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Low Complexity Multiply-Accumulate Units

for Convolutional Neural Networks with Weight-Sharing

JAMES GARLAND and DAVID GREGG, Trinity College Dublin and Trinity College Dublin, Ireland

Convolutional neural networks (CNNs) are one of the most successful machine-learning techniques for im-

age, voice, and video processing. CNNs require large amounts of processing capacity and memory band-

width. Hardware accelerators have been proposed for CNNs that typically contain large numbers of multiply-

accumulate (MAC) units, the multipliers of which are large in integrated circuit (IC) gate count and power

consumption. “Weight-sharing” accelerators have been proposed where the full range of weight values in a

trained CNN are compressed and put into bins, and the bin index is used to access the weight-shared value.

We reduce power and area of the CNN by implementing parallel accumulate shared MAC (PASM) in a weight-

shared CNN. PASM re-architects the MAC to instead count the frequency of each weight and place it in a bin.

The accumulated value is computed in a subsequent multiply phase, significantly reducing gate count and

power consumption of the CNN. In this article, we implement PASM in a weight-shared CNN convolution

hardware accelerator and analyze its effectiveness. Experiments show that for a clock speed 1GHz imple-

mented on a 45nm ASIC process our approach results in fewer gates, smaller logic, and reduced power with

only a slight increase in latency. We also show that the same weight-shared-with-PASM CNN accelerator

can be implemented in resource-constrained FPGAs, where the FPGA has limited numbers of digital signal

processor (DSP) units to accelerate the MAC operations.
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1 INTRODUCTION

Convolutional neural networks (CNNs) are used on a daily basis for image [14], speech [13], and
text recognition [16], and their use and application to different tasks is increasing at a very rapid
rate. However, CNNs require huge memory storage and bandwidth for weight data and large
amounts of computation that would push to extremes the battery, computation, and memory in
mobile embedded systems. Researchers [10, 11] have proposed methods of quantizing and dictio-
nary compressing the weight data to reduce the memory bottleneck and bus bandwidth. Others
[21, 22] have proposed various different CNN hardware accelerators implemented in both field
programmable gate arrays (FPGAs) and application-specific integrated circuit (ASICs) that may
contain hundreds to thousands of parallel hardware multiply-accumulate (MAC) units to increase
the computational performance. This increase in computational performance comes at the great
expense of power as the MAC units contain a multiplier, each of which consumes large numbers
of logic gates and high-power consumption in an ASIC [18].

CNNs are extensively used in an inference mode [14, 20] to infer that, for example, a dog can
be found within an image. However, the CNN must first be trained. Training the CNN involves
incrementally modifying the “weight” values associated with connections in the neural network
and retraining until a satisfactory error rate has been achieved [15]. At this point, the network
is considered trained, meaning that no further updates of weight values are required, and the
trained network can be deployed for inference to the field. In their research, Han et al. [10, 11]
found that in a fully trained CNN, similar weight values occur many times. They proposed scalar
quantization of the weight data by clustering around centroids to dictionary compress the weights
into bins. They found that between tens to hundreds of weight values were sufficient in network
inference while maintaining the high accuracy rate. They encode the compressed weights with
an index that specifies which of the shared weights should be used. This dictionary compression
of the weight data reduces the required size and memory bandwidth required for the network.
They demonstrate that their weight-shared values can be stored on-chip consuming 5pJ per access
rather than in off-chip dynamic RAM (DRAM) that consumed 640pJ per access when implemented
on a central processing unit (CPU)/graphics processor unit (GPU) system. Weight sharing does
not reduce the number of MAC operations required; it reduces only the weight data storage and
bandwidth requirement.

Building on Han et al’s. [10, 11] research, we propose a re-architected MAC circuit of the weight-
shared CNN aimed at hardware accelerators. Rather than computing the sum-of-products (SOP)
in the MAC directly, we instead count how many times each of the weight indexes appears and
store the corresponding image value in a register bin, thus replacing the hardware multipliers with
counting, selection, and accumulation logic. After this weighted histogram accumulation phase,
a post pass multiplication is performed of the accumulated image values in bins with the corre-
sponding weight value of that bin. We call this accelerator optimization the parallel accumulate
shared MAC (PASM). To evaluate PASM performance we implement PASM in a convolution layer
of a weight-shared CNN accelerator. Where weight bin numbers are small and channel numbers
are large, the counting and selection logic can be significantly smaller and lower power than the
corresponding multiply-accumulate circuit. We also show that PASM is beneficial when imple-
mented in a resource-constrained FPGA as PASM consumes fewer block RAMs (BRAMs) and DSP
units for the MAC operations in the FPGA.

The rest of this article is organized as follows. Section 2 gives some background on CNN ac-
celerators and introduces the PASM and how it compares to other CNN accelerators. Section 3
shows how our PASM is implemented in a convolution layer accelerator with examples compared
to a weight-shared accelerator. Section 4 describes how a weight-shared-with-PASM convolution

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 31. Publication date: August 2018.



Low Complexity MAC Units for CNNs with Weight-Sharing 31:3

Fig. 1. Simplified pseudo-code of a convolution layer.

Fig. 2. Simple MAC block diagram.

accelerator is designed and implemented in an ASIC at 45nm clocked at 1GHz and in a Zynq
FPGA clocked at 200MHz. Section 5 presents the experimental results showing latency, power,
and area projections for both FPGA and ASIC. Section 6 reviews related work and Section 7 draws
conclusions.

2 DNN CONVOLUTION WITH DICTIONARY-ENCODED WEIGHTS

2.1 CNN Accelerators

A deep neural network (DNN) contains convolution layers, activation function layers (such as a
sigmoid or rectified linear unit (ReLU)), and pooling layers. Up to 90% of the computation time of
a CNN is taken up by the convolution layers [4]. Within the convolution layer, there are many
thousands of MAC operations, as shown in the pseudo code in Figure 1. The convolution opera-
tor has an input image of dimensions IH × IW and C channels and is convolved with M kernels
(typically 3 to 832 [21]) of dimension KY × KX andC channels at a stride of S to create an output
feature map of OH ×OW and M channels. The loops can be unrolled into parallel MAC units and
implemented in hardware [22] to accelerate the convolution.

