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Tunable phonon-induced steady-state coherence in a
double-quantum-dot charge qubit
Archak Purkayastha 1✉, Giacomo Guarnieri1, Mark T. Mitchison 1, Radim Filip2✉ and John Goold1✉

Charge qubits can be created and manipulated in solid-state double-quantum-dot (DQD) platforms. Typically, these systems are
strongly affected by quantum noise stemming from coupling to substrate phonons. This is usually assumed to lead to decoherence
towards steady states that are diagonal in the energy eigenbasis. In this article, we show, to the contrary, that due to the presence
of phonons the equilibrium steady state of the DQD charge qubit spontaneously exhibits coherence in the energy eigenbasis with
high purity. The magnitude and phase of the coherence can be controlled by tuning the Hamiltonian parameters of the qubit. The
coherence is also robust to the presence of fermionic leads. In addition, we show that this steady-state coherence can be used to
drive an auxiliary cavity mode coupled to the DQD.
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INTRODUCTION
Preparation and coherent control of qubit states is at the heart of
many quantum technologies1. Undoubtedly, quantum coherence
is the most primordial non-classical effect and is at the root of
many advantages displayed by quantum technologies over their
classical equivalents. One of the major challenges for applications
is to prepare a qubit in a state that has a controllable amount of
coherence with stability in the long-time limit2. In real physical
systems, quantum coherence is usually a fragile property, which is
eventually destroyed by the presence of a surrounding environ-
ment3,4. It is therefore no surprise that a plethora of strategies to
preserve coherence have been conceived, such as quantum error
correction5, dynamical decoupling6 or feedback control7. All of
these schemes are to some degree an inevitable battle against
decoherence. Rather than fighting this battle, here we highlight a
different counter-intuitive route to generate and preserve
coherence using quantum noise.
We specifically consider a semiconductor double-quantum-dot

(DQD) embedded on a substrate8–14 that realizes a charge qubit
coupled to a phononic bath15,16. It has been previously demon-
strated that properties of the DQD may be used to extract
information about the phononic bath8,9. In a recent experi-
ment10,11, the DQD and substrate were coupled to an auxiliary
optical cavity, which was in turn used to experimentally
characterize the spectral density of the substrate phonons. In this
article, we model the dynamical evolution of these platforms and
focus on their steady-state properties. Remarkably, we find that
the presence of phonons autonomously drives the DQD charge
qubit to a steady state that has coherence in the energy
eigenbasis while retaining a significant degree of purity. This
surprising result finds its explanation in the particular structure of
the system–bath interaction17. Furthermore, the magnitude of
steady-state coherence can be controlled by changing the
experimentally tunable parameters of the qubit Hamiltonian, the
detuning and the hopping. This is proven through an explicit
calculation and characterization of the steady-state Bloch vector of
the charge qubit as a function of the controllable Hamiltonian

parameters. We also show that the coherence is robust to the
presence of fermionic leads.
In addition to the obvious importance of generating coherence

for quantum information processing, there is currently significant
interest in harnessing coherence and exploiting it as a resource in
other contexts18. In particular, coherence in the energy eigenbasis
has been identified as one of the key features distinguishing
quantum thermodynamics from its classical counterpart19–21. For
example, coherence may enhance the performance of quantum
refrigerators22–25 and heat engines26–28 or be directly converted
into work29–31. To address this point, we conclude the article by
showing that, in our set-up, the above phonon-induced steady-
state coherence of the DQD can in fact be exploited to drive a
mode of the surrounding cavity.

RESULTS
Autonomous generation of steady-state coherence
The main theoretical idea behind the autonomous generation of
steady-state coherence was first introduced and explored in ref. 17.
In that work, sufficient conditions concerning the structure of the
interaction Hamiltonian between a qubit and a bosonic bath were
identified that lead to steady-state coherence. In particular, it was
shown that a spin-boson model with a Hamiltonian of the form

Ĥ ¼ ωq

2
σ̂z þ

X
k

Ωkb̂
y
kb̂k þ f 1σ̂z þ f 2σ̂xð Þ

X
k

λk b̂
y
k þ b̂k

� �
(1)

autonomously leads to a non-zero steady-state value for hσ̂xi. Here
σ̂x;y;z denote the usual Pauli spin operators, f1, f2 ≠ 0 two generic
coupling constants and b̂k is the bosonic annihilation operator of
the kth bath mode. The results presented in this paper stem from
the crucial observation that a semiconductor DQD in contact with
a phononic substrate is described exactly by a Hamiltonian of the
form of Eq. (1).

