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ABSTRACT: Conductive nanocomposites are often piezoresistive, displaying significant 

changes in resistance on deformation, making them ideal for use as strain and pressure sensors. 

Such composites typically consist of ductile polymers filled with conductive nanomaterials, 

such as graphene nanosheets or carbon nanotubes, and can display sensitivities, or gauge 

factors, which are much higher than those of traditional metal strain gauges. However, their 

development has been hampered by the absence of physical models which could be used to fit 

data, or to optimise sensor performance. Here we develop a simple model which results in 

equations for nano-composite gauge factor as a function of both filler volume fraction and 

composite conductivity. These equations can be used to fit experimental data, outputting 

figures of merit, or predict experimental data once certain physical parameters are known. We 

have found these equations to match experimental data, both measured here and extracted from 

the literature, extremely well. Importantly, the model shows the response of composite strain 

sensors to be more complex than previously thought and shows factors other than the effect of 

strain on the interparticle resistance to be performance-limiting. 
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INTRODUCTION 

Incipient technological developments such as the internet of things, smart cities and 

personalised medicine will require everything from packaging to buildings to clothing to 

gather, process and exchange information. A critical part of this revolution will involve the 

proliferation of sensors and sensing technologies.1, 2 Of the different sensor types, strain and 

pressure sensors are conceptually simple and have applications in a range of areas including 

biomedical sensing, sports performance monitoring and robotics.3, 4 Such sensors are usually 

based on piezoresistive materials which display changes in electrical resistance as they are 

deformed.  

While an effective strain sensor must display a number of appropriate characteristics (e.g. 

sufficient working range,5 reasonable conductivity, lack of frequency or rate-dependence6), 

probably the most important property is the sensitivity or gauge factor, G. This figure of merit 

is defined via 0/R R G = , where 0/R R  is the fractional resistance change in response to 

an applied strain,  . Strictly speaking, this equation applies at low strains, where 0/R R   

varies linearly with strain such that G has a well-defined value. By far the most common type 

of strain sensors are metal foil strain gauges which are cheap and effective and are widely used 

in industry. However they have some significant drawbacks, namely, relatively small gauge 

factors of G~2.7 Such a small value means a very limited sensitivity and has driven the research 

community to search for sensing platforms which display much higher sensitivities. 

To resolve this issue, many researchers have turned to materials science and in particular, 

polymer-nanocomposites. Such composites are widely used due to their processability, 

flexibility and low cost. Extensive research has underlined the versatility of polymer-

nanocomposites where materials can be tailored to display a range of desired properties such 

as excellent conductivity, mechanical reinforcement, electro-magnetic interference shielding, 

enhanced thermal stability and polymer self-healing.8-12 Piezoresistive nanocomposites, have 

proved particularly promising in the area of strain sensing as they display impressive and 

tuneable sensitivities which far surpass current commercially available strain sensors.5, 13 These 

nanocomposites contain conductive nanoparticles dispersed within an insulating matrix, 

typically a polymer. While nanocomposites utilising fillers such as Graphene14-18 and CNTs19-

21 have  been widely investigated, piezoresistive behaviour has been observed with a host of 

other nanofillers such as conductive polymers,22 carbon black23, 24, silver nanowires25, carbon 

fibres26 and semiconducting materials.27, 28 
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The electrical properties of conductive composites are understood in great detail, with much 

experimental and theoretical work (e.g. via percolation theory) having been carried out in 

recent years.17, 29 As a result, one might imagine that the piezoresistive properties of such 

composites would be well understood. However, this is not the case. Although it is generally 

believed that the effect of strain on interparticle tunnelling is responsible for the piezoresistive 

effect in nanocomposites,19, 30-32 good analytical models are not available. A number of 

numerical studies on the piezoresistive response in nanocomposites exist,19, 25, 31 with the recent 

work of Liu et al. allowing a visualisation of the conductive network evolution under tensile 

strain.33, 34 However, these studies are filler specific and cannot be universally applied. What 

is needed are straightforward models which yield simple equations, which describe how G  

varies with   or indeed composite conductivity. Such models would allow the fitting of 

experimental data and give an insight into the nanocomposite properties which determine the 

gauge factor. Ultimately, this would allow for the development nanocomposites with enhanced 

values of G. 

In this study, we use percolation theory to develop a simple model relating the gauge factor 

(G) of nano-composite piezoresistive materials to both the filer volume fraction () and the 

zero-strain conductivity, 0. This model’s accuracy is tested against a number of composites 

with different conductive fillers and is supported by a detailed study of how percolation 

parameters vary with applied strain. 

