
Quantum Coherence and Ergotropy

G. Francica,1 F. C. Binder,2 G. Guarnieri,3 M. T. Mitchison,3 J. Goold,3 and F. Plastina4, 5

1CNR-SPIN, I-84084 Fisciano (Salerno), Italy
2Institute for Quantum Optics and Quantum Information – IQOQI Vienna,

Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
3School of Physics, Trinity College Dublin, Dublin 2, Ireland.
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Constraints on work extraction are fundamental to our operational understanding of the thermodynamics of
both classical and quantum systems. In the quantum setting, finite-time control operations typically generate
coherence in the instantaneous energy eigenbasis of the dynamical system. Thermodynamic cycles can, in prin-
ciple, be designed to extract work from this non-equilibrium resource. Here, we isolate and study the quantum
coherent component to the work yield in such protocols. Specifically, we identify a coherent contribution to the
ergotropy (the maximum amount of unitarily extractable work via cyclical variation of Hamiltonian parameters).
We show this by dividing the optimal transformation into an incoherent operation and a coherence extraction
cycle. We obtain bounds for both the coherent and incoherent parts of the extractable work and discuss their
saturation in specific settings. Our results are illustrated with several examples, including finite-dimensional
systems and bosonic Gaussian states that describe recent experiments on quantum heat engines with a quantized
load.

I. INTRODUCTION

The Thomson [1] formulation of the second law is a con-
straint on the ability of an external agent to extract work from
a system. More precisely, it states that no work can be ex-
tracted from a closed equilibrium system during a cyclic vari-
ation of a parameter by an external source [2, 3]. This for-
mulation was influential in mathematical physics, leading to
a definition of the condition of thermal equilibrium for quan-
tum states through the notion of passivity and complete pas-
sivity [4, 5]. A state ρ̂ is said to be passive with respect to a
Hamiltonian when no work can be extracted from it by means
of a cyclical variation of a Hamiltonian parameter, while it
can be shown that a Gibbs state is the unique completely pas-
sive state such that ρ̂⊗N remains passive for all N . In other
words, passivity allows us derive Thomson’s formulation of
the second law as a constraint on unitary work extraction from
quantum systems [6]. If a state is non-passive with respect to
a Hamiltonian, work can be extracted and, upon maximiza-
tion over the space of cyclical unitaries, the optimal yield is
known as the ergotropy [7, 8]. The ergotropy has been estab-
lished as an important quantity in the emerging field of quan-
tum thermodynamics [10–14] and has recently been measured
in two experiments which explore work deposition to external
loads coupled to microscopic engines [15, 16]. In the limit of
many copies, the ergotropy converges to the conventional non-
equilibrium part of the free energy [17] and it has also been in-
corporated into an open system thermodynamic description of
finite quantum systems, recovering first and second laws [18].

A central theme in the field of quantum thermodynamics
over the last decade has been the identification of uniquely
quantum signatures in thermodynamic settings. This includes
the identification of quantum effects in thermal machines [19–
34], in work extraction protocols [17, 35–48], in fluctuations
of work [49–55], and in work deposition processes [56–62],
to name but a few examples. Arguably the most fundamen-

tal of all non-classical features is quantum coherence, yet
precise mathematical techniques for its quantification have
only recently been formulated in quantum information the-
ory [63, 64]. From the perspective of quantum thermodynam-
ics, many studies have aimed at highlighting the non-trivial
role that coherence may play [14, 65–74]. Coherence is a
basis-dependent quantity that can be expressed in terms of the
relative entropy between the state of the system at hand and its
dephased counterpart in the relevant basis [63]. This provides
a connection to the finite-time thermodynamics of quantum
systems, where the relative entropy is ubiquitous in the as-
sessment of irreversible entropy production of closed [75–77]
and open systems [78–85]. This connection was recently ex-
ploited in order to isolate a coherent contribution to the en-
tropy production in quantum dynamics [86–89]. Here, the
relevant coherence is defined relative to the energy eigenba-
sis, which plays a distinguished role in thermodynamics.

