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Quasiperiodic quantum heat engines with a mobility edge
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Steady-state thermoelectric machines convert heat into work by driving a thermally generated charge current
against a voltage gradient. In this work, we propose a new class of steady-state heat engines operating in the
quantum regime, where a quasiperiodic tight-binding model that features a mobility edge forms the working
medium. In particular, we focus on a generalization of the paradigmatic Aubry-André-Harper (AAH) model,
known to display a single-particle mobility edge that separates the energy spectrum into regions of completely
delocalized and localized eigenstates. Remarkably, these two regions can be exploited in the context of steady-
state heat engines as they correspond to ballistic and insulating transport regimes. This model also presents the
advantage that the position of the mobility edge can be controlled via a single parameter in the Hamiltonian.
We exploit this highly tunable energy filter, along with the peculiar spectral structure of quasiperiodic systems,
to demonstrate large thermoelectric effects, exceeding existing predictions by several orders of magnitude. This
opens the route to a new class of highly efficient and versatile quasiperiodic steady-state heat engines, with a
possible implementation using ultracold neutral atoms in bichromatic optical lattices.
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I. INTRODUCTION

Scientific activity in the area of thermal machines has been
boosted in recent years by the increasing importance that
society is placing on sustainable energy. The inevitable ten-
dency toward miniaturization and the importance of recycling
waste heat provide strong motivations to consider microscopic
thermal machines, for which quantum effects can become
relevant [1,2] and may even be exploited (see, for example,
Refs. [3–10]). Thermoelectric engines, in particular, do not
rely on macroscopic moving parts. Instead, they convert heat
into power through nonequilibrium steady-state currents of
microscopic particles, e.g., electrons or atoms, flowing be-
tween two reservoirs. Unfortunately, bulk thermoelectrics are
generally quite inefficient [11]. This drawback, together with
the unprecedented level of control achieved in nanotechnol-
ogy, has fuelled both experimental and theoretical research
to identify and characterize new nanoscale systems to be
harnessed as efficient thermal engines [12–17].

A central concept in thermoelectric energy conversion is
energy filtering: In order to obtain a strong thermoelectric re-
sponse, it is necessary to allow only particles in a finite energy
window to flow [18,19]. This effect is generally realized either
by engineering the thermodynamic variables of the reservoirs
[11,20] or by tuning the transport characteristics of the sample
so that it displays an energy-dependent transmission probabil-
ity. In this work, we follow the latter approach by exploiting
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the spectral characteristics of the central system; in particular,
we use a mobility edge as an energy filter. A mobility edge
separates localized eigenstates from extended ones in systems
with an energy-dependent localization transition. The most
famous example is the three-dimensional Anderson model,
where random disorder drives localization [21,22], leading
to a diverging thermoelectric response in the vicinity of the
mobility edge [23,24]. However, this enhancement does not
appear in lower spatial dimensionalities, where all states are
localized by infinitesimal disorder, independently of their
energy [25].

Yet if the random disorder is replaced by a quasiperiodic
potential, incommensurate with the underlying periodicity of
the lattice, a localization transition with a mobility edge can
occur even in one dimension. A paradigmatic example is
the Aubry-André-Harper (AAH) model [26,27]. The AAH
model shows a phase transition from a completely delocalized
phase to a completely localized phase as the strength of the
quasiperiodic potential is increased [26]. At the critical point,
both the spectrum of the AAH model and the eigenfunctions
have a fractal nature [28,29], a property that is also of in-
terest to mathematicians [30,31]. The standard AAH model
features no mobility edge in any of the phases. However,
adding perturbations to the AAH model, e.g., by allowing
beyond-nearest-neighbor hopping or, as in the present work,
by deforming the on-site potential, leads in many cases to the
occurrence of a mobility edge [32–41].

Quasiperiodic systems, with and without mobility edges,
and with tunable interaction strength, have been realized
in experiments on ultracold atoms trapped by two optical
lattices with different wavelengths [42–46]. These systems
formed the basis of recent investigations into many-body
localization and the effect of interactions in the presence of
a mobility edge [46–50]. The peculiar transport properties of
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noninteracting quasiperiodic systems have recently been char-
acterized [51–54], and their possible applications as rectifiers
have been highlighted [55,56]. On the other hand, completely
different experiments have made tremendous progress in re-
alizing two-terminal transport measurements with ultracold
atoms [57–61].

Motivated by these works, here we propose another inter-
esting application of quasiperiodic systems: namely, as the
working medium of a quantum thermal machine. To that end,
we perform the first characterization of the thermoelectric
properties of a one-dimensional quasiperiodic system. We
focus on the generalized AAH (GAAH) model recently in-
troduced in Ref. [34], for which an exact analytical expres-
sion for the mobility edge is known. The spectral properties
[62,63] and the open-system particle transport properties of
the GAAH model [53] have been previously investigated. Fo-
cusing on the experimentally relevant linear-response regime,
we compute the transport coefficients using a Landauer-
Büttiker approach and use these to quantify the performance
of a GAAH heat engine as a function of temperature. We
show how the remarkable spectral properties of quasiperiodic
systems give rise to a versatile and efficient quantum thermal
machine. In particular, the position of the mobility edge can
be tuned by modifying a single parameter in the Hamiltonian,
while the presence of ballistic states above the mobility edge
leads to significant power output even in the limit of large
system size. We also demonstrate that the combination of
ballistic transport and a mobility edge enhances efficiency
when compared to a homogeneous wire. Finally, we show that
the physics described here is not only limited to our chosen
model but is also expected to hold true in more general cases.

The rest of this article is organized as follows. In Sec. II, we
describe the general set-up and recall the Landauer-Büttiker
formalism for characterizing transport in the linear response
regime. The GAAH model and its spectral characteristics
are discussed in Sec. III. Our main results are presented
and discussed in Sec. IV, where we compute the transport
properties and thermodynamic performance of the GAAH
machine for specific examples. We summarize and conclude
in Sec. V.

