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The thermodynamic implications for the out-of-equilibrium dynamics of quantum systems are to
date largely unexplored, especially for quantum many-body systems. In this paper we investigate the
paradigmatic case of an array of nearest-neighbor coupled quantum harmonic oscillators interacting
with a thermal bath and subjected to a quench of the inter-oscillator coupling strength. We study the
work done on the system and its irreversible counterpart, and characterize analytically the fluctuation
relations of the ensuing out-of-equilibrium dynamics. Finally, we showcase an interesting functional
link between the dissipated work produced across a two-element chain and their degree of general
quantum correlations. Our results suggest that, for the specific model at hand, the non-classical fea-
tures of a harmonic system can influence significantly its thermodynamics.

The out-of-equilibrium dynamics of quantum sys-
tems offer a very interesting stage for the study of the
thermodynamic properties [1–3]. The establishment of
quantum fluctuation theorems represents a milestone
in the link between arbitrarily fast quantum dynamics
and equilibrium figures of merit of thermodynamic rel-
evance, such as feee energy changes, heat, work, and
entropy [4–6]. The definition of such quantities from
a genuine quantum mechanical standpoint, the formu-
lation of their operational interpretations, and the de-
sign of experimental techniques for their quantitative
assessment are some of the drives of current research on
the thermodynamic properties of quantum systems and
processes [7–19]. An extensive programme of investi-
gations aimed at understanding and characterising the
non-equilibrium thermodynamics of simple, paradig-
matic systems is currently underway, including exactly
solvable extended spin models [10, 11, 20–24], which
have offered an interesting platform for the study of the
emergence of irreversible thermodynamics from quan-
tum many-body features [10, 11].

In this context, a rather privileged role is played by
the quantum oscillator, which offers the possibility for
the (either exact or approximate) analytical assessment
of non equilibrium features in an ample range of situa-
tions, including external driving and special nonlinear
cases [25, 26]. However, to the best of our knowledge,
little is known on composite systems consisting of more
than a single harmonic oscillator. This is an interesting
case to study, as it would enable the assessment of the
scaling properties of thermodynamically relevant quan-
tities with the size of the system, as well as the study
of processes involving either the whole system or only

part of it, which in principle would result in different
behaviors and manifestations.

This is precisely the context within which the inves-
tigation reported in this paper lies. We aim at address-
ing the effects that a global quench of the inter-particle
coupling strength has on the phenomenology of thermo-
dynamic quantities such as (irreversible) work and free
energy differences. We study the case of an open-ended
array of quadratically coupled quantum harmonic oscil-
lators, in contact with a thermal reservoir. By allowing
for a global quantum quench, we address the scaling of
both the average work and the free energy differences,
providing exact analytic expressions for the dissipated
work, which is an important figure of merit to gauge
the deviations of the actual state of the array after the
quench from its counterpart at thermodynamic equilib-
rium. It thus gives us information about the effects of
non-adiabaticity. However, this study offers even more
opportunities for exploration: by calculating explicitly
the amount of quantum correlations shared by the ele-
ments of a two-oscillator system, we illustrate the exis-
tence of a clear functional relation between dissipated
work and quantum correlations. For the specific case
of the coupling model at hand, this hints at the interde-
pendence of quantum and thermodynamic features in
quadratically coupled harmonic chains. This is a tanta-
lising possibility that will deserve future in-depth explo-
rations.

The remainder of this paper is organised as follows:
Sec. I introduces the harmonic model and illustrates an
interferometric approach to the exact determination of
the characteristic function of work distribution [2] re-
sulting from a sudden quench of the inter-oscillator cou-
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pling strength. This opens the way to the assessment
of quantum fluctuation relations [4–6] and the fully ana-
lytic calculation of the average work, free energy change
and other figures of merit for the characterization of ir-
reversibility. This study allows us to identify the degree
of squeezing generated by the oscillators’ quadratic cou-
pling as a very important resource for the ability of the
process to do work on the system (see Ref. [26] for a dif-
ferent analysis of this point made on a single harmonic
oscillator). Our calculations, which are valid for chains
of an arbitrary number of elements, allow for the clear
identification of “classical” and “quantum” parts of both
the change of free energy, which are then related to the
degree of quantum correlations across a two-element
chain in Sec. II. Finally, in Sec. III we draw our conclu-
sions and discuss briefly the questions opened by our
study. Two appendices summarize the most technical
part of our calculations.

I. DESCRIPTION OF THE COUPLING MODEL AND
ANALYSIS OF NONEQUILIBRIUM

THERMODYNAMICS

We consider coupled harmonic oscillators in an open
linear configuration [cf. Fig. 1 (a)]. While in this part
of our analysis we will mostly concentrate on the case
of only two coupled oscillators, the generalization to a
multi-element register is addressed later on. We start
from a Hooke-like coupling model between two har-
monic oscillators in contact with a heat bath at tem-
perature T . The model is described by the following
Hamiltonian (we assume units such that ~ = 1 across
the manuscript)

Ĥ1(gt) =
Ω

2

2∑

j=1

(x̂2
j + p̂2

j ) + gt(x̂1 − x̂2)2 (1)

with Ω the frequency of the oscillators (assumed for sim-
plicity to be identical and with a unit mass) and g the
(possibly) time-dependent interaction strength. Here, x̂ j
and p̂ j are the position- and momentum-like operators
of oscillator j = 1, 2 (satisfying the commutation rela-
tions [x̂ j, p̂ j] = i). Within the context of our analysis we
will assume that, after detaching the system from the
heat bath, the coupling strength is abruptly turned on to
the value g0 > 0, namely gt = g0Θ(t), where Θ(t) is the
Heaviside step function. This process embodies a sud-
den quench of the interaction between the harmonic os-
cillators. A straightforward calculation shows that the
post-quench time evolution operator Û(t > 0) = e−iĤ1t

generated by Eq. (1) can be written as

Û(t > 0) = B̂†Ŝ†(r)[R̂1(θ1(t)) ⊗ R̂2(θ2(t))]Ŝ(r)B̂, (2)

where B̂ = exp[π(x̂1 p̂2 − x̂2 p̂1)/4] is the 50 : 50
beam-splitter operator, Ŝ(r) = 1̂11 ⊗ Ŝ2(r) describes
the local squeezing of oscillator 2 by a degree r =

