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Abstract— For the efficient execution of Deep Neural Networks 
(DNN) in the Internet of Things, computation tasks can be 
distributed and deployed on edge nodes. In contrast to deploying 
all computation to the cloud, the use of Distributed DNN 
(DDNN) often results in a reduced amount of data that is sent 
through the network and thus might increase the overall 
performance of the system. However, finding an appropriate 
deployment scenario is often a complex task and requires 
considering several criteria. In this paper, we introduce a multi-
criteria decision-making method based on the Analytical 
Hierarchy Process for the comparison and selection of 
deployment alternatives. We use the RECAP simulation 
framework to model and simulate DDNN deployments on 
different scales to provide a comprehensive assessment of 
deployments to system designers. In a case study, we apply the 
method to a smart city scenario where different distributions 
and deployments of a DNN are analyzed and compared. 

Keywords-Edge Computing, Internet of Things, Distributed 
Deep Neural Networks, Simulation, Smart Cities 

I.  INTRODUCTION 

In recent years, Deep Neural Networks (DNN) have 
evolved rapidly and achieved great success in various 
Machine Learning applications [1]. DNNs are a specific type 
of artificial neural networks with multiple layers of feature 
extraction. They are well suited for image recognition, speech 
recognition, and other tasks where the identification of useful 
features in the data is difficult. Advancements in hardware 
capabilities have provided the opportunity for researchers to 
implement complex DNNs with high classification accuracy 
[2]. However, when DNNs become deeper, they demand more 
processing capability to have acceptable latency for both 
training and inference [3].  

Using DNNs for image recognition tasks is common in 
IoT systems, e.g., for monitoring traffic or crowds. Such 
computationally heavy tasks are traditionally executed in the 
cloud due to the lack of processing capacity on IoT edge 
nodes. In the case of DNNs, this is not always feasible because 
of the large amount of  data that has to be sent through the 
network, which causes latency and high bandwidth usage. 
Edge computing has been introduced recently to overcome 
this problem. When executing DNNs in IoT systems, 
computational tasks can be distributed and deployed on both 
edge and cloud nodes, often referred to as Distributed Deep 
Neural Networks (DDNN) [4]. In contrast to deploying all 
computation to the cloud, DDNNs often result in a reduced 

amount of data that is sent through the network, and might 
decrease latency as well as increase privacy of the system [4].  

However, we believe there are some gaps in the current 
approaches, e.g.: 

 The optimal deployment of the DNN layers 
(components) depends on several different factors, 
such as accuracy, energy consumption, response time 
of task execution, computational capacity, network 
capacity, and privacy. However, current approaches 
consider only one or a few factors when assessing 
deployment scenarios [5].  

 The current approaches usually consider only a single 
or a few sources of data when assessing DNN 
deployment alternatives [4][6][7]. Thus, the impact of 
scaling the number of IoT edge nodes producing data 
is neglected, which might affect the general suitability 
of a specific deployment.  

 The measurements of the required metrics do not 
replace the need for human judgment [8]. Each 
application has its own requirements which should be 
specified by the system designer. Moreover, the 
importance of the metrics are not equal for the 
different applications. This is often not considered in 
the literature.  

To address these gaps, we propose a multi-criteria 
decision-making framework based on Analytical Hierarchy 
Process (AHP) for the comparison and selection of 
appropriate deployment alternatives. Moreover, we use 
simulation to analyze the performance with respect to the 
relevant metrics and the scalability of DDNN deployment 
alternatives. In this way, we link human judgement to the 
simulation measurements, integrate several metrics, and 
provide a ranking of deployment alternatives for different 
system sizes.  

We extend the existing RECAP simulation framework [9] 
to model and assess DDNN deployment alternatives while 
varying the size of the system. We implement a DDNN 
application behavior model and additional performance 
metrics, such as resource capacity and drop rate, to provide a 
more comprehensive assessment of deployment scenarios to 
support system designers. The usefulness of the approach is 
shown in a case study concerning a smart city scenario where 
road intersections are equipped with cameras for the 
estimation of the number of vehicles using DDNN. We 
simulate AlexNet lyers and analyze and compare different 
deployment scenarios of this DNN. 



