(24), while South Korea and Japan separated student groups into
morning and afternoon classes (25, 26). Additionally, some su-
permarkets reserve a specific day and time for at-risk individuals
(seniors, immunocompromised individuals, expectant mothers,
etc.) to shop (27). These policies, while primarily enacted to
achieve an appropriate level of physical distancing, can contribute
to the separation of networks [dividing groups by age or suscep-
tibility (28)] if the employees or environments do not mediate
transmission between groups.
In the second strategy (“balancing groups”), some number of

individuals approaching a destination are redirected to a different

location with the same functionality to equalize the number of
people at each location (Fig. 1D). For example, consider a group of
customers and two supermarkets run by the same franchise within a
community where one store is usually full, while the other is not.
Some customers heading to one store would need to go to the other
store to ensure that the number of customers at each location is
equal. Such redirection is often observed when some stores are
more crowded than others. If a large number of people head to
popular stores at a specific time of day, stores may exhibit peak-time
crowdedness, which may lead to a higher concentration of infected
individuals in a single location (29). In order to achieve physical
distancing, many supermarkets have set limits on the number of
people who can shop at the same time (30), which may incidentally
contribute to balancing the number of customers across multiple
supermarkets. Akin to this phenomenon in stores, emergency de-
partments prevent patient overflow by diverting ambulances to
hospitals with fewer patients (31, 32). These “balancing groups”
strategies have the potential to reduce the total number of physical
interactions between individuals that represent a chance for trans-
mission without compromising their level of economic activity
(i.e., before and after implementation, the total number of shopping
customers remains unchanged).
To illustrate the potential consequences of these strategies, we

implemented agent-based simulations of the susceptible−exposed−
infectious−recovered (SEIR) model (20, 33–37) (network-based
SEIR model without vital dynamics) using parameters of
SARS-CoV-2 (38). We assumed that, once a virus is transmitted,
exposed individuals experience a latent period of 3 d and become
infectious for an average of 3 d (an infectious period for each
individual is randomly drawn from a geometric distribution) (39).
After the infectious period, all infected individuals recover with
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Fig. 1. The two network intervention strategies (dividing groups and balancing groups). The flow is A → B, A → C, A → D, and C → E. We display a hy-
pothetical network of eight people across two sectors (groups X and Y are in the same sector, and groups S and T are in the same sector). In the simulation, we
used a network of 10,000 people across eight sectors. The two-mode networks (Top) show the distribution of group activities and sectors in which each
subject (IDs 1 to 8) participates. For example, ID1 belongs to X0 (e.g., go to workplace X0) and T0 (e.g., go to supermarket T0) and regularly engages in his or
her activities (e.g., working and shopping, respectively) at the appropriate locations (X0 and T0). The two-mode networks can be converted to one-mode
networks (Bottom), in which a shared group connects two individuals. For example, ID1 and ID2 may be involved in transmission at X0 and the network tie
between ID1 and ID2. A network tie in one-mode networks represents a chance of transmission, while an arrow in two-mode networks represents an in-
dividual going to a location and engaging in economic activities. In this example, the mean degree (number of the network ties per individual) and its
variation (SD) are smaller when dividing groups (A → C) and balancing groups (A → D).
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immunity. We assume that the acquired immunity persists until
the end of the simulation (300 d) (see Materials and Methods).
We set up a network of 10,000 individuals with dispersed de-

gree distributions representative of an actual social network
(Fig. 2C, default scenario), in which we aimed to mimic past
social mixing surveys (40–42). The median degree of the network
(number of contacts) is 15.55 (95% quantile range [QR]: 15.06 to
16.28). The network consists of three types of network ties with
differing probabilities of transmissions (differing weights): family

ties having the highest probability of transmission, nonfamily
close ties having an intermediate probability of transmission, and
weak ties having the lowest probability of transmission (where
transmissibility varies by sector). These ties are nested in one of
the eight sectors (families, workplaces, educational institutions,
healthcare institutions, grocery stores, restaurants and cafés,
sports/leisure groups, and other groups) (see Parameters of the
Agent-Based Simulations and Constructing the Social Network
Structure with Edge Weights).
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We simulated the spread of infections over the network con-
structed as above for the duration of 300 d. We assumed density-
dependent mixing during the simulation (43): Group members
had a constant possibility of interacting with one another and of
transmitting the virus of 4.458% (β = 0.04458) per day per net-
work tie with a weight of 1 (family tie). Transmissibility (β) was
calculated from the conversion formula between β and the basic
reproduction number (R0) for network-based models (44) to
ensure that R0 reflecting the network structure is consistent with
2.5, which is estimated elsewhere (38, 45) (see Converting R0 to β
for Agent-Based Simulations). This means that, on average, a
single case causes 2.5 secondary cases over the course of infec-
tion. β of 0.04458 roughly corresponds to a level of transmissi-
bility reported elsewhere (e.g., 0.0463 in ref. 46).
Individuals may share groups in multiple sectors (e.g., two

people work at the same place and shop at the same grocery
store); in such cases, the possibility of transmission was assumed
to multiply. We randomly infected 10 individuals on day 0. We
implemented this simulation 1,000 times per scenario. Each ith
simulation (i = 1, 2, . . ., 1,000) over the different scenarios used
the same random seed. Medians and ranges were calculated over
the 1,000 iterations of the simulation. The social network
structures and group assignments were randomly drawn for every
iteration.
We examined the effectiveness of six different network inter-

