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Abstract In this work, we propose and investigate a

user-centric framework for the delivery of omnidirec-

tional video (ODV) on VR systems by taking advantage

of visual attention (saliency) models for bitrate allo-

cation module. For this purpose, we formulate a new

bitrate allocation algorithm that takes saliency map

and non-linear sphere-to-plane mapping into account

for each ODV and solve the formulated problem using

linear integer programming. For visual attention mod-

els, we use both image and video-based saliency pre-

diction results; moreover, we explore two types of at-

tention model approaches: i) salient object detection

with transfer-learning using pre-trained networks, ii)

saliency prediction with supervised networks trained

on eye-fixation dataset. Experimental evaluations on

saliency integration of models are discussed with in-
teresting findings on transfer-learning and supervised

saliency approaches.

Keywords 360°video streaming · attention based bit-

rate allocation · saliency maps with transfer learning

and supervision
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1 Introduction

Recent technological advancements in media streaming

networks and virtual reality (VR) devices have made

it feasible to deliver omnidirectional video (ODV) with

high quality. A live ODV streaming service via the 5G

network at the world of the Olympic Winter Games [10]

is a decisive proof of relevance. ODV technology pro-

vides an interactive VR video experience than that avail-

able through traditional 2D video displayed with a flat-

screen. ODV covers 360◦ of a scene and can be viewed

through a head-mounted display (HMD), that allows

viewers to look around a scene from a central point of

view in VR. ODVs are stored in 2D planar representa-

tions, equirectangular projection (ERP), to be compati-

ble with the existing video technology systems. Thanks

to its immersive and interactive nature, ODV can be

used in different applications such as entertainment, e-

commerce, social media, and even job training.

Despite recent technological improvements and ODV

streaming works, the establishment of a cost-efficient

ODV streaming service is a challenging task because

of its requirement of transmission of high volume of

data size. This requirement can be characterized by

high-resolution size and fidelity to ensure a high quality

of experience (QoE). At any given time, HMDs render

only a portion of the captured 360°scene, known as the

viewport. Hence, there is a need for a user-centric VR

system to optimize the use of ODV streaming in order

to maintain QoE.

There have been various ODV streaming works pro-

posed in the literature. For a comprehensive literature

review, we refer the reader to [30] and [5]. The quality

of viewing experience in VR can be improved by ben-

efiting visual attention. A tiled-based system, for in-

stance, was introduced by Ozcinar et al. [18], in which
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a visual-attention based quality metric was introduced

to find optimal tiling schemes for ODV streaming. Pe-

trangeli et al. [22] modeled the evolution of the user’s

ODV viewing trajectory and predicted the future view-

port position of a new user in the ODV system. Fur-

thermore, Nguyen et al. [16] presented an adaptation

logic for ODV streaming to decide an optimal version

of each tile according to users’ head movements and

network bandwidth. Recently, Kan et al. [12] developed

a deep reinforcement learning-based rate adaptation al-

gorithm to control the ODV bitrates to achieve an opti-

mal trade-off between switching latency and bandwidth

efficiency. Their simulation result shows that the pro-

posed algorithm keeps the buffer occupancy level to a

low level while improving the overall QoE.

This work extends the streaming model in Ozcinar

et al. [18], where visual attention is used as the focus

area of users HMD viewports. In particular, this previ-

ous model requires several subjects to watch the same

ODVs estimated by an averaged visual attention map

from collected data before streaming. This data can be

seen as a ground-truth attention area for streaming,

but in a real-world scenario for large-scale datasets or

VR videos online, this type of subject-based fixation

area may not be available. Saliency prediction models

has been used in various multimedia compression appli-

cations [8], re-targeting [6], including QA [13, 28] too.

Therefore, saliency prediction models can be comple-

mentary to the proposed idea in [18], and as in this

work, the collected subject data can be used to eval-

uate the quality of streaming based on the viewport

position for specific frames in each video. Besides, the

algorithm in [18] distributed the target bitrate to the

tiles using only the value of the visual attention, and

the nearby areas of the salient pixels were not consid-

ered for the formulation of bitrate allocation. To ad-

dress this drawback, in this work, we base on the idea

of the viewport-aware representation selection in [19],

and extended it with saliency prediction and viewport

proposal modules. Hence, in addition to providing high

importance to the high salient regions by selecting most

probable viewports, the new formulation also assigns

more importance to the tiles that are closer to the se-

lected viewports by the viewport proposal module. The

bitrate of the tiles is gradually reduced based on the

distance between the selected viewports and each tile.