A MAC unit (see Figure 2) is a sequential circuit that accepts a pair of numeric values (image
and weight values) of a predefined bit width and type (e.g., 32-bit fixed point integers), computes
their product and accumulates the result in the local accumulator register each clock cycle. The
locality of the accumulator register reduces routing complexity and clock delays within the MAC.
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Fig. 3. Simplified weight-shared MAC block diagram.

Fig. 4. Simplified weight-shared MAC example.

Han et al. [10, 11] propose a weight-sharing architecture to reduce the power and memory
bandwidth consumption of CNNs. They found that similar weight values occur multiple times in
a trained CNN. By binning the weights and retraining the network with the binned values, they
found that just 16 weights were sufficient in many cases. They encode the weights by replacing
the original numeric values with a 4-bit index that specifies which of the 16 shared weights should
be used. This greatly reduces the size of the weight matrices. Figure 3 shows simplified weight-
sharing decode logic coupled with multiple MAC units of the CNN. When the kernel input is
encoded using weight sharing, an extra level of indirection is required to index and access the
actual weight value from the weights register file.

Figure 4 shows an example of the weight-shared MAC in operation. Each image value is str-
eamed in, and its corresponding binIndex is used to access the pretrained weight against which
to multiply and accumulate into the result register. Figure 4 shows how image value 26.7
is multiplied-accumulated with the pretrained weight 1.7 indexed by binIndex 0. Next 3.4 is
multiplied-accumulated with the pretrained weight 0.4 indexed by binIndex 1. This continues until
finally multiplying-accumulating image value 6.1 with pretrained weight value 1.7 of bin 0 to give:

result = (26.7 × 1.7) + (3.4 × 0.4) + (4.8 × 1.3) + (17.7 × 2.0) + (6.1 × 1.7) = 98.8.

In both a simple MAC (Figure 2) and a weight-shared MAC (Figure 3) the multiplier is the most
expensive unit in terms of floor area (i.e., large numbers of gates) and power consumption in an
ASIC or numbers of DSP units in an FPGA. As a large number of MAC units are used in a parallel
weight-shared CNN hardware accelerator, the overall area and power is likely to be large.

Weight sharing is an important factor in implementing CNN accelerators in an off-line embed-
ded, low-power device. Han et al. [10, 11] show that when pruning, quantization, weight-sharing,
and Huffman coding are all used together in an AlexNet [14] CNN accelerator, the weight data
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Fig. 5. PASM showing PAS unit followed by a shared MAC.

required is reduced from 240MB to 6.9MB, a compression factor of 35×. Unfortunately, they do not
provide results for the effect of weight sharing alone, without these other optimizations. When
they apply similar pruning, quantization, weight-sharing, and Huffman to the VGG-16 [20] CNN
accelerator, the weight data are reduced from 552MB to 11.3MB, a 49× compression ratio. The fully
connected layers dominate the model size by 90%, but Han et al. [10, 11] show that these layers
compress by up to 96% of weights pruned in VGG-16 CNN. These newly weight-shared CNNs run
3× to 4× faster on a mobile GPU while using 3× to 7× less energy with no loss in classification
accuracy. As the number of free parameters being learned is reduced in a weight-shared CNN,
the learning efficiency is greatly increased and allows for better generalization of CNNs for vision
classification.

The trend is towards increasingly large networks, increasing the number of layers such as
ResNet [12] or increasing the convolution types within each layer such as GoogLeNet [21]. Weight
sharing is one method that is getting increased research focus to reduce the overall weight data
storage and transfer so that the networks can be implemented on off-line mobile devices.

CNN hardware accelerators typically use 8-, 16-, 24- or 32-bit fixed point arithmetic [2]. A com-
binatorial W -bit multiplier requires O (W 2) logic gates to implement that makes up a large part
of the MAC unit. Note that sub-quadratic multipliers are possible but are inefficient for practical
values ofW [6].

2.2 The PASM Concept

We propose to reduce the area and power consumption of MAC units by re-architecting the MAC
to do the accumulation first, followed by a shared post-pass multiplication. Our new PASM accel-
erator is shown in Figure 5. Rather than computing the SOP in the MAC directly, PASM instead
counts how many times each B-bin weight-shared index appears and accumulates the correspond-
ingW -bit image value in the corresponding B weight-shared bin register indexed by the binIndex.
PASM has two phases: (1) accumulate the image values into the weight bins (known as the parallel
accumulate and store (PAS)) and (2) multiply the binned values with the weights (completing the
PASM).

Figure 6(a) shows an example of the accumulation phase. Our PAS unit is a sequential circuit that
consumes a pair of inputs each cycle. One input is an image value, and the other is the binIndex of
the weight value in the dictionary of weight encodings. The PAS unit has a set of B accumulators,
one for each entry in the dictionary of weight encodings. The accumulators are initially set to

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 31. Publication date: August 2018.



31:6 J. Garland and D. Gregg

Fig. 6. PASM in operation.

zero. Each time the PAS consumes an input pair, it adds the image value to the accumulator with
index binIndex. For example, when the leftmost pair of inputs in Figure 6(a) are consumed, the
image value 26.7 is added onto accumulator numbered binIndex = 0. Next 3.4 is accumulated
into bin 1. This continues until finally accumulating 6.1 into bin 0 to give 26.7 + 6.1 = 32.8. This
accumulated result tells us that the weight stored in dictionary location 0 has been paired with
an accumulated image value of 32.8. For the accumulation phase, the actual weight value stored
in dictionary location 0 does not matter. We are simply computing a weighted histogram of the
dictionary weight indices.

In the second phase, the histogram of weight indices is combined with the actual weight values
to compute the result of the sequence of multiply-accumulate operations. Figure 6(b) demonstrates
the multiply phase, multiplying-accumulating bin 0 pretrained weight with bin 0 accumulated
image value, giving 32.8 × 1.7 = 55.76. The contents of pretrained weight bin 1 is multiplied-
accumulated with image bin 1 value and so on until all the corresponding bins are multiplied-
accumulated into the result register, giving 98.8, the same result found by the weight shared MAC,
Figure 4.

This second multiply stage can be implemented using a traditional MAC unit that is shared
between several PAS units. Several MAC units can be replaced by the same number of PAS units
sharing a single MAC. For example, consider the case where we must compute many multiply-
accumulate sequences, where each sequence consumes 1,024 pairs (image and weight) of values.
A fully-pipelined MAC unit is a sequential circuit that will typically require a little over 1,024
cycles to compute the result.