II. AUTONOMOUS THERMOELECTRIC MACHINES

A. General setup

In this work, we exclusively focus on two-terminal devices
that function as autonomous thermal machines. A thermoelec-
tric engine may best be understood by example. Consider a
situation typical in mesoscopic physics, where two metallic
leads are connected to a central region, as illustrated in Fig. 1.
The two leads are electron reservoirs assumed to be in thermal
equilibrium, with well-defined chemical potentials μL, μR

and temperatures TL, TR. In the long-time limit, the central
system reaches a nonequilibrium steady state characterized
by nonzero charge and heat currents. These currents are not
generated by any external drive, but entirely by the tempera-
ture bias or the difference in the chemical potentials, so the
machine is said to be autonomous.

We assume without loss of generality that the left reservoir
is hotter than the right one, i.e., TL > TR. The temperature
difference induces an electrical current Je = eJN from the left

FIG. 1. Schematic of the thermoelectric heat engine. We engi-
neer the thermodynamic properties of the reservoirs in such a way to
use the thermal current to drive electrons against a chemical potential
bias.

reservoir into the right one, with e being the electron charge
and JN being the particle current. The associated energy
current is denoted by JE . As a consequence of these currents,
in each unit of time a quantity of heat JL

h flows out of the left
reservoir while JR

h flows into the right reservoir. From the first
law of thermodynamics and the conservation of charge and
energy, the expressions for the heat currents are found to be
[64,65]

Jν
h = JE − μνJN (1)

for ν = L, R. The difference between the heat currents corre-
sponds to the power developed by moving electrons from a
low chemical potential to a higher one, viz.,

P = JL
h − JR

h = JN�μ = Je�V, (2)

where �μ = μR − μL is the chemical potential difference
and �V = �μ/e is the applied voltage. The system behaves
as a heat engine whenever P > 0, in which case the efficiency
is given by

η = P

JL
h

= 1 − JR
h

JL
h

. (3)

The expression is the same as for a standard cyclic thermal
engine, and it is bounded from above by the corresponding
Carnot efficiency ηC = 1 − TR/TL.

B. Thermodynamics in linear response

From here on, we consider the linear-response regime,
where the differences between chemical potentials �μ =
μL − μR and temperatures �T = TL − TR are small com-
pared to their averages. This regime is relevant for numerous
experimental platforms, ranging from semiconductor [66,67]
and molecular [68] electronics to ultracold atoms [61]. The
extension of the present work beyond linear response is
straightforward but significantly more involved and will form
the topic of a future publication.

In the linear-response regime, the electric Je and heat Jh =
JL

h currents can be expressed as linear combinations of the
generalized forces or affinities driving transport [11,64,69,70].
This relation is compactly represented via the Onsager matrix
[71] as (

Je

Jh

)
= L

(
�μ/eT

�T/T 2

)
, L =

(
L11 L12

L21 L22

)
, (4)
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with L12 = L21 if the system satisfies time-reversal symmetry.
The electrical conductance G, the thermal conductance K , and
the Seebeck factor (or thermopower) S are defined as

G =
(

Je

�V

)∣∣∣∣
�T =0

= L11

T
, (5)

K =
(

Jh

�T

)∣∣∣∣
Je=0

= 1

T 2

det L
L11

, (6)

S = −
(

�V

�T

)∣∣∣∣
Je=0

= 1

T

L12

L11
. (7)

These three transport coefficients fully characterize heat-to-
work conversion in the nonequilibrium steady state.

For a time-reversal symmetric system in the linear-
response regime, the maximum thermodynamic efficiency
ηmax reachable by the device can be written in terms of a single
dimensionless parameter ZT = GS2T

K as [72]

ηmax = ηC

√
ZT + 1 − 1√
ZT + 1 + 1

. (8)

Larger values of ZT correspond to higher efficiencies. In
particular, as ZT → ∞, the Carnot efficiency is obtained,
ηmax → ηC , which usually implies zero power output. In
order to evaluate the capability of a system under practical
conditions, we thus focus on another quantity: the efficiency
at maximum power [73], which can be expressed as

η(Pmax) = ηC

2

ZT

ZT + 2
. (9)

This tends to ηC/2 for ZT → ∞, which is equivalent to
the Curzon-Ahlborn (CA) bound [74] in the linear-response
regime.

The figure of merit ZT is an important index to cate-
gorize thermoelectrics [15,66] (even though it may over- or
underestimate the performance of the engine outside of the
linear-response regime). Most current thermoelectric devices
work with ZT ≈ 1 and it is often stated that ZT ≈ 3 would
be required in order to compete with alternative technologies
[11]. Suggestions to increase ZT include the use of nanostruc-
tures [14,16,75] and the breaking of time-reversal symmetry
[76–79]. For quantum-coherent transport, however, perhaps
the simplest way to increase performance is to use an energy
filter, as discussed in the following section.

C. Landauer-Büttiker formalism

We now specifically focus on the coherent regime, where
the particles, here spinless electrons, crossing the central
region undergo elastic scattering events without dissipation of
energy. The currents in this case are given by the Landauer-
Büttiker formalism via the integrals

Je = 2e

h

∫
dEτ (E )[ fL(E ) − fR(E )], (10)

Jν
h = 2

h

∫
dE (E − μν )τ (E )[ fL(E ) − fR(E )], (11)

where the factor 2 is due to the spin degeneracy, and fν (E ) =
{1 + exp[(E − μν )/kBTν]}−1 is the Fermi-Dirac distribution

FIG. 2. An efficient thermoelectric device can be obtained
through the use of an energy filter in the central system, blocking
the transport at certain energies. The temperature bias drives particle
(hole) transport above (below) the chemical potential, leading to zero
net electric current in the presence of particle-hole symmetry. Finite
electric current and, consequently, output power are instead obtained
by differentiating the dynamics of the particles at energies above and
below the chemical potential.

of bath ν = L, R, with h and kB being the Planck and Boltz-
mann constants, respectively. The transmission function τ (E )
encodes the probability for an electron at energy E to tunnel
from the left to the right reservoir through the central region.

