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Abstract

Neural Networks have become one of the most successful machine learning algorithms
and are playing a key role in enabling machine vision and speech recognition. Their
computational complexity and memory demands are challenging which limits deployment
in particular within energy-constrained, embedded environments. To address these
challenges, a broad spectrum of customized and heterogeneous hardware architectures
have emerged, often accompanied with co-designed algorithms to extract maximum
benefit out of the hardware. Furthermore, numerous optimization techniques are being
explored to reduce compute and memory requirements while maintaining accuracy. This
results in an abundance of algorithmic and architectural choices, some of which fit specific
use cases better than others and it is not obvious which approach benefits from which
optimization and to what degree. Finally, there is a vast amount of published numbers
that were measured under different deployment settings such as power and operating
modes, batch sizes, thread counts, and stream sizes, and not always using the same
measurement methodologies, which obfuscates this already complex design space even
further.

For system-level designers and computer architects, there is currently no good way
to systematically compare the variety of hardware, algorithm and optimization options.
While a number of benchmarking efforts have emerged in this field, they don’t address
the particular demands of heterogeneous hardware architectures and cover only subsec-
tions of the embedded design space. None of the existing benchmarks support essential
algorithmic optimizations such as quantization inherently. We propose a novel benchmark
suite that addresses this need. QuTiBench is a novel multi-tiered benchmarking meth-
odology, including microbenchmarks and theoretical baselines, that supports algorithmic
optimizations and helps system developers understand the benefits and limitations of
these novel compute architectures. The theoretical level of the benchmark is unique: It
can predict performance and track compute efficiency. Finally, QuTiBench is systematic
with a clear measurement methodology. As such we hope it can help form a basis to
drive future innovation in this field.

We evaluate our benchmarking methodology systematically, initially in the context of
inference, with different types of CNN topologies leveraging both pruning and quantization
as the most promising optimization techniques. We test across a spectrum of FPGA
implementations, GPUs, TPU and VLIW processor, for a selection of systematically
pruned and quantized neural networks (including ResNet50, GoogleNetv1, MobileNetv1,
a VGG derivative, and a multilayer perceptron). We take the full design space into
account including batch sizes, thread counts, stream sizes and operating modes, and
considering power, latency, and throughput at a specific accuracy as figures of merit.

These results validate our approach. We show that the benchmark adequately
represents the potential of this broad spectrum of solutions, and provides sufficient
coverage to drive clarity within the complexity of this design space. The theoretical
analysis was shown to be highly effective in predicting performance and optimal design
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solutions. As a result it has the potential save significant experimentation time. The
microbenchmarks provided interesting system-level insights although we encountered
many practical constraints which limited the amount of experimentation that can be
conducted. Additionally, the systematic measurements exposed typical behaviour for the
different types of hardware architectures. Finally, we’ve provided experimental proof
that the measurement methodology with the distinction between system and compute
level performance illustrates the individual data movement characteristics of the various
hardware platforms.

There is a critical need for community support as well as truly open data access to
generate meaningful research impact. As such we have put significant effort into a web
portal which supports third part contributions and offers downloadable and indexed
access to all measured and theoretical data points. We expect that through this web
portal, our benchmarking efforts can contribute to collective research insights within the
community. Alternatively, some of the novel concepts, such as the theoretical baselines
as well as the systematic measurement aspects, could be potentially adopted in other
large scale benchmarking efforts which already have wider industry support.
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1. INTRODUCTION 3

1 Introduction

1.1 Motivation

The Rising Popularity of Convolutional Neural Networks. Over the last several years,
Convolutional Neural Networks (CNNs)1 have become incredibly successful. Fueled by the
availability of large scale training datasets such as ImageNet as well as the significantly in-
creased floating point compute power made available by the latest generations of Graphics
Processing Units (GPUs), training of sufficiently large networks to interesting accuracy
levels has become possible. The accuracy, typically given in prediction error percentage.
has become comparable to human levels for a diverse set of tasks. A huge variety of
neural networks are increasingly deployed in conjunction with robotics, Advanced Driver
Assistance System (ADAS), security monitors and many other applications. Furthermore,
as they have the theoretical property of being a universal approximator which requires
zero domain expertise, they are increasingly applied to previously unsolved problems, and
sometimes to replace existing algorithms, unless of course the original algorithm is much
lower complexity. In essence, CNNs are going to be present in most parts of technology
and our lives in the future.

The challenge of deploying these networks lies foremost in their compute and memory
intensity, which poses the largest barrier to adoption particularly within the embedded
space where chip area, power, memory and compute availability are at a premium.
According to researchers at Baidu, inference requires often billions of operations and
training for modern algorithms involves tens of single-precision exaflops to converge
and has tens of millions of parameters [1]. Given current hardware capabilities, this
clearly limits their deployment in particular within the embedded space where energy
is at a premium. Further, this comes at a most inopportune moment in time, as the
semiconductor industry is challenged by the end of Moore’s law, where performance
scaling with every subsequent technology node is limited. Additionally the cost per
transistor is on the rise since VLSI manufacturing features have gone below 28nm. This
disincentivizes semiconductor companies to increase a chip’s complexity. As a result,
there will be no immediate relief with upcoming technology nodes and it will be extremely
challenging to address the rising needs of CNNs.

1We are using the term neural network and model synonymously throughout this thesis.
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4 1. INTRODUCTION

Enabling CNN Deployment. To enable the deployment of CNNs in particular within
energy-constrained compute environments, a rise in algorithmic and architectural
innovation has been spawned. We will introduce these here briefly and discuss in much
greater detail in later chapters.

Algorithmic optimizations include topological transformations with pruning and
compression schemes. For example, pruning removes synaptic connections between
neurons in a CNN. For the example in Table 1.1, pruning can significantly reduce the
compute requirements (given in the table in giga operations (GOPs)), down to 30% to be
precise. The resulting implementation shows roughly twice the throughput in frames per
second (fps) and half the latency in milliseconds (msec) with similar power consumption in
Watts (Ws). This is a significant improvement over the baseline implementation prior to
pruning and similar benefits can be observed for many different CNNs. The only downside
of this technique is a small degradation in level of accuracy. The accuracy in this example
is given as top5 which is defined as the models probability to predict the 5 best matching
answers.
Table 1.1: Benefits of pruning on ResNet50, Ultra96 using Xilinx DPU: In this example,
pruning reduces the compute requirements to a third. The resulting implementation shows
roughly twice the throughput and half the latency at almost the same level of accuracy.

ResNet50 Ultra96 GOPs Latency [msec] Throughput [fps] Power [W] top5 acc [%]
baseline (100%) 7.72 78.27 25.5 8.35 91.26
pruned to 30% 2.45 43.3 46.16 8.25 90.16
Summary 0.32x 0.55x 1.81x 0.988x -1.10%

In addition, the general trend towards transprecision computing [2, 3] can be nicely
exploited within this particular application context. The idea is simply to adjust the
precision to the minimum required by the application, through quantization. Let’s
consider the example of CNNs: Neural networks using floating point operations are the
initial choice from the machine learning community, but trained parameters can contain
a lot of redundant information [4]. It has been demonstrated that moving from floating-
point arithmetic to low-precision integer arithmetic only impacts the network accuracy
lightly, especially if the network is retrained [5].

The quantization of neural networks for inference down to 8-bit integers has been
widely adopted and is well supported by designated and optimized software libraries, such
as gemmlowp [6] and the ARM Compute Library [7]. Even further reduced precisions
all the way down to the extreme case of Binary Neural Networks (BNNs) with binary
representations for synapse weights, input and output activations have been shown to
be highly effective. The key computational advantages obtained by using quantized
arithmetic in inference are threefold: Firstly, the quantized weights and activations have
a significantly lower memory footprint and the working set of some Quantized Neural
Networkss (QNNs) may entirely fit into on-chip memory. Fewer off-chip memory accesses
also mean orders of magnitude less energy consumption. Furthermore, as on-chip memory
can deliver much higher bandwidth, the utilization of the compute resources is increased
for a higher performance. For example, binarization reduces the model size of VGG-16 [8]
from 4.4 Gbit to 138 Mbit and that of YOLOv2 [9] from 1.6 Gbit to 50 Mbit. Secondly,
replacing floating-point with fixed-point representations inherently reduces processing
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1.1 MOTIVATION 5

power by orders of magnitude [10]. While the reported study is for 45nm ASICs, Field
Programmable Gate Arrays (FPGAs) follow similar general trends. Finally, the hardware
resource cost of quantized operators is significantly smaller than that of floating-point
ones. This allows a much higher compute density with the same amount of resources
and thereby an easier performance scaling, as the key computation in neural network
inference is repeated multiply-accumulate (MAC) operations. Hardware complexity of
an integer MAC basically grows proportional to the bitwidths of both factors [11]. In
summary, extreme reduced precision neural networks, which can optimize datatypes down
to ternary or even binary representations can bring significant hardware cost savings,
scale performance by orders of magnitude, improve energy efficiency, and all that at
minimal accuracy loss. For example, a ResNet50 [12] reduced precision variant achieves
76.7% top1 and 93.3% top5 accuracy compared to floating point accuracy of 76.9 (93.4%).
Some recent data points are given in Table 1.2 for both top5 and top1 accuracy. Top5
accuracy is as defined above. top1 refers to the probability of the model predicting the
correct answer. As can be seen, reduced precision variants can achieve very interesting
accuracy results compared to the floating point baselines.

Table 1.2: Accuracy of QNNs: This table shows the accuracy of some QNNs compared to
their floating point variants.

Network float top1(top5) RPNN top1(top5)

GoogLeNet [13] 72.9% (91.3%) 68.2% (88.1%)
VGG-like [13] 72.0% (90.5%) 68.8% (88.1%)
ResNet50 [12] 76.9 (93.4%) 76.7% (93.3%)
DenseNet-121 [13] 75.3 (92.5%) 69.6% (89.1%)

The overall potential design trade-offs between accuracy and hardware cost are
illustrated in Figure 1.1[14]. The chart visualizes compromises of application-level
accuracy and corresponding hardware cost. Hardware cost is measured on an FPGA
as a function of programmable resource usage. Floating point CNNs (shown in orange
squares) are by far the most expensive to implement, however with the lowest error rate,
while reduced precision CNNs can offer competitive low error for a significantly reduced
hardware cost. We show different variations of reduced precision CNNs in the figure.
The smaller the precision, the greater the hardware cost savings. Optimal solutions are
positioned along the pareto frontier. We refer to these charts as shown in Figure 1.1 as
pareto graphs and use these throughout the thesis.

Architectural innovation is showcased by a broad range of companies, for example
Google’s TPU [15], numerous start-up companies such as Habana, Nervana, Graphcore,
GROC, Wave Computing and Cerebras, as well as a spectrum of reconfigurable accel-
erators leveraging FPGAs, for example Microsoft’s Brainwave [16]. These ASICs offer
interesting implementation alternatives in addition to common CPUs, and SIMD-based
vector processors such as GPUs. These latest generations of novel chips, typically re-
ferred to as Deep Learning Processing Unit (DPU), are not only very different regarding
their architectures, they are also increasingly complex leveraging heterogeneous compute
fabrics.

For DPUs, we distinguish between tensor processors which leverage a matrix of
processing engines (MPE) and spatial architectures which can be further specialized
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6 1. INTRODUCTION

Figure 1.1: Accuracy-hardware cost trade-offs: The chart visualizes compromises of application-
level accuracy and corresponding hardware cost. Floating point CNNs are by far the most
expensive to implement, while reduced precision CNNs can offer competitive low error for a
significantly reduced hardware cost. Optimal design points are positioned along the pareto
frontier, which is represented through the dotted line.

for specific topologies using FPGAs. CPUs are the most general solution but high in
power. GPUs and DPUs offer highest performance, whereby GPU are more expensive in
regards to energy cost. Spatial DPU architectures excel at latency and provide highest
compute efficiency through maximized customization. CPUs, GPUs and DPUs (MPE
flavour) use a sequential layer by layer compute model whereas spatial DPUs execute
all layers of the network concurrently. Hardened topologies in form of ASICs, CPU and
GPU offer a fixed set of native dataypes, whereas FPGAs can adopt any precision and
numerical representation, which provides utmost flexibility and leverages optimization
with quantization to the maximum, whereas hardened approaches need to default to the
next higher supported precision. However the programmability in the FPGA fabric also
comes at speed and energy cost.

There is no doubt that each of these architectures brings their own inherent benefits.
To unleash the benefits associated with the specialized features of the various hardware
architectures, the algorithms need to be co-designed. For example, to take advantage
of a reduced precision 2bit integer algorithmic logic unit (ALU), the algorithm needs to
describe the associated datatypes and operations as 2bit integer. Memory locations might
have to be coded explicitly, and similarly, SIMD operations or pipeline architectures
often needs explicit instrumentation of the code. The result is, that in order to achieve
representative performance on each hardware architecture, a code rewrite is needed.

The Complexity of the Design Space. The resulting design space with specialized
heterogeneous hardware architectures and co-designed solutions is highly complex, and
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1.1 MOTIVATION 7

Figure 1.2: The ML design space is complex and consists of different applications, training
datasets, neural networks and hardware platforms. Performance benchmarks only focus on
hardware platforms. ML benchmarks only represent the upper three layers. A new form of
benchmark is needed - so called NN systems benchmark - that capture all dimensions of the
design space.

it is becoming increasingly difficult to predict which optimization technique combined
with which architecture will deliver what performance for which particular compressed
variant of a neural network. This is something I personally observe in my own line
of work as a researcher in a big semiconductor company which aims to build chips for
acceleration of machine learning algorithms. A thorough and systematic understanding of
what algorithm suits which architecture as well as the competitive landscape is essential.

Figure 1.2 visualizes the total complexity which includes further dimensions to the
problem. First of all, there are numerous machine learning applications, and each
of these can be trained with different datasets and different neural network models
and variations, and depending on these factors (as well as potential optimizations with
numerical representations, pruning or similar), as well as learning techniques and other
hyperparameter settings, the system can produce different results, the key figure of merit
being test error rate or conversely, accuracy. In addition, there are numerous choices
with different hardware platforms within the cloud and IoT spaces and everywhere in
between. Furthermore, there are different alternatives with regards to the implement-
ation itself. For example within an FPGA, there is a choice between a data parallel
and a pipelined implementation. Also, the implementation can be run under different
deployment settings such as power modes. All combinations of choices so far result
in a different implementation and each of the implementation alternatives will deliver
different performance throughput, response time, power consumption, cost and
required development effort. All terminology will be explained in greater detail in the
background Chapter 2.

The Need for Benchmarking. As technology developers, it becomes increasingly dif-
ficult to predict which architecture will deliver what performance (or other figure of
merit) for which particular neural network under which conditions given the complexity
of the design space. A benchmarking methodology which sheds light onto which archi-
tecture works well for which specific algorithms, given a specific set of figures of merit.
Benchmarks at their core encompass a suite of tests for evaluating performance or level
of quality and as such are extremely important to avoid poor system choices. When
done well, as for example with TPC in the context of data systems [17], benchmarking
creates clarity by establishing fair baselines and providing representative comparisons

Michaela Blott Ph.D. Thesis



8 1. INTRODUCTION

Figure 1.3: The different perspectives of hardware designers, system designers and end user.
everyone is interested in a different part of the system. Benchmarking can help bring clarity
from all angles.

between different platforms and compute fabrics. They act as the antidote to product
marketing and provide system designers a toolbox to avoid making poor choices where
end systems fail to meet requirements such as throughput, power or cost, and delay
product launch. But the benefits of a good benchmarking suite go beyond this and
provide insights from all perspectives (see Figure 1.3). Benchmarks can be of of equally
high benefit to hardware designers as well as end users. Benchmarks drive optimizations
for semiconductor companies who are customizing compute fabrics for deep learning
applications, and for end users, standardized tests help drive optimal purchasing choices.
Finally, for newcomers to the domain, benchmarking suites can offer objective summaries
that introduce key figures of merit and basic choices as well as setting expectations of
the state of the art.

Within this space there are two main types of benchmarks: Machine Learning (ML)
benchmarks and performance benchmarks, indicated in the right part of Figure 1.2.
ML benchmarks are typically aimed at achieving low test error, independent of the
expensive hardware implications, therefore being of limited efficiency. Resulting algorithms
cannot necessarily be deployed in an energy-constrained compute environment. Examples
are the ILSVRC ImageNet competition, as well as more sophisticated efforts such as
MLBench [18].

On the other side, performance benchmarks are agnostic of the target application,
measuring performance characteristics such as throughput and power for characteristic
compute patterns. Even when tailored towards characteristic ML workloads, they do not
capture the fact that for different hardware architectures, different compute patterns
should be used. A system designer in particular for IoT applications would typically
leverage co-design and adjust the algorithms to the specifics of the hardware. Support
for algorithmic optimizations is essential in this space and poses a particular challenge.
As these performance benchmarks do not correlate their results regarding algorithmic
optimization back to the application level target, which is accuracy, they cannot provide
the necessary algorithmic freedom and scope for algorithmic optimizations, which is an
essential ingredient to extracting performance out of heterogeneous computing systems.

Ph.D. Thesis Michaela Blott



1.2 OBJECTIVE 9

A new type of benchmark is needed, we refer to it as NN system benchmark,
shown in the right part of Figure 1.2. This is the focus of this effort. A NN system
benchmark spans the full design space and correlates application performance with system
performance. At the start of this thesis, this was a novel concept and didn’t exist yet.
However, in parallel to our own efforts, a number of alternative approaches have emerged,
although they come with significant differences. We will review, discuss and compare
these in detail in later chapters.

1.2 Objective

In summary, AI will penetrate most pieces of technology affecting many aspects of our
lives. Technology developers are challenged in finding the best solutions for specific
deployment scenarios due to the complexity of the design space. The objective of this
thesis is to develop a NN system benchmarking methodology that enables a fair
comparison, a benchmark that sheds light onto which hardware architecture works well
for which specific algorithms, given a well-chosen set of figures of merit with the aim of
creating clarity within this complex design space of algorithms and emerging hardware
architectures for Neural Networks. We aim our benchmark to be representative of common
workloads and to be supportive of algorithmic modification. We intend the benchmark to
be objective and work on a broad spectrum of heterogeneous hardware systems. Further,
we also design for providing fast system insights, perhaps at the expense of prediction
accuracy and as such offer complexity vs accuracy trade-offs in results. Finally, this thesis
intends to create true research impact for the community.

Research Question: How can we design a benchmark for neural networks on
heterogeneous hardware architectures considering the algorithmic and architectural
breadth of the design space.

1.3 Approach

The purpose of this thesis is to propose and evaluate QuTiBench, a benchmarking suite
that lies at the intersection of the machine learning and hardware communities and spans
the full design space. It is a methodology and not a specific piece of software. QuTiBench
couples neural network performance with hardware performance and as such can provide
insights as to what is the best possible combination within this design space for specific use
cases initially constrained to the embedded space. Although there are a number of efforts
emerging simultaneously in this space, such as DeepBench and most notably MLPerf,
there is currently no comprehensive benchmarking suite in existence that addresses the
scope of what is needed, and in particular targets embedded systems. QuTiBench is
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unique in the way it supports algorithmic optimizations and in particular quantization
(Qu) which is one of the most popular optimization technique for neural networks
and leveraged by many specialized hardware architectures. Furthermore, QuTiBench
provides multiple tiers of tests (Ti) which can provide deep insights for the composition
of complex systems and provide trade-offs between speed and accuracy across a broad
range of systems. In particular, QuTiBench supports theoretical results as its lowest
tier. The theoretical performance predictions can act as a measuring stick and give
rough guidance of performance. The middle tier benchmarks different computational
and data movement patterns, while on the highest tier we measure full applications for
addressing the end user design space. It supports algorithmic optimizations by correlating
everything to the application level’s figures of merit. Additionally, special emphasis is
given to clear measuring methodology. In order to maximize our true impact on the
research community, we adhere to FAIR guiding principles [19]. This is required to
address findability, accessibility, interoperability, and reusability for all experimental and
theoretical datapoints through creating of a persistent identifier, a repository, a web
portal [20], and creation of metadata. QuTiBench is open to community contributions,
by opening access for contributions through the web portal. Finally, we aim to create
clarity in the design space by adding focus on specific data visualizations, whereby we
focus all experimentation on CNN inference only.