The DQD charge qubit
The set-up we consider is depicted schematically in Fig. 1. The
DQD comprises two fermionic modes with strong repulsive
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interaction between them. Substrate phonons are coupled
to the electric dipole moment of the DQD. The full Hamiltonian
(refs 11,13,32) is then given by Ĥ ¼ ĤS þ ĤSE þ ĤE with

ĤS þ ĤSE ¼ ε
2 þ B̂
� �

n̂1 � n̂2ð Þ þ tc ĉy1ĉ2 þ ĉy2ĉ1
� �

þ Vn̂1n̂2;

B̂ ¼P
k
λk b̂

y
k þ b̂k

� �
; ĤE ¼

P
k
Ωkb̂

y
kb̂k ;

ĤS ¼ ε

2
n̂1 � n̂2ð Þ þ tc ĉy1ĉ2 þ ĉy2ĉ1

� �
þ Vn̂1n̂2; ĤSE ¼ B̂ n̂1 � n̂2ð Þ:

(2)

Here n̂‘ ¼ ĉy‘ ĉ‘, ĉ‘ is the fermionic annihilation operator of the ℓth
site and b̂k is the phononic annihilation operator of the kth mode
of the bath. The experimentally controllable parameters of the
DQD are the detuning ε and the hopping tc. The repulsive
interaction between the two sites is given by V, which is usually
much larger than any other energy scale in the regime of
operation. The operator B̂ embodies the noisy detuning due to the
fluctuating phonon bath. Assuming that the latter is in a thermal
state relative to an inverse temperature β, i.e. ρE ¼ Z�1

E expð�βĤEÞ
(ZE ¼ TrEðexpð�βĤEÞÞ), the noise is characterized by zero mean
value, i.e. hB̂ðtÞiE ¼ 0, and the auto-correlation function

hB̂ðtÞB̂ð0ÞiE ¼
Z 1

0
dω Wsðω; βÞ cosðωtÞ � iWaðωÞ sinðωtÞ½ �

Wsðω; βÞ ¼ JphðωÞ coth
βω

2

� �
; WaðωÞ ¼ JphðωÞ; (3)

where JphðωÞ ¼
P

kλ
2
kδðω� ΩkÞ is the spectral function of the

phononic bath and h:::iE ¼ TrðρE ::Þ. In the above equation,Ws(ω, β)
and Wa(ω) represent the symmetric and the anti-symmetric parts
of the noise power spectral density, respectively. The presence of
Wa(ω) is the hallmark of ‘quantum noise’33. Phenomenologically
setting Wa(ω)= 0 models ‘classical noise’. This, for example, is
approximately the case at high temperatures, where Wa(ω) is
negligible compared to Ws(ω, β).
The system Hamiltonian ĤS can be diagonalized by transform-

ing to the fermionic operators Âα, which are related to ĉ‘ via the
following transformation,

Â1

Â2

 !
¼ Φ

ĉ1
ĉ2

� �
; Φ ¼ cosðθ2Þ sinðθ2Þ

� sinðθ2Þ cosðθ2Þ

 !
;

θ ¼ tan�1 2tc
ε

� �
: (4)

In the transformed basis, we have

ĤS ¼ ωq

2
ðN̂1 � N̂2Þ þ VN̂1N̂2; ωq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 þ 4t2c

q
; (5)

ĤSE ¼ cos θðN̂1 � N̂2Þ � sin θðÂy
1Â2 þ Â

y
2Â1Þ

h i
B̂;

N̂1 ¼ Â
y
1Â1; N̂2 ¼ Â

y
2Â2: (6)