(1/4) ln
√

1 + 2g0/ω performed by the squeezing opera-
tor Ŝ2(r) = exp[iIm(r)(x̂2

2 − p̂2
2) − iRe(r)(x̂2 p̂2 + p̂2 x̂2)],

ω = Ω/2 and R̂ j(θ j) = exp[−iθ j(x̂2
j + p̂2

j )] accounts for
phase-space rotations by the angle θ j ( j = 1, 2). In the
specific case of our problem we have θ1(t) = ωt and
θ2(t) = ωt

√
1 + 2g0/ω. In light of such decomposition,

which accounts for the free evolution (each occurring
at the respective frequency) of the centre-of-mass and
relative-motion modes of the system, the time-evolution
of the two-oscillator system can be understood as the
result of the action of a Mach-Zehnder interferometer
endowed with an active element, embodied by the local
squeezer, on one of its arms [cf. Fig. 1(b)]. This estab-
lishes quantum correlations between the harmonic os-
cillators. Our first goal here is to show that such corre-
lations are linked with the work that is irreversibly gen-
erated in the process due to the non-adiabatic nature of
the quench.

In order to accomplish this goal, let us briefly sketch
the way to compute the characteristic function of the
work probability distribution associated with the pro-
cess that takes abruptly the Hamiltonian from Ĥi ≡
Ĥ1(0) to Ĥ f = Ĥ1(g0) at time t = 0. As we will show, χ(u)
can be understood in terms of the thermal convolution
of inner products between displaced squeezed vacuum
states. For the sudden switch of the work parameter that
we are considering here, the expression for the charac-
teristic function of work distribution takes the form

χ(u) = Tr[eiuĤ f e−iuĤiρth
S (0)], (3)

where ρth
S (0) = e−βĤi/Z0 is a pre-quench thermal-

equilibrium state of the two harmonic oscillators at in-
verse temperature β and Z0 = Tr[e−βĤ1(0)] is the as-
sociated partition function. In light of the structure
shown in Eq. (2), it is convenient to decompose the pre-
quench state over the single-oscillator coherent-state ba-
sis as ρth

S (0) =
∫

d2α1 d2α2
∏2

j=1 Pth
V (α j) |α1, α2〉 〈α1, α2|12

with Pth
V (α j) = 2[π(V − 1)]−1 exp[−2|α2

j |/(V − 1)] the ther-
mal P-function of oscillator j, characterised by the vari-
ance V = 2n + 1 with n = (eβω − 1)−1 the thermal mean
occupation number. Here, |α j〉 = D̂ j(α j) |0〉 j is a coherent
state generated by the displacement operator D̂ j(α j) =

exp[α jâ
†
j − α∗j â j] over the vacuum. With this at hand, we

have

χ(u) =

∫
d2α1 d2α2

2∏

j=1

Pth
V (α j) χα1,α2 (u) (4)

with χα1,α2 (u) = 〈α1, α2|eiĤ f ue−iĤiu |α1, α2〉 the Loschmidt
echo corresponding to the evolution of a pair of ini-
tial coherent states under the process addressed here.
As the interaction between the harmonic oscillators is
quadratic, the Gaussian nature of coherent states is pre-
served across the process, and the thermal convolution
in Eq. (4) consists of a four-fold integration over Gaus-
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(a) (b)

(b)

FIG. 1: (Color online) (a) Sketch of the model considered in this paper: a linear chain of coupled harmonic oscillators (coupling
strength gt) is in contact with a thermostat at inverse temperature β. The couplings are all suddenly quenched to bring the system
out-of-equilbrium. We study the thermodynamics of the corresponding evolution. (b) Equivalent interferometer describing, in
terms of linear optics elements, the time evolution resulting from the propagator e−iĤ1t generated by the quenched model in
Eq. (1). We show the symbols for single-mode squeezing [S (r)], phase-space rotation [R(θ)], and two-mode beam splitting [BS].

sian functions. We thus focus on the explicit evalu-
ation of χα1,α2 (u), whose details are given in the Ap-
pendix, and results in the elegant expression χα1,α2 (u) =

〈ζ1; ξ1| ζ2; ξ2〉 with |ζ j; ξ j〉 = D̂ j(ζ)Ŝ j(ξ) |0〉 j a displaced
squeezed state (ζ, ξ ∈ C) [27, 28], which can be calculated
analytically to be

χα1,α2 (u) =

exp

[(ζ2 − ζ1) sinh r + (ζ∗1 − ζ∗2) cosh r][(ζ2 − ζ1) cosh r + e2iθ2(u)(ζ∗1 − ζ∗2) sinh r]

2(cosh2 r − sinh2 r e2iθ2(u))
− ζ1ζ

∗
2 − ζ∗1ζ2

2


√

cosh2 r − e2iθ2(u) sinh2 r
. (5)

The expressions for ζ1,2 and ξ1,2 are given in the Appendix. Examples of the behavior of the characteristic function
for various quench strengths g0 and temperatures of the initial equilibrium states are shown in Fig. 2.