Compared to the most significant alternative approach, MLPerf, our key differentiators
are the proposed multi-tiered concepts with theoretical analysis and microbenchmarks,
as well as the systematic testing across all deployment settings rather than MLPerf’s
focus on a selection of currently 5 very specific application domains only reporting on
one figure of merit. As such, QuTiBench can really provide much more in-depth system
insights that are interesting to hardware and system engineers, rather than just report
for one specific application the achieved performance. Finally, although MLPerf offers
some scope for optimizations in its open section, QuTiBench offers more algorithmic
freedom and offers visualization of the full design space. In the evaluation chapter, we
will show that QuTiBench can create insights that other benchmarks cannot offer and
these are highly relevant. For example in my current line of work, we are exploring
novel hardware architectures for next generation semiconductors aimed at CNN inference.
Through QuTiBench we can create in-depth understanding of possible hardware-software
design choices.

1.4 Contributions

The key contributions of this thesis are as follows:

Design of a Benchmark. The benchmark offers the following unique features:

• Comparisons within a multi-dimensional design space The challenge in this
application domain is that many end-solutions provide optimal results in different
dimensions. For example using a single criteria such as best inference response
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time for a single image from ImageNet dataset, with a specific minimum accuracy,
provides limited insights. It could be that another application might need less
accuracy but requires a lower response time. As will be explained later on, we
solve this by always tying back all performance figures of merit with application-
level performance. Further, we leverage the aforementioned pareto graphs, which
highlight the optimal design points. These provide fair and complete comparisons
between the various solution endpoints across all dimensions of the design space,
and as such offer a broad overview of all the advantages and disadvantages of the
various solutions.

• Clear definition of figure of merit and measurement methodology, Due
to the different nature of relevant hardware platforms, for each platform we are
faced with many different deployment options such as power modes and batch sizes.
It is essential to establish clear and transparent measurement methodology to help
clarify the complex and obfuscated design space.

• Multi-tiered approach We use a multi-tiered approach which includes microbench-
marks and a theoretical basis. The microbenchmarks run subsets of compute and
data movement patterns on the various hardware platforms to provide insights into
system bottlenecks and offer different levels of quality in performance predictions.
We leverage a theoretical baseline analysis using roofline models [21], to provide fast
performance estimations without having to run any experimentation. Furthermore,
this theoretical baseline is highly useful to track compute efficiency on all levels
of the benchmark and highlight difficult compute and data movement patterns.
Finally, it can be used to measure achieved compute efficiency.

• Systematic evaluation QuTiBench includes a highly systematic evaluation ap-
proach that measures all figures of merit, for all ML tasks, inference only for the
embedded space, for all topologies with all available optimizations, for all deploy-
ment settings on all hardware platforms. This is highly beneficial when it comes
to creating system-level insights, such as how does batch size impact latency and
throughput, or what performance-power compromises can be achieved through
different power modes.

In addition to the actual benchmark, there are the following contributions worth
noting:

Data Visualization Techniques. We have researched different data visualization routines
that help create a better understanding of the multi-dimensional design space. This
includes the previously mentioned pareto graphs, heatmaps, box-whisker charts and
so-on.

Large Experimental Evaluation and Comparison to State of the Art. We have
conducted close to a thousand experiments for three different ML tasks, over 43 different
Neural Network (NN) models trained and deployed on 10 different hardware platforms,
to get a thorough understanding on how well the benchmark performs in regards to
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its unique features, whereby we constraint ourselves to CNN inference for embedded
devices. In addition, this brought interesting insights into pros and cons of the different
hardware architectures, different optimization schemes, and the various compromises
that can be achieved with different deployment options. Furthermore, we compare
it with other benchmarking efforts, in particular with MLPerf, which has evolved in
parallel to QuTiBench during the development of the thesis. Finally we propose how the
benchmarking efforts could potentially be combined.

Web Portal and open and FAIR Data. We understand the critical need for a com-
munity to support this effort as well as open and FAIR [19] data to generate meaningful
research impact. As such we have put significant effort into a web portal located here:
https://rcl-lab.github.io/QutibenchWeb. In addition to providing downloadable
access to all measured and theoretical data points and including all data analysis and
visualizations that were derived within the thesis, this web portal also supports third
party contributions. This is essential given the scope of the benchmarking effort which
is required within the space. We hope that this web portal can help pull together the
research community such that we collectively can have scientific impact.

1.5 Thesis Overview

Figure 1.4: Thesis overview: This figure shows an overview of the chapters contained within
the thesis and the general flow.

As is visualized in Figure 1.4, the thesis adopts the following flow: Chapter 2 provides
a thorough analysis of neural networks and popular hardware architectures used for deep
learning. We investigate challenges and characteristics in regards to benchmarking in
Chapter 3, which also surveys related work. Chapter 4 explains in detail our proposal
towards benchmarking which we then evaluate in the subsequent chapters. Chapter 5
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details the experimental setup and scope of the evaluation. Chapter 6 provides the
results of the theoretical analysis. The full experimental analysis of the measurements
and evaluation of the benchmarking approach is contained within Chapter 7, including a
comparison to current and most prominent benchmarking solutions. Finally, Chapter 8
concludes the thesis. It offers insights on lessons learnt, includes insights into the
characteristics of the different hardware platforms and a discussion of maximizing our
impact through FAIR guiding principles and the web portal and provides an outlook on
future work. Supplement material can be found in the appendix as well as the web portal
which provides full interactive and open access to all data, theoretical and experimental
as well as all code.

1.6 Publications

As part of this thesis, I published the following conference papers and articles, three of
which received a best paper award:

Publications as a first author:

• [22] M. Blott, A. Vasilciuc, M. Leeser, and L. Doyle, “Evaluating theoretical baselines
for ml benchmarking across different accelerators,” IEEE Design Test, pp. 1–1, 2021

• [23] M. Blott, N. Fraser, G. Gambardella, L. Halder, J. Kath, Z. Neveu, Y. Umuroglu,
A. Vasilciuc, M. Leeser, and L. Doyle, “Evaluation of optimized CNNs on hetero-
geneous accelerators using a novel benchmarking approach,” IEEE Transactions on
Computers, pp. 1–1, 2020

• [24] M. Blott, L. Halder, M. Leeser, and L. Doyle, “QuTiBench: Benchmarking neural
networks on heterogeneous hardware,” ACM Journal of Emerging Technologies in
Computing Systems (JETC) Special Issue, 2018

• [11] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’Brien, Y. Umuroglu,
M. Leeser, and K. Vissers, “FINN-R: An end-to-end deep-learning framework for
fast exploration of quantized neural networks,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 2018. This won the best article of the year
award.

• [14] M. Blott, T. B. Preußer, N. Fraser, G. Gambardella, K. O’Brien, Y. Umuroglu,
and M. Leeser, “Scaling neural network performance through customized hardware
architectures on reconfigurable logic,” in ICCD 2017. IEEE, 2017, pp. 419–422

• [25] M. Blott, J. Kath, L. Halder, Y. Umuroglu, N. Fraser, G. Gambardella,
M. Leeser, and L. Doyle, “Evaluation of optimized CNNs on FPGA and non-
FPGA based accelerators using a novel benchmarking approach,” pp. 317–317,
2020

Co-authored Publications:
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• [26] Y. Umuroglu, Y. Akhauri, N. J. Fraser, and M. Blott, “High-throughput DNN
inference with LogicNets,” in 2020 IEEE 28th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2020, pp.
238–238. This received another best paper award.

• [27] M. Qasaimeh, K. Denolf, A. Khodamoradi, M. Blott, J. Lo, L. Halder, K. Vissers,
J. Zambreno, and P. H. Jones, “Benchmarking vision kernels and neural network
inference accelerators on embedded platforms,” Journal of Systems Architecture, p.
101896, 2020

• [28] E. Giacoumidis, Y. Lin, M. Blott, and L. P. Barry, “Real-time machine learning
based fiber-induced nonlinearity compensation in energy-efficient coherent optical
networks,” APL Photonics, vol. 5, no. 4, p. 041301, 2020

• [29] M. Kroes, L. Petrica, S. Cotofana, and M. Blott, “Evolutionary bin packing
for memory-efficient dataflow inference acceleration on FPGA,” arXiv preprint
arXiv:2003.12449, 2020

• [30] G. Gambardella, J. Kappauf, M. Blott, C. Doehring, M. Kumm, P. Zipf, and
K. Vissers, “Efficient error-tolerant quantized neural network accelerators,” in
2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT). IEEE, 2019, pp. 1–6. This won the best paper
award at DFT’2019.

• [31] Y. Umuroglu, D. Conficconi, L. Rasnayake, T. B. Preusser, and M. Själander,
“Optimizing bit-serial matrix multiplication for reconfigurable computing,” ACM
Transactions on Reconfigurable Technology and Systems (TRETS), vol. 12, no. 3,
pp. 1–24, 2019

• [32] Y. Yang, Q. Huang, B. Wu, T. Zhang, L. Ma, G. Gambardella, M. Blott,
L. Lavagno, K. Vissers, J. Wawrzynek et al., “Synetgy: Algorithm-hardware co-
design for ConvNet accelerators on embedded FPGAs,” in Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2019,
pp. 23–32

• [33] V. Rybalkin, A. Pappalardo, M. G. Mohsin, G. Gambardella, N. Wehn, and
M. Blott, “FINN-L: Library extensions and design trade-off analysis for variable pre-
cision LSTM networks on FPGA,” arXiv preprint https://arxiv.org/abs/1807.04093,
2018

• [34] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “FINN: A framework for fast, scalable binarized neural network
inference,” in ISFPGA 2017. ACM, 2017, pp. 65–74

• [35] J. Faraone, G. Gambardella, N. Fraser, M. Blott, P. Leong, and D. Boland,
“Customizing low-precision deep neural networks for FPGAs,” in 2018 28th Interna-
tional Conference on Field Programmable Logic and Applications (FPL). IEEE,
2018, pp. 97–973
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• [36] J. Su, N. J. Fraser, G. Gambardella, M. Blott, G. Durelli, D. B. Thomas, P. H.
Leong, and P. Y. Cheung, “Accuracy to throughput trade-offs for reduced precision
neural networks on reconfigurable logic,” in Applied Reconfigurable Computing.
Architectures, Tools, and Applications: 14th International Symposium, ARC 2018,
Santorini, Greece, May 2-4, 2018, Proceedings, vol. 10824. Springer, 2018, p. 29

• [37] J. Faraone, N. Fraser, M. Blott, and P. H. Leong, “Syq: Learning symmet-
ric quantization for efficient deep neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 4300–4309

• [38] T. B. Preußer, G. Gambardella, N. Fraser, and M. Blott, “Inference of quantized
neural networks on heterogeneous all-programmable devices,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2018. IEEE, 2018, pp. 833–838

• [39] J. Faraone, N. Fraser, G. Gambardella, M. Blott, and P. H. Leong, “Compressing
low precision deep neural networks using sparsity-induced regularization in ternary
networks,” in International Conference on Neural Information Processing. Springer,
2017, pp. 393–404

• [40] N. J. Fraser, Y. Umuroglu, G. Gambardella, M. Blott, P. Leong, M. Jahre, and
K. Vissers, “Scaling binarized neural networks on reconfigurable logic,” in PARMA
DITAM2017, 2017, pp. 25–30

• [41] Y. Umuroglu, N. J. Fraser, G. Gambardella, and M. Blott, “A C++ library for
rapid exploration of binary neural networks on reconfigurable logic,” H2RC Archive,
2016

Finally, I have co-authored two commercial whitepapers on compute architectures for
inference acceleration, published on the website of my current employer and presented
numerous tutorials in this space, most importantly a tutorial on hardware architectures
for deep learning at HotChips in 2017:

• [42] Xilinx Whitepaper: The Anatomy of an Embedded Machine Learning Acceler-
ator. Available: https://www.xilinx.com/support/documentation/white paperswp514-
emergingdnn.pdf

• [43] Xilinx Whitepaper: FPGAs in the Emerging DNN Inference Landscape. Avail-
able: https://www.xilinx.com/support/documentation/white paperswp515mlaccelera

• [44] HotChips’2018 (HC30T2): Architectures for Accelerating Deep Neural Nets.
Available: https://www.youtube.com/watch?v=ydsZ7A0FF0I&feature=youtu.be
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2 Analysis of Neural Networks, their

Unique Requirements & Associated

Hardware Architectures

2.1 Introduction

This chapter provides the background to the thesis and includes details on the application
space, as well as the evolution of associated hardware architectures that cater for it. It
is essential to have a good understanding of both parts as in essence they formulate
the design objectives of the benchmark. The benchmark needs to be representative
of both the application and possible implementations. As such, there are two distinct
parts to this chapter: In the first part, we provide an in-depth analysis of Convolutional
Neural Networks (CNNs). In particular, it is important to understand the following
aspects: neural networks, their evolving topologies, typical characteristics, compute and
memory requirements, and popular optimization techniques. The latter are essential to
enable adoption of these algorithms within the embedded space and extract maximum
performance from the specialized hardware architectures. In the second part of this
chapter, we provide a taxonomy of emerging hardware architectures to address the
computational needs of CNNs. In order to provide an understanding of the characteristics
that a benchmark should cover, we describe the different choices and design trade-offs
that this broad spectrum of approaches take, and explain possible deployment options
and their impact on performance metrics. We restrict this part to a minimum on what’s
necessary to understand the thesis. For the interested reader, there are excellent books
and tutorials available on this matter, for example [45] and [44].

Michaela Blott Ph.D. Thesis



18
2. ANALYSIS OF NEURAL NETWORKS, THEIR UNIQUE REQUIREMENTS &

ASSOCIATED HARDWARE ARCHITECTURES

Figure 2.1: Location within the thesis

2.2 Neural Networks

2.2.1 Background and Evolution

Our effort focuses on CNNs, a particular class of Machine Learning (ML) algorithms that
forms a subclass of artificial intelligence (see Figure 2.2). ML algorithms differentiate
themselves in that they can learn the function, rather than being explicitly programmed,
using for example the supervised learning paradigm. CNNs are now widely used for
numerous applications such as image processing, natural language processing and speech
recognition and their popularity is still increasing because of a number of factors. First of
all, with its theoretical property of being a universal approximator [46], neural networks
increasingly outperform and replace existing algorithms unless a simpler algorithm exists
already. This was demonstrated for example with the original AlexNet in the context
of ImageNet classification [47]. Secondly, neural networks can help provide solutions for
previously unsolved applications, where no algorithms exist yet. Finally, no domain level
expertise is required, instead just sufficiently large datasets together with a sufficiently
large topology is required for the network to train for a given accuracy target. All of
these factors contribute to their immense and growing popularity.

Figure 2.2: Artificial Intelligence - Machine Learning - Neural Networks
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Table 2.1: Breadth of popular ML tasks and NN types is vast, categorized here by learning
technique, application domain and task. Each task can be carried out by different NN types.
We indicate typical compute types in the last column.

Application NN Types Compute Type
Learning Technique Domain Task Models

Supervised Vision Image Classification MLPs, ResNet, VGG, AlexNet, InceptionV3 FC, CNV
Object Detection Faster R-CNN, Yolo9000, Yolov2 FC, CNV
Semantic Segmentation Mask R-CNN, SSD FC, CNV

NLP Machine Translation Transformer, Seq2Seq FC, CNV, recurrent
Speech Recognition DeepSpeech2 FC, CNV, recurrent
Sentiment Analysis Seq-CNN FC, CNV, recurrent
Language Modeling Memory Networks memory network

Recommendation Movies NCF ...
Unsupervised Vision Feature Extraction Autoencoder FC
Generative Adversarial Learning Vision Image Generation/Modification WGAN ...
Deep Reinforcement Learning Game Go MiniGo ...

Atari ALE DeepQ, A3C ...

2.2.2 Design Space and its Associated Complexity

We have visualized the large application space for neural networks in Table 2.1 with
domains ranging from vision to Natural Language Processing (NLP) to gaming and
recommendation systems. Please consider this as a snapshot in time as new application
domains are emerging continuously. In each domain, there are numerous tasks which are
amenable for neural networks; for example, within the vision processing context: image
classification, object detection, and semantic segmentation. Furthermore, these models
can be trained using different training techniques. The machine learning task combined
with a training dataset forms the first 2 dimensions of the design space as discussed
further below, see Figure 2.3, and the neural network is the third dimension. Note that it
is not easy to define clear categories as terms overlap. For example, deep reinforcement
learning techniques can be applied to any network. Seq2Seq networks is a full family of
networks, while ResNet50, VGG, and InceptionV3 refer to specific topologies.

The design space, as shown in Figure 2.3 is highly complex. For every ML application,
there are many different types of neural networks, and new algorithms are still evolving.
Furthermore, different types of datasets can be used to train them on specific tasks. The
resulting combination can achieve different accuracy targets, and is accompanied with
different compute requirements. Hyperparameter selection, such as learning rate and
chosen initialization of weights, might impact the accuracy targets too. Furthermore,
a neural network model is always paired with a particular framework in which it was
trained, as the framework can have impact on the accuracy. These are just the potential
combinations on the application side, which are then to be combined with all possible
hardware combinations.

The key figure of merit for ML applications is accuracy and depending on whether it
is image classification, object detection or speech recognition, it might be measured in a
different way. For the chosen ML tasks in this thesis, we measure accuracy in top1 and
top5 accuracy. Top1 accuracy is the conventional accuracy, and measures the probability
of the model answer (the one with the highest probability) matching the expected answer
for the test or validation dataset. Top5 accuracy measures the probability of the expected
answer to match one of models 5 highest scoring predictions.
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Figure 2.3: Design space is complex and consists of different applications, training datasets,
neural networks and hardware platforms

2.2.3 Basics

Great tutorials are available to explain the basics of Neural Networks (NNs) such as [45]
as well as my own [44]. As mentioned before, we would like to refer the reader to these. In
this thesis, we will cover only the minimum concepts that form the necessary background
for this thesis: The goal for NNs is to find a function, g(xi), which approximates a
mapping xi → yi ∀ i, where {xi, yi} is an input/output pair known as a training example.
The class of algorithms used for g(xi) is on a very high level inspired by the human brain
and consist of computational elements named neurons which are arranged in a number of
layers. This is depicted in Figure 2.4 and 2.5.

Figure 2.4: Basic structure of a CNN, which consists of a sequence of layers of different types.

In its most basic form, the output of a neuron (ni) is called an activation and is
computed through an activation function which operates on the weighted sum of its
inputs plus a bias. An output is only generated when the sum exceeds a given threshold.

Figure 2.5: A layer consists of a number of neurons which are computed with the activation
function.

During the training process, which is part of the supervised learning paradigm, the
parameters of the NN, the function g(xi), are adjusted while iterating repeatedly over full
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training sets of training examples, such that the generated error, which is the difference
between the generated and expected result, is minimized. There are different optimization
strategies leveraged, one of the most popular one is Stochastic Gradient Descent (SGD).
This iterative training process is visualized in Figure 2.6.

Figure 2.6: Training a NN is an iterative process with massively nested loops. For all epochs
over all training inputs, we run both inference and backpropagation, whereby both of those
compute over all layers.

There are many common layer types being used. The most basic and popular compute
layers are fully connected, convolutional, pooling, normalization and recurrent
layers. These come with very different compute and memory requirements and are
briefly introduced here such that the reader has an understanding of how we can derive
memory and compute requirements for NNs.

Fully connected layers compute the full cross product between input tensors (for
example) and a vector of parameters (also referred to as weights); the latter are determined
during the training process. Summed to a bias, this is then fed into an activation
function as previously introduced. Mathematically, the output, al,n, for the nth neuron
in the lth layer of a fully connected network is calculated as follows, where wl,n,s is the
weight of the sth synapse connected to the input of the nth neuron in the lth layer, bl,n is
a bias term, fact is the activation function:

al,n = fact(
Sl∑

s=0
wl,n,sal−1,s + bl,n) , (2.1)

Popular activation functions include the hyperbolic tangent function, sigmoid, as
well as rectified linear unit (ReLU) and leaky ReLu. Many more are emerging such as
for example Mish, which was recently introduced as a first non-monotonic activation
function [48]. Fully connected layers are challenging for hardware implementations
because of their memory intensive nature and their strong connectivity between inputs
and outputs. To be more specific, equation 2.2 provides the calculations for weight
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memory Wi, activation memory Ti and compute requirements Oi, whereby INi, OUTi

represents the number of inputs and outputs of layer i, and bitsi the given bit precision
of the datatype and batch represents the number of inputs processed in parallel.

