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ABSTRACT

Gesture behavior is a natural part of human conversation. Much

work has focused on removing the need for tedious hand-animation

to create embodied conversational agents by designing speech-

driven gesture generators. However, these generators often work

in a black-box manner, assuming a general relationship between

input speech and output motion. As their success remains limited,

we investigate in more detail how speech may relate to different

aspects of gesture motion. We determine a number of parameters

characterizing gesture, such as speed and gesture size, and explore

their relationship to the speech signal in a two-foldmanner. First, we

train multiple recurrent networks to predict the gesture parameters

from speech to understand how well gesture attributes can be

modeled from speech alone. We find that gesture parameters can be

partially predicted from speech, and some parameters, such as path

length, being predicted more accurately than others, like velocity.

Second, we design a perceptual study to assess the importance of

each gesture parameter for producing motion that people perceive

as appropriate for the speech. Results show that a degradation in

any parameter was viewed negatively, but some changes, such as

hand shape, are more impactful than others. A video summarization

can be found at https://youtu.be/aw6-_5kmLjY.
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1 INTRODUCTION

Generating gesture behavior for virtual agents is an important part

of making them increasingly life-like and engaging. Much work has

focused on generating gestures from speech, but one major chal-

lenge has been the large variability of gesture, with gesture choice

and expression varying both between speakers as well as within

speaker. The same utterance may be accompanied by two com-

pletely different gestures even when repeated by the same speaker

at different points in time. Rather than speech directly informing

the gestures to be produced, the Growth Point theory of [26] argues

that speech and gesture are two communicative channels both aris-

ing from the same cognitive process. Therefore, speech may give

us an indication of the underlying intention that inspired a gesture,

but may never fully predict the gesture expression. Often however,

we want to rely solely on the speech audio signal for generating

gesture behavior due the ease of obtaining such speech in real appli-

cations. While some other works have included text transcriptions

of the speech input [19, 21], transcription of spontaneous speech

can be difficult, and additional processing such as semantic fea-

ture extraction may be necessary in particular for smaller datasets.

For generating gestures from an audio signal, we are interested to

what extent we can predict the expressive qualities of gesture from

speech; specifically, which characteristics of gesture correlate well

with the speech signal and can be predicted successfully, and which

characteristics are perceptually important.

To this aim, we first ran an exploratory study to investigate how

well gesture characteristics may be predicted from a speech signal.

We determined a number of gesture parameters, such as speed

and range, that describe the expressiveness of a gesture. We then

train multiple recurrent networks to model the speech to gesture

parameter relationship and discuss their performance.

Secondly, we assessed the perceptual relevance of the gesture

parameters in an empirical study. Assessing the perceptual salience

of attributes of gesture motion provides guidance on what features

must be accurately modeled to produce satisfying animation.

Our focus is on the relationship between speech and the expres-

sive quality of the gestures, so in all cases we maintain the same

gesture form as used in the original utterance. Results indicate that

all gesture parameters are predicted above chance, but there is vari-

ance in how well they are predicted. For example, arm swivel is

predicted better than gesture velocity. Observers were sensitive to

all variations in parameters away from the original performance

and increased hand opening was viewed particularly negatively,

among other results.

https://youtu.be/aw6-_5kmLjY
https://doi.org/10.1145/3383652.3423882
https://doi.org/10.1145/3383652.3423882
https://doi.org/10.1145/3383652.3423882
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2 RELATED WORK

A variety of different approaches have been proposed for the prob-

lem of gesture generation from speech. Early work employed ex-

plicit rule systems mapping text to gestures [4, 25, 34] and statistical

modelling of speech features co-occurring with motion features

[2, 28]. With the rise of machine learning, numerous network types

have been investigated, including variations of hiddenMarkov mod-

els [3, 23], conditional random fields [7, 22], and restricted Boltz-

mann machines [6]. In recent work, recurrent neural networks

have proven popular; a classic training loss has been employed for

English [12, 21] and Japanese speech-to-gesture generation [18, 20].

To combat the problem of mean pose regression in a standard train-

ing paradigm, an adversarial training paradigm has been proposed

in [14] (similarly for a convolutional network setup in [15]), and

recently, probabilistic generative modelling has shown promise [1].

However, due to the highly indeterministic input-to-output relation,

modelling plausible gestures remains a difficult problem. There are

a multitude of possible gestures for each utterance, and therefore

modelling gestures as sequences of joint positions or angles can

fail to capture the natural variety of gesture motion. We therefore

explore alternative representations of gesture that do not rely on

explicit joint positions or angles.

