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Abstract: Modern-day wind turbines use active pitch control to reduce mechanical loads on
the turbines in addition to regulating generator power. These control algorithms increase blade
pitch actuation, primarily to reduce the 1P (once per revolution) component of the aerodynamic
load. However, it is also known that the failure of the blade pitch system is a significant source
of turbine downtime. Control algorithms that increase pitch actuation will only add to this
problem. Therefore, increasing blade pitch actuation to reduce mechanical loads may not be
the best solution is every situation. Hence, in this paper, an individual pitch control strategy is
proposed to reduce pitch actuation without deteriorating rotor speed regulation or increasing
structural vibrations. The controller is developed under a Non-linear Model Predictive Control
(NMPC) framework. It is assumed that a preview of the inflow wind field is available in the form
of LIDAR (LIght Detection And Ranging) wind speed measurements. The results presented in
this paper show that it is possible to reduce blade pitch actuation below the baseline level while
maintaining rated rotor speed.

Keywords: Nonlinear model predictive control, lidar-based control, individual blade pitch
control

1. INTRODUCTION

The idea of reducing aerodynamic loads through individual
blade pitch control (IPC) was put forward more than a
decade ago by Bossanyi (2003, 2005). The success of the
idea led to a significant amount of research conducted in
successive years. Numerous individual blade pitch control
strategies were presented by researchers all over the world.
The industry has also accepted the use of these advanced
control algorithms and modern wind turbines are now
actively pitched to reduce mechanical loads. Field experi-
ments were further conducted by Bossanyi et al. (2013) to
validate the previously proposed IPCs.

Mughal and Guojie (2015) presented a discussion on vari-
ous pitch control strategies from basic PID (proportional-
derivative-integral) controllers to complex multivariable
controllers like H∞, neural network, adaptive control etc.
The most prominent IPCs for floating offshore wind tur-
bines were proposed by Namik and Stol (2010, 2011) based
on a State Feeback Controller (SFC) and a Disturbance
Accommodating Controller (DAC). In Namik and Stol
(2014) the authors demonstrated the performance of the
above two controllers on a spar-buoy floating wind tur-
bine. The authors showed that while both controllers are
capable of improving power regulation, the DAC has a
detrimental effect on the platform motion. The SFC was
inferior compared to the DAC in power regulation, but, the
platform rolling and pitching rate was similar to that of
the baseline controller. The authors recommended the use
of the SFC since the platform motion was not amplified.

Model Predictive Control has gain popularity since the
1980s in industrial application and the same has been pro-
posed for wind turbine control (Henriksen, 2011). LIDAR
measurements can provide information about wind at vari-
ous distances in front of the wind turbine. This information
was used to design a nonlinear model predictive controller
in (Schlipf et al., 2013). The controller was compared
against the baseline controller and was shown to reduce
extreme gust loads by 50% and lifetime fatigue loads by
30%. Some other prominent works on model predictive
control for wind turbines are presented by (Odgaard et al.,
2016; Soliman et al., 2010; Mirzaei et al., 2013). The model
predictive control (MPC) framework has been used by
Koerber and King (2013) to design wind turbine collective
pitch and torque controller. The authors concluded that
preview control provides significant benefits in normal
operation and under gust conditions. In a first, a nonlin-
ear model predictive controller for floating offshore wind
turbines has been proposed in (Raach et al., 2014).

It may be noted here that the common characteristic of the
IPCs reviewed above is that the control strategies aimed
at reducing aerodynamic loads typically comes at the cost
of increased pitch actuation. However, it is known (Valpy
et al., 2017) that the blade bearings and pitch systems
are a significant source of turbine downtime. Innovations
that increase the load cycles on the pitch systems will only
compound this problem. One way to reduce this downtime
is innovations in improving bearing concepts and lubrica-
tion and improvements in hydraulic and electrical systems.
However, with the current pitching systems, innovations in
pitch control strategies that reduce pitch actuation offer



an alternative solution. Model predictive control has the
potential of optimizing blade pitch actuation as it takes
the future disturbance into account and the controller
is optimal. This issue has not been investigated in the
available literature and this paper aims to address this gap
by proposing a new individual blade pitch control strategy
that optimizes blade pitch actuation.

2. NON-LINEAR MODEL PREDICTIVE CONTROL
OF BLADE PITCH ANGLES

A model predictive controller predicts the future behaviour
of a system based on the current measurements, distur-
bance preview and an internal model. This basic concept
of model predictive control is applicable to both linear
and non-linear systems alike. In certain cases the system
presents strong non-linearities that cannot be neglected
(refer Schlipf et al. (2014)). In those situations non-linear
model predictive control (NMPC) can significantly im-
prove performance by considering the non-linearities of the
system.