vention scenarios by comparing the epidemic curves, the final
cumulative incidence (overall attack rate), and Reff among the six
scenarios. The first scenario was a default scenario in which no
intervention was implemented (“natural course”). The second
scenario was a 3/6 activity restriction, in which ties for three ac-
tivities (educational institutions, restaurants/cafés, and sports/
leisure) were removed out of a set of six activities (family ties or
ties in medical institutions were not removed) (“intermediate
lockdown”). This level of lockdown might be less strict than one
shown in a previous paper (28) and the level of actual lockdown in
the states of New York (47) and California (48). The third sce-
nario was a 6/6 activity restriction, in which ties for all six activities
(the three activities above plus those in workplaces, grocery stores,
and other groups) were removed (“strict lockdown”). The repli-
cating lockdown strategies involve a commensurate sacrifice of
economic activities. The final three scenarios demonstrate the
“dividing groups” strategy, the “balancing groups” strategy, and the
strategy combining the two strategies, in which group sizes of all
postdivision subgroups in each sector are balanced (D + B)
(Fig. 1E). Each scenario is presented as if each strategy was imple-
mented independently of any other intervention (e.g., physical dis-
tancing or the use of facial coverings) to enable a pure comparison
between different strategies. As a result, the effects reported here
may be smaller than what would be expected in a real-world situation
where multiple interventions are implemented at the same time.
In robustness tests, we aimed to confirm the potential effects

of the dividing and balancing groups strategies in various settings
and specifications. Therefore, we further manipulated our set-
tings regarding group and network tie formation, transmissibility
and infectiousness period, and behavioral and environmental
changes. Additionally, we applied a more complex network
structure (social consolidation). We also examined alternative
strategies employed as part of lockdowns (avoiding large gath-
erings) (see Robustness Tests for details).

Results
The “dividing groups” scenario exhibited a median cumulative
incidence of 0.014 (95% QR: 0.002 to 0.191) on day 300 (Fig. 2B,
light blue). The median cumulative incidence ratio of the “dividing
groups” scenario as compared to that of the default scenario was
0.014 (95% QR: 0.002 to 0.191). The median Reff of the dividing
groups strategy was 1.234 (95% QR: 1.160 to 1.325). Doubling the
number of groups almost halved the mean degree and its SD

(SI Appendix, Fig. S1 B and C), which is almost comparable to the
intermediate lockdown (−3/6) scenario (Fig. 2C, sky-blue vs. gray).
The “balancing groups” scenario exhibited a median cumula-

tive incidence (or attack rate) of 0.475 (95% QR: 0.428 to 0.514)
on day 300 (Fig. 2B, orange), which was lower than that of the
default scenario (median of 0.728) (Fig. 2B, the darkest gray).
The median cumulative incidence ratio of the “balancing groups”
scenario as compared to the default scenario was 0.751 (95% QR:
0.729 to 0.775) (or median of the relative reduction in the attack
rate is 63.4%). The median estimate for Reff of the balancing
groups strategy was 1.687 (95% QR: 1.645 to 1.728). The mech-
anism behind the reduction of infection in the “balancing groups”
is simple: Balancing groups reduced the number of network ties
(and thus the mean degree) and reduced the variation in degree
(SI Appendix, Figs. S1 B and C and S2). This means that, after the
sizes (the count of group members) of groups in each sector were
equalized, individuals with higher connectivity, who could con-
tribute more to the spread of transmission, lost a substantial
number of network ties. The degree distribution of the balancing
groups strategy shows that a high degree of mixing in the default
setting (i.e., high connectivity mostly by close ties in some sectors)
has been mitigated (Fig. 2C, orange vs. dark gray). Some of the
close and weak ties are dissolved because the two individuals in
the ties no longer belong to the same group.
The “dividing groups with balancing groups (D + B)” scenario

achieved a median cumulative incidence of 0.003 (95% QR:
0.001 to 0.012) (Fig. 2B, green), which is almost at the same level
as the strict lockdown scenario (median cumulative incidence of
0.003 (95% QR: 0.001 to 0.012) (Fig. 2B, the light gray—the two
relevant bars overlap). The median cumulative incidence ratio of
the D + B scenario as compared to that of the default scenario
was 0.002 (95% QR: 0.001 to 0.004). While the number of in-
fections increases overall (the number of those who experience the
infection tripled [a total of 30 cases at day 300 as compared with a
total of 10 seed cases at day 0]), the spread of the virus over social
networks was slow. Although Reff of the D + B scenario (me-
dian = 1.004, 95% QR: 0.976 to 1.030) was not as low as that of
the strict lockdown scenario (median: 0.845, 95% QR: 0.819 to
0.874), the D + B strategy alone can contribute to managing the
virus almost at a “control” level (Reff ≈ 1.0) (Fig. 2D).
Our findings remained qualitatively unchanged as a result of

