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Abstract

Computational statistical disciplines, such as machine learning, are leading to a paradigm

shift in the way we conceive the design of new compounds, offering a way to directly

design the best compound for specific applications. This approach, known as reverse

engineering, requires the construction of models able to efficiently predict continuous

structure-property maps. Here we show that machine-learning offers such a possibil-

ity by designing a model that predicts both the energy and magnetic properties as

function of the molecular structure of single-ion magnet. This model is then used to

explore the molecular conformational landscapes in search of structures that maximise

magnetic anisotropy. We find that a 5% change in one of the coordination angles leads

to a ∼50% increase in the anisotropy. This approach can be applied to any structure-

property relation and paves the way for a machine-learning-driven optimization of

chemical compounds.
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Introduction

The design of new materials with specific target properties is the ultimate goal of reverse

materials engineering. This approach requires the construction of a range of maps between

the chemical structure {ri, Zi} and the properties of interest P ({ri, Zi}).1 In this framework,

the design process corresponds to the optimization of a global target function, χ, that weighs

different properties,

max
{ri,Zi}

χ =
∑
l

γlP ({ri, Zi}) , (1)

where {ri, Zi} contains the position and atomic number of the atoms forming the material

and the weights, γl, set the relative importance of the single properties, Pl.

While in principle quantum mechanical methods could be used for such a task, their com-

putational overheads render them impractical. Machine-learning-based models, with their

ability to reproduce quantum mechanical results at a negligible computational cost, are the

perfect tool to construct reverse engineering and generative approaches.2–5 In this work we

develop an efficient framework to build and explore general properties-structure maps and

apply it to a topical case of technological importance, namely magnetic materials.

Magnetism is an exotic phenomenon that emerges from a very delicate balance between

the electronic and structural properties of chemical compounds. Magnetic compounds form

a paradigmatic materials class containing rare members with large technological impact.

The working principle of hard magnets is based on the presence of a large axial magnetic

anisotropy that stabilises the magnetic moment against thermal fluctuations. This picture

can be formally explained with the spin Hamiltonian

ĤS = DŜ2
z , (2)

where Ŝz is the z component of the spin operator and a negative D parameter corresponds to

an axial anisotropy. When the magnetic anisotropy is not large enough to overcome thermal
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fluctuations or when a magnet is perturbed by external stimuli, demagnetization processes

take place. Spin relaxation in non-metallic materials is ultimately due to the interaction

between the magnetic and lattice degrees of freedom, namely the spin-phonon coupling. This

interaction manifests itself through the dependence of the magnetic anisotropy tensor D(ri)

on the atomic positions ri. In general D(ri) is interpreted in terms of a Taylor expansion

around the equilibrium molecular geometry ri,0:

D(ri − ri,0) = D +
∑
i

(
∂D

∂ri

)
0

(ri − ri,0) + ... (3)

The understanding of the microscopic processes leading to spin-phonon coupling and demag-

netization is of interest for several applications such as heat-assisted magnetic recording,6

ultra-fast demagnetization,7 magnetostriction,8 spintronics,9 molecular magnetism10,11 and

quantum computing based on electronic spins.12,13

The design of magnetic materials is a prototypical example where multiple features must be

optimized at the same time to reach optimal efficiency. Eq. (3) suggests that making high-

temperature hard-magnets requires: i) the maximization of the axial magnetic anisotropy

|D|, ii) the minimization of its derivatives (the spin-phonon coupling coefficients), and iii)

little thermally populated molecular motions (ri − ri,0). This effectively corresponds to the

design of D(ri) having a maxima in correspondence of the equilibrium geometry and a very

stiff material.10

We have applied our method to molecular magnets, which appear as the ideal materials

class for a systematic design strategy. These compounds represent the ultimately small

building blocks of magnetic recording media.14 At the same time the combination of den-

sity functional theory (DFT) and post Hartree-Fock methods is ideal for predicting their

structural and magnetic properties.15 Finally, and most importantly, the extensive synthetic

versatility of such coordination compounds allows one to fine tune the structure, so that

design is practically possible. In particular, we here restrict the challenge of optimizing Eq.
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Figure 1: Scheme for Structural Recognition and Decomposition. A generic [FeCl5]
2−

distorted structure is first compared to all the reference geometries by means of the metric
d(l, l0). Once the appropriate reference orientation is chosen, the structure is decomposed
into its internal and rotational contributions.
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1 to a given stoichiometry and a single coordination environment. Under this approxima-

tion the problem becomes identical to the study of magneto-structral correlations, i.e. the

fundamental approach for the individuation of new coordination environments with target

properties. The individuation of magneto-structural correlations able to lead to improved

magnetic properties has been the focus of the molecular magnetism for decades and here

we provide a proof-of-concept that machine-learning can be exploited to provide exhaustive

synthetic guidelines in a completely unbiased and automatic way, paving the way to the

computational design of new magnetic molecules.

