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Daemonic ergotropy: enhanced work extraction from quantum
correlations
Gianluca Francica1,2, John Goold3, Francesco Plastina1,2 and Mauro Paternostro4

We investigate how the presence of quantum correlations can influence work extraction in closed quantum systems, establishing a
new link between the field of quantum non-equilibrium thermodynamics and the one of quantum information theory. We consider
a bipartite quantum system and we show that it is possible to optimize the process of work extraction, thanks to the correlations
between the two parts of the system, by using an appropriate feedback protocol based on the concept of ergotropy. We prove that
the maximum gain in the extracted work is related to the existence of quantum correlations between the two parts, quantified by
either quantum discord or, for pure states, entanglement. We then illustrate our general findings on a simple physical situation
consisting of a qubit system.
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INTRODUCTION
The thermodynamic implications of quantum dynamics are
currently helping us build new architectures for the super-
efficient nano- and micro-engines, and design protocols for the
manipulation and management of work and heat above and
beyond the possibilities offered by classical processes,1–4 including
steps towards the formulation of a coherent framework for
caloritronics5–7 and the demonstration of Maxwell’s daemon with
elementary working media.8, 9 Exciting experimental progress
towards the achievement of such paramount goals is currently
ongoing.10, 11 Quantum coherences are believed to be responsible
for the extraction of work from a single heat bath12 and the
enhanced performance of quantum engines,13 while weakly driven
quantum heat engines are known to exhibit enhanced power
outputs with respect to their classical (stochastic) versions.14

Despite such evidences, the identification of the specific
features of quantum systems that might influence their thermo-
dynamic performance is currently a debated point. In particular,
the role that quantum correlations and coherences in schemes for
the extraction of work from quantum systems appears to be quite
controversial.15–20 Yet, the clarification of the relevance of
genuinely quantum features would be key for the grounding of
quantum thermodynamics as a viable route towards the
construction of a framework for quantum technologies.1–4 Indeed,
the very tight link between thermodynamics and quantum
entanglement21 cries loud for the clarification of the role of
quantum correlations as a resource for coherent thermodynamic
processes and transformations.22

In this paper, we make steps towards the clarification of the role
of quantum correlations in work extraction processes by
investigating a simple ancilla-assisted protocol. We address the
concept of ergotropy, i.e., the maximum work that can be gained
from a quantum state, with respect to some reference Hamilto-
nian, under cyclic unitaries.23 We consider the joint state of a
system and an isodimensional ancilla, which can be measured in

an arbitrary basis, and show that quantum correlations are related
to a possible increase of the extracted work. More precisely, we
demonstrate that if system and ancilla share no quantum
quantum discord,24–26 then the information gathered through
the measurements performed on the state of the ancilla cannot
help in catalyzing the extraction of work from the system. We
extend this result to the case of quantum entanglement, thus
establishing a tight link between enhanced work-extraction
performances and a clear-cut resource in quantum information
processing. We illustrate our findings for the relevant case where
system and ancilla are both embodied by qubits, showing the
existence of a families of states that provide attainable (upper and
lower) bounds to the gain in extractable work at a set degree of
quantum correlations between system and ancilla. Not only do our
results shed light on the core role that quantum correlations have
in thermodynamically relevant processes they also open up the
pathway towards the study of the implications of the structure of
generally quantum correlated resources for ancilla-assisted work
extraction schemes and the grounding of the technological
potential of the thermodynamics of quantum systems.

RESULTS
Ergotropy
We start by introducing the ergotropy, which is the maximum
amount of work that can be extracted from a quantum system in a
given state by means of a cyclic unitary transformation.23 Consider
a system S with Hamiltonian ĤS and density matrix ρ̂S given by,

ĤS ¼
X
k

ϵk ϵkj i ϵkh j; ρ̂S ¼
X
k

rk rkj i rkh j; ð1Þ

with ϵk � ϵkþ1ðk ¼ 1; 2; ::Þ the energy of the kth eigenstate ϵkj i of
ĤS and rk � rkþ1 the population of the eigenstate rkj i of ρ̂S. If ρS is
a passive state (i.e., if ½ρ̂s; ĤS� ¼ 0 and rn � rm whenever ϵn<ϵm), no
work can be extracted by means of a cyclical variation of the
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Hamiltonian parameters (ĤSð0Þ ¼ ĤSðτÞ ¼ ĤS) over a fixed time
interval ½0; τ�.27–29 If the initial state ρ̂S is not passive with respect
to ĤS, then work (defined here as the difference in energy
between initial and final state of the system) may be extracted
cyclically, and its maximal amount, the ergotropy W , has been
shown in ref. 23 to be given by