If we have four such MAC units, then we can compute four such results in parallel, again in
around 1,024 cycles. If the weight data has been quantized and dictionary encoded to just, say, 16
values, then we could use PAS units withB = 16-bins to perform the accumulate phase of the PASM
computation. Four such fully pipelined PAS units could perform the accumulation phase in around
1,024 cycles. However, the accumulation phase of the PASM does not give us the complete answer.
We also need to perform the multiply phase, which involves multiplying and accumulating B = 16
values in this example. If each PAS unit had its own MAC unit, then the multiply phase would
take around 16 cycles for a total of 1,024 + 16 = 1,040 cycles for the entire multiply accumulate
operation. However, in this example, the four parallel PAS units share a single MAC unit with the
result that the total time will be 1,024 + 4 × 16 = 1,088 cycles. PASM can have higher throughput
when compared to the standard MAC due to the PAS units being much smaller than the MAC for
small values of B, up to about B = 16.
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Table 1. Complexity of MAC, Weight-shared MAC and PAS

Simple Weight Shared
Sub Component Gates MAC MAC PAS
Adder O (W ) 1 1 1
Multiplier O (W 2) 1 1
Weight Register O (W ) 0 B
Accumulation Register O (W ) 1 1 B
File Port O (WB) 1 2

2.3 PASM Accelerator

Table 1 compares the gate counts of the sub components of a simple MAC, a weight-shared MAC
and a PAS. The gates column shows the circuit complexity in gates of each sub-component, as-
suming fixed-point arithmetic. The bit-width of the data isW and the number of bins is B in the
weight-shared designs. For example, a simple MAC unit contains an adder (O (W ) gates), a multi-
plier (O (W )2) gates) and a register (O (W ) gates). A weight shared MAC also needs a small register
file with B entries to allow fast mapping of encoded weight indices to shared weights. The PAS
needs a read and write port due to the interim storage of the accumulation results that need to be
read by the post pass multiplier, whereas the MAC only needs a write port.

From Table 1, we can also see that the efficiency of PAS depends on a weight-sharing scheme
where the number of bins, B, is much less than the total number of possible values that can be
represented by a weight value, that is 2W . For example, if we consider the case ofW = 16, then in
the absence of weight sharing, a PAS would need to deal with the possibility of 216 different weight
values, requiring 216 separate bins. The hardware area of these bins is likely to be prohibitive.
Therefore, PAS is effective where the number of bins is much lower than 2W .

2.4 Evaluation of PASM as a Stand-alone Unit

We design an accelerator unit to perform a simplified version of the accumulations in Figure 5. Our
accelerator accepts 4 image inputs and 4 shared-weight inputs each cycle and uses them to compute
16 separate MAC operations each cycle. The weight-shared version performs these operations on
16 weight-shared MAC units (16-MAC). Our proposed PASM unit has 16 PAS units and uses 4 MAC
units for post-pass multiplication (16-PAS-4-MAC). Both the weight-shared and weight-shared-
with-PASM accelerators are coded in Verilog 2001 and synthesized to a flat netlist at 100MHz with
a short 0.1ns clock transition time targeted at a 45nm process ASIC. We measure and compare the
timing, power, and gate count in both designs for the same corresponding bit widths and same
numbers of weight bins.

The standard 16-MAC and the proposed 16-PAS-4-MAC each haveW -bit image and weight in-
puts and the 16-PAS-4-MAC has aWCI -bit binIndex input to index into the B = 2wci weight bins.
The designs are coded using integer/fixed point precision numbers. Both versions are synthesized
to produced a gate level netlist and timing constraints designed using Synopsys design constraint
(SDC) [7] so that both designs meet timing at 100MHz.

Cadence Genus (version 15.20 - 15.20-p004_1) is used for synthesizing the register transfer logic
(RTL) into the OSU FreePDK 45nm process ASIC and applying the constraints to meet timing.
Genus supplies commands for reporting approximate timing, gate count, and power consumption
of the designs at the post-synthesis stage. The “report timing,” “report gates,” and “report power”
commands of Cadence Genus are used to obtain the results for both 16-MAC and 16-PAS-4-MAC
accelerators. Graphs of the gate count and power consumption results are produced for the two
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Fig. 7. Logic gate count comparisons (in NAND2X1 gates) for W = 4-, 8-, 16-, 32-bits wide 16-MAC and

16-PAS-4-MAC for B = 16 weight bins; lower is better.

different designs at different bit widths and different numbers of weight bins, showing that the
PASM is consistently smaller and more efficient than the weight-sharing MAC.

Figure 7 shows comparisons of the logic resource requirements of a B = 16 shared-weight-bin
16-PAS-4-MAC and 16-MAC for varyingW -bit widths. Gate counts are normalized to a NAND2X1
gate. The PASM uses significantly fewer logic gates. For example, forW = 32-bit wide the 16-PAS-
4-MAC is 35% smaller in sequential logic, 78% smaller in inverters, 61% smaller in buffers and 68%
smaller in logic, an overall 66% saving in total logic gates. The PASM requires more accumulators
for the B-entry register file, but otherwise overall resource requirements are significantly lower
than that of the MAC.

Figure 8 shows comparisons of power consumption of the accelerators. 16-PAS-4-MAC’s power
is lower than the weight-shared 16-MACs and the gap grows with increasing W -bit width. For
example, for theW = 32-bit versions of each design, the 16-PAS-4-MAC consumes 60% less leakage
power, 70% less dynamic power and 70% less total power than that of the 16-MAC version.

Figure 9 shows the effect of varying the number of bins from B = 4 to B = 256, with gate counts
normalized to a NAND2X1. For bit widthW = 32 and B = 16-bins the 16-PAS-4-MAC utilization
has 35% fewer sequential gates, 78% fewer inverters, 62% fewer buffers and 69% fewer logic and
66% less total logic gates compared to the 16-MAC design. However, at B = 256, PASM registers
and buffers are less efficient than the MAC.

The 16-PAS-4-MAC also consumes 61% less leakage power, 70% less dynamic power, and 70%
less total power (Figure 10). More details can be found in our original article, [8].