In this work, we focus on the role of such coherence in er-
gotropic work extraction. We believe the simplicity of our
approach together with its operational significance will be of
particular interest to those interested in isolating non-classical
signatures in quantum thermodynamics. We begin by intro-
ducing the basic notions of coherence and ergotropy in the
following section. In Section III, we identify coherent and in-
coherent contributions to the ergotropy, while bounds for the
coherent ergotropy are derived in Sec. IV. We then provide
examples to illustrate our results in Sec. V and, finally, sum-
marise in Sec. VI.

II. PRELIMINARIES

Given a quantum system in an initial state ρ̂, and a Hamil-
tonian Ĥ =

∑
k εk |εk〉 〈εk|, we are interested in the amount

of coherence in the energy eigenbasis. In what follows, we
will quantify the coherence with the relative entropy of coher-
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ence C(ρ̂) [63, 64]. This is motivated from the description of
coherence as a quantum resource theory [64, 90].

A quantum resource arises when there is a naturally re-
stricted set of operations O which are significantly easier to
implement than operations outside O – e.g. local operations
and classical communication (LOCC) in entanglement the-
ory [91]. If these free operations O only allow some free
states F to be created ‘for free’, all other states become a
resource whose creation requires the (costly) implementation
of operations outsideO. We may quantify the resourcefulness
of a non-free state by means of a function µ that maps states
to non-negative reals. We call µ a resource monotone if (i) its
value cannot increase under application of any free operation
Ω ∈ O to any state ρ̂: µ(ρ̂) ≥ µ(Ω(ρ̂)); and if (ii) µ(ϕ̂) = 0
for all ϕ̂ ∈ F . One way of constructing a monotone µ is to
minimize a (contractive) distance function d on the space of
quantum states with respect to F : µd(ρ̂) := minϕ̂∈F d(ρ̂, ϕ̂).
The usefulness of such a distance-based µd then depends not
least on its ease of computation – i.e., if it can be expressed as
a closed-form function.

Returning to coherence, various viable classes of free op-
erations have been considered for which the free states F
are the set of incoherent states IH , i.e., density matrices δ̂
that are diagonal in the energy eigenbasis [64]. For all of
these classes, valid coherence monontones may be obtained
based on suitable distance measures such as Tsallis relative
α-entropies Dα for which succinct expressions have been
found [92]: Cα := minδ̂∈IH Dα(ρ̂||δ̂), where the normalized

state δ̂ρ,α ∝
∑
〈εj | ρ̂α |εj〉1/α |εj〉 〈εj | obtains the minimum.

We here focus on the limit α → 1 as, in this case, the min-
imal state δ̂ρ ≡ δ̂ρ,α = ∆(ρ̂) is directly connected to the
original state ρ̂ by a physical operation – dephasing with ∆.
In this limit, Dα becomes the standard quantum relative en-
tropy D(ρ̂||δ̂) = Tr

{
ρ̂(log ρ̂− log δ̂)

}
and Cα becomes the

entropy of coherence C(ρ̂) = S(δ̂ρ) − S(ρ̂), with the Von
Neumann entropy S(σ̂) = −Tr {σ̂ log σ̂} [63].

Following the seminal paper [7], we are now interested in
extracting work from the quantum system at hand by using
a cyclic unitary transformation Û ∈ Uc, where Uc denotes
the set of unitary transformations generated in a given inter-
val (0, τ) by a time dependent Hamiltonian Ĥ(t) such that
Ĥ(0) = Ĥ(τ) = Ĥ . In this context, one typically assumes
complete control over the system [70]: that is, the possibility
of generating any unitary evolution through suitable control
fields applied to the system, which are switched off at the end
of the transformation. Under the action of the unitary Û , the
state transforms as ρ̂ → Û ρ̂Û†, and the average work ex-
tracted from the system is W (ρ̂, Û) = Tr

{
Ĥ(ρ̂− Û ρ̂Û†)

}
.

