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Computational Methods

Lattice Dynamics

All the structural optimisation and force constants calculations were previously presented.1

Being Φij(lm) the force constant, coupling the i-th atomic degrees of freedom in the lattice

cell at the position Rl and the j-the atomic degrees of freedom in the lattice cell of position

Rm, the dynamical matrix, K(q), at the q-point, is built as

Kij(q) =
∑
l

Φij(l0)eiq·Rl , (1)

where the sum runs over all the infinite periodic cells of the crystal. The eigenvalues of K(q)

are ω2(q), while the eigenvectors L(q) defines the normal modes of vibration.

Magnetic Properties Calculations

The ORCA software2 has been employed for the calculation of the ge and A tensors for both

equilibrium and distorted geometries. We have used the basis sets def2-TZVP for V and O,

def2-SVP for C and H and a def2-TZVP/C auxiliary basis set for all the elements. For the

calculation of the A tensors the entire basis set have been de-contracted. The calculations of

the ge tensors have been carried out at both the DFT level, with the PBE functional,3 and at

the CASSCF+NEVPT2 level of theory, with a (1,5) active space and spin-orbit contributions

included through quasi-degenerate perturbation theory. The calculations of the A tensors

have been performed at the DFT level with the PBE functional.

Machine Learning Training and Test Sets Generations

The training sets for the machine learning (ML) models have been generated by calculating

both ge and A for 2600 distorted structures. The distorted structures were obtained by

displacing all the Cartesian coordinates of all the atoms of the DFT optimized geometry
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of VO(acac)2 by a random value within the interval [-0.05Å: 0.05Å] for 1300 structures

and [-0.01Å: 0.01Å] for the remaining 1300 structures. Among the total of 2600 distorted

geometries, 1800 were used for training the ML models, while 800 were used for testing.

Supervised Machine Learning.

Following a recent proposal for the ML modelling of magnetic properties,4 both the tensors

ge and A have been decomposed into spherical tensors of order 0 (T 0) and 2 (Tm), where the

index m runs over the five component of the tensor. The spherical tensors are decomposed

into atomic contributions and then written as function of atomic environment fingerprints,

i.e. the bispectrum components.5 The code LAMMPS6 has been used to generate the bi-

spectrum components. In this framework, the ML model reads

Tm =
Na∑
i

Tm(i) =
Na∑
i

Nj∑
j

αmj (i)Bj(i) , (2)

where index i runs over the number of atoms Na, the index j runs over the Nj bi-spectrum

components, Bj, describing the atomic environment of the i-th atom, and αmj are the co-

efficients that need to be determined. For the training of this model we used linear Ridge

regression:

min
{αj}

[
‖TmQM({ri})− TmML({ri}, {αmj })‖2 + λ‖{αmj }‖2

]
. (3)

where the first term corresponds to the canonical least-square-fitting of the TmQM first princi-

ples reference values, and the second one to the regularization term. Here λ was set to 10−2

for the training of ge and 10−4 for the training of A. The covariancy of the Ridge regression

for tensorial properties was enforced as proposed recently.4 In all cases the order 2J = 8

for the bi-spectrum components, corresponding to 56 elements per atomic species, has been

used. A correspondence between atomic species and chemical identity was enforced with

exception of the Vanadyl’s Oxygen, which has been treated as an additional atomic species.

Therefore, a model with five atomic species and 280 free parameters was trained. The radial
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cutoff Rcut used to build the bi-spectrum components have been optimised as to minimise

the overall error and it was fixed to 3.5 Å. The definition of bi-spectrum components gives

the possibility to differentiate atomic kinds with weights and atomic radii.5 In this work

we have set all the weights to unity and kept all the atomic radii equal to 0.5. The latter

condition corresponds to using the same Rcut for every species. Training curves of ge, both

at the CASSCF and DFT level of theory, and A are provided as Supplementary Materials.

The error associated with the ML model of ge trained on CASSCF reference data is con-

siderably higher than the one trained on DFT results. The former is therefore only used to

estimate the error introduced in the estimation of relaxation time with spin-phonon coupling

coefficients calculated with ML compared with a full ab-initio treatment. These results are

provided as Supplementary Materials.