W ¼
X
j;k

rkϵj ϵj
� ��rk��� ��2 � δjk

� �
: ð2Þ

The ergotropy W vanishes for passive initial states. It is upper-
bounded by the work Wth extracted when the final state of the
system is the Gibbs state e�βĤSð0Þ=Tr ½e�βĤSð0Þ� with the same
entropy as ρ̂S (here β is an effective inverse temperature
determined by imposing that initial and final states have the
same entropy).23 The preparation of S in pure initial states entails
the reachability of such upper bound.

Daemonic work and quantum correlations
In order to connect with the theory of quantum correlations, we
extend the framework for maximal work extraction by introducing
a non-interacting ancilla A and assume that system and ancilla are
initially prepared in the joint state ρ̂SA. The intuition behind the
protocol, that will be discussed below, is that should ρ̂SA contain
correlations between S and A, a measurement performed on the
ancilla would give us information about the state of S, which could
then be used to enhance the amount of work that can be
extracted from its state.
Within such a generalized framework, the amount of extractable

work crucially depends on the measurements performed on A,
that we describe through a set of orthogonal projectors fΠ̂A

ag.
Upon the measurement of A with outcome a, the state of the
system collapses onto the conditional density matrix ρ̂Sja ¼
TrA½Π̂A

a ρ̂SAΠ̂
A
a �=pa with probability pa ¼ Tr ½Π̂A

a ρ̂SA�. The time evolu-
tion of state ρSja then follows a cyclic unitary process Ûa
conditioned on the outcome of the measurement. By averaging
over all of the possible outcomes of the measurement, the work
extracted from the state of S reads

WfΠ̂A
ag ¼ Tr ρ̂SĤS

� ��X
a

paTr Ûaρ̂SjaÛ
†
aĤS

h i
ð3Þ

with ρ̂S ¼ TrA½ρ̂SA�. This quantity explicitly depends on the specific
control strategy determined by the outcomes of the measure-
ments fΠ̂A

ag. We can thus proceed to maximize the extracted work
by performing the optimal ergotropic transformation for each of
the ρ̂Sja such that

WfΠ̂A
ag ¼ Tr ρ̂SĤS

� ��X
a

pa
X
k

rak ϵk ð4Þ

with fΠ̂A
ag a set of orthogonal projective measurements, and rak the

eigenvalues of ρ̂Sja . We call this quantity the Daemonic Ergotropy.
The optimization procedure due in order to derive Eq. (4) echoes
the one presented in ref. 23 for the case of a single spin.
On the other hand, if we do not use the information obtained

upon measuring the ancilla, and thus control the system in the same
way, independently of the measurement outcomes (i.e., Ûa ¼ Û for
any a), the maximum extractable work would be given by the
ergotropyW associated with state ρ̂S ¼ TrAfρSAg ¼

P
k rk rkj i rkh j. In

the “Methods” section we have shown that the information acquired
through the measurements allows to extract more work than in the
absence of them, that is WfΠ̂A

ag�W .
In what follows the main object of our attention will be the

difference WfΠA
ag �W, which is expected to be related to the

(nature and degree of) correlations between S and A. For instance,
should S and A be initially statistically independent, i.e.,
ρ̂SA ¼ ρ̂S � ρ̂A, the measurements on the ancilla would not bring
about any information on the state of S, as we would have ρ̂Sja ¼
ρ̂S for any set fΠ̂A

ag and outcome a. Consequently, there would be

no gain in work extraction and WfΠA
ag ¼ W . However, besides

such a rather extreme case, other instances of no gain in work
extraction (from correlated ρ̂SA states) might be possible, and our
goal here is to characterize such occurrences.
In order to achieve this goal, we introduce the quantity

