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Abstract 

 

Brain-predicted age difference scores are calculated by subtracting chronological age from 

‘brain’ age, which is estimated using neuroimaging data. Positive scores reflect accelerated 

ageing and are associated with increased mortality risk and poorer physical function. To date, 

however, the relationship between brain-predicted age difference scores and specific 

cognitive functions has not been systematically examined using appropriate statistical 

methods. First, applying machine learning to 1,359 T1-weighted MRI scans, we predicted the 

relationship between chronological age and voxel-wise grey matter data. This model was then 

applied to MRI data from three independent datasets, significantly predicting chronological 

age in each dataset: Dokuz Eylül University (n=175), the Cognitive Reserve/Reference Ability 

Neural Network study (n=380), and The Irish Longitudinal Study on Ageing (n=487). Each 

independent dataset had rich neuropsychological data. Brain-predicted age difference scores 

were significantly negatively correlated with performance on measures of general cognitive 

status (two datasets); processing speed, visual attention, and cognitive flexibility (three 

datasets); visual attention and cognitive flexibility (two datasets); and semantic verbal fluency 

(two datasets). As such, there is firm evidence of correlations between increased brain-

predicted age differences and reduced cognitive function in some domains that are implicated 

in cognitive ageing.  

 

Keywords 

MRI; Brain Ageing; Cognitive Ageing; Cognitive Function; Machine Learning; Biomarkers   

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 2, 2019. ; https://doi.org/10.1101/652867doi: bioRxiv preprint 

https://doi.org/10.1101/652867
http://creativecommons.org/licenses/by/4.0/


Introduction 

 Longitudinal neuropsychological testing in older adults can be used to detect cognitive 

decline. However, practice effects can obscure assessment of cognitive ability (Elman et al., 

2018), and test performance is affected by subject-level factors such as the individual’s level 

of comprehension, reading ability, self-efficacy, motivation, fatigue, and fluctuations in 

concentration (McCaffrey & Westervelt, 1995). In contrast, objective biomarkers are not 

subject to such biases or patients’ physical limitations (Jollans & Whelan, 2016). An objective 

biomarker of cognitive ageing would therefore be useful for the timely identification of cognitive 

decline outside of age-related norms. 

Ageing is a process with significant heterogeneity across individuals (McCrory & 

Kenny, 2018). Consequently, chronological age is not the most accurate marker of an 

individual’s rate of biological ageing (Sprott, 2010). Ageing biomarkers have been developed 

that provide additional information about an individual’s health status and life expectancy 

(Dean & Morgan, 1988). For example, DNA methylation data can estimate epigenetic ageing 

(‘epigenetic clocks’), reflecting the age of an individual’s tissues or blood cells (Fiorito et al., 

2019). Subtracting chronological age from the biological age results in a biologically 

informative summary score – the predicted age difference – for each individual, which reflects 

the deviation from typical lifespan trajectories (Richard et al., 2018). This approach has also 

been applied in neuroimaging, where machine learning can be used to quantify the 

relationship between structural MRI data and chronological age, in order to estimate an 

individual’s ‘brain age’. Subtracting chronological age from the estimated ‘brain age’ results in 

a brain predicted-age difference score (brainPAD, also referred to as brain age gap, brainAGE, 

Brain-Age Score; (Beheshti, Maikusa, & Matsuda, 2018; Franke, Ziegler, Klöppel, & Gaser, 

2010; Schnack et al., 2016) which quantifies how a person’s brain health differs from what 

would be expected for their chronological age.  

BrainPAD is a promising biomarker of general brain ageing as it already satisfies 

several criteria for ageing biomarkers (Butler et al., 2004). BrainPAD is predictive of mortality 

(Cole, Ritchie, et al., 2018) and of age-sensitive physiological measures, including grip 

strength, lung function, walking speed and allostatic load (Cole, Ritchie, et al., 2018). 

Moreover, BrainPAD could potentially be used as a biomarker of cognitive ageing as it is 

negatively correlated with fluid cognitive performance (Cole, Ritchie, et al., 2018) and is 

significantly increased in Alzheimer's disease (AD) and mild cognitive impairment (MCI) 

(Franke & Gaser, 2012; Gaser et al., 2013; Löwe, Gaser, & Franke, 2016). However, the 

potential of brainPAD as a cognitive ageing biomarker is currently limited by a lack of 

knowledge regarding the exact relationship between brainPAD and specific cognitive functions 

in healthy individuals.  
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Studies relating specific cognitive functions and brainPAD have been assessed in 

solely clinical samples (e.g., Cole et al. (2015), traumatic brain injury), or in mixed samples of 

clinical groups and healthy controls (e.g., Beheshti et al. (2018); AD, MCI, and healthy 

controls) and not samples comprised only of healthy adults. As such, the reported associations 

between brainPAD and specific domains of cognitive function in such studies (Beheshti et al., 

2018; Cole et al., 2015) may be skewed towards significance by the inclusion of the clinical 

samples with typically higher brainPADs. Consequently, these findings may not represent the 

brainPAD-cognition relationship in normal ageing. For example, Le and colleagues (2018) 

reported a significant negative correlation between brainPAD and response inhibition and 

selective attention in a sample of individuals comprised of healthy controls and patients with 

mood or anxiety disorders, substance use disorder and/or eating disorders. However, 

significantly increased brainPADs have been reported in mood disorders such as major 

depression (Koutsouleris et al., 2014) and in substance use disorders such as alcohol 

dependence (Guggenmos et al., 2017). As both major depression and alcohol dependence 

are associated with cognitive impairments (Chanraud et al., 2007; McIntyre et al., 2013), the 

significant brainPAD-cognitive function correlations reported across samples including such 

populations could be driven by the inclusion of such clinical groups.  

The relationship between specific cognitive functions and BrainPAD has also been 

somewhat obscured by statistical considerations. Recent work has empirically demonstrated 

that chronological age must be controlled for when testing relationships between brainPAD 

and cognitive functions (Le et al., 2018; Smith, Vidaurre, Alfaro-Almagro, Nichols, & Miller, 

2019). Failure to correct for chronological age can result in false positive findings because 

some cognitive variables are correlated with chronological age – but not brain ageing – and 

brainPAD is typically correlated with chronological age (Le et al., 2018). In light of this recent 

work, it is difficult to interpret studies that did not control for chronological age when 

investigating the brainPAD-cognition relationship in healthy controls (Franke, Gaser, Manor, 

& Novak, 2013; Löwe et al., 2016). A second statistical issue is a failure to correct for multiple 

comparisons. Researchers testing the brainPAD-cognition relationship have tended to carry 

out multiple statistical tests of the correlation between brainPAD and various cognitive 

measures. The performance of multiple statistical tests can increase the Type I error and result 

in false positive findings (Ranganathan, Pramesh, & Buyse, 2016). However, some papers did 

not control for multiple comparisons when investigating the brainPAD-cognition relationship 

(Beheshti et al., 2018; Cole, Underwood, et al., 2017). Other studies have investigated the 

relationship between brainPAD and specific domains of cognitive function while controlling for 

chronological age and multiple comparisons, but there are conflicting results for most cognitive 

domains. For example, a significant correlation between verbal fluency and brainPAD was 
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reported by Franke and colleagues (2013) whereas Richard and colleagues (2018) found no 

association between verbal fluency and brainPAD. We have summarized the brainPAD-

cognition findings in Table 1.  

The first step in generating a brainPAD score is creating a feature set of neuroimaging 

data which is correlated with chronological age. Neuroimaging data have high dimensionality, 

which can result in overfitting and overoptimistic predictions (Whelan & Garavan, 2014). Brain 

age prediction models thus rely on feature engineering techniques such as principal 

components analysis (PCA; Franke et al., 2010; Gutierrez Becker, Klein, & Wachinger, 2018) 

or even dot products of different features (e.g. vectors of GM and white matter (WM) voxels 

as in Cole et al., 2015; Cole, Ritchie, et al., 2018; Cole, Underwood, et al., 2017) in order to 

reduce the dimensionality (Mwangi, Tian, & Soares, 2014). Although these models ultimately 

create generalizable and accurate predictions, these come at the cost of reduced 

interpretability of the contributions of the features (Bunea et al., 2011; Mateos-Pérez et al., 

2018), which is important for assessing the neurobiological validity of the model (Woo, Chang, 

Lindquist, & Wager, 2017) and to identify specific brain areas for further investigation 

(Scheinost et al., 2019). An alternative to applying PCA or other data reduction techniques is 

to use penalized regression methods such as the Elastic Net (Zou & Hastie, 2005), with only 

one class of features (e.g. GM voxels) as input. GM data is particularly well-suited for age 

prediction as GM volume linearly declines with age (but cf. Fjell et al., 2013) whereas WM 

volume has a less straightforward relationship with age, as it doesn’t decline significantly until 

middle age (Farokhian, Yang, Beheshti, Matsuda, & Wu, 2017; Ge et al., 2002). The Elastic 

Net is a machine learning model well-suited to the high dimensionality and multicollinearity 

inherent in neuroimaging data as shown by the finding that it produced the most consistent 

predictions as compared to various other models over datasets with varying sample-, feature 

set-, and effect-sizes (Jollans et al., in revision). 