Looking at Fig. 2 (c) and (d), we see that as the tem-
perature of the initial thermal states increases (i.e., as V
grows), the absolute value of the derivative of both the
real and the imaginary part of χ(u) at u = 0 grows. This
is an important observation in light of the possibility to
evaluate the average work extractable from the system
after the process as 〈W〉 = −i∂uχ(u)|u=0. Although the
full-fledged expression of χ(u) at arbitrary values of β
is too involved to be reported here, the average work
takes the compact expression 〈W〉 = g0V/2, which is
thus linear in the strength of the quench and takes the
frequency-independent value g0/2 in the low tempera-
ture limit β → ∞ and grows as g0/(βω) in the classical
limit for very large temperatures.

As a check that our analytic form for the characteris-
tic function is correct we consider the Jarzynski equal-
ity χ(iβ) = e−β∆F . The net change in free energy of the
system can be evaluated using the pre- and post-quench
partition functionsZ0 andZ, whose evaluation we now
sketch. While the calculation of the pre-quenched case
trivially leads to Z0 = 4/ sinh2(βω/2), in line with the
tensor-product nature of the initial equilibrium state, the

post-quenched one requires the evaluation of

Z = Tr[e−βĤ(g0)] = Tr[B̂†Ŝ†e−
∑2

j=1 θ j(β)(x̂2
j + p̂2

j )ŜB̂]

= Tr[e−
∑2

j=1 θ j(β)(x̂2
j +p̂2

j )] =
4

sinh(βω/2) sinh(θ2(β)/2)

(6)

so that e−β∆F = sinh
(
βω
2

)
csch

(
βω
2

√
1 +

2g0
ω

)
. This in turn

gives us the free-energy change

∆F = −1
β

ln


sinh(βω/2)

sinh
(
βω
2

√
1 + 2g0/ω

)
 . (7)

In the classical limit of very high temperature, this ex-
pression becomes ∆Fc ' (1/β) ln[

√
1 + 2g0/ω]. In the

quantum limit of β → ∞, on the other hand, the net
change in free energy is bound by the asymptotic value
∆Fq ' (ω/2)(

√
1 + 2g0/ω − 1), which only depends on

the strength of the quench (in units of ω). Although we
have not been able to study analytically the Jarzynski
identity due to the cumbersome form of χ(u), we have
numerically checked that it is satisfied.

We now analyze the degree of irreversibility of our
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quench process. This can be quantified by the quantity

L = βWdiss = β[〈W〉 − ∆F] = D[ρt ||ρeq
t ], (8)

which accounts for the “nonequilibrium lag” between
the actual system state ρt and the reference thermal state
ρ

eq
t = e−βĤ(t)/Z(t) as measured by the Kullback-Leibler

divergence (or relative entropy) between two arbitrary
states ρ and σ and defined as D[ρ||σ] = Tr(ρ log ρ −
ρ logσ) [34–37]. We find

L =
βg0

2
coth

(
βω

2

)
+ ln

sinh
(
βω

2

)
csch


βω

2

√
2g0

ω
+ 1


 .

(9)
Despite being customarily referred to as “nonequilib-
rium entropy production”, L is in general not equal to
the change in thermodynamic entropy [21], hence we
dub it more appropriately the “nonequilibrium lag”. In
Fig. 3 we report the analysis of average work, change in
free energy, and nonequilbrium lag against the strength
of the quench, as well as the assessment of the depen-
dence of L on the inverse temperature and g. A remark-
able feature is the quasi-linear growth of the nonequilib-
rium lag at low temperatures [cf. Fig. 3 (b)], which will
be useful for the analysis reported in Sec. II.

Another closely related quantifier of irreversibility,
specifically designed for thermally isolated systems, is
provided by

∆E = Tr [ρtÊ(t) − ρ0Ê(0)], (10)

(a) (b)

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

(c) (d)

1 2 3 4 5 6

!1.0

!0.5

0.5

1.0

1 2 3 4 5 6

!1.0

!0.5

0.5

1.0

FIG. 2: (Color online) Panels (a) and (b): Characteristic func-
tion of the work distribution after a sudden quench of the cou-
pling strength between two harmonic oscillators coupled via
a Hooke-like model. We show the behavior of Re[χ(u)] [panel
(a)] and Im[χ(u)] [panel (b)] againstωu for V = 1 and g0/ω = 0.1
(solid line), 1 (dashed line), 3 (dotted line), and 10 (dot-dashed
line). Panels (c) and (d): Same study as in panels (a) and (b)
but for g0/ω = 0.75 and V = 1 (solid line), 3 (dashed line), and
10 (dotted one).

which is defined using the operator

Ê(t) =
∑

k

ln k|k, t〉〈k, t| (11)

built using the eigenstates |k, t〉 of the instantaneous
Hamiltonian H(t). They are ordered by their increasing
energy Ek(t) > Em(t) for k > m. The operator Ê, first intro-
duced in Ref. [38], is the quantum version of the Gibbs
entropy associated with the microcanonical ensemble
[39–46]. Just like thermodynamic entropy, it remains un-
changed in a slow (adiabatic) protocol and cannot de-
crease in a generic fast one, provided the initial density
matrix is diagonal in the initial Hamiltonian eigenbasis,
its eigenvalues are ordered in a non-increasing fashion,
and the spectrum is non-degenerate at all times. The
quantitative analysis of the behavior of ∆E in our sys-
tem, which is made possible by the knowledge of the
spectrum of Ĥ1 as obtained in the Appendix, will be pre-
sented elsewhere [47].

We now turn to the assessment of the role that squeez-
ing has on the ability of the system to produce ex-
tractable work. In order to do so, we compare the per-
formance of the coupling scheme addressed so far to the
ability of the system to perform work when the two har-
monic oscillators are coupled via the model x̂1 p̂2 − p̂1 x̂2
That is, we consider the Hamiltonian

Ĥ2 =
Ω

2

2∑

j=1

(x̂2
j + p̂2

j ) + gt(x̂1 p̂2 − p̂1 x̂2). (12)

There are two fundamental differences between Ĥ1 and
Ĥ2: first, Ĥ2 is energy preserving and the correspond-
ing time propagator would not require the squeezing of
any harmonic oscillator [29]. As we will argue soon, this
gives rise to key differences with respect to the thermo-
dynamic behavior showcased up to this point. Second,
consistently with the fact that Ĥ2 is the rotating-wave
form of Eq. (1), the strength of the quench cannot be ar-
bitrary, as the spectrum of the Hamiltonian acquires an
imaginary eigenvalue for g0 > Ω.