The remainder of this paper is organized as follows. The 
related work is discussed in Section II. In Section III, the 
relevant metrics for evaluating DDNNs and our ranking 
method for deployment scenarios is explained. The 
description of the smart city use case, AlexNet, simulation 
setup, and experiments analysis are presented in Section IV. 
In Section V, we conclude and provide pointers to future 
work. 

II. RELATED WORK 

To improve the efficiency of IoT systems, processing and 
storage tasks can be executed closer to the edge of the 
network, where data is generated by sensors [10]. In contrast 
to traditional cloud computing approaches, where all data is 
first sent to the cloud, the processing of data closer to source 
allows for instance for reduced response times and bandwidth 
savings. Depending on where the nodes that execute the tasks 
are located, some works refer to the term “fog computing”. 
However, in this work, we define edge computing as the use 
of computing and storage resources that are located in the 
network between the cloud and the sensors/actors. 

In recent years, DNNs have evolved and achieved great 
success in various Machine Learning applications. 
Advancements in hardware capabilities have provided the 
opportunity for researchers to propose very deep networks 
with high accuracy in classification of input data [11]. 
However, such networks require powerful CPUs/GPUs to 
guarantee completion of the tasks in a low latency bound [3].  

Similar to other applications, using DNNs in IoT is 
becoming more frequent [12]. However, there are specific 
circumstances in IoT which make the deployment of DNNs a 
complex task. The source of data is usually close to the edge 
of the communication network, which causes communication 
overhead and latency. On the one hand, a massive amount of 
data might be generated by IoT devices, which may overload 
the centralized cloud services. On the other hand, edge devices 
are usually powered with limited resources, which restricts the 
execution of very deep DNNs on edge devices. An alternative 
solution is to split and distribute the DNNs in inference phase; 
from devices with limited resources in the edge to more 
powerful resources on cloud, to reduce the load on edge nodes 
(see Figure 1). In this case, the computational-intensive layers 
of the DNN are expected to be executed on the cloud side and 
communicational-intensive layers close to the edge.  

Several approaches have been proposed to achieve this 
distributed deployment. Neurosurgeon [6] is a pioneering 
study for splitting and distributing DNNs. By considering 
energy consumption and latency, they propose a model to find 
the optimal point to split the layers of the DNNs between 
mobile devices and cloud. However, the approach is limited 
to a specific case of edge computing by considering only two 
deployment scenarios (mobile device or cloud) and with one 
source of data generation. To generalize this idea on more 
devices, the MeDNN method [13] proposes an adaptive 
splitting of DNNs onto multiple mobile devices. Although a 
reduced computation and communication time has been 
achieved for DNN model inference in this approach, the focus 
is still limited for mobile devices and on latency metric. 

Early-exit of DNN layers is another category of 
distributing DNNs proposed in [4][14]. The goal of this 
approach is to reduce unnecessary data transmission and 
processing in upper layers by considering several exit points 
at certain layers and early classification of input data without 
the need for processing all DNN layers. DDNN [4] is an 
example of this approach to provide a model for early exit on 
cloud, edge, and end node devices. The authors tune their 
model by considering the accuracy of classifications and the 
percentage of early classifications.  Edgent [14] is another 
early-exit based approach which studies the trade-off between 
accuracy and latency for partitioning DNNs. 

To the best of our knowledge, the proposed approaches 
usually consider a small number of metrics for distributing 
DNNs, which may limit the system designer for evaluating the 
usefulness of a deployment scenario. There is also a lack of 
consideration of the human input for the deployment 
decisions. Moreover, we argue that scaling data sources and 
edge nodes is another important aspect that should be also 
considered in the deployment of DDNNs. For this purpose, 
simulation can provide a great help in analyzing deployments 
of high scale scenarios by providing relevant system behavior 
metrics. 

