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The precise measurement of low temperatures is a challenging, important and fundamental task for quantum
science. In particular, non-destructive in-situ thermometry is highly desirable for cold atomic systems due to
their potential for quantum simulation. Here we demonstrate that the temperature of a non-interacting Fermi
gas can be accurately inferred from the non-equilibrium dynamics of impurities immersed within it, using an
interferometric protocol and established experimental methods. Adopting tools from the theory of quantum
parameter estimation, we show that our proposed scheme achieves optimal precision in the relevant temperature
regime for degenerate Fermi gases in current experiments. We also discover an intriguing trade-off between
measurement time and thermometric precision that is controlled by the impurity-gas coupling, with weak cou-
pling leading to the greatest sensitivities. This is explained as a consequence of the slow decoherence associated
with the onset of the Anderson orthogonality catastrophe, which dominates the gas dynamics following its local
interaction with the immersed impurity.

Temperature measurements are crucial for many experi-
ments using ultracold atomic gases, for example when cali-
brating quantum simulators [1, 2] or when determining equa-
tions of state [3, 4]. Unfortunately, standard thermometry
techniques such as time-of-flight or in-situ absorption imag-
ing are inherently destructive and require integration over the
line of sight [5]. A minimally disturbing method to probe
local temperature profiles would be beneficial for numerous
experimental scenarios of current interest, such as thermali-
sation dynamics after a quench [6–10] or energy transport be-
tween separate thermal reservoirs [11, 12]. Further motivation
is provided by recent progress in the preparation of homoge-
neous ultracold gases [13–19], whose constant density distri-
bution does not carry information on temperature, thus ren-
dering standard in-situ thermometry techniques ineffective.

An appealing alternative method of in-situ thermometry ex-
ploits impurity atoms as probes embedded within the ultracold
gas [20–23]. The advantage of this approach is that a single
atom can be confined to sub-micron length scales and its state
is relatively easy to characterise. For example, temperature
can be inferred by allowing the impurities to completely equi-
librate with the host gas and then measuring their mean en-
ergy or a similar observable [24–26]. This method has been
successfully used in several recent experiments [27–33] but
becomes challenging at low temperatures where equilibration
proceeds slowly and the probe’s energy levels must be finely
tuned [34–39]. These limitations can be overcome by har-
nessing the probe’s non-equilibrium dynamics for thermom-
etry [24, 40–44]. Perhaps the most extreme example is pure
dephasing, where the energy of the probe is conserved and
thus normal thermalisation is completely suppressed. Never-
theless, coherences between the probe energy eigenstates can
develop into correlations with the environment that are sensi-
tive to temperature [45–48].

In this letter, we apply this idea to address a long-standing
challenge in cold-atom physics: namely, thermometry of de-
generate Fermi gases [49, 50]. Specifically, we propose to

measure the temperature of an ultracold Fermi gas by ob-
serving the non-equilibrium dephasing dynamics of impuri-
ties immersed within it. We focus on a promising setup that
has already been realised in the laboratory [51, 52], where the
gas atoms effectively interact only with the impurities and not
with each other. In this setting, the Anderson orthogonality
catastrophe (OC) [53, 54] imprints characteristic signatures on
the decoherence dynamics of the impurity [55–58], which can
be observed using Ramsey interferometry [52, 59, 60]. The
optimal precision of our thermometry protocol can be eval-
uated in terms of the quantum Fisher information, and we
reveal a trade-off between measurement time and precision
controlled by the impurity-gas interaction strength. Since this
coupling can in principle be experimentally tuned over a wide
range of values by means of Feshbach resonances [61], our
approach allows for precise in-situ thermometry of homoge-
neous Fermi gases in the deeply degenerate regime.