Besides this limitation, the characteristic function as-
sociated with the process generated by a quench of Ĥ2
can be worked out in a way similar to what has been
sketched before for the case of Eq. (1). A second-order
Taylor expansion of the characteristic function with re-
spect to variable u leads to the approximate expression

χĤ2
(u) ' 1− g2

0
16 (V2−1)u2 +O(u3) where the subscript indi-

cates that model Ĥ2 is under scrutiny. The first moment
of this distribution evaluated in u = 0, as requested for
the calculation of the average work, gives us 〈WĤ2

〉 = 0,
at variance with the result for the average work valid
for Eq. (1). The reason behind such dissimilarity should
be traced back to the energy-conserving nature of model
Ĥ2, which does not give rise to any squeezing of the os-
cillators.

Let us go back now to the case embodied by Hamil-
tonian Ĥ1. The results gathered so far for a two-
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FIG. 3: (Color online) (a) We plot the average work hWi, the free-energy change �F and the correspondingly produced irreversible
entropy for a system of two oscillators with ! = 3 and � = 1 against the coupling strength g. (b) [(c)] We study of the irreversible
entropy produced for the system addressed in panel (a) against the inverse temperature [coupling strength], for three different
values of the strength of the quench [three values of the inverse temperature].

We now turn to the assessment of the role that squeez-
ing has on the ability of the system to produce ex-
tractable work. In order to do so, we compare the per-
formance of the coupling scheme addressed so far to the
ability of the system to perform work when the two har-
monic oscillators are coupled via either a q̂1q̂2 term or an
energy preserving model of the form q̂1 p̂2 + h.c. That is,
we consider the Hamiltonian

Ĥ2 = !

2X

j=1

(x̂2
j + p̂2

j ) + g(t)(q̂1q̂2 + p̂1 p̂2). (9)

There is a fundamental difference between Ĥ1 and Ĥ2
stemming from the fact that Ĥ2 is energy preserving and
the corresponding time propagator would not require
the squeezing of any harmonic oscillator [31]. On the
other hand, model Ĥ2 is such that, for the class of pro-
cesses studied so far, an analysis similar to the one per-
formed for the case of Ĥ1 leads us to

Û2(t > 0) = B̂†Ŝ†(r1, r2)[R̂1('1(t)) ⌦ R̂2('2(t))]Ŝ(r1, r2)B̂
(10)

with Ŝ(r1, r2) = ⌦2
j=1Ŝ j(r j), r j = (1/4) ln[1 + (�1) j�1g0/2!]

and ' j(t) = !t
p

1 + (�1) j�1g0/2! ( j = 1, 2). Therefore,
not only squeezing is involved in the dynamics enforced
by Ĥ3, but it also affects both oscillators, in stark con-
trast with the case embodied by Ĥ1. As we will argue
soon, this gives rise to key differences with respect to the
thermodynamical behaviors showcased up to this point.
First, we notice that the strength of the quench cannot
be arbitrary, as for g0 > 2! '2(t) becomes purely imagi-
nary. As we will see, this limits strongly the production
of entropy in the process. Needless to say, the character-
istic function associated with the process generated by
Ĥ2 can be worked out in a way similar to what has been
sketched before for the case of Eq. (1). A second-order
Taylor expansion of the characteristic function with re-
spect to variable u leads to the approximate expression
�Ĥ2

(u) ' 1 � V2g2
0u2/32 +O(u3), where the subscript indi-

cates that model Ĥ2 is under scrutiny. We thus have that

hWĤ2
i = 0, which contrasts starkly with the result em-

bodied by Eq. (1). Similar conclusions can be reached
for the case given by the Hamiltonian Ĥ3.

The time evolution operator can be straightforwardly
decomposed in terms of a suitable array of beam-
splitters and rotations, as discussed in Ref. [31] and an
easy calculation leads us to hWĤ2

i = 0, which contrasts
starkly with the result achieved for Eq. (1). I’ll add de-
tails on this analysis later on

The formula ruling the change in free energy for an
array of N harmonic oscillators interacting according to
the Hooke-like model

Ĥ1 = !

NX

j=1

(x̂2
j + p̂2

j ) + g(t)
N�1X

j=1

(x̂ j � x̂ j+1)2 (11)

reads

�FN = �1
�

ln

2666664
sinhN(�!/2)
⇧N

j=1 sinh(�µ j/2)

3777775 (12)

with µ j = !
p
� j/! and {� j} the set of eigenvalues of

the adjacency matrix representing the Hamiltonian Ĥ1

0
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FIG. 4: (Color online) Comparison between the full form of
the irreversible entropy S irr and its classical counterpart S c
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FIG. 3: (Color online) (a) We plot the average work 〈W〉, the free-energy change ∆F and the correspondingly produced nonequi-
librium lag for a system of two oscillators with ω = 3 and β = 1 against the coupling strength g. (b) [(c)] We study of the
nonequilibrium lag produced for the system addressed in panel (a) against the inverse temperature [coupling strength], for three
different values of the strength of the quench [three values of the inverse temperature].

element system can be generalised to an array of arbi-
trary length. In particular, the change in free energy for
an array of N harmonic oscillators interacting according
to the Hooke-like model

Ĥ1 =
Ω

2

N∑

j=1

(x̂2
j + p̂2

j ) + gt

N−1∑

j=1

(x̂ j − x̂ j+1)2 (13)

reads

∆FN = −1
β

ln


sinhN(βω/2)