A final challenge in the development of neuroimaging biomarkers, or neuromarkers, is 

ensuring the generalisability of the neuromarker to new data. For practical reasons, cross-

validation, where a dataset is split into a training set and a test set (Varoquaux et al., 2017), 

is often used as an estimate of model accuracy for new data (Jollans & Whelan, 2018; 

Scheinost et al., 2019). However, cross-validation accuracy estimates are often optimistically 

biased and can vary considerably (Varoquaux et al., 2017), particularly when preprocessing 

and feature selection are carried out on the entire dataset before splitting it into training and 

test sets (Dwyer, Falkai, & Koutsouleris, 2018; Woo et al., 2017). As such, the gold-standard 

for assessing the external validity and generalisability of a neuromarker is by testing how the 

model performs on a completely independent held-out dataset (Jollans & Whelan, 2018). 

While various brainPAD studies have externally validated their models (Beheshti et al., 2018; 
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Cole et al., 2015; Cole, Ritchie, et al., 2018; Cole, Underwood, et al., 2017; Franke et al., 2010; 

Gutierrez Becker et al., 2018; Lancaster, Lorenz, Leech, & Cole, 2018; Liem et al., 2017; 

Madan & Kensinger, 2018; Varikuti et al., 2018), only a few studies have reported model 

performance in terms of accuracy (i.e., correlation or mean absolute error between brain-

predicted age and chronological age) on the external validation dataset (Cole et al., 2015; 

Lancaster et al., 2018; Liem et al., 2017; Madan & Kensinger, 2018). This does not necessarily 

cast doubt on the validity of the models whose accuracy is reported in terms of internal cross-

validation performance. However, not reporting the external validation performance limits the 

interpretation of the accuracy and generalisability of various brainPAD models as typically 

performance will be lower in the external validation dataset.  

 In order to clarify the unclear relationship between brainPAD and specific domains of 

cognitive function, we aimed to 1) establish an interpretable model of brainPAD using the 

Elastic Net with GM voxel-wise data, 2) externally validate this model in three independent 

datasets, and 3) to establish the domains of cognitive function that are reliably correlated with 

brainPAD across different datasets. 
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Table 1 

Summary of findings on the relationship between brainPAD and cognitive function, indicating whether results were statistically significant (Sig.), 

statistically significant in healthy controls (Sig. in HCs), adjusted for age (Age adj.) and corrected for multiple comparisons (MC corr.). 

Cognitive Domain Measure Reference Sample  n Sig.  Sig. 
in 
HCs 

Age 
adj.  

MC 
corr. 

General Cognitive 
Status 

MOCA (Richard et al., 2018) HC  265 ✘ ✔ ✔ ✔ 

MMSE (Kaufmann et al., 2018) MCI; DEM 921; 707 ✔ ✘ ✔ ✔ 

MMSE (Gaser et al., 2013) 
 

MCI 195 ✘ ✘ ✘ ✘ 

CDR ✔ ✘ ✘ ✘ 

ADAS ✔ ✘ ✘ ✘ 

MMSE (Löwe et al., 2016) APOE; Non APOE 219; 186 ✔ ✘ ✘ ?1 

CDR APOE; Non APOE 219; 186 ✔ ✘ ✘ ?1 

ADAS APOE; Non APOE 219; 186 ✔ ✘ ✘ ?1 

MMSE (Beheshti et al., 2018) AD; pMCI; sMCI; 
HC 

147; 
112; 
102; 146 

✔ ✘ ✘ ✔2 

CDR ✔ ✘ ✘ ✔2 

ADAS ✔ ✘ ✘ ✔2 

Composite measure3 (Cole, Underwood, et al., 2017) HIVp; HC 161; 102 ✔ ✔ ✘4 ✔2 

Verbal Fluency Composite measure5  (Cole, Underwood, et al., 2017) HIVp; HC 161; 102 ✘ ✔ ✘4  ✘ 

Composite measure6 (Richard et al., 2018) HC 265 ✘ ✔ ✔ ✔ 

Semantic (Category Fluency Test) (Franke et al., 2013) DM2; HC 98; 87 ✔ ✔ ✔ ✔ 

Phonemic (Letter Fluency Test) (Cole et al., 2015) TBI 89 ✔ ✘ ✔ ✔ 

Processing Speed Composite measure7 (Cole, Underwood, et al., 2017) HIVp; HC 161; 102 ✔ ✔ ✘4 ✘ 

Composite measure8 (Richard et al., 2018) HC 265 ✘ ✔ ✔ ✔ 

                                            
1 Awaiting clarification from authors – Multiple comparison correction not outlined in relation to brainPAD-cognition tests but used elsewhere in paper.  
2 Finding not corrected for multiple comparison but likely would have survived Bonferroni correction so not affected by lack of correction. 
3 Average of average standardised t-scores (adjusted for age, sex, education) across domains of verbal fluency, information processing speed, executive function, memory, 
attention, and motor function 
4 T-scores controlled for effect of age on cognitive scores, but relationship between brainPAD and age was not controlled for, so not fully adjusted for age.  
5 Average of standardised t-scores (adjusted for age, sex, education) from Category Fluency and Letter Fluency tests 
6 Cluster measure combining Phonological Flow and Semantic Flow measures from CABPad (Willer, Pedersen, Forchhammer, & Christensen, 2016) 
7 Average of standardised t-scores (adjusted for age, sex, education) from TMT-A, WAIS-III Digit Symbol and Symbol Search, and Stroop Colour-Word Test 
8 Cluster measure combining processing speed parameters based on the Theory of Visual Attention obtained from test battery using CABPad 
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TMT-A (Cole et al., 2015) TBI 90 ✔ ✘ ✔ ✔ 

CRT  TBI 66 ✔ ✘ ✔ ✔ 

Processing Speed, 
Visual Attention, 
and Cognitive 
Flexibility 

Composite measure9 (Cole, Underwood, et al., 2017) HIVp; HC 161; 102 ✔ ✔ ✘4 ✘ 

TMT-B (Cole et al., 2015) TBI 90 ✔ ✘ ✔ ✔ 

Visual Attention 
and Cognitive 
Flexibility 

TMT-B minus TMT-A (Cole et al., 2015) TBI 90 ✔ ✘ ✔ ✔ 

Response 
Inhibition and 
Selective 
Attention 

D-KEFS CWIT Composite measure 10 (Richard et al., 2018) HC 265 ✘ ✔ ✔ ✔ 

D-KEFS CWIT (Inhibition vs Color Naming – 
scaled) 

(Le et al., 2018) HC, MOOD/ANX, 
SUD, ED 

489 
 

✘ ✘ ✔ ✔ 

D-KEFS CWIT (Inhibition/Switching)  TBI 89 ✔ ✘ ✔ ✔ 

D-KEFS CWIT (Inhibition/Switching minus 
Baseline Stroop performance) 

TBI 89 ✘ ✘ ✔ ✔ 

Sustained 
Attention 

Composite measure9 (Cole, Underwood, et al., 2017) HIVp; HC 161; 102 ✘ ✔ ✘2 ✘ 

Verbal Episodic 
Memory 

Composite measure11 (General) (Cole, Underwood, et al., 2017) HIVp; HC 161; 102 ✔ ✔ ✘2 ✘ 

CVLT Immediate Recall, CVLT Delayed Recall, 
CVLT Learning 1-5, (all tested separately) 