Computer simulation can be used to facilitate the design, 
analysis, and optimization of complex interconnected systems 
[15]. Based on a model of a real-world system, simulation 
experiments can be conducted to evaluate what-if questions 
and to provide insights in the system’s behavior and 
performance under different operational conditions. In 
contrast to real-world experiments, simulation studies allow 
for more cost- and time-efficient investigations. For the 
investigation of IoT systems with edge computing, multiple 
simulators exist that support modeling and assessing of 
different aspects of such systems, e.g., load balancing or 
network utilization [16]. One of them is the RECAP simulator 
[9], that allows for the simulation of large-scale edge 
computing scenarios.  

III. DEEPDEP METHOD 

In this section, we introduce the DeepDep method which 
supports the decision of deploying DDNNs over a continuum 
of devices from the edge to cloud. In DeepDep, we rank the 
available alternatives for the deployment based on the quality 
requirements of the application. In other words, the purpose 
of this method is to prioritize a list of alternatives, which meet 
the user requirements. To achieve this, we initially need to 

 
Figure 1. Distributed Deep Neural Networks 

 



define a set of metrics for quantifying different user 
requirements, and then rank the deployment alternatives based 
on the measurements. Following, we present the quality 
metrics used in our method and the ranking model which is 
based on Analytical Hierarchy Process. 

A. Metrics 

To comprehensively study a system, a system designer 
should investigate and measure various and relevant quality 
characteristics. A quality can be measured by a set of metrics. 
Zhou et al. [5]introduced several key metrics for the 
evaluation of DDNNs in inference part: latency, accuracy, 
energy consumption, privacy, communication overhead, and 
memory footprint [5]. We consider these metrics in our 
framework with some modifications. In addition, we believe 
processor usage and capacity are other important metrics that 
should also be considered in the measurements. In the 
following, relevant metrics for evaluating DeepDep are 
described: 

Response Time: The demand for latency varies in IoT 
applications. Real-time applications such as red light violation 
detection requires responses in a short timeframe, while for 
some other applications such as smart temperature controlling 
of buildings latency can be tolerated. We measure this metric 
as the duration from when an IoT device generates data as 
input for a DNN over the execution of all DNN layers in 
inference process to responding to the next corresponding 
component. 

Energy consumption: In IoT, energy consumption is 
considered as a key metric especially for battery-powered 
devices. The execution of DNNs usually imposes computation 
and network load which may drain the battery easily.  

Processor usage: DNNs are often computational-
intensive tasks, which demands for powerful processors, 
especially when scaling the number of data generation nodes. 
This metric can also indicate the cost of the deployment 
approximately. We measure this metric based on the amount 
of CPU capacities allocated for processing all DNN layers. 

Memory Usage: In IoT, data inputs for DNNs can be 
generated in a high frequency and large in size (e.g., images) 
which demands relatively large memory space for processing 
them. Moreover, very deep networks containing millions of 
parameters should be kept in memory.  

Capacity: This metric represents the scalability of the 
system in terms of adding new data sources. We measure 
capacity as the maximum number of requests that can be 
processed in a unit of time in addition to the current load. This 
metric relies on the different resource capacities such as 
processing, memory, and bandwidth. Here, we consider 
processing capacity in our experiments. 

Communication overhead: the communication overhead 
impacts both latency and energy consumption. Having large 
input data and generating even larger outputs between DNN 
layers may cause problems for data transmission between 
distributed nodes.  

Accuracy: Zhou et al. defined accuracy as the input 
samples that get the correct predictions from inference to the 
total number of input samples [5]. However, the rate of data 
capturing and processing them can also impact the accuracy 

of the application. There is usually a trade-off between the rate 
of data inputs for DNNs, response time, and available 
resources. Here, we measure accuracy as the average number 
of the processed requests generated by each data source. 