In this work, we proposed a user-centric framework

for the delivery of ODVs for VR systems (e.g., HMD)

using saliency maps. For this purpose, we first formu-

late a new bitrate allocation algorithm that considers

saliency map and non-linear sphere-to-plane mapping

using the WS-PSNR metric [27] for each ODV. The

bitrate allocation optimization problem is then solved

with linear integer programming (ILP). Then, we ex-

amine how image and video saliency maps (i.e., video

saliency is the fusion of motion and image saliency maps)

affect the proposed ODV streaming system. Moreover,

regarding image saliency on optimal bitrate allocation

process for video streaming, we have evaluated the ef-

fect of two types of computational visual attention (saliency

map) approaches: i) finding what to look (pre-trained

networks for weakly-supervised detection [9]): using transfer-

learning as means of taking advantage of existing knowl-

edge of object representations learned through the large-

scale object-recognition task (i.e., ImageNet image recog-

nition dataset [23]); ii) learning where to look (fully su-

pervised model [4]): supervision of a neural network to

generate saliency map by using the eye-fixation dataset

(i.e., SALICON saliency dataset [11]). In this case, we

also investigate the effect of image saliency from com-

putation through both merging 2D image projections

from spherical representation and ERP.

The remainder of this paper is organized as follows.

In Sec. 2, we describe our proposed framework. Then,

we present evaluation results in Sec. 3. Finally, we con-

clude this paper in Sec. 4.

2 System Model

We consider a tile-based adaptive streaming pipeline

to deliver ODVs over internet networks, as depicted

in Fig. 1. The server side of the proposed system con-

tains tiling and encoding, saliency prediction, viewport

proposal, bitrate allocation, and packing for adaptive

streaming. The client-side of the proposed system uti-

lizes a tile-based adaptive streaming player, dynamic
adaptive streaming over HTTP (DASH) [19] to navi-

gate through delivered cost-effective ODV streams and

consume with HMDs. We extended the bitrate alloca-

tion algorithm proposed in [18,19] by integrating saliency

models to achieve a cost-efficient performance, consid-

ering the target bitrate and a predicted saliency map

for each c-th chunk. This bitrate allocation algorithm

can be named as saliency-aware bitrate allocation.

At the server side, we partition each ODV into tiles

where each tile is encoded at various bitrate levels. In

this framework, each tile is considered as an indepen-

dent bitstream so that the viewport of the client can be

processed independently from the rest of the video. For

adaptive streaming, each encoded tile is also divided

into temporal chunks and stored on the HTTP server.

The proposed system prepares an optimal DASH

representation for each ODV at a given target bitrate

budget. For this, we propose a saliency-aware bitrate

allocation module which consist of saliency prediction

and bitrate allocation modules. The saliency prediction
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Fig. 1: Schematic diagram of the proposed ODV streaming system with saliency prediction algorithm.

algorithm estimates a saliency map per chunk of each

ODV. The predicted saliency map is then used with the

viewport proposal algorithm to estimate N number of

possible viewports to be used for the proposed bitrate

allocation algorithm. Our bitrate allocation algorithm

aims to generate cost-optimal DASH representation for

each ODV. Hence, it depends on the target bitrate for

each c, Rc, and the predicted viewport proposals, Ṽn
and n ∈ {1, 2, . . . , N}.