(Richard et al., 2018) HC 265 ✘ ✔ ✔ ✔ 

People Test (Immediate) (Cole et al., 2015) TBI 90 ✔ ✘ ✔ ✔ 

Working Memory Composite measure12 (Richard et al., 2018) HC 265 ✘ ✔ ✔ ✔ 

Blocked Verbal N-back Task (Scheller et al., 2018) HC 34 ✘ ✔ ✘ n/a13 

Motor Function Composite measure14 (Cole, Underwood, et al., 2017) HIVp; HC 161; 102 ✘ ✔ ✘2 ✘ 

Intelligence WASI Similarities (Abstract verbal reasoning) (Cole et al., 2015) TBI 90 ✘ ✘ ✔ ✔ 

WASI Matrix Reasoning (Non-verbal reasoning) TBI 88 ✘ ✘ ✔ ✔ 

Composite measure15 (Fluid-type intelligence) (Cole, Ritchie, et al., 2018) HC 669 ✔ ✔ ✔ ✘ 

Moray House Test (Childhood IQ) ✘ ✔ ✘ ✘ 

                                            
9 Average of standardised t-scores (adjusted for age, sex, education) from TMT-B and WCST (Number of total errors, perseverative errors and responses) 
10 Cluster measure combining scores from the Colour-Naming, Reading, Inhibition, and Inhibition/Switching trails of the D-KEFS CWIT 
11 Average of standardised t-scores (adjusted for age, sex, education) from Rey Auditory Verbal Learning test and WMS-IV Visual Reproduction  
12 Cluster measure combining measures from working memory test of CABPad 
13 Only one test of brainPAD-cognition relationship conducted so multiple comparison correction not necessary 
14 Average of standardised t-scores (adjusted for age, sex, education) from Grooved Pegboard and Finger Tapping tasks 
15 Index derived from a principal components analysis of WASI-III Letter-number sequencing, digit span backwards, matrix reasoning, block design, digit symbol coding, 

symbol search 
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Note: MOCA = Montreal Cognitive Assessment; MMSE = Mini Mental State Examination, MCI = Mild Cognitive Impairment, DEM = Dementia; 

CDR = Clinical Dementia Rating Scale, AD = Alzheimer’s Disease, ADAS = Alzheimer’s Disease Assessment Scale, HC = Healthy Controls, 

APOE = APOE e4 carrier, Non APOE = APOE e4 non-carrier, sMCI = Stable MCI, pMCI = Progressive MCI, HIVp = HIV-positive, DM2 = 

Diabetes Mellitus Type 2, TBI = Traumatic Brain Injury, TMT-A = Trail Making Test A (Time to complete), CRT = Choice Reaction Time Task 

(Median reaction time), TMT-B = Trail Making Test B (Time to complete), D-KEFS CWIT = Delis-Kaplan Executive Function System D Color-

Word Interference Test, MOOD/ANX = Mood/Anxiety Disorder, SUD = Substance use Disorder, ED = Eating Disorder, CVLT = California 

Verbal Learning Test, WASI = Weschler Abbreviated Scale of Intelligence. 
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Methods 

Participants 

Training Set 

The data were comprised of MRI scans from 1,359 healthy adults (mean age 40.04 

years, SD = 17.78 years, range = 18.00 - 88.36 years; 855 females) drawn from various open-

access data repositories (see Table S.1 in Supplementary Info). Inclusion criteria for the 

training cohort were: over 18 years old, age and gender data available, and not diagnosed 

with any neurological, psychiatric or major medical conditions.  

Independent Test Set 1 – Dokuz Eylül University (DEU) 

The first test set was comprised of 175 community-dwelling adults (mean age = 68.95 

years, SD = 8.59 years; range = 47.56 – 93.51 years; 104 females) recruited as part of a study 

conducted at Dokuz Eylül University, Izmir, Turkey. Exclusion criteria included history of 

neurological or psychiatric diseases, use of psychotropic drugs including cholinesterase 

inhibitors, traumatic brain injury, history of stroke, drug and/or alcohol addiction and 

uncontrolled systemic diseases.  

Independent Test Set 2 – Cognitive Reserve/Reference Ability Neural Network (CR/RANN) 

The third test set was comprised of 380 community-dwelling adults (mean age = 52.41 

years, SD = 17.09 years; range = 19 – 80 years; 210 females) who participated in the Cognitive 

Reserve/Reference Ability Neural Network study (CR/RANN; (Stern, Gazes, Razlighi, 

Steffener, & Habeck, 2018; Stern et al., 2014). These participants were screened for MRI 

contraindications, hearing and visual impairments, medical or psychiatric conditions, and 

dementia and MCI. Further inclusion criteria were a score of over 135 on the Mattis Dementia 

Rating Scale (Jurica, Leitten, & Mattis, 2001), a reading level at least equivalent to the US 4th 

grade, and minimal complaints of functional impairment. 

Independent Test Set 3 – The Irish Longitudinal Study on Ageing (TILDA)  

The second test set was comprised of an MRI subset of a nationally representative 

longitudinal cohort study of community-dwelling adults in Ireland (B. J. Whelan & Savva, 

2013). From an initial subset of 502 participants, participants were excluded due to missing a 

portion of the cerebellum (n = 2), a history of Parkinson’s disease, stroke, or transient ischemic 

attack (n = 11) and no cognitive data (n= 2). The final test set was comprised of MRI data from 

487 participants (mean age = 68.6 years, SD = 7.21 years; range = 50 – 88 years; 260 

females).  
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MRI data acquisition 

Training Set 

A range of T1-weighted MRI scans from different scanners and using different 

protocols were used as the training set (see Table S.1 in Supplementary Info). 

Test Set 1 – DEU Dataset 

DEU participants underwent a 10 minute T1 scan in a 1.5 T Philips Achieva scanner 

as part of a larger 20-min MRI battery. Two separate protocols were used for scans included 

here. The Alzheimer’s Disease Neuroimaging Initiative (ADNI) T1 protocol was followed for 

126 scans using the turbo field echo sequence with the following parameters: number of slices 

= 166, FOV = 240mm3, slice thickness = 1 mm, slice gap = 0 mm, TR = 9 ms, TE = 4 ms. For 

49 scans, a local protocol using a gradient echo sequence was followed with the following 

parameters: FOV = 230mm3, slice thickness = 1 mm, slice gap = 0 mm, TR = 25 ms, TE = 6 

ms. 

Test Set 2 – CR/RANN Dataset 

CR/RANN participants underwent a 5 minute T1 MPRAGE scan in a 3T Philips 

Achieva scanner as part of a larger 2-hr imaging battery. The following parameters were 

used: FOV = 256×256 mm, slice thickness = 1 mm, slice gap = 0 mm, TR = 6.5 ms, TE = 3 

ms. 

Test Set 3 – TILDA Dataset 

TILDA participants underwent a 5 minute 24 seconds T1 MPRAGE scan in a 3T Philips 

Achieva scanner as part of a larger 45-min MRI battery. The following parameters were used: 

FOV = 240×218×162mm3, slice thickness = 0.9 mm, slice gap = 0 mm, TR = 6.7 ms, TE = 3.1 

ms. 

MRI pre-processing 

All images were preprocessed using SPM12 (University College London, London, UK). 

Prior to processing, all scans were automatically approximately reoriented (see Supplemental 

Information; MRI pre-processing) to a canonical SPM template. All scans were then visually 

inspected for good orientation and gross artefacts before preprocessing. In the test set, badly 

oriented scans were manually reoriented before preprocessing. In both training and test sets, 

each individual dataset was preprocessed in a separate batch. Bias correction was applied to 

image which were then segmented into GM, WM, and CSF. Segmented GM images were 

non-linearly registered to a custom template, using SPM’s DARTEL. Images were then affine 

registered to MNI space (1 mm3) and resampled with modulation to preserve the total amount 

of signal from each voxel. Images were smoothed with a 4 mm full-width at half maximum 

Gaussian kernel. Finally, images were visually inspected for accurate segmentation. The code 
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used to auto-reorient and preprocess the MRI data is available at 

https://github.com/rorytboyle/brainPAD. 

Machine learning  

Data preparation 

GM images were resized to 2 mm3 voxels and individual voxel values were extracted 

from each image. In the training set, voxels with a GM density of > 0.2 in all 1,359 images 

were utilized in the training set. The training data consisted of 1,359 images, each with 54,869 

voxels. 