 

RESULTS AND DISCUSSION 

Electrical Percolation 

By now, much is known about the conductivity in nanocomposites. Most importantly, they 

show large increases in conductivity as filler loading is increased.  As  is increased above a 

critical value, the percolation threshold ( c ), the first continuous conductive paths spanning 

the length of the sample are formed, allowing current to flow. Above the percolation threshold 

(i.e. c  ) the conductivity is usually described using classical percolation theory,35-37 which 

in its simplest form yields: 

 ( )t

c c   = −      (1) 

where c  is a constant and t is the percolation exponent. 
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Many papers have been devoted to understanding the nature of c , c  and t. In a random 

network of non-spherical particles such as nanotubes or graphene sheets, the percolation 

threshold is expected to be roughly equal to the ratio of small to large particle dimensions (e.g. 

nanosheet thickness over length).38, 39 However, if the particle orientation distribution becomes 

less random, for example, if the particles become aligned, c can increase significantly.40-42 In 

addition, c  has been linked to the junction resistance between particles,38 which may be 

controlled by tunnelling15 or hopping,43 and so is sensitive to inter-particle separation. 

The percolation exponent, t , was originally expected to take universal values of tun=1.3 or 2 

depending on whether the system in question was 2- or 3-dimensional.44 However, multiple 

experimental observations of t>2 has led to theoretical work that shows that t can indeed be 

larger than the universal value, tun. The current consensus is that, where there is a distribution 

of inter-particle resistances, t-tun is controlled by the width of the inter-particle junction 

resistance distribution.44-46 In polymer-based composites, we would expect disordered regions 

of polymer to separate the conductive particles leading to a distribution of interparticle 

separations and so resistances, resulting in values of t>2.29  

Model Development 

Any model which describes the performance of nanocomposite strain sensors must be 

consistent with experimental data which means it must display certain general features. For 

example, almost all reports in the literature suggest that the gauge factor is highly dependent 

on the loading of conductive filler, with the gauge factor decreasing rapidly as the filler volume 

fraction is increased above the percolation threshold.15, 19 This means that increasing gauge 

factor is associated with decreasing conductivity as reported in a number of papers.15, 19, 47-53 A 

review of the literature identified a number of papers which reported both conductivity (at zero-

strain) and gauge factor for various composites each measured at a range of filler loadings.15, 

19, 50 As shown in figure 1, these data sets are suggest a roughly power-law relationship between 

gauge factor (G) and zero-strain conductivity (0). Any successful model describing 

nanocomposite strain sensors must describe the dependence of G on both  and 0 in a way 

that is consistent with these findings and be applicable across the broad range of strain sensing 

materials.  

When a material is strained, the resistance changes for two reasons. Firstly, there is a relatively 

small change due to the effect of strain on the sample dimensions – this is dominant in metallic 
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strain gauges. Secondly, the resistance can change due to variations in the material conductivity 

with strain.7 The second effect can be positive15, 16 or negative28 and can be very large in some 

systems,15 including nanocomposites. 

These effects can be quantified in a simple model which shows that [see ref 3, 15 and SI] 

00

1
2

d
G

d



 

 
 −  

 
       (2) 

Where the subscript zero means the quantity must be taken in the limit of low-strain such that 

0  denotes the zero-strain conductivity. This low-strain condition comes from approximations 

in the derivation that are valid only at low-strain (see SI). 

This equation can be applied to percolative systems by differentiating equation 1 with respect 

to strain, assuming c , c  and t  all depend on strain. Performing this differentiation (see SI) 

yields: 
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This equation can be combined with equation 2 by taking all parameters in their low-strain 

limits. In that limit, 0   and by extension ,0c c  , ,0c c   and 0t t . This gives 
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This equation links the nanocomposite gauge factor to both the zero-strain percolation 

parameters ,0c , ,0c  and 0t  as well as their derivatives, measured at low strain, ( )
0

/cd d   , 

( )
0

/cd d   and ( )
0

/dt d . An important feature of this equation is that G scales with 

1

,0( )c  −−  which would explain the experimental observation that G increases sharply as the 

percolation threshold is approached from above.  

We note that, because of the way equation 1 is generally used to fit conductivity versus  data 

(plotting 0ln versus ,0ln( )c − to obtain ln c  and t0 as fit parameters), some researchers will 

prefer to write equation 4a as: 
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We can use equation 4b to generate an equation for G in terms of the zero-strain conductivity, 

0 , by noting that at zero-strain, equation 1 shows that 0

0 ,0 ,0( )
t

c c   = − , leading to:  

01/
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    (4c) 

We have written these equations in what might seem an unusual fashion for two reasons: to 

clearly differentiate the three square-bracketed terms and to facilitate a clear discussion of the 

sign of each term (see below). As these equations make clear, there are a number of factors, 

embodied by the three square-bracketed terms, which contribute to the gauge factor. We will 

consider these factors below. 

 

The factors contributing to the gauge factor 

One advantage of this approach is that our understanding of electrical percolation can be used 

to understand nanocomposite piezoresistivity. The factors influencing the percolation 

parameters, ,0c , ,0c  and t0 have been outlined above. Clearly, such factors will influence G 

via equations 4b and 4c. For example, the dispersion state of the filler will affect ,0c , with filler 

alignment42 leading to higher ,0c , compared to randomly oriented54 systems. According to 

figure 4b, reducing ,0c  should lead to smaller gauge factor for a given . Polymer morphology 

will also have an impact. If the polymer tends to crystalise on the nano-filler surface, this will 

increase the inter-particle resistance, thus38  decreasing ,0c . Equation 4c shows that this will 

reduce G at a given compsoite conductivity. It is worth considering how the other parameters 

in equations 4b-c impact G. 