2.1 Bitrate allocation

We formulate a new bitrate allocation algorithm for

DASH systems on the server-side that take saliency

map and sphere-to-plane mapping into account for each

ODV. Our objective is to provide a high-quality ODV

streaming experience with a given target bitrate of the

c-th chunk, Rc. To this end, as in [18, 19], we focus on

the decision of an optimal bitrate r for each tile t with

t ∈ T , denoted as T ∗Rc at c-th chunk by formulating the

optimization problem with ILP as follows:

T ∗Rc : argmax
∑
t∈T

qtratrwt ∀r ∈ R, w ∈W, (1)

with∑
r∈R

atr ≤ 1 ∀t ∈ T , (2)

and∑
r∈R

∑
t∈T

btratr ≤ Rc, (3)

where qtr and atr are the quality value in terms of WS-

PSNR [27] and decision variable for the t-th tile of the

r-th rate. The decision variable atr = {0, 1} indicates

whether the t-th tile of the r-th rate is included or ex-

cluded for T ∗Rc , which is able to reconstruct the ODV

at Rc. The data rate is represented with btr for the r-th

rate of the t-th tile. Also, wt is a weight of the t-th tile,

W = [w1, w2, . . . wT ] and T is the total number of tiles,

T = |T |, that is calculated as follows:

W =

N∑
n

pnL̂n with L̂n =
Ln∑
t∈T Ln

t

, (4)

where pn represents the probability that n-th viewport

be watched according to the estimated saliency map,

and
∑N

n pn = 1. Also, L̂n is a normalized array for

weights of Ln which can be estimated using a linear

equation as follows:

Ln = Wn
inβ + Wn

out(1− β), (5)

where Wn
in and Wn

out be the sets of tile weights inside

the n-th viewport (or overlapping with it), and outside

the n-th viewport, respectively. The constant parame-

ter of β defines distribution between Wn
in and Wn

out,

and β = [0, 1]. Here, Wn
in contains a weight for each

t tile, Wn
in = [knin,0, k

n
in,1, . . . , k

n
in,T ], that overlap with

the area of n-th predicted viewport, Ṽ n, and can be

estimated as follows:

knin,t =


f(Ṽ n∩Sn

in)

f(Ṽ n)
Ṽ n ∩ Snin 6= ∅

0 otherwise,
(6)

where f is the function that estimates the correspond-

ing number of pixels on the 3D sphere, the sets of Snin
and Snout represent tiles inside of the viewport, Ṽ n, and

outside of the viewport, respectively.

Next, we estimate Wn
out, which has weights for the

outside-viewport tiles, Snout. For this purpose, we use

the Euclidean distance, δt, measure the distance be-

tween the spherical center location of Ṽn and the spher-

ical center location of each t-tile in Sout. Each weight,

knout,t ∈ Snout, is estimated as follows:

knout,t =
κt
Σtκt

with κt =
max{δt}

δt
. (7)

2.2 Saliency prediction model

The general flowchart for the image/video saliency used

in this work (Saliency Prediction block in Fig.1) can

be seen in Fig.2. In VR applications, scenes in 360°are
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Fig. 2: Flowchart of 360°image and video saliency prediction block of Fig.1.

not visible to the observers fully except for the HMD

viewport field-of-view, and without any cue of spatial

audio or without seeing the whole scene in ERP, it is

hard to pay attention to motion specific salient regions

out of HMD viewport. To consider these aspects, along

with video saliency, we also focus on the image saliency

models for ODV frames separately.

To obtain image saliency maps for each video frame,

we investigate two types of deep learning approaches:

i) a transfer-learning based saliency model as VGG-TL

proposed in [9]), and ii) a supervised saliency detection

model as VGG-MLNet introduced in [4]). To compare

two saliency approaches in ODV delivery as in Fig.1,

VGG-TL [9] and VGG-MLNet [4] are specifically cho-

sen due to having the same core network structure and

similar saliency detection process to compare their ef-

fect on the proposed ODV streaming process. Both [9]

and [4] employ the VGG-16 deep convolutional neu-

ral network (CNN) introduced in [26] as the core of

their saliency prediction models, and they both apply

saliency extraction through the fusion of different layers

in the CNN. However, one requires supervision with rel-

atively large eye-fixation data, and the other uses image

recognition task based pre-trained network.