Spin-Phonon Coupling Coefficients

The spin phonon coefficients relative to the ge and A tensors have been calculated as numer-

ical derivatives. Using the ML models, A and ge were sampled along every pair of Cartesian

molecular degrees of freedom in the range [-0.05Å: 0.05Å]×[-0.05Å: 0.05Å] for a total num-

ber of 100 points. All the 90 molecular degrees of freedom were considered. Considering

two different magnetic properties, A and ge, a total of 819,000 ML evaluations were carried

out. Each one of these 2-dimensional grids of points was interpolated with a two-variable

third-order polynomial expression, f(x, y) = c30x
3 + c03y

3 + c21x
2y+ c12xy

2 + c20x
2 + c02y

2 +

c1xy + c10x + c01y + c00. The coefficients c01 and c10 correspond to first-order spin-phonon

coupling coefficients, ∂ge/∂Xis or ∂A/∂Xis, while the coefficient c11, c20 and c02 corresponds

to mixed and diagonal second-order derivatives such as ∂2ge/∂Xis∂Xjt or ∂2A/∂Xis∂Xjt.

Translational invariance conditions were enforced on the calculated derivatives of the spin

Hamiltonian tensors as discussed in Supplementary Materials. All the results presented in

the main manuscript have been obtained with spin-phonon coupling coefficients calculated

starting from machine learning models trained on DFT reference values for both A and ge.
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Spin-phonon coupling coefficients calculated with machine learning models trained on ge

values obtained by CASSCF were only used for comparison with previous results on Direct

relaxation.1 A discussion of the latter is provided here as Supplementary Materials.

Spin-Phonon Coupling Translational Invariance

Translational invariance conditions were enforced on the calculated derivatives of the spin

Hamiltonian tensors by rescaling the values by a mean deviation of this condition. For

instance, for the elements ab of the tensor A, the correction for the s Cartesian direction

reads (∂Aab
∂Xis

)
=
(∂Aab
∂Xis

)
−Devs , Devs =

1

N

N∑
i

(∂Aab
∂Xis

)
, (4)

where N is the number of atoms in the molecule. An equivalent expression is used for the

diagonal components of the second-order derivatives. We note that this correction is small

for the spin-phonon coupling coefficients obtained with ML and including all the atoms in

the model, but it might become significant when the estimations of spin-phonon coupling

coefficients is carried out considering only a fraction of the atoms and/or the numerical

derivatives are computed on a small number of points. The Cartesian derivatives (∂Ĥs/∂Xis)

and (∂2Ĥs/∂Xis∂Xjt) have then been projected onto the normal modes. For the element ab

of the tensor A it reads

( ∂Aab
∂Qαq

)
=

Ncells∑
l

N,3∑
is

√
~

Nqωαqmi

eiq·RlLαqis

(∂Aab
∂X l

is

)
, (5)

( ∂2Aab
∂Qαq∂Qβq′

)
=

Ncells∑
l

Ncells∑
v

N,3∑
is

N,3∑
jt

√
~

Nqωαqmi

√
~

Nqωβq′mj

eiq·Rleiq
′·RvLαqis L

βq′

jt

( ∂2Aab
∂X l

is∂X
v
jt

)
,

(6)

where X l
is is the s Cartesian coordinate of the i-th atom of N with mass mi, inside the

unit-cell replica at position Rl, and Nq is the total number of q-points used.
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Spin Relaxation Calculations

For all the simulations, an initial density matrix corresponding to a pure state with maximum

spin polarization was used. The full non-secular Redfield equations were solved and used to

propagate the total spin density matrix. All the results have been obtained by converging

the phonon lifetime to the harmonic limit. The Dirac’s Delta functions present in G1−ph

and G2−ph have been evaluated as a Gaussian function in the limit for infinite q-points

and vanishing Gaussian breadth. For one-phonon processes, a grid of 643 q-points and a