Several works have looked at parameter representations of ges-

tures. [36] uses Laban Movement Analysis, specifically the Effort

and Shape parameters, to describe and modify gestures. [17] uses a

review of social psychology literature in combination with a gesture

corpus analysis to determine a set of six parameters to capture the

expressivity of gestures, including gesture scale and fluidity. They

find evidence that matching parameters to the communicative in-

tent makes the gesture behavior more appealing. [29] uses a similar

set of parameters including gesture rate, scale, and position, and

find they can significantly influence perceptions of extraversion by

modifying these parameters in gestures. [33] extends this work by

using a set of parameter modifications to target perceptions of all

Big Five personality traits. [5] defines a set of 11 motion parame-

ters and shows that they can manipulate the perceived emotional

content, defined by valence and arousal, of a gesture.

This previous work on parameter representation of gestures

shows that we can reliably influence perceptions of personality

and emotion by applying simple modifications, and gives some

evidence that matching measures of gesture expressivity to speech

can increase appeal. While tackling the speech-to-gesture problem,

we are interested in which gesture parameters are related to the

speech expression. On the one hand, we would like to know which

gesture parameters can be successfully predicted from speech. On

the other hand, we want to understand which of these parameters

are important for perceptually plausible gesture synthesis.

3 DATASET & PROCESSING

We use a corpus of 6 hours of conversational data, presented in [13]

as our first dataset (dataset A). The dataset consists of high-quality

audio and motion recordings of a single right-handed male English

speaker producing spontaneous, colloquial speech, in monologue

style. During network training (Sec. 4), we include dataset B, the

open-source Trinity Speech-Gesture dataset [12], a similar corpus

of 4 hours of speech and motion data of a different male English

speaker (also right-handed). We find that including this dataset

improves performance. We segment the gesture databases using

the stroke phase labels (see [14]).

3.1 Speech processing

We tested the suitability of three different feature sets for speech

processing. The first set consists of the 12 Mel-frequency cepstral

coefficients (MFCCs), common in speech recognition as well as

previous speech-gesture work [14, 20]. Secondly, we tested Geneva

Minimalistic Acoustic Parameter Set (GeMAPS), both the 18 features

of the compact version, as well as an extended set of 23 features

presented in [10]. The GeMAPS has been specifically developed

for affect recognition. Finally, we tested a three feature set simply

consisting of the pitch (F0), plus its first and second derivative to

describe change over time. We extracted all speech features using

OpenSMILE [11]. After training a number of speech-to-gesture-

parameter models in an exploratory manner with each of the three

feature sets, we found GeMAPS to work best overall, as measured

by the numeric loss during training, with the compact and the

extended feature set performing similarly. MFCCs performed well

but slightly worse than GeMAPS, and the feature set of pitch plus

derivatives greatly underperformed.Wewill therefore report results

using the GeMAPS input representation.

3.2 Gesture processing

We aimed to find a number of gesture characteristics that could

describe the expression of a gesture. We define these characteristics

based on the central part of a gesture, the stroke phase, which rep-

resents the expressive phase of a gesture and carries its meaning

[26] or, in the case of non-meaningful beat gestures, represents

the period of the highest effort. The stroke phase was determined

following a previous approach by [14], using the hand-annotation

where available, and the automatic stroke classification otherwise.

Each feature below is calculated for each gesture from the corre-

sponding motion capture data.

(1) velocity

(2) initial acceleration

(3) gesture size:

(3.1) path length

(3.2) major axis length

(4) arm swivel

(5) hand opening

Velocity and initial acceleration both describe the kinematics of

the gesture, represented by the maximum stroke velocity (1), and by

the mean acceleration to the first major velocity peak (2). Velocity

captures a character’s tempo and relates to the amount of energy

they are using. Initial acceleration may be useful to model an em-

phatic gesture start. This is akin to the type of tangent adjustment

done between key frames in hand animation.

With gesture size (3), we describe the spatial extent of the ges-

ture. We measure this in two ways: The total path length of the

gesture stroke, calculated by summing the difference between the

wrist positions at each subsequent frame, and the length between

the minimum and maximum point of the stroke, which we will

subsequently refer to as major axis length.
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Figure 1: Network structure of the speech-

to-gesture-parameter models. Speech in-

put is batch-normalized, then passed

through a linear feed-forward layer (FF)

of size 64. The core of the model is a bidi-

rectional LSTM cell of size 64 (25% input

dropout). The output of the recurrent cell

is batch-normalized and 25% dropout is

applied before the final output layer with

sigmoid activation.

Arm swivel (4) describes the rotation around an axis between

the shoulder and the wrist, bringing the elbow in or away from

the body. This angle modifies the amount of space taken up by the

gesture and can change the perceived personality [33] and has been

postulated to relate to humility and arrogance [32].

The last parameter, (5), describes the hand shape during a gesture,

specifically, how open or closed the hand is. We calculate this as

the mean distance of the finger tips (excluding thumb) from the

base of the wrist. Such variation in hand flexion has been shown to

impact the perception of character personality [35].