Thermometry by qubit dephasing.—Let us begin with the
general scenario of a two-level probe (qubit) S undergoing
pure dephasing due to its contact with an environment E. The
total Hamiltonian is Ĥ = ĤS +ĤE +ĤI , where ĤI is an interac-
tion which satisfies [ĤS , ĤI] = 0. We assume that the system
is initially prepared in the product state ρ̂ = |+〉 〈+| ⊗ ρ̂E(T ),
where ρ̂E(T ) is a thermal state of the environment at temper-
ature T and |+〉 = (|0〉 + |1〉)/

√
2 is an equal superposition of

the energy eigenstates of the qubit. The populations of these
eigenstates are strictly conserved in time, while the qubit co-
herences decay according to the decoherence function

v(t) = TrE

[
eiĤ1t/~e−iĤ0t/~ρ̂E(T )

]
, (1)

where Ĥ j = 〈 j| ĤE + ĤI | j〉 is the Hamiltonian of the environ-
ment conditioned on the qubit eigenstate j = 0, 1. In a frame
rotating at the qubit precession frequency, the state of the qubit
is given by ρ̂S = 1

2 (1 + v · σ̂), where v = (Re[v], Im[v], 0) is
the Bloch vector and σ̂ = (σ̂x, σ̂y, σ̂z) are Pauli matrices.

The initial temperature of the gas therefore parametrises the
probe state ρ̂S (T ) via the decoherence function in Eq. (1) and
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if the dependence of v(t) on T is well understood, this temper-
ature can be inferred from the statistics of measurements made
on a large ensemble of identically prepared probes. However,
any such temperature estimate carries an unavoidable uncer-
tainty due to the random character of quantum measurement
and the finite size of the ensemble. We therefore use the the-
ory of quantum parameter estimation to determine the optimal
measurement that minimises this uncertainty [62–64].

In general, a measurement is described by a pos-
itive operator-valued measure (POVM) {Π̂(ξ)} satisfying∫

dξ Π̂(ξ) = 1, where ξ labels the possible outcomes. Per-
forming N independent measurements on identical qubit
preparations yields the random outcomes ξ = {ξ1, ξ2, . . . , ξN},
which can be used to generate a temperature prediction via an
estimator function Test(ξ). We consider unbiased estimators
with E[Test] = T , where

E [Test] =

∫
dξ1 · · ·

∫
dξN p(ξ1|T ) · · · p(ξN |T )Test(ξ), (2)

and p(ξ|T ) = Tr[Π̂(ξ)ρ̂S (T )]. The expected uncertainty of the
temperature estimate is quantified by ∆T 2 = E[(Test − T )2]
and the error of any unbiased estimator obeys the quantum
Cramér-Rao bound ∆T 2 ≥ 1/NFT ≥ 1/NFQ

T [65]. Here FT is
the Fisher information associated with the measurement,

FT =

∫
dξ p(ξ|T )

(
∂ ln p(ξ|T )

∂T

)2

=
1

〈∆X̂2〉

(
∂〈X̂〉
∂T

)2

, (3)

and the second equality holds for projective measurements on
a two-level system, with 〈X̂〉 and 〈∆X̂2〉 being the mean and
variance of the measured observable X̂ as functions of tem-
perature. The Fisher information of any POVM is bounded by
the quantum Fisher information (QFI) FQ

T = maxX̂ FT (X̂) =

FT (Λ̂T ) and the maximum is achieved by projective measure-
ments of a specific observable: the symmetric logarithmic
derivative (SLD), denoted by Λ̂T [62]. It is convenient to also
define the quantum signal-to-noise ratio (QSNR) Q2 = T 2FQ

T ,
which bounds the signal-to-noise ratio as T/∆T ≤

√
NQ.

Hence, Q quantifies the ultimate sensitivity limit of our im-
purity thermometer.

For a qubit probe, the QFI has a simple expression in terms
of the Bloch vector [66], and for pure dephasing it can be
conveniently written in polar coordinates using v = |v|eiφ as

FQ
T =

1
1 − |v|2

(
∂|v|
∂T

)2

+ |v|2
(
∂φ

∂T

)2

= F‖T + F⊥T . (4)

One can see that the QFI comprises two terms, respectively
corresponding to the Fisher information for measurements of
σ̂‖ = cos(φ)σ̂x + sin(φ)σ̂y and σ̂⊥ = sin(φ)σ̂y − cos(φ)σ̂x,
i.e. parallel and perpendicular to the Bloch vector of ρ̂S (T ).
Up to irrelevant shift and scale factors, the SLD is then given
by

Λ̂T ∝ cos(ϕ)σ̂‖ + sin(ϕ)σ̂⊥, tan(ϕ) =
|v|(1 − |v|)2∂Tφ

∂T |v|
. (5)

|0⟩

|1⟩

(a) (b)

(c)

f(E)

E

FIG. 1. Schematic depiction of the system. (a) A cold Fermi gas
(blue) is perturbed by a localised impurity (grey) with two internal
states that undergo pure dephasing. (b) Scattering from the impu-
rity disturbs the atoms’ initial equilibrium distribution, f (E). Pauli
blocking restricts the resulting particle-hole excitations to a region
near the Fermi surface. (c) The creation of holes eventually allows
further scattering to generate excitations deep within the Fermi sea.