Gaussian breadth of 1 cm−1 was estimated to accurately reproduce this limit for all the

temperature and field values investigated. For two-phonon relaxation, a grid of 23 q-points

and a Gaussian of 1 cm−1 was enough to converge the results. Convergence tests for the

one-phonon processes were presented before,1 while those for two-phonon relaxation are

available as Supporting Materials. The phenomenological modulation of phonon lifetime

only affects the direct relaxation, by slowing it down as discussed previously,1 while only a

slight effect is observed on Raman relaxation. The magnetization dynamics of the electronic

spin was monitored in time by calculating ~M = Tr{ρ̂s(t)~S}, where ~S is the electronic spin

operator. The relaxation time τ was obtained by fitting Mz(t) with an exponential equation,

Mz(t) = Mz(0)exp(−t/τ) +M(∞).
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Derivation of the Non-Secular Redfield Equations for

Two-Phonon Processes.

Let us define a general spin Hamiltonian Ĥs, the phonons Hamiltonian Ĥph and the spin-

phonon coupling Hamiltonian Ĥsph as

Ĥs =
∑
v

Ĥv , Ĥph =
∑
αq

~ωαq(n̂αq +
1

2
) , Ĥsph =

1

2

∑
αq

∑
βq′

∑
v

( ∂2Ĥv

∂Qαq∂Qβq′

)
Q̂αqQ̂βq′ ,

(7)

where the index v runs over all the terms of the spin Hamiltonian and Ĥsph include the

modulation of the spin Hamiltonian by two phonons at the time. The dynamics of the spin

and bath systems can be described by means of density operator ρ, whose equation of motion

in the interaction picture reads:

dρ̂(t)

dt
= − i

~
[Ĥsph(t), ρ̂(t)] (8)

As the interest is on dynamics of only spin degrees of freedom it is convenient to define a

reduced density operator taking trace over bath degrees of freedom: ρ̂s(t) = trB(ρ̂(t)). After

a formal integration of equation (8):

dρ̂s(t)

dt
= − 1

~2

∫ t

0

ds trB[Ĥsph(t), [Ĥsph(s), ρ̂(s)]] . (9)

The first step in the derivation of the Redfield equations is the Born approximation, that

assumes the absence of quantum correlation between spins and phonons in virtue of their

weak coupling, and reads ρ̂(t) = ρ̂s(t) ⊗ ρ̂Beq, where ρ̂Beq is the equilibrium phonons bath

density matrix.

Next, the Markov approximation is carried out assuming the vibrational degrees of freedom

to relax much faster than the spin system. To do so, the substitution t′ = t − s should be
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done and the t′ superior integration boundary should be brough to +∞:

dρ̂s(t)

dt
= − 1

~2

∫ ∞
0

dt′trB[Ĥsph(t), [Ĥsph(t− t′), ρ̂s(t)⊗ ρ̂Beq]] . (10)

It is convenient to introduce a simplified notation where V̂ vαqβq′ =
(
∂2Ĥv/∂Qαq∂Qβq′

)
and

substitute the definition of Ĥsph, as from Eq. 7, into Eq. 10 to obtain

dρ̂s(t)

dt
=− 1

4~2

∫ ∞
0

dt′
∑
v

2
∑
αq

∑
βq′

{
(11)

[
V̂ vαqβq′(t)V̂ vα−qβ−q′(t− t′)ρ̂s(t)− V̂ vαqβq′(t)ρ̂s(t)V̂ vα−qβ−q′(t− t′)

]
(12)

TrB

(
Q̂αq(t)Q̂βq′(t)Q̂α−q(t− t′)Q̂β−q′(t− t′)ρ̂Beq

)
− (13)[

V̂ vαqβq′(t− t′)ρ̂s(t)V̂ vα−qβ−q′(t)− ρ̂s(t)V̂ vαqβq′(t− t′)V̂ vα−qβ−q′(t)
]

(14)