Machine learning model 

The goal of the training phase was to construct a generalizable model that could predict 

chronological age from GM data. In order to increase generalizability, a data resampling 

ensemble approach was used. That is, 500 participants, with a 50:50 gender ratio, were 

randomly sampled without replacement from the training data to form a nested training set. 

This process was repeated 25 times, creating 25 nested training sets. Each nested training 

set (500 participants x 54,869 voxels), was used as the input to a regularized linear regression 

model (Elastic Net), with 10-fold cross-validation (CV), to predict the chronological age of each 

participant (see Supplementary Info for further information on the machine learning model). 

The performance of the model was quantified using the mean of each of the 25 nested models’ 

Pearson’s correlation between chronological age and predicted age (r), total variance 

explained (R2), mean absolute error (MAE), and the weighted MAE. The weighted MAE is 

equal to the MAE divided by the age range of the sample tested and is a more suitable metric 

for comparing the MAE of brainPAD models across studies as it accounts for the impact of a 

sample’s age range on prediction accuracy (Cole, Franke, & Cherbuin, 2018). A lower 

weighted MAE reflects greater accuracy.  

Application to independent test sets 

First, the average coefficient value for each voxel across all folds in all 25 training 

models was calculated, resulting in a vector of length 54,869. For each independent test set, 

the mean coefficient values were multiplied by the voxels’ GM density values and the product 

was summed to create a brain-age prediction for each participant. To correct for the 

proportional bias in the model, the prediction was added to the intercept of the training set, 

and the result was then divided by the slope of the training set. This correction does not affect 

the relationship between brainPAD and outcome measures but scales the data correctly so 

that brainPAD scores can be interpreted in units of years proportional to a person’s 

chronological age. Similar corrections have been applied in other brainPAD models (Cole, 

Ritchie, et al., 2018). BrainPAD was calculated by subtracting chronological age from the 
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corrected predicted age, hence, a positive brainPAD value indicates a brain-predicted age that 

exceeds the participant’s chronological age, suggesting accelerated brain ageing. The code 

used to make brain-age predictions and calculated brainPAD scores for independent test sets 

is available at https://github.com/rorytboyle/brainPAD. 

Cognitive function measures 

Each of the three datasets contained a wide range of cognitive measures. For the 

purposes of the present study, cognitive measures were selected for analysis if a comparable 

measure existed in at least two of the three datasets. Across all three datasets, 17 common 

cognitive domains were identified (see Table 2 for list of cognitive domains and cognitive 

measures used and Supplementary Information for detailed descriptions of each cognitive 

measure).
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Table 2 

Cognitive measures available across each dataset in comparable cognitive domains (see Table S.2 for full information on each measure).  

Cognitive Domain(s) DEU Measure (N) CR/RANN Measure (N) TILDA Measure (N) 

General Cognitive Status MMSE (total score) (172) DRS (370) MMSE (485) 

Premorbid Intelligence n/a AMNART (362) NART (486) 

Phonemic Verbal Fluency KAS Test (137) CFL Test (360) n/a 

Semantic Verbal Fluency Animals Test (175) Animals Test (361) Animals Test (487) 

Processing Speed TMT A (93) TMT A (361) CTT 1 (487) 

Processing Speed, Visual 
Attention, Cognitive 
Flexibility 

TMT B (84) TMT B (357) CTT 2 (482) 

Visual Attention, Cognitive 
Flexibility 

TMT B minus TMT A (84) TMT B minus TMT A (357) CTT 2 minus CTT 1 (482) 

Cognitive Flexibility WCST Perseverative Error Percentage 
(50) 

WCST Perseverative Error 
Percentage (327) 

n/a 

Response Inhibition, 
Selective Attention 

Stroop (Turkish Capa version; Emek-
Savaş, Yerlikaya, Yener, & Öktem, 
2019) Interference Score - Time (150) 

Stroop (Golden version; Golden, 
1978) Interference Score - Words 
(359) 

n/a 

Sustained Attention 
(Errors of Commission) 

n/a PVT False Alarms (176) SART Errors of Commission 
(482) 

Sustained Attention 
(Reaction Time) 

n/a PVT Median Reaction Time (176) SART Coefficient of Variation 
in Reaction Time (479) 

Verbal Episodic Memory 
(Immediate) 

OVMPT Immediate Recall (175) SRT Total Score (360) Immediate Recall (487) 

Verbal Episodic Memory 
(Delayed) 

OVMPT Delayed Recall (175) SRT Delayed Recall (360) Delayed Recall (487) 

Verbal Episodic Memory 
(Learning) 

OVMPT Total Learning Score (175) SRT Consistent Long Term 
Retrieval (360) 

n/a 

Working Memory WMS-R Digit Span Forward Test (171) WAIS-III Letter Number 
Sequencing Test (360) 

n/a 

WMS-R Digit Span Backward Test (170)  

Visuospatial Ability BLOT (80) WAIS-III Block Design Test (356) n/a 
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Note: MMSE = Mini-mental state examination (Folstein, Folstein, & McHugh, 1975); DRS Total Score = Mattis Dementia Rating Scale-2 – Total 

Score (Jurica et al., 2001); NART = National Adult Reading Test (Nelson & Willinson, 1982); AMNART = American National Adult Reading Test 

(Grober & Sliwinski, 1991); CTT = Colour Trails Test (D’Elia, Satz, Uchiyama, & White, 1996); TMT = Trail Making Test (Reitan, 1955); WCST 

= Wisconsin Card Sorting Test (Heaton, Chelune, Talley, Kay, & Curtiss, 1993); SART = Sustained Attention to Response Test (Robertson, 

Manly, Andrade, Baddeley, & Yiend, 1997); PVT = Psychomotor Vigilance Task (Dorrian, Rogers, & Dinges, 2005); OVMPT = Öktem Verbal 

Memory Processes Test (Öktem, 1992); SRT = Selective Reminding Test (Buschke & Fuld, 1974); WMS-R = Wechsler Memory Scale 

(Wechsler, 1987); WAIS-III = Wechsler Adult Intelligence Scale – Third Edition (Wechsler, 1997); BLOT = Benton’s Judgement of Line 

Orientation Test (Benton, Varney, & Hamsher, 1978) 
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Statistical analysis 

The statistical analysis was conducted using the following procedure: 

1. Correlate. Within each independent test set, partial Spearman’s rank order 

correlations were conducted between brainPAD scores and cognitive measures, 

controlling for chronological age and gender. Gender was adjusted for to account 

for a significant gender difference in brainPADs (p < 0. 0001), see Supplementary 

Results for further detail. 

 

2. Replicate. For findings replicated in multiple datasets, the probability of obtaining 

p-values by chance was calculated by random-label permutation (see 

Supplementary Methods for further detail). Briefly, this involved randomly shuffling 

brainPAD scores, conducting Spearman’s partial correlations between randomly 

shuffled brainPAD scores and the cognitive dependent variables, controlling for 

age and gender. This process was repeated one million times. The number of times 

in which all random p-values were more extreme (i.e. smaller) than the actual p-

values was summed and divided by one million to obtain the probability of the 

finding replicating across multiple datasets by chance. Replicated findings were 

deemed significant if this probability was less than .05.  

 

3. Correct for multiple comparisons. All other correlations were then corrected for 

multiple comparisons, while allowing for correlations among dependent cognitive 

variables, using a maximum statistic approach (see Supplementary Methods for 

further detail). Briefly, in each test set, brainPAD scores were randomly shuffled 

and then Spearman’s partial correlations were conducted between the randomly 

shuffled brainPAD scores and the cognitive dependent variables, controlling for 

age and gender. This process was repeated 10,000 times and the maximum rho 

value was stored each time. Correlations between actual brainPAD scores and 

cognitive variables were deemed significant if they exceeded the 95th percentile of 

the maximum rho values.  
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Results 

Brain age prediction 

Training set 

The model accurately predicted chronological age (r = 0.85, R2 = 67.24%, MAE = 7.28 

years, weighted MAE = 0.10, p < 0.0001). As with other brain PAD models (e.g., Cole et al., 

2018), a proportional bias was observed in this model where chronological age correlated with 

prediction error (r = - 0.4452, p = 1.1036e-10). 

Independent test sets 

Table 3 

Results of application of trained model parameters to 3 independent test sets. * = p < 10-37. 