Theoretical Methods

Our machine learning strategy is based on Ridge regression and bi-spectrum components

as molecular geometry fingerprints.16–18 The first step requires the decomposition of the

magnetic anisotropy over atomic contributions. It is then convenient to write D(ri) over

a basis of second-order spherical tensors, Tm, where m is one of the five spherical tensor

components needed to describe a trace-less symmetric second-order Cartesian tensor like D.

The explicit relation between T and D is provided as Supplementary Information. For a

molecule containing Na atoms the decomposition reads

Tm =
Na∑
i

Tm(i) =
Na∑
i

Nj∑
j

αm
j (i)Bj(i) , (4)

where the index j runs over the Nj bi-spectrum components, Bj, describing the atomic

environment of the i-th atom, and αm
j are the coefficients that need to be determined through

Ridge regression.

Magnetic anisotropy is a tensor quantity, so that Eq. (4) needs to be recast in a covariant

form to ensure that the correct rotational symmetries are enforced.19,20 Since the B terms

are rotationally invariant, this is achieved by requiring the coefficients αj to transform as
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spherical tensors with respect to a reference frame rotation,

αm
j (i) =

∑
m′

Wm
m′(l, l0)α

m′
j (i0) , (5)

where Wm
m′(l, l0) is the Wigner matrix corresponding to a rigid rotation of the atomic environ-

ment, defined by a distance cutoff, of the l-th atom with respect to the atomic environment

state l0 of the same atom chosen as reference orientation. The atom l, which defines the

local environment used to perform the rotation, is chosen on the basis of the property to

model. In the case of the magnetic anisotropy it is the magnetic element. Once the Ridge

regression has determined the unknown coefficients αm′
j (i0), equations (4) and (5) can be

used to predict the magnetic anisotropy for a new configuration, where its intra-molecular

geometry is described by the bi-spectrum components, Bj, and its orientation in space by a

Wigner matrix, Wm
m′ .

The generation of the rotation matrix Wm
m′(l, l0) needs some careful consideration. Wm

m′(l, l0)

is only well defined between structures with equivalent number of atoms and chemical species.

When dealing with a training set containing molecules with different chemistries, a set of

reference orientations l0 is needed. For each distinct molecular configuration, it is possible

to automatically select one reference orientation by introducing a distance function d(l, l0) =∑Nj

j |Bj(l)−Bj(l0)|2 that points the reference atom l to the optimal reference state, i.e. the

optimal reference configuration l0 is represented by the one that minimizes d(l, l0). Once the

correspondence between a molecular configuration and a reference environment is established,

the rotation between the two can be computed by applying the Eckart-Sayvets conditions to

the Cartesian displacements of the two set of coordinates.21 The choice of a local reference

atomic environment, instead of the entire molecular structure, is fundamental in order to

maintain the local nature of the properties learned by the model.

To summarize, the procedure that lead to the calculation of a local property of atom l through

Eq. (5) involves the following steps: i) comparison of the local atomic environment of atom
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l with the selected reference local atomic environments l0, ii) calculation of the amount of

rotation between the local atomic enviornment and the reference local atomic environments

that minimizes d(l, l0), iii) calculation of Wm
m′ , iv) calculation of the bi-spectrum components

of all the atoms in the local environment of the atom l and v) calculation of Eq. (5). A

schematic representation of the orientation selection process, followed by the rotational and

intra-molecular structural decomposition, is provided in Fig. 1.

Results and Discussion

In order to illustrate our approach we apply it to two typical coordination environments: bi-

pyramidal [FeCl5]
2− and trigonal prismatic [FeCl6]

3−. For each molecule we prepare 700+700

configurations, where all the Cartesian coordinates of all the atoms are displaced by a ran-

dom value within the limits ±0.1 Å and ±0.2 Å. The size of the maximum displacements

is chosen to be large enough to guarantee a broad sampling of out-of-equilibrium configu-

rations, while maintaining a sensible chemical structure. These random displacements are

applied to the DFT-optimized geometry. We use CASSCF(5,5) to compute the magnetic

anisotropy for each of these 1,400 configurations. A total of 400 prototypes are excluded

from the training set and left for validation and testing purpose. Details on the ab initio

calculations are provided as Supplementary Information. In this case the creation of a set of

reference configurations l0 trivially corresponds to selecting a reference atomic environment

per molecule. In particular, the Fe atomic environments of the FeCl5 and FeCl6 optimized

geometries are chosen as the reference atomic environments appearing in Eq. (5).