In the linear-response regime, we may Taylor expand the
Fermi-Dirac distributions around reference thermodynamic
variables μ = μR and T = TR. Comparing the result with
Eq. (4) gives L11 = e2T I0, L12 = L21 = eT I1, and L22 = T I2,
where

Ik = 2

h

∫
dE (E − μ)kτ (E )[− f ′(E )],

f ′(E ) = ∂ f

∂E
= −[4kBT cosh2(E − μ)/2kBT ]−1. (12)

Note that f ′(E ) is an even function centered around μ with a
width of order kBT .

Let us now examine the effect of an energy filter. The
central system behaves as an energy filter whenever the trans-
mission function τ (E ) is zero for energies above or below
a certain value. This is a mechanism to break the particle-
hole symmetry that would otherwise impede thermoelectric
power generation. Indeed, in the presence of particle-hole
symmetry, heat is transported both by particles above the
chemical potential and by holes below the chemical poten-
tial. The corresponding charge currents of the particles and
the holes compensate each other, leading to zero net power
output. As demonstrated in Fig. 2, blocking transport in the
working medium within a certain energy range allows charge
to flow only in one direction, i.e., against the voltage gradient.
Mathematically, the effect of an energy filter is seen by using
Eq. (12) to write the thermopower as

S = 1

eT

∫ ∞
−∞ dE (E − μ)τ (E )[− f ′(E )]∫ ∞

−∞ dEτ (E )[− f ′(E )]
. (13)

Given that f ′(E ) is an even function of the energy, it is clear
that the Seebeck factor will vanish whenever the transmission
probability is also an even function. Breaking electron-hole
symmetry in the transmission probability is therefore crucial
to achieve a finite thermoelectric response.

013093-3



CECILIA CHIARACANE et al. PHYSICAL REVIEW RESEARCH 2, 013093 (2020)

D. Transmission function for one-dimensional wires

As is evident from the above discussion, the fundamental
object governing the behavior of an autonomous engine is
the transmission function τ (E ), which depends on the micro-
scopic details of the central system and its coupling to the
reservoirs. In this work, we focus on the situation where a
one-dimensional (1D) tight-binding model of noninteracting
fermions is connected at the boundaries to two noninteracting
reservoirs. This is described by a generic Hamiltonian Ĥ =
ĤS + ĤSE + ĤE . The Hamiltonian of the system is given by

ĤS =
N−1∑
i=1

t (â†
i âi+1 + H.c.) +

N∑
i=1

Viâ
†
i âi, (14)

where Vi is the on-site energy of site i, t is the tunneling
constant and âi is the fermionic annihilation operator of
site i. The reservoirs are described by quadratic fermionic
Hamiltonians with infinitely many degrees of freedom. The
combined Hamiltonian of both baths is given by

ĤE =
∑

ν=L,R

∑
k

Ekν d̂†
kν

d̂kν, (15)

where Ekν are the single-particle eigenenergies of leads and
d̂kν are annihilation operators for the corresponding eigen-
modes. We assume a bilinear system-reservoir coupling of the
form

ĤSE =
∑

k

(tkLâ†
1d̂kL + tkRâ†

N d̂kR + H.c.), (16)

where tkL and tkR describe the amplitude for electrons to tunnel
from the left and right leads onto the wire. Note that first
site of the system is coupled to the left lead (denoted by the
subscript L) and the last site of the system is coupled to the
right lead (denoted by the subscript L). Each bath is described
by a spectral function

JL/R(E ) = 2π
∑

k

|tkL/R|2δ(E − EkL/R). (17)

We make the wide-band limit (WBL) approximation, taking
spectral functions that are identical and independent of en-
ergy: JL(E ) = JR(E ) = γ .

For this situation, the transmission function τ (E ) can be
exactly calculated using nonequilibrium Green’s functions
(NEGF) [80,81]. To this end, we first write the system Hamil-
tonian as

ĤS =
∑

i j

Hi j â
†
i â j, (18)

where H is a symmetric tridiagonal matrix with diagonal
entries {Vi} and off-diagonal entries equal to t . The retarded
single-particle NEGF of the setup is given by the N × N
matrix G(E ) = M−1(E ), with

M(E ) = [EI − H − 
L(E ) − 
R(E )], (19)

where I is the N-dimensional identity matrix and 
L,R(E )
are N-dimensional matrices representing the self-energies of
the baths. The transmission function is then given by τ (E ) =
Tr{�L(E )G†(E )�R(E )G(E )} [82], where the level-width
functions are defined as �L,R(E ) = i(
†

L,R(E ) − 
L,R(E )).
For our setup, the matrices 
L(E ) and 
R(E ) have only one

nonzero element each, given by [
L(E )]11 = [
R(E )]NN =
−iγ /2. The expression for the transmission function thus
simplifies to

τ (E ) = γ 2|G1N (E )|2 = γ 2

|det[M(E )]|2 . (20)

III. THE GENERALIZED AUBRY-ANDRÉ-HARPER
MODEL

A spectacular realization of the energy filtering mechanism
discussed in Sec. II C is the mobility edge associated with the
metal-insulator transition of the Anderson model [21,23,24].
Here, random disorder localizes only the low-energy part of
the spectrum, while high-energy states remain extended. This
leads to an asymmetric transmission function and hence a
diverging thermopower in the vicinity of the mobility edge,
which separates the localized, insulating states from the ex-
tended, conducting ones. The Anderson metal-insulator tran-
sition occurs in three spatial dimensions [21], while in lower
dimensions, and in the absence of interparticle interactions,
all states are localized in the thermodynamic limit [25].

Here, instead, we focus on the thermoelectric proper-
ties of quasiperiodic systems, which have a disordered, yet
nonrandom, potential that leads to localization. Remarkably,
quasiperiodic systems can exhibit a mobility edge even in one
spatial dimension, unlike the case of random disorder.