ΠN
j=1 sinh(βµ j/2)

 (14)

with µ j = ω
√
λ j/ω, ω = Ω/2 and {λ j} the set of eigen-

values of the adjacency matrix representing the Hamil-
tonian Ĥ1 (cf. the Appendix). Using the characteristic
function for coherent states χ{α}(u) given in Eq. (32) and
its first statistical moment, we can easily calculate the
average work, which is found to scale with the number
of oscillators as

〈W〉N = g0V
N − 1

2
. (15)

This formula has a very simple interpretation. Each in-
teraction term (there are in total N−1 of them) brings in a
contribution g0V/2 to the total work. The factor N−1 can
also be understood by noticing the fact that, out of the
N modes involved in the evolution of the system result-
ing from the quench, only N − 1 of them are squeezed.
This is proven rigorously in the Appendix, where the
spectrum of Eq. (13) is shown to always contain the bare-
oscillator valueω among N−1 squeezing-dependent val-
ues [cf. Eq. (26)]. Physically, this is due to the fact that
the centre-of-mass mode of the system of oscillators is
always a normal mode of the system itself.

With the average work and the change in free energy,
we can finally consider the nonequilibrium lag for N os-
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FIG. 4: (Color online) Nonequilibrium lag after a quantum
quench in an array of N Hooke-like coupled harmonic oscil-
lators with g = 2ω and for three values of the inverse tempera-
ture β.

cillators

L =
βg0V(N − 1)

2
+ ln

[
sinhN

(
βω

2

)]
−

N∑

j=1

ln
[
sinh

(
βµ j

2

)]

= (N − 1)
(
βg0V

2
+ ln

[
sinh

(
βω

2

)])
−

N∑

j=2

ln
[
sinh

(
βµ j

2

)]
.

(16)
The behavior of L against the length of the chain and for
three values of the inverse temperature β is reported in
Fig. 4.

II. RELATION WITH QUANTUM CORRELATIONS

In the following, we study the possibility of estab-
lishing a direct quantitative link between the nonequi-
librium lag produced by the quantum quench under
scrutiny and the general quantum correlations shared
by the oscillators. We will mainly restrict our attention
to a two-oscillator system, so as to avoid unnecessary
computational problems.
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Fig. 3 and our related analysis have shown the exis-
tence of a one-to-one correspondence between temper-
ature and the nonequilibrium lag L, which can be con-
sidered as a reliable thermometer, in particular in the in-
teresting quantum region of β � 1. In a qualitatively
analogous way, it is possible to establish a link between
β and the amount of non-classical correlations (as mea-
sured by Gaussian entanglement and discord) shared by
the oscillators of our array after the quench.

We start by addressing entanglement, which is quan-
tified here using the logarithmic negativity. For a two-
mode Gaussian state, such as the one corresponding to
the equilibrium state of Hamiltonian in Eq. (1) at inverse
temperature β , the latter is defined as

E = max[0,− ln ν−]. (17)

Here, ν− is the smallest eigenvalue of the matrix |iΣPσP|,
where P = diag[1, 1, 1,−1] performs the inversion of mo-
mentum of the second harmonic oscillator, Σ = iσy ⊗ σy
is the symplectic matrix (with σy the y-Pauli matrix)
and σ is the covariance matrix of the two-oscillator sys-
tem [32]. The latter can be easily calculated using the
formal analogy with an optical interferometer discussed
above and used to calculate the characteristic function
of the work distribution. The results of our calculations
are shown in Fig. 5, where the logarithmic negativity is
plotted against the inverse temperature at three values
of the quench amplitude. Analytically

E = max


0,− ln

√[
1 + csch

(
βω
2

)] [
1 + csch

(
βω
2

√
1 +

2g0
ω

)]

4
√

(1 + 2g0/ω)


,

(18)
which reaches the maximum value given by E =

ln 4
√

1 + 2g0/ω for β → ∞. The two-oscillator entangle-
ment disappears above a threshold temperature whose
value depends on the ratio g0/ω.

We now aim at comparing the behavior of E to that
of the ‘quantum’ part of the nonequilibrium lag, i.e.
the part of L that remains after subtracting the high-
temperature value Lc ≡ limβ→0 L = g0/ω − ln 4

√
1 + 2g0/ω.

As seen in Fig. 6, at low temperatures and large cou-
pling strengths, the quantum part of L is crucial in deter-
mining quantitatively the non equilibrium lag. In Fig. 5
(b) we thus plot the logarithmic negativity against the
quantum part Lq ≡ L − Lc of the nonequilibrium lag, by
eliminating the inverse temperature, showing that a di-
rect relation exists between such quantities, which ap-
pear to be in mutual functional dependence. The (in
general) involved non-linear relation of each of them
with the inverse temperature prevents us from find-
ing such dependence explicitly. However, some insight
can be gathered from the behavior shown in Fig. 5 (b),
such as the existence of a (quench-dependent) thresh-
old above which the logarithmic negativity becomes in-
sensitive to the actual value of Lq. As the inverse tem-
perature embodies the curvilinear abscissa of each of

the curves displayed in Figs. 5, we can identify the re-
gion of insensitivity to the nonequilibrium lag as the
low-temperature part of Fig. 5 (a). However, the large-
temperature part of Fig. 5 (b) is somehow misleading:
at large temperature, entanglement is strictly null while
Lq might well achieve, in general, non-zero values. As
the existence of such a temperature-dependent thresh-
old for the non-nullity of entanglement is an expected
common feature of entanglement measures, this induces
us to consider entanglement as a somehow unfit fig-
ure of merit for a comparison between the behavior of
quantum correlations and the nonequilibrium lag pro-
duced across the process. We thus turn our attention to
the measure of quantum correlations embodied by the
Gaussian discord [33]: for a Gaussian state with covari-

ance matrix σ =

(
α1 γ
γ α2

)
, discord is defined as

D = f (
√

detα2) − f (ν−) − f (ν+) + inf
σ0

f (
√

det ε). (19)

Here, f (x) = (x + 1)/2 ln[(x + 1)/2] − (x − 1)/2 ln[(x − 1)/2],
ν± are the symplectic eigenvalues of σ, ε = α1 − γ(α2 +

σ0)−1γT is the Schur complement of α1 and σ0 is the co-
variance matrix of a single-mode rotated squeezed state.