We extend the use of VGG-TL [9] and VGG-MLNet

[4] on our ODV image saliency computation as in Fig.2

by using it in 2D Image Saliency Model block for the

extracted image patches. For both VGG-TL and VGG-

MLNet, our framework first need to create various over-

lapping 2D projections of scene using spherical coordi-

nate at fixed image resolutions (i.e. 512×512 pixels and

480×640 pixels for VGG-TL and VGG-MLNet models

respectively) with θFoV = 120°at θviewport−center = [0,

15 , ..., 330, 345] and φviewport−center = [-90, -75, ...,

0, ..., 75, 90] similar to various works on 360°data pro-

cessing [13–15, 31]. Then, each 2D image patch from

the scene is used in VGG-TL or VGG-MLNet to ob-

tain saliency maps of each extracted view-ports. Fi-

nally, saliency values at each pixel location of ERP

is computed from the nearest k pixels back-projected

through 2D image patches by weighted averaging the

saliency values based on the inverse proportion of the

distance.

In the following part, we explain VGG-TL as trans-

fer learning based saliency prediction and VGG-MLNet

as the supervised saliency detection model. Then, video

saliency map is also described briefly, as a combination

of motion saliency with the image saliency from models

(VGG-TL, VGG-MLNet, or VGG-MLNet on ERP).

2.2.1 VGG-TL: 360°image saliency with transfer

learning

In weakly-supervised object detection models, it is pos-

sible to localize the class specific objects or semantics of

the scene using class activation mapping by class spe-

cific weighted average of features or gradient of the se-

mantic features (e.g. CAM [32], Grad-CAM [24], DCSS

[25]). Inspired by these approaches, but instead of class

specific attention, the existing knowledge of network

can also be used to generate a general attention frame-

work to find what to look. To be able to obtain at-

tention through object recognition task, VGG-TL pro-

posed by Imamoglu et al. [9] uses learned representa-

tions of objects and gradient features (i.e. combining

forward representation feature and backward gradient

features at different convolution layers averaged by em-

pirically selected weights). VGG-TL [9] takes advantage

of pre-trained VGG-16 CNN [26] trained to handle rec-

ognizing 1000 objects in a large-scale image recognition

dataset called ImageNet [23].

2.2.2 VGG-MLNet: 360°image saliency with

supervised model

To compare transfer-learning based saliency VGG-TL

to an end-to-end supervised saliency model, we selected

fully-supervised model proposed in [4] as VGG-MLNet,

which also utilizes VGG-16 CNN [26] without the fully

connected layers in original model. In addition to back-

bone network, VGG-MLNet includes two more convo-

lution layers to be able to learn optimal fusion of ex-

tracted features from the last three convolution block

representations of VGG-16 backbone structure.

In [4], the whole model is fine-tuned using SALI-

CON saliency dataset [11] based on the eye-fixations

collected from subjects. Before fine-tunning the model
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Fig. 3: Sample saliency maps predicted by the evaluated models.

in [4], VGG-16 CNN part of model is initialized with

the pre-trained weights learned with ImageNet dataset

[23]. However, in this work, we train VGG-MLNet with

random initialization for the whole network on SAL-

ICON dataset [11] since we want model to learn so-

ley where people looked without the prior information

learned regarding to objects representations from Ima-

genet dataset [23].

We also use VGG-MLNet to evaluate the perfor-

mance of saliency from the ERP as 2D image input to

the CNN. The main objective of this is to investigate

saliency performance of ERP for ODV streaming com-

pared with the saliency obtained through merging 2D

images patches extracted as the viewports from spher-

ical coordinates as demonstrated in Fig.2. Here, since

the VGG-MLNet approach uses saliency location prior

which decreases the saliency information at the image

boundaries, we shift ERP images on horizontal axis

to bring the boundary scene to the center. Therefore,

VGG-MLNet is applied on two ERP images then the

results are merged by selecting the maximum values

to provide the boundary connectivity or continuity for

saliency computation on ERP input data.

2.2.3 360°video saliency

In addition to the image saliency for each video frame,

we also obtain video saliency by computing motion

saliency and combining it with image saliency results

as in Fig.2. Motion saliency of frames is computed in

ERP by taking advantage of optical flow distribution

in the scene by using the approach in [7], then as for

video saliency, image saliency and motion saliency is

combined by averaging summation and element-wise

multiplication of image and motion saliency maps as

in [7]. It should be noted that all the saliency computa-

tions are done on 2K down-sampled from 8K images for

computational efficiency, especially for motion saliency.

