
Analyzing Distributed Deep Neural Network Deployment
on Edge and Cloud Nodes in IoT Systems

Majid Ashouri, Fabian Lorig, Paul Davidsson, Romina
Spalazzese

Internet of Things and People Research Center
Malmö University
Malmö, Sweden

e-mail: {firstname.lastname}@mau.se

Sergej Svorobej
School of Computer Science and Statistics

Trinity College Dublin
Dublin 2, Ireland

e-mail: sergej.svorobej@tcd.ie

Abstract— For the efficient execution of Deep Neural Networks
(DNN) in the Internet of Things, computation tasks can be
distributed and deployed on edge nodes. In contrast to deploying
all computation to the cloud, the use of Distributed DNN
(DDNN) often results in a reduced amount of data that is sent
through the network and thus might increase the overall
performance of the system. However, finding an appropriate
deployment scenario is often a complex task and requires
considering several criteria. In this paper, we introduce a multi-
criteria decision-making method based on the Analytical
Hierarchy Process for the comparison and selection of
deployment alternatives. We use the RECAP simulation
framework to model and simulate DDNN deployments on
different scales to provide a comprehensive assessment of
deployments to system designers. In a case study, we apply the
method to a smart city scenario where different distributions
and deployments of a DNN are analyzed and compared.

Keywords-Edge Computing, Internet of Things, Distributed
Deep Neural Networks, Simulation, Smart Cities

I. INTRODUCTION

In recent years, Deep Neural Networks (DNN) have
evolved rapidly and achieved great success in various
Machine Learning applications [1]. DNNs are a specific type
of artificial neural networks with multiple layers of feature
extraction. They are well suited for image recognition, speech
recognition, and other tasks where the identification of useful
features in the data is difficult. Advancements in hardware
capabilities have provided the opportunity for researchers to
implement complex DNNs with high classification accuracy
[2]. However, when DNNs become deeper, they demand more
processing capability to have acceptable latency for both
training and inference [3].

Using DNNs for image recognition tasks is common in
IoT systems, e.g., for monitoring traffic or crowds. Such
computationally heavy tasks are traditionally executed in the
cloud due to the lack of processing capacity on IoT edge
nodes. In the case of DNNs, this is not always feasible because
of the large amount of data that has to be sent through the
network, which causes latency and high bandwidth usage.
Edge computing has been introduced recently to overcome
this problem. When executing DNNs in IoT systems,
computational tasks can be distributed and deployed on both
edge and cloud nodes, often referred to as Distributed Deep
Neural Networks (DDNN) [4]. In contrast to deploying all
computation to the cloud, DDNNs often result in a reduced

amount of data that is sent through the network, and might
decrease latency as well as increase privacy of the system [4].

However, we believe there are some gaps in the current
approaches, e.g.:

 The optimal deployment of the DNN layers
(components) depends on several different factors,
such as accuracy, energy consumption, response time
of task execution, computational capacity, network
capacity, and privacy. However, current approaches
consider only one or a few factors when assessing
deployment scenarios [5].

 The current approaches usually consider only a single
or a few sources of data when assessing DNN
deployment alternatives [4][6][7]. Thus, the impact of
scaling the number of IoT edge nodes producing data
is neglected, which might affect the general suitability
of a specific deployment.

 The measurements of the required metrics do not
replace the need for human judgment [8]. Each
application has its own requirements which should be
specified by the system designer. Moreover, the
importance of the metrics are not equal for the
different applications. This is often not considered in
the literature.

To address these gaps, we propose a multi-criteria
decision-making framework based on Analytical Hierarchy
Process (AHP) for the comparison and selection of
appropriate deployment alternatives. Moreover, we use
simulation to analyze the performance with respect to the
relevant metrics and the scalability of DDNN deployment
alternatives. In this way, we link human judgement to the
simulation measurements, integrate several metrics, and
provide a ranking of deployment alternatives for different
system sizes.

We extend the existing RECAP simulation framework [9]
to model and assess DDNN deployment alternatives while
varying the size of the system. We implement a DDNN
application behavior model and additional performance
metrics, such as resource capacity and drop rate, to provide a
more comprehensive assessment of deployment scenarios to
support system designers. The usefulness of the approach is
shown in a case study concerning a smart city scenario where
road intersections are equipped with cameras for the
estimation of the number of vehicles using DDNN. We
simulate AlexNet lyers and analyze and compare different
deployment scenarios of this DNN.