The results of the calculations are shown in Fig. 7.
First, panel (a) shows that, at variance with entangle-
ment, Gaussian discord allows for no threshold in tem-
perature and it disappears only for β = 0. Second, albeit
panel (b) is qualitatively similar to Fig. 5 (b), the anal-
ysis of the former is less ambiguous as both D and Lq
vanish at infinite temperatures only. Although valid for
the specific case of our system and so far limited to a
study of only two-body quantum correlations, our anal-
ysis suggests the existence of a clear functional link be-
tween the amount of general quantum correlations es-
tablished between two of the interacting harmonic os-
cillators studied here and the amount of nonequilibrium
lag generated in a quantum-quench. It would be inter-
esting to extend our analysis to multipartite figures of
merit for quantum correlations. This is, per se, a rather
difficult problem due to the current lack of computable
quantifiers of genuinely multipartite quantum correla-
tions.

III. CONCLUSIONS

We have characterised the dynamics of relevant quan-
tum and thermodynamic properties of an array of cou-
pled harmonic oscillators in thermal equilibrium and
experiencing a sudden quench in the inter-particle cou-
pling strength. We have provided useful analytic ex-
pressions for the characteristic function of work distri-
bution, the reversible and dissipated work, and the vari-
ation of free energy, which have allowed us to study
quantum fluctuation identities in relation to the degree
of squeezing induced by the dynamics. Our results
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FIG. 5: (Color online) (a) Entanglement in the equilibrium state of two harmonic oscillators coupled by a Hooke-like model,
plotted against the inverse temperature β for three values of the coupling strength g (values given in units of ω). (b) Illustration
of the link between Lq and the logarithmic negativity in a system of two Hooke-like coupled harmonic oscillators shown for three
different values of the quench amplitude. The inverse temperature β is the curvilinear abscissa of each curve.
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FIG. 6: (Color online) Comparison between the full form of the
nonequilibrium lag L and its classical counterpart Lc shown
against the inverse temperature β and the dimensionless inter-
action strength g0/ω. At high temperature L → Lc, regardless
of the strength of the quench.

showcase an interesting functional dependence of the ir-
reversible lag with respect to the degree of quantum cor-
relations across a two-oscillator system, thus suggesting
a direct influence of quantum correlations in the settling
of thermodynamic features.

APPENDIX

We aim at evaluating the function χα1,α2 (u) =

12〈α1, α2|eiuĤ f e−iuĤi |α1, α2〉12. In what follows, we will
use the decomposition of the time-evolution operator in
Eq. (2) and the fact that exp[−iĤiu] =

⊗2
j=1 eiθ j(t)(x̂2

j +p̂2
j ).

We find

χα1,α2 (u) = ei θ2(u)−ωu
2 1〈α−| 2〈α+| Ŝ†2(r)Ŝ2(re2iθ2(u)) |α−〉1 |α+e−iθ1(u)+iθ2(u)〉2

= ei θ2(u)−ωu
2 2〈0| D̂†2(α+)Ŝ†2(r)Ŝ2(re2iθ2(u))D̂(α+e−iθ1(u)+iθ2(u)) |0〉2 .

(20)

with α± = (α1 ± α2)/
√

2. Eq. (20) can be put into the
form of an overlap between displaced squeezed states
by exploiting the operator identity

Ŝ(ξ)D̂(ζ)Ŝ†(ξ) = D̂(ζ cosh |ξ| + ζ∗ei arg ξ sinh |ξ|), (21)

which is valid for any ζ, ξ ∈ C. The order of squeezing
and displacement operators can thus be swapped to get

χα1,α2 (u) = ei θ2(u)−ωu
2 〈ζ1; ξ1| ζ2; ξ2〉with

ζ1 = α+ cosh r + α∗+ sinh r,

ζ2 = [α+e−iωu cosh r + α∗+eiωu sinh r]eiθ2(u),

ξ1 = r, ξ2 = re2iθ2(u).

(22)

We now sketch the formal procedure for the general-
ization of the approach discussed above to the case of
a harmonic chain of an arbitrary number of oscillators
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FIG. 7: (Color online) (a) Gaussian discord in the equilibrium state of two harmonic oscillators coupled by a Hooke-like model,
plotted against the inverse temperature β for three values of the coupling strength g (values given in units of ω). (b) Illustration
of the link between Lq and the Gaussian discord in a system of two Hooke-like coupled harmonic oscillators shown for three
different values of the quench amplitude. The inverse temperature β is the curvilinear abscissa of each curve.

coupled through the Hooke-like model

ĤN
1 = ω

N∑

j=1

(x̂2
j + p̂2

j ) + gt

N−1∑

j=1

(x j − x j+1)2, (23)

which generalises Eq. (1). In the basis of the quadra-
tures r̂ = (x̂1, . . . , x̂N , p̂1, . . . , p̂N)T , the Hamiltonian is rep-
resented by the block matrix ĤN

1 = r̂T HN
1 r̂ reading

HN
1 =

(
V O
O K

)
(24)

with O the identically null matrix, K = ω11N the matrix
representing the kinetic-energy term and

V =



ω + gt −gt 0
−gt ω + 2gt −gt

. . .
. . .