the 11 different types of robustness tests we conducted (see
Materials and Methods and SI Appendix, Figs. S3–S21). Most
importantly, strictly enforcing self-isolation of symptomatic pa-
tients achieves further reduction in Reff, bringing the estimated
Reff below 1 (median: 0.948 [95% QR: 0.921 to 0.975) if com-
bined with the D + B scenario. Simulation results were consis-
tent with Reff values provided by mathematical predictions (see
Converting R0 to β for Agent-Based Simulations). Restricting the
gathering of groups of more than five members can manage
the infection toward a controlled state (Reff ≈ 1.0) (SI Appendix,
Fig. S21).
For the dividing groups strategy, we also investigated whether

the original even split (where we designated a 50% chance of
being assigned to the first and second subgroups) maximized the
effect of the division. In the real world, even divisions may not be
feasible in some cases. For example, some supermarkets in the
United States reserve morning hours for seniors (27), but seniors
do not represent one half of the US population. Alternatively,
even if people are asked to separate into subgroups that are
evenly populated, a majority of people may prefer to choose a
specific group (limited adherence to the policy). We found that,
even if the division were not even, there would be some effects in
lowering transmissions (e.g., when the probabilities are 0.2 and
0.8, median Reff is 1.448 [95% QR: 1.339 to 1.580]). However, as
predicted, we found the median Reff takes a minimum value of
1.234 (95% QR: 1.162 to 1.314) when the probabilities are 0.5
and 0.5 (SI Appendix, Fig. S5).
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Discussion
In summary, we have identified network intervention strategies
that provide some insight into how we can reconcile two con-
flicting aims: Reducing the spread of infections over social net-
works while maintaining economic activities. When the dividing
and balancing strategies (i.e., D + B strategy) are jointly imple-
mented, they will be effective enough to keep Reff around 1.0 in
most cases without any additional measures. Although the detri-
mental impacts on health (e.g., emotional well-being) and econ-
omies (e.g., recession) caused by lockdowns can be largely
avoided, these strategies have rarely been discussed in public or
political debates (21).
Can some of these strategies replace the lockdown strategies

for addressing the current or potential future waves of the
COVID-19 outbreak? A direct comparison is difficult since there
are many types of lockdown strategies. However, our results
indicate that our intermediate lockdown strategy (−3/6) alone, in
which many network ties rooted in workplaces and essential
services stay intact, does not reduce the reproduction number
sufficiently. The median Reff (1.361, 95% QR: 1.300 to 1.473) of
the intermediate lockdown strategy is substantially above 1, and
our simulation indicates up to 20% of the population could be
infected. Indeed, in the real world, such partial lockdown strat-
egies have been used in conjunction with other measures such as
isolating symptomatic and/or diagnosed individuals, quarantining
family members of isolated individuals, promoting physical dis-
tancing, and mandating the use of facial coverings in public
spaces. The result of this combined strategy was the reduction of
the reproduction number to around 1 (e.g., from the 2.5 to 3.0
range to the 0.75 to 1.25 range in the state of California between
March and May 2020) (19). Therefore, as long as we can closely
monitor the implementation of these interventions as they are
applied to the public, both the dividing and the D + B strategies
can be considered as alternatives to currently implemented
strategies. Their effect sizes were larger than those of our in-
termediate lockdown strategy. In combination with other mea-
sures such as self-isolation and physical distancing, the institution
of our strategies would result in Reff below 1. Such a joint ap-
proach will also be effective when R0 is very high [e.g., R0 in the
state of New York was estimated to be 5.7 or greater (45)].
Otherwise, we would need to recommend dividing groups into
five or more subgroups.
The dividing groups and D + B strategies can also act as

promising alternatives to a gradual reopening of economic ac-
tivities after a peak of the outbreak has passed, in advance of a
secondary or tertiary wave of the outbreak. Since reopening the
economy represents a step-by-step transition from more-strict
lockdown strategies to milder ones (e.g., from −6/6 to −3/6),
the rate of transmission may increase again unless the virus
becomes extinct from a community, herd immunity is achieved,
or other measures such as physical distancing are sufficient to
control its transmission. On the other hand, if the economy is
reopened while people remain divided into subgroups, a lower
number of new cases will arise compared to an undivided pop-
ulation, and new peaks may be avoided.
Like other simulation studies, a key limitation to this analysis

is that we only explored agent-based simulations with specific
parameter spaces and with specific assumptions. In reality, there
are hundreds or thousands of “sectors” of daily life, the number
of sectors that each individual belongs to varies, the transmission
probability would change based on the symptoms and other
factors of the host, and the possibility of virus subtypes would
affect the rate of infection among other factors (49, 50). Nev-
ertheless, we believe that our model captures the salient features
of the problem. Although we believe that we used realistic net-
work structures in our simulations, the predicted effects of the
proposed strategies should be interpreted with caution, due to

the simplistic and demography-specific nature of our model.
Particularly, our model needs to be tailored and calibrated with
relevant parameters and data to reliably assess the potential
impacts of these strategies in specific settings and contexts. Once
digital contact tracing data of large sections of populations
becomes available, network sampling and other techniques
should allow for more precise predictions of the effect size of
each NPI (51–53).
Our simulations also assumed that, once the network inter-