The DQD can be operated in the single-particle regime, i.e. where
N̂1 þ N̂2 ¼ 1. In this regime, the fermionic operators can be exactly
mapped to Pauli spin operators,

σ̂z ¼ N̂1 � N̂2; σ̂x ¼ Â
y
1Â2 þ Â

y
2Â1; (7)

and σ̂y ¼ i½σ̂x ; σ̂z�=2 ¼ �iðÂy
1Â2 � Â

y
2Â1Þ. The resulting Hamilto-

nians for the DQD and the DQD–phonon couplings become, in the
eigenbasis of the DQD Hamiltonian,

ĤS ¼ ωq

2
σ̂z; ĤSE ¼ f 1σ̂z þ f 2σ̂xð ÞB̂; (8)

where f 1 ¼ cos θ ¼ ε=ωq and f 2 ¼ � sin θ ¼ �2tc=ωq . The above
equation describes a DQD charge qubit coupled to a phononic
bath. Whatever state the charge qubit is prepared in, due to the
phonons, the charge qubit relaxes to a unique steady state. To
determine the latter, we notice that the above Hamiltonian shares
exactly the same form as Eq. (1). This means that, in a solid-state
DQD charge qubit, the presence of phonons can autonomously
generate coherence in the eigenbasis of the system Hamiltonian.
In general, the quantum dots experience correlated noise due

to their coupling to a common phonon bath. However, this feature
is not necessary for the mechanism of coherence generation
considered here, in contrast to schemes for bath-induced
entanglement production where environmental correlations are
essential34–37. Indeed, steady-state coherences would arise even if
each quantum dot were coupled to its own independent bath, as
shown in Supplementary Notes. The essential ingredient for our
study is the competition between the hopping between the dots
and the local coupling of each quantum dot to the bath. This
condition ensures that ĤSE contains both σ̂z and σ̂x components,
as required for the autonomous generation of steady-state
coherence17. We now proceed to characterize this coherence
and investigate its engineering and tunability via the DQD
parameters ε and tc.

Steady-state properties
The state of a qubit is completely characterized by the expectation
values of the three Pauli operators σ̂x;y;z . In the long-time limit,
the entire set-up reaches an equilibrium steady state where the
charge current, which is proportional to hσ̂yi, is zero. The
remaining two non-zero expectation values are found to be
(see ‘Methods’)

hσ̂xi ¼ � sin 2θ
ωq

�Δsðωq; βÞhσ̂zi0 þ ΔaðωqÞ � Δað0Þ
	 


; (9)

hσ̂zi ¼ hσ̂zi0 þ sin2θ Δ�ðωqÞ þ ΔþðωqÞ � β

2
sech2

βωq

2

� �
Δsðωq; βÞ

� �
;

(10)

where hσ̂zi0 ¼ �WaðωqÞ=Wsðωq; βÞ ¼ � tanh βωq=2
� �

and Δs

(ωq, β), Δa(ωq) and Δ±(ωq, β) are the principal-value integrals

Fig. 1 Schematic depiction of two quantum dots. The two
quantum dots are detuned in energy by ε with inter-dot tunnelling
tc and Coulomb repulsion V interacting with a substrate supporting
phononic excitations.
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defined below:

Δsðωq; βÞ ¼ P
Z 1

0
dωWsðω; βÞ 1

ωþ ωq
� 1
ω� ωq

� �
; (11)

ΔaðωqÞ ¼ P
Z 1

0
dωWaðωÞ 1

ωþ ωq
þ 1
ω� ωq

� �
; (12)

Δ± ðωq; βÞ ¼ �P
Z 1

0
dω

hσ̂zi0Wsðω; βÞ ∓WaðωÞ
ðω±ωqÞ2

: (13)