The first term in equations 4 b-c is dominated by the rate of change of ln c  with  (at low 

strain), 0( ln / )cd d  . To understand this term, we note that in most (but not all)28 polymer-

based nanocomposites, where the fillers are highly conductive, we expect c  to be limited by 

the junction resistance (RJ) between filler-particles such that 1/c JR  .38 Whether the inter-

sheet transport is via hopping or tunnelling,15, 43 we expect 
kd

JR e , where d is the inter-

particle separation (at a given strain) and k is a (positive) constant. Assuming that, on 

application of tensile strain, the inter-particle separation scales with sample length, then 

0 0( ) /d d d = −  , where d0 is the zero-strain inter-particle separation. Combining these ideas 
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gives: 0ln /cd d kd  = − , showing that 0( ln / )cd d   should be negative (unless the inter-

particle charge transfer is not rate limiting28). This negative sign is expected and is in line with 

many studies showing composites to become more resistive on tensile deformation.15, 16, 19, 25, 

31, 55 This negative sign is significant as it means the first square bracketed term in equations 4 

b and c must be positive.  

Thus, the first term in equations 4 b-c  is predominantly associated with inter-particle transport 

and describes the mechanism traditionally used to describe the piezoresistive response in 

nanocomposites.19, 30-32 However, the existence of two other terms in equations 4 b-c shows 

that this is not the only contribution to G. 

The second term in equations 4 b-c is controlled by the strain dependence of the percolation 

exponent, 0( / )dt d . A number of papers have shown that the value of t is controlled by the 

width of the distribution of inter-particle junction resistances.44-46 Then, strain would most 

likely increase each individual junction separation according to 0 ( 1)d d = + , thus broadening 

the distribution and increasing t. Alternatively, strain should align the particles somewhat, 

making the network more 2D and less 3D and so reducing t.32 Thus, we expect the second term 

to be controlled by a combination of junction and network effects, each driving 0( / )dt d  in 

different directions. We note that theoretical calculations have suggested that 

( ) ( )
0 0

ln / /cd d dt d    such that both parameters have the same sign.46 If this were true it 

would mean that ( )
0

/dt d  is generally negative. This is important as it means that the second 

term in equations 4b-c should be negative. This has important implications as we will discuss 

below. 

The third term in equations 4 b-c is controlled by the strain dependence of the percolation 

threshold, ( )
0

/cd d  . It is likely that the application of strain alters the structure of the 

network, for example by inducing particle alignment, in a way that modifies the percolation 

threshold. To see this, consider a composite exactly at the percolation threshold. Then, all 

current flows through a single conducting path with a well-defined bottleneck (where all 

current flowing through a single inter-particle junction). While application of tensile strain 

would be very unlikely to create new paths, it is likely that the strain-induced change to the 

network structure will break the bottleneck. This will destroy the single conducting path and 

shift the percolation threshold (at that strain) to higher filler volume fraction. Thus, we always 
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expect df
c
/ de( )

0
 to be positive. This is important as it means the third term in equations 4 b 

and c must always be positive. This is consistent with previous studies which investigated the 

effect of carbon nanotube (CNT) alignment on film conductivity (with alignment acting as a 

proxy for tensile strain). Such studies show that as alignment increases the percolation 

threshold similarly increases.40, 41 

Thus, in addition to the effect of strain on inter-particle transport, which is usually considered 

as the mechanism controlling G, there are other factors related to both properties of the 

junctions and the network which contribute to G. Later in this paper, we will consider the 

relative magnitude of these effects. However, first it is necessary to demonstrate that the 

equations above can actually describe experimental data.  

 

Using this model to fit experimental data 

While equations 4b and 4c provide a theoretical description of the dependence of G on  and 

0  respectively, neither equation can be used in their current form for fitting experimental data, 

simply because they both contain too many fit parameters. However, they can both be 

simplified by considering the contributions to the second and third terms of equations 4 b-c. 

Since ln(f -f
c
) is a slow varying function compared to (f -f

c
)-1

as ,0c → ,  it is likely that 

the second term of equations 4 b-c is relatively slowly varying compared to the third. This 

allows us to consider the second term constant for fitting purposes, assuming that (dt / de )
0
 is 

not far larger than t
0
(df

c
/ de)

0
 (this will be justified further below). Applying this 

approximation to both equations 4b and 4c and grouping terms allows us to write equations for 

G in the form: 

1
0,

,0c

G
G G 

 
 +

−
     (5a) 

01/

0, 1 0( / )
t

G G    +      (5b) 

Where ,0c , 0,G  , 1G , 0,G   and 1  are (near) constants. To maximise G, requires all of these 

constants except ,0c  to be large and positive. We note that this model implies that G has near 

power-law relationship with 0 , which is consistent with observations in figure 1. 