The particular quasiperiodic model that we choose is the
generalized Aubry-André-Harper (GAAH) model given by
following on-site potential [34]

V GAAH
i = 2λ cos(2πbi + ϕ)

1 − α cos(2πbi + ϕ)
. (21)

Here, λ indicates the strength of the potential, ϕ is a phase
that shifts the origin of the potential, b is an irrational number,
and α ∈ (−1, 1). Choosing b to be an irrational number makes
the cosine incommensurate with the underlying periodicity of
the lattice. Of course, in experiments, truly irrational numbers
do not exist. Nevertheless, the model is always realized for
a finite system of size N if b = p/q is taken as a rational
number, with q > N and p, q coprime, such that the potential
has a different value on every site.

For α = 0, the GAAH model reduces to the Aubry-André-
Harper (AAH) model [26]. In the AAH model, the quasiperi-
odic nature of the potential gives the spectrum a fractal
structure and leads to a delocalization-localization transition
depending just on λ [26]. The critical point of the transition in
the AAH model occurs at λ = t . For λ < t all single-particle
eigenstates are completely delocalized, leading to ballistic
transport, while for λ > t , all single-particle eigenstates are
localized. For λ = t , the states are multifractal and lead
to counterintuitive anomalous transport behavior as recently
demonstrated [51,52,54]. The AAH model does not feature a
mobility edge in any phase.

For α �= 0, the GAAH model features a mobility edge in
energy, separating the regions of completely delocalized and
localized states in the same spectrum. Most interestingly, for
this model, the energy of the mobility edge has been shown
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FIG. 3. Eigenenergy spectra of GAAH systems with b = (
√

5 +
1)/2, λ = −0.8, and ϕ = 0 as a function of α, for a chain of N =
987 sites. The IPR of the corresponding eigenstate is shown by a
color map, with green for extended and blue for completely localized
states. The red line represents the mobility edge Ec given by Eq. (22),
which separates localized from delocalized states. The dashed black
line indicates the value of α chosen in Sec. IV.

analytically to be [34]

Ec = 1

α
sign(λ)(|t | − |λ|). (22)

Thus, the position of the mobility edge can be tuned by
changing λ and α, leading to a much richer phase diagram.
The high-temperature nonequilibrium phase diagram of the
GAAH model has been explored in Ref. [53]. The precise
knowledge of the position of the mobility edge for given
values of λ and α makes the GAAH model ideal for in-
vestigation of low-temperature thermoelectric properties in
one-dimensional (1D) quasiperiodic systems.

One important difference between the mobility edges ap-
pearing in the GAAH model and in the three-dimensional
Anderson model is in the nature of the conducting states. The
conducting states in the case of the GAAH model support
ballistic transport [53], whereas those in the three-dimensional
Anderson model support diffusive transport. As we will see,
this has a major effect on the power output of our quasiperi-
odic quantum thermal machine.

In order to quantify the localization properties of the spec-
trum as a function of energy, we use the inverse participation
ratio (IPR)

IPR(En) =
∑

�

|��n|4, (23)

where ��n is the single-particle eigenfunction with eigenen-
ergy En, evaluated at lattice site �. For localized states, the
IPR is close to its maximum value of unity and does not scale
with system size, while for extended states it is of order N−1,
i.e., vanishingly small in the thermodynamic limit N → ∞.
For multifractal states, IPR ∼ N−p, with 0 < p < 1. Figure 3
shows the energy spectrum and corresponding IPR of the
GAAH model for various values of α at a chosen value of λ.
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(d)

FIG. 4. Spectra for single GAAH wires of length N = 987,
generated with (a) λ = −0.8 t, α = 0.792, ϕ = 0 (dashed vertical
line in Fig. 3) and (c) λ = −1.4 t, α = 0.330, ϕ = 0. The mobility
edge is shown by the red line. [(b)–(d)] The transmission functions
associated respectively to the first and second configurations, aver-
aged at every energy over 40 values of the phase ϕ, as described in
the text. Conduction is clearly possible only at energies that support
extended eigenstates.

For our numerical calculations, here and henceforth we
choose b = (

√
5 + 1)/2 to be the golden mean [34].

IV. RESULTS

A. Transmission function

The pivotal calculation for our results is the transmission
function, which is independent of the temperature and the
chemical potential of the reservoirs. In Fig. 4, we display the
spectrum of the system and the corresponding transmission
function for two different pairs of values of λ and α. We
see that the mobility edge and the clusters of ballistic states
lying above it generally give rise to a highly asymmetric trans-
mission profile, which is conducive to a large thermoelectric
response. The choice of the two parameters in the model,
moreover, gives control over the structure of the spectrum,
determining the position of the mobility edge and the number
of ballistic states above it.

A general property of quasiperiodic 1D systems is that the
spectrum has fractal properties [31], which are reflected in
the fine-grained structure of the transmission function [53].
While these fractal properties depend on the exact choice of
the quasiperiodic potential, the asymmetry of the transmission
function and the occurrence of bands of ballistic states are
generic to many 1D quasiperiodic systems with a mobility
edge. As we show in Sec. IV E, it is this generic behavior
that governs thermoelectric properties, irrespective of further
details.
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FIG. 5. (a) Electric conductance and (b) thermal conductance as
a function of chemical potential at fixed temperature T = 0.1(t/kB ).

At this point, a note on terminology is in order. For simplic-
ity, we refer to the clusters of ballistic states lying above the
mobility edges as “bands” in the following. Strictly speaking,
these groups of states do not satisfy the usual definition of
a band, because they do not tend to a continuum in the
thermodynamic limit in the rigorous mathematical sense, due
to their fractal structure. Nevertheless, as discussed above
and shown in Sec. IV E, this structure has little effect on
thermodynamic properties such as efficiency, and thus we
make no strict distinction in terminology.