Privacy: Extending a centralized cloud to decentralized 
edge nodes may provide both opportunities and challenges for 
user and data privacy [17]. Distributed data processing limits 
accessibility of data and increases the overall privacy, but at 
the same time heterogeneous and distributed devices are less 
resilient against security attacks and more prone to data 
leakage. 

It should be noted that in our use case implementation for 
the simulation, we are not modelling (estimating) energy 
consumption and memory usage, since they are not relevant 
for the use case introduced in Section IV-A, but they can be 
easily added for future cases. Moreover, we are also not 
modeling privacy and accuracy in terms of classification 
accuracy for another reason, since simulation is not a suitable 
method for measuring these metrics. However, they can still 
be measured through other methods such as prototype 
implementation or surveying experts. Therefore, because of 
their importance and the feasibility of integrating these 
metrics in our AHP based ranking method, we consider them 
as the relevant criteria in our model. 

B. Ranking deployment scenarios 

Various criteria (metrics) can influence the decision of 
finding an optimal deployment for distributed DNNs, which 
makes this process a complicated task. This type of problem 
is usually identified as multiple criteria decision making 
(MCDM) [18]. To rank the deployment scenarios, we utilize 
the Analytical Hierarchy Process (AHP) that is one of the most 
used MCMD methods. AHP is a method for relative 
measurement [19]. In relative measurement, the proportion 
between the quantities is the interested outcome, and not the 
exact measurement of them. Relative measurement in general 
and AHP in particular suit well for the problems where the 
best alternative among different decision choices should be 
selected. Formally, in AHP, there is a goal and a finite set of 
alternatives, X = {x1, . . . ,xn}, from which the best alternative 
should be chosen. In addition, there are a set of criteria C = 
{c1, . . . ,cm}, which are relevant to the goal and will make one 
alternative preferable to another. 

One important aspect that is usually neglected in the 
assessment of the alternatives is human judgment on 
evaluation of priorities. Obviously, the metric used for 
assessments are not identical in terms of importance and 
priority for each application, and the use of metrics and 
quantitative measures does not stop the need for human 
judgment [8]. One of the main features of AHP is linking 
human inputs with the quantitative measurements provided by 
the metrics [20]. To achieve this, AHP uses pairwise 
comparisons of decision criteria. In pairwise comparison, the 
user compares each criterion with other criteria in terms of its 
importance for the application. AHP is also very flexible for 
adding or removing criteria and comparing them in multi-
layer hierarchical structure. Our AHP based ranking method 
is based on several steps described in the following.  

 



 
1) Forming AHP hierarchy 

In this step, the goal, related criteria, and the set of 
alternatives for the specific application (in our case 
deployment of DDNNs) should be identified and structured in 
a hierarchy (see Figure 2). Here, the goal in the first layer is to 
find relative ranking of possible scenarios for deployment of 
distributed DNNs. The set of criteria in the second layer are 
the metrics listed in Section III-A. Finally, the third layer is 
the set of possible alternatives for the deployment which can 
vary based on application and infrastructure. 

 
2) User judgement  

The next step is to perform pairwise comparison among 
the criteria. Here, the user compares each criterion to another 
by assigning a relative importance value. Table I shows the 
scale suggested by Saaty et al. [20]. 

TABLE I.  THE LIST OF RELATIVE IMPORTANCE VALUES 

Equal importance 1 
Somewhat more important 3 
Definitely more important 5 
Much more important 7 
Extremely more important 9 

 
Formally, the pairwise comparisons are collected in a 

pairwise comparison matrix,  𝐴መ = (𝑎ො௜௝)௠×௠   structured as 
follows: 

𝐴መ = ൭
𝑎ොଵଵ ⋯ 𝑎ොଵ௠

⋮ ⋱ ⋮
𝑎ො௡ଵ ⋯ 𝑎ො௠௠

൱ 

 

With 𝑎௜௝ > 0 expressing the degree of preference of ci to cj. 
 