Since the SLD is optimal in the sense of the quantum Cramér-
Rao bound, measuring Λ̂T minimises the uncertainty in the
temperature estimate due to the finite number of samples.
Note that the SLD is temperature-dependent and thus some
prior knowledge of T must be available. In order to measure
Λ̂T in practice, one needs an efficient prescription to evaluate
|v|, φ and their temperature derivatives from an accurate the-
oretical model for ρ̂S (T ), as well as the ability to measure an
arbitrary combination of σ̂x and σ̂y.

Physical model.— We now focus on a physical scenario
realised in recent experiments [52], which satisfies all the
aforementioned desiderata for optimal thermometry. Here,
the qubit comprises two internal spin states of an impurity
immersed in a spin-polarised Fermi gas (see Fig. 1). We as-
sume that the impurity is confined to the ground state of a
species-selective potential so that its kinetic energy can be ne-
glected. The only relevant collision process at low tempera-
tures is s-wave scattering, which does not occur between iden-
tical fermions due to wavefunction anti-symmetry. Therefore,
the gas atoms do not interact with each other, while their cou-
pling to the impurity is controlled by a spin-dependent s-wave
scattering length. We assume that the impurity and the gas
interact only when the impurity is in state |1〉, which can be
achieved by tuning the scattering length for state |0〉 to zero
via a Feshbach resonance [61].

We consider the following interferometric protocol. The
gas is prepared in a thermal state with the impurity in the
non-interacting state |0〉, leading to an initial density matrix
ρ̂ = |0〉 〈0| ⊗ ρ̂E(T ). A π/2-pulse then prepares the superposi-
tion state |0〉 → |+〉 and the system freely evolves for a time
t, after which the qubit coherences are given by Eq. (1). Fi-
nally, a second π/2-pulse is applied with a phase θ relative
to the initial pulse and the qubit’s energy is projectively mea-
sured, giving a result proportional to cos(θ)〈σ̂x〉 + sin(θ)〈σ̂y〉
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FIG. 2. Decoherence functions (main) and absorption spectra (inset)
for the homogeneous gas, with coupling kFa = −0.5 (blue), kFa =

−1.5 (red) and kFa = −6 (green); and temperature T = 0 (dotted),
T = 0.01TF (solid) and T = 0.1TF (dashed). Spectra for T = 0 not
shown.

on average. Repeating this procedure N times — or using N
independent impurities interacting with a single copy of the
gas — yields the expectation value of any combination of σ̂x

and σ̂y.
For a non-interacting gas, the decoherence function can be

computed exactly using the Levitov formula [67, 68]

v(t) = det
[
1 − n̂ + n̂eiĥ0t/~e−iĥ1t/~

]
, (6)

where ĥ1 and ĥ0 are single-particle Hamiltonians describing
the atoms in the gas with or without the presence of the impu-
rity, respectively. The initial thermal distribution is described
by n̂ = (eβ(ĥ0−µ)+1)−1, with β = 1/kBT the inverse temperature
and µ the chemical potential. In general, we have

ĥ0 =
−~2

2m
∇2 + Vext(r), (7)

ĥ1 = ĥ0 + Vimp(r), (8)

where m is the atomic mass, Vext(r) is an external potential,
Vimp(r) =

∫
dr′Vint(r − r′)|φ(r′)|2 is the scattering potential

generated by a static impurity with wavefunction φ(r), and
Vint(r) is the interatomic interaction potential. Collisions in
the s-wave channel are described by the regularised pseu-
dopotential Vint(r) = κδ(r)(∂/∂r)r, where κ = 2π~2a/mred
with a the scattering length and mred the reduced mass [69].
Crucially, Eq. (6) replaces a complex many-body expectation
value with a determinant over single-particle states, which al-
lows for efficient and accurate computation of a temperature
estimate from the experimental data.

