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Abstract 

Two-dimensional materials such as transitional metal dichalcogenides exhibit 

unique optical and electrical properties. Here we report on the varying optical properties 

of CVD grown MoS2 monolayer flakes with different shapes. In particular, it is 

observed that the perimeter and the central region of the flakes have non-uniform 

photoluminescence (PL) energy and intensity. We quantified these effects 

systematically and propose that thermally induced strain during growth is the origin. 

The strain relaxation after transfer of the MoS2 flakes supports this explanation.  

Detailed investigations of the spatial distribution of the PL energy reveal that 

depending on the shape of the MoS2 flakes, the width of the strain field is different. 

Thus, our results help to elucidate the fundamental mechanisms responsible for the 

differences in PL and Raman signals between the perimeter region and the center region 

of monolayer MoS2 and suggest that the induced strain plays an important role in the 

growth of monolayer materials. 
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I.INTRODUCTION 

Two-dimensional (2D) materials, including graphene, black phosphorene (BP) and 

transition metal dichalcogenides (TMDs), have attracted intense attention due to their 

promising properties[1-3]. At the monolayer limit, electrons and holes are confined in 

these 2D materials, which give rise to a variety of exotic physics phenomena. 

Monolayer MoS2, with a direct bandgap of 1.8 eV, is an interesting semiconductor 

material with potential applications in spintronic devices, catalysis and optoelectronic 

devices[1, 4-6]. To date, chemical vapor deposition (CVD) has shown to be a very 

effective and feasible approach to obtain monolayer TMDs. It is considered to be the 

most promising approach for device applications, as large-scale MoS2 growth of high 

quality, monolayers on SiO2/Si and other insulating substrates can be achieved[7-9]. 

However, thickness, crystallinity, defects, and strain depend on the precise control of 

CVD growth conditions like the temperature, precursor delivery, substrate, pressure, 

and flow rate. Thus, a straight forward and quick investigation of the properties of CVD 

grown MoS2 is crucial for understanding the growth and producing tailor-made 

electronic materials.  

The edges of 2D materials are one of their most interesting aspects as they 

influence the physical properties, including bandgap, superconductivity, mobility, and 

magnetism[10-14]. It is known that various types of edges have different selectivity 

towards functionalization with chemical and biological groups[15]. Moreover, catalytic 

activity has also been found to be related to the edge sites in MoS2[5, 16]. The edge 

structure is also pivotal for the formation of continuous films in CVD growth of 

monolayers. However, only STM and HRTEM studies, which are costly, time 

consuming and require transfer onto suitable substrates, are capable of resolving the 

edge structure[17]. Only a few studies on the optical properties of the edges in CVD 

grown MoS2 monolayers exist[18]. Monitoring the peak position, full width at half 

maximum (FWHM), and intensity of photoluminescence (PL) and Raman have been 

proven to be fast, non-destructive and effective methods to probe the number of layers, 

doping, defects, and strain of 2D materials[19-23]. Through PL imaging, variations in 



PL intensities have been observed in monolayer TMDs. For the triangular CVD grown 

monolayer of WS2, very high PL intensities near the edge have been related to structural 

imperfection and doping[24]. So far, Liu et al. observed the heterogeneity in PL 

intensities in MoS2 atomic layers and ascribed the changes to strain effects[25]. Further 

Bao et al. suggested that various PL widths and intensities in MoS2 may be related to 

S-deficiencies[26].  

In this paper, we report spatially resolved PL and Raman studies on CVD grown 

MoS2 flakes with various shapes. The PL signal (peak position and intensity) and the 

E1
2g Raman mode at the perimeter are strongly increased in comparison to the center of 

the flakes, while the FWHM of the A exciton and the position of the A1g Raman mode 

are uniform over the whole flake. Significantly, the width of the region with increased 

PL varies between flakes with different edges. Comparisons of as-grown and 

transferred MoS2 monolayers reveal that non-uniform tensile strain is induced during 

growth giving rise to the PL and Raman non-uniformities. Our results help to elucidate 

the fundamental mechanisms contributing to the differences in PL and Raman signals 

between the perimeter region and the center region of monolayer MoS2, and effects of 

the induced strain during CVD growth of TMDs.  