The remainder of this paper is organized as follows. The
related work is discussed in Section II. In Section III, the
relevant metrics for evaluating DDNNs and our ranking
method for deployment scenarios is explained. The
description of the smart city use case, AlexNet, simulation
setup, and experiments analysis are presented in Section IV.
In Section V, we conclude and provide pointers to future
work.

II. RELATED WORK

To improve the efficiency of IoT systems, processing and
storage tasks can be executed closer to the edge of the
network, where data is generated by sensors [10]. In contrast
to traditional cloud computing approaches, where all data is
first sent to the cloud, the processing of data closer to source
allows for instance for reduced response times and bandwidth
savings. Depending on where the nodes that execute the tasks
are located, some works refer to the term “fog computing”.
However, in this work, we define edge computing as the use
of computing and storage resources that are located in the
network between the cloud and the sensors/actors.

In recent years, DNNs have evolved and achieved great
success in various Machine Learning applications.
Advancements in hardware capabilities have provided the
opportunity for researchers to propose very deep networks
with high accuracy in classification of input data [11].
However, such networks require powerful CPUs/GPUs to
guarantee completion of the tasks in a low latency bound [3].

Similar to other applications, using DNNs in IoT is
becoming more frequent [12]. However, there are specific
circumstances in IoT which make the deployment of DNNs a
complex task. The source of data is usually close to the edge
of the communication network, which causes communication
overhead and latency. On the one hand, a massive amount of
data might be generated by IoT devices, which may overload
the centralized cloud services. On the other hand, edge devices
are usually powered with limited resources, which restricts the
execution of very deep DNNs on edge devices. An alternative
solution is to split and distribute the DNNs in inference phase;
from devices with limited resources in the edge to more
powerful resources on cloud, to reduce the load on edge nodes
(see Figure 1). In this case, the computational-intensive layers
of the DNN are expected to be executed on the cloud side and
communicational-intensive layers close to the edge.

Several approaches have been proposed to achieve this
distributed deployment. Neurosurgeon [6] is a pioneering
study for splitting and distributing DNNs. By considering
energy consumption and latency, they propose a model to find
the optimal point to split the layers of the DNNs between
mobile devices and cloud. However, the approach is limited
to a specific case of edge computing by considering only two
deployment scenarios (mobile device or cloud) and with one
source of data generation. To generalize this idea on more
devices, the MeDNN method [13] proposes an adaptive
splitting of DNNs onto multiple mobile devices. Although a
reduced computation and communication time has been
achieved for DNN model inference in this approach, the focus
is still limited for mobile devices and on latency metric.

Early-exit of DNN layers is another category of
distributing DNNs proposed in [4][14]. The goal of this
approach is to reduce unnecessary data transmission and
processing in upper layers by considering several exit points
at certain layers and early classification of input data without
the need for processing all DNN layers. DDNN [4] is an
example of this approach to provide a model for early exit on
cloud, edge, and end node devices. The authors tune their
model by considering the accuracy of classifications and the
percentage of early classifications. Edgent [14] is another
early-exit based approach which studies the trade-off between
accuracy and latency for partitioning DNNs.

To the best of our knowledge, the proposed approaches
usually consider a small number of metrics for distributing
DNNs, which may limit the system designer for evaluating the
usefulness of a deployment scenario. There is also a lack of
consideration of the human input for the deployment
decisions. Moreover, we argue that scaling data sources and
edge nodes is another important aspect that should be also
considered in the deployment of DDNNs. For this purpose,
simulation can provide a great help in analyzing deployments
of high scale scenarios by providing relevant system behavior
metrics.

Computer simulation can be used to facilitate the design,
analysis, and optimization of complex interconnected systems
[15]. Based on a model of a real-world system, simulation
experiments can be conducted to evaluate what-if questions
and to provide insights in the system’s behavior and
performance under different operational conditions. In
contrast to real-world experiments, simulation studies allow
for more cost- and time-efficient investigations. For the
investigation of IoT systems with edge computing, multiple
simulators exist that support modeling and assessing of
different aspects of such systems, e.g., load balancing or
network utilization [16]. One of them is the RECAP simulator
[9], that allows for the simulation of large-scale edge
computing scenarios.

III. DEEPDEP METHOD

In this section, we introduce the DeepDep method which
supports the decision of deploying DDNNs over a continuum
of devices from the edge to cloud. In DeepDep, we rank the
available alternatives for the deployment based on the quality
requirements of the application. In other words, the purpose
of this method is to prioritize a list of alternatives, which meet
the user requirements. To achieve this, we initially need to

Figure 1. Distributed Deep Neural Networks

define a set of metrics for quantifying different user
requirements, and then rank the deployment alternatives based
on the measurements. Following, we present the quality
metrics used in our method and the ranking model which is
based on Analytical Hierarchy Process.