Decoherence in a homogeneous gas.—From here on, we
focus on a three-dimensional (3D), homogeneous Fermi gas
(Vext = 0) of mean density n̄ that is trapped in a box large
enough to prevent finite-size effects. The impurity is assumed
to be tightly confined so that the infinite-mass approximation
is valid, i.e. |φ(r)|2 ≈ δ(r) and mred = m. Analytical solu-
tions for the single-particle wavefunctions are available in this

case [60]; see the Appendix for details. The relevant phys-
ical scales of the gas are determined by the Fermi wavevec-
tor kF = (6π2n̄)1/3, energy EF = ~2k2

F/2m, time τF = ~/EF

and temperature TF = EF/kB, while the impurity-gas cou-
pling is quantified by the dimensionless parameter kFa. The
time evolution of the magnitude of the decoherence func-
tion for this system is shown in Fig. 2 for various coupling
strengths and temperatures. We also plot the corresponding
finite-temperature absorption spectra, which are related to v(t)
by a Fourier transform

A(ω) = π−1Re
∫ ∞

0
dt e−iωtv(t). (9)

Note that A(ω) is equivalent to the probability distribution of
work performed by suddenly switching on the impurity po-
tential Vimp(r) [56, 70]. Since the properties of v(t) and A(ω)
have been extensively discussed in the literature [23, 53, 59,
60, 71], here we simply summarise the notable features.

Scattering from the impurity generates particle-hole exci-
tations in the gas. For weak coupling and low temperature,
these excitations are initially limited to the vicinity of the
Fermi surface due to Pauli blocking (see Fig. 1), but repeated
scattering events eventually reorganise the entire Fermi sea:
this is the essence of the OC [53]. Fig. 2 shows that at rel-
atively short times, τF < t � ~/kBT , the OC manifests it-
self in a universal decoherence behaviour v(t)∼ei∆Et/~t−(δF/π)2

,
where δF = − arctan(kFa) is the scattering phase at the Fermi
surface and ∆E is the energy difference between the many-
body ground states of Ĥ0 and Ĥ1 [60]. This short-time be-
haviour is essentially dictated by the high-frequency tails
of A(ω), which describe collective excitations of the whole
Fermi sea and thus are largely insensitive to temperature.
At later times, the decoherence function departs from the
zero-temperature behaviour, decaying exponentially with a
temperature-dependent rate for t � ~/kBT . This long-time
behaviour is determined by low-energy excitations close to
the Fermi surface whose distribution is highly temperature-
dependent. This can be seen in the dominant feature of the
absorption spectra near ω = ∆E where the zero-temperature
edge singularity [71], resulting from the discontinuous Fermi
surface, is softened at finite temperature into a broad peak (see
Fig. 2 inset). The width of the peak is determined not only by
the temperature but also by the scattering length: larger val-
ues of |kFa| lead to a broader peak and thus a faster onset of
exponential decay in the time domain.

Thermometric performance.—Let us now turn to the metro-
logical implications of these features. Fig. 3 shows the QSNR
as a function of time and temperature for k f a = −0.5. At a
given temperature, the optimal measurement time corresponds
to the maximum sensitivity, i.e. Qmax =maxt Q(t)=Q(tmax),
which can be seen to shift to progressively later times as the
temperature decreases. We find that the maximum QSNR,
shown by the large yellow region in Fig. 3, coincides with
the relevant temperature range for current experiments [72],
i.e. T & 0.1TF , and good precision is retained down to the
deeply degenerate regime. For example, with a coupling
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FIG. 3. QSNR as a function of temperature and evolution time for
kFa = −0.5.

strength of kFa = −0.5 and a temperature of T = 0.1TF we
find Qmax ≈ 0.45, meaning that an error of ∆T/T = 10%
can be achieved with N ≈ 500 measurements after a time
tmax≈150τF , which is on the order of milliseconds for typical
experimental parameters. This is eminently feasible, since a
single gas sample may include thousands of independent im-
purities [52] and have a lifetime of several seconds [16, 28].