II. EXPERIMENTAL SECTION 

A. CVD growth of monolayer MoS2 flakes 

The MoS2 flakes were synthesized on 290 nm SiO2/Si in a two-zone CVD furnace 

using a microcavity reactor as Mo precursor supply. The growth temperature is 750℃ 

with a pressure of 0.9 mbar, as described in detail in Ref[27]. A PMMA support 

technique was used to transfer the MoS2 flakes onto another SiO2/Si substrate, and 

details of the method is described as reported[28]. 

B. SEM and AFM Characterization 

The morphologies and microstructures of the MoS2 flakes were characterized by 

using scanning electron microscope (SEM, JEOL JSM-6700F) at 10 keV. Atomic force 



microscopy (AFM, Anasys NanoIR2s) studies were taken in air at ambient condition 

with tapping mode. 

C. Raman and PL Analysis 

Raman and PL spectra were collected using a Witec alpha 300R with a 532 nm 

excitation laser with a 100 x objective lens (NA=0.95) was at room temperature. The 

laser power was set at 200 μW for PL measurement in order to avoid laser heating and 

any other damages produced by the laser. For Raman measurements, a spectral grating 

with 1800 lines/mm was used whereas for PL the spectral grating was 600 lines/mm. 

Maps were generated by taking approx. 7 spectra/μm in both x and y directions. 

III. RESULTS AND DISCUSSION 

The MoS2 flakes studied in this paper were grown on 290 nm SiO2/Si substrates 

with a micro-cavity CVD set-up previously described (also see the experimental section) 

[27]. Fig. 1a provides a typical AFM image of one of the as-grown MoS2 nanoflakes. 

The identical color contrast manifests uniform thickness of the as-grown MoS2 

structure. The thickness of the MoS2 flake was further confirmed by the height profile 

in the inset of Fig. 1a, it shows that the MoS2 flake has a measured thickness of 0.85 

nm, at both edges and varies flat in between, which is in conformity with that of 

monolayer MoS2 reported by previous studies[29, 30].  

For intrinsic monolayer MoS2, two pronounced PL peaks at approximately 1.85 

eV (A) and 2.05 eV (B) can be observed. The A peak arises from the neutral exciton 

emission of the direct transition at the K-point, and the B peak is due to the exciton 

emission from a second direct transition between the conduction band and a lower-lying 

valence band[4, 31]. However, numerous factors may contribute to the relative energies 

and populations of the A exciton in MoS2, including strain, thickness, structural defect 

densities, and doping[4, 20, 21, 32]. Therefore, detailed PL characterization of the MoS2 

flakes has been carried out. A direct comparison of the typical spectra taken at the center 

and the edge of a flake is shown in Fig. 1b. The charged A exciton at the center shows 



a peak position of 1.83 eV, and the charged B exciton is at 1.97 eV. The edge site shows 

a blue shift of about 30 meV to 1.86 eV and 2.01 eV for the A and B exciton, respectively. 

The map of the peak position of the A exciton in Fig. 1c exhibits a significant contrast 

between the center region and the perimeter region. This contrast shows an increase of 

A peak energy from center to perimeter of the monolayer flake. The map of integrated 

PL intensity of the A peak in Fig. 1d, also shows non-uniformities, with higher 

intensities at the perimeter. In contrast, decreasing intensity in the outer region was 

reported by Van der Zande et al.[33]. The inset of Fig. 1c and d present the 

corresponding line scan of PL position and intensity, respectively, which further 

confirms the heterogeneity of the PL within a flake.  

 

 

Fig. 1 (a) AFM image of MoS2 monolayer on SiO2/Si substrate and corresponding height 

profile (inset) along the blue line. (b) PL spectra for the perimeter region and the center region, 

respectively. (c) Map of the position of the A exciton of an individual 1L-MoS2 flake and 



corresponding line scanning profile (inset) along the blue line; (d) Map of the PL intensity of the A 

exciton of the same flake and corresponding profile (inset) along the blue line. 

 