δW ¼ maxfΠ̂A
agWfΠ̂A

ag �W; ð5Þ
which we dub, from now on daemonic gain in light of its ancilla-
assisted nature. Clearly, δW � 0 because of the considerations
above and the optimization entailed in Eq. (5).
Our aim is to connect δW to quantum correlations. To this end,

we notice that δW is invariant under local unitary transformations:
any unitary transformation on S can be incorporated in the
transformations used for the extraction of work, while any unitary
on A is equivalent to a change of measurement basis. Then, we
consider quantum discord24–26 as the figure of merit to quantify
the degree of quantum correlations shared by system and ancilla.
For measurements performed on the system S, discord is defined
as

D!SA ¼ I SA � max
Φ̂Saf g
J!SA; ð6Þ

where I SA ¼ SA þ SB � SAB is the mutual information between S
and A (here S is the von Neumann entropy), and J!SA is the one-
way classical information associated with an orthogonal measure-
ment set fΦ̂S

ag performed on the system.24–26 Explicit definitions
are given in the “Methods” section. We believe the choice of Eq.
(6) is well motivated in light of the explicit asymmetry of both δW
and D!SA with respect to the subject of the projective measure-
ments. We are now in a position to state one of the main results of
our work, which we present in the form of the following Theorem:

Theorem 1
For any system S and ancilla A prepared in a state ρ̂SA, we have

δW ¼ 0) D!SA ¼ 0 ð7Þ
with δW and D

!
SA as defined in Eq. (5) and (6), respectively.

The asymmetry of the daemonic gain is well reflected into the
impossibility of linking δW to the discord associated with
measurements performed on the ancilla. That is

δW ¼ 0 6) D SA ¼ 0: ð8Þ
The proof of both Theorem 1 and the corollary statement in Eq.

(8) are presented fully in the “Methods” Section, while a scheme of
principle is presented in Fig. 1. It is important to observe that, in
general, the inverse of Theorem 1 does not hold, i.e., D SA ¼
0 or D!SA ¼ 0 6) δW ¼ 0 as there can well be classically corre-
lated states associated with a non-null daemonic gain. However, a
remarkable result is found when ρ̂SA is pure, for which the only
possible quantum correlations are embodied by entanglement.

Theorem 2
For any system S and ancilla A prepared in a pure state ρ̂SA ¼
ψj i ψh jSA we have

δW ¼ 0, ψj iSAis separable; ð9Þ
and δW ¼P

k rkϵk � ϵ1, where rk are the Schmidt coefficients of
ψj iSA and ϵk are the eigenvalues of ĤS, ordered such that rk � rkþ1
and ϵk � ϵkþ1.
Theorem 2 is a thermodynamically motivated separability

criterion for pure bipartite states in arbitrary dimensions and an
explicit quantitative link between the theory of entanglement and
the thermodynamics of information.

Illustrations in two-qubit systems
The statements in Theorems 1 and 2 are completely general, and
independent of the nature of either S or A, which could in
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principle live in Hilbert spaces of different dimensions. However, in
order to illustrate their implications and gather further insight into
the relation between the introduced daemonic gain and both
discord and entanglement, here we focus on the smallest non-
trivial situation, which is embodied by a two-qubit system.
We start with the implications of Theorem 1 and compare δW

with discord D!SA. Since both these quantities are invariant under
local unitary transformations on ρ̂SA, without loss of generality we
can consider the system Hamiltonian ĤS ¼ �σz (throughout the
remainder of the manuscript we measure energy in units of the
Bohr frequency of the system and set �h ¼ 1). This choice of
Hamiltonian sets the energy difference between the logical state
of the system and allows for an agile evaluation of the extractable
work without unnecessary complications (the choice of sign is
immaterial as far as our results are concerned). In Fig. 2 we show
the distribution of randomly generated two-qubit states over the
δW-vs.-D!SA plane. Such an extensive numerical analysis reveals
that, for any state ρ̂SA with discord D!SA ¼ D, we have

δW � δWminðDÞ ¼ h 1�D=2ð Þ; ð10Þ
where hðxÞ ¼ �x log2ðxÞ � ð1� xÞ log2ð1� xÞ. The monotonicity
of hðxÞ implies that growing values of quantum correlations are
associated with a monotonically increasing daemonic gain: for the
states lying on such lower bound, quantum correlations form a
genuine resource for the catalysis of thermodynamic work
extraction. Moreover, as limx!1 hðxÞ ¼ 0, a two-qubit system with
D!SA ¼ 0 (i.e., a classically correlated state) can achieve, in

principle, any value of daemonic gain up to the maximum that,
for this case, is δW = 1. On the other hand, the daemonic
ergotropy is maximized by taking pure two-qubit states with
growing degree of entanglement. As D ! 1 the gap between