Based on previous work, we expect gesture velocity and acceler-

ation to be well predicted from speech (e.g. [24, 30]), whereas more

uncertainty around speech correspondence to arm swivel and hand

opening.

4 GESTURE PARAMETER PREDICTION

The first part of our work focuses on the problem of predicting

gesture characteristics from a speech signal. Our aim hereby is to

assess which gesture descriptors can be predicted from speech with

current machine learning techniques. While it is reasonable to con-

sider using a single model to jointly predict all gesture properties,

we found this in practice difficult to optimize and instead model

one gesture property at a time. We tested a number of model con-

figurations, such as one vs. two network layers, as well as testing

different layer sizes. Our goal was to adopt a fairly standard network

architecture to explore if gesture parameters can be predicted from

speech in such a framework. After experimenting with configura-

tions, we found the general network structure in Fig. 1 performed

best. Using more layers or larger layer sizes led to frequent over-

fitting; using smaller layer sizes or simpler layers (uni-directional

instead of bidirectional recurrent layer) led to under-fitting.

We use recurrent neural networks due to their strength in mod-

elling sequential time-series data as well as their use in recent

speech-to-gesture research [12, 14, 18, 20]. All models take an in-

put sequence of speech features, extracted over the period of the

corresponding gesture’s stroke phase plus a context of 1 second

in each direction. Sequence-based models require a constant input

length within a training batch, we therefore define a maximum

input length of 5.5 seconds, based on the maximum stroke duration

found in the datasets plus context windows. All shorter sequences

are zero-padded to fulfill the constant input length requirement.

The model applies batch normalization to the input, then input

transformation through a feed-forward layer. This is followed by

one recurrent network layer, followed by batch normalization and

a dropout layer for regularization purposes. The outputs of a model

are the values of the gesture parameter under investigation (e.g.,

velocity, initial acceleration, etc.), normalized to the range of 0-1 for

each given stroke, one value for each hand. The output nodes have

a sigmoid activation. Training minimized the mean squared error

between predicted and true value. We use the Adam optimizer with

a learning rate of 2 × 10−4 and standard decay.

To generate output, it is necessary to resolve a potential ambigu-

ity between the predicted behavior of each hand. The stroke label

does not include the handedness, i.e. whether the right, the left,

or both hands are performing a stroke. Therefore, the predictive

model must make some assumptions about the active hand(s). The

model can learn general statistics regarding differences between

the two hands (e.g. left hand generally slower), but will not be able

to predict diverging values indicating gesture handedness (e.g. high

velocity for right hand and zero velocity for left hand, indicating

a right-handed gesture), unless successfully inferring handedness

from the audio signal. Labelling handedness could improve future

modelling approaches.

4.1 Results

Using the stroke phases as our segmentation, our training data

consists of a total of almost 23,700 gesture stroke samples, with

approximately 58% stemming from dataset A [14] and 42% from the

dataset B [12]. We hold back about 4% of the samples for validation

and 1.5% for testing, chosen randomly. The velocity and acceleration

models reached best performance after 70 epochs, all other models

were trained for about 140 epochs. As described in Sec. 3.1, we

found GeMAPS input speech representation to work best overall,

the reported models used the compact set in the case of gesture

size, and the extended set in all other cases.

Our goal is to understand which gesture features are predictable

from speech audio. A straightforward performance measure is the

mean error between predicted and actual parameter values across

all gestures. As the mean can be distorted by small numbers of

large errors, we also report the median error. Taken alone, this

does not say if the audio data is informative. We therefore compare

the predictions to a model that has no audio input. In this case,

all we can do is match the underlying statistics, the mean and

variance, of our gesture data for each parameter. We do this by

randomly selecting gestures for each slot and report the error such

an approach would produce. Comparing these two errors gives

an indication of how much the audio improved predictions. These

errors are reported in Table 1, with errors for random selection in

brackets. We drew the samples in a database-specific manner, i.e.

we always use the correct database to draw from for each sample,

to ensure that simple speaker-detection by the model is not the

reason for superior performance. We compute the random sampling

error three times for each gesture parameter and report the average

values. Secondly, we report the standard deviation (std) as well as

the mean absolute deviation (MAD) for all true parameter values; a

model with no prediction power can be expected to yield an error

similar to MAD. We trained all networks n times, reporting average

error and std. As we found std to be low in all cases, we considered

n=3 to be sufficient. Prediction results and random as well as MAD

baseline values are listed in Table 1.
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Table 1: Performance evaluation of the speech-to-gesture-parameter models. In brackets are random sampling errors, com-

puted using a randomly drawn parameter sample from true values as prediction value. Random samples for all parameters

except gesture size (path length and major axis length) are drawn with the constraint noted in Eq. 1. 𝑀𝐴𝐷 denotes the mean

absolute deviation of each gesture parameter. We report mean (𝑒)and median (𝑒) errors for the left (L) and right (R) hand, as

well as the % reduction (red.) in error between random sampling and ourmodels. A higher reduction percentage implies better

model performance.