In this paper, the proposed NMPC controller assumes that
a preview of the inflow wind field is available in the form
of LIDAR (LIght Detection And Ranging) wind speed
measurements. The details on the working of a LIDAR is
not in the scope of this study and the interested reader may
refer (Lindelöw, 2008) for details. A FAST-type 22-DOF
spar-type Floating Offshore Wind Turbine (FOWT) model
developed by the authors and benchmarked in Sarkar and
Fitzgerald (2019) was augmented with linear uncoupled
single degree of freedom pitch actuator models given by
equation 1.

mactβ̈i + cactβ̇i + kactβi = kactβ
c
i for i = 1 to 3 (1)

Where, mact, cact and kact are the actuator inertia,
damping and stiffness terms respectively obtained from
(Jonkman and Buhl Jr, 2005). The resulting dynamic
model is a 25-DOF high-fidelity model of the floating wind
turbine. The controller is developed using a simplified
internal model and the performance of the controller is
evaluated using the 25-DOF model.

2.1 Simplified reduced degree of freedom model

Model predictive control contains an internal model of the
system embedded in the controller that is used to predict
the future state of the system for a control sequence u(·).
For continuous time system the control system is obtained
in the form

ẋ = f(t,x,u) (2)

For a complicated multi-degree of freedom systems, the
internal model for the controller if often approximated
by a reduced degree of freedom model Fitzgerald et al.
(2018); Sarkar and Chakraborty (2018). In this paper, a
nine degree of freedom reduced degree of freedom internal
model presented in Appendix A is used to design the con-
troller. The selected degrees of freedom are: the platform
pitching degree of freedom (qP ), the tower fore-aft bending
mode (qT ), the out-of-plane bending mode of the three
blades (qBi for i = 1, 2, 3), the generator azimuth angle
(qGeAz) and the three blade pitch actuator motion (βi for
i = 1, 2, 3). The state vector can be given as

x = [qP , qT , qB1, qB2, qB3, qGeAz, β1, β2, β3]′ (3)
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Fig. 1. Spanwise variation of power extraction

For details on the internal model please refer Sarkar et al.
(2020).

2.2 Wind disturbance preview

The aerodynamic loads on the wind turbine is usually esti-
mated using the Blade Element Momentum (BEM) theory.
However, the internal model must be as simple as possible
for implementation. For this purpose the aerodynamic
loads on the wind turbine are estimated a-priori. The
loads are obtained as a polynomial function of the effective
wind speed (u0) and blade pitch angles (β) by polynomial
surface fitting of BEM results for various wind speeds and
blade pitch angles. The reduced order model requires the
information of the effective wind speed experienced by the
blade in a way that encapsulates the information of the
total wind field that the blade is subjected to. Hence, an
effective wind speed at time t is defined as

u0(t) = 3

√√√√∫ L

0
u(t, r)3

∂cp
∂r rdr∫ L

0
∂cp
∂r rdr

(4)

where
∂cp
∂r is the span-wise variation of power extraction

factor obtained by modelling tip and hub losses following
(Burton et al., 2011) shown in Figure 1. L is the length
of the blade and r is the radial distance of the section
under consideration from the root of the blade. Figure 2
shows the aerodynamic torque on the blades for different
effective wind speeds and blade pitch angles. The forces
and moments on the tower and platform are also estimated
in the similar way.

2.3 Definition of the optimal control problem

The objective of the optimal control problem is to mini-
mize a cost function JOCP defined over a time horizon t0
to Tf . The cost function is minimized by solving for an op-
timal control input trajectory u(·) that minimizes the cost
function in the presence of disturbance d(·) subjected to a
set of non-linear constraints that includes the dynamics of
the internal model, the initial measurements and a set of
non-linear constraints H that ensure feasible operational
range. The optimization problem in continuous time can
be described as
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min
u(·)

JOCP (x,u,d)

with: JOCP (x,u,d) =

∫ t0+Tf

t0

Π(x(τ),u(τ),d(τ))dτ

s.t. ẋ = f(x,u,d)

x(t0) = x0

H(x(τ),u(τ),d(τ)) ≥ 0 ∀τ ∈ [t0, t0 + Tf ]
(5)

The primary aim of the present controller is to minimize
blade pitch actuation while maintaining tracking of rated
power at above rated wind speeds. The secondary objec-
tives are to minimize platform pitching motion, the fore-
aft bending of the tower and the flapwise bending of the
blades. However, the aim of the controller is to achieve
these goals at a reduced pitch actuation compared to
the baseline controller. The objective function is defined
as a quadratic function of system states multiplied with
independent weights to emphasise on the different control
objectives. The objective function is defined as