ventions are implemented, agents will repeat their actions (aside
from the simulation where symptomatic individuals were re-
quired to self-isolate) and thus will not contribute to further
mixing of populations (e.g., members of a group who are diver-
ted to store Y away from store X will continue to go to store Y
and not attempt to return to store X). However, people in the
real world may not be very consistent or rational. Most impor-
tantly, we assumed that our simulations primarily followed a
density-dependent mixing model (43), where increases in group
size correspond to proportional increases in the number of
contacts, potentially causing a viral transmission. In other words,
in addition to a small number of close contacts (close school
friends), a classroom of 20 college students is twice as likely as a
classroom of 10 college students to experience a transmission
event; however, this assumption may be reasonable in the con-
text of the COVID-19 pandemic, given a number of recent
cluster events originating from large social gatherings (54).
Nevertheless, in addition to sustaining the economy, there are

several advantages to the proposed strategies. First, we antici-
pate several spillover effects that will result in benefits for pop-
ulations where these strategies are implemented. The dividing
groups strategy requires each sector to manage more than one
subgroup and to secure the human resources to do so separately
and independently. Such strategies may not only sustain the
economy when implemented but may also function as an eco-
nomic stimulus and lower the unemployment rate (e.g., part-time
jobs become full-time jobs and new jobs are created to account
for the need for multiple sets of staff). Moreover, if the dividing
strategy is implemented using division by time frame (e.g., from 7
AM to 1 PM and from 2 PM to 8 PM), “rush hours” and cor-
responding increases in road and business traffic may wane,
leading to possible increases in the sustainability in major cities.
Second, prior surveys or contact tracing (digital or nondigital)
(55) are not required in advance of the implementation of these
strategies. Compared with previously proposed network inter-
ventions (1, 28, 56), which require intensive efforts in advance
(e.g., establishing network graphs, identifying important network
bridges or hubs, and intervening on such bridges or hubs), our
strategies involve less preparation and could be more readily
implemented.
One of the critical considerations for implementing either of

these network intervention strategies is the acceptability by the
public (57). The demonstrated strategies will be emotionally
taxing because they require individuals to drastically alter their
daily routines [endowment effect (58)]. Individuals may no longer
be allowed to go to certain places at certain times; the balancing
groups strategy may determine whether businesses are open or
closed for particular individuals, while the dividing groups strategy
may place time constraints on when businesses are available for
particular individuals. However, compliance with both the dividing
or balancing groups strategies may be higher than compliance with
lockdown strategies, as they do not completely prohibit visiting
specific types of businesses or utilizing certain services (as lock-
downs do). Neither the dividing strategy nor the balancing strategy
requires people to stay home all day, potentially preventing the
development of “quarantine fatigue” (a phenomenon in which
people loosen up and travel more during the lockdowns) (59).
Other considerations include the cost and feasibility of imple-
menting these kinds of network interventions. Even if they are
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acceptable, these interventions may be difficult to implement if they
are costly. For example, financial constraints may prevent admin-
istrators in the education sectors from expanding school premises to
facilitate the need for additional physical space (i.e., classrooms).
Additionally, in specialized industries or other sectors where the
choices for personnel are limited due to the need for specialized
training, network intervention strategies may not be feasible.
Historically, people in the United States and other countries have

accepted such strategies, which restricted individual freedoms in the
face of an economic or social crisis. In the 1973 oil crisis, gasoline
was scarce, and rationing strategies were implemented (60). For
example, people with a vehicle with a license plate ending in an odd
number could only purchase gasoline on odd-numbered days.
Consolidation of the demonstrated strategies into culturally ac-
ceptable interventions may be discussed in different phases of the
COVID-19 pandemic in different sociopolitical contexts.

Materials and Methods
Parameters of the Agent-Based Simulations.We used a total of 60 parameters
in our model (Table 1). In addition, we numerically labeled each of the three
lockdown strategies as well as the dividing groups, balancing groups, and
combination (D + B) strategies.

To determine the number of groups in each sector, we referenced random
cities in the United States with around the same population as our simulation
(n = 10,000) and used the distribution of businesses, households, and other
services as a template for our simulation groups. More specifically, we fo-
cused on Sierra Madre, CA (population 10,793) as our sample city. Sierra
Madre is a suburb of Pasadena, CA, located 13 miles away from downtown
Los Angeles. Using data from the US Census (69) and the American Com-
munity Survey (70), we determined that there were 2,862 families, 1,812
businesses, 8 grocery stores, 21 educational institutions, 30 healthcare in-
stitutions (e.g., medical and dental clinics), and 22 restaurants and cafés in
the city. After some adjustment to account for variation in the distribution
of sectors across different cities and to account for inactiveness of some of
the registered activities, we determined the group numbers listed in the
table above. For the workplace sector, we assumed that 20% of registered
businesses were dormant and another 20% were owned by a parent com-
pany or shared an owner with another registered business (and therefore
should not count as an additional business for the simulation). However, our
choice of the number of groups would not substantially affect our conclu-
sion, as shown in the robustness check (see Robustness Tests). In addition, as
shown in the mathematical prediction (see Converting R0 to β for Agent-
Based Simulations), the reproduction number would decrease proportionally
regardless of the number of groups in sectors.