A. Metrics

To comprehensively study a system, a system designer
should investigate and measure various and relevant quality
characteristics. A quality can be measured by a set of metrics.
Zhou et al. [5]introduced several key metrics for the
evaluation of DDNNs in inference part: latency, accuracy,
energy consumption, privacy, communication overhead, and
memory footprint [5]. We consider these metrics in our
framework with some modifications. In addition, we believe
processor usage and capacity are other important metrics that
should also be considered in the measurements. In the
following, relevant metrics for evaluating DeepDep are
described:

Response Time: The demand for latency varies in IoT
applications. Real-time applications such as red light violation
detection requires responses in a short timeframe, while for
some other applications such as smart temperature controlling
of buildings latency can be tolerated. We measure this metric
as the duration from when an IoT device generates data as
input for a DNN over the execution of all DNN layers in
inference process to responding to the next corresponding
component.

Energy consumption: In IoT, energy consumption is
considered as a key metric especially for battery-powered
devices. The execution of DNNs usually imposes computation
and network load which may drain the battery easily.

Processor usage: DNNs are often computational-
intensive tasks, which demands for powerful processors,
especially when scaling the number of data generation nodes.
This metric can also indicate the cost of the deployment
approximately. We measure this metric based on the amount
of CPU capacities allocated for processing all DNN layers.

Memory Usage: In IoT, data inputs for DNNs can be
generated in a high frequency and large in size (e.g., images)
which demands relatively large memory space for processing
them. Moreover, very deep networks containing millions of
parameters should be kept in memory.

Capacity: This metric represents the scalability of the
system in terms of adding new data sources. We measure
capacity as the maximum number of requests that can be
processed in a unit of time in addition to the current load. This
metric relies on the different resource capacities such as
processing, memory, and bandwidth. Here, we consider
processing capacity in our experiments.

Communication overhead: the communication overhead
impacts both latency and energy consumption. Having large
input data and generating even larger outputs between DNN
layers may cause problems for data transmission between
distributed nodes.

Accuracy: Zhou et al. defined accuracy as the input
samples that get the correct predictions from inference to the
total number of input samples [5]. However, the rate of data
capturing and processing them can also impact the accuracy

of the application. There is usually a trade-off between the rate
of data inputs for DNNs, response time, and available
resources. Here, we measure accuracy as the average number
of the processed requests generated by each data source.

Privacy: Extending a centralized cloud to decentralized
edge nodes may provide both opportunities and challenges for
user and data privacy [17]. Distributed data processing limits
accessibility of data and increases the overall privacy, but at
the same time heterogeneous and distributed devices are less
resilient against security attacks and more prone to data
leakage.

It should be noted that in our use case implementation for
the simulation, we are not modelling (estimating) energy
consumption and memory usage, since they are not relevant
for the use case introduced in Section IV-A, but they can be
easily added for future cases. Moreover, we are also not
modeling privacy and accuracy in terms of classification
accuracy for another reason, since simulation is not a suitable
method for measuring these metrics. However, they can still
be measured through other methods such as prototype
implementation or surveying experts. Therefore, because of
their importance and the feasibility of integrating these
metrics in our AHP based ranking method, we consider them
as the relevant criteria in our model.

B. Ranking deployment scenarios

Various criteria (metrics) can influence the decision of
finding an optimal deployment for distributed DNNs, which
makes this process a complicated task. This type of problem
is usually identified as multiple criteria decision making
(MCDM) [18]. To rank the deployment scenarios, we utilize
the Analytical Hierarchy Process (AHP) that is one of the most
used MCMD methods. AHP is a method for relative
measurement [19]. In relative measurement, the proportion
between the quantities is the interested outcome, and not the
exact measurement of them. Relative measurement in general
and AHP in particular suit well for the problems where the
best alternative among different decision choices should be
selected. Formally, in AHP, there is a goal and a finite set of
alternatives, X = {x1, . . . ,xn}, from which the best alternative
should be chosen. In addition, there are a set of criteria C =
{c1, . . . ,cm}, which are relevant to the goal and will make one
alternative preferable to another.