These results show that, if sin 2θ≠ 0, which corresponds to ε, tc ≠ 0,
and if the noise is quantum, i.e. Wa(ω) ≠ 0, we have hσ̂xi≠ 0. Thus,
in this case, there will be coherence in the eigenbasis of the
system in the equilibrium steady state. If, on the other hand, the
noise were classical, i.e. Wa(ω)= 0, we would obtain hσ̂xi ¼ 0 and
there would be no steady-state coherence. This implies that, in the
high-temperature regime that corresponds to the classical limit33,
no steady-state coherence will be generated. This can also be
checked by taking β→ 0 limit of the above results. In the opposite
limit of low temperatures, βωq≫ 1, the above formulae simplify to

hσ̂xi ¼ �2 sin 2θ
Z 1

0
dω

JphðωÞ
ωðωþ ωqÞ (14)

hσ̂zi ¼ �1þ 2sin2θ
Z 1

0
dω

JphðωÞ
ðωþ ωqÞ2

: (15)

The above equations show that, within this temperature regime,
the state of the DQD becomes temperature independent. Note,
however, that these expressions are only valid for temperatures
well above the Kondo scale TK, where our perturbative analysis is
expected to break down38–40. Nevertheless, TK is exponentially
suppressed by weak system–bath coupling, thus providing a wide
temperature regime where our results hold.

Numerical results
Above we have found that quantum noise due to phonons can be
used to generate coherence in the energy eigenbasis of the DQD
charge qubit for non-zero detuning. This is shown in Fig. 2, where
the dynamics of hσ̂xðtÞi and hσ̂yðtÞi are plotted for two different
cases showing the effects of decoherence (for ε= 0) and
coherence generation (for ε= 1) (see ‘Methods’). In our calcula-
tions, we have taken the phonon spectral function as

JphðωÞ ¼ γbω 1� sinc
ω

ωc

� �� �
e�ω2=2ω2

max : (16)

The spectral functions of phonons in solid-state DQDs have been
well characterized theoretically and experimentally and they vary
depending on the experimental platform8–11,16. Our chosen
spectral function is known to be a good description of bulk
acoustic phonons in GaAs DQDs8,9,11. The frequency ωmax is the
upper cut-off frequency, while ωc= cs/d, where cs is the speed of
sound in the substrate and d is the distance between the two
quantum dots. The dimensionless parameter γb controls the
strength of coupling with phonons. The validity of our theory
requires that γb≪ 1. We have set ωc= 1 and used this as our unit
of energy.
In Fig. 3, we characterize the steady state of the qubit. Since

hσ̂yi ¼ 0, we parameterize the steady state with hσ̂xi and the
length of the Bloch vector

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hσxi2 þ hσzi2

q
: (17)

While hσ̂xi is a measure of coherence, r is a measure of purity of
the state. For a pure state, r= 1, for a completely mixed state,
r= 0. Figure 3 demonstrates that tunable steady-state coherence
persists with high purity across a range of temperatures and
energy scales. The maximal value of hσ̂xi can be achieved at low

temperatures by setting the dots’ detuning to ε= ± 2tc. The sign
of the coherence can be made positive or negative, depending on
the sign of sin 2θ ¼ 4εtc=ω2

q, as can also be seen directly from
Eq. (9). Interestingly, the coherence and purity remain constant as
the temperature grows up to values of order kBT ~ 0.1ωq, and then
decay to zero as the temperature is further increased. It should
therefore be possible to observe maximal phonon-induced
steady-state coherence in a DQD system at only moderately low
temperatures.
Let us make an order-of-magnitude estimate in order to

demonstrate the feasibility of our proposal. We take ωq= 0.5ωc,
ε= 2tc and βωq= 10, corresponding to the maximum coherence
in Fig. 3. In GaAs, cs ≈ 3000m/s, so that an inter-dot separation of
d= 150 nm yields ωc ≈ 20 GHz. Therefore, the maximal coherence
is obtained when ε ≈ 29 μeV, tc ≈ 15 μeV and T ≈ 50mK. These
parameters are completely within reach of current experiments
(for example, see refs 10,11).