Since the GAAH model has a large parameter space, we
focus on a single, representative example rather than perform-
ing an exhaustive study. In what follows, we consider the
particular configuration displayed in Fig. 4(a), corresponding
to the dashed vertical slice in Fig. 3 with α = 0.792, for a
chain of 987 sites. The mobility edge Ec sits within a group of
closely packed eigenvalues, with several other ballistic bands.
We work in a regime of intermediate system-bath coupling,
γ = t . As shown in Appendix A, modifying γ merely rescales
the currents without qualitatively affecting the transport be-
havior. In the following, we use this transmission function to
analyze the thermoelectric properties of the GAAH wire in
different temperature regimes, via the transport coefficients
given by Eqs. (5)–(7). All quantities shown in this section
are obtained numerically and ultimately averaged over the
phase ϕ in Eq. (21) by integrating between 0 and 2π and
dividing by 2π .

B. Low-temperature transport properties

We begin by studying the low-temperature behavior,
choosing T = 0.1 (t/kB). This temperature regime is rel-
evant for experiments involving ultracold atoms in optical
lattices [57] and allows us to clearly distinguish the nontrivial
spectral structures reflected in the behavior of the transport
coefficients.

We observe in Fig. 5 that the electrical and thermal con-
ductances closely follow the structure of the transmission
function, with significant transport occurring only within the
conducting bands around and above the mobility edge. More-
over, we notice that the Wiedemann-Franz law does not hold
here. This is due to the highly discontinuous transmission
function of the system, determined by the fractal properties of
its spectrum. We expect this violation to be a general feature of
quasiperiodic systems, which we will address in future work.
This structure of the transmission function is also responsible
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FIG. 6. (a) Seebeck factor and (b) thermoelectric figure of
merit as a function of chemical potential at fixed temperature
T = 0.1(t/kB ).

for the relatively small values of the electric conductance
compared to the peak values of τ (E ) plotted in Fig. 4(b).

The most dramatic effect due to the energy filter is evident
in the Seebeck coefficient S plotted in Fig. 6(a), which as-
sumes finite values around the mobility edge. We also notice
the magnitude of S rising when the chemical potential is tuned
far below or above the mobility edge. Even when μ lies on
the insulating side, some of the delocalized states participate
in transport because of the nonzero temperature, generating a
small but finite conductance. As the mobility of the electrons
decreases, the voltage necessary to stop their flux increases,
leading to a large Seebeck factor according to Eq. (7). In the
region far above Ec, the charge carriers flow in the opposite
direction to the heat carriers, leading to negative values for S.

We note that this behavior of the transport coefficients
can be reproduced by an approximate analytical calculation—
valid in the weak-coupling limit—based on the localiza-
tion properties of the energy eigenstates, as detailed in
Appendix B. This analysis implies that similar thermoelec-
tric characteristics will occur in other quasiperiodic systems
displaying a mobility edge.

The figure of merit ZT also exhibits a divergence below the
mobility edge, as shown in Fig. 6(b). This yields an extremely
efficient thermal machine, yet in a region of negligible elec-
trical conductance and thus vanishing power. Features more
interesting for the realization of a useful device are instead
visible when the chemical potential is tuned above the mo-
bility edge. In this region, the engine has finite conductance,
while the asymmetry of the transmission function gives rise
to a figure of merit ZT ≈ 10 just above the mobility edge. We
observe, moreover, two higher peaks of ZT ≈ 60 and ZT ≈
40 corresponding respectively to the upper and lower edges of
the first and second ballistic bands above the mobility edge.
Such values of ZT correspond to efficiencies far exceeding
those recorded in recent experiments [12].

C. Efficiency at maximum power

From the study of low-temperature transport, it is clear
that by tuning the chemical potential it is possible to obtain
an extremely efficient autonomous thermal machine at finite
power output. In order to study the machine’s performance
more systematically, we now focus on the conditions for
generating the maximum power. In the linear-response regime
with fixed �T , the power is maximized when �μ = eS�T/2
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FIG. 7. (a) Maximum power and (b) efficiency at maximum
power as a function of chemical potential at fixed temperature
T = 0.1 and bias �T = 0.01(t/kB ). Blue circles mark the points of
absolute maximum power.

[11]. Since this value depends on the chemical potential
through S, our goal is to find the best thermal machine or,
equivalently, the optimal μ in order to obtain the maximum
power output.

In Fig. 7, we plot the maximum power and corresponding
efficiency (9) as a function of μ, at the fixed temperature
T = 0.1 and bias �T = 0.01 (t/kB). We distinguish two cases
according to whether the charge current is positive (left to
right) or negative (right to left) according to our conventions.
In the former case, the temperature gradient drives particle
transport above the chemical potential, leading to power ex-
traction for μR > μL. In the latter case, the thermal gradient
causes holes below the chemical potential to migrate from left
to right, which generates power so long as μL > μR.

Two points that are particularly suitable for the realiza-
tion of the thermal machine are marked with blue circles
in Fig. 7: one in the region of positive JN , the other for
negative JN . Here, the machine produces the highest values
of electric power, with an efficiency reaching η ≈ 0.4ηC . The
strong thermoelectric response of the system at these two
points is due to the lowermost and uppermost edges of the
ballistic bands, respectively. Indeed, at low temperatures, it
seems preferable to exploit the band edges rather than the
mobility edge, since the power is significantly lower in the
vicinity of Ec.

D. Effect of increasing temperature

In this section, we explore the performance of the
quasiperiodic machine at higher temperatures. In the linear-
response regime, the temperature fixes the width of f ′(E ),
which determines the energy window centered on μ within
which transport takes place. As T increases, the gaps between
the bands are no longer resolved and the sharp features of
G and K displayed in Fig. 5 are broadened and reduced in
magnitude. As a result of this thermal broadening, the conduc-
tance is nonvanishing even for μ < Ec and the thermopower
exhibits a weaker slope.

In order to meaningfully compare the thermoelectric per-
formance of the GAAH wire at different temperatures, we
vary T while fixing the ratio �T/T = 0.1, thus also ensur-
ing that we remain in the linear-response regime. For each
value of T and �T , we find the chemical potential, μ∗,
and bias, �μ = eS(μ∗)�T/2, that maximize power output.
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FIG. 8. (a) Absolute maximum power and (b) corresponding
efficiency at maximum power as a function of temperature with
�T/T = 0.1. The solid black lines show results obtained by opti-
mizing the power only over values of μ that give rise to a particle
current flowing from the hot to the cold bath, JN > 0. The dashed
blue lines are instead obtained by restricting the maximization to
JN < 0. The chemical potential yielding this maximum power is
shown in the inset.