Constructing the Social Network Structure with Edge Weights. In our modeled
network structure, we aimed to incorporate the characteristics of SARS-CoV-2;
new COVID-19 cases not only occur via family ties and nonfamily close contacts
(e.g., a close friend sharing a karaoke room), but they have also been found to
occur via nonclose contacts (e.g., coattendants at a church service or individ-
uals near an index case in a waiting room at a hospital (71)—group members
may not necessarily know each other). Such transmissions may come from
direct contact, droplet transmission, aerosol transmission, or other forms (64).
Therefore, we created multiple sectors (n = 8) with varying numbers of groups
(see Parameters of the Agent-Based Simulations). A detailed description of
how the simulation social network was constructed is below.

To generate family ties, we created 3,000 families where the number of
family members varied. All individuals in the simulation belonged to a family.
The sizes of each family were probabilistically determined based on the total
number of groups in each sector. For example, it was possible for a family to
have either 1 or 10 individuals. We assumed that all members of a single
family comprised a complete network, where all possible network ties were
drawn to other family members within the family. Then, we set a network tie
strength (edge weight), which represents the intensity of a possible trans-
mission over family ties to be one as a default (46, 61). A typical individual has
four or five family ties.

Next, we constructed weak ties by assuming that individuals belong to social
groups in which they have a chance to physically interact with others. Groups
are classified into seven sectors representing different social settings. In more
concrete terms, we created 1,000 workplaces, 25 educational institutions, 25
medical institutions, 10 grocery stores, 25 restaurants and cafés, 500 sports/
leisure groups, and 500 other small groups (e.g., friend and neighbor groups).
The number of groups that individuals belonged to varied; some had network

ties only with family members (i.e., belong to only the family sector). We as-
sumed that individuals could not belong to more than one group from the
same sector; therefore, the maximum number of groups an individual could
belong to is seven (one group from each of the sectors). The sizes of each
group were probabilistically determined based on the total number of groups
in each sector.

First, once the groups and sectors were constructed, we determined the
enrollment rate (or active limit) of each sector (Table 1). All of the 10,000
individuals do not necessarily belong to all of the sectors. For example, that
of the workplace sector is 40%, which is obtained by the product of the
employment−population ratio (the number of people employed by the
number of people of working age), which was 61% (United States) in Jan-
uary 2020 (72) and the fraction of ages 15 y and 64 y in the population
pyramid in the state of California (63%) (73). For the education sector, we
assumed that everybody between the ages of 0 y and 19 y goes to school
and everybody outside of that age range does not and used 25% as the
enrollment rate of the education sector. For the sports/leisure sector, we
referred to the information that ∼70% of the people in the United States
are physically active (74). When the data were not available, we used a
default enrollment rate of 50%.

Second, for each sector (including family ties), we determined the prob-
ability of assigning individuals to each of these groups, by generatingweights
using a uniform distribution. For example, suppose that there are 10 indi-
viduals with two groups in a sector and that two values (weights for each
group) are randomly drawn from a uniform distribution (e.g., 0.6 and 0.9).
The weights are adjusted so that the sum of all weights is 1 (i.e., 0.4 and 0.6,
respectively). Using the adjusted weights, we randomly assign the 10 people
into two groups. On average, the first group may get four people, and the
second group may get around six people, but the assignments are not
deterministic.

Third, we considered the encounter frequency (a chance of sharing an
indoor environment) of weak ties in different sectors. For example, the
encounter frequency of a workplace (e.g., two employees occupy the same
room or floor of a building for 30 h per week out of 40 possible business
hours) would be higher than the encounter frequency of amedical institution
(e.g., two patients of the same primary care physician may occupy the
physician’s clinic for 2 h per week, and, most likely, one patient will not
encounter the other). We assumed a certain number of open hours each
week for the different sectors (40 h for workplace, education, healthcare,
grocery, and restaurant/café [weekdays and weekends], and 16 h for sports/
leisure and other [mainly weekends only]) and the hours per week when
people engage (30 h for workplace and education, 1 h for healthcare, 2 h for
grocery, and 4 h for restaurant/café, sports/leisure, and other). The division
of values for each sector represents the chance that two random individuals
are in the same place at the same time when they belong to the same group
in a sector. Incorporating the encounter frequency can allow us to weaken
the strength of weak ties created in a sector in which there are groups with
large group sizes but people do not stay for an extended period of time
(such as medical and dental clinics).

Fourth, we considered the intensity of each tie in regards to the possibility
of transmission. From past literature (46), we know that the secondary attack
rate (or the possibility of transmission more broadly) of family ties is 10 times
as high as that of weak ties (made from sharing the same environment,
which may cause various forms of transmission), and the secondary attack
rate of close ties is 5 times as high as that of weak ties.

Lastly, wemultiplied the encounter frequency coefficient and the intensity
coefficient (of possible transmission) to calculate the edge weight (the
network tie strength).When therewere two ormore different weak ties from
two or more sectors, we summed them to calculate the weight. When there
were two or more different family, close, and weak ties, we chose the
stronger ones (family ties or otherwise close ties). Ultimately, the network tie
strength of weak ties ranged from 0.0025 (medical institutions) to 0.075
(workplaces and educational institutions). A typical individual has six or seven
weak ties (647 before considering the network tie strength).