One important aspect that is usually neglected in the
assessment of the alternatives is human judgment on
evaluation of priorities. Obviously, the metric used for
assessments are not identical in terms of importance and
priority for each application, and the use of metrics and
quantitative measures does not stop the need for human
judgment [8]. One of the main features of AHP is linking
human inputs with the quantitative measurements provided by
the metrics [20]. To achieve this, AHP uses pairwise
comparisons of decision criteria. In pairwise comparison, the
user compares each criterion with other criteria in terms of its
importance for the application. AHP is also very flexible for
adding or removing criteria and comparing them in multi-
layer hierarchical structure. Our AHP based ranking method
is based on several steps described in the following.

1) Forming AHP hierarchy

In this step, the goal, related criteria, and the set of
alternatives for the specific application (in our case
deployment of DDNNs) should be identified and structured in
a hierarchy (see Figure 2). Here, the goal in the first layer is to
find relative ranking of possible scenarios for deployment of
distributed DNNs. The set of criteria in the second layer are
the metrics listed in Section III-A. Finally, the third layer is
the set of possible alternatives for the deployment which can
vary based on application and infrastructure.

2) User judgement

The next step is to perform pairwise comparison among
the criteria. Here, the user compares each criterion to another
by assigning a relative importance value. Table I shows the
scale suggested by Saaty et al. [20].

TABLE I. THE LIST OF RELATIVE IMPORTANCE VALUES

Equal importance 1
Somewhat more important 3
Definitely more important 5
Much more important 7
Extremely more important 9

Formally, the pairwise comparisons are collected in a

pairwise comparison matrix, 𝐴መ = (𝑎ො௜௝)௠×௠ structured as
follows:

𝐴መ = ൭
𝑎ොଵଵ ⋯ 𝑎ොଵ௠

⋮ ⋱ ⋮
𝑎ො௡ଵ ⋯ 𝑎ො௠௠

൱

With 𝑎௜௝ > 0 expressing the degree of preference of ci to cj.

3) Measuring criteria values for alternatives
This step refers to collecting data by measuring the metrics

(criteria) listed in Section III-A for each deployment scenario.
We perform this step by simulation. More detailed
information is provided in Section IV.

The output of this step for each criterion is A(k) which is
the matrix of pairwise comparisons between alternatives
according to criterion k. Note that, to be consistent in the
model, for the metrics such as response time which the lower
value is desirable, for the lower values we consider higher
rates in pairwise comparison.

4) Linking user priorities to the measurements and
ranking deployment scenarios

Once a pairwise comparison matrix for the criterion k is
completed, it should be normalized and converted to a
weighted matrix that is called a priority vector
W(k) = (w1, . . . ,wn)T. There are several ways of calculating
the priority vectors. Here we use the method proposed by
Saaty et al. [20] which estimates a priority vector based on the
principal eigenvector of A(k).

However, to have the final ranking of the alternatives, we
need to combine the priority vectors for all criteria. The user
input (matrix 𝐴መ) should also be considered in the calculation.
Hence, before combining the W(1)…W(m) vectors, we need to
form matrix 𝐴መ in form of normalized weights
𝑊෡ =(𝑤ෝ1, ….𝑤ෝm). We can use eigenvector-based method again
but this time to convert matrix 𝐴መ to the priority vector 𝑊෡ .
Finally, we are able to combine all W(k) vectors as a single
vector. Here, we use weighted arithmetic mean as an
averaging function to linearly combine W(1) ... W(m) vectors.

𝑊௡×ଵ = 𝑤ଵෞ𝑊(1) + 𝑤ଶෞ 𝑊(2) … 𝑤௠ෞ 𝑊(𝑚) = ෍ 𝑤పෞ𝑊(𝑖)

௠

௜ୀଵ

The result is the vector W with a score for each alternative.
Thus, now we have a final ranking and we can choose the best
alternative, which is the one rated the highest.

IV. EXPERIMENTS AND RESULTS

In the next section, we first briefly introduce the use case
scenario, AlexNet as a DNN for our use case, and then we
explain the infrastructure and deployment scenarios. Finally,
the experiment results and examples of ranking method are
presented.