Π(x(τ),u(τ),d(τ)) = Q1(q̇GeAz − Ωrated)2 (6)

+Q2(P (t)− Prated)2 (7)

+Q3q̇
2
T (8)

+Q4q̇
2
P (9)

+ [q̇B1 q̇B2 q̇B3]Q5[q̇B1 q̇B2 q̇B3]′

(10)

+ [β̇1 β̇2 β̇3]Q6[β̇1 β̇2 β̇3]′ (11)

In the above equation, Ωrated and Prated are the rated
rotor speed and power output of the 5MW FOWT. The
weights Q1 and Q2 penalises the rotor speed error and
rated power error respectively. The velocity of tower fore-
aft motion is penalised with Q3 and the platform pitching
velocity is penalised with the weight Q4. Q5 and Q6 are
diagonal matrices defined to penalise the blade flapwise
velocity and blade pitch actuator velocities respectively.

Next, the set of constraints H that guarantees the feasible
range of operation of the wind turbine is defined as

H :=

βmin
i ≤ βi ≤ βmax

i

−β̇max
i ≤ β̇i ≤ β̇max

i

Tmin
g ≤ Tg ≤ Tmax

g

Ṫmax
g ≤ Ṫg ≤ Ṫmax

g

(12)

Fig. 3. Computation hierarchy and communication of data
between elements

where, βmin
i and βmax

i and the minimum and maximum
pitch angles respectively. Tmin

g and Tmax
g are the minimum

and maximum allowable generator torque respectively.
And β̇max

i and Ṫmax
g are the maximum allowable pitch and

torque rate respectively.

The NMPC needs a preview of the blade effective wind
speed over the prediction time Tf . In simulations, this
is obtained easily from TurbSim (Jonkman, 2009) wind
fields using equation 4. In reality, nacelle mounted LIDAR
systems are capable of scanning the incoming wind field.
It is possible to extract a rotor effective wind speed
from the raw data delivered by such a LIDAR system.
This procedure is out of scope of the current study
and a description is presented in (Schlipf et al., 2013).
MATLAB’s constrained non-linear programming solver
fmincon has been used here to solve the optimal control
problem. Sequential Quadratic Programming algorithm
has been used in fmincon to minimize the cost function in
equation 5.

The prediction horizon is chosen to be Tf = 12s which
is a proper assumption (refer (Schlipf et al., 2013)). The
time steps in the NLP are set equal to ∆tNLP = 1.2s,
which in 11 stages (N=1) covers a time horizon of 12s ([N -
1]∆tNLP ). The LIDAR wind measurements are assumed
to have an update rate of 0.5s. Hence, wind disturbance
preview is available at every 0.5, 1, 1.5,..., 12s. The effective
wind speed u0(t) at any intermediate time t is obtained
from linear interpolation. Therefore, after every 0.5s the
LIDAR measurements are updated and the NLP is solved
with new measured state.

A sliding horizon type control strategy is used in this paper
where the control input is estimated for the entire finite
time horizon; the predicted control input from the first
stage is returned to close the control loop and the rest
is discarded. The NLP is solved again for the new finite
horizon for the measured initial state and disturbance
prediction. Recursive elimination method is used to solve
the optimal control problem in equation 5. In this method,
the problem is divided into two sub-problems and they are
solve separately using specialized methods. The hierarchy
and communication of the control problem is shown in
Figure 3.

A practical challenge from an implementation point of
view is that the control input obtained from NMPC
is discrete in time. Since, the pitch actuator model is



stiff, applying the control inputs in their original discrete
form can amplify actuator motion due to the transient
effect arising from step jumps in commanded pitch angles.
To avoid this problem two steps are taken. Firstly, the
commanded pitch angles are obtained by interpolating
between the inputs of two stages. Hence, a step change
in control input is transformed into a linear change. And
secondly, the control input is passed through a single-pole
low-pass filter with exponential smoothing (Jonkman and
Buhl Jr, 2005) to eliminate high frequency variations in
the control input. The proof of closed loop stability of the
non-linear constrained system solved by a model predictive
controller is beyond the scope of this work.