Wi = INi ∗OUTi ∗ bitsi;
Ti = batch ∗ INi ∗ bitsi;
Oi = 2 ∗ batch ∗ INi ∗OUTi;

(2.2)

In convolutional layers, the output receives inputs from a small receptive field of
the previous layer. This approach greatly reduces the number of parameters (or weights)
involved and allows local features (e.g. edges, corners) to be found [49]. As such the
connectivity issue associated with fully connected layers and the memory footprint are
greatly reduced. A basic 2D convolutional layer is similar to a fully connected layer
except that: a) each neuron receives an image as input and produces an image as its
output (instead of a scalar); b) each synapse learns a small array of weights which is the
size of the convolutional window; and c) each pixel in the output image is created by the
sum of the convolutions between all synapse weights and the corresponding images. The
output of the lth convolutional layer, which takes as input Sl images of dimension Rl×Cl,
the pixel, pl,n,r,c, at location (r, c) of the nth output image is calculated as follows where
Jl ×Kl are the dimensions of the convolution window:

pl,n,r,c = fact(
Sl∑

s=0

Jl∑
j=0

Kl∑
k=0

wl,n,s,j,kpl,n,r+j,c+k) (2.3)

The associated compute and memory requirements can be calculated as follows,
whereby IN CHi and OUT CHi represent the numbers of input and output channels,
and F DIMi the filter dimensions:

Wi = IN CHi ∗OUT CHi ∗ F DIM2
i ∗ bitsi;

Ti = batch ∗ F DIM2
i IN CHi ∗ bitsi;

Oi = 2 ∗ batch ∗ F DIM2
i ∗ F DIM2

i Ii ∗ IN CHi ∗OUT CHi;
(2.4)

Pooling layers are introduced to downsample images and thereby reduce the compute
in the subsequent layers. Typically a maximum or an average over a receptive field is
used for the down-sampling process.

Batch normalization layers [50] help with normalizing the statistics of activation
values across layers and with that significantly reduce training times of networks, improve
accuracy and renders them less sensitive to initialization. Associated compute is minimal
during inference time, but is significant during training time, as it requires subtraction of
mean, and division by standard deviation to achieve the zero-centered distribution with
unit variance.
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Furthermore, recurrent layers are characterized by the fact that they contain state
over a sequence of input data. There are many different options for the implementation
of the recurrence within the layer, starting from simple recurrent layers, to GRUs or
LSTM layers, which can be uni-or bidirectional, feature different numbers of feedback
gates, and may include numerous specializations such as peepholes.

Beyond, these basic layer types, there are many layer combinations emerging, such
as inception layers in GoogleNet[51, 52], residual layers in ResNet models [53], fire
modules [54] and more recently shift and shuffle layers [32]. Even layer execution
becomes dynamic with SkipNet [55], non-Euclidian inputs such as point clouds, netlists and
protein interaction networks are leveraged, and neural connectivity becomes irregular [56].
As such, neural networks are evolving more and more in direction of becoming general
(differentiable) compute and the speed with which the algorithms are changing, is
accelerating. While this fact is hard to measure, growing peer-reviewed conference papers
(which have increased by 300% in the last 10 years) and AI related conference attendance
are a clear indication that this is a highly active field of research and fluctuations are to
be expected [57]. For this thesis, we will focus on the more traditional topologies. Again,
the interested reader can find a more detailed description in [45] and [44].

2.2.4 Associated Compute and Memory Requirements

In this section, we describe the computational requirements of the various types of neural
networks, which form the design requirements for our benchmark and more specifically
the basis to performance estimation later in combination with what will become level-
0 of the benchmark. We analyze networks with regards to their arithmetic compute,
intermediate storage requirement and memory footprint given a specific model leveraging
the formulas provided in the previous section. While actual hardware requirements depend
on numerous attributes, at this point we are characterizing the theoretical requirements
in an architecturally independent way. For example, actual on-chip memory requirements
and external memory requirements depend on implementation choices, but can be derived
directly, so this analysis is useful to categorize the different requirements. The scope of
the analysis is currently constrained to a set of models that are detailed in Chapter 5,
which reviews the scope of the evaluation in great detail.

Inference Each NN layer (L0, L1, etc.) requires a specific number of arithmetic
operations OL0, OL1, OL2 in the form of multiplications, additions etc. We measure these
in giga operations (GOPs) and tera operations (TOPs) respectively. The overall compute
of a network with n layers, Ototal, is the sum of the compute in each individual layer
(see eq. 2.5). We define the total modelsize Wtotal as the sum of the weight requirements
per layer measured in millions of elementss (MEs); this is independent of any choice in
numerical representation. The real memory footprint can be derived by multiplying with
the size of the given datatype (for example 32b for single precision floating point). We
quantify the intermediate buffer requirement Ttotal in an implementation neutral fashion.
For this we calculate the sum of the required amount of tensors Ti that precede each layer.
In the context of image classification, these are derived as the product of feature map
dimensions (wi, hi) and number of channels (chi). For exact compute requirements of the
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Figure 2.7: Compute, buffer and storage elements in both inference and training. Inference
only consists of a forward pass through all layers while training consists of the same forward
pass, plus backpropagation through all layers in reverse order with complex data dependencies.

individual fully connected and convolutional layers, please refer back to Equations 2.2
and 2.4. Note that all of this applies to non-linear topologies such as DenseNet [58];
however, our models currently do not reflect graph connectivity. We plan to address this
in the future. Figure 2.7 provides an overview of all compute and memory elements.

Ototal =
n−1∑
i=0

Oi, Wtotal =
n−1∑
i=0

Wi, Ttotal =
n−1∑
i=0

Ti, Ti = wi × hi × chi (2.5)

Training This thesis evaluates the benchmarking methodology on the basis of infer-
ence. However training workloads are critical in the data center context and we expect
that it will become increasingly essential in embedded as well as on-line learning takes off.
As such we plan to augment our efforts to encompass training in the future. In regards to
requirements, we need to consider backpropagation in addition to inference. As depicted
in Figure 2.7, training requires numerous more data structures. First of all, symmetrically
to the tensors Ti, we need to buffer Gi. Furthermore, so-called weight gradients need to
be stored WGi which are the derivative (in relation to the input weights) of the gradient
Gi+1. Depending on given optimization strategies, weight updates need to be buffered as
well. This results in roughly 3 times the buffer requirements for weights, and double the
amount for tensors. Regarding compute, backpropagation requires roughly 3 times the
inference compute for a single image of the training data set (plus 1 update operation per
weight parameter). Overall compute needs to be multiplied with number of iterations
and number of inputs in the training data set. Full details are given in Equation 2.6.
Note that data dependencies are significantly more intricate and challenging for training.
This is currently not reflected within the theoretical analysis.

WGi ≈ WUi ≈ Wi; (2.6)
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Table 2.2: Ranges and mean requirements for compute (OI and OT) and memory in inference
and training, whereby we differentiate weight memory (W), activation tensors in the forward
path (T) and backward path (TG) as well as as weight updates (WU).

Inference Training
OItotal [GOPs] Wtotal [MBytes] Ttotal [MBytes] OTtotal [GOPs] WUtotal [MBytes] TGtotal [MBytes]

Min 0.00 0.00 0.13 0.00 0.27 0.00
Max 412.17 71.14 138.34 1236.64 276.69 71.14
Mean 62.59 11.9 38.02 187.79 76.05 11.9
SD 107.34 13.51 39.21 322.03 78.41 13.51
We are assuming 8b datatypes for inference and 32b for training.
SD: Standard deviation

Summary of Requirements. The compute and memory requirements of the CNNs form
the design requirements for our benchmark. Figure 2.8 and 2.9 visualize initial results,
where for Seq2Seq models, we assume a sequence length of 3000 (based on the LSTM
test case in DeepBench [59]). All other assumptions are annotated within the figures.
The key observations are as follows: First, the compute and memory requirements are on
average very high. Mean model size is too big to fit into most on-chip low latency memory
(with 71.14MBytes). This is the case even for inference and training is much higher.
Compute is in the GOPs range for every single input datum. Secondly, it is obvious that
training is much more memory intensive compared to inference (ratios of black bars
compared to red bars). Thirdly, there is a significant variation in all requirements for
both training and inference as summarized in Table 2.2. No simple generalizations can
be made, even within subcategories such as image recognition, as models vary greatly
depending on size and complexity of images, number of objects to be recognized, etc. The
defined parameters: OItotal, Wtotal, Ttotal, OTtotal, WUtotal, and TGtotal help describe the
compute requirement for inference and training of each individual network and can be
used for baseline computations. When taking architectural constraints into consideration
and cross-correlating with roofline models (explained in Chapter 4), we can use them to
derive performance guidance.
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Figure 2.8: Compute and memory requirements for inference for a spectrum of NNs (Visualiz-
ation of QuTiBench Level-0 - CNN Statistics). We observe on average high requirements plus a
high variation which makes it difficult to cater for in hardware architectures.

Figure 2.9: Compute and memory requirements for training for a spectrum of NNs (Visualiz-
ation of QuTiBench Level-0 - CNN Statistics). We observe on average high requirements plus a
high variation which makes it difficult to cater for in hardware architectures.
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Figure 2.10: Degrees of parallelism in CNNs

2.2.5 Degrees of Parallelism in CNNs

Hardware architectures exploit parallelism in the application to provide compute acceleration.

As such it is important to understand what degrees of parallelism are present. Within CNNs,

we observe a high degree of parallelism in multiple dimensions. This is illustrated in Figure 2.10

and summarized as follows:

• Coarse-grain topology parallelism between consecutive layers, and parallel branches such

as those found in GoogLeNet or in DNN ensembles. We refer to this also as layer

parallelism.

• Neuron and synapse parallelism inside a layer, such as multiple input/output feature map

(IFM/ OFM) channels and pixels in convolutional layers. This is also referred to as IFM,

OFM or pixel-parallelism.

• Bit-level parallelism inside arithmetic, when individual bits of weights and activations

are viewed separately.

Neuron and synapse parallelism can easily be exploited by all hardware architectures.

However, care must be take when parallelizing over layers, as data dependencies exist. This is

shown in Figure 2.11. Convolutions between layers create pyramid-shaped data dependencies.

this is important when parallelizing this in hardware architectures. For example, pipelined

or feed-forward dataflow architectures can adhere to this dependency while parallelizing the

Michaela Blott Ph.D. Thesis



28
2. ANALYSIS OF NEURAL NETWORKS, THEIR UNIQUE REQUIREMENTS &

ASSOCIATED HARDWARE ARCHITECTURES

Figure 2.11: Data dependencies between convolutional layers create a pyramid shape.

hardware. However, layer-by-layer compute architectures cannot. Finally bit-level parallelism

can only be exploited by architectures that support bit-level processing, such as bit-serial.

2.2.6 Popular Optimization Techniques

As explained in the first parts of this chapter, the challenge lies foremost within the compute

and memory requirements For example, classifying an ImageNet image with ResNet50, takes

7.7 billion operations, and requires 101MB of weight storage2. Training with backpropagation,

assuming 1.2million training images (as in ImageNet), and 100 epochs, requires 1018 operations

and has a runtime of roughly 2 weeks on a Nvidia P40 GPU. To alleviate the computational

burden and maximize performance, many optimizations techniques have been introduced.

1. Loop transformations to minimize memory access [60]

2. Pruning [4]

3. Compression [4]

4. Low-rank transformations [4].

5. Winograd, Strassen and Fast Fourier Transforms [61]

6. Novel layer types (squeeze, shuffle, shift) [62]

7. Quantization & Reduced Precision Numerical Representations [11]

All of these techniques fall under the category of algorithmic optimizations. A representative

benchmark must support and measure these, as they are essential for viable deployment solutions.
2assuming 32b floating point per parameter
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Table 2.3: Accuracy of QNNs: This table shows the accuracy of some QNNs compared to
their floating point variants

Network float top1(top5) QNN top1(top5)
GoogLeNet 71.4% (90.5%) 63.0% (84.9%)
VGG-like 69.8% (89.3%) 64.1% (85.6%)
ResNet50 [70, 71] 79.26 (94.75%) 64.6% (85.9%)
ResNet50 [72] 64.6% (87.8%)

Particularly successful techniques include pruning and quantization. We discuss both (with

specific focus on quantization) in more detail below.

Quantization & Numerical Representations

Transprecision computing is making strides in many application domains [2, 3], and is highly

effective for neural network inference, in particular, quantization to reduced precision datatypes,

including 8 bit fixed point integer and below, as well as custom floating point formats. On smaller

image classification benchmarks such as MNIST, SVHN and CIFAR-10, QNNs achieve state

of the art accuracy despite reduction in precision [63, 64], even for partial or full binarization

of fully connected and convolutional layers. XNOR-Net [65] applies convolutional BNNs on

the ImageNet dataset with topologies inspired by AlexNet, ResNet and GoogLeNet, report

top1 accuracies of up to 51.2% for full binarization and 65.5% for partial binarization, while for

the more challenging ImageNet benchmark, there is a small but noticable accuracy drop. The

resulting solution can run significantly faster in hardware and might still pose an attractive

design trade-off. Furthermore, there is significant evidence that increasing network layer size

can compensate for this drop in accuracy [40, 66–69].

New quantization schemes show promising results using for example Half-wave Gaussian

Quantization (HWGQ) [73] to take advantage of the Gaussian-like distribution of batch nor-

malized activations. Furthermore, new training and optimization techniques [72, 74] can be

highly effective to improve accuracy despite the heavy quantization in data types. At the state

of this writing, the current lowest error rates for ImageNet classification have been achieved

using ternarization [70, 71] as shown in Table 2.3. Quantization has been successfully applied

to other tasks including 3D object recognition, facial expression recognition [75, 76], optical

character recognition as well as speech [33, 77, 78]. Even in training, research shows that 32bits

are not really needed given the typical value ranges for weight and activation gradients and
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weight updates involved. Fixed point integers, half precision floating point (FP16), bfloat16,

flexpoint or block floating point representations show state-of-the-art performance [79–82]. All

of these need to be accurately reflected within the tests.

Pruning

This is another popular optimization technique which has been shown to dramatically reduce

both memory and compute requirements, through either synaptic pruning or filter pruning.

When synaptic pruning is leveraged, irregular compute patterns result which impact memory

access efficiency, thus hardware architectures require support for sparse matrix representations

to benefit from this [78]. Filter pruning yields regular compute patterns and benefits thereby a

broader selection of platforms [4].

This is another popular optimization which has been shown to dramatically reduce memory

and compute requirements, through either synaptic pruning or filter pruning. In the context

of synaptic pruning, individual synaptic connections between neurons are removed according

to a pruning rule, e.g. when the synapse weight is below a certain threshold. As visualized in

Figure 2.12, the resulting compute patterns become irregular and impact both memory and

compute efficiency, unless hardware architectures offer support for sparse matrix representations

to benefit from this [78]. In the context of convolutional layers, filter pruning (see Figure 2.13)

is more popular, as it yields regular compute patterns, which can be easily parallelized and

stored efficiently, thereby benefiting a broader selection of platforms [4]. The basic technique

computes a so-called sensitivity of filters as the sum of magnitude of all included weights and

removes all filters below a threshold. In regards to experiments included within this paper, we

investigate three of the previously mentioned topologies pruned to different levels, specifically:

ResNet50, CNV and MLP. Each pruning variant is given in a percentage such as 100% for the

baseline. Unfortunately the definition of the percentage is not consistent. This is an artifact

of the associated typically black-box tooling, each with their own definition. In the context of

CNV and MLP it relates to the number of inner channels associated with inputs and outputs of

hidden layers.
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Figure 2.12: Synaptic pruning in the example of fully connected layers: Removal of individual
synaptical connections

Figure 2.13: Filter pruning in the example of convolutional layers: Removal of complete filers
and output channels

2.3 Hardware Architectures for Deep Learning

In the previous section, we considered the application requirements for deployment of CNNs and

quantified their associated compute and memory demands, which are huge and growing beyond

the limits to where standard silicon-based semiconductors can scale. The reasons behind the

scalability challenges in the semiconductor industry are as follows: Firstly, as we approach the

End of Moore’s Law, transistor cost has been exponentially rising due to the rising chip design

cost with shrinking technology nodes (as published by Xilinx and Gartner in 2011 already [83]).
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Furthermore, with the end of Dennard scaling we encounter considerable thermal challenges,

which saw the era of dark silicon emerge, where not all transistors within a single device can be

switched on simultaneously due to overheating [84].

To overcome these challenges and provide sufficient compute capabilities, many disruptive

approaches have been proposed. For example Cerebras [85] has introduced the concept of

what they call wafer scale computing, where chips are built from complete wafers rather

than individual dies, bringing with it substantial challenges in regards to manufacturing.

Exploring the other dimension, foundries are investigating true 3D stacking as was presented at

HotChips’2019 by TSMC [86]. Even analog computing [87, 88], quantum computing [89] and

in-memory computing [90, 91] are investigated as well. All of these are on the speculative end

of the spectrum.

Figure 2.14: Innovative approaches for acceleration of CNN workloads

Less risky approaches focus on moving away from traditional von Neumann architectures,

using specialization of compute architectures to provide the necessary performance scaling and

energy efficiency. Due to the specialization, the devices become increasingly heterogeneous. A

huge range of devices has emerged that all try to address this problem in different ways, whereby

the key challenge is: How do we loop transform and unfold the algorithms best to maximize

data reuse and compute efficiency, minimize memory bottlenecks, limit power consumption

while meeting real-time requirements? We restrict our benchmark to the devices that can be

realistically leveraged today, and thereby focus on specialized architectures. These build

the focus of this chapter. It is important to remember though that these speculative approaches,

as discussed above, will materialize in the future and a future benchmark will have to deal with

an even greater diversity of hardware platforms.

We begin with a taxonomy of these hardware architectures, and discuss their relevant
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Figure 2.15: Taxonomy of compute architectures, differentiating CPUs, GPUs and DPUs

characteristics when it comes to acceleration of machine learning workloads. This is essential to

understand how they will differ in their execution behaviour, what it takes to leverage their

unique features and how they can potentially benefit from previously introduced optimization

techniques. We will also discuss deployment options that are unique to specific architectures,

and may or may not bring additional benefits to CNN inference. At last, we briefly touch

on other considerations such as form factors. All of these stipulate another form of design

requirements for a benchmarking methodology.

2.3.1 Taxonomy of Compute Architectures for Deep Learning

A broad range of hardware architectures to deploy machine learning algorithms exists today.

We can broadly classify them by the following criteria:

1. Basic type of compute operation

2. Inherent support for specific numerical representations

3. External memory capacity (which is mostly relevant for training workloads) 3

4. External memory access bandwidth

5. Power consumption in form of thermal design power (TDP)

6. Level of parallelism in the architecture and the degree of specialization
3For comparison, we treat HBM and HBM2 as external memory as it is used in the same way as

DDR4 or GDDR memory.
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As is shown in Figure 2.15, we classify the compute architectures into scalar processors,

CPUs, vector-based processors, GPUs, and so-called deep learning processing units (DPUs),

although realistically these categories blend to some degree. DPUs are specialized for this

application domain whereby we distinguish the more generic matrix- or tensor based processor

and a spatial processing approach. DPUs can be implemented with either ASICs or Field

Programmable Gate Arrays (FPGAs). All of these architectures will be discussed individually

below.

CPUs

CPUs are widely used for ML applications, and are viewed as largely serial or scalar compute

engines (even though high-end variants for cloud deployment may have up to 10s of cores).

They are optimized for single thread performance, with implicitly managed memory hierarchies

(including three levels of caches), and support floating point operations (FP64 and FP32) as

well as 8bit and 16bit integer formats with dedicated vector units in most recent variants.