3) Measuring criteria values for alternatives 
This step refers to collecting data by measuring the metrics 

(criteria) listed in Section III-A for each deployment scenario. 
We perform this step by simulation. More detailed 
information is provided in Section IV. 

The output of this step for each criterion is A(k) which is 
the matrix of pairwise comparisons between alternatives 
according to criterion k. Note that, to be consistent in the 
model, for the metrics such as response time which the lower 
value is desirable, for the lower values we consider higher 
rates in pairwise comparison. 

4) Linking user priorities to the measurements and 
ranking deployment scenarios 

Once a pairwise comparison matrix for the criterion k is 
completed, it should be normalized and converted to a 
weighted matrix that is called a priority vector  
W(k) = (w1, . . . ,wn)T. There are several ways of calculating 
the priority vectors. Here we use the method proposed by 
Saaty et al. [20] which estimates a priority vector based on the 
principal eigenvector of A(k).  

However, to have the final ranking of the alternatives, we 
need to combine the priority vectors for all criteria. The user 
input (matrix 𝐴መ) should also be considered in the calculation. 
Hence, before combining the W(1)…W(m) vectors, we need to 
form matrix 𝐴መ  in form of normalized weights  
𝑊෡  =(𝑤ෝ1, ….𝑤ෝm). We can use eigenvector-based method again 
but this time to convert matrix 𝐴መ to the priority vector 𝑊෡ . 
Finally, we are able to combine all W(k) vectors as a single 
vector. Here, we use weighted arithmetic mean as an 
averaging function to linearly combine W(1) ... W(m) vectors. 
 

𝑊௡×ଵ = 𝑤ଵෞ𝑊(1) + 𝑤ଶෞ 𝑊(2) … 𝑤௠ෞ 𝑊(𝑚) = ෍ 𝑤పෞ𝑊(𝑖)

௠

௜ୀଵ

 

The result is the vector W with a score for each alternative. 
Thus, now we have a final ranking and we can choose the best 
alternative, which is the one rated the highest. 

IV. EXPERIMENTS AND RESULTS 

In the next section, we first briefly introduce the use case 
scenario, AlexNet as a DNN for our use case, and then we 
explain the infrastructure and deployment scenarios. Finally, 
the experiment results and examples of ranking method are 
presented. 

 

 
 

Figure 2. AHP Hierarchy for ranking DDN deployment 
 



A. Use case scenario: 

To explore the DeepDep ranking method for DNNs 
deployment, we investigate the deployment of AlexNet [21] 
for automatic scheduling of traffic lights. Detecting the 
number of cars behind each lane is the core part of the 
application. Vision-based camera systems are popular to 
detect the number of cars for traffic estimation [12][22]. DNN 
approaches and particularly Convolutional Neural Networks 
(CNNs) have achieved a great success in object detection in 
recent years and have also been applied for traffic estimation 
[23]. In this section, we evaluate the deployment of AlexNet 
as a well-known CNN for traffic estimation scenarios. One 
possible deployment scenario is to host AlexNet on powerful 
smart cameras with sufficient processing and memory 
resources. However, this scenario will impose high 
deployment cost, since for each lane at least one smart camera 
is needed. Another option is to use cameras only as sensing 
devices without processing and memory resources and upload 
the captured images to other processing nodes in the network 
to reduce the deployment costs. In this case study, we consider 
cheap and resource-constrained cameras to capture images 
and will solve the problem of finding appropriate AlexNet 
deployment on distributed resources from edge to cloud.  