To test our models, we have prepared graphene-polymer composites using two siloxane-based 

polymer matrices (see Schematic 1 and methods). One matrix was the commercially available 
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sylgard polymer which was chemically cross-linked by curing (Fig 2A). The other was a 

homemade material made by mixing silicone oil with boric acid to yield a soft polymer similar 

to silly putty which, when mixed with graphene, results in a composite known as G-putty (Fig 

2B).15, 56 To achieve this, graphene nanosheets (Fig 2C) were prepared via liquid phase 

exfoliation with a typical lateral size of ~511nm (Fig 2D) and an average layer thickness, <N> 

= 12 layers  (Fig 2E) was determined from uv-vis measurements using previously published 

metrics.57 Raman spectra for graphene nanosheets as well as G-putty and graphene-sylgard 

composites consist of the D, G and 2D bands as expected. The low intensity of the D band 

indicates the graphene to be defect free while the shape of the 2D band is consistent with few 

layer graphene.57 In each case, we prepared composites for a range of graphene volume 

fractions, before measuring the zero-strain conductivity (0) and the gauge factor (G) via 

resistance-strain measurements, each at a range of graphene volume fractions (see SI for 

electro-mechanical characterisation).  

Shown in figure 3A are values of (0) plotted versus  for both composite types. The solid lines 

represent fits to equation 1 (see table 1 for fit parameters). In addition, figure 3B shows a 

linearized version of figure 2A, illustrating the excellent agreement between data and model. 

In both cases, the fit parameters are consistent with previous results. Here we obtained ,0c = 

3.4vol% and ,0c = 5.5vol% for G-putty and graphene sylgard composites. While these 

percolation thresholds are relatively high, a review of graphene-polymer composites by 

Marsden et al.17 demonstrates that a broad range of percolation threshold values exists, 0.004 

– 5 vol%, for nanocomposites with graphene and other carbon based fillers. Additionally, 

Wang et al.53 report a similar graphene-siloxane based sensor with ,0c = 8.1vol%.  

Our values of c  were 3.3×103 S/m and 4.6×107 S/m for G-putty and graphene-sylgard 

composites. Literature values for c  vary over many orders of magnitude. For example epoxy-

graphene composites have been reported with values as low as c ~ 10-6 S/m,58 whereas 

polystyrene- graphene composites have been shown to give c ~ 105 S/m.54 The values reported 

here lie at the upper end of the literature.  

The percolation exponents were 5.4 and 5.1 for G-putty and graphene sylgard composites. We 

note that the percolation exponents are both somewhat higher than the universal value of tun=2 

in 3D. This is very common29 for polymer-based nanocomposites with higher values of t 

indicating the presence of a broad distribution of inter-nanosheet junction resistances.44-46  
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As is almost28 always observed, the nanocomposite resistance increased with strain (figure 3 

C-D), a fact that is usually attributed to the effect of strain on inter-particle junctions.19, 25, 31  In 

all cases, the fractional resistance change scaled linearly with strain at low strain with some 

non-linearity appearing at strains above ~0.75%. In these curves the low-strain slope is equal 

to the gauge factor which has been extracted for a range of volume fractions for each composite 

type.   

The resultant gauge factors have been plotted versus  in figure 3E for both composite types. 

We have fit both data sets using equation 5a, finding very good matches (see table 1 for fit 

parameters). In both cases, the data (and fit) diverge as ,0c →  from above, in line with the 

prediction of equation 5a. In order to best assess the agreement between data and model, we 

plot the data in a manner which, according to the model, should yield a straight line (figure 

3F). This does indeed yield a straight line, confirming that the model describes the data very 

well and that the approach of treating the ln term in equations 4 b-c is a valid one. In addition, 

these fits introduce a somewhat unexpected fact, that the 0,G   parameter (represented by the 

intercept in figure 3F can be negative. This will be discussed in more detail below.  

As shown in figure 3G, we have also plotted the gauge factor versus the zero-strain composite 

conductivity (reproduced from figure 1). We have fitted both data sets to equation 5b, again 

getting good agreement (see Table 1 for fit parameters). In addition, we demonstrate the fidelity 

of the model to the data by plotting the data in a linearized fashion in figure 3H, again finding 

very good agreement.  

Fit parameters 

As described above, standard strain sensor measurements lead to three distinct data sets (0 vs. 

, G vs.  and G vs. 0) that can be fit using equations 1, 5a and 5b yielding nine fit parameters 

as listed in table 1. It is clear from table 1 that there is some degree of redundancy in these fit 

parameters. For example, the percolation threshold ( ,0c ) can be extracted from fitting both 0 

vs.  and G vs.  data while the percolation exponent (t0) can be extracted from fitting 0 vs.  

and G vs. 0 data sets. In addition, inspection of equations 4b and 4c, in combination with 

equation 1, shows that the parameters 0,G   and 0,G  are actually identical. Thus, under normal 

circumstances, it would not be necessary to fit all three data sets, with most researchers 

probably opting to fit only 0 vs.  and G vs. .  
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While the percolation fit parameters ( ,0c , ,0c  and 0t ) are well known, obviously the 

parameters where 0,G  , 1G , 0,G   and 1  will be new to readers.  It is important to assess the 

range of values these parameters can take in composites. To achieve this, we have used 

equations 5 a-b to fit the published data sets shown in figure 1 (see SI). This analysis shows 

that 0,G   and 0,G  can both display values between -200 and 80. In addition, we find the 

minimum ranges of 1G  and 1 to be 
2 2

110 10G−   , and 
4 13

110 10−    (see SI). 