Theoretical peak performance tops at 6.8TOPs for FP64 assuming boost clock speed (Cascade

lake, 56 cores, 3.8GHz). External memory is currently primarily leveraging DDR4 memory

banks with large capacities: Intel’s Cascade Lake offers up to 4.5 TebiByte (240 Bytes) which is

beyond what any of the other device categories can offer. Access is at maximum speed through

high end hardened memory controllers, offering 282GBps bandwidth (for example Cascade

Lake with 12 DDR4 channels). In regards to memory bandwidth, this is overall at the lower

end of the spectrum, however in many application contexts, this can be compensated through

the sophisticated multi-level memory hierarchies. Regarding power consumption, CPUs are

at the upper end of the spectrum with high end devices range up to 400Watts (Ws) [92]. In

the embedded space, ARM processors provide generally popular solutions, in particular when

performance requirements are very low and when much alternative functionality is required

that is not supported by the specialized device variants. In particular the Ethos family of

processing cores is specialized for CNN workloads and as such listed under the DPU category

below. Advantages of CPUs are in particular the generality of the hardware, as well as the

ease of programming where design environments have matured over centuries. As expected

this comes at the cost of lower peak performance and less efficiency compared to the more

specialized device families. In regards to quantization, CPUs can only leverage this optimization

technique for INT8 and INT16 if supported.
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GPUs

GPUs are SIMD-based vector processors that support smaller floating point formats (FP16)

natively, most recently fixed point 8bit and 4bit integer formats, and have a mix of implicitly

and explicitly managed memory. NVIDIA GPUs are some of the most popular hardware

targets for machine learning, and newer families of chips have been introduced to specifically

accelerate this workload, with AMD not far behind. Latest devices in NVIDIA’s Volta and

Turing architecture families, introduced in 2018 and 2019 respectively, offer up 130TOPs in

FP16 which is beyond the capabilities of latest CPU generations. As such they are amongst the

highest performant devices in the market for the acceleration of DNNs as they can exploit a

high degree of parallelism inherent to this application with increasingly specialized features. For

example, NVIDIA’s Volta is the first generation to incorporate tensor cores as a new feature,

as well as improved FP32 and FP64 support for training in a data center setting [93] and also

introduced a deep learning accelerator (DLA) in their embedded devices to further reduce

power consumption. This specialization brings additional challenge for their usage and with

that for benchmarking as there are up to 3 distinct execution units now, namely CUDA cores,

tensor cores and the DLA which don’t operate on the workload simultaneously, at least not

easily or by default. We therefore don’t sum up the peak performance of different execution

units but use only the maximum. AMD announced the Vega GPU [94] with new deep learning

instruction set operations, with the goal of obtaining parity with NVIDIA’s high-end Tesla V100

datacenter GPUs, as well as the most recent EPYC family supports customized instructions for

deep learning [95]. Both companies offer also low power GPUs for the embedded space, namely

the AMD Vega mobile GPU [96] and NVIDIA Jetson TX2 [97] and AGX family [98].

In regards to memory, GPUs leverage specialized and highly pipelined GDDR memory,

which reduces capacity, but offers much higher bandwidth (up to 732GBps). With the NVIDIA’s

Turing family, latest devices include HBM2 DDR memory stacks [99], which scales the memory

access bandwidth to 1TBps and beyond. Again this is particularly important to address the

needs of training workloads. For the same reason, some of the DPUs introduce HBM2 too, as

discussed below. In regards to power consumption, GPUs are high as well, and will consume up

to 345Ws.

One general challenge for GPUs is that they need to leverage input parallelism to achieve

high utilization of their large compute arrays. Therefore inputs need to be grouped before

execution, typically referred to as batches, which has adverse affects on end latency. This is
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discussed in more detail below in Section 2.3.3. Further, GPUs are relatively high in power

consumption. Regarding quantization, again support is limited to the inherent datatypes, which

are INT4 at best in the context of NVIDIA’s Turing family, and INT8 for many of the others.

Finally, the corresponding software environments for GPUs, while not on the same level as

CPUs, have matured significantly and provide increasingly ease of use.

Figure 2.16: DPU architectures: Matrix of Processing Engines (MPE) on the left, and spatial
architecture on the right

FPGAs and ASICs

FPGAs and Application Specific Integrated Circuitss (ASICs) customize hardware architectures

to the specifics of a given application. They can be adapted in all aspects to suit a use case’s

specific requirements. This includes their IO capability, their functionality, or even to suit

specific performance or efficiency targets. FPGAs can be reprogrammed whereas ASICs are fully

hardened. This flexibility allows to amortize design costs of the circuit across many applications,

but comes at the expense of hardware resource cost and performance.

FPGAs are a popular choice for acceleration of CNNs. Traditionally, an FPGA compute

fabric consists of a sea of lookup tables (LUTs) which are interconnected through a programmable

interconnect. Latest generations host millions of LUTs. Furthermore, the fabric is interspersed

with specialized hardened compute blocks (DSPs) which accelerate n-bit multiply accumulate

operations (MACs), as well as SRAM blocks. The latter are refered to as block RAMs (BRAMs),

which hold 36kbits, and Ultra RAMs (URAMs) which store 288kbits. More recent FPGAs

generations, combine multiple FPGA dies, referred to as super logic regions (SLRs), and leverage
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a silicon interposer to provide connectivity between SLRs. This technology is referred to as

stacked silicon interconnect (SSIT) and helps scale device capacity.

DPUs

As mentioned at the beginning, the term DPU (short for deep learning processing unit) refers to a

new type of compute architecture, specialized for the acceleration of CNNs. DPUs are customized

for these type of applications in a number of ways: types of operations supported, direct

support of tensors or matrices, inherent data types and supported numerical representations,

macro-architecture, explicitly managed and specialized memory hierarchies, and which levels of

parallelism they exploit (input, output pixel, IFM, OFM, bit, and layer and branch parallelism

as was introduced in the first part of this chapter. We differentiate two types of DPUs, which

can be implemented with both ASIC technology and FPGAs.

DPU (MPE). The first type, as shown in the left side of Figure 2.16, consists of a Matrix

of Processing Engines (MPE) that operates on matrices or higher dimensional tensors. The

processing engines can be trivial Multiply Accumulate (MAC), vector processors or more complex

Very Large Instruction Word (VLIW) cores which can support concurrent execution of different

instructions. Popular examples in this category include Google’s Tensor Processing Unit (TPU).

Introduced in 2016 [100], it was originally designed to accelerate Google’s TensorFlow framework.

The first generation supported integer arithmetic with a massively parallel INT8 matrix multiply

engine. The second generation TPU was announced in May 2017 [15], and the third generation

in May 2018 [101]. These newer chips boast improved memory performance as well as support

for floating point specifically aimed at training. There are a number of startups introducing

custom hardware which fall into this category: Within the cloud space, there are Graphcore,

Groq, and Wave Computing. Within the embedded space, where the design constraints are even

more stringent, we find even more solutions, as are listed in Table 2.5. Most are secretive about

the details of their designs. Intel is investigating several custom accelerators and has for that

purpose acquired a number of startups, namely Nervana, Habana and Movidius. Fathom [102]

is Movidius’ ultra low power Neural Compute Stick (NCS) which operates at about 1W. Also,

ARM offers specialized CNN processors in form of their Ethos family, boosting performance up

to 4TOPs with support for INT8 and INT16 datatypes.

As mentioned above, DPUs provide specialized datatypes to execute heavily quantized, re-
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duced precision CNN implementations. At the extreme, binarized neural networks which are very

high throughput at extremely low power are exploited in the following ASICs: BinarEye [103],

BNN Custom Fabric [104], and IBM AI Accelerator [105]. Finally, Lattice has announced

binarized neural network libraries targetting low power FPGAs and achieving 1TOPs/W [106].

Custom floating point representations are also considered. For example, Microsoft’s Brainwave

project [107] uses this approach with the aim at applying FPGAs to CNNs at datacenter scale.

However, typically the hardened versions in form ASIC only support INT8, as lower precisions

could potentially limit their application scope. FPGA-based DPU-MPEs implementations such

as Xilinx’s xDNN are less constrained and in principle can be customized as needed.

Similarly to the GPU, but perhaps to a lesser degree, DPUs leverage input, IFM and OFM

parallelism, which requires buffering of inputs and may have adverse affects on latency too. A

particular challenge arises in the context of software environments, which differ for all vendors

and are less mature than what we have observed for CPUs and GPUs. Typically, they are

limited to support execution of very specific layer types (sometimes even restricted in regards

to parameter ranges) and neural networks. A given and increasingly expanding modelzoo

is supported, however many limitations exist in the form of layer types and are provided as

black box solutions which lack transparency and flexibility. This will become apparent in the

experimental chapter of the thesis.

In summary, through their specialization, these implementations minimize hardware cost,

maximize performance and optimize efficiency by exploiting specific precision arithmetic with

a specialized instruction set and customized memory systems. However in order to gain the

performance advantage the algorithms need to be adapted to leverage these features.

Spatial DPUs. The second type of DPU leverages spatial acceleration and exploits layer and

branch parallelism, as was introduced in the first part of this chapter. To that extent, the

hardware architecture is even further specialized to the specifics of a given CNN topology. This

is visualized in the right side of Figure 2.16. The hardware architecture actually mimics the

given CNN topology and the inputs are streaming through the architecture. Every layer is

instantiated with a dedicated compute data path. Each layer has a dedicated weight buffer,

and activation buffers in between layers are FIFOs of minimal size. They buffer just enough

data to feed the next set of convolutions in the next layer. This is substantially more efficient

compared to the first type of DPUs or GPUs and yields reduced latency. DPUs and GPUs

generally perform a layer by layer compute, where a sequence of images has to be buffered in
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order to extract maximum compute out of the platform (input, IFM and OFM parallelism). For

this the device buffers a batch of images before computing the first layer of all images. Then all

intermediate results are buffered, and then the next layer is computed and so on. Hence the

latency is heavily dependent on the size of the input batch. As a result, spatial DPUs have an

advantage in regards to latency. This level of customization is only possible with programmable

hardware architectures with FPGAs, as they can adapt the hardware architecture for different

use cases. This wouldn’t make sense in the context of an ASIC accelerator, as that would yield

the ASIC only capable of accelerating one specific topology, which would be far too restrictive

in scope. The limitation in spatial architectures is the scalability with numbers of layers. Each

layer comes at a resource cost overhead and there is a maximum number of layers that can be

created within a single device. As a result some extremely deep CNNs might not be able to fit

into a single device. Microsoft’s Brainwave project leverages spatial computing and overcomes

this limitation with a distributed approach [107]. Once a spatial acceleration has been leveraged

and the architecture is specialized for a very specific CNN, then the architecture can be further

customized in regards to minimum precision, supporting only the bits as needed per layer of

the CNN thereby achieving even higher performance and efficiency, while with the first type

of DPU, the hardware will support the maximum precision that is required over the whole

network. In regards to customized precisions and spatial architectures, we have pioneered

the first binarized neural network accelerators [34, 40] and provided many proof points for

customized reduced precision implementations [11, 14]. This flexibility comes at a cost in form

of programming complexity and they are extremely difficult to characterize in general, as the

performance characteristics depend on the specifics of the hardware architecture that has been

implemented.

Further Variants

Others exploit sparse computing engines, such as EIE and its successor ESE [78], SCNN [108],

Cnvlutin [109], Cambricon-S and Cambricon-X [110]. These are the only architectures which

can benefit from irregular sparsity.

Finally, another dimension to customization of precision is to optimize over the execution-

or run-time of a CNN. In other words, beyond using statically fixed reduced precision, where

the hardware operates with a fixed precision for all variables, some approaches explore run-time

configurable bit precision which allows for the exploitation of bit-parallelism in the arithmetic.

Michaela Blott Ph.D. Thesis



40
2. ANALYSIS OF NEURAL NETWORKS, THEIR UNIQUE REQUIREMENTS &

ASSOCIATED HARDWARE ARCHITECTURES

Figure 2.17: Run-time programmable precision.

This is also referred to as transprecision computing and illustrated in Figure 2.17. On the x-axis,

we show the execution time of a CNN, where we first execute all layers (layer 1, layer 2 and so

on) for input i0. Then we progress to the second input i1 and so on. The y-axis annotates the

minimum precision required. In the shown example, layer 1 for i0 requires 3bits, while layer 2

for i0 requires 2bits. This can vary for every input. In case of a FP32 implementation, marked

by the top line, the area between the red boxes and line would be representative of the wasted

computation. When leveraging hardened customized arithmetic, for example INT8, then the

wasted computation is significantly reduced, but there is further scope for optimization. This is

what can be exploited with run-time programmable precision and is effective with bit-serial

implementations. For example Umuroglu et al. [111] demonstrate with BISMO that bit-serial

can provide highly attractive performance with minimal overhead on FPGAs, while Judd et al.

show the same is true for ASICs with their prototype ASIC called Stripes [112]. While this

concept can be applied to both MPE and spatial architectures, it makes most sense for MPEs.

2.3.2 Example Platforms for Cloud and Embedded Systems

We have carried out extensive research on available hardware platforms in this space and

collected and summarized them in Tables 2.4 and 2.5 with published performance and power.

These tables cover both high-end platforms for cloud deployment as well as devices targeted for

IoT.
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Table 2.4: Hardware architectures for cloud systems with theoretical performance

Platform Num. Choice Throughput [TOPs] Mem BW [GBps] Power [W] Performance/Power [TOPs/W]

CPUs
Intel CascadeLake 92xx (56cores) [92] FP64 6.8 282 400 0.017
Intel CascadeLake 82xx (28cores) [92] FP64 3.5 141 205 0.017
AMD Epyc 7742 (28cores) [95] FP64 3.5 205 225 0.016
GPUs
Quadro RTX 6000 [99] FP16 130.5? 624 260 0.5
NVIDIA V100 [93] FP32 14 250 300 0.06
NVIDIA V100 FP16 112? 250 300 0.45
NVIDIA P100 [113] FP32 8 732
NVIDIA P100 FP16 16 732
NVIDIA P40 [114] INT8 47 200 346 0.24
NVIDIA P4 INT8 22 60 192 0.37
AMD Vega10 [115] FP32 13.7 484 345 0.04
TPUs
Google TPUv1 [100] INT8 92 75 34 1.23
Google TPUv2 [15] FP16 45 600
Google TPUv3 [101] FP16 90
ASIC DPU (MPE)
Graphcore Custom 224 300 0.75
Groq unknown 400 8
Nervana custom16 55
Wavecomputing 1DPU INT8 181 271 0.7
FPGA-based Spatial DPU
Xilinx VU9P 2b/8b 93.00 88 100 1.06
Xilinx VU9P 2b/4b 139.88 88 100 1.59
Xilinx VU9P 2b/2b 192.52 88 100 2.19
Microsoft Brainwave Stratix X [107] FP8 90 125 0.72
Performance of Tensor Cores ?

Table 2.5: Low power hardware architectures and theoretical performance

Platform Num. Choice Throughput [TOPs] Mem BW [GBps] Power [W] Performance/Power [TOPs/W]

CPUs
ARM Cortex-A53 using gemmlowp; Ultra96 INT8 0.192 4.26
Bitserial Cortex-A57; Jetson TX1 [116] BIN 0.09 0.019
GPUs
NVIDIA AGX (30W) [98] FP32 3.59 30W 0.12
NVIDIA AGX (30W) [98] FP16 7.19 30W 0.24
NVIDIA TX2 (MaxP) [97] FP32 .575 59.7 15.0 0.038
NVIDIA TX2 (MaxP) [97] FP16 1.15 59.7 15.0 0.077
ASIC DPU
Movidius Myriad 2 [102] INT8 .15 1.2 0.125
Movidius Myriad X [117] INT8 1 1 1
Kalray MPPA Turbocard3 [118] FP32 1.6 110 0.014
BinarEye [103] BIN 0.09 - 2.8? 230†
BNN Custom Fabric [104] BIN 1.4 0.6 2.3
Stripes Bitserial ASIC [112] BIN 128.5 4.3
IBM AI Accelerator [105]4 BIN 12
Eyeriss [60] INT16 0.084 1.17 †

ARM ML Processor [119] unknown 4.6 3
DianNao [120] INT16 0.452 120 0.485 0.93
EIE(28nm) [121] INT4 3 (0.102 sparse) 2.36 1.27 2.4 (0.08 sparse)
Cambricon-X [110] INT16 0.544
FPGA DPU
Lattice SenseAI [106] BIN 1.4 0.6 2.3
BISMO biserial on PYNQ [111] BIN 6.5 4.64 1.4
FINN on ZC706 [34] BIN 11.6 0.408
ZCU104 (Deephi-666MHz) INT8 4.60 19.2
ZCU104 (Theoretical-775MHz) INT8 5.36 19.2
GX1150 on HARPv2 [122] BIN 0.041 0.85
Measured ?

Chip level power consumption only †
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Comparison

Roughly comparing these architectures, we can distinguish between them in regards to their

theoretical peak throughput, latency, power consumption, external memory capacity and

memory access bandwidth, their degree of specialization of the hardware towards the workload

and the associated ease of use. CPUs count as general purpose devices, even though they also

show first signs of specialization in regards to CNN acceleration with specialized instructions

in their vector processing units. For example Intel’s AVX-512 now offers so-called Vector

Neural Network Instructions (VNNI) [123]. However, overall they show the least degree of

specialization. CPUs provide high throughput, are the highest in regards to power consumption

and memory capacity and the easiest to use. GPUs increasingly specialize for AI workloads and

support increasingly reduced precision types (INT4 with the latest Turing family of GPUs) and

specialized tensor processing cores. They offer together with DPUs highest performance and

excel at external memory bandwidth but also at a high power footprint and very high latency

cost. DPUs, due to their increasing degree of specialization, offer top in class in regards to

throughput, energy efficiency and with spatial DPUs offering lowest latency. However, increasing

hardware complexity is accompanied with increasing complexity in the design entry, which

reduces ease of use. We have illustrated these characteristics in Figure 2.18. On the left side,

the heatmap visualizes through colour the qualitative characteristics and highlights the strong

aspects of each architecture. The number reflects a ranking, whereby higher is better. Similarly,

the radar chart depicts the compromises in each approach and illustrates that there is not a

single architecture that excels in all aspects.

Figure 2.18: Qualitative comparison of hardware architectures

Trends. As already indicated, with newer generations, the boundaries between different

hardware architectures are blurring. CPUs are increasingly incorporating vector processing
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units and support for reduced precision integer formats. GPUs are adding tensor processing

units, and the TPU now supports floating point operations. FPGAs can support any of the

above configurations with explicitly managed memory. They are the most flexible of all target

hardware, and can be configured to support any numeric representation.

2.3.3 Deployment Options

Many of the described hardware platforms offer different deployment options in order to support

different compromises between throughput, latency and power as indicated in Figure 2.19.

These are discussed in more detail within this section. In our benchmark, we ensure to cover a

systematic exploration of all of the provided deployment options regarding all figures of merit

to ensure a fair comparison and thorough understanding of the design compromises.

Figure 2.19: Compromises between power, throughput and latency with deployment options

Operating and Power Modes. Many of the chosen platforms offer different power or operating

modes which provide a compromise between power consumption and achievable throughput,

for example by regulating clock speed or disabling parts of the circuit. A specific example, is

the TPU Coral stick from Google which can operate with a fast or a slow clock. The NVIDIA

GPU Jetson TX2 platform can run in either maxn, maxp or maxq modes. Maxn is the high

performance mode with highest power consumption. Maxp is the most efficient mode, with

lowest power but also lowest performance, and maxq is a compromise between maxn and

maxp. Similarly, the NVIDIA AGX offers a maxn, 10W, 15W or 30W mode. Examples of this

behaviour are shown in Figure 2.20 indicating substantial differences in regards to power and

performance for different modes, where naturally higher performance comes with higher power

consumption.