In order to illustrate the importance of imposing the covariance property to the Ridge re-

gression we perform the training of a model with and without its enforcement. For this

purpose the configurations in the training and test sets were rotated along the y direction by

a random angle in the range [−45◦ : 45◦]. Results are reported in Fig. 2 and demonstrate the

improvement of the covariant method over the non-covariant one. Fig. 2 also demonstrates
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the high learning rate of the model that has already achieved a converged root mean square

error (RMSE) of ∼ 0.01 cm−1 in about 100 configurations/molecule. In comparison, the

magnetic anisotropy for [FeCl5]
−2 and [FeCl6]

−3 ranges between 0.05 and 0.3 cm−1.
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Figure 2: Magnetic anisotropy training curve for [FeCl5]
2− and [FeCl6]

3− com-
plexes. The RMSE between the CASSCF anisotropy and the one predicted by machine
learning for the [FeCl5]

2− and [FeCl6]
3− complexes is plotted as function of the number of

configurations included in the training set. The case where covariance is enforced is displayed
by red curves and symbols, while the case where covariance is not enforced is in blue. Full
symbols are used for the RMSE of the training set and empty symbols for the test set.

Next we want to demonstrate that our strategy works for real systems and that can be effec-

tively used to explore the magnetic-anisotropy landscape. To this end we show results for one

of the top-performance high-anisotropy single-ion magnet [Co(pdms)2]
2−, where pdms=1,2-

bis(methanesulfonamido)benzene.22 As shown in the inset of the bottom panel of Fig. 3,

the Co2+ ion is tetrahedrally coordinated by RN− ligands. We optimize the structure in

vacuum and use it to generate 500 configurations with maximum displacements of ±0.05

Å, 500 configurations with maximum displacement of ±0.1 Å and 500 configurations with

maximum displacement of ±0.2 Å. We then retaine 600 of them for validation and test-

ing purposes. For each configuration we use DFT and CASSCF to compute energy and

magnetic anisotropy, respectively. More details on the construction of the bispectrum com-

ponents and the regression are provided as Supplementary Information. Figure 3 shows the

regression results for both axial anisotropy D and conformational energy. The test sets’
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RMSE measure 1.6 kcal/mol and 2.2 cm−1, respectively. Additional 131 configurations have

been self-consistently sampled by molecular dynamics in the range 100 K - 400 K to enforce

structural stability, as discussed previously.18 After the inclusion of these configurations the

training set’s RMSE increases from 1.00 to 3.3 kcal/mol.
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Figure 3: Magnetic anisotropy and conformational energy training curves for
[Co(pdms)2]

2−. The top panel shows the comparison between reference and predicted
values of the axial anisotropy D, while the bottom panel reports the results for the confor-
mational energy. Black dots corresponds to the training set and the red dot corresponds to
the test one. The inset shows the molecular structure of [Co(pdms)2]

2−, where the Co atom
is coloured in Purple, Carbon atoms in Green, Hydrogen atoms in White, Sulphur atoms in
Yellow, Nitrogen atoms in Blue and Oxygen atoms in Red.

The ability to reconstruct continuous structure-energy and structure-magnetic anisotropy

maps with virtually no computational effort opens now the possibility to select new molecular

conformations with optimal properties. We implement a particle-swarm optimization (PSO)

algorithm23 and perform a global optimization of the function in Eq. (1), specialized to the

specific case,

χ(ri) = E(ri) + γD(ri) . (6)

Here the energy of a molecular conformation E(ri) and the magnetic axial anisotropy D(ri)

are the features of interest. Large values of the parameter γ would allow for more severe

distortions of the equilibrium molecular geometry in favour of a more favourable anisotropy.

Even though magnetic anisotropy is the relevant figure of merit, the inclusion of energy
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in the target quantity of Eq. (6), as suggested by Eq.(3), is of fundamental importance as

it imposes the exploration of only those low-energy molecular distortions that are strongly

coupled with D(ri) and excludes the sampling of totally unrealistic molecular conformations.

Figure 4: 2D scan of the [Co(pdms)2]
2− magnetic anisotropy and energy. The

axial magnetic anisotropy and the conformational energy, reported in cm−1 and kcal/mol

respectively, are scanned along the Co-N and N̂CoN directions.