Robustness to the presence of fermionic leads
Experimental set-ups such as refs 10,11 typically feature fermionic
leads coupled to the DQD. In this case, even when the leads are in
equilibrium, the number of particles in the DQD is not strictly
conserved. However, the DQD can only be considered as a qubit in
the single-particle sector. Nevertheless, we now show that steady-
state coherence is robust to the presence of fermionic leads at
equilibrium, i.e. at equal chemical potential μ, and at the same
temperature at the substrate phonons.
The total Hamiltonian of the set-up is now given by Ĥ ¼ ĤSþ

ĤSE þ ĤE þ ĤSf þ Ĥf , ĤSf ¼
P

‘¼1;2

P1
r¼1γr‘ ĉy‘B̂‘r

�
þB̂

y
‘r ĉ‘Þ; Ĥf ¼P

‘¼1;2

P1
r¼1E‘r B̂

y
‘r B̂‘r ; where the fermionic lead is modelled by

infinite number of fermionic modes, and B̂‘r is the annihilation
operator for the rth mode of the fermionic lead attached to the ℓth
DQD site. For simplicity, we assume that the leads have identical,
constant spectral functions Jf

‘ðωÞ ¼ 2π
P1

r¼1γ
2
‘rδðω� E‘rÞ;

Jf
1ðωÞ ¼ Jf

2ðωÞ ¼ Γ, for −Λ≤ Γ≤ Λ, and zero otherwise. Here we
assume that the coupling to the leads Γ is weak, while the bandwidth
Λ is assumed to be large.
At low temperatures, the number of particles in the DQD in the

equilibrium steady state is governed by the chemical potential of
the fermionic lead. The DQD is occupied by a single particle on
average if the chemical potential is in the regime

�ωq

2
� μ � ωq

2
þ V ; (18)

i.e. the chemical potential is higher than ωq/2 but smaller than the
charging energy of the DQD. Therefore, when Eq. (18) holds, we
expect the system to display steady-state coherence if there is
non-zero detuning.
To check this, we calculate ReðhÂy

1ðtÞÂ2ðtÞiÞ, which corresponds
to hσ̂xðtÞi in the single-particle sector (see ‘Methods’). The
dynamics of this quantity for three different initial conditions of
the DQD are shown in Fig. 4a. The three initial conditions
correspond to the DQD being doubly occupied, the DQD being
completely unoccupied and the completely mixed state of the
charge qubit, which corresponds to hN̂1ð0Þi ¼ 0:5, hN̂2ð0Þi ¼ 0:5.
None of the initial states contain any coherence in the energy
eigenbasis. The chemical potential of the fermionic lead is chosen
as μ= 0, which satisfies Eq. (18). For non-zero detuning,

ReðhÂy
1ðtÞÂ2ðtÞiÞ goes to the same steady-state value given by

the expression for hσ̂xi in Eq. (14) for all initial conditions. Figure 4b

shows the plot of the equilibrium steady-state value of ReðhÂy
1Â2iÞ

as a function of μ. In the regime corresponding to Eq. (18), there is
coherence in the energy eigenbasis, while beyond that regime,
the coherence decays to zero. Thus we have shown that the
coherence generated owing to the presence of phonons is robust
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to the presence of equilibrium fermionic leads, so long as the
steady state of the DQD is in the single-particle sector.

Application to driving a cavity
As an application, we now demonstrate that phonon-induced
coherence may be used to displace an auxiliary cavity mode. Let

the charge qubit be coupled to a cavity mode described by a
Jaynes–Cummings-like interaction

ĤC ¼ ω0â
yâ; ĤSC ¼ gðσ̂þâþ âyσ̂�Þ: (19)

Here ω0 is frequency of the cavity mode, â is bosonic annihilation
operator for the cavity mode, g is the cavity–DQD coupling

Fig. 2 Decoherence and coherence generation in DQD charge qubit due to the presence of a phononic environment. a Decoherence:
dynamics of hσ̂xðtÞi and hσ̂yðtÞi for ε= 0, starting from an initial state with coherence hσ̂xð0Þi ¼ 0:2, hσ̂yð0Þi ¼ �0:2, hσ̂zð0Þi ¼ 0. Here the final
steady state has no coherence. b Coherence generation: dynamics of hσ̂xðtÞi and hσ̂yðtÞi for ε= 1, starting from a completely mixed initial
state: hσ̂xð0Þi ¼ 0, hσ̂yð0Þi ¼ 0, hσ̂zð0Þi ¼ 0. Here the final steady state has coherence. Other parameters: tc= 0.5, γb= 0.03,
ωmax= 10, β= 10. All energies are measured in units of ωc, which is set to 1.