Naturally, the maximum precision is strongly dependent
on the coupling strength. In Fig. 4(a) we show the dynami-
cal QSNR for various scattering lengths finding, remarkably,
that weaker coupling enhances the thermometric performance.
This can be understood by virtue of Eq. (4), which shows that
probe states with high purity, i.e. large |v|, have a larger QFI.
Indeed, a state with high purity may have a sharply peaked
distribution of measurement outcomes, meaning that a small
parameter change is statistically easier to distinguish. Weak
coupling is then preferable in light of the slower initial power-
law decoherence — due ultimately to Pauli exclusion reducing
the available phase space for scattering — which maintains
purer, and therefore more sensitive, probe states. This is also
illustrated in Fig. 4(b), which shows the path traced by the
Bloch vector for two nearby temperatures and two coupling
strengths. Clearly, weaker coupling ensures that the probe
maintains larger purities and consequently is more sensitive
to small changes in temperature. In Fig. 4(c) we show that
Qmax is always larger for smaller scattering strengths, indicat-
ing that this qualitative picture holds for all temperatures.

However, this improved precision comes at the cost of mea-
surement time. Indeed, from Fig. 2 we know that the on-
set of thermal behaviour is delayed by weak coupling. We
quantitatively examine the thermometric implications of this
in Fig. 4(d) where we find that both Qmax and tmax diverge
as |kFa| → 0. In this limit, the QFI is dominated by F⊥T , i.e.
the second contribution to Eq. (4), while the SLD is approxi-
mately Λ̂T ≈ σ̂⊥. This indicates that it is the phase rather than
the amplitude of the probe’s coherence that is most sensitive
to temperature in this regime. Correspondingly, the optimal
measurement becomes equivalent to a unitary phase estima-
tion protocol [62, 63]. The universal OC physics is therefore
crucial since it provides the slow decoherence which allows
for the long times needed for temperature-dependent phase
accumulation without sacrificing the purity of the probe state.
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FIG. 4. (a) QSNR at T = 0.2TF as a function of time for kFa =−0.5
(blue), kFa = −1.5 (red) and kFa = −6 (green). (b) Decoherence
function on the equator of the Bloch sphere for T = 0.2TF (solid
lines) and T =0.22TF (dashed lines) with kFa=−0.5 (blue) and kFa=

−1.5 (red). Solid circles highlight the same instants in time in both
panels. (c) Maximum sensitivity, Qmax, as a function of temperature
for kFa=−0.5 (blue), kFa=−1.5 (red) and kFa=−6 (green). (d) Qmax

(solid line) and corresponding measurement time (dashed line) as a
function of coupling strength for T =0.1TF . See text for discussion.

Discussion.—Homogeneous ultracold gases represent a
challenge for in-situ thermometry, necessitating destructive
time-of-flight measurements [13, 16]. In fermionic systems
this problem is exacerbated because the Pauli exclusion prin-
ciple restricts thermal excitations to a small energy window
near the Fermi surface, meaning that density measurements
of any kind provide little information on temperature. In con-
trast, our proposal to infer temperature from decoherence is
designed to exploit this structure of the Fermi sea. In partic-
ular, exclusion effects slow the decay of the impurity deco-
herence function, allowing for enhanced sensitivity. This is
dramatically different from the exponential decoherence that
is typically expected, e.g. due to Ohmic noise [48]. Moreover,
our scheme is inherently non-equilibrium, thus alleviating the
need for thermalisation of the probe before accurate tempera-
ture estimation is feasible.

The sensitivity of our probe can be controlled by using a
Feshbach resonance to change the scattering length. Remark-
ably, we have shown that the highest QSNR is obtained for
weak coupling, in direct contrast with the sensitivity enhance-
ment found for thermalising probes at strong coupling [37].
Practically speaking, weak coupling reduces the number of
measurements needed to achieve a given precision, albeit at
the cost of increasing the measurement time (and vice versa).
This tunability allows the protocol to be optimised depending
on the experimental constraints at hand. It is also worth not-
ing that the impurity decoherence function exhibits a universal
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dependence on a small number of parameters, kFa, EF and T ,
which can each be determined via a similar interferometric
protocol. For example, either kFa or EF can be determined
from the temperature-independent behaviour of v(t) at short
times. This may assist calibration of the thermometer and ob-
viates the need to incorporate independent measurements of
the density or scattering length — with their associated exper-
imental uncertainties — into the parameter estimation proce-
dure.