Batch Sizes, Thread Counts and Stream Sizes. Many hardware platforms require increased

batch sizes, thread counts or stream sizes in order to extract maximum performance out of a
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Figure 2.20: Power versus performance for GoogLeNetv1: Different trade-offs are achieved in
different operating modes

hardware platform and achieve high compute efficiency. However, this can result in substantially

different latency as is shown in Figure 2.21. Layer-by-layer compute architectures including

Google’s TPU, GPUs such as Nvivida’s TX2, and Intel’s Neural Compute Stick NCS) have

a larger than linear increase in latency with regards to batch size. Typically, a sequence of

images has to be buffered in order to extract maximum compute out of the platform. The

architecture buffers a batch of images before computing the first layer of all images. Then all

intermediate results are buffered, and then the next layer is computed and so on. Hence the

latency is heavily dependent on the batch size (or thread count). As the device utilization

saturates with increasing batch size, peak performance is reached, and no further benefit can

be achieved. This is illustrated by the measured results for the NCS and TX2.

Spatial architectures such as the dataflow implementations with FINN [34] have a fixed

latency independent of input stream size which is determined by the length of the given

pipeline and is fixed. This is visualized with the gray line in Figure 2.21 which represents

the measurements on a spatial architecture. As such when only 1 input is processed (stream

size=1) the pipeline is underutilized and throughput is low. Full throughput is achieved when

the stream size saturates the pipeline, whereby the latency remains constant independent of

the stream size. Finally, the Xilinx DPU example (implemented on a ZCU102 development

platform), which deploys a vector of processing engine, utilizes thread counts rather than

batches. Latency increases with rising thread count, however at a much gentler slope than

batch sizes for GPUs. Example behaviour of latency and performance for a spectrum of batch

sizes, thread counts and stream sizes is shown in Figure 2.21 for the above mentioned devices

for ResNet50v1 implementations (RN50) and a VGG16 derivative CNN, currently abbreviated

as CNV100%. A more systematic exploration can be found in Chapter 7.
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Figure 2.21: Latency versus throughput for different batch sizes, thread counts and stream
sizes. For most architectures increasing the latter improves throughput at the cost of latency,
with exception of spatial architectures, where latency remains constant.

2.3.4 Other Considerations

Finally, we would also like mention different options in regards to form factors. There is a

spectrum of form factors available for all of these accelerators and it is important as it poses

additional challenges in regards to ensuring fair measurements. Cloud CPUs are only deployed

in motherboard sockets, while GPUs and DPUs (including FPGA-based ones) are typically

available in PCIe accelerator form factors. The motherboards hold significant amounts of

additional circuitry, which prevents us from measuring power of CPUs in isolation. Further

there are specialized AI machines such as Nvidia’s DGX-1 [124], however their focus is mostly on

training which is beyond the scope of this thesis. Similarly, the TPU is available in customized

form factors, so called pods, for Google’s data centers, and no power metrics are available. In

the embedded space, we see many customized platforms. We believe it’s useful to distinguish

between USB accelerator options (which are further constrained to USB power budget of 2.5W),

and socket-powered boards. Most of these boards are not actually intended as the final product,

but more as development or evaluation boards. The actually deployed form factor is heavily

customized to the specific use case of the end customer. Similarly to the server space, depending

on the complexity of the evaluation boards, power consumption might be inflated given collateral

devices located on the same platform.
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2.4 Concluding Remarks

This chapter contained two separate parts, the first summarizing the background of CNNs

including a discussion of compute and memory requirements, popular optimization strategies

and potential scope for parallelization, and the second part describing, analyzing and comparing

popular hardware choices. In the first part, we provided key insights about neural networks, their

unique requirements and challenges that need to be addressed in the benchmarking approach.

We discussed the ever broadening scope of applications for CNNs from image classification

to natural language processing with their corresponding figures of merit. We considered the

relevance of training datasets and exposed the breadth of CNN topologies together with a

discussion around the rapid speed of change in their topologies. Additionally, we provided

more of an in-depth look at popular computational patterns, including a quantification of the

enormous compute and memory requirements and discussed popular optimization techniques,

with specific emphasis on quantization and pruning as the most popular schemes. Together,

this illustrates the complexity of the design space and formulates the design objectives for our

benchmark in regards to the application.

In the second part of this chapter, we analysed three categories of hardware architectures

that are leveraged for CNN inference, namely common CPUs, SIMD based vector processors

such as GPUs, and DPUs which are specialized architectures for acceleration of deep learning

workloads. For DPUs, we distinguish between tensor processors which leverage a matrix

of processing engines and spatial architectures which can be further specialized for specific

topologies using FPGAs. CPUs are the most general solution but high in power. GPUs and

DPUs offer highest performance, whereby GPU are more expensive in regards to energy cost.

Spatial DPU architectures excel at latency and provide highest compute efficiency through

maximized customization. CPUs, GPUs and DPUs (MPE) use a sequential layer by layer

compute model whereas spatial DPUs execute all layers of the network concurrently. Hardened

topologies in form of ASICs, CPU and GPU offer a fixed set of native dataypes, whereas FPGAs

can adopt any precision and numerical representation, which provides utmost flexibility and

leverages optimization with quantization to the maximum, whereas hardened approaches need

to default to the next higher supported precision where the reduced precision variable can be

embedded. However the programmability in the FPGA fabric also comes at a speed and energy

cost. All architectures can benefit from coarse-grained pruning optimization techniques. Only
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sparse execution engines can benefit from irregular pruning, such as synaptic pruning. We also

discussed the various deployment options. Many devices offer different power and operating

modes as different compromises between throughput and power consumption to adapt to the

potentially very different optimization targets of different application settings. Similarly, batch

sizes, thread counts and stream sizes offer another compromise in regards to throughput versus

latency. Again this is to facilitate a spectrum of different use cases. This creates a unique set of

requirements and the whole range of deployment options need to be considered as part of the

benchmark in order to create a complete picture of the design space. In the next chapter, we’ll

take a look at benchmarking requirements in more general terms and study related work.
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3 Considerations in Benchmarking &

Related Work

3.1 Introduction

In the previous chapter, we considered the unique requirements of the application space in regards

to algorithms and hardware architectures. The final missing piece to designing a benchmarking

methodology, is looking at key components that constitute a benchmarking suite, understanding

the general characteristics we should be striving for, and understanding the specific challenges

that need to be addressed within the machine learning context. This will be addressed in the

following sections. In addition, we include here a thorough review of related work. Importantly,

during the time of this thesis, many other benchmarking attempts have emerged. This validates

our problem statement and confirms the need for a specific benchmarking methodology in this

space. While this created some overlap, substantial differences remain. We include a detailed

comparison with particular focus on MLPerf, which emerged after QuTiBench, and is the largest

and most significant industry wide effort in this space.

Figure 3.1: Location within the thesis
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Figure 3.2: Minimum components of a benchmark plus potential collateral

3.2 Key Components, Characteristics & Challenges of a

Benchmark

To help with the design of a benchmarking methodology, we start by taking a look at what

constitutes a benchmarking suite in general. What are general characteristics we should be

striving for and what are the specific challenges that need to be addressed specifically within

the machine learning context.

A benchmark can be defined as a set of standards used for evaluating performance or level

of quality. A more practical definition implies that the “set of standards” is supplied in the

form of a very specific set of executable tests and measured regarding a specific set of figures of

merit. The tests combined with the defined figures of merit are the essence of the benchmark.

Sometimes additional items are included such as performance analysis or profiling tools

which can help shed light on system bottlenecks. Test infrastructure or a testbed can be provided

to ensure reproducibility. This makes particular sense when specialized and not easily available

hardware systems are involved. Data management can be handled together with the benchmark

suite and stored in an accessible location as for example with DAWNbench [125], MIT’s Eyeriss

project [126] and the Request tournaments online score card [127]. We differentiate profiling

tools, test infrastructure, and measurements from the actual benchmark test suite (see Figure 3.2)

which encompasses executable code, associated test input data and definitions of figures of

merit. Also, somewhat related to benchmarking are modelzoos, such as OpenAI Gym [128]

and rllab [129], which are selections of sample codes. They are not necessarily aiming to be

representative, and typically include simplified implementations to teach concepts. In this thesis,

we focus on the benchmark suite and measurements only.

To bring maximum benefit, the following characteristics are essential which are discussed in

greater detail below:
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• Representative of common workloads

• Supportive of algorithmic modifications

• Objective and reproducible

• Portable to heterogeneous hardware systems

• Complexity vs accuracy trade-off

• Adaptive “living” benchmark supported by industry and academia

3.2.1 Representative

Benchmarks need to be representative of real world workloads. In machine learning, this

requires breadth across a spectrum of applications, algorithms and computational patterns.

For example Fathom [130] focuses on computational patterns, while TBD [131] investigates

algorithmic breadth. Both of these aspects are important. Computational patterns are important

to maximize insights into different hardware architectures. Application coverage is essential as it

provides more holistic insights into system level performance which can be hard to predict given

the emerging complexity of increasingly heterogeneous hardware systems. In particular, this is

essential to provide scope for algorithm optimizations. Other benchmarks, such as Fathom, try

to minimize the tests and focus only on a representative set of compute patterns. However this

would eliminate the scope for algorithmic freedom.

3.2.2 Support for Algorithmic Modification

Algorithmic modifications are inevitable to extract best possible performance out of diverse

hardware systems, for example to take advantage of caching and parallel hardware resources.

Licht et al [132] quote up to 400x speed-up, but this is just one of an endless list of publications

manifesting this fact. This is even more evident within the machine learning space, where software

and hardware co-design is compulsory [133] for energy constrained compute environments. To

support this algorithmic freedom within the benchmark suite, application coverage is essential

as mentioned above. We correlate hardware performance independent of the algorithm back to

application performance, which is equivalent to accuracy in this context. However, optimized

performance alone is not sufficient, as not every system designer may be able to achieve it.
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Ideally we would also reflect the out-of-the-box, naive performance. Both optimized and naive

are representative of a specific hardware platform, and the difference gives a good indication of

the development effort involved. We believe both should be part of the benchmarks and be

captured together with development time or lines of code. We intend to incorporate this as

part of future work. Specifically for neural networks, algorithmic modifications to be considered

include quantization, compression, topological changes and pruning techniques, as was detailed

in Chapter 2. In our evaluation we focus on pruning and quantization as the most popular

optimization schemes.

3.2.3 Objective & Reproducible

To provide clear differentiation between marketing and scientific efforts, reproducible and

objective results that do not favour any particular system configuration or hardware architecture

are needed. Reproducible results are a key ingredient in the move towards Open Science,

however, what does reproducibility actually entail? In the context of the plethora of esoteric AI

accelerators, is it sufficient that an objective third party has validated the results? This is for

example done in the context of the Collective Knowledge Framework [134]. Or does it imply

that everyone on the planet should be in a position to reproduce the results if they had access

to the system at a reasonable cost? Some hardware systems are too expensive; for example, a

NVIDIA V100 may be beyond someone’s budget. Other hardware choices are only available for

rent, such as Google’s TPU versions as part of Google cloud. As such it may be appropriate to

define reproducible at a certain cost.

3.2.4 Portability

Portability is a challenging subject as specialized hardware architectures come with their own

design entry languages and compiler tool stacks. The community is fragmented by a huge

choice of frameworks including Caffe, Tensorflow, Mxnet, Theano, pytorch and Darknet. What

is more, the prediction accuracy of a network depends on the choice of framework, since

training data are passed through different preprocessing stages and numerical inaccuracies

accumulate and manifest themselves as discrepancies. These inaccuracies are exacerbated by

the characteristics of floating point arithmetic [135]. For example, the non-associativity of

floating point arithmetic and differences in rounding operations, can accumulate to differences
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in validation error [135]. As a result, models and frameworks are inherently tied together.

Although new efforts on interchange formats such as ONNX [136], NNEF [137] and compatibility

stacks such as TVM [134, 138] make strides in this domain, currently supporting hardware

backends within each of the frameworks that is tied to the selected machine learning model,

seems inevitable. There are three basic choices: The first is to constrain ourselves to exactly one

framework as was done with Fathom [130]. Second, we could support all frameworks. However,

given that we are dealing with different hardware backends, this causes an explosion in test

infrastructure, as the number of tests multiplies with the number of frameworks. Furthermore,

many specialized AI accelerators would not support integration with all frameworks. The

final choice and probably the cleanest, is to support one of the intermediate neural network

representations such as ONNX [136], NNEF [137] or TVM [138], which provide translation

between all popular frameworks. However, this requires hardware vendor support, which is

currently limited. This can be addressed in the future once standards and vendor tools mature.

3.2.5 Complexity vs Speed vs Accuracy

Speed of result is essential, as the key purpose of a benchmark is to provide faster insights than

developing the full end-system. There is a trade-off between speed, benchmark complexity and

the accuracy of the results. Benchmarks which provide application and algorithmic breadth may

require a large number of tests thus making the benchmark suite inherently complex and limit

its usefulness. If it takes longer to run the benchmark than the targeted end applications, the

whole exercise may become useless. Sometimes it is important to have less accurate predictions

at a faster rate, and, for different users, different trade-offs are acceptable.

3.2.6 Adaptive

As machine learning is a highly active research field where algorithms change fast, the benchmark

suite should be adaptive and able to incorporate emerging popular algorithms, compute patterns

and end applications.
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3.2.7 Other Considerations

Workloads in the benchmark can be synthetic or real. Synthetic workloads allow the tailoring of

tests to be optimized to expose certain characteristics and thus may not be representative. Real

workloads may take longer to benchmark and may provide fewer insights and be less precise at

exposing bottlenecks. With QuTiBench we propose a combination of the two.

Another important consideration is whether to adhere to FAIR guiding principles [19] for

data management which ensures findability, accessibility, interoperability, and reusability for all

experimental and theoretical datapoints through creating of a persistent identifier, a repository,

a web portal [20], and creation of project- and data-level metadata. These are important to

provide automated access and therefore helps maximise the potential impact on research in

general as data becomes much more reusable.

3.3 Types of Benchmarks

We differentiate 3 types of benchmarks to clarify the differences in the various efforts in this space.

Specifically, we differentiate between ML benchmarks, performance benchmarks and NN

system benchmarks. ML benchmarks exclusively focus on accuracy. No consideration of

computational cost is given. Performance benchmarks record performance regarding throughput

(measured in processed inputs per second (ips), giga operations per second (GOP/sec) or tera

operations per second (TOP/sec)), latency or response time in milliseconds (ms), and power

consumption in Watts, however, completely ignore the performance in regard to the machine

learning task. Performance benchmarks only look at hardware performance and are agnostic of

the application. NN system benchmarks, as shown in Figure 3.3, lie at the intersection and

combine both performance and accuracy. They are at the heart of what we are striving for.
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Figure 3.3: Categories of benchmarks (performance, ML and NN system benchmarks) and
corresponding figures or merit

3.4 Related Work

We group the related work into the introduced benchmarking types.

3.4.1 ML Benchmarks

The Machine Learning community has defined its own benchmarks which have an exclusive

focus on achieved accuracy independent of the required compute, employing ensemble techniques

and multi-crop which in essence, linearly scale up the compute load per input data. The most

popular of these is the ImageNet Large Scale Visual Recognition (ILSVR) Challenge [139].

The associated compute requirements are unrealistic, particularly when deployed in energy-

constrained environments. CortexSuite [140] and BenchNN [141] are limited to measuring

accuracy, where CortexSuite is constraint to perception and cognition while BenchNN shows

the value of machine learning for approximate computing, based on 5 out of the 12 recognition,

mining and synthesis applications from the PARSEC benchmark suite. DjiNN and Tonic [142]

focus on deep learning tasks for warehouse scale computers including image, speech processing

and natural language processing. While kaggle [143] isn’t designed as a benchmark specifically,

it hosts a portfolio of data science challenges where the machine learning community competes

with the latest topologies and algorithms for highest accuracy. MLBench [18] compares human
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derived learning algorithms against machine learning services from Amazon and Microsoft Azur.

3.4.2 Performance Benchmarks

In regards to benchmark for neural network performance, DeepBench [59] is probably the

most successful at the state of this writing. DeepBench is a suite of microbenchmarks that

measures and compares basic compute operations. Specifically, it benchmarks individually direct

convolutions, matrix multiply, and a specific LSTM layer for single precision, half precision

floating point and for some operations 8b fixed point integer datatypes on hardware architectures.

It currently features cloud deployment and some embedded data points on raspberry pi and

iphone. It captures the most popular compute patterns, however lacks support for lower

precision datatypes, and exclusively investigates performance. As such it does not provide the

mechanisms to tie algorithmic modifications back to the application level, nor provide insights

into compute performance for reduced precision representations. As shown in Fathom [130],

while these are dominant operations, they only represent a subset of possible operations that

are needed to represent machine learning workloads. Furthermore, they do not capture data

movement bottlenecks between layers, as well as potential bottlenecks around buffering state,

as required for LSTMs for example, where capacity and access latency crucially impact overall

speed. To address this issue, researchers from industry and academia contribute to another

benchmark suite, MLPerf, that captures complete neural networks and with that system level

bottlenecks, further discussed below.

There are more general, machine learning agnostic, hardware benchmarks such as TPC [17]

for the data processing community, SHOC [144], SPEC [145] and STREAM [146]. SHOC looks

specifically at how to benchmark heterogeneous hardware systems using OpenCL as design

entry. Similar to our own efforts, SHOC deploys microbenchmarks combined with application

benchmarks and is multi-tiered. SPEC includes a broad range of applications including graphics,

MPI, mail servers, virtualization, and storage, and STREAM exclusively focuses on memory

bandwidth. None are specifically designed for machine learning, and address the challenges of

this application domain. gemmlowp [6], while it is not a benchmark, is specifically designed

for matrix multiply operations; it includes low precision operations which may be suitable as a

basis for implementation of part of our benchmark suite.
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3.4.3 NN System Benchmarks and MLPerf

NN System Benchmarks combine representative machine learning workloads with figure of

merit from the hardware performance benchmarks. BenchIP [147] is a benchmarking suite

which has a broad set of machine learning tasks. Similar to our own efforts, BenchIP adopts

a multi-tiered approach with micro- and macro-benchmarks. However, BenchIP does not

support the theoretical layer, which we use to cover compute efficiency and track benchmarking

results. BenchIP also doesn’t cover level-2, namely stacks of layers, which we believe bring great

merit in isolating bottlenecks in data movement and highlighting problematic dimensionality in

tensors. Finally BenchIP does not offer the concept of comparison via pareto graphs which is

essential to a) visualize the full scope of potential solutions within the design spectrum, and

b) provide the necessary scope for algorithm optimizations matching the specifics of various

accelerators. Fathom is probably the first attempt to provide a representative workload for

benchmarking that has algorithmic breadth beyond convolution neural networks inference

and includes example training and unsupervised learning such as reinforcement learning and

recurrent models. However, Fathom does not address the spectrum of numerical representations.

It also does not support heterogeneous hardware platforms. In regards to framework strategy,

Fathom advocates a unified software package, relying on compatibility software stacks to emerge,

and therefore only supports one framework, TensorFlow. Table 3.1 lists all machine learning

tasks as covered by Fathom.

Table 3.1: Fathom coverage: applications, datasets and models

Application Fathom
Learning Technique Domain Task Dataset Model

Supervised Vision Image Classification ImageNet ResNet
ImageNet VGG, AlexNet

Vision Object Detection - -
Vision Semantic Segmentation - -
NLP Machine Translation WMT-15 Seq2Seq
NLP Machine Translation - -
NLP Speech Recognition TIMIT DeepSpeech
NLP Sentiment Analysis - -
NLP Language Modeling babI Memory Networks

Unsupervised Vision Feature Extraction MNIST Autoencoder
Vision Adversarial Learning - -
Recommendation - - -

Deep Reinforcement Game Go - -
Learning Atari ALE Atari ALE Deep Q

With a primary focus on benchmarking for training and achieving application coverage
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rather than algorithmic breadth, TBD [131] adopts some of the concepts introduced in Fathom.

It supports more frameworks and datasets and covers a range of applications, including image

classification, machine translation, object detection, speech recognition, adversarial and deep

reinforcement learning. Also it offers more in-depth insights with profiling infrastructure.

Table 3.2 lists all machine learning tasks as covered by TBD.