The maximum of W over the set Uc is called ergotropy,
E . After ordering the labels of eigenstates of Ĥ and of ρ̂
such that Ĥ =

∑d
k=1 εk |εk〉 〈εk|, with εk < εk+1, and

ρ̂ =
∑d
k=1 rk |rk〉 〈rk|, with rk ≥ rk+1, we define the opti-

mal ergotropic transformation Êρ as the one that maps ρ̂ into
the passive state P̂ρ = Êρρ̂Ê

†
ρ =

∑
k rk |εk〉 〈εk|. We notice

that the optimal unitary Ê depends on the state ρ̂, and that the

ergotropy is then given by

E(ρ̂) = maxÛ∈UcW (ρ̂, Û) ≡W (ρ̂, Êρ) = Tr
{
Ĥ(ρ̂− P̂ρ)

}
≡
∑
k

εk(ρkk − rk) , (1)

where ρkk (the population of ρ̂ in the k-th energy eigenstate)
can be expressed as ρkk =

∑
k′ rk′ |〈rk′ |εk〉 |2. Our main

aim is to demonstrate a precise connection between E and the
amount of coherence in the initial state C(ρ̂) [93]. In the fol-
lowing section, we show how to split the ergotropy into two
contributions, one of which directly connected to the presence
of energetic coherence in the state ρ̂.

III. COHERENT AND INCOHERENT CONTRIBUTIONS
TO ERGOTROPY

We start by introducing the incoherent part of the ergotropy,
Ei, which can be defined in two equivalent ways. One can
think of Ei as the maximum work extractable from ρ̂ without
altering its coherence. To formalize this idea, we can imag-
ine breaking the transformation Êρ into an incoherent opera-
tion followed by a second, coherence-consuming, cyclic uni-
tary. To this end, we define the subset U (i)

c ⊂ Uc of incoher-
ent, cyclic, unitary transformations, such that any V̂ ∈ U (i)

c

is coherence-preserving: C(ρ̂) = C(V̂ ρ̂V̂ †). Such V̂ is in
fact a member of the class of strictly incoherent operations
(SIOs) which admit a very operational structure [64, 94, 95];
V̂ amounts to a reshuffling of the energy basis, up to irrelevant
phase factors, of the form V̂ =

∑
k e
−iϕk |εk〉 〈επk

| ≡ V̂π ,
where πk is the k-th element in the result of the permutation π
of the indices [96]. The incoherent contribution to ergotropy
is then defined as

Ei = max
V̂ ∈U(i)

c
W (ρ̂, V̂ ) ≡ maxπW (ρ̂, V̂π) . (2)

The optimal permutation, π̃, realizing the maximum in the
equation above, is the one that rearranges the populations
{ρkk}k=1,...d in descending order: ρπ̃j π̃j ≥ ρπ̃j+1π̃j+1 ,∀j.
Letting σ̂ρ = V̂π̃ρ̂V̂

†
π̃ =

∑
k

∑
k′ ρπ̃k,π̃k′ |εk〉 〈εk′ |, the inco-

herent contribution to ergotropy is

Ei(ρ̂) = Tr
{
Ĥ(ρ̂− σ̂ρ)

}
=
∑
k

εk(ρkk − ρπ̃kπ̃k
). (3)

The state σ̂ρ possesses the same coherence as ρ̂, but less av-
erage energy. Therefore, Ei is the maximum amount of work
that can be extracted from ρ̂ without changing its coherence,
and, among the states having the same amount of coherence as
ρ̂, σ̂ρ is singled out as the one that possesses the least possible
average energy [97]. In particular, we notice that, when trying
to extract work from the state σ̂ρ through the optimal cyclic
unitary Êσ , one arrives at the very same passive state that is
obtained from ρ̂. In our notation, P̂σ = P̂ρ. This is because
σ̂ρ has the same eigenvalues as ρ̂.
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An alternative (but equivalent) route to the identification of
the incoherent contribution to ergotropy is provided by defin-
ing Ei as the maximum amount of work extractable from ρ̂ af-
ter having erased all of its coherences via the dephasing map
∆. This amounts to defining Ei as the full ergotropy of the
dephased state, Ei = E(δ̂ρ), where δ̂ρ = ∆[ρ̂] has the same
energy populations as ρ̂ (and, thus, the same average energy)
but zero coherence. The ergotropy of δ̂ρ can be written by
first defining the passive state P̂δ obtained from δ̂ρ after re-
arranging the populations in decreasing order, and then letting

Ei(ρ̂) ≡ E(δ̂ρ) = Tr
{
Ĥ(δ̂ρ − P̂δ)

}
. (4)