Figure 2. AHP Hierarchy for ranking DDN deployment

A. Use case scenario:

To explore the DeepDep ranking method for DNNs
deployment, we investigate the deployment of AlexNet [21]
for automatic scheduling of traffic lights. Detecting the
number of cars behind each lane is the core part of the
application. Vision-based camera systems are popular to
detect the number of cars for traffic estimation [12][22]. DNN
approaches and particularly Convolutional Neural Networks
(CNNs) have achieved a great success in object detection in
recent years and have also been applied for traffic estimation
[23]. In this section, we evaluate the deployment of AlexNet
as a well-known CNN for traffic estimation scenarios. One
possible deployment scenario is to host AlexNet on powerful
smart cameras with sufficient processing and memory
resources. However, this scenario will impose high
deployment cost, since for each lane at least one smart camera
is needed. Another option is to use cameras only as sensing
devices without processing and memory resources and upload
the captured images to other processing nodes in the network
to reduce the deployment costs. In this case study, we consider
cheap and resource-constrained cameras to capture images
and will solve the problem of finding appropriate AlexNet
deployment on distributed resources from edge to cloud.

B. Alexnet

AlexNet is a popular CNN, which achieved a great success
on classification of images [21]. AlexNet layers consist of 5
convolutional layers and 3 fully connected (FC) layers. Each
convolutional layer contains a convolutional filter (a set of
kernels), a non-linear activation function (ReLu), and the
max-pooling function in layers one, two and five. Convolution
(Conv) layers use kernels to extract features from an input
data. By a set of kernels, they convolve the input to a set of
feature maps. For example, it can convolve the image
width×hight×depth dimensions to feature map
width×height×channels dimensions. In a convolutional layer,
there are usually many kernels. For example, the first Conv
Layer of AlexNet contains 96 kernels of size 11×11×3. By
using a non-linear function, activation functions convert each
input data to an output data, to filter out the values below a
certain threshold. AlexNet utilizes ReLU (Rectified Linear
Unit) activation function, which simply maps negative values
to zero and non-negative values unchanged. Pooling layers are
usually used to down sampling feature map produced by the
convolution filter. AlexNet uses the max pooling method
which summarizes the most activated presence of a feature.
Finally, in FC and softmax layers, the main goal is to classify
the input data. In a FC layer, all the nodes in the current layer
are connected to all the nodes in the previous layer and simply
computes the weighted sum of the inputs. FC layers are
usually computation-intensive components as shown in
Figure 3. Finally, by a softmax function, the input data is
classified through calculating the probability of each class.

In our experiments, we consider all functions of a layer
(e.g., filter, ReLU, max pooling in convolutional layer) as a
single component. The amount of required task-clock and
communication overhead for each layer represented in
Figure 3. Task-clock shows how much CPU time is required
to execute a job. For example, Conv1 requires about 5ms task-

clock, which means that having a 4 cores CPU and
considering 100% CPU allocation to complete this job, it
takes 1.25ms to finish that job. For calculating the amount of
task-clock, we executed AlexNet on an Intel Core(TM) i7-
7600U CPUs and measured the amount of required task-clock
by Process explorer [24] and Perf [25] tools. Then to find the
required task-clock for processing each layer we used the
proportions provided in [6].

C. Simulation scenarios

To evaluate different placement options for AlexNet
layers, we modelled a distributed cloud-to-edge system by
extending the RECAP simulation framework [9]. Our system
is comprised of an infrastructure, application, and workload
models.

The infrastructure model defines the hardware and
network configuration and topology. We design a 3-tier
system of edge, local server, and cloud based on a proximity
to end user devices. Each tier composed of sites each
containing virtualized hardware capable of hosting virtual
entities such as virtual machines or containers. As shown in
Figure 4, the edge tier (marked with letter “E”) is the closest
tier to the user and serves as a first contact point between
devices (cameras in our case) and the network. Followed by
local server tier (letter “L”) and cloud tier. To reflect physical
distance between the devices and tiers, for each link between
tiers we are increasing network delay with lowest latency of
1ms between device and an edge site, 10ms between an edge
site and a local server and 100ms between a local server and
cloud. However, as a trade-off to proximity we assume that
the physical size of a site is increasing higher up the tier stack
and capable to host more hardware resources. To reflect this
in our model we only have available 2 CPU cores at every
edge site, 16 and 32 CPU cores at L1 and L2 servers
respectively and 128 CPU cores at cloud tier. In a similar way,
we have a tree topology network between tiers with 1Gb
bandwidth network link between devices and an edge site,
10Gb between an edge site and a local server and 100Gb
bandwidth between a local server and a cloud site.

The application model is based on the design of AlexNet
CNN image recognition layers from Conv1 to FC8 (shown in
Figure 3). Every layer is modelled as a standalone component
that can be deployed as a container within any tier site of our
infrastructure. Data exchange between application

Figure 3. Computation cost and output size of AlexNet layers

0

50

100

150

200

250

300

0
5

10
15
20

25
30
35
40
45
50

Input Conv1 Conv2 Conv3 Conv4 Conv5 FC6 FC7 FC8

O
ut

pu
t s

iz
e

(K
B)

Ta
sk

-c
lo

ck
 (m

s)

Task-Clock Output size

𝐴መ =

components and CPU processing time demand was modeled
by using averages of measured values captured from real
system benchmarks presented in Section IV-B.