As before, we distinguish situations where JN > 0 and JN <

0—corresponding to heat transport by particles or holes,
respectively—and perform a separate maximization for each
case.

In Fig. 8, we show the maximum power and the corre-
sponding efficiency as a function of temperature. We first
focus on cases where JN > 0. The power grows linearly at
high temperature, while μ∗ decreases, as shown in the inset
of Fig. 8. The drop in efficiency visible around T � t/kB

is due to the particular structure of the spectrum: Here, the
transport window includes both ballistic bands, leading to a
more symmetric transmission function. At even higher tem-
perature, μ∗ lies below Ec on the localized side, and the whole
structure of the spectrum is exploited. All ballistic bands are
included in the transport window (giving high power), but
the transmission profile remains asymmetric and enhances the
thermoelectric response (giving high efficiency). Therefore,
the properties of the GAAH model are here essential to obtain
an efficient thermal machine with finite power output at high
temperature.

We repeat this study of maximum power for chemical
potentials where JN < 0, shown by the dashed blue lines
in Fig. 8. The machine initially produces more power in
this region, but as the temperature increases the recorded
power output assumes values closer to those of the previous
case and we see the two lines overlap in the plot, since the
transport window broadens to covers the whole spectrum. The
efficiency at maximum power converges to the CA bound, i.e.,
ηC/2, more quickly than in the case where JN > 0. Moreover,
the optimal chemical potential increases with temperature,
with μ∗ moving well above the uppermost edge of the bal-
listic region for large T . Therefore, the strong thermoelectric
response here is due mainly to the band edge.

Nevertheless, the presence of the mobility edge still en-
hances efficiency. In order to show this, we compute anal-
ogous data for a clean tight-binding wire, corresponding to
Eq. (14) but with Vi = 0 and with t = γ as before. In this case,
particle-hole symmetry is broken at the edges of the spectrum
located at energies E = ±2t . This leads to two perfectly
symmetric points of maximum power, whose distance from
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FIG. 9. (a) Absolute maximum power and (b) efficiency at max-
imum power, as in Fig. 8 but using a clean (i.e., nondisordered)
wire as a working medium. Identical values for positive and negative
current are obtained at symmetric chemical potentials relative to the
center of the conducting region (inset).

the center of the spectrum at E = 0, one below and the other
above, increases with temperature. As shown in Fig. 9, the
efficiency saturates the CA bound at high temperature, while
the maximum power is higher than for the GAAH model due
to the larger number of conducting states. However, at low and
intermediate temperatures where the spectral characteristics
can be resolved, the thermoelectric efficiency of the clean
wire, due exclusively to the presence of band edges, is lower
than for a quasiperiodic system supporting a mobility edge
also.

E. Beyond the GAAH model: A phenomenological
transmission function

The GAAH model has a fractal spectrum which is reflected
by the position of the peaks in the transmission function. Here
we show that the fine-grained structure of this fractal spectrum
is unimportant for the physics described above. To that end,
we study the transport properties of the setup by modeling
its transmission function with a series of boxcar functions
of height and width corresponding to the different ballistic
regions of the GAAH model. By construction, these boxcar
functions lack any fine structure whatsoever.

In Fig. 10(a), the boxcar approximation is plotted to-
gether with the exact transmission function from Fig. 4(b).
With this phenomenological transmission function, we now
calculate the transport properties. Figure 10(b) shows the

electrical conductance G as obtained from the phenomenolog-
ical approach along with the exact value of G for the GAAH
model, showing excellent agreement up to an overall scale
factor. The factor occurs because, due to the fractal nature
of the spectrum of the GAAH model, the integral of the
true transmission function of the GAAH model is a fraction
of that of the boxcar transmission function. Other Onsager
coefficients obtained from the phenomenological model also
differ by the same overall factor. This, in turn, means that
quantities defined as a ratio of the Onsager coefficients show
excellent agreement with the GAAH model. This is shown in
Fig. 10(d) for the efficiency at maximum power. Because of
the extreme simplicity of the phenomenological transmission
function, the contribution from each boxcar function can be
calculated analytically for both G and S. Furthermore, this
phenomenological transmission function can also be arrived at
more microscopically in the weak system-bath coupling limit
(see Appendix B).

This exercise shows that the physics described in previous
sections is not a specific property of the GAAH model that
we have considered here. Any system with similar coarse-
grained features in its transmission function will show the
same qualitative behavior. Such transmission functions are
expected in other quasiperiodic 1D systems with a mobility
edge separating ballistic and localized states. Hence, our
results exemplify the thermoelectric properties of all such
systems.

V. CONCLUSIONS

Nanoscale thermoelectrics rely on the principle of energy
filtering, where only particles within a certain energy window
are allowed to flow. Here, we have shown that the localization
transition in certain quasiperiodic systems gives rise to an
effective energy filter and thus a novel class of efficient quan-
tum thermal machines. In particular, we have characterized
the thermoelectric properties of a generalized Aubry-Andrè-
Harper model proposed in Ref. [34]. This model displays sev-
eral remarkable spectral features, including a mobility edge in
one dimension, whose position as a function of the Hamilto-
nian parameters is known analytically, and conducting bands
lying above the mobility edge that support ballistic transport.
We have shown how these properties can be exploited to
design a versatile and efficient heat engine.
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FIG. 10. (a) The transmission function for the setup in the same configuration as in the main text computed with NEGF (green lines),
overlapped by a series of boxcar approximations (black lines) following its profile. Comparison of (b) the electric conductance, (c) the
Seebeck coefficient, and (d) efficiency at maximum power obtained from the calculated transmission (solid green line) and from the boxcar
approximation (dashed black lines).
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These results rely on the assumption of weak applied bias,
so that the response of the system is linear in the temperature
and chemical-potential differences. Future work will extend
the analysis to far-from-equilibrium scenarios in order to as-
sess the full nonlinear response of the system. Here, the ability
to tune the transmission profile of quasiperiodic systems by
changing their Hamiltonian parameters could prove crucial in
obtaining high efficiency at finite power output [19].