Test Set Pearson’s r (brain 
age, chronological 
age) 

Mean 
brainPAD 
(years) 

SD 
brainPAD 
(years) 

MAE 
(years) 

Weighted 
MAE 
(MAE/age 
range) 

Test Set 1 – 
DEU 

0.78* +6.60 6.44 7.60 0.17 

Test Set 2 – 
CR/RANN 

0.87* +6.39 8.57 8.56 0.14 

Test Set 3 - 
TILDA 

0.65* -6.97 7.52 8.42 0.22 

 

Brain regions involved in brain age prediction 

The voxel-wise method used here to predict brain age resulted in individual coefficient 

values for each voxel. In order to assess the relative predictive weight for each voxel and to 

extract the AAL region of interest in which each voxel was situated, the absolute value of the 

coefficient values were ranked from largest to smallest (using a custom MATLAB function 

get_beta_labels.m). As a brief overview, the 20 largest negative and positive coefficient values 

are shown in tables 4 and 5, respectively (see attached excel sheet for coefficient values for 

all voxels). Voxels with positive coefficient values contributed to older brain age predictions 

and voxels with negative coefficient values contributed to younger brain age predictions. 

Figures 1 and 2 show all voxels with negative and positive coefficient values, respectively.  
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Table 4 

Overall ranking of coefficient value, coefficient values, MNI coordinates and 

ROI within the AAL atlas for the 20 largest negative coefficient values. 

Overall Rank Coefficient values MNI Coordinates AAL ROI 

1 -0.6085 [4, -10, 2] Thalamus_R (aal) 

2 -0.5212 [42, -10, -6] Insula_R (aal) 

3 -0.4807 [38, -46, -42] Cerebelum_7b_R (aal) 

4 -0.4129 [18, -34, 0] Hippocampus_R (aal) 

5 -0.4059 [18, -34, 2] Hippocampus_R (aal) 

9 -0.2724 [-32, -54, -58] Cerebelum_8_L (aal) 

11 -0.2467 [-14, 2, 20] Caudate_L (aal) 

12 -0.2050 [36, 22, 4] Insula_R (aal) 

17 -0.1708 [52, -6, 30] Postcentral_R (aal) 

18 -0.1692 [16, -34, 2] Thalamus_R (aal) 

19 -0.1650 [44, -4, -12] Temporal_Sup_R (aal) 

21 -0.1473 [16, -32, 4] Thalamus_R (aal) 

22 -0.1427 [-16, -32, 4] Thalamus_L (aal) 

24 -0.1374 [-20, -48, -60] Cerebellum_8_L 

25 -0.1371 [8, 12, 42] Cingulum_Mid_R (aal) 

26 -0.1370 [-36, -80, -38] Cerebelum_Crus2_L (aal) 

27 -0.1349 [8, 34, 26] Cingulum_Ant_R (aal) 

28 -0.1313 [-32, -16, -4] Putamen_L (aal) 

29 -0.1274 [-6, -16, 44] Cingulum_Mid_L (aal) 

33 -0.1236 [18, -42, -50] Cerebelum_9_R (aal) 

 

 

Fig 1: Voxels with negative coefficient values. A = Axial Plane, B = Coronal Plane, C = 

Sagittal Plane. Note: Signs of these voxel values were flipped to aid plotting. 
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Table 5 

Overall ranking of coefficient value, coefficient values, MNI coordinates and ROI within the 

AAL atlas for the 20 largest positive coefficient values. 

Overall Rank Coefficient values MNI Coordinates AAL ROI 

6 0.3861 [-36, 6, -16] Temporal_Pole_Sup_L † 

7 0.3697 [-38, 4, -14] Insula_L (aal) 

8 0.3347 [10, -18, 10] Thalamus_R (aal) 

10 0.2475 [28, -4, -50] Temporal_Pole_Mid_R † 

13 0.2036 [-20, -16, -28] ParaHippocampal_L (aal) 

14 0.1915 [-56, 4, 36] Precentral_L (aal) 

15 0.1784 [-20, -14, -30] ParaHippocampal_L (aal) 

16 0.1733 [-8, -18, 10] Thalamus_L (aal) 

20 0.1586 [30, -4, -30] ParaHippocampal_R (aal) 

23 0.1401 [32, -6, -20] Hippocampus_R (aal) 

30 0.1272 [22, -14, -30] ParaHippocampal_R (aal) 

31 0.1266 [32, -6, -18] Hippocampus_R (aal) 

32 0.1243 [8, -44, -26] Vermis_10 (right hemisphere) † 

34 0.1234 [10, -18, 12] Thalamus_R (aal) 

36 0.1169 [22, -48, 4] Calcarine_R (aal) 

39 0.1097 [-20, -14, -28] ParaHippocampal_L (aal) 

47 0.0930 [-28, -6, -12] Amygdala_L (aal) 

49 0.0914 [32, -12, -18] Hippocampus_R (aal) 

50 0.0895 [-32, -12, -18] Hippocampus_L (aal) 

52 0.0882 [-38, 4, -12] Insula_L (aal) 

Note: † Voxel was not located directly within a defined AAL ROI but is closest to the centre of 

the listed AAL ROI based on Euclidean distance. 

 

Fig 2: Voxels with positive coefficient values. A = Axial Plane, B = Coronal Plane, C = Sagittal 

Plane. 
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BrainPAD and Cognitive Function 

Across multiple datasets, higher brainPAD scores were significantly correlated with 

reduced performance on measures of general cognitive status, semantic verbal fluency, 

processing speed, cognitive flexibility, and visual attention (see Figure 3 and Table 6).  
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Fig 3: Scatterplots of replicated correlations between the residuals of brainPAD and cognitive 

measures after regressing brainPAD on age and gender, and each cognitive measure on 

brainPAD on age and gender. A: General cognitive status; B: Semantic verbal fluency; C: 

A 

B 

C 

D 
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Processing speed, visual attention, and cognitive flexibility, D: Visual attention and cognitive 

flexibility. For scatterplots of non-replicated correlations, see Supplementary Info, figure S.4. 
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Table 6 

Results of Spearman’s partial correlations between brainPAD and 17 cognitive domains.  

Cognitive Domain 
 

DEU CR/RANN TILDA Probability 
of 
replicating 
by chance 

Sig. by max 
statistic 
correction 
(where 
finding not 
replicated) 

rho df p rho df p rho df p   
General Cognitive Status -0.3199 168 <0.0001 -0.1449 366 0.0275 0.0333 481 0.4655 <0.00001 n/a 

Premorbid Intelligence n/a -0.2322 358 <0.0001 0.0485 482 0.2873 n/a CR/RANN 

Phonemic Verbal Fluency -0.3259 134 0.0001 -0.0771 356 0.1454 n/a n/a DEU 

Semantic Verbal Fluency -0.2507 171 0.0009 -0.2019 357 0.0001 -0.0615 483 0.1765 <0.00001 n/a 

Processing Speed 0.1232 89 0.2448 0.0595 357 0.2610 0.1208 483 0.0077 n/a None 

Processing Speed, Visual 
Attention, Cognitive Flexibility 

0.2662 80 0.0156 0.1167 353 0.0279 0.0904 478 0.0478 0.00005 n/a 

Visual Attention, Cognitive 
Flexibility 

0.2702 80 0.0141 0.1211 353 0.0225 0.0166 478 0.7165 0.00097 n/a 

Cognitive Flexibility 0.0722 46 0.6258 0.0429 323 0.4411 n/a n/a None 

Response Inhibition, Selective 
Attention 

0.0854 146 0.3019 -0.1755 355 0.0009 n/a n/a None 

Sustained Attention (Errors of 
Commission) 

n/a 0.0203 172 0.7902 0.0499 478 0.2752 n/a None 

Sustained Attention (Reaction 
Time) 

n/a -0.0212 172 0.7813 0.0436 475 0.3425 n/a None 

Verbal Episodic Memory 
(Immediate) 

0.2194 171 0.0037 -0.0407 356 0.4428 -0.0347 483 0.4114 n/a None 

Verbal Episodic Memory 
(Delayed) 

0.2797 171 0.0002 0.0343 356 0.5173 0.0122 483 0.7887 n/a None 

Verbal Episodic Memory 
(Learning) 