Fig. 1 a In our ancilla-assisted protocol, a null daemonic gain gain [i.e., δW = 0, cf. Eq. (5)] implies the absence of quantum correlations
between the system S and the ancilla A [as measured by the discord associated with measurements on S, cf. Eq. (6)]. b A non-null value of δW,
on the other hand, implies the possible existence of quantum correlations between S and A. For pure bipartite states (in arbitrary dimensions),
the nullity of the daemonic gain is a necessary and sufficient condition for separability

Fig. 2 Distribution of two-qubit states in the daemonic gain-vs.-
discord plane. We have generated 3 × 103 general random states of
system and ancilla, evaluating the discord and daemonic gain for
each of them (blue dots). The blue curves enclosing the distribution
correspond to the boundaries discussed in the body of the paper.
Notice that states with no quantum correlations may correspond to
arbitrarily large values of the daemonic gain δW
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lower and upper bounds closes as only pure states achieve
maximum discord.
The analysis of Fig. 2 reveals that the availability of discord-like

quantum correlations in the joint system-ancilla state forces the
daemonic gain to exceed a minimum bound, washing out a whole
range of values of δW that are, instead, achievable in principle
using classical-quantum states (i.e., states such that D!SA ¼ 0): A
minimum amount of quantum correlations in the state ρSA, as
quantified by discord, is needed in order to be sure to have a gain
δW bigger or equal to δWminðDÞ. Within the context of this work,
this defines the advantage towards enhanced work extraction
provided by quantum correlations.
We can now address Theorem 2 and its consequences for two-

qubit states. Similarly to what was done above, we have studied
the distribution of random two-qubit states in the daemonic
ergotropy-vs.-entanglement plane, choosing quantum concur-
rence C as a measure for the latter.30 The results are illustrated in
Fig. 3. As before, a lower bound to the amount of daemonic
ergotropy at set value of concurrence can be identified. We have
that, for any state ρ̂SA with concurrence C
δW � δWminðCÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p
; ð11Þ

a lower bound that is achieved by Bell-diagonal states that are
fully characterized in the “Methods” section. The upper bound,
on the other hand, is achieved by maximally ergotropic (in our
daemonic sense) states
ρ̂SA ¼ ½ 00j i 00h jSA þ 11j i 11h jSA þ Cð 00j i 11h jSA þ h:c:Þ�=2.

DISCUSSION
We have illustrated an ancilla-assisted protocol for work extraction
that takes advantage of the sharing of quantum correlations
between a system and an ancilla that is subjected to suitably
chosen projective measurements. Our approach allowed us the
introduction of a new form of information-enhanced ergotropy,
which we have dubbed daemonic, that acts aptly as a witness for
quantum correlations in general, and serves as a necessary and
sufficient criterion for separability of bipartite pure states. We have
characterized fully the distribution of quantum correlated two-
qubit states with respect to the figure of merit set by the
daemonic ergotropy, finding that quantum correlations embody a
proper resource for the work-extraction performances of the
states that minimize δW . Our work opens up interesting avenues
for the thermodynamic interpretation of quantum correlations,
clarifies their resource-role in ancilla-assisted information thermo-
dynamics and opens up possibilites to understand the role of
correlations in the charging power of quantum batteries.31

METHODS
Here, we define the notion of discord used in the paper, present details of
the core results discussed in the main body of the paper and the formal
proofs of both Theorem 1 and 2.

Discord
We recall the definition of quantum discord D SA associated with
orthogonal measurements Φ̂A

a performed over the ancilla24–26

D SA ¼ I SA �maxfΦ̂A
agJ
 

SA; ð12Þ

where I SA is the mutual information I SA ¼ Sðρ̂AÞ þ Sðρ̂SÞ � Sðρ̂SAÞ, J
 

SA ¼
Sðρ̂SÞ �

P
a paSðρ̂SjaÞ is the so-called one-way classical information and

Sðρ̂Þ ¼ �Tr½ρ̂ log2 ρ̂� is the von Neumann entropy of the general state ρ̂.
The maximization inherent in Eq. (12) is over all the possible orthogonal

measurements on the state of A. Similarly, we define the discord D
!