Our proposal could be experimentally tested using ultra-
cold neutral atoms trapped in bichromatic optical lattices.
Although realizing the specific GAAH potential (21) may
be challenging in this context, it is possible to engineer 1D
quasiperiodic systems with a mobility edge by other means,
e.g., by lowering the primary lattice depth so that hopping
processes beyond nearest neighbor play a role [33,35–37].
These systems, which have been experimentally realized re-
cently [45,46], have similar spectral features and thus should
display similar thermoelectric properties to the GAAH model
studied in this work. For example, if we assume the same
nearest-neighbor interaction term t ∼ h × 500 Hz adopted in
the laboratory for 40K atoms at 0.15 TF [46], where TF is the
Fermi temperature, our units for temperature read 1 t/kB ∼
0.1 TF . Working in the linear-response regime simplifies
our theoretical analysis, but it determines a very low power
output (t2/h ∼ 2.0 × 10−28 W). We expect the power to be
considerably higher if generated using the toolbox of two-
terminal transport measurements that has been developed for
ultracold neutral atoms, where large applied biases have been
demonstrated [57–61]. Furthermore, the effect of attractive
or repulsive interparticle interactions could be experimentally
investigated in such a setup. Here, a rich interplay between
many-body localization, superfluidity, and nonequilibrium
transport phenomena is expected to emerge.

Looking further ahead, many other families of
quasiperiodic systems exist, displaying the whole gamut
of possible transport behaviors (see, for example, Ref. [83])
and topological effects [84]. However, the thermoelectric
properties of these systems are virtually unexplored as yet.
Our work represents a demonstration of the promise of
quasiperiodic thermal machines, but their full potential for
quantum thermodynamics remains to be uncovered.
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APPENDIX A: DEPENDENCE ON
SYSTEM-BATH COUPLING

The study of the proposed quasiperiodic thermoelectric is
characterized by a large number of parameters to control and
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FIG. 11. Dependence of the transport properties on the system-
bath coupling strength γ . (a) Electrical conductance as a function of
the distance between the chemical potential and the mobility edge,
obtained for multiple choices of γ . All curves have the same form
and differ only in their magnitude. (b) Figure of merit around the
mobility edge for different γ . Since the three coefficients show the
same behavior, their combination is γ independent and the different
curves completely overlap. We adopt the same quasiperiodic chain
used in the main text, fixing the temperature at T = 0.1 t/kB.

tune in order to reach the highest possible efficiency at finite
power output. In the main text, we show the properties of
the thermal machine computed at an intermediate coupling
regime, with γ fixed equal to t . The analysis of the efficiency
is, in fact, independent of this choice. In order to show this, we
compute the Onsager coefficients of the same system, keeping
the temperature and chemical potential constant and changing
just the strength of the coupling between the central chain and
the reservoirs. We have found that the forms of L11, L12, and
L22 as function of chemical potential remain the same regard-
less of γ , up to an overall factor. A change in the coupling
constant affects just the magnitude of the coefficients, as is ev-
ident from the conductance plotted in Fig. 11(a). The magni-
tude initially increases with γ , but, after reaching a maximum
at an optimum γ ∗, it drops as the particles begin to be scattered
back to the reservoirs without entering the central region
because of the high impedance mismatch. The same kind of
behavior is observed also for the other coefficients L12 and L22

in all temperature ranges. Quantities deriving from a ratio of
the Onsager coefficients, such as the thermopower S and the
figure of merit ZT , are thus independent of γ , as shown in
Fig. 11(b).

As a consequence, in the limit of large system size it is
possible to maximize the power output of the machine while
keeping its efficiency constant, just by tuning the coupling of
the chain to the baths in the setup. In Fig. 12, we collect, for
different values of γ , results for the maximum power and the
efficiency at the chemical potential which gives the highest
value for the electric power output when T = 0.1 t/kB. The
corresponding value of the chemical potential is the same
at every γ and the efficiency remains constant apart from
small numerical fluctuations, as expected. We see, instead,
the power rising linearly for small γ , reaching the highest
value at γ ∼ 2.0 t , and subsequently decaying with a power
law. The parameter γ can be then fixed without loss of gen-
erality, and, moreover, can be used to control the maximum
power output without affecting the efficiency of the thermal
machine.

013093-9



CECILIA CHIARACANE et al. PHYSICAL REVIEW RESEARCH 2, 013093 (2020)

20151050
0.38

0.39

0.4

0.41

0.42

(a)

20151050
0

1

2

3

4

5

6

7 10-6

(b)

FIG. 12. (a) Efficiency at maximum power as a function of
the system-bath coupling, for a fixed chemical potential, μ − Ec =
1.57 t . Since the Onsager coefficients are modified by the same pref-
actor when γ is changed, the efficiency remains constant. (b) Maxi-
mum power transferred by the machine at the same values of γ . It is
evident that it is possible to tune the system-bath coupling in such a
way to optimize power without changing efficiency.

APPENDIX B: ANALYTICAL RESULTS IN THE
WEAK-COUPLING LIMIT

In Sec. II C, we describe the importance of breaking the
symmetry between the dynamics of the electrons above and
below the chemical potential, or, in other words, the electron-
hole symmetry, in order to obtain a good thermoelectric. A
simple way to realize this effect is to put an energy filter
on the central system to prevent the transmission at certain
energies. This may be achieved, for example, by a band edge
or a mobility edge. Here we analytically demonstrate the
enhancement of thermoelectric effects due to this mechanism.