For close ties [physical contact or two-way conversation without physical
distancing (40)], we assumed that these ties arise only in some of the sectors
(workplaces, educational institutions, sports/leisure groups, and other
groups). Based on the fraction of close ties previously reported (40, 42), we
assumed that a typical individual has up to eight close ties in sports/leisure
sectors, six close ties in workplaces, and four close ties in the educational
institutions other sectors. Therefore, in these sectors, people may have both
close ties and weak ties. To reflect human nature on the consolidation of
social space, we randomly established close ties among all of the weak ties in
the four sectors using a Watts−Strogatz small-world model (75) with a
rewiring probability of 0.2. This means that a friend of a friend (i.e., a close

30290 | www.pnas.org/cgi/doi/10.1073/pnas.2014297117 Nishi et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

M
ar

ch
 9

, 2
02

1 

https://www.pnas.org/cgi/doi/10.1073/pnas.2014297117


Table 1. Parameter values for agent-based simulations

Parameters Values Notes
Robustness
test number

Network structure (environment), overall
Number of agents (humans) 10,000
Number of sectors 8
Number of categories in network ties 3 Family, close, and weak ties 5
Consideration of family ties Yes All of the time
Consideration of close ties in nonfamily sectors Yes No in a robustness test 5
Consideration of weak ties in nonfamily sectors Yes No in a robustness test 5
Consideration of the consolidation of social space No Yes in a robustness test 11
Social network model for family ties Complete
Social network model for close ties Small-world (61) Addressing consolidation in social space
Rewiring probability in the small-world model 0.2 4
Social network model of weak ties Complete See the edge weight below

Detailed parameters for the eight sectors (for the edge weights)
Numbers of groups in families, workplaces,
educational institutions, healthcare institutions,
grocery stores, restaurants/cafés, sports/leisure,
and the other sectors

(3,000, 1,000, 25, 25,
10, 25, 500, 500)

Based on a sample city 1

Enrollment rates for families, workplaces,
educational institutions, healthcare institutions,
grocery stores, restaurants/cafés, sports/leisure,
and the other sectors

(1, 0.4, 0.25, 0.5, 0.5,
0.5, 0.7, 0.5)

Workplace: 40% of individuals engage in
working (62, 63); Sports/leisure (64)

Distribution used for the group assignment Uniform Geometric distribution in robustness tests 3
Number of close ties in workplaces, educational
institutions, healthcare institutions, grocery stores,
restaurants/cafés, sports/leisure, and the other
sectors

(Up to 6, up to 4, 0, 0, 0,
up to 8, up to 4)

Based on refs. 40 and 42; vary due to the
group size and rewiring of network ties;

when group size is smaller than the number
(e.g., six for workplaces), all of the possible

network ties were made
Edge weight of families 1 Default value
Edge weight of close ties in nonfamily sectors 0.5 Transmissibility of close ties is a half of that

of family members [intensity of 0.5 (46) ×
encounter frequency of 1]

5

Edge weights of weak ties in workplaces, educational
institutions, healthcare institutions, grocery stores,
restaurants/cafés, sports/leisure, and the other
sectors

(0.075, 0.075, 0.0025, 0.005,
0.01, 0.025, 0.025)

Intensity of 0.1 (46) × encounter frequency
of (0.75, 0.75, 0.025, 0.05, 0.1, 0.25, 0.25)

5

Strategy-specific settings
Exceptions in the lockdown strategies, sector Healthcare Healthcare sector is not closed
Exceptions in the lockdown strategies, group size No Only in a robustness test: groups with a small

group size are not closed (avoid large
gatherings)

10

Fraction in division in the dividing strategy 0.5 (even) A robustness test for the noneven split 2

Infectious disease dynamics
Initial number of infections on day 0 10 The number of initially infected individuals,

located randomly in the social networks
Number of spontaneous infections on week X 0 New infections at day 7, 14, 21, . . . 9
Per-contact transmissibility (β) 0.04458 Converted from R0 of 2.5 (see Converting R0

to β for Agent-Based Simulations) (38, 45)
6

Latent period (duration in the days in the “Exposed”
compartment)

3 d (39)

Infectious period (mean duration in the “Infectious”
compartment) (τ)

3 d (38, 39) Used as the mean of a geometric distribution 7

Observation period in the simulation 300 d

Symptoms and behavior (agents)
Behavioral strategy updates None Considered in a robustness test 8
Contacts during self-isolation of symptomatic cases Family only Considered in a robustness test 8
Asymptomatic ratio 0.45 (65) Considered in a robustness test 8
Viral shedding and transmissibility of asymptomatic
cases

Same as symptomatic
cases (0.04458)

Constant; see refs. 66 and 67

Presymptomatic period 0.5 (half of the infectious
period) (68)

Considered in a robustness test; 0.5 is used as
a parameter for p in a binominal distribution

8
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contact of a close contact) is very likely to be a friend, while some close
contacts may play a role in bridging communities in social networks. The
median transitivity (global clustering coefficient) of close ties in the default
setting is 0.228 (95% QR: 0.223 to 0.232), which is comparable to transitivity
figures previously reported (65, 76).