SA
associated with measurements performed over the state of the system S as
Eq. (12) with the role of S and A being swapped.

Theorem 1
In order to provide a full-fledged assessment of Theorem 1, we should first
discuss the following Lemma.

Lemma 1
For any set of orthogonal projective measurements fΠ̂A

ag performed over an
ancilla A prepared with a system S in a state ρ̂SA, we have WfΠ̂A

ag � W.

Proof
In order to show this statement, we observe that

ρ̂S ¼P
k
rk rkj i rkh j ¼

P
a
TrA½Π̂A

a ρ̂SA�

¼P
a
paρ̂Sja ¼

P
a
pa

P
k
rak rak
�� �

rak
� ��:

ð13Þ

Eq. (13) implies that rk ¼
P

a pa
P

j r
a
j j rkh jraj

E
j2. As WfΠ̂A

ag �W ¼P
k ϵk rk �

P
a par

a
k


 �
, we have that

WfΠ̂A
ag �W ¼

X
a

pa
X
k;j

raj ϵk j rkh jraj
E
j2 � δkj

� �
� 0 ð14Þ

due to the fact that
P

k;j r
a
j ϵkðj rkh jraj

E
j2 � δk jÞ � 0, as this is the ergotropy

of ρ̂Sja relative to the Hamiltonian
P

k ϵk rkj i rkh j, which is non-negative by
definition.
We are now in a position to provide the full proof of Theorem 1, which

we restate here for easiness of consultation: Theorem 1. For any system S
and ancilla A prepared in a state ρ̂SA, we have

δW ¼ 0) D!SA ¼ 0 ð15Þ
with δW and D!SA as defined in Eq. (5) and (6), respectively.

Proof
In light of Lemma 1, we have that WfΠ̂A

ag �W ¼ 0, δW ¼ 0 for any set
fΠ̂A

ag. Then, in order to prove the statement of the Theorem, it is enough to
show that, regardless of the choice of projective set
fΠ̂A

ag; WfΠ̂A
ag �W ¼ 0) D!SA ¼ 0. Let assume that D!SA≠0. Then, there

is at least a set fΠ̂A
ag such that WfΠ̂A

ag �W≠0. Two cases are possible:

(i) There is a measurement outcome a such that ρ̂Sja≠
P

k r
a
k rkj i rkh j with

rak � rakþ1. Then

WfΠA
ag �W � pa

X
k;j

raj ϵk j rkh jraj
E
j2 � δkj

� �
>0; ð16Þ

given that
P

k;j r
a
j ϵk j rkh jraj

E
j2 � δkj

� �
is the ergotropy of ρ̂Sja relative

to the Hamiltonian
P

k ϵk rkj i rkh j, and is zero if and only if
ρ̂Sja ¼

P
k r

a
k rkj i rkh j.

(ii) For every a ρSja ¼
P

k r
a
k rkj i rkh j with rak � rakþ1. In this case

WfΠA
ag �W ¼ 0. However, as ρ̂SA is such that D!SA ≠ 0, it is always

possible to identify another set fΠ̂0Aag such that WfΠ0Aag �W>0. In

order to show how this is possible, we note that ρ̂SA can be written

Fig. 3 Distribution of two-qubit states in the daemonic gain-vs.-
concurrence plane. We have generated 104 general random states of
system and ancilla, evaluating the concurrence C and daemonic gain
δW for each of them (red dots). The blue curves enclosing the
distribution correspond to boundary families discussed in the body
of the paper. Notice that states at C ¼ 0 may correspond to
arbitrarily large values of the daemonic gain δW
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as