This definition is fully equivalent to the one given in
Eq. (3) [98]. Indeed, δ̂ρ has the same populations as ρ̂ in
the energy basis; consequently, the optimal reshuffling unitary
that maps δ̂ρ into P̂δ is given by the very same V̂π̃ introduced
above. This implies that P̂δ has the same populations as σ̂ρ (in
the same order!), but no coherence. As a result of these con-
siderations, one immediately realizes that P̂δ can be obtained
by applying the dephasing map to σ̂ρ, and that the two states
share the same average energy:

P̂δ ≡ ∆[σ̂ρ] ⇒ Tr
{
Ĥσ̂ρ

}
≡ Tr

{
Ĥ P̂δ

}
.

Having defined the incoherent part of E(ρ̂), the coherent con-
tribution to ergotropy is simply given by the difference

Ec = E − Ei = Tr
{
Ĥ(σ̂ρ − P̂ρ)

}
≡
∑
k

εk(ρπ̃kπ̃k
− rk) .

(5)
This is a non-negative quantity as, in general, σ̂ρ is an active
state. Notice further, that it coincides with the full ergotropy
of σ̂ρ.

The coherent ergotropy Ec can be understood as that part of
extractable work which cannot be obtained by means of inco-
herent operations applied to state ρ̂, and it is due to the pres-
ence of coherence in the initial state. Despite this, Ec is not a
coherence monotone, as the inequality Ec(V̂ ρ̂V̂ †) ≤ Ec(ρ̂) is
not satisfied for every incoherent operation V̂ (see Appendix
for an illustrative example). Nevertheless, both the state σ̂ρ
and the coherent part of the ergotropy, Ec, are uniquely de-
fined once the state ρ̂ and the Hamiltonian Ĥ are given, and
they result entirely from the initial coherence, implying that
σ̂ρ is not passive.

Fig. 1 summarizes these considerations and relationships.
It shows the various states and operations defined up to now
in the coherence-versus-average-energy plane.

IV. BOUNDS FOR COHERENT ERGOTROPY

Given the form of the coherent ergotropy, we can provide
upper and lower bounds to its value and show their tightness.
Indeed, by introducing the Gibbs state ρ̂β = e−βĤ/Z with
inverse temperature β, we can exploit the identityD(σ̂||ρ̂β) =

FIG. 1. Position of the various states (see main text) in a coherence-
versus-average-energy diagram. Grey dots represent quantum states
– e.g. arising from the initial state ρ̂ after the transformations
Êρ,∆, V̂π̃ are performed. The arrows representing transformations
are intended merely to point from the initial to the final state, without
implying a precise path in the plane. For example, the transforma-
tion V̂π̃ is represented by a horizontal line because it connects states
with the same amount of coherence; however, coherence may change
during the transformation. The horizontal distance ∆Ec between the
thermal state ρ̂β∗ and P̂ρ is the bound ergotropy (see Sec. IV). It may
be zero, depending on the system at hand (i.e., iff the eigenvalues of
ρ and ρβ∗ are related by a permutation).

βTr
{
Ĥ(σ̂ − ρ̂β)

}
− S(σ̂) + S(ρ̂β), valid for any state σ̂, in

order to obtain the following chain of relations:

βEc = β(E − Ei) = βTr
{
Ĥ
(
P̂δ − P̂ρ

)}
=

= βTr
{
Ĥ
(
P̂δ − ρ̂β

)}
− βTr

{
Ĥ
(
P̂ρ − ρ̂β

)}
=

=
[
D(P̂δ||ρ̂β) + S(P̂δ)− S(ρ̂β)

]
−
[
D(P̂ρ||ρ̂β) + S(P̂ρ)− S(ρ̂β)

]
After taking into account that S(P̂ρ) = S(ρ̂), and that
S(P̂δ) = S(δ̂ρ) (due to the fact that they are connected by
unitary transformations), and, finally, using C(ρ̂) = S(δ̂ρ) −
S(ρ̂), we obtain

βEc = C(ρ̂) +D(P̂δ||ρ̂β)−D(P̂ρ||ρ̂β) , (6)

which is valid for every finite β.
From this relation, using the fact the D ≥ 0, one easily

obtains bounds for Ec(ρ̂):