The optimization of Eq.(6) shows that the magnetic anisotropy is strongly enhanced by

the reduction of Co-N distances and the N̂CoN angles belonging to the same pdms ligand.

Running the PSO for different values of γ always lead to the same simple structural dis-

tortion. It is important to remark that the the ML model and the PSO exploration are

extended to all the molecular degrees of freedom, making it possible to conclude that the

magneto-structural correlation we found is the only relevant one for this specific chemical

environment. The only restriction to the method is imposed by the ability of ML to make

accurate predictions for geometries not included in the training set. This issue can be easily

contained by implementing an active-learning scheme like the one we used to generate part

of the training set with molecular dynamics.18 In terms of efficiency it is worth remarking

that the PSO optimization requires the evaluation of the function χ at least 1000 times.
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This means that a comprehensive exploration of the conformational space such as the one

presented here is not compatible with a brute-force use of electronic structure methods.

Fig. 4 shows the 2-dimensional scan of the molecular anisotropy and energy along a 21x21 ho-

mogeneous grid of Co-N distances and the N̂CoN angles. An additional CASSCF calculation

of the molecular anisotropy for the geometry corresponding to the largest absolute value of

D explored in Fig. 4 confirms a good extrapolating accuracy of the ML outside the original

training set with an error of ∼ 7%. A large spin-phonon coupling is observed for the individ-

uated molecular motions, where a 5% reduction of the structural parameters leads to a 50%

increase in the molecular anisotropy. The unexpected simplicity of this magneto-structural

correlation is particularly favourable as it suggests a simple rule of thumb to chemically en-

gineer new Co2+ single ion magnets with tetrahedral coordination. Our results are in perfect

agreement with recent literature that reports the N̂CoN angles as one of the main handle

for improving Co+2 single ion magnets.22,24–27 It is fundamental to remark that this result

has been achieved without any bias coming from experimental studies and in a complete

automatic fashion. In contrast, the experimental derivation of similar magneto-structural

correlations generally take significant efforts and a cohort of different experimental charac-

terization techniques.22,26 Moreover, while here we are scanning the entire conformational

space, experiments usually explore no more than a couple of degrees of freedom at the time.

In this respect, it is not surprising that the Co-N distance magneto-structural correlation has

never been reported before as little or no control is applicable to this geometrical parameter

at the synthetic level.

Figure 4 also shines new light on the nature of the spin-phonon coupling in highly anisotropic

compounds. The curvature of the plots corresponds to the anharmonic terms of the potential

energy surface and to the spin-phonon coupling coefficients beyond the first-order. All these

features are related to multi-phonons contributions to spin relaxation and their determination

is expected to be crucial for the rationalization of spin dynamics in molecular compounds.13

The computational cost of an accurate numerical estimation of second-order spin-coupling
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coefficients and anharmonic couplings rapidly diverges and exceeds the cost of generating the

ML model. This calculation has never been attempted before because of its computational

demand and it is only possible within an accelerated framework like the one proposed here.

Conclusions

In conclusion, the method presented here can be generally applied to explore the confor-

mational space of compounds in the search for their optimal properties, either scalar or

tensorial. The complete generality of the formalism allows for readily applications in the

field of molecular magnetism, where the coupling between magnetic properties and atomic

motion can be parametrized and used to accelerate the individuation of magneto-structural

correlations and the calculation of spin-phonon coupling coefficients. We also anticipate

that this approach can be extended to the exploration of the entire chemical space, once

the scheme is combined with high-throughput electronic structure theory28 and generative

models,4 such as Variational Autoencoder3 and Reinforcement Learning.29

Data and Software Availability: The training/validation/test sets and source code used to

carry out the covariant Ridge regressions can be found at https://github.com/lunghiale/fittens.

Supplementay Information: Details on first-principles calculations, machine learning method-

ology and particle swarming optimization are available.

The authors declare no competing interests. This work has been sponsored by Science

Foundation Ireland (grant 14/IA/2624). Computational resources were provided by the

Trinity Centre for High Performance Computing (TCHPC) and the Irish Centre for High-

End Computing (ICHEC). We also acknowledge the MOLSPIN COST action CA15128.

12



References

(1) Alberto Franceschetti and Alex Zunger. The inverse band-structure problem of finding

an atomic configuration with given electronic properties. Nature, 402(November):60–63,

1999.

(2) Rampi Ramprasad, Rohit Batra, Ghanshyam Pilania, Arun Mannodi-kanakkithodi,

and Chiho Kim. Machine learning in materials informatics : recent applications and

prospects. npj Comput. Mater., 3:54, 2017.