3 PASM IN A CNN ACCELERATOR

In this article, we asked the question would PASM offer similar power and area savings when im-
plemented in a layer of a CNN accelerator and how would it affect performance of the convolution
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Fig. 8. Power consumption (in W) comparisons for W = 4, 8, 16, 32-bits wide 16-MAC and 16-PAS-4-MAC

for B = 16 weight bins; lower is better.

Fig. 9. Logic gate counts comparisons (in NAND2X1 gates) for B = 4, 16, 64, 256 weight bins for a 16-MAC

and 16-PAS-4-MAC forW = 32-bit width; lower is better.
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Fig. 10. Power consumption (in W) comparisons for B = 4, 16, 64, 256 weight bins deep 16-MAC and 16-PAS-

4-MAC forW = 32-bit width; lower is better.

Fig. 11. Example of a aimplified weight-shared convolution.

accelerator? We attempt to answer this by implementing PASM in a weight-shared convolution
layer accelerator and evaluate and compare its latency, power and area performance with a weight-
shared convolution accelerator and baseline both against a non-weight shared convolution acceler-
ator for the same clock speed. Figure 12 shows how, when PASM is implemented in a weight-shared
convolution accelerator, multiple PAS units are created in parallel to accelerate the accumulation
of C × IH × IW image data into the corresponding B-bin registers. Multiplexers are created to
expand and parallelize the image and binIndex data and demultiplexers then combine the PAS
outputs for the post-pass MAC. The post-pass MAC multiplies and accumulates the binned im-

age data with the corresponding M ×C × KX × KY shared-weight value into the M × IH × IW
outFeat.
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Fig. 12. Example of a simplified weight-shared convolution with PASM.

Table 2. Typical Numbers of MAC Operations

input_channels (C)

kernels (K)

32 128 512

1x1 32 128 512
3x3 288 1152 4608
5x5 800 3200 12800
7x7 1568 6272 25088

The image data ofC × IH × IW are buffered in registers, weight data of M ×C × KX × KY are
buffered in shared weight registers, the binIndex data up to 16 values are registered, and, finally,
the output feature map of M × IH × IW is registered in an outFeat register file. This allows for
greater locality and reuse of the data.

As can be seen from Table 1 and Table 2, the PASM is only efficient when the number of PAS units
created is much smaller than the number of items to accumulate, i.e., the PASM is efficient only
where the number of bins,B, is much smaller that the number of pairs of inputs to be multiplied and
summed, C × K × K . In the absence of quantization and weight-sharing, the PASM would not be
viable. For example, if we tried to use PASM for 16-bit weight values without using quantization
or weight-sharing, then we would need 216 bins in the PASM. A PASM unit with so many bins
would not be competitive with a conventional MAC unit.

Any weight-shared network such as a weight-shared AlexNet [14], weight-shared VGG [20]
or weight-shared GoogLeNet [21], and more generally regional CNNs, recurrent neural networks
(RNNs) and long short term memorys (LSTMs) are possible good candidates for the use of PASM,
although the evaluation in these networks is beyond the scope of this article.

3.1 Examples

For a simplified weight-shared accelerator, Figure 11, each kernel channel is “slid” across the corre-
sponding image channel, multiplying and accumulating each of the pixel values with the kernel’s
pre-trained weight-shared values into the corresponding interim feature map channel. Each of the
interim feature map channels is then “stacked” to produce the output feature map.

Now assume a simplified weight-shared-with-PASM accelerator with the same number of chan-
nels and kernels, Figure 12. Again, each kernel channel is “slid” across the corresponding image
channel; however, the “kernel” contains bin indices that address the interim feature map bin into
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which the image pixel values are accumulated. After all the image channels have been accumu-
lated into the image bins of the interim feature map, the bin indices are “slid” across the interim
feature map, multiplying each of the accumulated image values with the corresponding kernel’s
indexed pre-trained weight-shared values, and accumulated into the associated output feature map
channel.

Figure 13 shows the simplified SystemC code for weight-shared-with-PASM implemented
within a convolution layer. It demonstrates an image of C × IH × IW , a kernel of M ×C × KY ×
KX , with B weight bins, a stride of S , and an outFeat of M ×OH ×OW .

4 DESIGN AND IMPLEMENTATION OF THE PASM CNN ACCELERATOR

For comparison, three versions of the accelerator, a non-weight-shared, a weight-shared, and a
weight-shared-with-PASM accelerator, are designed and synthesized. The accelerators are coded
in SystemC, which allows the designs to be partitioned, unrolled, and pipelined to optimize power
and area (NAND2 equivalent gate count) by using SystemC #pragma directives rather than having
to hand code the partitioning, unrolling, and pipelining in Verilog.

To increase the throughput of the PAS phase of the weight-shared-with-PASM CNN accelerator,
the imaдeBin array of line 12 in Figure 13 is partitioned completely using the directive ARRAY_

PARTITION dim=1 (see line 2) to inform Xilinx Vivado_HLS to implement all bins in registers.
When the for loop of line 9 to line 13 is unrolled using the directive UNROLL (see line 10) and
loop merged using the directive LOOP_MERGE (see line 11), Vivado_HLS implements imaдeBin
in registers rather than BRAM, allowing the high-level synthesis (HLS) to create multiple copies
of the loop body so that it can parallelize the accumulation registers and associated accumulator
logic and thus reduce the number of clock cycles of reads and writes to the imaдeBin registers.

The rest of the loops including the post pass MAC loop on lines 33 and 42 are pipelined with the
directive PIPELINE II = 1 rewind that has an iteration interval of 1, suggesting to Vivado_HLS that
the loops shall need to process a new input every cycle that Vivado_HLS will try to meet if possible.
The rewind option is used with the pipeline function to enable continuous loop pipelining such
that there is no pause between one loop iteration ending and the next beginning. This is effective
as there are perfect nested loops in the convolution.

The partitioning, unrolling and loop merging reduces the latency cycles of the non-weight-
shared, weight-shared and weight-shared-with-PASM accelerators by 92% at the expense of in-
creasing the flip flop count by 97% and thus the power and area of these combined function and
loop pipeline registers. Implementing the imaдeBin array in registers allows for cell compatibility
in the ASIC synthesis tool and quick synthesis time as no static RAM (SRAM) needs to be modeled
and implemented to store the input image and outFeat values. This increased power and area
overhead of the accelerators is a good tradeoff for the increased throughput and lower latency.