The workload model captures the frequency of image
frames submitted by the surveillance cameras to the image
recognition application AlexNet. In our model, we assume
that a total of 4 cameras are connected by wired link to every
edge site. Each image frame sent from a camera constitutes a
single request that needs to be processed by the modelled
system.

To evaluate system performance, we create multiple
simulation scenarios where we vary the AlexNet component
deployment locations and workload.

As shown in Table II, we created 7 different placement
scenarios where application components are distributed
among different tiers and sites from edge to cloud. Each edge
site has 4 cameras attached to it, hence, by increasing the
number of edges we also vary the workload. In addition, we
vary the number of submitted frames (requests) per second
(FPS) per camera, which also impacts system resource
demand. For all placements we increase the number of edge
sites from 1 to 10 to 50 and to 100 and all of the scenarios are
run with 1 FPS and 4 FPS. As a result, all the named workload
and deployment variations create a total of 56 simulation
scenarios.

After each simulation, we collect the data about system
performance which is captured in form of request processing
time, CPU and network utilization.

D. Ranking deployment scenarios

In this section, we will show how our ranking method
selects an appropriate scenario for the deployment. The first
phase is to form the AHP hierarchy and identify the relevant
criteria. Here we consider the following criteria, response time
(RT), processor usage (PU), processor capacity (PC), and
accuracy (AC). Based on our measurements, the amount of
required RAM will not impact the decision (14MB for
processing all AlexNet layers for a request). Moreover, since
end devices and E nodes are connected by cable power, energy
consumption is not a challenge here. Similarly, due to
availability of power resources and network links, availability
metric has not been considered. In the deployment scenarios,
convolutional layers that generate a massive amount of data
are located on the same device, which makes communication
overhead also trivial in our case.

The second step is user judgment, comparing each criteria
to others. It should be noted that the user scores vary form one
application to another. Here, based on the importance of each
criteria in our scenario we form the comparison matrix 𝐴መ
shown in below.

 RT PU PC AC
RT 1 3 5 3
PU - 1 3 1
PC - - 1 1/3
AC - - - 1

Consequently, the priority vector is 𝑊෡ = <0.522, 0.2, 0.2,

0.078>, which shows the normalized weights for response
time, processor usage, processor capacity and accuracy
respectively. The next step is estimating the value of each
criterion for all the metrics and forming the pairwise
comparison matrices. We used estimated data by RECAP for
this purpose.

Figure 5 shows the response time of deployment scenarios
for various topologies. The figure shows the impact of
different scales on the response time. Please note that the
labels indicate the topology based on the number of E nodes
(intersections with traffic lights). When the processing latency
is more than two seconds, the new requests in the processing
queue are dropped to control overloading of the system.
Therefore, when the number of received requests is more than
the maximum capacity, instead of increasing the response
time, more request will be dropped. Figure 6 shows the
average drop rate of the deployment scenarios for each
topology. Clearly when the edge nodes grow in number, more
requests are dropped due to lack of available resources in the
deployment scenarios. Edge is the only scenario which is not
overloaded in any topology, but with the cost of allocating
more CPU cores. Table III shows the amount of allocated
CPU for each deployment scenario. We considered a fixed
CPU allocation policy without elasticity for the L nodes and
Cloud in our experiments.

Table IV shows the maximum number of requests each
deployment scenario is able to process. The available capacity
for future scaling of the system is calculated by subtracting the

Table II. Simulation scenarios placement variations
 Deployment Scenarios

Tier Site E-L1 E-L2 L1 Cloud Edge
L1-

Cloud
L2-

Cloud

Edge E1…En
Conv1,

...
Conv5

Conv1,
...

Conv5

Conv1
...

FC8

Local
servers

L1
FC6,

...
 FC8

Conv1,

...
 FC8

Conv1,

...
Conv5

L2
FC6,

...
 FC8

Conv1,

...
Conv5

Cloud C1
Conv1,

...
 FC8

FC6,

...
 FC8

FC6,
...

 FC8

Figure 4. Infrastructure model

average number of completed request from maximum
capacity.