Then, we set the network tie strength of close ties to be 0.5, as the sec-
ondary attack rate of close ties is around a half of the tie strength of family
ties (46). A typical individual has five close ties (10 before considering the
network tie strength). No new close ties are newly made after the balancing
and/or dividing strategies are implemented [no network recovery (68) is
allowed], while close ties of two individuals are not dissolved when they
move to the same new group as a result of the balancing strategy or when
they belong to the same subgroup as a result of the dividing strategy.

Consequently, using density-dependent mixing (43), we assumed that all
group members in each group in each sector had a constant possibility of
interacting with each other (which are counted as network ties), regardless of
overall group size. However, the probabilities of transmission vary. This method
allowed us to create a degree distribution of each of the 1,000 social networks
(randomly drawn from 1,000 iterations), in which a network tie is weighted
(family ties: 1, close ties: 0.5, andweak ties: 0.005 to 0.075). From this method, we
obtained the median mean degree of 15.6, which is comparable to the number
of contacts in past social mixing surveys (42) [e.g., 13.4 in the POLYMOD study
(40)], and the median of the SD of degree of 7.0.

Converting R0 to β for Agent-Based Simulations. We determined the param-
eter value for transmissibility (β; the probability of transmitting the virus
per day per network tie) as follows for our network-based SEIR model. The
basic reproduction number (R0) for the SEIR model is given by (66)

R0 = β × N × τ. [1]

Eq. 1 shows that the average number of infections caused by a single infection
(R0) is determined by the transmission probability (transmissibility) in a single
network tie between an individual in the “I” compartment (i.e., infectious)
and one in the “S” compartment (i.e., susceptible) multiplied by the average
duration of infectiousness (τ) and the number of network ties per infectious
individual (N).

We used the reported R0 of 2.5 (38, 45) and τ of 3 (38, 39). In the ho-
mogeneous mixing model, the population size serves as the average number
of network ties linked to an individual, because the network is assumed to
be complete (all individuals are connected to every other individual) (33). In
this case, the population size itself will be used for the value of N. However,
in the network-based models, network ties are assumed to represent po-
tential interactions which may cause a viral transmission. Therefore, indi-
viduals are not connected to every other individual, and N is typically smaller
than the population size. It is known that the average degree of cases (the
number of network ties that infected individuals have) is typically higher
than the mean degree of the network (m: the average number of network
ties that individuals have over the entire social networks); as individuals with
a higher degree have a larger risk of infection, they account for a larger
fraction of primary cases than their population ratio. This can be generally
considered by using the SD (s), which is derived from the second moment of
distributions. It has been shown that N is given as below when the model
employs a structured social network as its framework (44),

N = m + s2

m
. [2]

The “network N” here incorporates the mean degree (m) as well as the SD (s)
of the degree distributions. Eq. 2 shows that the reproduction number can
be disproportionately larger than expected from the mean degree when the
degree distribution has large tails. For example, when a social network has a
mean degree of 15 with an SD of 0 (all individuals connect with 15 others),
there are no hubs [i.e., potential superspreaders if they become infectious
(67)]. Then, the network N is simply 15. On the other hand, a social network
with a mean degree of 15 with an SD of 8 has a substantial number of hubs,
and, therefore, the adjusted network N will be inflated according to the
level of variation.

Using Eq. 2 as well as m and s obtained in Constructing the Social Network
Structure with Edge Weights, we obtained the network N of 18.7. Then, using
Eq. 1, we obtained β of 0.04458, which roughly corresponds to β previously
reported (0.043) (46). Since the network N varies by the social network struc-
ture randomly drawn across the 1,000 iterations, the predicted R0 (of the
default setting) for each iteration would increase or decrease based on the
number of large social groups generated in the specific iteration (Fig. 2D).

Quality Assurance of Our Simulations. We checked the quality of our simu-
lations from three different perspectives. First, since we converted R0 (2.5) to
β (0.04458) using the median mean and the median SD for the 1,000 degree
distributions, a typical social network structure exhibiting a mean close to
the median mean and an SD close to the median SD was expected to exhibit
R0 of 2.5 in our simulations. The box plot in Fig. 2D (default scenario) shows
that the median of R0 over 1,000 iterations is almost 2.5 (2.499939). There-
fore, we confirmed that the generation of social network structures and the
simulations worked as intended. Second, we compared the result of our null
model (default scenario with R0 of 2.5) with prior simulation studies. For
example, the peak cumulative incidence of a prior study with R0 of 2.2 (38)
was around 65%, while that of our null model was 75.1%. Although the
prior study (38) used the ordinary differential equation-based SEIR model,
the result should not differ substantially using the network-based SEIR
model. Since we used a slightly higher R0, the peak cumulative incidence
became slightly higher, which is understandable. Third and finally, G.D. and
S.K.I. reproduced the R code (originally written by A.N.) and confirmed the
simulation results (see Data Availability).

Robustness Tests.Weperformed 11 robustness test simulations embedded in 11
different approaches to evaluatewhether different parameter choices alter our
findings (200 iterations were completed for each setting described below).

First, we modified the number of the groups to “3,000, 2,000, 50, 50, 20, 50,
700, 1,250” (larger numbers of groups and smaller group sizes than the
original “3,000, 1,000, 25, 25, 10, 25, 500, 500”) and “3,000, 500, 10, 10, 5, 10,
250, 250” (smaller numbers of groups and larger group sizes) (see SI Appendix,
Figs. S3 and S4 for the results).