B. Alexnet 

AlexNet is a popular CNN, which achieved a great success 
on classification of images [21]. AlexNet layers consist of 5 
convolutional layers and 3 fully connected (FC) layers. Each 
convolutional layer contains a convolutional filter (a set of 
kernels), a non-linear activation function (ReLu), and the 
max-pooling function in layers one, two and five. Convolution 
(Conv) layers use kernels to extract features from an input 
data. By a set of kernels, they convolve the input to a set of 
feature maps. For example, it can convolve the image 
width×hight×depth dimensions to feature map 
width×height×channels dimensions. In a convolutional layer, 
there are usually many kernels. For example, the first Conv 
Layer of AlexNet contains 96 kernels of size 11×11×3. By 
using a non-linear function, activation functions convert each 
input data to an output data, to filter out the values below a 
certain threshold. AlexNet utilizes ReLU (Rectified Linear 
Unit) activation function, which simply maps negative values 
to zero and non-negative values unchanged. Pooling layers are 
usually used to down sampling feature map produced by the 
convolution filter. AlexNet uses the max pooling method 
which summarizes the most activated presence of a feature. 
Finally, in FC and softmax layers, the main goal is to classify 
the input data. In a FC layer, all the nodes in the current layer 
are connected to all the nodes in the previous layer and simply 
computes the weighted sum of the inputs. FC layers are 
usually computation-intensive components as shown in 
Figure 3. Finally, by a softmax function, the input data is 
classified through calculating the probability of each class. 

In our experiments, we consider all functions of a layer 
(e.g., filter, ReLU, max pooling in convolutional layer) as a 
single component. The amount of required task-clock and 
communication overhead for each layer represented in 
Figure 3. Task-clock shows how much CPU time is required 
to execute a job. For example, Conv1 requires about 5ms task-

clock, which means that having a 4 cores CPU and 
considering 100% CPU allocation to complete this job, it 
takes 1.25ms to finish that job. For calculating the amount of 
task-clock, we executed AlexNet on an Intel Core(TM) i7-
7600U CPUs and measured the amount of required task-clock 
by Process explorer [24] and Perf [25] tools. Then to find the 
required task-clock for processing each layer we used the 
proportions provided in [6]. 

C. Simulation scenarios 

To evaluate different placement options for AlexNet 
layers, we modelled a distributed cloud-to-edge system by 
extending the RECAP simulation framework [9]. Our system 
is comprised of an infrastructure, application, and workload 
models.  

The infrastructure model defines the hardware and 
network configuration and topology. We design a 3-tier 
system of edge, local server, and cloud based on a proximity 
to end user devices. Each tier composed of sites each 
containing virtualized hardware capable of hosting virtual 
entities such as virtual machines or containers. As shown in 
Figure 4, the edge tier (marked with letter “E”) is the closest 
tier to the user and serves as a first contact point between 
devices (cameras in our case) and the network. Followed by 
local server tier (letter “L”) and cloud tier. To reflect physical 
distance between the devices and tiers, for each link between 
tiers we are increasing network delay with lowest latency of 
1ms between device and an edge site, 10ms between an edge 
site and a local server and 100ms between a local server and 
cloud. However, as a trade-off to proximity we assume that 
the physical size of a site is increasing higher up the tier stack 
and capable to host more hardware resources. To reflect this 
in our model we only have available 2 CPU cores at every 
edge site, 16 and 32 CPU cores at L1 and L2 servers 
respectively and 128 CPU cores at cloud tier. In a similar way, 
we have a tree topology network between tiers with 1Gb 
bandwidth network link between devices and an edge site, 
10Gb between an edge site and a local server and 100Gb 
bandwidth between a local server and a cloud site. 

The application model is based on the design of AlexNet 
CNN image recognition layers from Conv1 to FC8 (shown in 
Figure 3). Every layer is modelled as a standalone component 
that can be deployed as a container within any tier site of our 
infrastructure. Data exchange between application 

Figure 3. Computation cost and output size of AlexNet layers 
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𝐴መ  = 

components and CPU processing time demand was modeled 
by using averages of measured values captured from real 
system benchmarks presented in Section IV-B. 

The workload model captures the frequency of image 
frames submitted by the surveillance cameras to the image 
recognition application AlexNet. In our model, we assume 
that a total of 4 cameras are connected by wired link to every 
edge site. Each image frame sent from a camera constitutes a 
single request that needs to be processed by the modelled 
system. 