The three versions of the CNN accelerators are based on the AlexNet [14] CNN and accelerate
one layer of the convolution to allow for implementation in an FPGA. The accelerators include
stride, an activation function, ReLU, and bias (a means for the network to learn more easily) as the
activation function and bias parameters are not shared. Striding (lines 4, 5, and 42 of Figure 13)
allows for compression of the image or input feature map by allowing differing pixel strides of the
kernel across the input feature map. For a stride value of 1, the kernel is moved across the input
feature map at a stride of one pixel at a time. With a stride of 2 or more the kernel jumps 2 or more
pixels as the kernel strides across the feature map. This sliding of the kernels produces smaller
spatial output feature maps. The use of PASM in the weight-shared accelerator is transparent to
the functionality of the stride, activation function or biasing. Note that the numbers of weight
parameters for a weight-shared system must be clustered (usually with k-means) and quantized to
fit into 16- to 256-bins (see Han et al’s. [10, 11] research), as this reduction in numbers of weights
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Fig. 13. Simplified System-C Code for the weight-shared-with-PASM convolution.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 31. Publication date: August 2018.



31:14 J. Garland and D. Gregg

is what allows PASMs reduction in power and area by doing the PAS accumulations first followed
by a single post pass MAC.

Our accelerators are high-level-synthesized to a hierarchical Verilog netlist using Xilinx Vivado_
HLS (version 2017.1), which allowed for quick functional simulation and hardware co-simulation
and could also allow for implementation in both ASIC and later FPGA. Vivado_HLS reports the
approximate latency of the design along with the approximate utilization results for BRAM, DSP,
flip flops, and look up tables (LUTs) after high-level synthesis has been executed.

When implementing the accelerators in FPGA, Xilinx Vivado (version 2017.1) is used to syn-
thesize, optimize, place, and route the netlist from Xilinx Vivado_HLS into a Xilinx 7-series Zynq
XC7Z045 FPGA part running at 200MHz. When implementing the accelerators into a 45nm process
ASIC running at 1GHz, Cadence Genus is used to synthesize and optimize the design for ASIC.
Cadence Genus supplies commands for reporting approximate timing, gate count and power con-
sumption of the designs at the post-synthesis stage. The “report timing,” “report gates,” and “report
power” commands of Cadence Genus are used to obtain the ASIC timing, gate count, and power
results. The gate count is normalized to a NAND2 gate, and this number reported as the overall
gate count.

The designs are coded using integer/fixed point precision numbers (INTs). The bit widths of
the image are maintained at 32-bit INTs while the weights are stored as variable 8-bit, 16-bit, and
32-bit INTs. The bin indexes are stored as 22-bits for 4 weights up to 24-bits for 16 weights.

The encoding of finite state machines is set to gray encoding to keep the power consumption of
the designs to a minimum. All registers and memories in the accelerators derived from variables
in the SystemC are reset or initialized to zero. The resets are set as active low synchronous resets.

The number of kernels M is kept small, i.e., M = 2 to keep the synthesis time the ASIC tools
to a minimum. The number of channels C is made as large as possible such that the C × KX ×
KY is larger than B-bins to demonstrate the power saving effect of PASM compared to the same
number of channels for the weight-shared version of the accelerator, as suggested in Table 1 and
demonstrated in Table 2.

The imaдe cache was kept to a small tile of the image of multiple channels (IH = 5, IW = 5,C =
15) to allow its implementation in a register file. However, the imaдe cache could be implemented
in SRAM in an ASIC. This would allow for a larger cache storage of image and weight values and
further reduce the power and area of the accelerators but would require more “back-end” layout
design work of the accelerator, something not considered for this article.1 The binIndex would
remain in a register file as a maximum of 16 × 32-bit values would be stored.

To further ensure the lowest number of multipliers utilized in the PASM accelerator the ALLO-

CATION directive is used to ensure that only one post pass multiplier is used further reducing the
area and power while very slightly increasing the latency.

The Verilog netlists that are produced by Xilinx Vivado_HLS are synthesized for ASIC to pro-
duce a gate level netlist. Timing constraints in Synopsys design constraint (SDC) are created [7]
so all versions of the accelerator meet timing at 1GHz with a short 0.01ns clock transition using
Cadence Genus (version 17.11) synthesizer.

The synthesis targets the OSU FreePDK 45nm ASIC process cell library. Timing, latency, gate
count (normalized to a NAND2 gate) and power consumption at different B-bins andW -bit widths

1The OSU FreePDK 45nm ASIC process cell library used for the experiments does not have a facility to synthesize on-chip

SRAM in our implementation of the weight-shared-with-PASM accelerator. If we had access to a library that would allow

SRAM synthesis, then we would be able to operate on larger data blocks in our ASIC design. The weight-shared-with-

PASM is likely to be even more effective with larger input blocks (particularly a large value of C ), because the cost of the

post-pass multiplication can be amortized over more inputs.

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 3, Article 31. Publication date: August 2018.



Low Complexity MAC Units for CNNs with Weight-Sharing 31:15

are captured. These values are approximations as they are the post-synthesis estimates. The values
will be optimized when implemented in ASIC or FPGA.

The weight-shared-with-PASM introduces a delay in processing the output of the PAS units. The
PAS unit has a throughput of one pair of inputs per cycle, and so computes the initial accumulated
values in about N cycles, where

N = (KX × KY ) ×C .

The post pass MAC unit also has a throughput of one pair of inputs per cycle, so requires one cycle
for each of the B accumulator bins, for a total of N + B PASM cycles. In contrast, a simple MAC
unit requires just N cycles, however, consumes significantly more area and power, when compared
to an accelerator with more than one PAS per MAC.

Table 2 shows the number of MAC operations that contribute to each output for various values
of C and KX and KY . For example, if C = 32 input channels are used with kernels of dimensions
KX × KY = 5 × 5, then each computed value will be the result of 800 MAC operations. A simple
fully pipelined MAC unit might be able to compute this result in a little more than 800 cycles. As
can be seen from lines 11 to 13 of Figure 1, each element of the output of a convolution layer of a
CNN is the result of C × KX × KY multiply-accumulate operations or 800 cycles in this example.