C(ρ̂)−D(P̂ρ||ρ̂β) ≤ βEc(ρ̂) ≤ C(ρ̂) +D(P̂δ||ρ̂β) . (7)

One can saturate the upper bound if P̂ρ = ρ̂β . This requires
that the ergotropic transformation Êρ takes ρ̂ to the thermal
state ρ̂β . Due to unitarity of this transformation, a necessary
condition on β is that S(ρ̂) = S(ρ̂β∗). We label the specific
value of β for which this entropic equality holds β∗, and note
that it exists for any ρ̂. Moreover, for a single qubit, as well
as for the important class of bosonic or fermionic states of
Gaussian form, the condition β = β∗ is not just necessary, but
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also sufficient for the saturation of the upper bound in Eq. (7)
(see examples in Sec. V).

More generally, however, the choice β = β∗ does not imply
saturation of the bound. That is, the difference

∆Ec :=
1

β∗

[
C(ρ̂) +D(P̂δ||ρ̂β∗)

]
− Ec(ρ̂)

=
1

β∗
D(P̂ρ||ρ̂β∗) ≥ 0

(8)

does not generally vanish. In fact, by expressing it as ∆Ec =

Tr
{
Ĥ(P̂ρ − ρ̂β∗)

}
we note that it equates to what is called

the bound ergotropy Eb [17] – i.e., the amount of additional
ergotropy that a global unitary transformation could retrieve
from ρ̂⊗n, per system, in the limit n → ∞ (in addition to the
single-system ergotropy E).

The saturation of the upper bound of Eq. (7) is, furthermore,
equivalent to the results of Ref. [86] where the irreversible
work Wirr performed on a quantum system was analyzed for
a unitary transformation taking an initial thermal state ρ̂β∗ to a
final state ρ̂ = Û ρ̂β∗Û

†. It was shown that β∗Wirr = C(ρ̂) +

D(δ̂ρ||ρ̂β∗). For a cyclic transformation, Wirr coincides with
the average work performed on the system, whose absolute
value, in turn, coincides with the work extracted from it by
the cyclic unitary Û†, when it is prepared in the state ρ̂. If we
take Û† = Êρ, then the result of Ref. [86] is translated into
our notation as

β∗E(ρ̂) = C(ρ̂) +D(δ̂ρ||ρ̂β∗), if Êρρ̂Ê†ρ = ρ̂β∗ . (9)

But, with the same argument as given above, the incoherent
ergotropy, Eq. (4), can be rewritten (for any β) as

βEi(ρ̂) = D(δ̂ρ||ρ̂β)−D(P̂δ||ρ̂β) . (10)

Taking β = β∗, and subtracting this relation from Eq. (9), we
obtain the saturation of the upper bound of Eq. (7):

β∗Ec(ρ̂) = C(ρ̂) +D(P̂δ||ρ̂β∗), if Êρρ̂Ê†ρ = ρ̂β∗ . (11)

The lower bound in Eq. (7), on the other hand, is saturated
iff P̂δ = ρ̂β for some inverse temperature β. For Ec > 0, this
requires that the populations of ρ̂ in the energy basis (coin-
ciding with those of δ̂ρ) are indeed thermal, but in the wrong
order, and that the state ρ̂ contains some coherence in the en-
ergy basis. An example is provided by the following qutrit
density matrix, written in the energy basis:

ρ̂ =

g1 c 0
c∗ g3 0
0 0 g2

 , gi =
e−βεi∑
j e
−βεj

, |c| ≤ √g1g3 .

For such a state, the three populations ri are ob-
tained by decreasingly ordering the set of numbers{
g1+g3

2 +
√

(g1−g3)2

4 + |c|2; g2; g1+g3
2 −

√
(g1−g3)2

4 + |c|2
}

,

and the passive state P̂ρ is obtained by taking the ordered
set as energy level populations. On the other hand,

P̂δ ≡ ρ̂β = diag{g1, g2, g3}; but this thermal state does
not have the same entropy as ρ̂ (and β has nothing to
do with β∗). Using the definitions above, we obtain
E = ε1(g1 − r1) + ε2(g3 − r2) + ε3(g2 − r3), while
Ei = (ε3 − ε2)(g2 − g3). The difference between these two
quantities gives Ec, which saturates the lower bound in Eq. (7)
(i.e., for these states, D(P̂δ||ρ̂β) = 0).