To evaluate system performance, we create multiple 
simulation scenarios where we vary the AlexNet component 
deployment locations and workload.  

As shown in Table II, we created 7 different placement 
scenarios where application components are distributed 
among different tiers and sites from edge to cloud. Each edge 
site has 4 cameras attached to it, hence, by increasing the 
number of edges we also vary the workload. In addition, we 
vary the number of submitted frames (requests) per second 
(FPS) per camera, which also impacts system resource 
demand. For all placements we increase the number of edge 
sites from 1 to 10 to 50 and to 100 and all of the scenarios are 
run with 1 FPS and 4 FPS. As a result, all the named workload 
and deployment variations create a total of 56 simulation 
scenarios. 

After each simulation, we collect the data about system 
performance which is captured in form of request processing 
time, CPU and network utilization. 

D. Ranking deployment scenarios 

In this section, we will show how our ranking method 
selects an appropriate scenario for the deployment.  The first 
phase is to form the AHP hierarchy and identify the relevant 
criteria. Here we consider the following criteria, response time 
(RT), processor usage (PU), processor capacity (PC), and 
accuracy (AC). Based on our measurements, the amount of 
required RAM will not impact the decision (14MB for 
processing all AlexNet layers for a request). Moreover, since 
end devices and E nodes are connected by cable power, energy 
consumption is not a challenge here. Similarly, due to 
availability of power resources and network links, availability 
metric has not been considered. In the deployment scenarios, 
convolutional layers that generate a massive amount of data 
are located on the same device, which makes communication 
overhead also trivial in our case. 

The second step is user judgment, comparing each criteria  
to others. It should be noted that the user scores vary form one 
application to another. Here, based on the importance of each 
criteria in our scenario we form the comparison matrix 𝐴መ  
shown in below.   
 

 RT PU PC AC 
RT 1 3 5 3 
PU - 1 3 1 
PC - - 1 1/3 
AC - - - 1 

 
Consequently, the priority vector is 𝑊෡ = <0.522, 0.2, 0.2, 

0.078>, which shows the normalized weights for response 
time, processor usage, processor capacity and accuracy 
respectively. The next step is estimating the value of each 
criterion for all the metrics and forming the pairwise 
comparison matrices. We used estimated data by RECAP for 
this purpose.  

Figure 5 shows the response time of deployment scenarios 
for various topologies. The figure shows the impact of 
different scales on the response time. Please note that the 
labels indicate the topology based on the number of E nodes 
(intersections with traffic lights). When the processing latency 
is more than two seconds, the new requests in the processing 
queue are dropped to control overloading of the system. 
Therefore, when the number of received requests is more than 
the maximum capacity, instead of increasing the response 
time, more request will be dropped. Figure 6 shows the 
average drop rate of the deployment scenarios for each 
topology. Clearly when the edge nodes grow in number, more 
requests are dropped due to lack of available resources in the 
deployment scenarios. Edge is the only scenario which is not 
overloaded in any topology, but with the cost of allocating 
more CPU cores. Table III shows the amount of allocated 
CPU for each deployment scenario. We considered a fixed 
CPU allocation policy without elasticity for the L nodes and 
Cloud in our experiments. 

Table IV shows the maximum number of requests each 
deployment scenario is able to process. The available capacity 
for future scaling of the system is calculated by subtracting the 

Table II. Simulation scenarios placement variations 
 Deployment Scenarios 

Tier Site E-L1 E-L2 L1 Cloud Edge 
L1-

Cloud 
L2-

Cloud 

Edge E1…En 
Conv1, 

... 
Conv5 

Conv1, 
... 

Conv5 
  

Conv1 
...  