Fig. 3 The variation of hσ̂xi and length of Bloch vector r with several parameters of DQD charge qubit. a hσ̂xi and 1− r vs the detuning ε at
fixed hopping tc= 0.25 at low temperature (see Eqs 14, 15), b hσ̂xi and 1− r vs the hopping tc at fixed detuning ε= 0.5 at low temperature,
c hσ̂xi and 1− r vs θ at fixed ωq at low temperature. The vertical dashed lines in these plots correspond to ε= ± 2tc. d hσ̂xi (top) and r (bottom)
vs temperature 1/β at fixed θ= π/4 and for various chosen values of ωq. Other parameters: γb= 0.03, ωmax= 10. All energies are measured in
units of ωc, which is set to 1. hσ̂yi ¼ 0.
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strength and σ̂ ± ¼ ðσ̂x ± iσ̂yÞ=2. The cavity will be further coupled
with its own thermal environment, leading to a decay rate κ.
If both the cavity–DQD coupling and the cavity decay rate are

small, and if the cavity is away from resonance with the DQD (i.e.
ωq ≠ω0), then we can obtain the steady-state results for the cavity
up to leading order in small quantities. The results for the
expectation value of the cavity field operator hâi and the cavity
occupation hâyâi to leading order are given by

hâi ¼ � g
2ðω0 � iκÞ hσ̂xi; hâyâi ’ 1

eβω0 � 1
þ Oðg2Þ; (20)

while that for hâ2i ¼ 0. Thus it is immediately clear that the
coherence of the charge qubit causes displacement of the cavity
mode, given by hX̂i ¼ hâþ âyi ’ �2ghσ̂xi=ω0. However, hâyâi is
given by the Bose–Einstein distribution for the cavity, which

ensures that no average photon current flows between the cavity
and its own bosonic thermal bath. This is consistent with the fact
that entire set-up is at thermal equilibrium. This means that the
variance of X̂ is given by varðX̂Þ ¼ hX̂2i � hX̂i2 ’ cothðβω0=2Þ
þOðg2Þ. The cavity displacement hX̂i, which may in principle be
experimentally measured41,42, thus directly probes the steady-
state coherence of the DQD. In Fig. 5, we show the real and
imaginary parts of hâi in steady state as the DQD parameter θ is
tuned. It is clear that hâi is non-zero when hσ̂xi is non-zero.

DISCUSSION
We have theoretically demonstrated that quantum noise due to
phonons in state-of-the-art DQD charge qubits autonomously
generates steady-state coherence in the energy eigenbasis of the
qubit at non-zero detuning. Owing to the inherently dissipative
nature of this phenomenon, it represents an especially robust yet
surprisingly tunable addition to the toolbox of quantum state
engineering for solid-state charge qubits and promises potential
to become a new resource for quantum thermodynamics.
Remarkably, the magnitude and sign of the coherence can be
controlled merely by manipulating the Hamiltonian parameters of
the DQD, while retaining high purity. Aside from the intrinsic
interest of generating quantum coherence, the resulting steady
states represent useful resources in various contexts. As a simple
example, we have shown that the qubit coherence in turn
generates field coherence in a cavity mode that is weakly coupled
to the DQD. Moreover, coherence distillation or amplification
techniques could in principle be applied to generate fully
coherent resource states for quantum information processing43–45.
We emphasize that the physics described here is a general

property of spin-boson models of the type in Eq. (8). Such models
can generically be used to describe dissipative two-level
systems4,46,47 and can be engineered in various platforms (for
examples, see refs 48,49 and citations therein). Indeed, any generic
qubit Hamiltonian, Ĥ ¼ ε

2 τ̂z þ tc τ̂x with quantum noise in the qubit
parameters ε and tc can be written in the form of Eq. (8) (see
Supplementary Notes for details). It follows that, at low
temperatures, if f1f2 ≠ 0, which is generically true, quantum noise
in qubit parameters leads to generation of steady-state coherence
in the energy eigenbasis of any qubit, e.g. a superconducting
qubit, a DQD spin qubit, etc. On the other hand, classical noise in
qubit parameters is detrimental to such coherence. The DQD
charge qubit provides an especially interesting example, since the
required parameter regime corresponds to current state-of-the-art
experiments10–14, where quantum noise in detuning is the major
source of noise.
Future work will focus on a full characterization of thermodynamic

properties of the set-up including an analysis of the relation
between irreversible entropy production and coherence50,51, which
will shed light on the thermodynamic cost of generating steady-
state coherence.