3. RESULTS
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Fig. 5. Blade pitch angle

The performance of the controller is evaluated based on
numerical time history analysis. The 5MW OC3 Hywind
turbine, a spar-type FOWT, defined in (Jonkman, 2010)
has been used for numerical purposes. MATLAB (2018)
has been used as the simulation platform. A sampling
rate of 40 Hz has been used for time integration using
the runga-kutta 4th order method. The turbulent wind
field is generated using the TurbSim (Jonkman, 2009)
package. The stochastic sea is modelled by the Pierson-
Moskowitz spectrum (Pierson Jr and Moskowitz, 1964). It

is important to note here that the pitch controller is active
only in wind speed region 3 (above rated wind speed). Two
load cases are chosen; Load Case 1: wind speed = 12.5 m/s,
wave height 3 m and wave period 11 s, and, Load Case 2:
wind speed = 14.5 m/s, wave height 3 m and wave period
11 s.

To conform with the length requirements of the paper,
plot of the rotor speed and blade pitch angle are presented
only for Load Case 2 in Figure 4 and Figure 5 respectively.
The blade pitch angle is the most important parameter as
the controller is designed to minimize blade pitch actua-
tion or the variation of the blade pitch angles. The first
thing to note is that the dynamics of the FOWT is not
heavily altered by the NMPC controller compared to the
baseline controller. This is because the blade pitch angle
from the NMPC controller is not significantly different
from the baseline controller as shown in Figure 5. It can
be observed from the results that the baseline controller
tracks the rated rotor speed with close to minimum blade
pitch actuation. Therefore, the scope of further reduction
of blade pitch actuation is limited. However, further scope
of improvement arises from from the fact that unlike the
baseline PI controller the NMPC controller provides an
optimal control framework and the NMPC controller op-
timizes the control input based on information about the
future. The controller also tracks the rated rotor speed
with very good accuracy (see Figure 4), with reduced pitch
actuation. To compare the two controllers quantitatively
the standard deviations of the different FOWT responses
are summarized in Table 1. It can be observed that the
proposed IPC considerably reduces the platform pitching
motion, the tower fore-aft motion and the blade out-of-
plane motion as these degrees of freedom are included in
the design of the controller. In the cross-wind direction,
the platform rolling motion is slightly reduced. Other than
that, the blade in-plane motion and tower side-to-side mo-
tion is left unaffected by the controller. The performance
of the controller can be summarized by noting that the
proposed NMPC controller is capable of improving the
dynamic responses of the FOWT (rotor speed tracking and
vibration control) with reduced pitch actuation compared
to baseline controller.

4. CONCLUSION

In this paper an LIDAR-based individual blade pitch
controller has been proposed to optimize blade pitch
actuation. The results presented here can be concluded
as follows

• The proposed IPC is capable of tracking the rated
rotor speed with reduced pitch actuation compared
to the baseline controller. The performance improves
at higher wind speeds.

• At higher wind speeds the proposed IPC is even able
to improve rotor speed regulation with reduced blade
pitch actuation.

• In addition, the proposed IPC is capable of reducing
blade out-of-plane displacement, tower fore-aft dis-
placement and platform pitch rotation.

In future works, the authors are working on estimating the
reduction of long-term fatigue loads on the pitch actuators.
Also, the application of robust NMPC for systems with



P
a
ra
m
et
er

B
a
se
li
n
e

N
M
P
C

R
ed

u
ct
io
n

(%
)

L
C

#
1

L
C

#
2

L
C

#
1

L
C

#
2

L
C

#
1

L
C

#
2

R
o
to
r
sp

ee
d
(r
p
m
)

0
.8
1
6

0
.7
7
0

0
.8
2
4

0
.6
2
0

-0
.9
8

1
9
.4
8

P
la
tf
o
rm

p
it
ch

(d
eg

)
1
.1
0
2

1
.1
5
4

0
.8
9
3

0
.8
3
8

1
8
.9
5

2
7
.3
8

P
la
tf
o
rm

ro
ll
(d

eg
)

0
.1
6
7

0
.1
3
1

0
.1
5
8

0
.1
2
0

5
.3
8

8
.3
9

B
la
d
e
p
it
ch

a
n
g
le

(d
eg

)
3
.2
7
1

2
.2
4
8

3
.0
4
2

1
.9
5
6

7
.0
0

1
2
.9
9

B
la
d
e
o
u
t-
o
f-
p
la
n
e(
m
)

1
.1
2
7

0
.9
6
4

1
.0
6
9

0
.8
5
9

5
.1
4

1
0
.8
9

B
la
d
e
in
-p
la
n
e
(m

)
0
.3
9
5

0
.4
1
0

0
.3
9
4

0
.4
0
5

0
.2
5

1
.2
2

T
o
w
er

fo
re
-a
ft

(m
)

0
.1
0
1

0
.0
9
9

0
.0
9
0

0
.0
8
2

1
0
.8
9

1
7
.1
7

T
o
w
er

si
d
e-
to
-s
id
e
(m

)
0
.0
1
9

0
.0
1
4

0
.0
2
0

0
.0
1
4

-5
.2

0
.0
0

Table 1. Standard deviation of the responses

model and/or measurement uncertainties are also being
investigated.