ρ̂SA ¼
X
a;a0

X
k;k0

Caa0
kk0 rkj i rk0h jS � aj i a0h jA

with the condition paCaa
kk0 ¼ rak δkk0 . As D

!
SA≠0, there are two measurement

outcomes a and a′ such that Caa
kk′ ≠Caa′

k δkk′ . Should this be not true, we

would have D!SA ¼ 0, and thus a contradiction. Therefore, as D!SA≠0, the
matrix A ah jρ̂SA a′j iA cannot be diagonal in the basis f rkj iSg (here aAj i is the
eigenstate of Π̂A

a with eigenvalues a). If a ¼ a0 , case ðiiÞ cannot occur.
However, if a≠ a′, we can define the new set of projectors fΠ̂0Aa g with

elements Π̂′Aa ¼ ð aj i þ a′j iÞð ah j þ a′h jÞ=2, Π̂′Aa0 ¼ ð aj i � a′j iÞð ah j � a′h jÞ=2
and Π̂′Aa ¼ Π̂A

a for a≠ a; a0 . Then, the density matrix ρ̂′Sja ¼ TrAfΠ̂′Aa ρ̂SAg=p′a
reads

ρ̂′Sja ¼ 1
2p′a

P
k
ðparak þ pa0 r

a0
k Þ rkj i rkh jS þ A ah jρ̂SA a′j iAþA a′h jρ̂SA aj iA


 �� 

;

ð17Þ
which shows that ρ̂′Sja is not diagonal in the basis f rkj iSg. Therefore,
ρ′Sja≠

P
k r′

a
k rkj i rkh jS with r′ak � r′akþ1. So, proceeding in a similar way as for

case ðiÞ, we conclude that

WfΠ0Aag �W>0: ð18Þ
If A ah jρ̂SA a′j iAþA a′h jρ̂SA aj iA ¼ 0, it is enough to consider ρ̂′Sja′ instead of
ρ̂′Sja .
Having proven Theorem 1, we can provide a justification of two

important Corollaries

Corollary 1
Under the premises of Theorem 1, δW ¼ 0)D SA ¼ 0

Proof.
It is enough to consider the state

ρ̂SA ¼
X
k;a

qak rkj i rkh jS � ϕaj i ϕah jA; ð19Þ

where f ϕaj iAg is a non orthogonal set of states. Under such conditions, we
have D SA ≠ 0. If we choose qak such that qak � qakþ1, we have WfΠ̂A

ag �W ¼ 0 for any set fΠ̂A
ag, as ρ̂Sja ¼

P
k r

a
k rkj i rkh jS with

rak ¼
P

a0 qa0 k ϕa0h jaAij j2=pa � rakþ1).

Corollary 2
Under the premises of Theorem 1, we have that
D SA ¼ 0 orD!SA ¼ 0 6) δW ¼ 0.

Proof.
We consider the state ρ̂SA ¼

P
k rkΠ̂

S
k � Π̂A

k , where Π̂A
k and Π̂S

k are
orthogonal projectors of rank one. Although such state has zero discord,
the quantity WfΠA

k g �W is positive since

WfΠA
k g �W ¼

X
k

rkϵk � ϵ1>0: ð20Þ

Therefore, δW>0.

Theorem 2
We can now provide a proof of Theorem 2, which we state again for
easiness of consultation.

Theorem 2
For any system S and ancilla A prepared in a pure state ρ̂SA ¼ ψj i ψh jSA we
have

δW ¼ 0, ψj iSA is separable; ð21Þ
and δW ¼P

k rkϵk � ϵ1, where rk are the Schmidt coefficients of ψj iSA and ϵk
are the eigenvalues of ĤS, ordered such that rk � rkþ1 and ϵk � ϵkþ1.

Proof
We make use of the instrumental result embodied by Corollary 2 and
consider the pure state ρ̂SA ¼ ψSAj i ψSAh j whose Schmidt decomposition
reads ψSAj i ¼P

k
ffiffiffiffi
rk
p

rkj iS � ϕkj iA with rk � rkþ1. Corollary 2 has shown
that δW ¼P

k rkϵk � ϵ1. Therefore, δW = 0 it must be ϵ1 ¼
P

k rkϵk , which
implies rk ¼ δ1k . This implies that the state has a single Schmidt coefficient,
and is thus separable. The proof of the reverse statement is trivial.