−gt ω + 2gt −gt
0 −gt ω + gt


(25)

that stands the potential energy of the Hamiltonian.
Eq. (25) embodies a symmetric quasi-uniform tridiago-
nal (QUT) matrix, whose spectrum can be fully charac-
terised analytically. In fact, by shifting and rescaling its
entries as −(1/gt)[V−(ω+2gt)11N], we get a special case of
the QUT matrices explicitly addressed in Ref. [30]. The
eigenvalues {λ j} of such matrix can be analytically com-
puted and give

λ j = ω + 2gt

(
1 − cos

[
π( j − 1)

N

])
j = 1, ..,N (26)

which shows that there is always one eigenvalue equal
to the bare oscillator frequency ω. As we will see, this
has quite remarkable consequences and is strongly tied
with the results valid for the two-oscillator case ad-
dressed in the main text. The diagonalization of V is

achieved through an orthogonal matrix P (which can be
fully determined regardless of N [30]) that leaves K un-
affected. Following the general protocol put forward in
Ref. [31], such matrix can be easily broken down into a
cascade of beam-splitters and phase rotators. Therefore

PHN
1 PT ≡ HDN

1
=

(
VD O
O K

)
(27)

with P = PT ⊕ P and VD = diag[λ1, . . . , λN]. Matrix HDN
1

corresponds to a Hamiltonian term of the form

ĤDN
1

= ω(X̂2
1 + P̂2

1) +

N∑

j=2

[λ jX̂2
j + ωP̂2

j ] (28)

with (X̂ j, P̂ j) the new modes of the system. Eq. (28) has
been deliberately written in a way to emphasize that
only N − 1 oscillators are squeezed. Therefore, by ap-
plying the squeezing operator ŜN = 111 ⊗

[
⊗N

j=2Ŝ j(r j)
]

we
can transform the time-evolution operato generated by
the initial model (23) as

ÛN(t) = e−iĤN
1 t = P̂†ŜN† [⊗N

j=1R̂ j(θ j(t))
]
ŜNP̂ (29)

with P̂ the operator corresponding to the transforma-
tion matrix P and θ j(t) = λ jt. This is in formal corre-
spondence with what has been illustrated for the two-
oscillator case.

Let us concentrate now on the (so far unspecified)
operator P̂. As mentioned, this can be decomposed
into a suitable sequence of beam-splitting and phase-
rotation operations. For the sake of completeness, in
Fig. 8 (a) and (b) we provide a pictorial representation of
the equivalent interferometer and the sequence of beam-
splitting and phase-rotation operations needed for the
case of four oscillators. However, although useful in or-
der to identify the correct sequence of operations that
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would realise P̂, we do not actually need to determine
the full-fetched decomposition in order to be able to un-
derstand the effect that such transformation has overall.
Indeed, it is enough to have the entries of P to deter-
mine the transformation laws of the oscillators’ quadra-
tures as r̂i → ∑N

j=1 P jir̂ j (r = x, p). It takes a straight-
forward calculation to check that, when applied to the
tensor product of N coherent states ⊗N

i=1 |αi〉i, this leads
to

⊗N
i=1 |αi〉i → eiϕ(P)

N⊗

i=1

∣∣∣∣∣∣∣∣

N∑

j=1

P jiα̂i

〉

i

, (30)

with ϕ(P) a phase that depends on the set of amplitudes
αi and the entries of P. Therefore, the calculation of the
characteristic function of the work distribution for an
initial thermal equilibrium state of N coupled harmonic
oscillators can proceed along the lines of the approach
sketched in the main text for two modes only, resulting
in

χ(u) =

∫
d2α1 · · ·

∫
d2αnΠN

j=1Pth
V (α j)χ{α}(u) (31)

with χ{α}(u) the characteristic function of work for a col-
lection of N modes, each initially prepared in a coherent
states of amplitude α j and reading

χ{α}(u) = e
i
2
∑N

j=1 θ j(u)−i N
2 ωuΠN

j=2〈ζ1, j; ξ1, j|ζ2, j; ξ2, j〉. (32)

Here, ζ1(2), j and ξ1(2), j are the amplitudes of the displace-
ment and squeezing operations, respectively, of the dis-

placed squeezed states of mode j = 2, ..,N that enter into
the definition of χ{α}(u). Their expressions can be gath-
ered easily in a way analogues to what has been done
for just two oscillators.
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equilibrium state of N coupled harmonic oscillators can pro-
ceed along the lines of the approach sketched in the main text
for two modes only, resulting in

�(u) =
Z

d2↵1 · · ·
Z

d2↵n⇧
N
j=1Pth

V (↵ j)�{↵}(u) (23)

with �{↵}(u) the characteristic function of work for a collection
of N modes, each initially prepared in a coherent states of
amplitude ↵ j and reading

�{↵}(u) = e
i
2
PN

j=1 ✓ j(u)�i N
2 !u⇧N

j=2 jh⇣1, j; ⇠1, j|⇣2, j; ⇠2, ji j. (24)

Here, ⇣1(2), j and ⇠1(2), j are the amplitudes of the displace-
ment and squeezing operations, respectively, of the displaced

squeezed states of mode j = 2, ..,N that enter into the defini-
tion of �{↵}(u). Their expressions can be gathered easily in a
way analogues to what has been done for just two oscillators.
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2 1h↵�| 2h↵+| Ŝ†2(r)Ŝ2(re2i✓2(u)) |↵�i1 |↵+e�i✓1(u)+i✓2(u)i2

= ei ✓2(u)�!u
2 2h0| D̂†2(↵+)Ŝ†2(r)Ŝ2(re2i✓2(u))D̂(↵+e�i✓1(u)+i✓2(u)) |0i2 .