MAD L/R 𝑒 L red. 𝑒 R red. 𝑒 L red. 𝑒 R red.

velocity (𝑚/𝑠) 0.34/ 0.37 0.31 (0.38) 19% 0.35 (0.43) 17% 0.24 (0.27) 12% 0.28 (0.31) 11%

initial acceleration (𝑚/𝑠2) 0.30/ 0.34 0.27 (0.37) 27% 0.30 (0.42) 28% 0.15 (0.18) 17% 0.16 (0.23) 30%

path length (𝑚) 0.21/ 0.24 0.11 (0.28) 60% 0.13 (0.33) 61% 0.06 (0.17) 63% 0.07 (0.21) 64%

major axis length (𝑚) 0.10/ 0.11 0.08 (0.14) 41% 0.09 (0.16) 45% 0.06 (0.10) 39% 0.06 (0.12) 49%

arm swivel (degrees) 12.42/ 10.16 11.52 (15.39) 25% 9.32 (13.28) 30% 8.82 (10.47) 18% 6.86 (10.02) 31%

hand opening (𝑐𝑚) 3.91/ 3.73 1.64 (2.29) 29% 1.23 (1.85) 33% 1.14 (1.39) 18% 0.97 (1.19) 18%

Maximum velocity averaged 0.59𝑚/𝑠 (std=0.46𝑚/𝑠 , MAD=

0.34𝑚/𝑠) for the left, and 0.70𝑚/𝑠 (std=0.49𝑚/𝑠 , MAD=0.37𝑚/𝑠))

for the right hand, and our model produced mean errors of 0.31𝑚/𝑠

(std=0.01𝑚/𝑠) and 0.35𝑚/𝑠 (std=0.01𝑚/𝑠) respectively, with the

median at 0.24𝑚/𝑠 and 0.28𝑚/𝑠 . Referring to Table 1, we see 19%

and 17% mean error reduction for the left and right hand, compared

to random sampling, and 12% and 11% median error reduction. The

model avoids very low velocity predictions, and to some degree high

velocity predictions (Supp. Mat. Fig. ?? (top)). A possible reason is

the use of the mean squared error function in training, which can

encourage outputs to stay around the mean value.

Initial acceleration averaged 0.16𝑚/𝑠2 (std=0.58𝑚/𝑠2, MAD=0.30

𝑚/𝑠2) for the left, and 0.22𝑚/𝑠2 (std=0.61𝑚/𝑠2, MAD=0.34𝑚/𝑠2)

for the right hand, and our model produced mean errors of 0.27

𝑚/𝑠2 (std=0.01𝑚/𝑠2, median=0.15𝑚/𝑠2) and 0.30𝑚/𝑠2 (std=0.01

𝑚/𝑠2, median=0.16 𝑚/𝑠2), respectively. The model again avoids

very high acceleration predictions, however, high acceleration is

often correctly identified though the predicted value tends to be

lower than the true value (see plotted prediction results in Supp.

Mat. Fig. ?? (bottom)). Compared to our baseline random sampling

error, we achieve a mean error reduction of 27% and 28% for the

left and right hand, respectively, and 17% and 30% median error

reduction (see Table 1). The mean error reductions indicate that

acceleration can be modelled more successfully than velocity.

Our first measure of Gesture Size is path length. We find that

gesture path length is highly correlated with the length of the corre-

sponding input speech segment; a longer speech input is associated

with a longer stroke. Hence, in addition to comparing prediction

results to the random sampling error (see Table 1), we employ a

second test taking into account only speech length. For this, model

input is a single speech feature has the value 1 for all input time

steps before the zero-padding. This input processing means that the

model can base predictions solely on the length of the input signal,

without receiving information about the speech quality. Using only

speech length versus GeMAPS input yielded very similar errors.

Mean path lengths were 0.25𝑚 (std=0.30𝑚, MAD=0.21𝑚) and 0.32

𝑚 (std=0.34𝑚, MAD=0.24𝑚) for the left and right hand, respec-

tively. Using only speech length input yielded mean errors of 0.11𝑚

(std=0.00𝑚, median=0.07𝑚) and 0.13𝑚 (std=0.00𝑚, median=0.08

𝑚) for the left and right hand, while using GeMAPS results in mean

errors of 0.11𝑚 (std=0.00𝑚, median=0.06𝑚) and 0.13𝑚 (std=0.00

𝑚 median=0.07𝑚), respectively. Paired Wilcoxon tests showed no

significant improvement of path length prediction for GeMAPS

input over speech length input, suggesting that the length of the

speech signal was the essential determinant for path length.