 

Rate of change of percolation parameters with strain 

The analysis above shows equations 5 a-b to accurately represent experimental data. However, 

it would be ultimately more useful to determine how accurately equations 4b-c match 

experimental data, as it is these equations which contain the physics describing the 

piezoresistive process. As we already have data for ,0c , ,0c  and 0t , testing these equations 

requires knowledge of  ( )
0

ln /cd d   , ( )
0

/cd d   and ( )
0

/dt d . To obtain these parameters, 

we first take the resistance versus strain measurements (at 0.2% strain increments) recorded for 

various volume fractions (e.g figure 3 C-D) and convert them to resistance versus volume 

fraction data sets, each at various strains (limiting ourselves to strains from 0 to 2%). For each 

strain, the set of resistances were converted to conductivity assuming constant sample volume:

20

0

( 1)
L

R
A

 = +          (6) 

where L0 and A0 are the zero-strain sample length and cross-sectional area. This procedure 

yields a set of conductivity versus volume fraction data sets, each at a different strain. Examples 

of such curves, associated with strains of 0% and 2% are shown in figures 4 A-B. These curves 

clearly show slight reductions in conductivity with strain at all volume fractions. These curves 

were then fit to the percolation scaling law (equation 1) yielding values of ln c , c  and t  as a 

function of strain for each composite as plotted in figure 4 C-H. 

As shown in figures 4 C-D, both composites show reductions in ln c  with increasing strain, 

although for the graphene-sylgard composites the change is small compared to the error bars. 

Notwithstanding the error, the low-strain values of ( )
0

ln /cd d   are -4.4 and -120 for 

graphene-sylgard and G-putty composites respectively. This can be compared with values of 
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ln /cd d   -30 which can be extracted from ref32. As described above, we expect these slopes 

to be negative.  

The values of 0ln /cd d kd  = −  are different by a factor of 27 between the graphene-sylgard 

and G-putty composites. If a non-trivial amount of inter-particle charge transport is to occur, 

the value of d0 must lie in a relatively narrow range (d0 can never be less than the van der Waals 

distance while values greater than a few nm will result in negligible tunnelling current). This 

means that much of this large difference is probably associated with variations in k between 

composites. As k is presumably controlled by the details of the inter-particle potential barrier, 

this shows that the nature of the junction can have a significant impact on the gauge factor. 

Both composites also show reductions in t with increasing strain (figures 4E-F). However, as 

before, the graphene-sylgard composites show a small change compared to the size of the error 

bars. The low-strain values of ( )
0

/dt d  are -4.2 and -33 for graphene-sylgard and G-putty 

composites respectively. Both of these results show a reduction in t with strain, consistent with 

the only other published work we could find on this topic.32 Zhang et al investigated 

electromechanical properties of  MWCNT- polyurethane composites, finding ( )
0

/dt d =-8.32 

We note that this value has the same sign as ( )
0

ln /cd d  , as indicated above. 

As shown in both figure 4 G-H, both composites show a clear increase of percolation threshold 

with strain, leading to low-strain slopes, ( )
0

/cd d  , of 0.07 and 0.5 for graphene-sylgard and 

G-putty composites respectively. These results agree with previous studies which showed 

increases in percolation threshold both with strain32 and under alignment.59 For example, Zhang 

et al. measured ( )
0

/cd d  =0.004 for polyurethane-nanotube composites.32 Such positive 

slopes are to be expected as described above.  

 

Using these derivatives to model the gauge factor 

Once values for all of the quantities in equations 4b and 4c are known, these equations can be 

used to plot numerical graphs of G vs.  and G vs. 0. Comparison with experimental data 

would provide evidence as to the accuracy of equations 4 b and c. Substituting  values of ,0c

, ,0c  and 0t  from table 1 (choosing the values appropriate to each graph and each material), 

as well as values for  ( )
0

ln /cd d  , ( )
0

/cd d   and ( )
0

/dt d  (table 2) for both graphene-
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sylgard and G-putty composites into equations 4b and c yields plots of G vs.  and G vs. 0 as 

shown in figure 4 (black lines). These curves match the experimental data extremely well, 

illustrating the validity of our approach. 

This agreement between model-prediction and data allows us to assess the magnitude of the 

contributions of each term in equations 4b-c. We use the same parameters as before to plot 

each term individually on each panel in figure 5. The first thing to note is that the second term 

(blue line) depends only weakly on  and 0 justifying our assertion that the ln terms could be 

treated as constant. In addition, the first (green line) and third (red line) terms are positive while 

the second term (blue line) is negative as described above. In addition, the first and second 

terms are similar in magnitude which means that they somewhat cancel each other out. 