(12)

with ↵± = (↵1 ± ↵2)/
p

2. Eq. (12) can be put into the form
of an overlap between displaced squeezed states by exploiting
the operator identity

Ŝ(⇠)D̂(⇣)Ŝ†(⇠) = D̂(⇣ cosh |⇠| + ⇣⇤ei arg ⇠ sinh |⇠|), (13)

which is valid for any ⇣, ⇠ 2 C. The order of squeezing and
displacement operators can thus be swapped to get �↵1,↵2 (u) =
ei ✓2(u)�!u

2 2h⇣1; ⇠1| ⇣2; ⇠2i2 with

⇣1 = ↵+ cosh r + ↵⇤+ sinh r,

⇣2 = [↵+e�i!u cosh r + ↵⇤+ei!u sinh r]ei✓2(u),

⇠1 = r, ⇠2 = re2i✓2(u).

(14)

II. APPENDIX 2

Here we sketch the formal procedure for the generaliza-
tion of the approach discussed in Appendix I to the case of a
harmonic chain of an arbitrary number of oscillators coupled
through the Hooke-like model

ĤN
1 = !

NX

j=1

(x̂2
j + p̂2

j ) + g(t)
N�1X

j=1

(x j � x j+1)2, (15)

which generalises Eq. (2). In the basis of the quadratures
r̂ = (x̂1, . . . , x̂N , p̂1, . . . , p̂N)T, the Hamiltonian is represented
by the block matrix ĤN

1 = r̂THN
1 r̂ reading

HN
1 =

 
V O
O K

!
(16)

with O the identically null matrix, K = !11N the matrix repre-
senting the kinetic-energy term and

V =

0BBBBBBBBBBBBBBBBBBB@

! + g �g 0
�g ! + 2g �g

. . .
. . .

�g ! + 2g �g
0 �g ! + g

1CCCCCCCCCCCCCCCCCCCA
(17)

that stands the potential energy of the Hamiltonian. Eq. (17)
embodies a symmetric quasi-uniform tridiagonal (QUT) ma-
trix, whose spectrum can be fully characterised analytically.
In fact, by shifting and rescaling its entries as �(1/g)[V� (!+
2g)11N], we get a special case of the QUT matrices explicitly
addressed in Ref. [33]. The eigenvalues {� j} of such matrix
can be analytically computed and give

� j = ! + 2g (1 � cos[⇡( j � 1)/N]) j = 1, ..,N (18)

which shows that there is always one eigenvalue equal to the
bare oscillator frequency !. As we will see, this has quite
remarkable consequences and is strongly tied with the results
valid for the two-oscillator case addressed in the main text.
The diagonalization of V is achieved through an orthogonal
matrix P (which can be fully determined regardless of N [33])
that leaves K una↵ected. Following the general protocol put
forward in Ref. [34], such matrix can be easily broken down
into a cascade of beam-splitters and phase rotators. Therefore

PHN
1 PT ⌘ DN

1 =

 
VD O
O K

!
(19)

with P = PT � P and VD = diag[�1, . . . , �N]. Matrix DN
1

corresponds to a Hamiltonian term of the form

D̂N
1 = !(x̂2

1 + p̂2
1) +

NX

j=2

[� j x̂2
j + ! p̂2

j ]. (20)

Eq. (20) has been deliberately written in a way to emphasize
that only N � 1 oscillators are squeezed. Therefore, by ap-
plying the squeezing operator ŜN = 111 ⌦

h
⌦N

j=2Ŝ j(r j)
i

we can
transform the time-evolution operato generated by the initial
model (15) as

ÛN(t) = e�iĤN
1 t = P̂†ŜN† h⌦N

j=1R̂ j(✓ j(t))
i
ŜNP̂ (21)

with P̂ the operator corresponding to the transformation ma-
trix P and ✓ j(t) = � jt. This is in formal correspondence with
what has been illustrated for the two-oscillator case.

Let us concentrate now on the (so far unspecified) operator
P̂. As mentioned, this can be decomposed into a suitable se-
quence of beam-splitting and phase-rotation operations. For
the sake of completeness, in Fig. ?? we provide a pictorial
representation of such sequence for the case of four oscilla-
tors. However, although useful in order to identify the correct
sequence of operations that would realise P̂, we do not actu-
ally need to determine the full-fetched decomposition in order
to be able to understand the e↵ect that such transformation
has overall. Indeed, it is enough to have the entries of P to
determine the transformation laws of the oscillators’ quadra-
tures as r̂i ! PN

j=1 Pjir̂ j (r = x, p). It takes a straightforward
calculation to check that, when applied the tensor product of
N coherent states ⌦N

i=1 |↵iii, this leads to

⌦N
i=1 |↵iii ! ei'(P)

NO

i=1

��������

NX

j=1

Pji↵̂i

+

i

, (22)

with '(P) a phase that depends on the set of amplitudes ↵i’s
and the entries of P. Therefore, the calculation of the charac-
teristic function of the work distribution for an initial thermal
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j=2Ŝ j(r j)
i

we can
transform the time-evolution operato generated by the initial
model (15) as
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FIG. 8: (Color online) (a) Equivalent interferometer that describes the evolution of a set of four Hooke-like coupled harmonic
oscillators. As we have described, such decompostion enables the calculation of the characteristic function of work distribution
following a quench of the coupling strength among the oscillators. The configuration and parameters of the array of beam splitters
are determined as discussed in the Appendix. The set of squeezing operations Ŝ (r j) j = 2, .., 4 and phase-space rotations R̂(θ j) ( j =

1, .., 4) comple the decomposition. (b) Linear-optics decomposition of the transformation P̂ that diagonalizes the Hamiltonian of 4
coupled harmonic oscillators. We show the arrangement of beam splitters Bi j between modes i and j needed for the decompostion,
as well as the corresponding values of the parameters θi j and φi j. In the table, we have set tan(a1) = −(4 − √8)1/2, and tan(a2) =

(7 +
√

32)1/2.
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