Lastly, we can exploit Eq. (6) to investigate the convert-
ibility of the states P̂δ and P̂ρ under thermal operations, and
endow this problem with an operational interpretation thanks
to the definition of ergotropy. Since both these states commute
with the Hamiltonian and are passive, their convertibility may
be addressed within the resource theory of athermality [101–
103]. In particular, if a thermal operation [102, 104] exists
that takes P̂δ to P̂ρ (P̂ρ to P̂δ), it follows that D(P̂δ||ρ̂β) −
D(P̂ρ||ρ̂β) ≡ βEc − C(ρ̂) ≥ 0 (≤ 0, respectively).

V. EXAMPLES

A. Qudits

In order to illustrate our results, we consider first the sim-
ple case of a qubit, having energy eigenvalues ε1 = 0 and
ε2. In this case, any initial state ρ̂ is transformed by the er-
gotropic transformation Ê into a passive state with a thermal
structure P̂ρ ≡ ρ̂β∗ , for a suitably chosen inverse temperature
β∗. Then, ∆Ec vanishes and the upper bound in Eq. (7) is sat-
urated. Moreover, in this case, the coherent part of ergotropy
can be directly expressed in terms of the purity of the state,
p(ρ̂) = Tr

{
ρ̂2
}

and of another coherence quantifier, the l1
norm of coherence [64], defined as Cl1(ρ̂) = 2 |〈ε1| ρ̂ |ε2〉|.
Indeed, some simple manipulations lead to

Ec(ρ̂) =
ε2

2

(√
2p(ρ̂)− 1−

√
2p(ρ̂)− 1− C2

l1
(ρ̂)
)
. (12)

This is proved by noticing that Ec(ρ̂) = ε2(ρ22 − r2), where
the smallest eigenvalue of ρ̂ is r2 = 1

2 (1 −
√

2p(ρ̂)− 1),
and where the smallest population of ρ̂ is ρ22 = 1

2 −
1
2

√
2p(ρ̂)− 1− C2

l1
.

It follows from Eq. (12) that the ergotropy in-
creases for any operation Ω with p(Ω(ρ̂)) <

1
2 + 1

2

(
Ec(ρ̂)
ε2

+ 1
4C

2
l1

(Ω(ρ̂)) ε2
Ec(ρ̂)

)2

. In the Appendix
we provide an example of an incoherent such operation –
generalized amplitude damping – to prove that Ec is not a
coherence monotone.

For a given value of the purity p, the coherence takes its
maximum value for mixed states ρ̂ with equal populations,
ρ11 = ρ22 = 1/2, for which p = (1 + C2

l1
)/2 and Ec =

Cl1/2. It follows that Ec(ρ) is maximized if the initial state is
a maximally coherent pure state with Cl1 = 1 and p = 1.

This latter observation is, in fact, more general: for a d-
level system, we get the maximum value of Ec(ρ̂) (with, cor-
respondingly, a null incoherent contribution Ei) when ρ̂ is
a maximally coherent pure state, ρ̂ = |ψ〉 〈ψ|, with |ψ〉 =



5

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.1

0.2

0.3

0.4

0.5

r1

r
2

FIG. 2. In a three-level system, we identify the class of states which
allow to saturate the right inequality in Eq. (7) by looking at a pair
of eigenvalues, r1 and r2, for which ∆Ec = 0. The various lines
refer to the cases in which the ratio of the second and third energy
eigenvalues is given byR = 0, 0.1, 0.3, 0.5, 0.7, 1 (lighter dashed to
darker solid lines).