Our second measure of Gesture Size, is the major axis length,

defined as the length of the axis between the minimum and maxi-

mum point of the gesture. The average major axis lengths for the

left and right hand are 0.15𝑚 (std=0.14𝑚, MAD=0.10𝑚) and 0.19𝑚

(std=0.15𝑚, MAD=0.11𝑚), respectively, and our model produced

mean errors of 0.08 𝑚 (std=0.00 𝑚, median=0.06 𝑚) and 0.09 𝑚

(std=0.00𝑚,median=0.06𝑚) for the left and right hand, respectively

(see also Supp. Mat. Fig. ?? (bottom)). We critically evaluate the

results for the major axis length in the same manner as for the path

length, using only speech length as input. Model errors the same as

for GeMAPS input, and paired Wilcoxon test showed speech input

to yield no significantly better performance. As for path length

predictions, this suggests that major axis length predictions were

only significantly informed by the length of the speech signal.

Due to the strong correlation of speech input length and gesture

size, we tighten the conditions for the random baseline sample

selection. In addition to drawing samples dataset-specific, we also

restrict sample selection to a small range around the true gesture

size. That is, when selecting a random sample, we only consider

samples 𝑖 for which the path length 𝑝𝑙 :

𝑝𝑙𝑡𝑟𝑢𝑒 −
𝑠𝑡𝑑 (𝑝𝑙)

4
< 𝑝𝑙𝑖 < 𝑝𝑙𝑡𝑟𝑢𝑒 +

𝑠𝑡𝑑 (𝑝𝑙)

4
(1)

This represents a tight restriction of random selection to only

around 5% of the total samples. All random sampling results re-

ported are path length restricted.

For arm swivel, increasing swivel angle for the left arm (moving

the elbow out) means a higher positive value, whereas increasing

the right arm’s swivel means increasingly negative values. The left

arm had a mean angle of 14.43° (std=16.28°, MAD=12.42°), and our

model yielded a mean error of 11.52° (std=0.34°, median=8.82°) . The

mean right swivel was −21.58° (std=13.61°, MAD=10.16°) and our

model yielded a mean error of 9.32° (std=0.05°, median=6.86°) (Supp.

Mat. Fig. 3 (top)). Mean error reductions with respect to random
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sampling were 25% (left hand) and 30% (right hand), and median

reductions were 18% (left hand) and 31% (right hand) (see Table 1).

Hand opening averaged 16.56 𝑐𝑚 (std=4.37, MAD=3.91) and

17.05 𝑐𝑚 (std=4.10, MAD=3.73) for the left and right hand, respec-

tively, and corresponding mean model errors were 1.64 (std=0.00,

median=1.14) and 1.23 (std=0.02, median=0.97) (see also Supp. Mat.

Fig. 3 (bottom)). As noted in Table 1, this meant mean error reduc-

tions, with respect to random sampling, of 29% and 33% for the left

and right hand, respectively, and median reductions of 18% each.

Shapiro-Wilk tests showed that the distributions of gesture pa-

rameters were not normal. We evaluated error reduction with re-

spect to random sampling using paired Wilcoxon tests with Bonfer-

roni correction for multiple hypothesis testing (n=16). All models

performed better than random sampling (all p<.001/16).

Wilcoxon tests further revealed that path length prediction errors

were lower than for all other parameters except right arm swivel (all

p<.001). Arm swivel errors were lower compared to all parameters

except path length and left hand acceleration (p<.001/16 for all but

left major axis length (p<.05/16)).

4.2 Discussion

In this first part of our work, we sought to examine which gesture

parameters may be predicted well from a speech signal and may

therefore be well accounted for by a speech-to-gesture generation

model. For this, we explored five different gesture parameters.

Gesture velocity has been used in previous work on gesture

generation from speech [18, 21]. However, interestingly, we found

this to be a difficult parameter to model from speech. While there

does appear to be an underlying relationship between velocity

and the speech representaion, it proved to be difficult to capture

velocities farther from the mean, i.e. we could not capture the

full variability of velocities. As an additional measure of gesture

kinematics, we modelled the acceleration to the first major velocity

peak. Accelerationwas predictedmore accurately than velocity. The

model often successfully detects high initial acceleration; common

errors are failing to capture high initial acceleration of the left hand

(non-dominant hand) and instead only capturing this for the right

hand, as well as not modelling very high values. Avoidance of high

value predictions can be expected due to the low frequency of these

values overall; the model would be penalized strongly for wrongly

predicting large values, and rewarded only in the infrequent cases

of true high values. Oversampling high values to increase their

frequency could help encourage more diverse predictions.

For modelling gesture size, we used two measures, path length

andmajor axis length.We found that the gesture size measures were

predicted best overall, howeveras larger lengths may take more

time to complete, we compare our model to a baseline prediction

model conditioned on only the length of the speech signal. The

length of the speech signal was highly correlated with gesture path

length and major axis length, and statistical tests showed using

speech input did not improve predictions.