In contrast, a PASM has two phases: a PAS phase and a post-pass MAC phase. The PAS phase
computes a histogram of the frequency of each weight input and depends entirely on the number of
inputs. However, the post-pass MAC phase depends not on the number of inputs but on the number
of different weights that can appear (each of which occupies one of the B-bins). Provided the
number of inputs,C × KX × KY , is much larger than the number of bins,B, the cost of the post-pass
remains small relative to the cost of the PAS phase. For example, if B = 16, then the cost of the post-
pass will be a small fraction of the 800 operations needed at the PAS phase. Careful consideration
of the size of bins used with respect to the number of channels and kernels is important due to
the summands being multiplied-accumulated many times before the outFeat is updated as can be
seen on lines 11–13 of Figure 1. The number of accumulations should therefore be much larger
than B for PASM to be efficient in a weight-shared convolution accelerator.

5 EVALUATION OF PASM IN A CNN ACCELERATOR

5.1 ASIC Results

The PASM is implemented in a weight-shared CNN accelerator and synthesized into an ASIC. The
latency is compared with that of the weight-shared accelerator. The latency results for each of the
non-weight-shared, weight-shared, and weight-shared-with-PASM accelerators is obtained from
Vivado_HLS Synthesis reports and the percentage differences graphed as seen in Figure 14. The
latency of the weight-shared-with-PASM in Figure 14 was between 8.5% for 4-bin and 12.75% for
16-bin greater than that of the corresponding weight-shared version, which is expected due to the
indirection of the PAS units.

Latency can be further reduced by relaxing the ALLOCATION directive (see line 3 of Figure 13)
constraint on the multiplier. If more post-pass multipliers are used, then the latency drops with a
corresponding increase in power and area, which may be acceptable depending on target device
resources available.

For a 4-bin PASM accelerator, with 32-bit wide kernels, Figure 15(a) shows the gate count re-
ports obtained from Cadence “report gates” command and normalized to a NAND2 gate. PASM
uses 47.2% fewer total NAND2 gates compared with the non-weight-shared version and 47.8%
fewer total NAND2 gates compared with weight-shared design. Figure 15(b) obtained from Ca-
dence “report power” command, PASM uses 54.3% less total power when compared with its
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Fig. 14. Latency of weight-shared-with-PASM convolution compared to weight-shared convolution.

Fig. 15. Four-bin, 32-bit kernel weight-shared-with-PASM vs. weight-shared gate count and power compar-

isons in ASIC.

Fig. 16. Eight-bin, 32-bit kernel weight-shared-with-PASM vs. weight-shared gate count and power compar-

isons in ASIC.

non-weight-sharing counterpart and 53.2% less total power when compared with the weight-
shared version.

For an 8-bin, 32-bit wide kernel PASM accelerator, Figure 16(a) obtained from Cadence “report
gates” command and normalized to a NAND2 gate, PASM uses 9.4% fewer total NAND2 gates
compared with the non-weight-shared and 8.1% fewer total NAND2 gates compared with the
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Fig. 17. Sixteen-bin, 32-bit kernel weight-shared-with-PASM vs weight-shared gate count and power com-

parisons in ASIC.

Fig. 18. Four-bin, INT8-bit kernel weight-shared-with-PASM vs. weight-shared gate count and power com-

parisons in ASIC.

weight-shared accelerators. Figure 16(b) obtained from Cadence “report power” command, PASM
consumes 18.1% less total power when compared with its non-weight-sharing and 15.2% less total
power when compared with the weight-sharing accelerator.

For a 16-bin, 32-bit wide weight-shared-with-PASM accelerator, PASM no longer offers a good
return with this level of unrolling, pipelining and partitioning of the imageBin, at least when
targeted at a 1GHz ASIC with this 45nm process cell library as it uses more NAND2 gates (see
Figure 17(a)) and power (see Figure 17(b)) compared with the weight-shared accelerator. This is
due to the ASIC tools having to increase the area and therefore power to meet timing at 1GHz for
the 16-bins at 32-bit wide PASM. To achieve better power and area results for PASM at 16-bins or
greater, it might be better to target a lower clock frequency, for example 800MHz. Alternatively,
use a more efficient geometry ASIC cell library. Design changes could be made to reduce pipelining
and unrolling of the levels of the inner four of the for loops of the convolutional code, which would
reduce the area and power while making it easier for the ASIC tools to achieve timing, however,
this may increase latency of the accelerator.

Due to the increased academic and industrial interest in applying INT8 approximations to reduce
memory storage and bandwidth of the kernel data [3, 5], we show the results for the 8-bit kernel
versions of the accelerators with 4-bins. This demonstrates that for a bin depth of 4, PASM achieves
a 19.8% reduction in gate count, Figure 18(a) obtained from Cadence “report gates” command and
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Fig. 19. Four-bin, 32-bit kernel weight-shared-with-PASM vs. weight-shared gate count and power compar-

isons in FPGA.

normalized to a NAND2 gate and a 31.3% reduction in power compared to the weight-sharing
version, and Figure 18(b) obtained from Cadence “report power” command.

5.2 FPGA Results

We implement the weight-shared-with-PASM accelerator in the Xilinx 7-series Zynq FPGA, the
XC7Z045 part implemented on the Zynq ZC706 development board. Timing constraints in Xilinx
design constraint (XDC) are created such that the accelerator designs met timing at 200MHz. The
resets are set as active high synchronous resets for better FPGA power performance. The state
machines are set to gray encoding.

The image, imageBin, and kernel were cached in BRAM in the FPGA. This allows for a larger
cache storage of image and weight values and further reduce the power and area of the acceler-
ator. However, a larger image and kernel cache could be employed for greater throughput of the
accelerators but for the purposes of comparison with the ASIC implementation, the same image
and kernel dimensions are used.

When using the UNROLL and PIPELINE directives with the for loops and using Vivado_HLS
synthesis followed by RTL synthesizing and fully implementing the designs with Vivado, the non-
weight shared and weight-shared versions of the 16-bin, 32-bit kernel data designs utilizes 405 DSP
units on the FPGA of the ZC706 board. If a smaller, more resource constrained FPGA is required
for cost reasons, like the Xilinx XC7Z020 part found on the Xilinx PYNQ-Z1 low cost development
board, then the non-weight shared and weight-shared versions of the design would over utilize
the 220 DSP units of the PYNQ-Z1 board’s XC7Z020 FPGA part.