∑
i |εi〉 /

√
d. In such a case, indeed, any incoherent unitary

V̂π preserves the average energy.
To discuss a less trivial case, where the upper bound in

Eq. (7) is not always saturated, we now consider the behavior
of the coherent part of ergotropy for a three-level system with
energy eigenvalues ε1 = 0, and ε2 = Rε3 (with R ∈ (0, 1)).
In particular, we ask under what conditions the bound is satu-
rated (i.e., ∆Ec = 0). Selecting β = β∗ as required for satura-
tion, Eq. 8 implies that once the energy values are fixed, what
really matters are just the first two eigenvalues of the density
matrix, r1, r2 (which fix the third one as r3 = 1−r1−r2). For
our three-level system, the bound ergotropy can be written as
∆Ec = ε3[r2(R− 1) + 1− r1 −Z−1(Re−β

∗Rε3 + e−β
∗ε3)],

where Z = 1 + e−β
∗Rε3 + e−β

∗ε3 . Looking for the values
of r1 and r2 that give rise to a vanishing ∆Ec, we obtain the
numerical results reported in Fig. 2, where we can appreciate
that only under very stringent conditions on the eigenvalues
of ρ̂ one obtains a saturation of the inequality. For fixed R, all
suitable eigenvalue pairs are confined to a single curve within
the total (r1, r2)-plane.

B. Bosonic Gaussian states

Beyond finite-dimensional systems, our results can also be
directly applied to bosonic Gaussian states. These states arise
naturally in the description of weakly interacting fermions or
bosons and are, by definition, related to a thermal state by a
unitary transformation. As a consequence, they saturate the
upper bound in Eq. (7).

Let us focus for simplicity on a single bosonic mode, with
Hamiltonian Ĥ = ~ωâ†â, which is assumed to be in a Gaus-
sian state of the form

ρ̂ = D̂(α)ρ̂βD̂
†(α), (13)

where D̂(α) = eαâ−α
∗â† is a unitary displacement opera-

tor. This could describe, for example, the mechanical motion
of the trapped-ion heat engine reported in Ref. [15], whose
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FIG. 3. Coherent ergotropy plotted in units of energy quanta (main)
and as a fraction of the total energy (inset), for a displaced thermal
state [Eq. (13)] of a single bosonic mode as a function of the dis-
placement, α. The solid black line shows a pure coherent state, the
dashed blue line shows a state with a thermal occupation of n̄ = 1,
while the dotted grey line shows the total ergotropy (equal for both
states).

vibrations act as a load or “flywheel” driven by a two-level
working medium comprising the ion’s electronic spin states.
In that context, the displacement α arises from mechanical
work performed by the engine on the load, while the ther-
mal occupation n̄ = (eβ~ω − 1)−1 is associated with ran-
dom energy transfer due to thermal fluctuations of the work-
ing medium. The total energy of such a state is then given
by E = Tr[Ĥρ̂] = ~ω(|α|2 + n̄), while the total ergotropy
is given simply by E = ~ω|α|2. We note that, since the de-
phasing operation ∆ is non-Gaussian, it is difficult to obtain
a simple closed-form expression for Ec, but it can be readily
computed numerically for small |α| and n̄.

Fig. 3 displays the coherent part of the ergotropy evaluated
for two different examples: a pure coherent state with n̄ = 0,
and a displaced thermal state with n̄ = 1. For α � 1, the
population distribution (i.e., the dephased state δ̂ρ) is passive
and therefore all the ergotropy is coherent, i.e., Ec = E . Con-
versely, for large α, the coherent ergotropy is linear in the
coherent displacement, Ec ∝ |α|, while the total ergotropy is
quadratic, E ∝ |α|2. Therefore, the energetics of Gaussian
states with large displacement is dominated by the incoherent
ergotropy, which is consistent with the quasi-classical nature
of these states. The work content of such states derives pri-
marily from the non-passivity of the population distribution.

Interestingly, increasing n̄ for fixed α actually increases the
coherent ergotropy. This is because, for a fixed value of α,
thermal noise renders the population distribution more pas-
sive, thus decreasing Ei without changing the total ergotropy.
This does not conflict with the obvious fact that, for fixed en-
ergy E, increasing n̄ must imply that |α| is smaller and there-
fore both components of the ergotropy are reduced.