METHODS
Detailed methods are given in Supplementary Notes. Here we give a brief
overview of the techniques.

Redfield master equation
The time evolution of the DQD qubit is modelled using a Redfield master
equation, detailed in Supplementary Notes. The derivation of this equation
starts from a factorized initial system-environment state ρtot(0)= ρ(0)⊗ ρE,
with ρE the thermal equilibrium state of the phononic bath and ρ(0) the
initial DQD state. The Redfield equation is based on two approximations: (i)
a perturbative expansion up to second order in the coupling between the
DQD and the reservoir, and (ii) a Markov assumption that the reservoir
memory time is short in comparison to the time scale of the DQD
evolution. In the presence of fermionic leads, the same set of

Fig. 4 The robustness of phonon-induced steady-state coherence
in a DQD charge qubit to the presence of fermionic leads at

equilibrium. a Evolution of ReðhÂy1ðtÞÂ2ðtÞiÞ in the presence of the
fermionic lead is shown for three different initial conditions of the
DQD with no initial coherence. The chemical potential of the
fermionic lead is μ= 0. b The equilibrium steady-state value of

ReðhÂy
1Â2iÞ as a function of μ. The vertical dashed lines show

positions of μ=− ωq/2 and μ=− ωq/2+ V. The horizontal dashed
lines in both a and b show the value of coherence given by the
expression for hσ̂xi in Eq. (14). Parameters for both plots: ε= 1,
tc= 0.5, μ= 0, V= 5, β= 10, γb= 0.03, ωmax= 10, Γ= 0.06, Λ= 400.
All energies are measured in units of ωc, which is set to 1.

Fig. 5 A cavity with a weak Jaynes–Cummings coupling to the
DQD will be displaced due to the steady-state coherence of the
DQD. The figure shows plots of real and imaginary parts of hâi, as a
function of DQD parameter θ with other parameters fixed. Other
parameters: γb= 0.03, ωmax= 10. All energies are measured in units
of ωc, which is set to 1.
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approximations is used but where the leads are also incorporated into the
environment. The result is a master equation describing the DQD of the
form

∂ρ

∂t
¼ i½ρ; ĤS� � Lphρ� Lfρ; (21)

where Lph and Lf , respectively, describe the effect of the phononic and
fermionic reservoirs (see Supplementary Notes). The solution of Eq. (21) is
used to compute the time evolution of expectation values in the main text.

Perturbation expansion of the generalized equilibrium state
As discussed in ref. 52, the predictions of the Redfield equation give results
for the DQD coherence valid up to second order in ĤSE , while the
predictions for the populations are valid only to zeroth order. However, in
order to discuss the purity of the qubit, we need results for both
coherences and populations valid to the same order. In order to achieve
this, we use the fact that an open quantum system coupled weakly to a
thermal environment is generically expected to relax to the generalized
equilibrium state53–58

lim
t!1ρðtÞ ¼ TrE

e�βðĤS þĤE þĤSE Þ

Tr e�βðĤS þĤE þĤSE Þ
h i

2
4

3
5; (22)

which incorporates the effect of system–environment correlations. We use
a perturbative expansion of Eq. (22) up to second order in ĤSE to obtain
steady-state expectation values, as detailed in Supplementary Notes. This
approach yields an identical prediction for the coherence hσ̂xi as the
master equation, as well as a second-order correction to the population
inversion hσ̂zi.

DATA AVAILABILITY
Our main results are analytical. The data sets generated during numerical evaluation
of analytical formulas are available on reasonable request.
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