Having the criteria values, we are able to form the AHP
priority vectors W(k) for each criterion and then rank the
deployment scenarios. As shown in Figure 5 and Figure 6, the
response time and drop rate increases rapidly when the
number of sites is more than 50. To show how DeepDep ranks
the scenarios, we have considered two cases: C1) one edge site
and 4 frames per second, C2) 50 edge sites and 4 frames per
second. The final W vector for the cases is shown in Figure 7.

For the case C1, based on the user requirements, scenario
L1 where all components are executed on L1 node has
acquired the highest rate. L1 has the lowest response time and
the second lowest processor usage, which result in an
increased the final rate. Since there is no dropped request in
all deployment scenarios, accuracy is the same for all of them.
Although, in L1, the capacity is the lowest among deployment

scenarios, based on priority vector 𝑊෡ the impact of capacity
is also lowest among the considered criteria.

For C2, deployment scenario Edge in which all
components are executed on E nodes has acquired the highest
rate. Edge has the lowest response time, highest capacity and
no dropped requests, which distinguish this scenario from
others, although processor usage is not the lowest. Cloud-
based scenarios Cloud and L2-Cloud have also received high
rates for this case, mainly due to lower response time and
higher accuracy (no dropped request) compared to other
scenarios.

V. CONCLUSION

Distributing DNN layers in edge nodes and cloud is a
deployment approach to overcome the problems such as high
latency, privacy issues, and lack of resource for processing
them. But finding the appropriate deployment scenario is still
challenging. In this paper, we proposed a ranking system to
support the decision makers regarding the deployment of

Figure 5. Average response time for one (left) and four (right) frame per second

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 2 0 4 0 6 0 8 0 1 0 0

Re
sp

on
se

 ti
m

e
(s

)

One fame per second

Edge Cloud E-L1 E-L2

L1 L1-Cloud L2-Cloud

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 2 0 4 0 6 0 8 0 1 0 0

Re
sp

on
se

 ti
m

e
(s

)

Four frame per second

Edge Cloud E-L1 E-L2

L1 L1-Cloud L2-Cloud

Figure 6. Average request drop rate

0

10

20

30

40

50

60

70

80

90

100

1E1F 1E4F 10E1F 10E4F 50E1F 50E4F 100E1F 100E4F

D
ro

p
ra

te
 (p

er
ce

nt
ag

e)

Edge Cloud E-L1 E-L2 L1 L1-Cloud L2-Cloud

TABLE IV. MAX PROCESSOR CAPACITY OF THE DEPLOYMENT SCENARIOS

E-L1 E-L2 L1 Cloud Edge L1-
Cloud

L2-
Cloud

254 510 172 1376 No limit 529 1058

TABLE III. PROCESSOR USAGE OF THE DEPLOYMENT SCENARIOS

E-
L1

E-
L2

L1 Cloud Edge L1-
Cloud

L2-
Cloud

1 site 2 128 18 34 16 144 160

10 sites 20 128 36 52 16 144 160

50 sites 100 128 116 132 16 144 160

100 sites 200 128 216 232 16 144 160

Figure 7. Rankings for C1 and C2 cases

0

0.05

0.1

0.15

0.2

0.25

Edge Cloud E-L1 E-L2 L1 L1-Cloud L2-Cloud

C1 C2

DDNNs. Instead of considering specific and limited metrics
in the decision, we proposed a multi-criteria decision-making
method based on Analytical Hierarchy Process (AHP) for the
selection of appropriate deployment alternatives. Moreover,
the user judgement which is usually neglected in deployment
suggestion models was integrated to the method. To analyze
the decision especially for high scale IoT systems, we used
and extended the RECAP simulator, to estimate the value of
the relevant criteria. Finally, to show the applicability of the
method we analyzed the distribution of AlexNet for automatic
scheduling of traffic lights where intersections are equipped
with cameras. In the use case, the deployment suggestion for
two different cases based on the user inputs and the estimated
values form the simulation were explained. The output shows
how the proposed method is able to suggest the appropriate
deployment solutions based on the user preferences and
different scales of the system.

For future work, we plan to investigate the ranking method
with more use cases and different DNNs. Considering
sensitivity analysis in the decision and extending the
simulation tool by supporting more measurement models are
also other potential works for future.

ACKNOWLEDGMENT

This work is partially financed by the Knowledge
Foundation through the Internet of Things and People
research profile (Malmö University, Sweden) and is also
partially funded by Science Foundation Ireland (SFI) under
the Enable Grant No. 16/SP/3804.