-0.3196 171 <0.0001 0.0657 356 0.2151 n/a n/a DEU 

Working Memory -0.1310 
-0.2974 

167 
166 

0.0895† 
0.0001‡ 

-0.0469 360 0.3759 n/a n/a None 

Visuospatial Ability -0.0809 76 0.4815 -0.1824 352 0.0006 n/a n/a CR/RANN 

Note: † Digit Span Forwards; ‡ Digit Span Backwards 
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Discussion 

A penalized regression approach was able to produce accurate brain-age predictions 

from T1 MRI data in three independent datasets. In non-demented adults, brain predicted-age 

difference (brainPAD), calculated by subtracting these brain-age predictions from 

chronological age, was negatively correlated with general cognitive status, semantic verbal 

fluency, processing speed, visual attention, and cognitive flexibility; and visual attention and 

cognitive flexibility in multiple datasets. BrainPAD was significantly correlated with phonemic 

verbal fluency, premorbid intelligence, verbal episodic memory (learning score), and 

visuospatial ability in single datasets after controlling for multiple comparisons; however, these 

correlations were not replicated in another dataset so we do not have strong evidence here in 

support of these relationships. BrainPAD was not significantly correlated with processing 

speed, cognitive flexibility, response inhibition and selective attention, sustained attention, 

verbal episodic memory (immediate recall or delayed recall), or working memory in any 

dataset. 

BrainPAD and Cognition 

General Cognitive Status 

BrainPAD was negatively correlated with general cognitive status, as measured using 

the MMSE and DRS, in DEU and CR/RANN, and the replication of this result across both 

datasets was statistically significant. However, brainPAD was not significantly correlated with 

the MMSE in TILDA. Nonetheless, given the statistically significant replication across two of 

the three datasets, there is reliable evidence in support of the correlation between brainPAD 

and general cognitive status in healthy older adults. Previous studies have reported that 

brainPAD is related to general cognitive status, albeit in samples including individuals with 

MCI, AD, or dementia (Beheshti et al., 2018; Kaufmann et al., 2018), and without adjusting for 

the effect of age or controlling for multiple comparisons (Beheshti et al., 2018; Cole, 

Underwood, et al., 2017; but see Table 1 Footnote 4 for information about adjusting for age in 

Cole, Underwood et al., 2017). In contrast to our findings, Gaser et al. (2013) reported that 

brainPAD was correlated with the CDR and ADAS but not the MMSE in an MCI sample. 

However, Gaser et al. (2013) did not account for the effect of age. While Löwe et al. (2016) 

reported that brainPAD was negatively correlated with the MMSE across mixed samples of 

APOE e4 carriers and non-carriers (including healthy controls, MCI, and AD), it was not 

significantly correlated with the MMSE within healthy control and MCI subgroups. Sample 

sizes within these subgroups were relatively small, ranging from 14 to 81 participants. 

Consequently, the correlations between brainPAD and the MMSE in these participants may 

not have been adequately powered to reach significance. Our study is the first to report a 

relationship between brainPAD and measures of general cognitive status in healthy adults 
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while controlling for the effects of age and correcting for multiple comparisons. This is also the 

first study to investigate the relationship between brainPAD and DRS score. Our findings 

provide strong support for the existence of a significant negative relationship between 

brainPAD and general cognitive status. 

It was beyond the scope of the present study to formally test associations between 

brain areas contributing to brainPAD and cognitive measures. The voxels that best predicted 

chronological age were found in the thalamus, hippocampus, parahippocampal gyrus and 

amygdala. There is previous evidence of positive correlations between the MMSE and GM 

volume within the amygdala, hippocampus, parahippocampal gyrus (Dinomais et al., 2016), 

and the thalamus (Ferrarini et al., 2008; Yi et al., 2016), and between the DRS and combined 

GM and WM volume within the left hippocampus (Fama et al., 1997). In our brainPAD model, 

voxels within these areas were among the 20 voxels most heavily contributing to brainPAD. 

However, it is more appropriate to consider brainPAD as a summary score representing global 

brain atrophy as it was driven by contributions from voxels spread across the brain. Impaired 

performance on the MMSE is also associated with global brain (Fox, Scahill, Crum, & Rossor, 

1999; Mak et al., 2015) and GM atrophy (Brunetti et al., 2000). Similarly, there is a positive 

relationship between DRS and total cortical GM volume (Stout, Jernigan, Archibald, & Salmon, 

1996). As such, the correlation between brainPAD and general cognitive status is supported 

by previous evidence of brain changes related to performance on these measures. This 

strengthens the argument in favour of brainPAD as an objective measure of general cognitive 

function given that brainPAD is not subject to the various biases and effects (e.g. low reliability, 

practice effects) that limit the MMSE (Galasko, Abramson, Corey-Bloom, & Thal, 1993; Pfeffer, 

Kurosaki, Chance, Filos, & Bates, 1984; Tombaugh & McIntyre, 1992) and the DRS (Emery, 

Gillie, & Smith, 1996; Green, Woodard, & Green, 1995).  

Semantic Verbal Fluency 

BrainPAD was significantly negatively correlated with semantic verbal fluency, as 

measured using the Animals task, in both DEU and CR/RANN but not in TILDA. Regardless, 

the replication of this result across both DEU and CR/RANN was statistically significant. This 

finding contradicts non-significant correlations between brainPAD and composite measures of 

semantic and phonemic verbal fluency (Cole, Underwood, et al., 2017; Richard et al., 2018), 

although the former study used age-adjusted t-scores to control for the age-cognition 

relationship rather than adding age as a covariate to the brainPAD-fluency measure (cf. Le et 

al., 2018). As semantic verbal fluency is associated with age (Clark et al., 2009; Santos 

Nogueira, Azevedo Reis, & Vieira, 2016), the failure to adjust for age may have obscured a 

significant effect. Alternatively, these previously reported non-significant correlations could be 

explained by the use of composite measures of both phonemic and semantic fluency as we 
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did not find strong evidence for a relationship between phonemic verbal fluency and brainPAD 

(although it was significant in DEU, this correlation was not replicated in CR/RANN). 

Therefore, it is possible that a non-significant relationship between phonemic fluency and 

brainPAD in the Cole et al. (2017) and Richard et al. (2018) study may have diluted a possible 

significant relationship between semantic fluency and brainPAD. In a study controlling for age, 

brainPAD was found to significantly negatively correlate with semantic verbal fluency (Franke 

et al., 2013). The brainPAD-semantic verbal fluency correlation is further supported by 

evidence that some voxels that contribute heavily to brainPAD in our model are located in 

regions where GM volume has been positively correlated with semantic verbal fluency, 

including the cerebellum (Grogan, Green, Ali, Crinion, & Price, 2009) and the thalamus, in 

adolescents born prematurely (Giménez et al., 2006), and in regions where lesions have been 

negatively related to semantic verbal fluency, such as the left temporal lobe and insula (Baldo, 

Schwartz, Wilkins, & Dronkers, 2006). Although the Animals task has been described as an 

optimal test of neuropsychological function (Ardila, Ostrosky‐Solís, & Bernal, 2006), scores on 

this task are affected by various factors, including scoring and administration procedures 

(Woods, Wyma, Herron, & Yund, 2016) and practice effects (Cooper et al., 2001; Harrison, 

Buxton, Husain, & Wise, 2000; Wilson, Watson, Baddeley, Emslie, & Evans, 2000). As such, 

brainPAD, as an objective marker of general brain health and global cognitive function, could 

be a viable alternative to the Animals task. In sum, our results provide further evidence in 

support of a correlation between brainPAD and semantic verbal fluency. 

Processing speed, visual attention, and cognitive flexibility 

Across all three datasets, brainPAD was negatively correlated with processing speed, 

visual attention, and cognitive flexibility as measured by trail-making tests (TMT B or CTT 2). 

The TMT B is a relatively sensitive measure of cognitive decline: completion times were shown 

to be significantly different between healthy controls, MCI, and AD (Ashendorf et al., 2008). 

Likewise, the CTT 2 is sensitive to cognitive decline, with differences between AD and healthy 

controls (Lin et al., 2014), and between healthy controls, MCI, and AD (Guo et al., 2010). 