Our results also emphasize the difficulty of the speech-to-gesture

generation problem. Even with a highly reduced data complexity of

just one gesture descriptor rather than many skeleton joints, mod-

elling remains difficult. While motion parameter predictions based

on audio showed lower error compared to baselines, indicating that

audio is informative when determining gesture parameters, the

errors in these predictions are still relatively large when compared

against expected deviations for these parameters. This may suggest

that audio alone is not sufficient for predicting gesture parameters.

5 GESTURE PARAMETER EVALUATION

As audio is only partially successful at predicting gesture param-

eters, we want to understand which gesture parameters must be

accurately realized in order to achieve satisfying motion. To explore

this, we design an empirical evaluation of the impact of gesture pa-

rameters on perception. We assess people’s judgment of the gesture

expression regarding its suitability for the expressed speech. We

test the perceptual impact of our gesture parameters by creating

variations that increase or decrease them, as described below.

5.1 Stimuli creation

Artificial stimuli are created through a three step process. First, the

variation in the source data is measured. Second, clips are selected

that best represent high and low variations within this. Third, these

clips are algorithmically modified to fully match the desired high

and low performance.

First, we compute the natural variation of each of our parame-

ters within the gesture database by calculating the 25th percentile

marker as a lower bound, and the 75th percentile marker as the

upper bound. Samples below the lower bound are defined as having

a low expression, and samples above the upper bound are defined

as having a high expression of a given parameter. (The data distri-

bution is visualized in Fig. 4 in Supp. Mat.).

Second, we randomly select short gesture sequences of about 10

seconds. A 10-second time-frame has previously been shown to be

sufficient for participants to make judgements about conversing

agents [9]. For low sequences, we use sequences that contain low

parameter expressions. However, as there are practically no 10

second sections in the database of only low expression, we allow

the sequences to contain medium expression (values below the

upper bound), but give preference to gesture sequences with the

highest percentage of low samples. Equivalently, for high sequences,

we use sequences containingmainly high expression, allowing some

medium expression samples. This biased selection ensures that the

edited clips are as different as possible from the source clips (i.e.

error maximizing).

In the third step, we create the parameter manipulations. For low

sequences, we increase the parameter expression to high, keeping

within the found natural limits. For high sequences, we decrease the

parameter expression to low. We select 5 samples each for the low

and the high manipulations of each parameter. As baseline samples,

we randomly select 10 sequences that remain un-manipulated.

All samples are generated with animation software based on

the open-source animation environment DANCE [31] that uses

a motion parameterization similar to Neff and Kim [27] and IK

tools to generate variations of the input motion capture data. It

takes as input the motion data and the corresponding stroke la-

bels and synthesizes preparation (bringing the hands into position

for the gesture) and retraction (returning the hands to a rest posi-

tion) phases for the strokes using splines, proportionally matching

the stroke speed. Synthesizing preparations and retractions avoids
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problems such as two lengthened gestures not maintaining the

necessary time for a retraction that was originally present between

them. If a manipulation is applied, it is applied to the stroke phase.

We restrict our data selection to the hand-annotated sections of

dataset A . Including dataset B in this step would require manually

correcting all automatically determined stroke labels to ensure cor-

rect boundaries. All stimuli can be viewed at https://www.youtube.

com/playlist?list=PLLrShDUC_FZzhemzr0g1ekt1jz45-y_u3.

5.2 Experiment

The experiment was designed with the Unity3D game engine and

the open-source Virtual Human Toolkit (VHTK) [16]. The displayed

character was Brad from the VHTK, producing regular eye blinks,

lip synchronisation, as well as an idle motion for the body exclud-

ing the arms and hands. In each experiment trial, participants first

watched a 10 second clip of the character acting out one of the

gesture sequences. Following the clip, participants were asked the

following question: "How well did the expressive quality of the ges-

tures match the expressive quality of the speech?"

This question was specifically designed to motivate participants

to focus on the expression of the gestures; we did not want par-

ticipants to judge the semantic entropy of the gesture sequence.

A 7-point Likert scale was provided as a rating scheme. Partici-

pants first completed 5 example trials for which responses were

not recorded. This was in order to establish an expectation of the

gesture quality variation in the experiment and to familiarize the

participants with the rating scale. Following the example trials,

participants completed 60 experiment trials (5 samples for each of

the 5 parameters, with 2 expression manipulations each, plus 10

baseline samples), presented in random order.

The online experiment was distributed via university mailing

lists, with an incentive of a 100 Euro raffle voucher. We collected

data from 60 participants (23 females, 36 males, 1 other gender, ages

18-59 years,M = 26.4, SD = 9.1), all of whom gave informed consent

regarding their participation. All participants reported sufficient

English proficiency (35 łnativež, 20 łfluentž, 3 łvery goodž, 2 łgoodž).