TrB

(
Q̂αq(t− t′)Q̂βq′(t− t′)Q̂α−q(t)Q̂β−q′(t)ρ̂

B
eq

)}
(15)

where the terms
∫∞
0
dt′e−iωijt

′
TrB

(
Q̂αq(t)Q̂βq′(t)Q̂αq(t − t′)Q̂βq′(t − t′)ρ̂Beq

)
are the Fourier

transforms of the two-phonon bath equilibrium correlation functions and depend on tem-

perature. Eq. (15) was derived by taking into account that only products of terms such

as Q̂αq(t)Q̂α−q(t − t′) would survive the thermal average and corresponds to transitions at

non-zero energy. The factor 2 multiplying the summations on the indexes αqβq′ accounts

for the multiplicity of terms coming from developing the full product Q̂αq′(t)Q̂βq′′(t)Q̂γq′′(t−

t′)Q̂δq′′′(t− t′).

By taking the matrix elements of ρ̂s(t) in the eigenket basis of Ĥs|a〉 = Ea|a〉 it is possible

to obtain:
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dρsab(t)

dt
=− 1

2~2

∫ ∞
0

dt′
∑
v

∑
αq

∑
βq′

∑
cd

{
(16)

[
V vαqβq′

ac (t)V vα−qβ−q′
cd (t− t′)ρsdb(t)− V vαqβq′

ac (t)ρscd(t)V
vα−qβ−q′
db (t− t′)

]
(17)

TrB

(
Q̂αq(t)Q̂βq′(t)Q̂α−q(t− t′)Q̂β−q′(t− t′)ρ̂Beq

)
− (18)[

V vαqβq′

ac (t− t′)ρscd(t)V vα−qβ−q′
db (t)− ρsac(t)V vαqβq′

cd (t− t′)V vα−qβ−q′
db (t)

]
(19)

TrB

(
Q̂αq(t− t′)Q̂βq′(t− t′)Q̂α−q(t)Q̂β−q′(t)ρ̂

B
eq

)}
(20)

Making the time dependencies of spin degrees of freedom explicit by going back to the

Scroedinger picture, Vab(t) = 〈a|eiH0tV e−iH0t|b〉 = eiωabtVab, and doing some algebra it is

possible to arrive at the two-phonon contribution of the non-secular Redfield equations

dρsab(t)

dt
=
∑
cd

ei(ωac+ωdb)tR2−ph
ab,cd ρ

s
cd(t) , (21)

where
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R2−ph
ab,cd =− 1

2~2
∑
v

∑
αq

∑
βq′

(22)

{∑
j

δbdV
vαqβq′

aj V vα−qβ−q′
jc

∫ ∞
0

dt′e−iωjct
′
TrB

(
Q̂αq(t)Q̂βq′(t)Q̂α−q(t− t′)Q̂β−q′(t− t′)ρ̂Beq

)
(23)

− V vαqβq′

ac V vα−qβ−q′
db

∫ ∞
0

dt′e−iωdbt
′
TrB

(
Q̂αq(t)Q̂βq′(t)Q̂α−q(t− t′)Q̂β−q′(t− t′)ρ̂Beq

)
(24)

− V vαqβq′

ac V vα−qβ−q′
db

∫ ∞
0

dt′e−iωact
′
TrB

(
Q̂αq(t− t′)Q̂βq′(t− t′)Q̂α−q(t)Q̂β−q′(t)ρ̂

B
eq

)
(25)

+
∑
j

δcaV
vαqβq′

dj V vα−qβ−q′
jb

∫ ∞
0

dt′e−iωdjt
′
TrB

(
Q̂αq(t− t′)Q̂βq′(t− t′)Q̂α−q(t)Q̂β−q′(t)ρ̂

B
eq

)}
(26)

Finally, we write explicitly the Fourier transform of the bath correlation functions, starting

from substituting the relation between the normal modes of vibration Q̂αq and the creation

(annihilation) operators â† (â) and their time evolution

Q̂αq =
1√
2

(â†αq+âα−q), eiĤphtâ†αqe
−iĤpht = eiωαqtâ†αq, eiĤphtâαqe

−iĤpht = eiω−αqtâαq. (27)