Raman spectroscopy is a very powerful tool to measure not only the layer number 

but also the doping and strain in 2D materials[34, 35]. Typically, 2H-MoS2 has two 

main vibrational Raman modes: E1
2g and A1g, where E1

2g represents the in-plane 

vibration mode of molybdenum and sulfur atoms and A1g is the out-of-plane vibration 

mode of sulfur atoms[36]. According to previous studies, in typical 2H-type TMDs, the 

position of A1g mode is known to vary with external electrostatic doping, while the E1
2g 

mode is sensitive to the strain[34, 35]. Fig. 2a shows a Raman spectrum of E1
2g and A1g 

modes in the perimeter and in the center of monolayer MoS2, respectively. The two 

characteristic E1
2g and A1g modes appear at 385.2 cm-1 and 404.6 cm-1 in the perimeter, 

while Raman shifts of 383.9 cm-1 and 404.5 cm-1 are observed in the center. The 

frequency difference of ~19.4 and 20.6 cm-1 between those two peaks agrees well with 

that of monolayer MoS2. It is noteworthy that the E1
2g mode exhibits a red shift from 

center to the perimeter, while the A1g peak experiences hardly any shift. To 

quantitatively analyze the Raman vibration modes, the peak position of the E1
2g and A1g 

modes are plotted as a function of intensity for several points on the map in the outer 

and interior region. As we can see in Fig. 2b, it is evident that the E1
2g mode appears in 

two distinct spectral regions (compared pink and blue data points): 384.5 - 385 cm-1 for 

the perimeter sites and 383.5 - 384 cm-1 for the center sites. The relative intensities of 

the peaks observed at the center and perimeter region are similar. On the other hand, 

the A1g mode remains at around 404.5 cm-1 in all sites. Additionally, we mapped the 

Raman modes of as-prepared MoS2. The E1
2g peak position across the whole flake is 

shown in Fig. 2c. This mode varies between the perimeter and the center of the flake. 

However, as shown in Fig. 2d, the A1g peak position shows spatial uniformities. Since 

the position of the A1g mode is known to vary with external electrostatic doping, and 

position of the E1
2g mode is related to the strain, it is proposed that there is no external 

electrostatic doping, but a significant strain exists across the entire MoS2 layer.  

 



 

Fig. 2 (a) Raman spectrum of the perimeter and center region of a MoS2 flake. (b) Raman peak 

intensities plotted against the peak position in the center (blue) and in the perimeter (pink) region. 

(c,d ) Map of the E1
2g and A1g peak intensity of an individual 1L-MoS2 flake. 

 

According to previous reports, thermally-induced local strain occurs during the 

growth and may arise from the layer-substrate lattice mismatch. At the end of the 

growth process, the samples cool rapidly, and the thermal expansion coefficient 

difference between SiO2 substrate and MoS2 has a significant contraction mismatch. If 

the as grown MoS2 is much thinner than the substrate, the substrate is essentially stress-

free and all the strain will be borne by the grown MoS2[37]. For temperature ranging 

from 20 ℃ to 850 ℃, the thermal expansion coefficient of MoS2 lattice can be given 

by [25, 38]:  

              𝑎 = 3.1621 + 0.6007 × 10−5𝑡 + 0.3479 × 10−7𝑡2            (1) 

where t is the sample temperature in ℃. Compared to MoS2, amorphous SiO2 has very 

low thermal expansion coefficient of ~0.56 ×10-7 /℃2, which is too low to affect the 

calculation result. Thus, by ignoring the value of SiO2, the tensile strain in monolayer 



MoS2 then amounts to: 

              ϵ =
𝑎𝑀𝑜𝑆2(𝑡=750°∁)−𝑎𝑀𝑜𝑆2(𝑡=20°∁)

𝑎𝑀𝑜𝑆2(𝑡=20°∁)
≈ 0.76%                     (2) 

On the basis of the growth mechanisms of 2D materials, the growth of MoS2 will begin 

from the nucleation center to the perimeter[39]. As a result, the strain field propagates 

from the center to the circumference, thus, the thermally-induced strain might have a 

lesser effect on the perimeter of the flakes. Previous works show reduction in A exciton 

peak energy at a rate of 59 meV/% strain (0.76% strain to ~35 meV reduction), and E1
2g 

peak shifts at 1.0 ± 1 cm−1%, which aligns quite well with our PL and Raman 

measurements[40]. 

  To further confirm the thermally-induced strain of the MoS2 monolayers, we 

transferred one of the samples onto another SiO2/Si substrate with a polymer supported 

wet transfer as described in the experimental section. During this process, the strain of 

the MoS2 monolayer can be released. Fig. 3 (a) – (c) are the PL position maps from the 

A exciton of three MoS2 flakes with different shapes, after transfer. It can be seen clearly 

that the transferred MoS2 flakes present a uniform brightness compared with the flakes 

before transfer (Fig. 1c), this indicates the strain release after transfer for all the flakes. 

This supports our observation that the non-uniform PL is originally from the substrate-

induce strain during the growth. 