Depending on the degree of cancelation, this can result in relative small or negative values of 

0,G   and 0,G  , limiting the positive contribution of the first two terms to the gauge factor. 

Essentially, this means that the third term can be particularly important, especially for volume 

fractions approaching the percolation threshold. 

The fact that equations 4b and 4c describe experimental data so well means we should revisit 

the assertion, made earlier, that these equations should not be used to fit data (we suggested 

using equations 5a-b). Both equation 4b and 4c have 5 fit parameters, which is too many to 

allow reliable fitting of standard data sets. However, it is worth considering if equations 4b and 

4c can be used for fitting data in order to obtain values for  /cd d  , /cd d   and /dt d  if 

the percolation fit parameters ( ,0c , ,0c , 0t ) were used as fixed values. We attempted to 

achieve this for the graphene-sylgard and G-putty data sets as shown in the SI. We achieved 

mixed results, obtaining some reasonable values of /cd d  , /cd d   and /dt d  and some 

results which were far from the expected values or which had large errors. We believe the main 

problem here is associated with the limited number of data points per data set (6 in this case). 

Although such data sets are standard or even extensive compared to the literature, they are 

clearly not enough to reliably extract the derivatives. However, this might be addressed in 

future, simply by fabricating larger sample sets with more filler volume fractions, leading to 

more data points per data set. 

 

Factors effecting gauge factor 
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Now that it is reasonably clear that equations 4b and 4c can quantitatively describe 

experimental data, it is worth considering what we require of each parameter in order to 

maximise G. For simplicity, we will focus on equation 4b. 

Ideally, we would want the sum of the first two terms to be large and positive. Given its 

expected negative sign, this means we want ( )
0

| ln / |cd d  to be as large as possible to 

maximise the first term. In addition, because we expect ( )
0

/dt d  and so the entire second 

term to be negative, we need ( )
0

| / |dt d  to be small while we would like t0 to be large. 

However, if, as described above ( ) ( )
0 0

ln / /cd d dt d    , it is clearly not possible to achieve 

these conditions simultaneously. If it were possible to engineer the properties of the composite, 

the most pragmatic strategy might be to maximise ( )
0

| ln / |cd d   and t0 in the hope that 

( )
0

| / |dt d  is not too large to negatively affect G. Maximising ( )
0

| ln / |cd d   means 

maximising the product kd0 mentioned above. Clearly, to do this requires an understanding of 

the inter-particle transport mechanism and so k. However, if for example, the relevant 

mechanism is Simmon’s tunnelling as assumed in refs 19, 30, then maximisation of k requires 

maximisation of the height of the inter-particle tunnelling barrier. This might be achievable by 

coating the conducting particles with a wide-bandgap insulator. 

The third term in equation 4b is less ambiguous. This term will always be positive and will be 

maximised for large values of t0 and ( )
0

/cd d  . As mentioned above t0 is associated with the 

width of the distribution of inter-particle junction resistances, a parameter that might somehow 

be engineered. The nature of ( )
0

/cd d   is less clear. However, we note that if t0 is known (for 

example by fitting conductivity data), ( )
0

/cd d   can be obtained from G1 (obtained by fitting 

G vs.  data to equation 5a). To shed more light on what values of ( )
0

/cd d   are possible, we 

estimated ( )
0

/cd d  by fitting the literature data shown in figure 1 (see SI) to obtain G1. These 

values were combined with the t0 values from figure S9B (here we took the average of both t0 

values for each material) to obtain ( )
0

/cd d  . To illustrate these values, we plot the resultant 

values of ( )
0

/cd d   versus t0 as shown in figure 5. We find a well-defined relationship with 

larger values of t0 leading to larger values of ( )
0

/cd d  .  

We can understand this relationship as follows. Large values of t0 indicate a broad distribution 

of inter-particle junction resistances. Consider a composite with large t0 very close to the 
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percolation threshold. Under these circumstances, only one complete current path exists which 

will have at least one bottleneck. The larger the value of t0, the larger the probability is that the 

limiting inter-particle junction is one of high resistance. Because high-resistance junctions are 

likely to be associated with large inter-particle separation (
kd

JR e ), they are more likely to 

be broken under strain. Such breakage will destroy the current path, shifting the percolation 

threshold (at that strain) to higher filler volume fraction. We expect such circumstances to lead 

to high ( )
0

/cd d  , illustrating the link between this parameter and t0. 

The discussion above illustrates the importance of t0. This is probably the most important 

parameter of all due to its double influence on the third term in equation 4b as well as its role 

in reducing the magnitude of the (negative) second term. We believe that the maximisation of 

G would be significantly enhanced if it became possible to find ways to engineer composites 

to have high values of t0. 