In Fig.3, a sample frame from the Train video in

ERP is given with its respective motion saliency result,

which is combined with the image saliency models eval-

uated in this work resulting the video saliency for each

model. In summary, we experimented and evaluated the

proposed ODV streaming in Fig.1 on six videos with the

following saliency models:

1. Image saliency with VGG-TL (VGG-TL-Image);

2. Image saliency with VGG-MLNet (VGG-MLNet-

Image);

3. Image saliency with VGG-MLNet on ERP (VGG-

MLNet-Equ-Image);

4. Video saliency with VGG-TL-Image

(VGG-TL-Video);

5. Video saliency with VGG-MLNet-Image

(VGG-MLNet-Video);

6. Video saliency using VGG-MLNet-Image on ERP

(VGG-MLNet-Equ-Video).

3 Results

3.1 Experimental Setup for ODV Streaming

We used the following six ODVs from the JVET and

MPEG video coding exploration experiments: V = {
Harbor, Gaslamp, KiteFlite, Train, Basketball, Dancing

}. Each ODV is in uncompressed and 8K×4K ERP res-

olution with YUV420p format of 10 sec. length. These

ODVs were selected from the videos of the joint video

exploration team of ITU-T VCEG and ISO/IEC MPEG [1–

3].

We divided each ODV frame into six independetly

encoded tiles based on the described tiling structure

in [20]. This structure consists two tiles at the poles and

four tiles at the equatorial region. The reason of this as

the existing HMDs have an approximate 90◦ of field-of-

view (such as Oculus Rift). In addition, most available

ODVs have the most salient objects in the area of the

equatorial segment that spans 90◦ longitude. Hence, we

consider the equatorial region as a 90◦ longitude seg-

ment. The equator was further split into 90◦ tiles as in

[20].
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For encoding, we used the HEVC standard [17] to

compress each tile of ODVs. For this, the FFmpeg soft-

ware (ver. N-85291) [29] was utilized with two-pass and

150 percent constrained variable bitrate configurations

to encode each tile. In addition, we used a set of bi-

trate level for each tile B = { 334, 467, 654, 915, 1281,

1793, 2510, 3514, 4920, 6887} (in terms of kbps) and

(btr ∈ B) to encode each ODV content. Each bitstream

was divided into 2 sec. chunks.

We calculated PSNR and SSIM quality within view-

port with the collected viewing trajectories. For this

purpose, we randomly selected ten user viewport tra-

jectories from the published users’ viewport trajecto-

ries datasets in [18, 21]. The quality scores were mea-

sured on 2D rectilinear viewport image in a frame-by-

frame manner. In quality measurement, the viewport

rendered from the reconstructed ODV is compared with

the viewport rendered from uncompressed ODV.

3.2 Evaluation of Saliency Integration on ODV

Streaming

In Fig.4 and Fig.5, for each ODV, we demonstrated the

PSNR and SSIM results on each model with streaming

at 15Mb/s, 10Mb/s, 5Mb/s, and 3Mb/s bitrates. We

will discuss our findings in detail for each ODV, and

then, demonstrate the average evaluation results for all

ODVs which is given in Table 1. As expected, there is a

tendency of decreased performance both in PSNR and

SSIM metrics using each models tested on all videos

while bitrates are decreasing (see Fig.4 and Fig.5).

One interesting finding is observed in using the trans-

fer learning or object-knowledge based image saliency

approach with VGG-TL [9], which is proposed as a

salient object detection model rather than trying to

predict saliency for eye-fixation regions. In all bitrates,

the average video quality using image only saliency

VGG-TL-Image seems, in most cases (except for the

Train and Dancing ODVs), to be performing better

than or on par with using video saliency model, VGG-

TL-Video. These two ODVs contain highly salient mov-

ing objects, such as a fast-moving train and dancing

girls. The VGG-TL-Video method, contains transfer-

learning using object knowledge and optical flow distri-

bution, performing better on the ODVs that have fast-

moving salient objects. Differently, image only saliency

representation is correlated with a static scene, which

contains low motion information, performing better

saliency distribution in favor of increasing streaming

quality.