The weight-shared-with-PASM version of the design for the same 4-bin, 32-bit kernel, Fig-
ure 19(a) obtained with Vivado’s “report_utilization” command, similarly unrolled and pipelined,
HLS synthesized in Vivado_HLS followed by RTL synthesized and fully implemented in Vivado,
only utilizes 3 DSP units, 99% fewer DSPs than the other versions of the accelerator with the same
12% increase in latency as the ASIC implementation. PASM also consumes 28% fewer BRAMs,
while consuming 64% less power than the weight-shared accelerator, Figure 19(b), obtained with
Vivado’s “report_power” command. Increasing the number of post-pass MACs decreases the la-
tency slightly while increasing the power consumption and DSP usage, as the bottleneck is in the
accumulators of the PAS that can be seen as the number ofC × KX × KY accumulations that must
be larger than that of B-bins for PASM to be effective and efficient as seen in Table 1 and Table 2.

For an 8-bin PASM accelerator, with 32-bit kernels, Figure 20(a) obtained with Vivado’s “report_
utilization” command, PASM uses 99% fewer DSPs and 28% fewer BRAMs compared with the
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Fig. 20. Eight-bin, 32-bit kernel weight-shared-with-PASM vs. weight-shared gate count and power compar-

isons in FPGA.

Fig. 21. Sixteen-bin, 32-bit kernel weight-shared-with-PASM vs. weight-shared gate count and power com-

parisons in FPGA.

weight-shared design. Figure 20(b) obtained with Vivado’s “report_power” command, PASM uses
41.6% less total power when compared with its weight-shared version.

For a 16-bin PASM accelerator, with 32-bit kernels the utilization reported with Vivado’s
“report_utilization” command, Figure 21(a), PASM uses 99% fewer DSPs and 28% fewer BRAMs
compared with the weight-shared design. Figure 21(b), PASM uses 18% less total power when
compared with its weight-shared version, reported with Vivado’s “report_power” command.

It is also possible to clock the PASM at higher clock speeds for the same latency than that of the
weight-shared counterpart, but again for the sake of comparison, clock speeds are kept consistent
between all versions of the accelerators.

If INT8 approximations are desired for the weight data, then an 8-bit wide, 8-bin PASM accel-
erator, Figure 22(a) again obtained with Vivado’s “report_utilization” command, uses 99% fewer
DSPs but the same number of BRAMs as its weight-shared counterpart. In Figure 22(b), PASM uses
18.3% less total power when compared with its weight-shared version.

For a 16-bin, 8-bit wide PASM accelerator, PASM no longer offers a good return when targeted
at a 200MHz FPGA with this level of unrolling, pipelining and partitioning of the imageBin as it
uses more flip-flop gates and power, exceeding the gate count and power of the DSP units being
used in the weight-shared accelerator. At this stage, it would be better to either implement the
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Fig. 22. Eight-bin, INT8-bit kernel weight-shared-with-PASM vs. weight-shared gate count and power com-

parisons in FPGA.

imageBin in dual port BRAM and incur a slight increase in latency or do not unroll and pipeline
as many levels of the inner four of the for loops of the convolutional code.

5.3 Overall Results

The precision of the results of a weight-shared CNN accelerator that uses PASM are identical to
that of a weight-shared CNN accelerator using traditional MACs. The same filters and image data
are being used for the weight-shared accelerator as demonstrated in Figure 4 and the weight-
shared-with-PASM accelerator shown in Figure 6. While PASM has a different underlying process
of permuting the convolution, the results of a convolution layer are identical to that of a stan-
dard MAC weight-shared accelerator, except PASM adds a 12.5% increase in latency in obtaining
the result but with vastly reduced power consumption and area (NAND2 gates) compared to the
traditional MAC version.

As suggested in Han et al. [10], they show that the Top-5 classification accuracy of their weight-
shared CNN accelerator is 19.70% compared to 19.73% Top-5 accuracy of the baseline non-weight-
shared CNN accelerator due to there being many less filter weight values. When PASM is used
in a weight-shared CNN accelerator the classification accuracy is unaffected when compared to
the baseline weight-shared CNN accelerator counterpart as the same filter weight values of the
weight-shared CNN accelerator are used and the same output feature map results are obtained.

PASM is beneficial for up to 16 weight bins and 32-bits for FPGA at 200MHz and 8 weight bins
and 32-bits for ASIC at 1GHz 45nm process when coded using SystemC with the above unrolling,
pipelining and partitioning configuration. As demonstrated earlier in the article, were a weight-
shared-with-PASM CNN accelerator to be coded in Verilog, the numbers of bins supported could
indeed be higher. We wanted to experiment with differing pipelining, unrolling and partitioning
directives and their effect on making PASM more efficient, something that would have been im-
practical had it been coded in Verilog, so SystemC was used. Further SystemC and other SRAM
optimizations (for image and output feature map caching) could have been done to the accelera-
tors, but this was not the focus of this article and may be undertaken as future work.

6 RELATED WORK

There have been many different CNN hardware accelerators proposed for both FPGA and ASIC.
Gupta et al. [9] show increased efficiency in an FPGA hardware accelerator of a 16-bit fixed-point
representation using stochastic rounding without loss of accuracy. Zhang et al. [22] deduced the
best CNN accelerator taking FPGA requirements into consideration and then implement the best
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on an FPGA to demonstrate high performance and throughput. Chen et al. [1] design an ASIC ac-
celerator for large-scale CNNs focusing on the impact of memory on the accelerator performance.

Han et al. [10] have proposed an Efficient Inference Engine that builds on their ‘Deep com-
pression’ [11] work to perform inferences on the deeply compressed network to accelerate the
weight-shared matrix-vector multiplication. This accelerates the classification task while saving
energy when compared to CPU or GPU implementations. Given that one aspect of deep compres-
sion is quantizing and dictionary encoding weights, we believe that the use of our PASM units
might further reduce resource and energy requirements.

Chen et al. [2] address the problem of data movement that consumes large amounts of band-
width and energy in their Eyeriss accelerator. They focus on data flow in the CNN to minimize
data movement by reusing weights within the hardware accelerator to improve locality. This was
implemented in ASIC and power and implementation results compared showing the effectiveness
of weight reuse in saving power and increasing locality. Chen et al. reduce the required memory
bandwidth primarily be reusing data that is already on-chip rather through weight compression.
However, the two approaches are mostly orthogonal, so our PASM approach could potentially
work together with an Eyeriss type accelerator.