VI. SUMMARY AND CONCLUSIONS

In summary, in this paper we have highlighted the role of
quantum coherence in work extraction processes, by identify-
ing a contribution to the ergotropy that precisely corresponds
to initial coherence in the energy basis. This is obtained by
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breaking the optimal, ergotropic, unitary cycle into an initial
incoherent unitary operation, followed by a second unitary cy-
cle through which one extracts work by exhausting the coher-
ence. We have analyzed this coherent ergotropic contribution
by exploring its range of possible values, which we have iden-
tified in terms of two bounds which can be saturated in spe-
cific cases. In particular, we discovered that the tightness of
the upper bound is intimately related to the concept of bound
ergotropy – a form of work potential that becomes available
only when processing multiple identical copies of the system
together. Finally, we have illustrated our results with the sim-
plest non-trivial examples of a qubit and a qutrit, as well as
a single-mode bosonic Gaussian state. The latter opens the
possibility for future analysis of work extraction in continu-
ous variable systems beyond unconstrained unitaries on single
modes, considering, for instance, Gaussian operations, multi-
ple modes, or both [105–109].

As quantum coherence is arguably the most primordial non-
classical effect in nature, we expect the framework described

here to prove useful for the experimental characterisation of
work production in quantum heat engines [15, 16], and, more
generally, to help reveal and quantify the delicate fingerprints
of genuinely quantum effects in non-equilibrium thermody-
namic processes.
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[44] G. Vitagliano, C. Klöckl, M. Huber, and N. Friis Trade-off
Between Work and Correlations in Quantum Thermodynam-
ics, Thermodynamics in the Quantum Regime, Chap. 30, p.
731–750 (Springer, 2019)

[45] J. Monsel, M. Fellous-Asiani, B. Huard, A. Auffèves, The En-
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Appendix A: Ec is not a coherence monotone

In this Appendix we show that Ec is not a coherence mono-
tone, i.e., there is some incoherent operation Λ such that
Ec(Λ(ρ̂)) � Ec(ρ̂). We focus on the qubit example from the
main text with for which, choosing ε2 = 1,

Ec(ρ̂) =
1

2

(√
2p(ρ̂)− 1−

√
2p(ρ̂)− 1− C2

l1
(ρ̂)
)

(A1)

An operation Λ is an incoherent operation (IO) if it can be
represented in terms of Kraus operators Ki such that Kiρ̂iK

†
i

is proportional to an incoherent state for all i and incoherent
inputs ρ̂i [64]. For any such Λ we have that Cl1(Λ(ρ̂)) ≤
Cl1(ρ̂). In contrast, as observed in the main text, if the purity

p(Λ(ρ̂)) is smaller than pc ≡ 1
2 + 1

2

(
Ec(ρ̂) +

C2
l1

(Λ(ρ̂))

4Ec(ρ̂)

)2

it

turns out that Ec(Λ(ρ̂)) > Ec(ρ̂) (see Fig. 4).
As an example of incoherent operations, we now consider

the generalized amplitude damping map

Ω(ρ̂) =
∑

Ej ρ̂E
†
j (A2)

with Kraus operators

E0 =
√
q

(
1 0
0
√

1− γ

)
,

E1 =
√
q

(
0
√
γ

0 0

)
,

E2 =
√

1− q
(√

1− γ 0
0 1

)
,

E3 =
√

1− q
(

0 0√
γ 0

)

0.0 0.2 0.4 0.6 0.8 1.0

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

q

ℰ
c
(ρ

)-
ℰ
c
(Ω

(ρ
))

FIG. 5. The plot shows the difference Ec(ρ̂)−Ec(Ω(ρ̂)) as a function
of the parameter q.

Ω maps an initial state ρ̂ =

(
ρ11 ρ12

ρ21 ρ22

)
into

Ω(ρ̂) = (1− γ)

(
ρ11 0
0 ρ22

)
+
√

1− γ
(

0 ρ12

ρ21 0

)
+ γ

(
q 0
0 1− q

)
.

(A3)

Here, we have separated the coherent and incoherent contri-
bution from the state ρ̂, as well as the state-independent con-
tribution.

In Fig. 5 we study Ec(ρ̂) − Ec(Ω(ρ̂)) as a function of the
parameter q, for γ = 1/10, ρ11 = 1/3 and ρ12 =

√
ρ11ρ22.

Notice that when the purity p(Ω(ρ̂)) is smaller than pc, we
have that Ec(Ω(ρ̂)) > Ec(ρ̂). Therefore, Ec is not a coherence
monotone under incoherent operations.
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