Appendix A. EQUATIONS OF MOTION OF THE
REDUCED ORDER MODEL

The linearized equations of motion of the six degree
of freedom system excluding the actuator models (see
equation 3) is presented in this section. To derive the
equations of motion, first it is assumed that the wind
turbine is rotating at a constant speed. The generator
speed error degree of freedom is decoupled from the rest
of the system. This approach is undertaken since the
inclusion of the generator speed error as a degree of
freedom introduces non-linearities in the form of cosine
and sine terms which cannot be linearized using small
angle approximation. The generator speed error degree of
freedom is described as

q̇ε = δΩ = Ω0 − qGeAz

qε =

∫ t

0

q̇εdt =

∫ t

0

(Ω0 − qGeAz)dt

q̈ε = δΩ̇ = q̈GeAz

(A.1)

Where, Ω0 is the rated rated rotor speed of the FOWT.
The equation of motion of this degree of freedom assuming
only intergal action KI can be obtained from Jonkman
(2007) as

IDT q̈ε+

(
−P0

Ω2
0

)
q̇ε+

1

Ω0

(
−∂P0

∂θ

)
NGearKIqε = 0 (A.2)

Where, IDT = IRotor + N2
GearIGen is the drive-train

intertia cast into the low speed shaft, IRotor is the inertia
of the rotor, IGen is the inertia of the generator relative
to the high speed shaft, NGear is the gear box ratio. P0 is
the rated mechanical power. As recommended by Jonkman
(2010) the integral gain KI is selected such that the
frequency of this degree of freedom is 0.2 rad/s. Therefore,
the stiffness term can be written as

1

Ω0

(
−∂P0

∂θ

)
NGearKI = 0.22IDT = kεε (A.3)

The mass, stiffness and damping matrix of the linearized
six degree of freedom system are obtained as

M =


mPP mPT mPB1 mPB2 mPB3 0

mTT mTB1 mTB2 mTB3 0
mBB 0 0 0

mBB 0 0
sym mBB 0

0 IDT

 (A.4)

C =



cPP 0 0 0 0 0
cTT 0 0 0 0

cBB 0 0 0
cBB 0 0

sym cBB 0(
−P0

Ω2
0

)


(A.5)

K =


kPP 0 0 0 0 0

kTT 0 0 0 0
k1BB 0 0 0

k2BB 0 0
sym k3BB 0

0 kεε

 (A.6)

where sym stands for symmetric and denotes that the
above matrices are symmetric. The quantities in the above
matrices can be given as

mPP = 12H2
t

∫ L

0

mb(r)dr +

3∑
i=1

[
4Ht

∫ L

0

rmb(r)dr cos(ψi)

+

∫ L

0

r2mb(r)dr cos2(ψi)

]
+

∫ Ht

0

hmt(h)dh

+H2
tmNH + IP + IAM

P

(A.7)

mPT = 6Ht

∫ L

0

mb(r)dr +

∫ Ht

0

hmt(h)φt(h)dh (A.8)

mPBi = 2Ht

∫ L

0

φb(r)mb(r)dr

+

∫ L

0

rφb(r)mb(r)dr cos(ψi) for i = 1 to 3

(A.9)

mTB =

∫ L

0

φb(r)mb(r)dr (A.10)

mTT = 3

∫ L

0

mb(r)dr +

∫ Ht

0

φ2tmt(h)dh+mNH (A.11)

Where, Ht is the height of the tower and L is the
length of the blades. mb(r) and mt(h) are mass per unit
length of the blades and tower respectively. ψi is the
azimuth angle of the ith blade. mNH is the combined
mass of the nacelle and hub. IP is the rotational inertia of



the platform and IAM
P is the hydrodynamic added mass

coefficient associated with the platform pitch degree of
freedom. φb(r) and φt(h) are the normalized fundamental
model shapes of the blades and tower respectively. cPP

is the linear hydrodynamic damping coefficient associated
with the platform pitch degree of freedom, cTT and cBB

are structural damping coefficient of the tower and the
blades respectively. kPP is the summation of hydro-static
and mooring lines stiffness associated with the platform
pitch degree of freedom. kTT is the elastic stiffness of
the tower and kiBB = keBB + kcBB + kgBB cos(ψi) is the
summation of the elastic stiffness keBB centrifugal stiffness
kcBB and gravitational stiffening/softening of the ith blade.
More details on these terms can be found in (Sarkar and
Chakraborty, 2019).
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