CONCLUSION 

In conclusion, we have used percolation theory to develop a model relating the nanocomposite 

gauge factor (sensitivity), to filler volume fraction in piezoresistive sensors. This model 

predicts the gauge factor to diverge as the filler volume fraction approaches the percolation 

threshold from above, a key feature observed experimentally for nanocomposite sensors. In 

addition, alongside the widely considered contribution from the interparticle resistance, the 

model shows the gauge factor to depend strongly on effects associated with the network of 

filler-particles.  

The model is in good agreement with experimental data, both measured here and extracted 

from the literature. In addition, once the percolation fit parameters and their strain-derivatives 

were independently obtained from experimental data and inserted into the model, gauge factors 

could be predicted to a good degree of accuracy.  

These results are important for two reasons. Firstly, our equations can be used to fit 

experimental data, yielding figures of merit for piezoresistive performance. This allows the 

comparison of strain sensors both with each other and with the literature. More importantly, 

this work shows the response of composite strain sensors to be more complex than previously 

thought and shows the effect of strain on the particle network to be at least as important as the 

effect of strain on the interparticle resistance. 

METHODS 
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Graphene 

A graphene dispersion was prepared by ultra-sonic tip sonication (Hielscher UP200S, 200 W 

24 kHz) of graphite (Branwell, Graphite Grade RFL 99.5) in 1-methyl-2-pyrrolidone (NMP) 

(Sigma Aldrich, HPLC Grade) at a concentration of 100mg/ml for 72hrs at an amplitude of 

60%. The resulting dispersion then undergoes mild centrifugation at 1500rpm for 90 mins to 

remove unexfoliated aggregates and large nanosheets. The supernatant is then vacuum filtered 

on a 0.1um nylon membrane, forming a thick disk of re-aggregated graphene nanosheets. This 

disk was then ground into a fine powder using a mortar & pestle before being added to separate 

solutions of Chloroform (10mg/ml) and IPA (1mg/ml). Graphene was then redispersed in each 

solvent by tip sonication for 90mins at 40% amplitude to form stock solutions. 

G-Putty 

G-putty is a viscoelastic siloxane-based graphene composite described in previous works.15, 56  

Firstly, silicone oil is partially crosslinked using boric acid which results in the formation of a 

material similar to Silly putty®. 2ml of Silicone oil (VWR CAS NO: 63148-62-9, 350 cSt) was 

added to a 28ml glass vial. Boric Acid (Sigma Aldrich 99.999% trace metal basis CAS: 10043-

35-3) was ground with a mortar and pestle until a fine powder was formed. This powder was 

then added to the silicone oil at a concentration of 0.4 g/ml and stirred by magnetic stirrer bars 

until the mixture was homogenous and opaque. The glass vials were then added 6 at a time to 

a specially prepared aluminium holder. 

An oil bath was pre-heated to 175°C (IKA C-MAG HS 7 hotplate with the temperature 

controlled and monitored using an ETS-D5 thermometer), the aluminium holder was then 

submerged in the bath and the temperature was increased to 225°C. Silicone oil/Boric acid 

mixture was cured for ~2.5hrs (including heating time from 175°C to 225°C) under continuous 

magnetic stirring. The vials were then removed from the oil bath and allowed to cool. Once 

cooled the resulting material was a viscoelastic gum, which could be removed from the vials 

with a spatula. 

0.5g of the viscoelastic gum was added to a beaker with the appropriate amount graphene-

chloroform solution, depending on the required graphene loading. Under magnetic stirring the 

mixture was heated to 40°C and the solvent was allowed to evaporate until a thick black viscous 

liquid had formed. The beaker was then removed from the heat and left to stand for 12hrs to 

ensure that all the solvent had evaporated. The resulting composite was removed from the 

beaker and repeatedly folded over itself to ensure homogeneity of the sample. 

Graphene-Sylgard 
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0.4g of Sylgard 170® (Dow Corning) Part A and Part B were added to a beaker containing 

10ml of the graphene-IPA dispersion and stirred under magnetic stirring for 2 minutes. Further 

graphene-IPA was then added depending on the required graphene loading. The mixture was 

gently heated to 40°C and solvent was allowed to evaporate under continuous stirring. Once 

almost all solvent the solvent had evaporated the mixture was transferred into Teflon moulds 

(35×35mm). The mixture was left to stand for 12hrs to ensure complete solvent evaporation 

and then cured at 100°C for 1hr in an oven. The final composite was removed from the mould 

and measured ~600um in thickness. Details on composite characterisation can be found in the 

SI 

 

Supporting Information. Detailed methods, derivations, detailed characterisation, literature 

data and fits, fit parameters.  
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FIGURES 

 

Schematic 1: Nanosheets and polymer are mixed in solution to yield composite suspensions. 