REFERENCES
[1] J. Schmidhuber, “Deep Learning in neural networks: An overview,”

Neural Networks, vol. 61, pp. 85–117, 2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,” in
Proceedings of the 2015 IEEE International Conference on Computer
Vision (ICCV), 2015, pp. 1026–1034.

[3] Y. Ren, S. Yoo and A. Hoisie, "Performance Analysis of Deep
Learning Workloads on Leading-edge Systems," 2019 IEEE/ACM
Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), Denver, CO, USA, 2019, pp.
103-113, doi: 10.1109/PMBS49563.2019.00017.

[4] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed Deep
Neural Networks over the Cloud, the Edge and End Devices,” Proc. -
Int. Conf. Distrib. Comput. Syst., pp. 328–339, 2017.

[5] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
Intelligence: Paving the Last Mile of Artificial Intelligence With Edge
Computing,” Proc. IEEE, 2019.

[6] Y. Kang et al., “Neurosurgeon: Collaborative Intelligence Between the
Cloud and Mobile Edge,” in ASPLOS ’17 Proceedings of the Twenty-
Second International Conference on Architectural Support for
Programming Languages and Operating Systems, 2017, pp. 615–629.

[7] S. Teerapittayanon, B. McDanel, and H. T. Kung, “BranchyNet: Fast
inference via early exiting from deep neural networks,” Proc. - Int.
Conf. Pattern Recognit., pp. 2464–2469, 2017.

[8] IEEE Standard for a Software Quality Metrics Methodology," in IEEE
Std 1061-1992 , vol., no., pp.1-96, 12 March 1993, doi:
10.1109/IEEESTD.1993.115124.

[9] P.-O. Ostberg et al., “Reliable capacity provisioning for distributed
cloud/edge/fog computing applications,” in 2017 European
Conference on Networks and Communications (EuCNC), Jun. 2017,
pp. 1–6, doi: 10.1109/EuCNC.2017.7980667.

[10] Shi, W.; Dustdar, S. The promise of edge computing. Computer 2016,
49, 78-81.

[11] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics,
2010, vol. 9, pp. 249–256.

[12] X. Ma et al., "A Survey on Deep Learning Empowered IoT
Applications," in IEEE Access, vol. 7, pp. 181721-181732, 2019, doi:
10.1109/ACCESS.2019.2958962.

[13] J. Mao, Z. Yang, W. Wen, C. Wu, L. Song, K. W. Nixon, X. Chen, H.
Li, and Y. Chen, “Mednn: A distributed mobile system with enhanced
partition and deployment for large-scale dnns,” in Proceedings of the
36th International Conference on Computer-Aided Design. IEEE
Press, 2017, pp. 751–756.

[14] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep
learning model co-inference with device-edge synergy,” in Proc. of the
Workshop on Mobile Edge Communications (MECOMM), 2018, pp.
31–36.

[15] Law, A.M. Simulation modeling and analysis; McGraw-Hill
Education: Dubuque, 2013.

[16] S. Svorobej et al., “Simulating Fog and Edge Computing Scenarios:
An Overview and Research Challenges,” Futur. Internet, vol. 11, no.
3, p. 55, 2019.

[17] A. Alrawais, A. Alhothaily, C. Hu, and X. Cheng, “Fog Computing for
the Internet of Things: Security and Privacy Issues,” IEEE Internet
Comput., vol. 21, no. 2, pp. 34–42, 2017.

[18] M. Zeleny, “Multiple Criteria Decision Making”, McGraw-Hill, vol.
25, 1982.

[19] M. Brunelli, Introduction to the Analytic Hierarchy Process., New
York, NY, USA:Springer, 2015.

[20] T. L. Saaty and L. G. Vargas, Models, Methods, Concepts &
Applications of the Analytic Hierarchy Process. Springer, 2012.

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. of NIPS, 2012.

[22] P. Choudekar, S. Banerjee and M. K. Muju, "Implementation of image
processing in real time traffic light control," 2011 3rd International
Conference on Electronics Computer Technology, Kanyakumari,
2011, pp. 94-98, doi: 10.1109/ICECTECH.2011.5941662.

[23] P. R. Iyer, S. R. Iyer, R. Ramesh, M. R. Anala, and K. N. Subramanya,
“Adaptive real time traffic prediction using deep neural networks,”
IAES Int. J. Artif. Intell., vol. 8, no. 2, pp. 107–119, 2019.

[24] https://docs.microsoft.com/en-us/sysinternals/downloads/process-
explorer

[25] https://perf.wiki.kernel.org/index.php/Tutorial