FC8 
  

Local 
servers 

L1 
FC6, 

... 
 FC8 

 
Conv1, 

... 
 FC8 

  
Conv1, 

... 
Conv5 

 

L2  
FC6, 

... 
 FC8 

    
Conv1, 

... 
Conv5 

Cloud C1    
Conv1,  

... 
 FC8 

 
FC6, 

... 
 FC8 

FC6, 
... 

 FC8 

 

 
Figure 4. Infrastructure model 

 



average number of completed request from maximum 
capacity.   

Having the criteria values, we are able to form the AHP 
priority vectors W(k) for each criterion and then rank the 
deployment scenarios.  As shown in Figure 5 and Figure 6, the 
response time and drop rate increases rapidly when the 
number of sites is more than 50. To show how DeepDep ranks 
the scenarios, we have considered two cases: C1) one edge site 
and 4 frames per second, C2) 50 edge sites and 4 frames per 
second. The final W vector for the cases is shown in Figure 7.  

For the case C1, based on the user requirements, scenario 
L1 where all components are executed on L1 node has 
acquired the highest rate. L1 has the lowest response time and 
the second lowest processor usage, which result in an 
increased the final rate. Since there is no dropped request in 
all deployment scenarios, accuracy is the same for all of them.  
Although, in L1, the capacity is the lowest among deployment 

scenarios, based on priority vector 𝑊෡  the impact of capacity 
is also lowest among the considered criteria.  

For C2, deployment scenario Edge in which all 
components are executed on E nodes has acquired the highest 
rate. Edge has the lowest response time, highest capacity and 
no dropped requests, which distinguish this scenario from 
others, although processor usage is not the lowest. Cloud-
based scenarios Cloud and L2-Cloud have also received high 
rates for this case, mainly due to lower response time and 
higher accuracy (no dropped request) compared to other 
scenarios. 

V. CONCLUSION 

Distributing DNN layers in edge nodes and cloud is a 
deployment approach to overcome the problems such as high 
latency, privacy issues, and lack of resource for processing 
them. But finding the appropriate deployment scenario is still 
challenging. In this paper, we proposed a ranking system to 
support the decision makers regarding the deployment of 

  
Figure 5. Average response time for one (left) and four (right) frame per second 
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Figure 6. Average request drop rate 
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TABLE IV. MAX PROCESSOR CAPACITY OF THE DEPLOYMENT SCENARIOS 

E-L1 E-L2 L1 Cloud Edge L1-
Cloud 

L2-
Cloud 

254 510 172 1376 No limit 529 1058 

 

TABLE III. PROCESSOR USAGE OF THE DEPLOYMENT SCENARIOS 

 
E-
L1 

E-
L2 

L1 Cloud Edge L1-
Cloud 

L2-
Cloud 

1 site 2 128 18 34 16 144 160 

10 sites 20 128 36 52 16 144 160 

50 sites 100 128 116 132 16 144 160 

100 sites 200 128 216 232 16 144 160 

 

Figure 7. Rankings for C1 and C2 cases 
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DDNNs. Instead of considering specific and limited metrics 
in the decision, we proposed a multi-criteria decision-making 
method based on Analytical Hierarchy Process (AHP) for the 
selection of appropriate deployment alternatives. Moreover, 
the user judgement which is usually neglected in deployment 
suggestion models was integrated to the method. To analyze 
the decision especially for high scale IoT systems, we used 
and extended the RECAP simulator, to estimate the value of 
the relevant criteria. Finally, to show the applicability of the 
method we analyzed the distribution of AlexNet for automatic 
scheduling of traffic lights where intersections are equipped 
with cameras. In the use case, the deployment suggestion for 
two different cases based on the user inputs and the estimated 
values form the simulation were explained. The output shows 
how the proposed method is able to suggest the appropriate 
deployment solutions based on the user preferences and 
different scales of the system. 

For future work, we plan to investigate the ranking method 
with more use cases and different DNNs. Considering 
sensitivity analysis in the decision and extending the 
simulation tool by supporting more measurement models are 
also other potential works for future. 
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