In addition, the used motion saliency algorithm in

[7] normalizes the saliency output to be more distinc-

tive, so that if there are multiple moving objects, some

other moving objects will have much less saliency val-

ues depending on the motion distribution and motion

similarity/dissimilarity values. This normalization pro-

cedure can be beneficial on standard 2D video since

viewer can see the whole scene where global motion can

be observed. However, in ODVs, any motion cues can

be equally important depending on the viewport ob-

served by the viewer. Because during interactive look-

around viewing, subjects may not observe the motion

cues without checking the whole 360°scene.

On the other hand, VGG-MLNet image saliency,

which is saliency prediction model supervised with an

eye-fixation dataset, enhanced the overall video aver-

age streaming quality in almost all bit-rates when it is

combined with the motion saliency referred as VGG-

MLNet-Video (see. Table.1, Fig.4, and Fig.5 results).

So, regarding VGG-MLNet video saliency, the results

suggest that motion saliency is complementary to VGG-

MLNet image saliency in favor of enhancing the overall

perceived streaming quality. However, as in VGG-TL

model case, we do not see same tendency in low bit

streaming scenarios while MLNet applied to ERP im-

age as VGG-MLNet-Equ-Image and VGG-MLNet-Equ-

Video (Table.1, Fig.4, and Fig.5).

Moreover, VGG-MLNet-Equ either only image or

video saliency seems to resulting in best average PSNR

and SSIM scores in all bit-rates. It may be because of

the fact that VGGMLNet model has a location-prior

learned through training, which decreases the saliency

values at the edges or corners. Especially, suppressing

saliency values upper and lower boundaries of frames

in our case may be the main reason in improved re-

sults when using the ERP. However, the average PSNR

and SSIM values does not have big differences. In ad-

dition, transfer learning results might be better with

model which does not require down-sampling. In that

case, it would be also possible to test it in ERP. It

should be noted that our primary aim in this work

was to analyze transfer-learning saliency (using object

knowledge) and supervised saliency (learning based on

eye-fixation data) models rather than providing state-

of-the-art streaming approach though the results seems

to be fairly good for all saliency models integrated to

ODV streaming process.

4 Conclusion

In this paper, we studied an omnidirectional video (ODV)

streaming system by introducing a new bitrate alloca-

tion and saliency prediction modules. The proposed bi-

trate allocation algorithm takes the saliency map com-

puted by learning-based saliency methods, predicts sev-

eral most probable viewports, considers the distortion
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Fig. 4: Model comparisons on each ODV based on PSNR.
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Fig. 5: Model comparisons on each ODV based on SSIM.

Table 1: Average PSNR and SSIM values for ODVs at defined target bitrates.

Average PSNR Average SSIM

Saliency Model

Data Bitrate
15Mb/s 10Mb/s 5Mb/s 3Mb/s 15Mb/s 10Mb/s 5Mb/s 3Mb/s

Im
a
g
e VGG-TL 37.47 36.22 34.13 32.91 0.9450 0.9367 0.9150 0.9017

VGG-MLNet 37.28 35.30 33.47 32.03 0.9433 0.9333 0.9100 0.8950

VGG-MLNet-Equ 37.20 36.39 34.48 32.95 0.9450 0.9367 0.9217 0.9017

V
id

eo

VGG-TL 37.55 36.13 33.91 32.59 0.9500 0.9333 0.9133 0.8950

VGG-MLNet 37.84 36.67 34.47 33.08 0.9517 0.9400 0.9183 0.9017

VGG-MLNet-Equ 37.86 36.78 34.34 32.68 0.9517 0.9417 0.9200 0.8967

of sphere-to-plane mapping, and determines optimal

target bitrates using the formulated linear integer pro-

gramming problem. In learning-based saliency, we in-

vestigated two different learning-based saliency meth-

ods with an aspect of the delivery of ODV. One tech-

nique focused on salient object detection with transfer-

learning using pre-trained networks. Another approach

considered supervised networks trained on a well-known

eye-fixation dataset. The proposed delivery system was

then investigated with these visual attention models

with an aspect of content types and bitrate levels. Ex-

perimental evaluations on saliency integration of mod-

els were discussed with the finding of transfer-learning

and supervised saliency approaches. As future work,

we plan to extend the proposed system by developing

a new computationally ODV saliency map prediction

model with the findings of this paper and consider-

ing the learning-based bitrate allocation model in ODV

streaming.
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