Table 3.2: TBD coverage: applications, datasets and models

Application TBD
Learning Technique Domain Task Dataset Model

Supervised Vision Image Classification ImageNet1k ResNet50
ImageNet1k InceptionV3

Vision Object Detection Pascal VOC 2007 Faster R-CNN
Vision Semantic Segmentation - -
NLP Machine Translation IWSLT15 Seq2Seq
NLP Machine Translation IWSLT15 Transformer
NLP Speech Recognition Librispeech DeepSpeech2
NLP Sentiment Analysis - -
NLP Language Modeling - -

Unsupervised Vision Feature Extraction - -
Vision Adversarial Learning Downsampled ImageNet WGAN
Recommendation - - -

Deep Reinforcement Game Go - -
Learning Atari ALE Atari2000 A3C

MLMark [148] is an effort by EEMBC (Embedded Microprocessor Benchmark Consortium)

with an emphasis to benchmark IoT CNN inference implementations. Its strengths relate to

clear definition of figures of merit and standardized software support. In contrast to our efforts,

it has no specific quantization support, nor a multilayered approach including a theoretical

analysis.

DAWNBench [125] exclusively looks at ImageNet classification for training and inference.

The benchmark sets very clear figures of merit such as “Time taken to train an image classification

model to a top5 test accuracy of 93% or greater” and “Latency required to classify one ImageNet

image using a model with a top5 test accuracy of 93% or greater” and as such supports the

concept of algorithmic optimizations by tying hardware performance to accuracy achieved at

the application level, in this case image classification. DAWNBench does not provide further

insights beyond the specified figures of merit, is limited in application scope, and doesn’t support

multiple tiers.

We would also like to include the Collective Knowledge Framework [134] in conjunction

with the ASPLOS Request Tournament [127] as an additional benchmark. While it is narrow

in scope, specifically limited to ImageNet Classification inference, it makes strides in the way it
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opens up the design space for esoteric hardware accelerators, specifically facilitating architecture

specific algorithm transformations and correlation between accuracy with performance and

power within a larger design space. All of this is essential to support heterogeneous hardware

architectures. ASPLOS also excels in regards to reproducibility, leveraging ACMs artifact

evaluation technology, and provides insight into possible hardware performance and error rate

trade-offs, through an online scorecard. Also, ckframework,org have recently embraced MLPerf,

discussed in the next paragraph, and help with the visualization of the results [149].

MLPerf [150, 151] is probably the most promising approach at providing system level

benchmarks, which emerged just shortly after we started our efforts with QuTiBench. Similarly

to Fathom and TBD, MLPerf is dedicated to very specific, yet representative, application

scenarios, having selected two image classification and object detection CNNs (one light-weight

and one heavy-weight each) plus a machine translation network. Table 3.3 summarizes MLPerf’s

application coverage as of 2018.

More application scenarios such as sentiment analysis and recommendation are in planning.

All 5 applications are tested in 4 different load scenarios (single stream, multi-stream, server and

offline). For each of the load scenarios, only 1 specific figure of merit is reported for a specific

minimum application accuracy, whereas QuTiBench, as will be shown in the later chapters,

rigorously reports everything and is not constrained to specific application scenarios. As such

the insights gained with MLperf are much more limited and the fully available design space

cannot be represented. MLPerf considered initially only training, but inference was added since

end of 2019. Finally, MLPerf’s strength is that it’s been created by a consortium of industry

partners and universities, which addresses objectivity criteria plus its detailed considerations of

statistical aspects, as well as reproducibility. Key to this is a test harness which was developed

by consortium members and executes the applications in each load scenario. All contributors

measure in exactly the same way.

Unlike QuTiBench, as will be shown in later chapters, the performance is always measured

at system level and does not represent the performance of the actual accelerator, for example

when the data is already present and can be directly streamed from other system components.

With this, system-level insights are much more limited.

Also, different to MLPerf, QuTiBench embraces a multi-tiered concept, which is missing

from MLPerf. The multi-tiered approach offers a range of compromises for benchmarking in

regards to quality of prediction and effort. The microbenchmarks expose system bottlenecks in
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Table 3.3: MLPerf coverage: applications, datasets and models

Application MLPerf
Learning Technique Domain Task Dataset Model

Supervised Vision Image Classification ImageNet ResNet
Vision Object Detection COCO -
Vision Semantic Segmentation - Mask R-CNN
NLP Machine Translation WMT Eng-German Transformer
NLP Machine Translation - -
NLP Speech Recognition Librispeech DeepSpeech2
NLP Sentiment Analysis IMDB Seq-CNN
NLP Language Modeling - -

Unsupervised Vision Feature Extraction - -
Vision Adversarial Learning - -
Recommendation - - -

Deep Reinforcement Game Go Go Mini-Go
Learning Atari ALE

the various hardware architectures and the theoretical baselines can act as a measuring stick to

track compute efficiency and provide performance predictions.

MLPerf and QuTiBench are the only benchmarks that provision for algorithmic optimization,

however MLPerf offers a much more limited scope compared to QuTiBench. MLPerf does this

by introducing the concept of closed and open models as shown in Figure 3.4. In the open

model submission, topologies can be changed, quantization and pruning can be applied whereas

in the closed division, models can not be changed and submissions must have an accuracy of

99% compared to provided floating point baseline.

Figure 3.4: Closed vs open models in MLPerf

Furthermore, MLPerf offers 3 levels of maturity for submissions: available, preview, and

R&D prototype whereby all submissions that are currently not available are omitted to be

submitted with a given time frame. Also, MLPerf has provided a lot of thinking into statistical

confidence, auditing, reproducibility and checks for cheats such as caching and taking advantage

of the a priori known random distribution. Close to 600 submissions were made for inference

in V0.5, considering both cloud and edge scenarios. The only missing submission was GNMT
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multistream. Most submissions were on ResNet50v1.5. Only 1 FPGA implementation was

contributed by Furiosa.ai, and only 1 submission in the open category leveraged quantization.

In summary, the key difference between QuTiBench and MLPerf can be summarized as

follows:

• MLPerf has very specific figures of merit in very specific application scenario; whereas

QuTiBench always captures latency and performance, and power (board and idle).

• MLPerf is system-level only, and doesn’t capture compute.

• MLPerf only captures application-level performance, whereby QuTiBench is hierarchical

with theoretical, level-1 and level-2.

• QuTiBench is single node only; MLPerf is both single- and multi-node.

• MLPerf does not consider visualization of results, for example with pareto graphs.

• MLPerf has much more industry traction, well defined test harness (loadgen) and much

more emphasis on statistical confidence, auditing, and reproducibility.

A more detailed comparison is given in the evaluation Chapter 7 which highlights the merits

in both efforts. In Chapter 8 we discuss how the best in both efforts could be combined to

create a greater version of a NN systems benchmark.

Current benchmarks focus on subsets of algorithms used, mostly on training, and none of

them offer flexibility in precision for datatypes specifically (although MLPerf has the open model

concept introduced). Also, no other benchmark supports a tiered approach or flexible backends

to support heterogeneous hardware platforms and provides understanding of bottlenecks within

the system. Overall, support for algorithmic optimization is limited across the whole spectrum

of benchmarks, in particular in regards to quantization and none of the other benchmarks None

of the other benchmarks ensure FAIR data management to the extent that QuTiBench does.

In Table 3.4, we summarize the application scope of existing and our proposed benchmark, as

well as the key differentiators between existing benchmarks and our proposal. We will discuss

in Chapter 4 how we address these characteristics.
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Table 3.4: Feature comparison of existing benchmarks and QuTiBench

Criteria MLMark MLPerf DeepBench DawnBench Fathom TBD BenchIP QuTiBench

Machine Learning Task
Training no yes micro yes micro yes yes planned
Inference yes planned micro yes micro yes yes
Coverage
Applications broad broad narrow broad broad broad
Compute Patters broad broad medium narrow broad broad broad broad
Data Movements broad
Support for Optimizations limited limited limited yes
Full Design Space Representation yes yes yes
Deployment Scope
Cloud no yes yes yes yes yes yes planned
Embedded yes yes yes yes yes
Benchmark Abstraction
Theoretical yes
Microbenchmarks Compute yes yes yes yes
Microbenchmarks Data Movement yes
Full Applications yes yes yes yes yes yes
Speed vs Accuracy Trade-off limited yes
FAIR/Open Data open open open open open open open FAIR
Reproducibility yes yes yes yes yes yes planned planned

3.5 Concluding Remarks

In this chapter, we considered the key characteristics in a benchmarking suite which includes

being representative of common workloads, supporting of algorithmic modifications, objectivity

and reproduciblity, being portable to heterogeneous hardware systems, addressing the complexity

vs accuracy trade-off and being agile and adaptive, given the speed of change that we observe

within this space. We categorized benchmarks in this space into ML, performance and system

benchmarks, whereby we’re focusing on systems benchmarks which combine performance with

the specific application figures of merit to enable scope for popular optimization schemes. We

conduct a thorough review of related work, and expose key gaps in current efforts. This includes

in particular lack of system-level insights for computer architects, accuracy-speed trade-offs

through the multi-tiered approach, broader representation of the design space, and scope for

algorithmic optimizations. Particular emphasis in the comparison to state of the art is put on

MLPerf, whereby a full evaluation of the approach in this thesis compared to other system

benchmarks is provided in Chapter 7. In the next chapter, we will introduce the key aspects of

our proposed approach.
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4 Our Solution Approach: QuTiBench

4.1 Introduction

In the previous chapters, we considered the unique requirements of the application space

in regards to algorithms and hardware architectures, and considered key characteristics and

challenges for benchmarks in this space, including a review of alternative approaches in related

work.

Figure 4.1: Location within the thesis
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In this chapter, we propose our benchmarking methodology with the ultimate goal of enabling

fair benchmarking of heterogeneous hardware architectures for neural networks which supports

a spectrum of algorithmic and architectural co-designed end solutions. The aim is to expose

the spectrum of possibilities and accurately reflect the capabilities of the different hardware

platforms while offering attractive compromises between accuracy and speed of prediction. In

short, our design goals are as follows:

1. Representative of the algorithms in this design space (embedded inference to begin with)

2. Representative of the broad spectrum of increasingly complex hardware architectures

3. Support co-designed end-solutions, in particular solutions that have been quantized and

pruned

4. Provide a general understanding of capabilities and limitations of these hardware platforms

in conjunction with given algorithms

5. Illustrate the full design space with all possibilities of design compromises

6. Offer compromises between accuracy and speed of performance predictions

7. Create true research impact by enabling reuse of our results and facilitate community

contributions

With these goals in mind, we created QuTiBench. QuTiBench is a novel multi-tiered (Ti)

benchmarking methodology that supports algorithmic optimizations such as quantization (Qu)

and helps system developers understand the benefits and limitations of these novel compute

architectures in regard to specific neural networks and will help drive future innovation. Key

characteristics of our benchmark are described briefly here and in much greater detail in the

following sections:

Firstly, QuTiBench provides a method that allows for algorithmic freedom and can objectively

compare customized end-solutions, which is essential when comparing these domain specific

and highly versatile hardware platforms. The key idea is to tie performance back to accuracy

at the application level, and comparing the various figures of merit (latency, throughput and

throughput/power) via pareto graphs whereby one axis is always accuracy in the application

space. Optimal solutions can be found along the pareto frontier. This way quantized and

pruned models and any other alternative highly customized algorithm can be fairly compared
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amongst many other possible optimization strategies. A second key characteristic of QuTiBench

evolves around a multi-tiered approach which is shown in Figure 4.3. We tier the benchmark

suite with respect to abstraction levels as well as numerical representations for both training

and inference tasks. This provides not only attractive compromises in regards to speed versus

minimal discrepancy with target workloads, but also brings advantages such as additional

system level insights, for example into where difficult data movement patterns lie. A particular

important and unique aspect of QuTiBench is that it includes a theoretical level for both

hardware platforms and algorithms, that we use to create performance predictions via so-called

roofline models [21]. These predictions are useful to track compute efficiency over the various

levels of the benchmark and they can provide also initial guidance without running any hardware

experiments whatsoever. More details on the tiers will be provided in this chapter.

Further, we have specified clear figures of merit and a measurement methodology to provide

systematic insights into the design space while considering all deployment settings. Due to

the different nature of relevant hardware platforms, for each platform we are faced with many

different deployment options such as power modes and batch sizes. It is essential to establish a

clear and transparent methodology to help clarify the complex and obfuscated design space.

In addition, we have researched different data visualization routines that help create a better

understanding of the multi-dimensional design space and present data with clarity. This includes

pareto-charts, heatmaps, and so-on.

Finally, we understand the critical need for a community to support this effort as well

as open and FAIR [19] data to generate meaningful research impact. As such we have put

significant effort into a web portal located here: https://rcl-lab.github.io/QutibenchWeb.

In addition to providing downloadable access to thousands of measured and theoretical data

points, we have included all data analysis and visualizations that were derived within the thesis.

This web portal also supports third party contributions. This is essential given the scope of the

benchmarking effort which is required within this space. We hope that this web portal can help

pull together the research community such that we collectively can have scientific impact.
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The key differentiators of QuTiBench are summarized here:

Characteristics:

• Support for algorithmic optimizations, by correlating everything at the application

level’s figures of merit via pareto graphs.

• A multi-tiered approach towards benchmarking that supports a range of compromises

for benchmarking in regards to quality of prediction and effort.

• The inclusion of microbenchmarks and combinations of microbenchmarks, which re-

flect different computational and data movement patterns for different neural networks

to understand system bottlenecks. This includes specific support for quantization of

compute at all levels

• Support of theoretical baselines as a measuring stick to track compute efficiency

throughout as well as performance predictions without having to run a single experi-

ment

• Clear definition of measurement methodology, figures of merit and consideration of

deployment parameters

• Data visualization

• Open and FAIR data

In the following subsections, we discuss the proposed benchmark suite in more detail,

including the test suites at various abstraction levels, algorithmic optimizations and quantization

in particular, considerations in regards to datasets, hyperparameters and framework challenges,

reproducibility, adaptability and others.

4.2 Support for Benchmarking Co-designed Solutions

There is no single criteria that decides whether one solution is optimal, as for different use

cases, different figures of merit apply. For example using a single criteria such as best inference

response time for a single image from ImageNet dataset, with a specific minimum accuracy,
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Figure 4.2: System performance evaluation: Pareto graphs are visualizing the optimal solutions
within the design space, with best combinations of lowest error and lowest hardware cost

provides limited insights. It could be that another application might need less accuracy and

tolerates a lower response time. Also for system designers, it can be extremely useful to have

an understanding of the full scope of solutions. All combinations yield different trade-offs

within the multidimensional design space. As such, we present all solutions and measurements

within multi-dimensional figures, whereby the pareto frontier represents the best possible

compromises for different use cases. The charts always leverage accuracy on the y-axis (to

provide the algorithmic freedom). The x-axis however can represent many different figures of

merit, for example hardware resource cost (as shown in Figure 4.2), performance in inputs per

second (ips), frames per second (fps), giga operations per second (GOP/sec) or tera operations per

second (TOP/sec), latency in milliseconds (msec) and energy related figures of merit including

power consumption or throughput over power. This offers a broad overview of all the advantages

and disadvantages of the various solutions. Fig, 4.2 shows an example of such a pareto graph,

with hardware resource cost on the x-axis. In this case, we derived the hardware cost as

a weighted sum of the different hardware resources used in the Field Programmable Gate

Array (FPGA) fabric. For readers familiar with FPGAs, the sum is calculated from LUT and

DSP usage, whereby DSPs are weighted a factor of a 100. The general point, however is that

any formula can be used that is deemed as representative of the hardware cost. Depending on a

specific applications requirement, we can derive the best suited solution from these charts.

This way of benchmarking opens up the opportunity for algorithmic innovations. We

Michaela Blott Ph.D. Thesis



68 4. OUR SOLUTION APPROACH: QUTIBENCH

Figure 4.3: QuTiBench offers a multi-layered approach, which constitutes of a theoretical
level, two microbenchmark levels (with and without data movements), and an application level,
whereby precision support is implemented on all levels

include in this pruning and topological changes, while initially focusing on quantization and

numerical representations as one of the most promising techniques. For this, we include, on every

level of the benchmark several numerical representations, including FP32, FP16, INT8, INT4,

INT2 and allow for arbitrary choices to be included, for example Microsoft’s custom floating

point [152]. Training each neural network with different quantization approaches and different

and potentially esoteric numerical representations is highly time-intensive and is not guaranteed

to always deliver converging training results. As such, careful logging of trained quantized

models is a high priority for level-3. This way of performance comparison at system-level will

form the highest tier (level-3) of our benchmark), as described in the next section.

4.3 The Concept of Multiple Tiers

The multi-tiered approach consists of four tiers which are shown in Figure 4.3. This includes

the system or application level, two microbenchmark levels and a theoretical basis. The

microbenchmarks run subsets of compute and data movement patterns on the various hardware

platforms to provide insights into system bottlenecks. This offers different levels of quality in

performance predictions. We leverage a theoretical baseline analysis to provide fast performance

estimations without having to run any experimentation. Furthermore this theoretical baseline

is highly useful to track compute efficiency on all levels of the benchmark and highlight difficult

compute and data movement patterns as well as measure achieved compute efficiency. These
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tiers can be applied to both inference and training, whereby we focus initially only on inference.

We added an additional dimension to the tiers for quantization, which is one of the most popular

and effective method of optimization. We support quantization at all four abstraction levels.

We’ll discuss the different levels in detail in the following subsections.

4.3.1 Level-0: Predicting and Tracking Performance with Theoret-

ical Baselines

Level-0 is a theoretical base layer with instantly available results that offers performance

predictions and provides guidance for optimization efforts and allows to compute metrics such

as achievable compute efficiency. At level-0, we already introduce the notion of performance per

datatype operation which is essential to support quantization as an algorithmic optimization.

For all target hardware backends, level-0 records theoretically possible peak performance in

TOP/sec or GOP/sec, external memory bandwidth (giga byte per second (GB/sec)) 5, and thermal

design power (Watts). For all models, we record their compute and memory requirements; This

includes four values: total number of compute operations for a single input, the model size, the

size of the state and the total amount of tensors in between layers that require buffering. These

values can be used as a basis to derive memory requirements and compute requirements for

both inference and training. Many of these datapoints, for both hardware and neural networks,

are presented in Section 2.2.4 and Section 2.3.1.

Combining application requirements with hardware platform characteristics allow us to

derive initial performance predictions using roofline models [21]. In more detail, a roofline

is a 2D line graph using a log-log scale which models the theoretical performance hw pp of

a hardware platform, shown on the y-axis, as a a function of the operational intensity

of applications, whereby the operational intensity represents the ratio between instructions

to be executed cmp req, and total memory to be read and written mem req from off-chip

memory. We model the theoretical performance hw pp of a hardware platform taking available

off-chip memory bandwidth mem bw and peak compute performance p hw pp into account,

whereby we differentiate peak performance at different numerical representations. For example

a Graphics Processing Unit (GPU) has a different peak performance for 32-bit Floating Point

Representation (FP32), 16-bit Floating Point Representation (FP16), and various fixed point

integer formats. The resulting curve resembles a roofline, whereby the slope represents the
5HBM is counted as external memory
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Figure 4.4: Modeling compute and memory bound hardware performance with roofline models
as a function of the operational intensity of CNNs.

memory bound area, and the flat top the compute bound area, where applications hit the absolute

compute limit of a platform. Combining theoretical peak performance and memory bandwidth

in roofline models with the operational intensity of a Convolutional Neural Network (CNN)

provides insight as to whether a neural network will be memory or compute bound and what is

theoretically possible in regards to performance. The operational intensity of a CNN is derived

by making assumptions for where weights, tensors, weight and activation gradients, weight

updates and state of a neural network are stored, combined with the size of the datatypes used.

The predicted performance is shown at the intersection between the operational intensity and

the roofline itself, This is shown in Figure 4.4 at the intersection between red and black lines,

annotated by a red circle, whereby the black represents the hardware performance hw pp, and

the red line the operational intensity of the CNN.