Therefore, it is no surprise that processing speed, visual attention, and cognitive flexibility were 

also negatively correlated with an index of accelerated brain ageing. Indeed, previous studies 

have reported similar results for trail-making versus brainPAD; however, these studies did not 

correct for multiple comparisons (Cole, Underwood, et al., 2017) or used clinical samples (TBI; 

Cole et al., 2015). Our data therefore augment these findings by replicating this result across 

three independent datasets. Tentative neurobiological support can be found for this correlation 

in the overlap in correlations between TMT B performance and GM volume in regions 

containing voxels which contribute heavily to brainPAD in our model. TMT B performance is 

negatively correlated with medial temporal lobe atrophy (Oosterman et al., 2010) and is 
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positively related with GM density within the cerebellum in patients with spinocerebellar ataxia 

(Rentiya, Khan, Ergun, Ying, & Desmond, 2017). This evidence could suggest that brainPAD 

may be a potential objective measure of cognitive decline as it is not subject to the same 

factors which bias trail-making performance, including to practice effects (Bartels, Wegrzyn, 

Wiedl, Ackermann, & Ehrenreich, 2010), rater effects (Feeney et al., 2016) and participant 

literacy (Vaucher et al., 2014).  

Visual attention and cognitive flexibility 

 BrainPAD was also negatively correlated with visual attention and cognitive flexibility 

(TMT B minus A), in DEU and CR/RANN, but not in TILDA (CTT 2 minus 1). Replication of 

this finding (albeit with relatively small rho values) in DEU and CR/RANN suggests a modest 

association between visual attention and cognitive flexibility. The relationship between 

brainPAD and TMT B minus A was only investigated in one previous study, in a TBI sample, 

(Cole et al., 2015) where a significant positive correlation was reported. Task-based fMRI 

studies have shown significantly increased activation during TMT B versus TMT A within the 

left precentral gyrus (Moll, Oliveira-Souza, Moll, Bramati, & Andreiuolo, 2002) and the insula 

(Zakzanis, Mraz, & Graham, 2005). Additionally, a voxel-based lesion-symptom mapping 

study reported a negative association between lesions within the left insular cortex and a TMT 

task accuracy score, which like the TMT B minus A score attenuates the influence of 

processing speed and reflects cognitive flexibility (Varjačić et al., 2018). Like the TMT B score, 

the TMT B minus A is also correlated with atrophy of the bilateral medial temporal lobes 

(Oosterman et al., 2010). All of these regions contain voxels which contribute to older brain 

age in our model and therefore these various findings may provide some neurobiological basis 

for the correlation between brainPAD and visual attention and cognitive flexibility. As such, 

although the TMT B minus A can distinguish between stable and progressive MCI on a group 

level (Zanetti et al., 2006), and is associated with reduced mobility, increased mortality risk 

(Vazzana et al., 2010) and slower walking speed (Ble et al., 2005), as a derived measure of 

the TMT, the TMT B minus A index is similarly affected by the various factors that can limit 

interpretation of the TMT B scores. Therefore, given the correlation shown here between TMT 

B minus A and brainPAD, brainPAD may be a potential objective measure of general cognitive 

function. 

It is notable that several significant brainPAD-cognition relationships were observed in 

the DEU and CR/RANN datasets, but not in TILDA. We tentatively offer some suggestions for 

this pattern of results. Confounding factors obscuring the brainPAD-general cognitive status 

relationship may have been uniquely present in TILDA. Whereas the DEU and CR/RANN 

cohorts were part of neuroimaging research studies, which have typically strict inclusion 

criteria, the TILDA MRI sample were a subset of a large nationally representative longitudinal 
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study encompassing health, economic and social research (B. J. Whelan & Savva, 2013). 

TILDA therefore had few inclusion criteria: being at least 50 years old, having a residential 

address, and absence of dementia at baseline (Kearney et al., 2011; Savva, Maty, Setti, & 

Feeney, 2013). TILDA’s MRI sample were screened for MRI contraindications and were on 

average healthier than the full sample, but it is likely that the TILDA sample included 

participants who might normally be excluded from neuroimaging research studies (e.g., those 

using psychotropic or cardiovascular medication). Moreover, the range of some cognitive 

measures in TILDA was also smaller than DEU and CR/RANN in some cases (see 

Supplemental Table 3): notably for general cognitive status, and visual attention and cognitive 

flexibility, where the brainPAD-cognition correlations were not replicated within TILDA. 

Restricted range of scores on these measures in TILDA may have contributed to smaller 

correlation coefficients (Bland & Altman, 2011; Mendoza & Mumford, 1987). Additionally, the 

age range within TILDA was smaller than both DEU and CR/RANN which may have reduced 

the statistical power of the brainPAD-cognition correlations within TILDA as range restriction 

on covariates has also been shown to reduce power (Miciak, Taylor, Stuebing, Fletcher, & 

Vaughn, 2016) and decrease the magnitude of correlation coefficients (Sackett & Yang, 2000). 

Model evaluation 

We evaluated our model based on its predictive accuracy in three independent test 

sets, as proposed by Madan and Kensinger (2018). While internal cross-validation is a 

valuable and widely used technique that can attenuate overfitting (Arlot & Celisse, 2010); the 

use of cross-validation in certain situations and when it is not implemented correctly, can result 

in overestimated prediction accuracy and overfitting (Saeb, Lonini, Jayaraman, Mohr, & 

Kording, 2016; Skocik, Collins, Callahan-Flintoft, Bowman, & Wyble, 2016; Varoquaux et al., 

2017). For brainPAD to be considered for clinical use, it must perform accurately with MRIs 

acquired in different scanners and under different protocols. However, in most instances of 

cross-validation, while the test set is split and held completely independent from the training 

set, factors common to both sets, such as scanner and protocol, could influence model 

performance. As such, the gold-standard evaluation for brainPAD should be accurate 

performance on independent external datasets. 

The significant correlations between chronological age and brain-predicted age in all 

three external datasets shows that our model is accurate and generalizable (0.65, 0.78, and 

0.87 for external datasets). Although the magnitude of these correlations is lower than 

correlations reported elsewhere, ranging from 0.91 to 0.94 (Cole et al., 2015; Cole, Poudel, et 

al., 2017; Franke et al., 2010; Lancaster et al., 2018; Liem et al., 2017), it exceeds other 

externally validated brain-predicted age studies, ranging from 0.65 to 0.85 (Beheshti et al., 

2018; Madan & Kensinger, 2018; Varikuti et al., 2018). 
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With respect to mean absolute error (MAE), our model did not perform as well as other 

externally validated studies, ranging from 4.28 to 7.5 years (Beheshti et al., 2018; Cole, 

Ritchie, et al., 2018; Franke et al., 2010; Lancaster et al., 2018; Madan & Kensinger, 2018). 

As we targeted an interpretable model of brain age, we may have lost some precision by not 

integrating WM information as input in the model, as was done by Cole et al. and Franke et 

al. Another potential reason is that other studies centered the age predictions using the mean 

of the ages from the test set. Although this correction is typically not explicitly described in 

method sections, Madan and Kensinger (2018) note that this is a standard correction in brain 

age prediction. Moreover, some studies also match the variance in predicted age in the test 

set with the variance of the training data (Madan & Kensinger, 2018). Both corrections are 

principled and acceptable methods of correcting for the regression to the mean artefact in 

brain age predictions but they result in biased age predictions in the test set. These corrections 

also limit the use of brainPAD to make single subject predictions, as both the test set mean 

and variance are used in the prediction. Our method used only training set information and 

therefore produced slightly less accurate but less biased predictions. Finally, our model may 

also appear to be less precise in terms of MAE as an artefact of the greater age range of our 

sample in comparison to most brainPAD studies. An alternative metric, the weighted MAE 

(calculated by dividing the MAE by the age range of the sample), may enable better 

comparisons across studies with different age ranges (Cole, Franke, et al., 2018). While our 

weighted MAE is higher than some studies, ranging from 0.072 to 0.087 (Lancaster et al., 

2018; Liem et al., 2017), the lowest weighted MAE in our sample (0.14 in CR/RANN) 

outperformed this metric when calculated for other studies, 0.178 (Beheshti et al., 2018), and 

0.18 (Varikuti et al., 2018) and is comparable to 0.139 (Franke et al., 2010, 'Test 4' external 

test set). As such, the predictive accuracy of our model is comparable to the rest of the 

literature and is arguably less biased as only training set information is used. 