 

Fig. 3 Maps of the position of the A exciton of MoS2 flakes with different shapes, after 

transfer. 

 

    Various shapes of 2D MoS2 flakes are formed during CVD growth. Fig. 4a and b 

shows SEM images of monolayer MoS2 islands in different locations on the same 



substrate. Fig. 4a shows flakes with straight edges, while Fig. 4b shows others have 

smooth and less-straight edges, we ascribe the flakes in Fig. 4a as group I (straight edges) 

and Fig. 4b as group II (smooth edges). The nature of these edges are pivotal for the 

formation of continuous films in CVD growth and contribute to the properties of the 

individual flakes. As discussed earlier, outside of STM and HRTEM, identification of 

the edge type of individual flakes is difficult. While using optical properties of the edges 

for identification is in its infancy, as a non-destructive method, high resolution PL 

mapping might be an alternative to distinguish the edge difference since it has been 

proven to have the ability to identify the grain boundaries (GBs) in the previous studies 

[17, 33]. 

It is known that armchair edges have alternating S and Mo atoms, while zigzag 

edges are terminated by S or Mo only. Van der Zande et al. suggested that from the 

optical images of MoS2, the sharper, straighter edges are Mo-zigzag terminated[33].  

 

Fig. 4 Typical SEM images of CVD grown MoS2 sample with (a) sharp and straight edges and 

(b) smooth and obtuse edges. 

 

Consequently, PL peak position maps were recorded for various flakes in group I 

and II. The A exciton PL mapping in Fig. 5 a-d (5a and b are from group I, while 5c and 

d are from group II) shows significant differences between the groups. The width of the 

area with shifted PL varies for the flakes in group I and II. For every size of flakes, the 

widths of the shifted-PL perimeter region of group II are wider than those in group I, 

we will refer to the width of this distinct PL perimeter region as the “perimeter width”. 



The perimeter widths are estimated to be 1.3 μm for group I, while in group II they are 

significantly wider at approximately 2.85 μm. In conclusion, high-resolution confocal 

PL maps not only precisely quantify the difference of the A exciton peak position 

between the perimeter and the center of MoS2 flakes, but also clearly present that 

different edge types will give rise to different perimeter widths. In other words, 

combined with strain effects, the perimeter width of the flakes is indicative of the 

sample edge type with respect to PL position maps. 

 

Fig. 5 (a, b) PL A exciton peak position maps of MoS2 flakes with sharp and straight edges and 

(c, d) smooth and obtuse edges. (e-h) FWHM maps of the A exciton of MoS2 flakes 

 

Edge defects are also considered to contribute to the full width at half maxima 

(FWHM) changes of PL[24], however, our PL maps show minimal FWHM changes 

(Fig. 5e-h). Thus, we exclude edge defects as the main mechanism for the differences 

observed in the PL responses. That is, thermally-induced strain becomes the likely 

reason for the variations of the PL in our MoS2 nanoflakes. During the growth process, 

the strain initiates from the interior and then propagates to the edge. As the growth rate 

of the armchair, Mo-terminated zigzag, and S-terminated zigzag directions are 

different[41], the degree of strain relaxation on different edges will also be different. 

Thus, the different widths of the perimeter region with shifted PL were observed within 

the two groups. In other words, the changes in PL at the perimeter of the flakes could 



not arise from the edge state or defects alone, the thermal expansion coefficient 

mismatch of the substrate and the induced strain in the center of the flake alongside 

different strain relaxation rates of each edge type makes the most significant 

contribution to the observed PL maps  

IV. CONCLUSION 

In this report, MoS2 monolayer flakes with various shapes grown by CVD were 

characterized by PL and Raman maps to study the structural heterogeneity and strain 

effects. The PL signal peak position, intensity, and the E1
2g Raman mode position show 

significant differences at the edges and in the interior of monolayer flakes, while the 

FWHM of the A exciton and the A1g Raman mode are uniform. This indicates an 

intrinsic tensile strain in MoS2 which likely is induced during the fast cooling process 

after growth.   

For different edge types (straight or smooth edge), different widths of the 

perimeter region have been observed. This difference may be due to various strain 

relaxation rates in MoS2 along the growth direction.  Our results suggest that thermally 

induced non-uniform tensile strain plays a significant role in CVD growth of MoS2 

monolayers, and also helps to elucidate the fundamental mechanisms responsible for 

differences between the perimeter and center of PL and Raman in monolayer MoS2. 
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