5.3 Results

The study consisted of two factors, the parameter that was modified

and the direction of the modification. The first factor had 11 con-

ditions, with mean ratings summarized in Fig. 2 a), and the rating

score distribution further explored in Fig. 2 b). The second factor

had two levels, increase and decrease.

We analyzed the data by treating the rating scores as ordinal data

and fitting a cumulative link model, using clm from the R ordinal

package [8]. All modification conditions were rated significantly

lower than the no modification condition (all p<0.001, Bonferroni

corrected with n=55). Decreasing gesture size was rated signifi-

cantly worse than increasing (p<.05). Decreasing hand opening

was preferred over increasing (p<.001). Increasing hand opening

received the lowest rating compared to all other conditions (all

p<.05). Complete results are detailed in Table 2.

5.4 Discussion

We found that all our gesture modification had a significant percep-

tual effect. Unmodified gestures were preferred over all modification

Figure 2: Perceptual results. a) Mean rating scores for all

experimental manipulations. Unmodified gestures received

the highest average rating, and increased hand opening

the lowest. b) Stacked bar chart of all given ratings. Plot-

ted is the frequency of responses for the 7 rating scores.

(The y-axis represents the frequency of responses). The no-

modification condition is scaled by 50%.

conditions, indicating some perceptual relevance for each of the

five gesture parameters.

Altered gesture kinematics, as described by gesture velocity and

initial acceleration, significantly worsened speech-gesture match,

with the slowing-down modification yielding similar ratings as the

sped-up modification. In Sec. 4, we found gesture velocity partic-

ularly difficult to model. The perceptual impact of velocity in our

study suggests the need for more work on modelling velocity well.

For modified gestures, we found that enlarged gesture size was

preferred over reduced size gestures. Enlarged gesture size was fur-

ther preferred over a number of other modifications, while reduced

gesture size showed the opposite trend. Machine learning models

for gesture generation are often trained with a mean-squared error

loss [12, 18, 21], commonly leading to smaller than natural ges-

tures due to convergence to the mean pose. Our perceptual results

give further motivation to move away from such traditional model

training approaches. Recent works have proposed alternative ap-

proaches [1, 14, 15]. While we achieved good modelling results for

gesture size, this was due to a strong correlation of gesture size and

input speech length. Therefore, to infer correct gesture size, focus

should be on determining the correct window (size) for a gesture.

There was a large effect of hand opening, with the open, flat

hand rated significantly lower than all other modifications. Gesture

https://www.youtube.com/playlist?list=PLLrShDUC_FZzhemzr0g1ekt1jz45-y_u3
https://www.youtube.com/playlist?list=PLLrShDUC_FZzhemzr0g1ekt1jz45-y_u3
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Table 2: All results for the perceptual experiment. Indicated are both significant and non-significant condition differences

(plotted in Fig. 2). + means the row condition was rated higher, - means lower rating. All p values were Bonferroni corrected

(n=55): , ∗ = 𝑝<.05/55, ∗∗ = 𝑝<.01/55, ∗ ∗ ∗ = 𝑝<.001/55. n.s.=not significant

no mod. velocity ↓ velocity ↑ init. acc. ↓ init. acc. ↑ size ↓ size ↑ swivel ↓ swivel ↑ hand ↓ hand ↑

no mod. - ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗ ∗ ∗+ ∗∗+ ∗ ∗ ∗+

velocity ↓ ∗ ∗ ∗− - n.s. n.s. n.s. ∗+ n.s. n.s. n.s. ∗− ∗ ∗ ∗+

velocity ↑ ∗ ∗ ∗− n.s. - n.s n.s. n.s n.s. n.s. n.s. ∗∗− ∗∗+

init. acc. ↓ ∗ ∗ ∗− n.s. ∗+ - n.s. ∗+ n.s. ∗+ ∗+ n.s. ∗ ∗ ∗+

init. acc. ↑ ∗ ∗ ∗− n.s. n.s. n.s. - n.s. n.s. n.s. n.s. n.s. ∗ ∗ ∗+

size ↓ ∗ ∗ ∗− n.s. n.s. ∗− n.s. - ∗− n.s. n.s. ∗ ∗ ∗− ∗+

size ↑ ∗ ∗ ∗− n.s. n.s. n.s. n.s. ∗+ - ∗+ ∗+ n.s. ∗ ∗ ∗+

swivel ↓ ∗ ∗ ∗− n.s. n.s. n.s. n.s. n.s. ∗− - n.s. ∗ ∗ ∗− ∗+

swivel ↑ ∗ ∗ ∗− n.s. n.s. ∗− n.s. n.s. ∗− n.s. - ∗ ∗ ∗− ∗+

hand open ↓ ∗ ∗ ∗− ∗+ ∗∗+ n.s. n.s. ∗ ∗ ∗+ n.s. ∗ ∗ ∗+ ∗ ∗ ∗+ - ∗ ∗ ∗+

hand open ↑ ∗ ∗ ∗− ∗− ∗− ∗ ∗ ∗− ∗ ∗ ∗− ∗− ∗ ∗ ∗− ∗− ∗− ∗ ∗ ∗− -

sequences with decreased hand opening were preferred over most

other modifications. Strong effects for manipulating hand shape

has also previously been reported by [35] in a study on personality

perceptions. Modelling finger motion is a complex problem due to

the high dimensionality of the hand skeleton; when accurate hand

shape prediction is not possible, based on our results, we suggest

animating slightly flexed fingers rather than straightened fingers.