Model interpretation 

Model interpretability 

The interpretability of machine learning models is an important and widely discussed 

problem (Doshi-Velez & Kim, 2017), and although it is poorly defined (Lipton, 2018) it has 

been described as “the ability to explain or to present in understandable terms to a human” 

(Doshi-Velez & Kim, 2017, p. 2) and elsewhere as the ability to “understand the contribution 

of individual features in the model” (Lou, Caruana, & Gehrke, 2012, p. 1). Additionally, Lipton 

(2018) argued that for a model to be considered truly interpretable, it should possess the 

following three properties: algorithmic transparency (i.e. it should be possible to understand 

the mechanism by which the model works), decomposability (each part of the model, such as 

the model input and parameters, should have an intuitive explanation), and simulatability (a 
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person should be able to consider the entire model at once). We contend that our model 

possesses these three properties as well as conforming to the definitions proposed above. 

First, our model possesses algorithmic transparency in that the Elastic Net is a penalized linear 

regression. Second, our model possesses decomposability. The inputs to the model were GM 

voxel density values and the parameters, or beta coefficient values, weighted the contribution 

of each individual value to the model output, which is brain predicted age. Third, our model 

possesses simulatability as the entire model can be considered as follows: summing the 

multiplication of GM voxel density values by the average contribution of these voxels to the 

prediction of chronological age in the training set (i.e., the beta coefficient values) resulted in 

a prediction of a new individual’s brain age.  

Brain regions involved in brain age prediction 

 In addition to the good interpretability of our model, the model is also biologically 

plausible as the top 20 brain voxels contributing to older brain age are all located in brain 

regions previously shown to be vulnerable to age-related GM volumetric decline, including the 

insula (Good et al., 2001; Kennedy et al., 2009; Resnick, Pham, Kraut, Zonderman, & 

Davatzikos, 2003; Taki et al., 2011), thalamus (Abe et al., 2008; Sullivan, Rosenbloom, 

Serventi, & Pfefferbaum, 2004; Taki et al., 2011; Walhovd et al., 2005), and temporal cortex 

(Abe et al., 2008). Within the temporal cortex specifically, there were strong contributions to 

older brain age from voxels in the temporal pole, where there are negative ageing effects on 

GM volume (Allen, Bruss, Brown, & Damasio, 2005; Lemaitre et al., 2012). Voxels within 

temporal lobe structures, such as the amygdala, hippocampus and parahippocampal gyrus 

also strongly contributed to older brain age which is in line with evidence of age-related 

volumetric declines in the left amygdala (Giorgio et al., 2010), bilateral hippocampus (Giorgio 

et al., 2010; Jernigan et al., 2001) and bilateral parahippocampal gyrus (Jernigan et al., 2001; 

Taki et al., 2011). Similarly, another heavily weighted contribution to brain age was found from 

a voxel within the left precentral gyrus, where GM volume is negatively associated with age 

(Kennedy et al., 2009; Taki et al., 2011). Finally, there was a strong contribution from a voxel 

within the cerebellar vermis, where there are increased rates of GM volume loss during ageing 

in comparison to other areas of the cerebellum (Yu, Korgaonkar, & Grieve, 2017).  

 The voxels which contributed most strongly to an older brain age were located within 

regions vulnerable to age-related GM volumetric decline. However, some of the voxels that 

contributed most strongly to a younger brain age were found adjacent to the negatively 

weighted voxels. One potential explanation is that brainPAD measures GM atrophy, and 

therefore individuals with relatively less atrophy will have higher GM density on the edges of 

the cortex and subcortical structures. In contrast, individuals with more atrophy will have 

greater GM density distal from the edges of the cortex (when registered in standard space), 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 2, 2019. ; https://doi.org/10.1101/652867doi: bioRxiv preprint 

https://doi.org/10.1101/652867
http://creativecommons.org/licenses/by/4.0/


and consequently positively weighted voxels (i.e., which contributed to older brain age) were 

located in those distal regions.  

Limitations 

A possible limitation of the current model is that it uses only voxel-wise GM density 

data and thus our model may have lower accuracy due to this restricted feature set. Other 

brain age models have used feature sets including combinations of cortical and subcortical 

GM regional volumes (Steffener et al., 2016); combinations of GM voxel density values, 

cortical thickness, and regional volume data (Gutierrez Becker et al., 2018); combinations of 

cortical thickness, cortical surface area, subcortical volume, and functional connectivity 

information (Liem et al., 2017); and combinations of GM and WM voxel-wise density 

information (Cole et al., 2015; Cole, Ritchie, et al., 2018; Cole, Underwood, et al., 2017). 

However, such feature sets typically require dimension reduction such as PCA (Gutierrez 

Becker et al., 2018) or even dot products to combine GM and WM data (Cole et al., 2015; 

Cole, Ritchie, et al., 2018; Cole, Underwood, et al., 2017). These steps reduce the 

interpretability of the relationship between the original feature and brain age. Our aim was to 

produce an interpretable model, an aim which required a simple feature set. While this focus 

on improved interpretability may have limited our model’s accuracy as larger and more 

complex feature sets often produce more accurate predictions (Scheinost et al., 2019), our 

model’s accuracy is still comparable to other models reported to-date in the literature. 

Likewise, while our model is readily interpretable; greater interpretability could potentially be 

achieved by forcing sparsity to limit the number of voxels making significant contributions to 

brain age predictions. Modified Elastic Net algorithms, such as Enet-BETA (Liu & Li, 2017), 

can obtain sparser models which would reduce the number of predictive voxels, thereby 

further improving interpretability. However, as the Elastic Net’s prediction accuracy can 

increase with feature set size (Jollans et al., in revision), limiting the feature set size could 

reduce model accuracy. Our model may strike the right balance between interpretability and 

accuracy. 

The major limitation of our study is that for the majority of the cognitive domains 

investigated here, we used different cognitive measures to assess the putatively same 

cognitive processes. For example, although we considered the CTT 2 as a direct ‘culture-free’ 

analogue of the TMT B, as it is widely described (Elkin-Frankston, Lebowitz, Kapust, Hollis, & 

O’Connor, 2007; Messinis, Malegiannaki, Christodoulou, Panagiotopoulos, & 

Papathanasopoulos, 2011), the CTT 2 has different stimuli (shapes and colors vs numbers 

and letters) and takes longer because it has more stimuli (Mitrushina, Boone, Razani, & D’Elia, 

2005). Consequently, some have argued, based on findings of significant difference in mean 

scores on CTT 2 and TMT B, that the tests are not direct equivalents (Dugbartey, Townes, & 
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Mahurin, 2000; Strauss, Sherman, & Spreen, 2006). However, mean scores for both 

measures are calculated as time to completion and thus a difference in means between both 

measures reflects a difference primarily in test length. A more appropriate measure of test 

equivalence would be correlations between mean scores, and various studies report 

significant correlations between both measures (Dugbartey et al., 2000; Elkin-Frankston et al., 

2007; Lee, Cheung, Chan, & Chan, 2000; Messinis et al., 2011). Similar arguments might be 

made for the other tests (e.g. the MMSE and DRS) that we used to assess the same cognitive 

constructs (e.g. general cognitive status). While it would be preferable to use the identical 

measures across datasets, our study used existing data and was designed after data 

collection. As a result, this approach was not possible here. Nonetheless, the measures used 

here were broadly comparable in that they are apparent measures of the same underlying 

cognitive constructs and it is these constructs which we are most interested in, more so than 

the actual measures.  

Conclusion 

The brain age model presented here is accurate and generalizable as it significantly 

predicts chronological age in 3 independent datasets. Furthermore, this model is interpretable 

and biologically plausible as older brain age is driven by decreased GM density in voxels that 

have been previously shown to be vulnerable to GM atrophy and volume loss. Finally, 

brainPAD scores, calculated using this model, are associated with reduced cognitive 

performance within the domains of general cognitive status; semantic verbal fluency; 

processing speed, visual attention, and cognitive flexibility; and visual attention and cognitive 

flexibility. The replication of these correlations in multiple datasets demonstrates that the 

relationship between brainPAD and these domains of cognitive function is robust to cultural- 

and site/scanner effects. As such, given that brainPAD is also not limited by task effects which 

can hinder neuropsychological assessment, these findings provide support for the use of 

brainPAD as an objective measure of general cognitive function with applications as a general 

measure of brain health and cognitive performance in the clinic and as a summary outcome 

measure for intervention studies in research settings. 
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