This leads to
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∫ ∞
0

dt′e−iωijt
′
TrB

(
Q̂αq(t)Q̂βq′(t)Q̂α−q(t− t′)Q̂β−q′(t− t′)ρ̂Beq

)
= (28)

1

4

∫ ∞
0

dt′e−iωijt
′
TrB

[
eiωαqt

′
eiωβq′ t

′
â†αqâαqâ

†
βq′ âβq′ + e−iωαqt

′
e−iωβq′ t

′
âα−qâ

†
α−qâβ−q′ â

†
β−q′+

(29)

eiωαqt
′
e−iωβq′ t

′
â†αqâαqâβ−q′ â

†
β−q′ + e−iωαqt

′
eiωβq′ t

′
âα−qâ

†
α−qâ

†
βq′ âβq′

]
= (30)

1

4

∫ ∞
0

dt′e−i(ωij−ωβq′−ωαq)t
′
n̂αqn̂βq′ +

1

4

∫ ∞
0

dt′e−i(ωij+ωαq+ωβq′ )t
′
(n̂αq + 1)(n̂βq′ + 1)+ (31)

1

4

∫ ∞
0

dt′e−i(ωij−ωαqt
′+ωβq′ )t

′
n̂αq(n̂βq′ + 1) +

1

4

∫ ∞
0

dt′e−i(ωij+ωαq−ωβq′ )t
′
(n̂αq + 1)n̂βq′ , (32)

where we have used the property ωαq = ωα−q and the definition of the average phonon

number n̄αq = TrB

[
â†αqâαq

]
.

Using the definition πδ(ω) =
∫∞
0
dt′e−iωt

′
we can rewrite the Raman Redfiled operator R2−ph

ab,cd

as

R2−ph
ab,cd =− π

8~2
∑
v

∑
αq

∑
βq′

(33)

{∑
j

δbdV
vαqβq′

aj V vα−qβ−q′
jc G2−ph(ωjc, ωαq, ωβq′)− V vαqβq′

ac V vα−qβ−q′
db G(ωdb, ωαq, ωβq′)

(34)

− V vαqβq′

ac V vα−qβ−q′
db G2−ph(ωca, ωαq, ωβq′) +

∑
j

δcaV
vαqβq′

dj V vα−qβ−q′
jb G(ωjd, ωαq, ωβq′)

}
,

(35)
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where

G2−ph(ωij, ωαq, ωβq′) =δ(ωij − ωαq − ωβq′)n̄αqn̄βq′ + δ(ωij + ωαq + ωβq′)(n̄αq + 1)(n̄βq′ + 1)+

(36)

δ(ωij + ωαq − ωβq′)(n̄αq + 1)n̄βq′ + δ(ωij − ωαq + ωβq′)n̄αq(n̄βq′ + 1) .

(37)

Eqs. (7) and (27) assume the vibrational dynamics to be perfectly harmonic and undumped.

In real systems, this approximation is never perfectly fulfilled and anharmonic terms need to

be introduced in the definition of Ĥph. In a perturbative regime this leads to an exponential

decay profile of the phonons correlations functions with rate ∆/2π. In this regime the Fourier

transform of the two-phonon correlation function G2−ph becomes

G2−ph(ωij, ωαq, ωβq′) =
1

π

[ ∆αqβq′n̄αqn̄βq′

∆2
αqβq′ + (ωij − ωαq − ωβq′)2

+
∆αqβq′(n̄αq + 1)(n̄βq′ + 1)

∆2
αqβq′ + (ωij + ωαq + ωβq′)2

+

(38)

∆αqβq′n̄αq(n̄βq′ + 1)