The particle and heat currents in a one-dimensional system
among two fermionic reservoirs, within the WBL approxi-
mation and in the weak system-bath coupling limit, can be
expressed directly as a function of the eigenstates of the
isolated system [52]:

Je = 2eγ
N∑

n=1

�2
Ln�

2
Rn

�2
Ln + �2

Rn

[ fL(En) − fR(En)], (B1)

Jh = 2γ

N∑
n=1

�2
Ln�

2
Rn

�2
Ln + �2

Rn

(En − μ)[ fL(En) − fR(En)], (B2)

where �ln, l = L, R is the component of the nth eigenstate
on the first (l = L) or the last (l = R) site of the chain.
In the linear-response regime, we thus obtain the Onsager
coefficients for reference values of μ and T :

L11 = 2γ e2T
N∑

n=1

�2
Ln�

2
Rn

�2
Ln + �2

Rn

[− f ′(En)], (B3)

L12 = 2γ eT
N∑

n=1

�2
Ln�

2
Rn

�2
Ln + �2

Rn

(En − μ)[− f ′(En)], (B4)

L22 = 2γ T
N∑

n=1

�2
Ln�

2
Rn

�2
Ln + �2

Rn

(En − μ)2[− f ′(En)]. (B5)

The expressions above are strictly valid only in the weak
system-bath coupling regime. However, for larger γ the only
error is an overall multiplicative factor, which is the same

for all the currents and Onsager coefficients. Considerations
about quantities defined through ratios of Onsager coefficients
can be then regarded as generic, since these prefactors cancel
each other.

It is evident that in order to get a coefficient L12 different
from zero, the eigenstates need to behave differently for
energy above or below the chemical potential μ. With this
condition, the Seebeck coefficient, which is introduced in
Eq. (7) and enters quadratically in the definition of the figure
of merit, can assume finite values. If the spectrum of the sys-
tem contains an isolated cluster of eigenstates, the strongest
thermoelectric effects arises when the chemical potential is
placed at their edges, since there are no states contributing
below or above a certain index n∗ in the sum appearing in
Eqs. (B3)–(B5). On the other hand, for a system exhibiting a
mobility edge at Ec = En∗ , the eigenfunctions scale with the
system size N as follows:

�2
ln ∼ e−N if n < n∗,

�2
ln ∼ 1

N
if n > n∗. (B6)

The sums can be then split into two parts: the terms for
n < n∗ and for n > n∗. The former terms will go to zero as
N increases, while the latter will converge to a finite value.

We now make a further assumption that the eigenfunctions
�ln contribute approximately the same weight for each value
of n > n∗ in Eqs. (B3)–(B5). The Onsager coefficients for
large enough N can be thus approximated, up to a proportion-
ality constant, by

L11 ∝ γ
e2T

N

N∑
n>n∗

[− f ′(En)], (B7)

L12 ∝ γ
eT

N

N∑
n>n∗

(En − μ)[− f ′(En)], (B8)

L22 ∝ γ
T

N

N∑
n>n∗

(En − μ)2[− f ′(En)]. (B9)

We display in Fig. 13 the comparison between the exact com-
putation carried out through the Landauer-Büttiker integrals
and the predictions of the above equations. We notice that the
proportionality constant, independent of the system size, is the
same for all three Onsager coefficients. As a consequence, it
does not affect quantities such as the thermopower, the figure
of merit, or the efficiency. Therefore, we see that we only
require the single-particle eigenvalues of the system to ac-
curately recover the essential physics, up to a proportionality
constant.

Now, we take one further step of approximation. We
note that the single-particle eigenvalues occur in clusters, as
evidenced by the ballistic bands in Fig. 4(b). Because of
quasiperiodicity, these eigenvalue clusters have a finer self-
similar structure. We now choose to completely ignore this
finer structure and replace the summations in Eqs. (B7), (B8),
and (B9) by integrals over the width of each ballistic band.
This amounts to phenomenologically modeling the transmis-
sion function by a series of boxcar functions, as done in
Sec. IV E. With this simplified assumption, we can derive
closed-form analytical expressions for the contribution from
each boxcar function to the Onsager coefficients L11 and L12.
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FIG. 13. Comparison between the transport coefficients com-
puted through the Landauer-Büttiker integrals of Eq. (12) (solid
black line), and the approximated forms in Eqs. (B7)–(B9) (dashed
blue line). (a) Electrical conductance. (b) Seebeck coefficient. The
parameters of the system are the same as in the main text, but with
a weak coupling of γ = 0.01 t . The proportionality factor of 0.06
in panel (a) is a free parameter, which encapsulates the microscopic
details of the eigenfunctions that are neglected in the approximations
(B7)–(B9).

To state the result concisely, we define the following three
functions:

A = tanh

(
μ − E1

2kBT

)
, B = tanh

(
E2 − μ

2kBT

)
,

C = log

[
cosh

(
μ − E1

2kBT

)
sech

(
E2 − μ

2kBT

)]
.

The contribution to L11 and L22 from a band of ballistic states
between E1 and E2 is then given by

L11 ∝ e2T γ

N
[A + B], (B10)

L12 ∝ eT γ

N
[(E1 − μ)A + (E2 − μ)B + 2kBTC]. (B11)
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FIG. 14. (a) Electrical conductance and (b) Seebeck coefficient
at low temperature T = 0.1 t/kB and γ = 0.01 t . The quantities are
computed through the exact Landauer-Büttiker integrals (solid black
line), and the analytical formulas in Eqs. (B10) and (B11) (dashed
blue line). The proportionality factor of 6.0 in panel (a) is a free
parameter, which reflects the fractal structure of the transmission
function that is neglected in the boxcar approximation.

To show the correctness of these results, we plot the con-
ductance G and Seebeck coefficient S for chemical potentials
μ close to the mobility edge. At low temperatures, only
one cluster contributes, and this contribution should match
that obtained from the above analytical formulas, up to a
proportionality constant for G. Plots of G and S as obtained
from the above formula are shown in Fig. 14 along with the
exact results. Indeed, we see that G is qualitatively identical
up to a proportionality constant, while S is both qualitatively
and quantitatively the same. The Seebeck coefficient starts to
deviate for higher μ due to contributions from the next cluster
of ballistic states. This can be remedied by adding another
boxcar function corresponding to the next cluster, as done in
obtaining Fig. 10(c).
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