Ma et al. [17] present an in-depth analysis of convolution loop acceleration strategies by numer-
ically characterizing the loop optimization techniques. They do this by looking at different levels
of loop unrolling and loop tiling (subdividing the design into smaller blocks) and loop interchange
(different ordering of the loops). They also consider latency and partial sum storage and how they
can minimize both. They provide design guidelines for an efficient implementation of the acceler-
ator to minimize latency, minimize partial sum storage, minimize both on-chip buffer accesses and
off-chip memory accesses. For the four inner convolution loops, they show that loops to unroll
(in this case all four loops), which to tile (loops 1 and 2 are buffered), and which to interchange
(compute loop 1 then loop 2 but it doesn’t matter the order of loop 3 and loop 4). They implement
the accelerator for a VGG-16 CNN model in an Arria-10 GX 1150 FPGA (3600 DSPs, 18 × 18 20kb
random access memory (RAMs)) at 150MHz and coded in Verilog achieving 645.25 giga operations
per second (GOPS) of throughput and 47.97ms of latency per image. This work on loop ordering
is complementary to our work on architecting a lower-resource MAC unit.

Several research groups have studied the effects of lower precision weight values for CNNs.
Reducing the data precision of weight data is an alternative method of quantizing that is different
to the weight sharing of Han et al. [10]. Rather than selecting a set of quantized values guided by
the values in the data, low-precision approaches simply quantize existing weights to the nearest
low-precision value. A particularly popular data type is 8-bit integers.

Dettmers [3] shows how 8-bit for data and model parallelism increases the performance of ma-
chine learning while maintaining accuracy on MNIST, CIFAR10 and ImageNet neural networks.
The article describes data parallelism across multiple GPUs showing bandwidth and latency lim-
itations on the peripheral component interconnect express (PCIe). They show different ways of
representing the mantissa and exponent in the available 8-bit. They show how the 32-bit value
is compressed into the 8-bit value and decompressed. They show how representing the 8-bit us-
ing a dynamic tree data type is able to approximate random numbers better than other known
data types but interestingly all approximation techniques (dynamic tree, linear quantization, 8-bit
mantissa and static tree) work well in training. They investigate other sub 32-bit data types and
show that model parallelism in conjunction with sub-batches works very well in networks and
avoids the problem of large batch sizes for 1-bit quantization proposed by Seide et al. [19].

In the Xilinx white paper of Fu et al. [5], Xilinx makes use of 18-bit and 27-bit hardware multi-
pliers that are commonly found on Xilinx FPGAs. They use these multipliers to compute two 8-bit
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multiplications in parallel, giving better performance and efficiency than if each multiplier were
to perform just one 8-bit multiplication per cycle. This approach is quite different to our proposal
for a new type of MAC unit, and depends on the presence of existing hard-coded multipliers on
the FPGA.

7 CONCLUSION

ASICs and FPGAs are often used to hardware accelerate the convolution layers of a CNN where
up to 90% of the computation time is consumed. This computation requires large amounts of mul-
tipliers as part of the many thousands of MAC operations needed in the convolution layer. These
multipliers consume large amounts of physical and computational IC die resources or DSP units
on a FPGA. Hardware accelerators have been proposed that reduced the amount of kernel data
required by the neural network by dictionary compressing the weight values after training the
network. This “weight sharing” reduces the bandwidth and power of the data transfers from ex-
ternal memory but still requires large numbers MAC units.

We reduce power and area of the CNN accelerator by implementing PASM in a weight-shared
CNN accelerator. PASM re-architects the MAC to instead count the frequency of each weight and
place it in a bin. The accumulated value is computed in a subsequent multiply phase, significantly
reducing gate count and power consumption of the CNN. We coded in Verilog a 16-MAC weight-
shared accelerator and a 16-PAS-4-MAC weight-shared-with-PASM accelerator and compare the
logic resource requirements of a b = 16 bin for varying w-bit widths. Gate counts are normalized
to a NAND2X1 gate. Forw = 32-bit wide the 16-PAS-4-MAC has overall 66% fewer logic gates and
consumes 70% less total power than the 16-MAC.

To further evaluate the efficiency gains of PASM, we implement PASM in a weight-sharing
CNN accelerator. We compare it to a non-weight-shared accelerator and a weight-shared acceler-
ator, targeted at a 1GHz 45nm ASIC. The gate count area and power consumption for the weight-
shared-with-PASM is lower compared to the weight-shared version. For a 4-bin weight-shared-
with-PASM accelerator that accepts a 5 × 5 image with a 3 × 3 kernel and 15 input channels and
2 output channels, an ASIC implementation of PASM saves 48% NAND2 gates and 53.2% power
when compared to its weight-shared counterpart, with only a 12% increase in latency.

We show that the weight-shared-with-PASM accelerator can be implemented in a resource-
constrained FPGA. For an accelerator with the same dimensions as the ASIC version implemented
on the FPGA to run at 200MHz, PASM uses 99% fewer DSPs and 28% fewer BRAMs compared with
the weight-shared design. For 16-bin PASM, PASM uses 18% less total power when compared with
its weight-shared version.

Even if INT8 approximations are desired for the weight data, an 8-bit wide, 4-bin PASM accel-
erator running at 200MHz on the FPGA uses 99% fewer DSPs and 28% fewer BRAMs compared
with the weight-shared design. An INT8 operation PASM also uses 47% less total power when
compared with its INT8 weight-shared version.

Quantization and weight-sharing neural networks are active research areas, particularly for
reducing DRAM bus bandwidth usage and in applications such as RNNs and LSTM networks.
Weight sharing allows for implementation of a CNN in small, low power embedded systems as
less RAM is required to store the weight values. Weight sharing also offers a more rapid way
of implementing an inference network on a small memory embedded device without the large
training phase required of, say a Binary Neural Network. Weight sharing is used in other types of
networks such as regional-CNNs, RNNs and LSTMs so PASM may be a good fit there too. Wherever
the number of shared weights is sufficiently small, PASM units may be an attractive alternative to
a conventional weight-sharing MAC unit.
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