Our analysis has focussed on the homogeneous gas where
in-situ thermometry via conventional means is difficult. How-
ever, the same approach could in principle be applied to
trapped gases with arbitrary geometry. In the Appendix, we
present results for the one-dimensional (1D) Fermi gas, find-
ing similar thermometric sensitivities to the 3D case. Inter-
estingly, the norm of the decoherence function turns out to
be very similar for the homogeneous and the harmonically
trapped 1D gas (forω0t � π, withω0 the trap frequency [55]).
However, the complex phase of v(t) is significantly modified
by the presence of the harmonic trap. Since this phase is gen-
erally sensitive to temperature, an optimally precise tempera-
ture estimator for a harmonically confined gas should account
for the trap configuration. We emphasise that the Levitov for-
mula, Eq. (6), on which our theory is based is computation-
ally efficient for any size and geometry, as it requires only the
single-particle wavefunctions.

In summary, we have proposed a minimally destructive and
local thermometry protocol based on the decoherence of im-
mersed impurities, which offers a solution to the challenge of
in-situ thermometry for cold homogeneous Fermi gases. Fu-
ture work will address how precision is affected by correla-
tions between impurities generated indirectly via their mutual
interaction with the gas [24, 73, 74].
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Appendix

Calculation of the decoherence function

In this Appendix, we give details on our calculation of the
decoherence functions displayed in the main text. We work
in spherical coordinates with the impurity placed at r = 0 and
impose hard-wall boundary conditions at a radius r = R. As-
suming low temperatures and s-wave scattering, only atoms
with zero angular momentum are perturbed by the impurity.
Higher partial-wave states thus do not contribute to the deter-
minant in Eq. (6).

The s-wave eigenfunctions of the perturbed and unper-
turbed Hamiltonians are denoted by ψn(r) and ψ′n(r) respec-
tively, such that ĥ0ψn = Enψn and ĥ1ψ

′
n = E′nψ

′
n. They are

given explicitly by [60]

ψn(r) =

√
1

2πR
sin(knr)

r
, (10)

ψ′n(r) = An

√
1

2πR
sin(k′nr + δn)

r
, (11)

where knR = k′nR + δn = nπ for n = 1, 2, . . ., while En =

~2k2
n/2m and E′n = ~2k′2n /2m. The scattering phase is deter-

mined by the equation

tan(δn) = −k′na, (12)

while An =
[
1 + sin(2δn)/2k′nR

]−1/2. Here we have assumed
negative scattering lengths so that no bound state arises.

The Fermi energy is determined by EF = ~2k2
F/2m =

π2~2N2
s /2mR2, where Ns is the number of atoms in s states

at T = 0. We work at fixed 3D density and thus hold EF fixed,
which is equivalent to fixing the ratio Ns/R =

√
2mEF/π~.

All of our results are scaled to the thermodynamic limit by in-
creasing Ns until convergence is achieved. On the timescales
we consider, Ns on the order of a few hundred is sufficient.

The determinant in Eq. (6) is infinite-dimensional in prin-
ciple, but at any given density and temperature it can be com-
puted to high accuracy within a finite basis set. The size N of
the unperturbed basis set {ψn}

N
n=1 is fixed by the temperature
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FIG. 5. Comparison of decoherence functions for a homogeneous
and a harmonically trapped gas in 1D. The main panel shows the ab-
solute value for the homogeneous gas at couplings kFa = −1 (black)
and kFa = −0.01 (blue) with temperatures T = 0.01TF (solid) and
T = 0.1TF (dashed). Red and purple dotted lines show the cor-
responding results for a harmonically confined gas with ~ω0/EF =

2.5 × 10−3. The inset displays the real part of the decoherence func-
tion for kFa = −1 and T = 0.1TF .

and Ns. For each value of T , we find the chemical potential
by solving Tr[n̂] = Ns with a very large basis (∼ 104 states).
We then truncate to N states such that |Tr[n̂] − Ns| < ε,
where ε is a small tolerance. The size of the perturbed ba-
sis set {ψ′n}

N′
n=1 is then fixed by the requirement of unitarity:∑N′

n=1 |〈ψm|ψ
′
n〉|

2 > 1 − ε for all m ≤ N. We find that ε = 10−4

is sufficient to obtain good convergence.

The Fisher information is evaluated via a finite-difference
approximation to the temperature derivatives in Eq. (4) with
numerical increments of δT/T = 10−2.