Analysis of the two-qubit case
We provide additional details on the analysis performed on the two-qubit
case illustrated in the main body of the paper.
In what follows, with no loss of generality, we choose the system

Hamiltonian ĤS ¼ �σ̂z . As stated in the main body of the paper, we choose
concurrence as the entanglement measure to be used in our analysis. For a
bipartite qubit state, concurrence is defined as30

C ¼ max½0; λ1 �
X
j>1

λj �; ð22Þ

where λk are the square roots of the eigenvalues of ρ̂~̂ρ with
~̂ρ ¼ ðσ̂y � σ̂yÞρ̂�ðσ̂y � σ̂yÞ, ordered so that λk � λkþ1. In the main body of
the paper we have proven that the ergotropic gain of any state ρ̂SA with
concurrence C is larger than, or equal to
δWminðCÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p
: ð23Þ

The states locally equivalent to

ρ̂SA ¼

0 0 0 0

0 x C=2 0

0 C=2 1� x 0

0 0 0 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð24Þ

with x ¼ ð1 ±
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2
p

Þ=2, which have concurrence C, are such that
δW ¼ δWminðCÞ. These states belong to the class parametrized as p ϕη

þ
�� �

ϕη
þ

� ��þ 1�p
2 ð 01j i 01h j þ 10j i 10h jÞ where ϕη

þ
�� � ¼ ffiffiffi

η
p

01j i þ ffiffiffiffiffiffiffiffiffiffiffi
1� η
p

10j i. On
the other hand, the states locally equivalent to

ρ̂SA ¼

1=2 0 0 C=2

0 0 0 0

0 0 0 0

C=2 0 0 1=2

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

; ð25Þ

which also have concurrence C, are such that δW ¼ 1, and thus embody
the upper bound to the daemonic ergotropy at set value of concurrence.
In order to show this, we parameterize the projectors Π̂A

1 and Π̂A
2 that are

needed to calculate the daemonic ergotropy in terms of the angles θ 2
½0; π� and ϕ 2 ½0; 2πÞ such that

ΠA
1 ¼

cos2 θ=2ð Þ e�iϕ sinðθ=2Þ

eiϕ sinðθ=2Þ sin2 θ=2ð Þ

0
BBBBBBBB@

1
CCCCCCCCA

and ΠA
2 ¼ 1� ΠA

1 . An extensive numerical analysis of the distribution itself
has shown that the states lying on the lower boundary belong to the class
of so-called x-states of the form

ρSA ¼

a 0 0 z

0 b w 0

0 w c 0

z 0 0 1� a� b� c

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

; ð26Þ
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where a; b; c;w; z are positive numbers such that bc � w2, ad � z2. This
class plays a key role in the characterization of the states that maximize
quantum correlations at set values of the purity of a given bipartite qubit
state.32–36 The ergotropy W for such class of states is

W ¼ 0 for aþ b � 1
2 ;

2� 4ðaþ bÞ otherwise:

8>>><
>>>:

ð27Þ

On the other hand, we have WfΠA
ag ¼ 1� 2ðaþ bÞ þ ðXþ þ X�Þ=2 with

X± ¼ 2ðaþ bÞ � 1 ± ð1� 2b� 2cÞ cos θ½ �2
n

þ 4 we�iϕ
� þ zeiϕj2sin2θ

o1
2

ð28Þ
The associated concurrence is C ¼ 2maxf0; z � ffiffiffiffiffi

bc
p

;w � ffiffiffiffiffiffi
ad
p g. We

make the ansatz that a state as in Eq. (24) with x real and positive,
minimizes δW at a fixed value of C. Then, from the positivity of the density
matrix, x must satisfy the condition C � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp

with x 2 ½0; 1�.
For such state, we have δW ¼ 2� 2x �maxf0; 2� 4xg. If we consider

x � 1=2, then δW ¼ 2� 2x, which is minimum when x is maximum, i.e.,
for x ¼ ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2
p

Þ=2. For x � 1=2 we have δW ¼ 2x, which is
minimum when x is minimum, i.e., for x ¼ ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2
p

Þ=2. In both cases,
δW takes the expression in Eq. (23).
In order to show that the class in Eq. (25) is such that δW ¼ 1, it is

enough to observe that, for such state, W ¼ 0. In fact, we trivially have
ρS ¼ 1=2 and, by choosing for instance Π̂A

1 ¼ 0j i 0h jA , we get pure post-
measurement states, and thusWfΠ̂A

ag ¼ 1. Therefore, δW ¼ 1 regardless of
the value taken by C.
As mentioned above, the validity of the ansatz used here is justified by

an extensive numerical investigation based on 106 random bipartite states
generated uniformly according to the Haar measure.
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