Modifying arm swivel angle in either direction elicited relatively

low preference ratings, indicating this to be an important factor in

believable gesture synthesis. Notably, arm swivel was also predicted

relatively well in Sec. 4.

6 GENERAL DISCUSSION

In this work, we investigated the relationship between speech

and gesture expressivity. Gesture generation approaches often as-

sume some underlying connection between modalities by training

black-box models, feeding in speech data and outputting high-

dimensional and complex skeleton motion data. Due to their limited

success, we aimed to assess in more detail how speech may relate

to gesture motion. Based on a literature review, we first determined

a number of parameters to characterize gesture. We then assessed

the speech-gesture parameter relationship in two ways.

First, we used machine learning, specifically recurrent neural

networks, to phrase the question as a problem of predicting gesture

properties from speech. We train separate models for each gesture

parameter, working solely on the audio speech signal as input.

By judging the successes or failures of the model predictions, we

gain a measure of how well the speech signal relates to a given

gesture parameter. Results indicate that all gesture parameters are

predicted above chance, but there is variance in how well they are

predicted. For example, the size of a gesture is predicted better than

its velocity. Arm swivel predictions, surprisingly, surpass all other

measures but path length. Our results also indicate the remaining

difficulty in modelling the speech to gesture relation. Previous work

on gesture generation has reported good adherence of their model

to the acceleration distribution of a dataset [20, 21], however, our

results indicate that the correct acceleration at the correct time

matters, and generated gestures should hence be assessed in a

gesture-specific rather than output-general manner. Rather than

only assessing acceleration distribution of the output, evaluation

should consider the correctness of the acceleration per gesture.

Finally, while gesture parameter predictions were significantly

above baseline, they remained well short of ground truth, indi-

cating that audio alone may not be sufficient to predict gesture

performance. Future work could consider additional input, such

as semantic content via information extraction from speech tran-

scripts. Other types of models could also be explored for the task.

Our gesture property modelling is limited to two speakers; it is un-

clear if our results represent ‘typical’ speech-gesture relationships,

or if a larger set of speakers would yield different results.

Second, we conducted a perceptual study to assess the relevance

of each gesture parameter for gesture synthesis. For this, we ma-

nipulated the level of each parameter and tested the impact on the

perceived match of speech and gesture. Observers were sensitive to

all variations in parameters away from the original performance, in-

dicating that each of our chosen parameters is important in realistic

gesture synthesis. Hand pose showed to be particularly important,

with flat, open hands being viewed especially negatively, and more

flexed fingers being preferred. Regarding gesture size, we found

enlarged gestures being preferred over reduced gestures.

For gesture parameter prediction, we see an expected preference

of the models to keep predictions somewhat around the mean for

all parameter values, infrequently predicting extreme values. Based

on our perceptual results, speech-to-gesture training data could

be augmented for better results: for example, due to participants’

preference for enlarged versus reduced size gestures, and the com-

mon problem of reduced-size gesture output in machine learning

models, we could increase the frequency of large gestures within

the training dataset. This could be done in three ways: by oversam-

pling large gestures selectively, by oversampling and augmenting

large gestures by applying perceptually less salient modifications

(e.g. slight acceleration warps), or by applying data augmentation

of smaller gestures (artificially enlarging). Additionally, rather than

tackling high-dimensional finger motion modelling, simply using

slightly flexed fingers is a perceptually reasonable choice.
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With this work, we provide better insights into which aspects of

gesture may be modelled from speech. We suggest a step toward

better evaluation of gesture generation models by providing nu-

meric gesture descriptors that impact the perceived match of the

generated gesture, as shown by our perceptual study.

In future work, we want to address the problem of determining

the gesture timing from speech, without relying on motion data.

Our gesture modelling results are limited to two speakers, and our

perceptual results to one speaker. In future work, we would like

to include a larger variety of speakers and speaker style. While

this work focused on performance variation, it is also important to

correctly match the semantics of the gesture with the spoken text.

Systems that generate gesture from speech signals will ultimately

need to match both style and content. As a next step, we would like

to explore gesture generation based on parameterization, avoiding

the problem of high-dimensional skeleton data.

Supplemental Figures can be found at https://tinyurl.com/y4hdefho
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