In more detail, this is how we calaculate the predicted performance for a specific CNN on a

given hardware platform. As mentioned above, hw pp is given as a function of the operational

intensity (OI) of an application, which in essence represents the ratio between instructions

to be executed cmp req, and total memory to be read and written mem req from off-chip, in

bytes: Operational Intensity = cmp req
mem req . To be precise, hw pp is calculated as the minimum

of available compute performance p hw pp and memory bandwidth mem bw multiplied by an

application’s operational intensity. This is as defined in the original paper [21] and expressed in
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the following formula:

hw pp = Min(p hw pp , mem bw ∗ cmp req

mem req
) (4.1)

We can use this equation 4.1 for the performance estimation by calculating the specific

operational intensity of a given application. For computing operational intensity, we assume a

storage location for weights, tensors, gradients, weight updates and state, either on- or off-chip,

and combine these with the size of the datatypes. To compare between different implementation

topologies of the same machine learning task (i.e. CIFAR-10 classification) we use performance

prediction pp measured in ips as a metric for theoretical performance.

pp is calculated as the peak performance of the hardware hw pp (defined in equation 4.1),

in operations per second) divided by the compute requirements cmp req to process a single

input. This forms the first part in formula 4.2. Replacing hw pp with 4.1, gives the second part

of equation 4.2 whereby p hw pp refers to the hardware’s absolute peak performance ignoring

memory, and mem req and mem bw refer to the memory requirements in millions of elements

(ME) and available hardware bandwidth respectively.)

pp = hw pp

cmp req
= Min(p hw pp

cmp req
,

mem bw

mem req
) (4.2)

Results are computed leveraging this equation and visualized in different ways, as described

in section 7.6.

Overall, this easy-to-understand model offers insights on performance scaling by performing

analysis of bounds and bottlenecks without running any experiments. Beyond performance

estimation, we can leverage the performance estimate in the roofline to track the benchmarking

and estimate compute efficiency. This is shown in Figure 4.5. The compute efficiency, computed

as mp
pp , whereby mp represents the measured performance. In this particular example, the

method estimates that the achieved efficiency is 1% of what is theoretically possible.

4.3.2 Level-1 and Level-2: Identifying Inefficient Compute and Data

Movement Patterns

The middle tiers in our benchmark suite are specifically designed to identify inefficient com-

pute and data movement patterns. Level-1 represents the typical compute patterns such as
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Figure 4.5: Performance estimation and tracking using a hardware platform’s roofline model
and the operational intensity of CNNs.

convolutional layers, fully connected layers, pooling layers and so on. Level-2 includes combina-

tions of these microbenchmarks with the aim of identifying bottlenecks in data movement, for

example, how the dimensionality of the tensors or skip connections affect storage and buffer

requirements and potentially hamper system-level performance. The aim is by choosing these

microbenchmarks well, we can provide further insights into what causes potential performance

drops. These are valuable insights that can be used by machine learning engineers to redesign

existing and future machine learning algorithms.

In more detail, level-1 exposes achievable compute performance for typical compute patterns

encountered within neural networks, which equates to popular layers including convolutions,

fully connected layers, recurrent layers, residual layers, and squeeze layers, over a range of

dimensions and with different numerical representations (Chapter 2). These tests are comparable

to DeepBench [59], with the significant difference that we provide much broader support for

specialized numerical representations. For each of these compute patterns, we record the

following figures of merit: measured performance (TOP/sec or GOP/sec), latency (msec), power

consumption (Watt) of the full platform in the embedded space, and of the board excluding

the host system in the cloud.6 While level-1 does not capture application level accuracy, the

tests will include verification of functional correctness. In the following section, we’ll introduce

a further differentiation between system-level and compute-level performance. For the

microbenchmarks, the results reflect achievable compute performance only, excluding potential

6Power measurements might not always be available and might require specialized test infrastructures
and testbeds.
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overheads for moving data which are addressed in level-2. While requiring execution, the tests

at level-1 are relatively rapid. We include a sweep over batch and thread sizes.

Level-2 is a microbenchmark for compute and data movements. It is comprised of simple

combinations of level-1 tests, and can thereby effectively capture potential bottlenecks such as

tensor movement between layers, as well as storage requirements. It considers only stacks of 2

and 4 layers and only a subset of all possible combinations to keep test time to a minimum.

Exhaustive representation of all layer types would result in far too many test cases. We include

mixed precision between layers in these small template stacks. Figures of merit are identical to

level-1 and results reflect achievable compute performance only, excluding potential overheads

for moving data into the accelerator and returning results. In particular, the latency variation

between level-1, level-2 with stacks of 2 layers, and level-2 with stacks of 4 layers will bring

insight into data movement and buffering bottlenecks. While more detailed definition of layer

combinations is required, overall the benchmarking effort on level-2 is moderate.

We face particular challenges when it comes to measuring individual sub-topologies. Ideally

we would represent all level-1 and level-2 tests in form of a prototxt or similar file that represents

the model. This would be the fairest form of comparison. However many of the vendor-specific

tools operate in a black box mode and don’t support execution of parts of the topologies.

Some of the tools provided a profiler, which helped and we retrieved datapoints in this variant.

However for some of the platforms it was simply impossible to carry out the measurement.

More details are described in Chapter 7. Finally, another challenge is that many backend tools

perform automated layer fusion such as merging batch normalization with convolutions, which

makes testing in isolation inaccurate.

4.3.3 Level-3: Comparing at the Application Level

Application coverage is essential to offer space for algorithmic innovation which can achieve

superior system-level performance and can only be validated when combined with application

results. As such, coverage in the application space is essential, achieved accuracy becomes the

bar for normalizing results, and the neural network (or algorithm) itself can become a variable.

We will initially consider some of the datasets and models in (Table 3.3), taken from existing

benchmarks, and complement them with models that have been explored to work well with

pruning and quantization optimizations. Furthermore, contributors are welcome to provide

different models for given machine learning tasks.
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For inference, we include performance measurements for a single image. However, the error

rate is the reported test error over the whole test dataset. For training, we plan to report

throughput, training time (latency), and power for a single image as well (including correctness

tests). We also aim to provide measurements over longer training sequences with specific

accuracy targets, for example, measure complete training time 90% top-5 error for ImageNet

classification with a ResNet50. Finally, we consider the option to optimize the training algorithm

and network and record all possible data points in a multi-dimensional graph; for those it is

essential to include development time. However, all experimentation is currently for inference

only.

4.4 Unified Figures of Merit & Clear Measurement Meth-

odology

In order to provide a fair comparison between these diverse sets of platforms and algorithms,

it is essential to provide a clear measurement methodology with well-defined figures of merit.

In addition to this, due to the different nature of relevant hardware platforms, we are faced

with many different deployment options such as power modes and batch sizes. It is essential to

establish clear and transparent guidelines and measure in a systematic way to help clarify the

complex and obfuscated design space. We discuss each figure of merit in isolation below.

4.4.1 Latency and Throughput

Latency and throughput are key performance characteristics and there are many ways to

measure them. We report and differentiate compute and system throughput and latency

as this allows to crystallize system overheads such as data copy which can have a significant

impact on overall performance. The difference between system and compute throughput or

latency is illustrated in 4.6. Unfortunately, it is not always possible to make measurements

at exactly the same granularity across all the given platforms as shown in Figure 4.6. In this

example, for compute performance on the FPGA, the primitive to execute the compute includes

the movement of results at the end. Given that this only contains the resulting probabilities,

we believe this is negligible and the results are still representative and fair. In regards to

throughput, we consider fps or ips when comparing different algorithms with each other, as we
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Figure 4.6: Difference in measuring system versus compute performance on different hardware
platforms. System performance includes overheads such as image reading, preprocessing of data
and data movement.

are not really interested in the actual TOP/sec or GOP/sec, but only the resulting performance

in fps or ips when comparing the accuracy. We chose TOP/sec or GOP/sec only when considering

compute efficiency aspects. Finally, system or compute latency is reported in msec.

4.4.2 Power and Energy

To represent power and energy cost, we only report platform power measured at the socket.

While this is not necessarily accurate, there are strong reasons behind this choice: First, the

measurement needs to be fair. Therefore we believe it is essential that subsystems, including

memory, need to be taken into account. Second, more detailed current sampling on the platforms

may be available on some platforms, but each platform comes with different interfaces, and

may or may not provide access to all power rails. While the accuracy of typical socket power

meters is around 10%, we found that these results remain representative of the systems. We

average the results over 100 measurements to ensure statistically relevant information. The

biggest drawback is the lack of temporal resolution and the lack of automation as the meters

are being read visually. We will in the future investigate whether there are cost effective means

to provide automated power measurements with sufficient sampling rates.

Another consideration is whether to consider power or energy per frame. We settled on

using absolute power consumption since when multithreading or batching is applied, it is hard

to derive a representative number for energy and would differ depending on whether the end

application is latency or throughput driven. Finally, idle power with these platforms, can

represent a significant percentage of the overall power budget and would therefore cloud the

observation. In particular, two of the FPGA platforms (ZCU104 and ZCU102) are evaluation

boards with many superfluous peripherals, which is reflected in high idle power (19.9 Watts)

compared to the GPU (between 3.4 to 5.0 Watt depending on power mode). The additional
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Figure 4.7: Breakdown of power consumption for both a GPU (TX2) and FPGA platform
(Ultra96): While the GPU has a much lower idle consumption (board power and bitstream
loaded), the FPGA requires much less power for the actual processing of the CNN.

Table 4.1: Idle power consumption for a GPU in different power modes and one FPGA
platform, whereby the FPGA platform has a much higher idle power consumption

Tx2-MAXN [Watt] Tx2-MAXQ [Watt] Tx2-MAXP [Watt] ZCU104 [Watt]

5.0 3.4 4.0 19.9

dynamic power consumption is minimal and yields the FPGA overall as the more efficient

platform despite the initial load. This is shown in Figure 4.7.

4.4.3 Figures of Merit at Different Levels

The figures of merit vary in regards to the various benchmark levels with some exception which

relate to compute performance only. This is summarized in the following table 4.2. In level-3,

we measure both system and compute latency, system and compute performance, both in

TOP/sec or GOP/sec as well as ips or fps, and power. Also level-3 is the only level where accuracy

measurements make sense as it operates on the application level. For level-2 and level-1, we

capture compute only variants of latency and throughput and we omit accuracy (as previously

mentioned). Power which was typically impossible to measure due to the short execution time

of the benchmark and the coarse temporal resolution of the power meters, therefore only latency

and performance have been captured. Level-0 has different figures of merit which include

Thermal Design Power (TDP), theoretical peak performance and memory bandwidth for the

hardware platform, and modelsize, measured in millions of elements (ME), size of state (number

of activations) and total compute requirement.
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Table 4.2: Figures of merit for all levels

Figure of Merit Level-0 Level-1 Level-2 Level-3
System Latency [ms] no no no yes

Compute Latency [ms] no yes yes yes
Theo. Peak Performance [GOPsec, TOPsec] yes no no no

System Performance [GOPsec, TOPsec] no no no yes
Compute Performance [GOPsec, TOPsec] no yes yes yes

System Throughput [fps] no no no yes
Compute Throughput [fps] no yes yes yes

Accuracy [Top-1 %, Top-5 %] no no no yes
Base Power [Watt] no no no yes
Idle Power [Watt] no no no yes
Full Power [Watt] no no no yes

TDP [Watt] yes no no no
Mem. Bandwidth [GBsec] yes no no no

Modelsize [ME] yes no no no
Compute [GOP] yes no no no

Size of State [ME] yes no no no

4.4.4 Systematic Evaluation

A systematic evaluation is highly beneficial when it comes to creating system-level insights, such

as how does batch size impact latency and throughput, or what performance-power compromises

can be achieved through different power modes. For this purpose, QuTiBench includes a highly

systematic evaluation approach that measures all figures of merit, for all machine learning tasks,

for all topologies with all available optimizations, for all deployment settings on all hardware

platforms. This is very different to the MLPerf effort, where only one specific figure of merit in

each of the scenarios is reported.

4.5 Understanding through Data Visualization

Data Visualization through charts and graphs is critically important to gain insights and to

communicate these quickly and efficiently as visual information is known to be processed faster

than text. Most of what our brains absorbs on a daily basis is visual information. Graphs

provide context and correlate data which helps to drive clarity to an analysis and enhances

understanding. As part of our effort, we have researched different data visualization routines

that help create a better understanding of the multi-dimensional design space. This includes

pareto charts, heatmaps, and so-on. The key challenge in visualizing our benchmarking data
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are as follows:

1. High dimensionality of the design space

2. Highly divergent range of data

3. Volume of data points

To address the multi dimensionality aspects and the large volume of data, we leverage two

techniques. We only visualize isolated dimensions at a time through projections: For example,

we show accuracy versus latency and accuracy versus throughput separately. Secondly we

leverage higher dimensional graphs such as box and whiskers. This allows us to compact data

significantly and represent the statistical distribution of values rather than absolute values. To

address the big differences in data ranges, we normalize the values to the maximum or minimum

of the various platforms, which demonstrates the trends of values for different variants of neural

networks (for example quantized and pruned networks) and combine these with tables, which

provide the absolute numbers.

We chose the following set of visualizations which will be explained in more detail in the

subsequent sections. This includes the previously mentioned rooflines (see Section 4.3.1) and

pareto charts, bar and stacked bar charts, line and XY scatter graphs, heatmaps and box &

whiskers. All of these visualization routines are implemented, available as open source and

included as part of our web portal.

4.5.1 Bar Charts, Stacked Bar Charts, Line Charts and Scatter Plots

For many simple comparisons, we leverage bar charts and stacked bar charts. They are easy to

understand and visualize nicely one figure of merit (for example power, latency or throughput)

for a selection of experiments. With stacked bars, we can show a further breakdown of the

figure of merit too, for example system versus compute, or full power versus idle power, and

even visualize a range of values. An example is shown in Figure 4.8. We also leverage bar

charts for comparisons between theoretical (estimated) performance and measured performance,

whereby we annotate the percentage of the theoretical baseline achieved within the chart. For

visualization of the statistical distribution, we leverage box & whiskers, which are further

explained below, see Section 4.5.2. We also use standard line charts and scatter plots which

display information as a series of data points called ’markers’ connected by straight line segments
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Figure 4.8: Example bar chart for visualizing power consumption of different hardware
platforms in different operating modes. Each bar indicates idle power, minimum and maximum
power during computation and summarizes all results over all thread numbers, stream sizes and
batch sizes. This visualizes range and variation of values.

for ordered or no ordered data points respectively, typically in conjunction with pareto frontiers,

as described in Section 4.5.4 below.

4.5.2 Box and Whiskers Charts

As mentioned above, we chose box and whisker graphs as they allow to compress many

experimental values and visualize overall behaviours. Figure 4.9 illustrates an annotated

example of such a graph. Each figure shows all experimental data for one specific CNN topology.

In more detail: We group all datapoints over all batch, stream sizes, thread counts and all

deployment parameters per hardware platform and network into one bar. The boxes represent

the 1st and second quartile and median, x denotes the average, and the whiskers show the

outliers. There are always a group of bars per hardware platform and datatype/precision, and

one bar per pruning factor. The size of the box visualizes the large variations of values (for

example for GPUs). The benefits of quantization are then visualized in comparison between

two groups of box and whiskers, in particular in regards to averages but also minimum and

maximum values. The benefits of pruning are shown by comparing the bars within one group.

Finally, the first group for latency and throughput shows theoretical compute per input or the

inverse to visualize the correlated relationship to the respective figure of merit.
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Figure 4.9: Box and whiskers for different pruned and quantized versions of a given CNN
topology. This visualizes overall range and variation for pruned and quantized solution variants.

4.5.3 Heatmaps

The heatmap (Figure 4.10) visualizes predicted performance for CIFAR-10 classification across

all topologies and platforms. We create one heatmap per machine learning task, indicated in the

top left corner. Each column represents a different CNN model, in different pruning scales and

with different precisions. Each row represents a hardware platform, whereby we treat hardware

platforms in different operating modes and at diffferent datatypes as separate platform, so we

can make differentiated performance predictions. Each cell contains the actual numerical value

for the performance prediction, whereby the colour scale presents the actual value. We choose a

2-colour scale to emphasize the highest (red) and the lowest (gray) values.

In this example, the results show immediately that we expect a TPU in fast mode at INT8

to provide the best possible performance for ImageNet classification, using MobileNet-V1. From

these types of visualizations, impact of operating modes, datatypes and pruning scales are easy

to recognize.

4.5.4 Pareto Graphs: Accuracy versus Other Figures of Merit

Per wikipedia, a pareto frontier is defined as a state of allocation of resources from which

it is impossible to reallocate so as to make any one individual or preference criterion better
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Figure 4.10: Performance predictions for ImageNet classification with heatmaps

off without making at least one individual or preference criterion worse off. As such pareto

frontiers are ideal for level-3, where we aim to explore and visualize optimal solutions within the

design space regarding application performance independent of model topology and algorithmic

optimizations. These are typically compromises between accuracy and either throughput or

latency. As base graphs we leverage XY scatter and line graphs. The latter are being used when

we are looking to group some of the measurements, for example all experiments over a spectrum

of batch sizes, but for the same hardware platform, same CNN topology and under the same

operating modes. Below, in Figure 4.11, we show an example which includes results for FPGA

implementations with FINN using INT2 and INT4 precision and 3 different pruned variants of

the aforementioned CNV CNN. The results are across the spectrum of stream sizes, which are

combined by a line. The pareto frontier visualizes the following: Firstly, both quantized and

pruned versions provide pareto optimal design points, which increase performance at the cost of

a slight accuracy degradation. Optimal design points are achieved for highest stream sizes when

the streaming architecture is fully utilized and saturated. In particular, the pruning benefits

from 50% to 25% are close to 4x. Also, the performance continues to increases with more

pruning or quantization, as the CNN can be further unfolded (parallelized) inside the hardware

architecture. Similar graphs are leveraged to visualize the accuracy-latency trade-offs. Finally,

we utilize these visualization not only for measurements but also for theoretical performance

predictions with accuracy as given by trained CNN variants. Using these charts allows us to

predict the pareto-optimal solutions and highlight most promising combinations of optimization
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techniques.

Figure 4.11: Level-3: Pareto frontiers help visualize the different accuracy and performance
trade-offs.

4.5.5 Theoretical versus Experimental Comparison Pareto-Frontier

We have created a new chart as part of this effort, with the aim to enable a visual comparison

between the predicted pareto-optimal solutions and the measured pareto-optimal solutions. The

chart is based on XY scatter and line charts and includes all theoretical and measured data

points. We visualize both the pareto frontier for performance predictions and the frontier for

the measured datapoints. An example of such a chart is shown in Figure 4.12, whereby the

yellow line represents the theoretical pareto frontier and the blue shows the measured pareto

frontier. Many of the predicted optimal design points, materialized also in the measurements

as optimal. We faced a number of challenges creating these charts, most importantly relating

to the huge amount of data involved. To help with clarity we experimented with size, shape

and colour of markers. We found best using colour to identify markers belonging to the same

hardware choice and using shapes to differentiate experimental versus theoretical. Also, as part

of the web portal, we made hardware platforms and CNN topologies selectable and the chart

itself interactive, so the user can pan and zoom into particular areas of interest.
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Figure 4.12: Level-3: Pareto comparison charts help with the evaluation of predicted versus
measured pareto frontiers.

4.6 Impact on the Wider Research Community through

Open and FAIR Data

The nature of the problem that we are trying to address within this thesis is far beyond what

an individual can achieve. The sheer scope of experimentation required for the cross product

of hardware platforms, CNNs and potential deployment parameters and optimizations is vast.

Furthermore the constant addition of new platforms, the rapidly evolving topologies for CNNs

requires a high degree of adaptability. Machine Learning is currently a highly dynamic field in

research and specific algorithms may become very quickly outdated as new models may emerge

and take over rapidly. It will be of essence that the benchmark rapidly adapts to latest models

and expands to novel application domains as they emerge. In summary, this effort is well

beyond the scope of a thesis. The only way to really have an impact is through a community

effort. In order to facilitate this, it was essential to not only share our scientific data, but to

also enable third party contributions. Finally, training CNNs is highly time intensive and costly
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process. Therefore it is very important, that we carefully record all datapoints.

To address all of these challenges, we have put significant effort into a web portal located

here: https://rcl-lab.github.io/QutibenchWeb. In addition to providing downloadable

access to thousands of measured and theoretical data points and including all data analysis and

visualizations that were derived within the thesis, this portal enables third party contributions.