∆2
αqβq′ + (ωij − ωαq + ωβq′)2

+
∆αqβq′(n̄αq + 1)n̄βq′

∆2
αqβq′ + (ωij + ωαq − ωβq′)2

]
,

(39)

where ∆αqβq′ = ∆αq + ∆βq′
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Convergence of Machine Learning Results.
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Supplementary Figure 1: Training Curves for the A Tensor ML Regression. The
error on both training and test sets is reported as function of the training set size. The test
set is always kept at its maximum size.
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Supplementary Figure 2: Training Curves of the g Tensor ML Regression.The error
on both training and test sets is reported as function of the training set size. The test set
is always kept at its maximum size. Both training and test sets were calculated at the DFT
level of theory.
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used to calculate A⊥ and A‖. The results for training and test sets are then compared among
ML predictions and ab initio reference values.
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Supplementary Figure 4: Comparison of DFT and ML prediction of Eigenvalues of
the Traceless g Tensor. The traceless tensor ge is diagonalized and its eigenvalues are
used to calculate g⊥ and g‖. The results for training and test sets are then compared among
ML predictions and ab initio reference values.
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Supplementary Figure 5: Comparison of DFT and ML prediction of first-order
spin-phonon coupling. The components of the tensors ge and A have been numerically
differentiated at the first order with respect to the Cartesian positions of the atoms of the first
coordination shell. The left and right panels report the comparison between these quantities
calculated with ML and DFT, for A and ge, respectively. A Pearson correlation coefficient
of 0.85 and 0.98 was calculated for for A and ge, respectively.
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Supplementary Figure 6: Comparison of CASSCF and ML prediction of Eigenvalues
of the Traceless g Tensor. The traceless tensor ge is diagonalized and its eigenvalues are
used to calculate g⊥ and g‖. The results for training and test sets are then compared among
ML predictions and ab initio reference values.
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Convergence of Relaxation Time.

14.5

15

15.5

16

16.5

17

17.5

18

102 103 104 105 106 107

τ
(m

s)

Number of Resonant Phonons

10

10.5

11

11.5

12

12.5

13

102 103 104 105 106 107

τ
(m

s)

Number of Resonant Phonons

Supplementary Figure 7: Convergence of Raman Relaxation Time as Function of
Brillouin Zone Integration Grid. Relaxation time is calculated at |B|=0.1 T (left panel)
and |B|=1.0 T (right panel) with uniform grids of points in Brillouin zone with mesh 23, 43,
63, 83 and 103. The temperature is set to 25 K for all the simulations. The x-axis reports
the number of resonant phonons effectively included in the calculation of spin relaxation.
The Dirac’s delta function used to estimate the resonance condition was approximated with
a Gaussian with smearing of 1 cm−1.
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Supplementary Figure 8: Spin-phonon relaxation time at 0.3T. Computed direct (red
line and squares), computed Raman (black line and triangles) and AC measured (blue line
and circles) spin relaxation time as function of temperature T with an external magnetic
field of 0.3 T. The star symbols correspond to the average T1 obtained from X-Band EPR
measurements of diluted samples, both solid-state and frozen solution.7–10
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Supplementary Figure 9: Spin relaxation with CASSCF. The Raman and Direct spin
relaxation time calculated using a machine-learning model for ge trained on CASSCF. (Left
Panel) Computed direct (red line and squares), computed Raman (black line and triangles)
and AC measured (blue line and circles) spin relaxation time as function of the external
magnetic field |B| at 20 K. The star symbol corresponds to the average T1 obtained from
EPR measurements of magnetically diluted samples, both solid-state and frozen solution.7–10

(Right Panel) Computed direct (red line and squares), computed Raman (black line and
triangles) and AC measured (blue line and circles) spin relaxation time as function of tem-
perature T with an external magnetic field of 5 T.
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Supplementary Figure 10: Validation of Spin Dynamics with Machine Learning.
The direct relaxation dynamics computed with spin-phonon coupling coefficients obtained
by ML trained on CASSCF and by CASSCF directly.1 The left panel reports the dynamics
as function of temperature in external field of 5 T. The right panel reports the dynamics
as function of the external field |B| at 20 K. Considering the rather poor accuracy of the
ML model trained on CASSCF the agreement is exceptionally good. Discrepancies only
appear below 2 T, where phonons’ numerical noise becomes important for Direct relaxation.
Phonons involved in Raman relaxation have energies well above 10 cm−1 and these results
suggest a good accuracy of ML in quantify them.
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