One-dimensional and harmonically trapped systems

In this Appendix, we discuss how reduced spatial dimen-
sionality and the presence of a harmonic trap affect the sen-
sitivity of our dephasing thermometer. To be concrete, we
focus on a one-dimensional (1D) system. In this case, the
impurity-gas interaction is described in the pseudo-potential
approximation by Vimp(x) = λδ(x), with λ = −~2/mreda [75].
Note that the interaction strength is inversely proportional to
the scattering length in 1D. We consider a tightly localised
impurity at x = 0 so that mred = m and |φ(x)|2 ≈ δ(x).

Let us first consider a homogeneous gas and impose hard-
wall boundary conditions at x = ±L/2. Only the wavefunc-
tions with even symmetry are perturbed by the presence of the
impurity at x = 0; the odd solutions thus do not contribute to
the determinant in Eq. (6). The even eigenfunctions of ĥ0 and

0 50 100 150 200
0

0.1

0.2

0.3

0.4

FIG. 6. Comparison of the QSNR for a homogeneous (solid) and a
harmonically trapped (dotted) gas in 1D at temperature T = 0.1 and
coupling strengths kFa = −1 (black, red) and kFa = −0.01 (blue,
purple).

ĥ1 are respectively found to be

ψn(x) =

√
2
L

cos (knx) , (13)

ψ′n(x) = Bn

√
2
L

cos(k′nx ± δn), (14)

where the plus (minus) sign pertains to x > 0 (x < 0) and
knL = k′nL + 2δn = (2n − 1)π for n = 1, 2, . . ., while the
corresponding energies are En = ~2k2

n/2m and E′n = ~2k′2n /2m.
Note that here we assume negative scattering length; for a > 0
the n = 1 solution is a bound state that must be accounted for
separately. The scattering phase is determined by the equation

tan(δn) =
1

k′na
, (15)

while Bn = [1 − sin(2δn)/k′nL]−1/2. Similar to the 3D case,
holding the density fixed leads to the relation (2Ne − 1)/L =
√

2mEF/π~, where Ne is the number of atoms in even states.
We follow the same procedure as in the 3D case to find the
truncated bases for a given value of Ne, and then scale to the
thermodynamic limit by increasing Ne until convergence is
reached.

Some examples of the decoherence function are plotted in
Fig. 5 for different coupling strengths and temperatures. The
qualitative behaviour is similar to the 3D case. The short-
time behaviour of v(t) is an oscillatory power-law decay that
passes over to exponential decay after a time on the order of
~/kBT . In Fig. 6 we show the QSNR, finding similar results
to the 3D case. In particular, we find again that weaker cou-
pling, corresponding in 1D to larger scattering length, yields
higher precision. However, we leave a careful exploration of
the thermometric sensitivity in 1D to future work.

In order to understand the role of weak harmonic con-
finement, we also consider the case where the 1D gas is
trapped by the harmonic potential Vext(x) = 1

2 mω2
0x2. While
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in this case analytical solutions for the perturbed eigenfunc-
tions are known [69], we resort to numerical diagonalisa-
tion of ĥ0 and ĥ1 for simplicity. Again, reflection symmetry
implies that only the even wavefunctions enter non-trivially
into the determinant. The corresponding unperturbed ener-
gies are En = ~ω0

(
2n + 1

2

)
for n = 0, 1, . . .. If Ne atoms

occupy even orbitals at T = 0, the Fermi energy is thus de-
fined by EF = ~ω0

(
2Ne −

3
2

)
, from which the Fermi wavevec-

tor kF =
√

2mEF/~, temperature TF = EF/kB and time
τF = ~/EF can be derived. We hold EF constant, which is
equivalent to keeping the density at the centre of the trap fixed.
We also assume weak confinement, ~ω0 � EF , and focus on
times less than the trap half-period, ω0t < π, in order to avoid
partial recurrences [55, 56]. Our numerical calculations fol-
low the same truncation procedure described above.

The decoherence function for the harmonically trapped gas
is compared to the homogeneous case in Fig. 5. We find that
the norm of the decoherence function is very similar in both
cases (main panel) but the phase of the decoherence function
is noticeably different (inset). As a consequence, a tempera-
ture estimator based on the norm of the decoherence function
may not need to account for details of the trap potential in the
weakly confined regime. However, as discussed in the main
text, at weak coupling the SLD becomes very sensitive to the
phase of v(t). The trap geometry must therefore be taken ex-
plicitly into account in order to achieve the highest precision.
As shown in Fig. 6, the optimal precision attainable in the
trapped gas is very similar to that of the homogeneous gas.
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