(3) Rafael Gomez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernandez-
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Machine learning can represent continuous structure
property maps and allow to performe reverse engi-
neering of single-ion anisotropy.
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ANISOTROPY DECOMPOSITION IN
SPHERICAL HARMONICS

The decomposition of the Cartesian tensor Dij into a
2-rank spherical harmonics Tm, with m = −2, 2, is done
accordingly to the relations

T 0 =
1√
6

(3D33 − (D11 +D22 +D33)) , (1)

T−1 =
1

2
(D13 +D31 − i(D23 +D32)) , (2)

T 1 = −1

2
(D13 +D31 + i(D23 +D32)) , (3)

T−2 =
1

2
(D11 −D22 − i(D12 +D21)) , (4)

T 2 =
1

2
(D11 −D22 + i(D12 +D21)) . (5)

AB INITIO CALCULATIONS

The ORCA software [1] has been employed for all the
calculations. We have used the basis sets def2-TZVP
for C, N and S species and the def2-SVP for C and H
species. The def2-TZVP/C auxiliary basis set has been
used for all the elements. The calculations of the D ten-
sor have been carried out at the CASSCF level of the-
ory, with a (7,5) active space and spin-orbit contributions
included through quasi-degenerate perturbation theory.
The calculations of the conformational energy has been
performed at the DFT level with the PBE functional [2].

SUPERVISED LEARNING.

The coefficients α of the machine learning model where
determined by linear Ridge regression:

min
{αj}

[
‖TmQM({ri})− TmML({ri}, {αmj })‖2 + λ‖{αmj }‖2

]
.

(6)

∗ lunghia@tcd.ie

where the first term corresponds to the canonical least-
square-fitting of the TmQM first principles reference val-
ues, and the second one to the regularization term. The
optimal value of λ was chosen as to minimise the er-
ror on the validation set. The code LAMMPS [3] has
been used to generate the bi-spectrum components. In
all cases the order 2J = 8 for the bi-spectrum compo-
nents, corresponding to 56 elements per atomic species,
has been used. The number of atomic species is a vari-
able that can be adapted to increase the accuracy of the
model and does not necessarily need to correspond to the
chemical elements. The regression of Co(pdms)2’s energy
was computed by increased the number of atomic species
to nine by discriminating chemically-inequivalent chemi-
cal elements. Conversely, the regression of Co(pdms)2’s
magnetic anisotropy was carried out by only consider-
ing the atoms within the radial cutoff distance from the
Co atom. In the latter case the correspondence between
atomic species and chemical elements was used. The ra-
dial cutoff Rcut used to build the bi-spectrum compo-
nents have been optimised as to minimise the overall er-
ror on the training/validation set and fixed to 3.5 Å for
Co(pdms)2’s magnetic anisotropy, 3.1 Å for Co(pdms)2’s
energy and 4.5 Å for both FeClx’s energy and magnetic
anisotropy. The definition of bi-spectrum components
gives the possibility to differentiate atomic kinds with
weights and atomic radii[4]. In this work we have set all
the weights to unity and kept all the atomic radii equal
to 0.5. The latter condition corresponds to using the
same Rcut for every species. The covariancy of Ridge re-
gression for tensorial properties requires the estimation
of the amount of rotation between each configuration and
the reference molecular orientations. This was estimated
by applying the Eckart-Sayvets conditions[5]. This ap-
proach provide the rotation matrix that brings the Carte-
sian coordinates of a structure into those of a rotated one
by taking into account that a rigid translation and an
intra-molecular motion might also have occurred. This
rotation matrix can be interpreted in terms of Euler’s
angles. The latter are then used to compute the Wigner
rotation matrix that appears in Eq. 5 of the main text.

PARTICLE SWARM OPTIMIZATION.

The α − th particle in the swarm corresponds to a vec-
tor pα that stores the position of every atom in space.
The vectors pα are propagated by summing them with
the particle velocity vα. The velocity of each particle
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in the swarm was updated at each i − th step with a
simple scheme: vi+1

α = ωviα + Γ[c1p
α
best + c2pbest]. pαbest

corresponds to the vector pα that scored the best in the
history of the particle α, while pbest correspond to the
vector that scored the best among all the particle in the

swarm. The coefficients ω and Γ were chosen as 0.7 and
1.70, respectively. The coefficients c1 and c2 are random
number in the range [0:1]. Tests with different values of
γ and number of particles have been carried out with no
significant difference in the results.
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