The solvent can be removed to yield a polymer-nanosheet composite. Applying strain to this 

composite deforms the nanosheet network, resulting in a change in its resistance. 
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Figure 1: Literature data15, 19, 48 as well as data collected here for Gauge factor (G) as a function 

of zero-strain conductivity (0) for a range of nanocomposites (see SI for more data). All plots 

indicate an approximate power law relationship between these parameters. 
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Figure 2: Characterisation of G-putty and graphene-sylgard composites: A-B) Photograph of 

graphene-sylgard (A) and  G-putty (B) composites. C) TEM images of graphene flakes used in 

composite fabrication. D) Histogram of Nanosheet length <L> = 511m, was acquired through 

analysis of 368 nanosheets E) Uv-vis extinction spectra of graphene dispersion used to make 

composites with nanosheet thickness estimated using published metrics: <N> ~ 12 layers, F) 

Raman spectra for graphene nanosheets as well as G-putty and graphene-sylgard composites. 
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Figure 3: Electromechanical data for polymer-graphene composites prepared and tested during 

this work. The composites were prepared as described in the text using two different 

polysiloxane-based polymers filled with liquid-exfoliated graphene. A-B) Zero-strain 

conductivity plotted as a function of A) graphene volume fraction, , and B) zero-strain reduced 

volume fraction, -c,0. The solid lines are fits to the percolation scaling law, Eq.1                          

G-putty: ( ,0c = 3.3 × 103 S/m, ,0c = 3.39% and 0t  = 5.38),  graphene-sylgard: ( ,0c = 4.60 × 
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107 S/m, ,0c = 5.51% and 0t  = 5.12).  C-D) Fractional resistance change plotted versus strain 

for two different graphene loading levels for the G-putty composites (C) and graphene-sylgard 

composites (D). E-F) Gauge factor plotted versus E) graphene volume fraction, , and F) 

inverse of zero-strain reduced volume fraction, (-c,0)
-1. The solid lines are fits to equation 5a. 

G-putty: ( ,0c  = 3.99% , 1G = 0.83, 0,G  = 63), graphene-syglard: ( ,0c = 5.51%, 1G = 0.32, 0,G 

= -5). G-H) Gauge factor versus conductivity data plotted as G vs. 0 (G) and G-G0, vs. 0 

(H). The solid line is a fit to Eq.5b. G-putty: ( 0t = 2.7, s
1
= 0.41, 0,G  = 75), graphene-syglard: 

( 0t = 4.3, s
1
 = 6, 0,G  = 0.5). 
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Figure 4: Strain dependent percolation data. A-B) Composite conductivity plotted versus 

graphene volume fraction for the G-putty composites (A) and graphene-sylgard composites 

(B). The lines are fits to the percolation scaling law (Eq.1) which outputs the fit parameters 

,0c , ,0c  and 0t . For both composites, such fits were obtained for a range of strain values. C-

H) Plots of percolation parameters, ln(c) (E-F), percolation exponent, t, (G-H) and percolation 

threshold, c (C-D), all plotted versus strain for both composite types (graphene-sylgard in left 

column, G-putty in right column). The lines represent linear fits which give the slope of the 

curves at low strain.  
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Figure 5: Plotting model predictions. Experimental gauge factor data plotted versus graphene 

volume fraction (A-B) and zero-strain conductivity (C-D) for graphene-sylgard (A,C) and G-

putty (B,D) composites. In each panel, the black lines are obtained by plotting either equation 

5b (A-B) or 5a (C-D) using the parameters obtained in figure 3. In each panel, the green, blue 

and red lines represent the first, second and third terms respectively in equations 5a and 5b. 
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Figure 6: Values of ( )
0

/cd d   plotted versus t0 for the literature data reported in figure 1 (solid 

symbols, see SI for fits) as well as the samples prepared in this work (open symbols). The 

values for 0t  are the averages of the values found by fitting the 0 vs.  and G vs. 0 data sets. 
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Table 1: Various parameters obtained from linearized fits of data to Equations 1 (0 vs. ), 5a 

(G vs. ) and 5b (G vs. 0). Corresponding plots are shown in Figure 2 (B,F and H). 

 G- sylgard G-putty 

From fitting 0 vs.  

,0( )cLn   17.6 ± 1.1 8.1 ± 0.6 

,0c  0.055 ± 0.01 0.034 ± 0.01 

0t  5.1 ± 0.2 5.4 ± 0.3 

From fitting G vs.  

0,G   -5 ± 63 ± 

1G   0.32 ± 0.83 ± 

,0c   0.055 ± 0.001 0.040 ± 0.001 

From fitting G vs. 0 

0,G    0.5 ± 0.1 75 ± 5 

1 (S/m) 2220 ± 110 0.084 ± 0.042 
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0t  4.27 ± 0.20 2.7 ± 0.3 

 

Table 2: Parameter values (Equation 4a,b,c) obtained from linear fits at low strain to the 

percolation data presented in Figure 3 (C-H). 

 

 ( )
0

ln /cd d   ( )
0

/cd d   ( )
0

/dt d  

Expected sign -ve +ve -ve 

G-Sylgard value -4.4 0.07 -4.2 

G-putty value -120 0.5 -33 

 

 

SUPPOSRTING INFORMATION 

Composite characterisation methods; electromechanical composite characterisation; extracted 

fit parameters and fitted data from literature sources 
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