Second, for the dividing strategy, a probability of the split into two
subgroups was manipulated within the range between 0.0 and 0.5 (six set-
tings by steps of 0.1), where the defaults are 0.0 (the original default scenario)
and 0.5 (the original dividing groups strategy) (SI Appendix, Fig. S5).

Third, we used geometric distributions with two parameters (0.2 and 0.8)
instead of a uniform distribution, to draw probabilities for group assignment
(SI Appendix, Figs. S6 and S7). For example, a geometric distribution with a
parameter (success probability) of 0.2 is more right-skewed than that of one
with a parameter of 0.8. Since the geometric distribution with the param-
eter of 0.2 would create a larger number of people acting as hubs who
belong to groups with a larger number of group members and have a larger
number of network ties, the effects of balancing groups are expected to be
amplified.

Fourth, we used the Watts−Strogatz small-world model (75) with three
different parameters for the rewiring probability (0.0, 0.5 and 1.0) instead of
using 0.2 (SI Appendix, Figs. S8–S10). When the rewiring probability is higher,
the mean distance of social networks for each group is lower.

Fifth, we used family ties and weak ties in one setting (SI Appendix, Fig.
S11) and family ties and close ties in the other setting (SI Appendix, Fig. S12),
in addition to the primary analysis with family ties, close ties, and weak ties.
In other words, the edge weight of close ties turns out to be 0 in the first
setting, while that of weak ties turns out to be 0 in the second setting. We
aimed to do so to illustrate that our network intervention strategies do not
rely on either weak ties (drawn from complete graphs of groups) or close ties
(drawn from the small-world model).

Sixth, we altered the transmissibility (β from 0.04458 to 0.0357, 0.0535,
0.0713, and 0.0892), which corresponds to R0 of 2.0, 3.0, 4.0, and 5.0, re-
spectively (SI Appendix, Figs. S13–S16).

Seventh, we also altered the period of infectiousness, which was originally
3 d (as the parameter of a geometric distribution) and used 7 d and 10 d (SI
Appendix, Figs. S17 and S18).

Eighth, we allowed individuals (agents of agent-based simulations) to
update their behavioral strategies during the simulations to adjust for
transmission across the social network. In more concrete terms, when indi-
viduals develop symptoms (after the presymptomatic period), they stay
home until they recover (i.e., go to the “R” phase) and do not interact with
individuals other than family members (SI Appendix, Fig. S19). This self-
isolation procedure has been the most frequently implemented interven-
tion against COVID-19 across the world, and is likely the most acceptable
intervention across different cultures. We used an asymptomatic ratio of
45% (77), and assumed that the presymptomatic period and the post-
symptomatic period both extend to half of the duration of the infectious
period (78). The presymptomatic period of each individual is randomly de-
termined by a binomial distribution with parameters n (the determined in-
fectious period) and p (0.5). We also assumed that transmissibility of
asymptomatic cases was the same as that of symptomatic cases (β of 0.04458
was used) (62, 63).
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Ninth, we introduced 10 new cases spontaneously from outside of the
simulated community every week until day 300 (SI Appendix, Fig. S20). The 10
new cases were randomly chosen from the pool of individuals in the S
(susceptible) phase at the start of the week.

Tenth, we relaxed the condition of strict lockdown strategies, in which all
network ties in the six sectors were dissolved. This is not a robustness test of
our network intervention strategies, but of that of lockdown strategies. In
more concrete terms, we set up exceptions for groups of smaller sizes (5, 20,
50) to continue interacting after a lockdown is implemented (SI Appendix,
Fig. S21). While large gatherings are avoided, activities within groups with a
small group size are permitted. Restricting large gatherings is a frequently
used NPI implemented as a lockdown-type strategy; however, this approach
also restricts activities of people who belong to large groups. For reference,
in Texas, the order (as of July 2020) has limited outdoor gatherings of 10 or
more people (79); an indoor gathering of up to 100 has been permitted in
California (as of July 2020) (80).

Lastly, we considered consolidation of social space based on peoples’
attributes (e.g., socioeconomic position and race/ethnicity) (73). In more
concrete terms, people with similar attributes may choose and prefer to use
the same facilities or be members of the same groups (in contrast to random
mixing). To confirm the reported effect of the proposed strategies in the
case of such nonrandom mixing, we randomly assigned an attribute A to
randomly selected families (50%) and an attribute B to the nonselected
families (50%). In this setup, individuals with attribute A were more likely to
be assigned to a random half of available groups, while those with attribute

B were more likely to be assigned to the other half of the groups. Those with
A occupied a majority in a half of all groups in the 7 sectors (A/B ratio is
roughly 3), while those with the attribute B occupied a majority in the other
half (A/B ratio is roughly 1/3). Therefore, network ties (both close ties and
weak ties) between two individuals with the same attribute were more likely
to occur (assortativity coefficient (81) = 0.177). The results are displayed in
SI Appendix, Fig. S22.

Data Availability. All simulation and analysis code has been deposited on
A.N.’s COVID-19 Github page (https://github.com/akihironishi/covid19_
pnas) (82).
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