For the contribution of additional measured or theoretical datapoints, we’ve created a separate

section on our web portal to facilitate addition of theoretical data and measurements. Further-

more, to allow expansion of the scope of the project, all code and datapoints are organized

through an open source repository. This way, maximum flexibility can be provided and new

types of tests and new machine learning tasks could be added, as well as new figures of merit

and new data visualizations. For example, an interested party is looking into the addition of

energy delay products as an additional figure of merit. It is essential that all datapoints are

easily accessible and with the right license agreements. Also all data needs to be categorized

and annotated with metadata such that it is not only for human consumption, but also possible

for third party software to automatically analyse the data and contribute back. The concepts

of open and FAIR [19] data have been specifically designed for this. Implemented with these

concepts, this provides a gateway to generate meaningful research impact. In the following, we

provide some background on open and FAIR data and how we applied them to QuTiBench as

well as details on the web portal.

4.6.1 Data Revolution, Open and FAIR Data

The idea behind the data revolution [153], and the concept of Open Data [154] is that

data, in particular when relating to science and governments, should be freely available to

everyone to use and republish as they wish, without restrictions from copyright, patents or

other mechanisms of control, with the aim of facilitating knowledge discovery and improving

research transparency. FAIR refers to a set of guiding principles for scientific data management

and stewardship. It is an acronym and stands for findability, accessibility, interoperability, and

reusability [19]. As such, the intention is to make scientific data easier to find, more accessible

and improving interoperability and reuse. In particular, this is aimed to enable direct access

from computational systems with minimal human intervention. It is essential in this context

of benchmarks for machine learning, where a large, multi-dimensional and complex amount of

data is produced and collected. Open and FAIR data are key to turning scientific data into

Ph.D. Thesis Michaela Blott

https://rcl-lab.github.io/QutibenchWeb


4.6 IMPACT ON THE WIDER RESEARCH COMMUNITY THROUGH OPEN AND FAIR
DATA 85

valuable resources, that will eventually bring new insights and create true benefit to the entire

academic community.

At the basis of implementing these principles is making data open and freely available,

providing associated meta-data with each data point, and a trusted and persistent repository

with a unique and persistent identifier. In order to deliver on this, the following was implemented:

• All measurements are available through an open source repository and accessible through

a web portal [20].

• Data can be downloaded as CSV files and from there easily integrated, postprocessed

and analysed by third party software.

• All measurements are tagged with metadata which makes it unique.

• We created data-level and project-level documentation through http://nsteffel.github.

io/dublin_core_generator/generator_nq.html which can be found on the web portal.

• We have created a unique persistent identifier (DOI) with ResearchGate for the repository:

DOI: 10.13140/RG.2.2.35785.57448

• License terms are clear and defined through a license file located within the repository.

4.6.2 Web Portal

As mentioned above, we have created a web portal in collaboration with Northeastern University

to enable third party contributions in many different forms. In addition, it has a significant

amount of analytics and interactive data visualizations (as presented within this thesis) which

help understand the best trade-offs in this design space. It is designed and set-up to become a

collective place for the research community to collaborate and gather insights.

As shown in Figure 4.13, the web portal has the following content: The main page contains a

general description of the project as well as a small dashboard, which holds the current statistics

of logged data points. We included a small subsection on open and FAIR data, which provides

access to all data including meta data, as well as DOI and so forth. From the main page, one

can also access the Theoretical Analysis, which contains the following:

• Compute and memory requirements, accuracy of all CNN topologies, in table format,

including optimized variants - grouped by machine learning task
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Figure 4.13: Contents of the QuTiBench web portal

• Compute and memory capability of all hardware platforms in table format

• Rooflines for all hardware platforms with operational intensity of given topologies visual-

ized

• Performance predictions for the different machine learning tasks in heatmaps

• Theoretical pareto charts to forecast the most promising implementation options for a

given machine learning task.

In addition, there is for each machine learning task, currently MNIST, CIFAR-10 and

ImageNet Classification, a separate page. Here, the theoretical and experimental data

points relating to this specific task are grouped together. In more detail, the reader can find

the following:

• Rooflines and performance predictions pertaining to the specific machine learning task

• A table of all experimental datapoints for the task

• Line charts showing the relationship of latency to throughput for all experimental data

• Boxplots visualing throughput, latency and power for all optimizations and platforms.

These can highlight the benefits of the various optimization schemes.
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• Pareto plots which depict the overall design space compromises offered with the pareto-

optimal solutions marked along the frontier.

• The web portal also includes the overlaps between theoretical and measured pareto plots

which can be very helpful to visualize how well the performance predictions have worked.

• This section of the portal also shows achieved compute efficiency for all measured data

points in box plots. These can be instrumental to decide whether more performance can

be achieved.

• Finally, the reader can find much more detailed power information such as for example

power consumption over time.

In addition to the above, there are pages for Raw Measurements, which allows all measure-

ments to be downloaded in form of CSV files, Overview of Experiments, which is designed

to provide the reader with a brief overview of all experimental content, and Contributing

Measurements, for documenting the process for community contributions.

4.7 Handling Vendor-specific Frameworks & Datasets

Datasets are a key input to the benchmark and impact accuracy results. We rely on open

source datasets exclusively. Framework support is one of the biggest challenges since each

framework is directly connected with a neural network and datasets within an application

context and models are not necessarily portable between frameworks. Also, hardware platforms

typically only support a subset of frameworks. Furthermore, quantization is not necessarily

mainstream in frameworks. It is not yet clear to what extent cross compilation tools such

as TVM [138] can help, while exchange formats such as ONNX [136] are still immature, lack

adoption and very importantly full quantization support. Finally, it is also important to provide

full training scripts exposing all hyperparameters, training initializations and so on, as they can

have significant impact on accuracy.

4.8 Concluding Remarks

In this chapter, we introduced the key aspects of our benchmarking methodology, named

QuTiBench, in order to address the unique demands of the machine learning application space.

Michaela Blott Ph.D. Thesis



88 4. OUR SOLUTION APPROACH: QUTIBENCH

Most notably, QuTiBench supports algorithmic optimizations by correlating everything at

the application level’s figures of merit. QuTiBench offers a multi-tiered approach towards

benchmarking that supports a range of compromises for benchmarking in regards to quality of

prediction and effort. This includes microbenchmarks and combinations of microbenchmarks,

which reflect different computational and data movement patterns for different neural networks

to understand system bottlenecks including specific support for quantization of compute at

all levels. The multitiered approach also offers theoretical baselines as a measuring stick and

performance predictions and to track compute efficiency. We also contributed a clear definition

of measurement methodology and consideration of deployment parameters. Further, we propose

data visualization aspects which are essential given the design space complexity. Examples of

this are heatmaps, box and whiskers charts, and pareto comparison graphs. Finally, we emphasis

the need for a web portal implementing open and FAIR data concepts to advance the true

impact on research. In the following chapters, we will evaluate the approach, whereby Chapter 5

first sets the scope. The theoretical analysis can be found in chapter 6 and experimental results

and evaluation of the results are in Chapter 7.
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5 Scope of Evaluation

5.1 Introduction

In the previous chapter, we introduced the key concepts in our benchmarking methodology. In

this chapter, we set the scope of theoretical and experimental analysis to evaluate our approach

in Chapter 6 and 7 respectively. This chapter includes a full overview of all experimental

platforms, chosen workloads and the conducted experiments. Furthermore, we apply our

measurement methodology to the chosen set of experiments including details on experimental

setup. In short, this chapter contains everything that the reader needs to know in order to

understand the results.

Figure 5.1: Location within the thesis

5.2 Scope of Theoretical and Experimental Evaluation

Overall, we aim to select a minimum of experiments on the various levels of the benchmark to

validate our initial claims regarding the benchmarking approach, which were as follows: First of
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all, the multi-tiered approach provides interesting trade-offs in regards to representative results

versus performance and energy prediction and insights into system bottlenecks. This addresses

the value in microbenchmarks and theoretical baseline. Secondly, design space visualization

via pareto curves is an effective means to evaluate the design space. Or said differently, for

specific machine learning tasks, the benchmark allows to identify optimal solutions within

the design space using pareto curves and that we are able to find better solutions than other

benchmarks. Thirdly, the proposed concepts are applicable to heterogeneous hardware and

specific different types of popular hardware architecture such as GPUs, CPUs, VLIWs, TPU

and Field Programmable Gate Arrays (FPGAs), as well as different types of algorithmic choices.

To that extent, we set the following scope for the evaluation: We will benchmark at least

three different machine learning tasks, to ensure a certain breadth in regards to applications and

datasets, specifically Image Classification for ImageNet, CIFAR-10 and MNIST, using different

data sets and different topologies, including convolutional neural networks and multilayer

perceptrons. We aim to use at least four different neural network topologies for one of

these tasks to explore the usability of the pareto curves for design space exploration (namely

ResNet50, GoogleNetV1, MobileNetv1, EfficientNet for ImageNet Classification). We target

multiple different hardware architecture groups, GPUs, CPUs, VLIWs, TPU and FPGAs, as

these are some of the most popular approaches within the embedded design space. Finally, we

are using both quantization and pruning as forms of algorithmic optimization strategy for all of

these machine learning tasks. We have pruned and quantized variants of CNN topologies in all

three machine learning tasks to ensure that the methodology can adequatly expose the benefits

of the various design space trade-offs and identify the best optimization strategies.

In total, we ran close to a thousand experiments on 9 different hardware platforms including

5 different FPGA implementations, GPU, TPU, VLIW and CPU implementations, targeting

specifically the embedded space. We leveraged 9 different topologies, and trained 45 CNNs for

different pruning factors and for different precisions. For all of these combinations, we swept

over all deployment parameters, specifically batch sizes, thread counts, stream sizes, in all

possible operating modes, measuring throughput, power, accuracy and latency. In the following,

we provide more details on this.
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5.2.1 Selected Applications, Topologies & Optimizations

Applications and Topologies. For evaluation, we leverage the following three machine learning

tasks: ImageNet, CIFAR-10 and MNIST classification. As CNN topologies, we utilize ResNet50

(RN50) [53], MobileNetv1(MNv1) [155], EfficientNet [156] in three different sizes (large, medium

and small), and GoogLeNetv1 (GN) for ImageNet, a VGG16 derivative named CNV [11] with

five convolutional layers and three fully connected layers for CIFAR-10, and finally a multilayer

perceptron (MLP) for MNIST classification with four fully connected layers [11]. The mapping

of topologies to machine learning task is summarized in Table 5.1. We believe that this scope

provides sufficient application breadth to carry out a meaningful evaluation of the proposed

benchmarking methodology. Please note, as training experiments are highly time-intensive with

no necessarily guaranteed outcome, we only trained topologies at the given precision for the

cases where the hardware platform could actually support it. (For example, we didn’t train

ResNet50 in INT2 or INT4 variants.)

Table 5.1: Machine learning tasks and corresponding CNN topologies

ImageNet CIFAR-10 MNIST
Classification Classification Classification

GoogLeNetv1 yes - -
MobileNetv1 yes - -

EfficientNet Edge small yes - -
EfficientNet Edge medium yes - -

EfficientNet Edge large yes - -
ResNet50 yes - -

CNV - yes -
MLP - - yes -

Optimizations. In regards to optimizations, we focus on pruning and quantization specifically,

as two of the most popular forms of optimizations, which were both explained in detail in

Chapter 2. In regards to quantization experiments, we include the following versions of CNN

topologies with different precisions: GoogLeNetv1, and ResNet50 in half and full floating point

precision and fixed point 8-bit integer (FP16, FP32, INT8), MobileNetv1 in INT8, and CNV

and MLP in 4-bit and 2-bit fixed point integer (INT4, INT2) and FP16. In regards to pruning,

we restricted ourselves to channel pruning exclusively. We express the degree of pruning as a

percentage, for example 100% for the baseline. Unfortunately the definition of the percentage

is not perfectly consistent which is an artifact of the associated typically black-box tooling.

Each tool has its own definition of the pruning percentage. In the context of CNV and MLP it

relates to the number of inner channels associated with inputs and outputs of hidden layers. In
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regards to ResNet50, the pruning percentage is as reported by the tool [157]. All model variants

and their corresponding application-level accuracies, for example top1 and top5 classification

accuracy for ImageNet, are summarized in Table 5.2.

Table 5.2: Experimental CNNs and their accuracy over all pruning and quantization variants

Accuracy
INT2 INT4 INT8 FP16 FP32

top1 (top5) [%] top1 (top5) [%] top1 (top5) [%] top1 (top5) [%] top1 (top5) [%]
GoogLeNetv1 nm nm 69.24 (88.45) 66.93 (87.83) 66.96 (87.84)
MobileNetv1 nm nm 69.57 (87.71) nm nm

EfficientNet small nm nm 77.0 nm nm
EfficientNet medium nm nm 78.6 nm nm

EfficientNet large nm nm 80.2 nm nm
ResNet50 100% nm nm 73.29 (91.26) 75.14 (92.12) 75.15 (92.11)
ResNet50 80% nm nm 73.30 (91.40) nm nm
ResNet50 50% nm nm 69.49 (91.00) nm nm
ResNet50 30% nm nm 68.83 (90.16) nm nm

CNV 100% 86.86 87.40 nm 87.02 87.06
CNV 50% 84.29 84.88 nm 85.55 85.60
CNV 25% 79.89 81.09 nm 83.28 83.25

CNV 12.5% 73.64 75.85 nm 77.82 77.84
MLP 100% 98.75 98.77 nm 97.30 97.31
MLP 50% 98.49 98.62 nm 97.45 97.46
MLP 25% 98.04 98.29 nm 97.49 97.44

MLP 12.5% 96.85 97.54 nm 97.95 97.15

CNN Sources and Training Techniques. Wherever possible, the FP32 models (specifically

ResNet50 and GoogLeNetV1) were chosen from publicly available sources. The FP32-based

CNV and MLP required training from scratch; these were trained using Caffe. In all cases,

quantization and pruning of models was performed using the available tools for the target

platform. Specifically, the INT8 models attained for the DPU were quantized (with retraining)

and pruned using the DECENT tool in DNNDK [157]. The FP16 models which were attained for

the TX2 and NCS were directly quantized from FP32 using TensorRT [158] and OpenVINO [159]

respectively. The 8-bit models attained for the TPU were sources from TensorFlow’s own

quantized modelzoo7 and EfficientNet Edge variant from here: [160]. The 4-bit and 2-bit models

attained for FINN and BISMO were trained using the techniques described by Su et al [36]

using the code provided in the BNN-PYNQ Github repository with a few modifications in order

to achieve a desired number of channels8.

7https://coral.withgoogle.com/models/
8https://github.com/Xilinx/BNN-PYNQ
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5.2.2 Selected Hardware Platforms

We chose the following selection of platforms, which are summarized in Table 5.4. In total, this

includes 9 different hardware platforms including 5 different FPGA implementations, GPU,

TPU, VLIW and CPU implementations, targeting specifically the embedded space. As was

possible, we ran all 45 trained CNNs on all hardware platforms, whereby for each combination

of CNN and hardware, we swept over batch sizes, thread counts, stream sizes, in all possible

operating modes, measuring throughput, power, accuracy and latency.

In more detail, for FPGA implementation, we use Xilinx’s commercially available DPU

platforms, called Vitis AI, implemented on the ZCU102, ZCU104 and Ultra96. We leverage

FINN as an example of a fully synchronous dataflow architecture with arbitrary precision

support, and BISMO [111] which offers run-time programmable precision (although it targets

matrix operations in a more general sense). All FPGA resource data is given in Table 5.3 with

exception of the DPU data which is not public. The amount of utilized resources inside the

FPGA reflects the compute potential of the implementation. Therefore, we expect that BISMO

will be less performant than the other FPGA implementation by orders of magnitudes.

Table 5.3: Resource requirements for FPGA based implementations for all MLP and CNV
variants

FPGA Resources in LUTs, FFs, BRAMs, URAMs
MLP100% MLP50% MLP25% MLP12.5%

ZCU104-BISMO 35.7k, 57k, 275.5, 4
ZCU104-FINN-INT4 nm 125k,80k,312,0 166k,122k,312,0 163k, 120k, 312,0
ZCU104-FINN-INT2 nm 158k,230k,282,64 156k,224k,154,64 153k,221k,154,64

CNV100% CNV50% CNV25% CNV12.5%
ZCU104-BISMO 35.7k, 57k, 275.5, 4
ZCU104-FINN-INT4 nm 153k, 189k, 242.5, 0 114k,148k,137.5,0 69k,90k,63,0
ZCU104-FINN-INT2 148k,158k,445,123 99k,102k,278.5,68 50k,54k,77.5,0 27k,37k,28.5,0

MLP100% MLP50% MLP25% MLP12.5%

Table 5.4 summarizes all hardware platforms used in the experimentation including all

performance characteristics. For FPGAs in regards to theoretical peak performance, we assume

500MHz for LUTs and 666MHz for DSP, 100% LUT and DSP utilization and hardware cost as

detailed in [11], independent of the implementation. In regards to CPU implementation, we

include an ARM Cortex A53 processor using gemmlowp [6]. Furthermore, we run experiments

on Google’s TPU Coral USB stick (TPU) and Intel’s Neural Compute Stick (NCS) which

is an example of a VLIW processor, and finally Nvidia’s Jetson TX2 platform as a popular

example of a GPU. While the USB sticks are almost a separate category in regards to compute
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performance and power consumption (< 2Watt), we opted to include them as no comparable

TPU or VLIW processor is available in the larger embedded category. With that, all platforms

are roughly 1-10TOPs in performance and 1-20Watt in regards to power consumption. Finally,

note that we provide separate values for different datatype peak performance and the hardware

performance scales with the reduced hardware cost of lower precision operations. Certainly

smaller datatypes can be emulated in larger carrier datatypes such as INT2 in INT8, whereby

the peak performance equates to peak performance of the carrier datatype.

Table 5.4: Summary of all experimental hardware platforms

Hardware Platforms INT2 INT4 INT8 FP16 FP32 Power
[TOPs] [TOPs] [TOPs] [TOPs] [TOPs] [Watt]

Ultra96-DPU na na 0.96 na na na
ZCU104-DPU na na 4.60 na na na
ZCU102-DPU na na 6.71 na na na

ZCU104-FINN 30.7 8.8 na na na na
ZCU104-BISMO 30.7 8.8 na na na na

TX2 - maxn na na na 1.33 0.67 15
TX2 - maxp na na na 1.15 0.57 15
TX2 - maxq na na na 0.87 0.44 15

TPU-fast na na 4 na na 2
TPU-slow na na 2 na na 2

NCS (MyriadX) na na 1 0.5 na 1
U96-Quadcore A53-INT8 na na 0.192 na na na

5.2.3 Overview of all Experiments

Tables 5.5 and 5.6 summarize all included experiments. While we strive for a complete systematic

evaluation of all combinations, we are constrained by what the various hardware platforms

offer and many have limitations in regards to supported layer types and with that supported

topologies. This applies to the precisions that are supported in both hardware and run-time

software and also type of layers. This is the number one reason why there is not a single network

that can be run in all precisions on all hardware platforms. Instead many solutions are black

box solutions that come with a supported modelzoo and CNNs, but different topologies or

precisions cannot be executed on these platforms. For example, the TPU failed to execute both

the CNV and MLP, while the FPGA platforms did not support MobileNetv1 at the time of this

study. Also, TPU, VLIW, and CPU cannot support precisions below INT8, for example INT2 or

INT4, and the GPU does not support any datatype other than FP16 and FP32. Despite these

limitations, we believe that the presented datapoints provide sufficient proof to demonstrate

the benefits of pruning and quantization on the different platforms. In Tables 5.5 and 5.6 we

use the following notation: [selection of datatypes] x [pruning percentage] denotes the tested
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cross product of datatypes at different pruning scales for this specific topology and hardware

platform combination.

Table 5.5: Overview of all ImageNet experiments

ImageNet
ResNet50 GoogLeNetV1 MobileNet EfficientNet L EfficientNet M EfficientNet S

ZCU102-DPU INT8 x [100%,80%,50%,30%] INT8 nm nm nm nm
ZCU104-DPU INT8 INT8 nm nm nm nm
Ultra96-DPU INT8 x [100%,80%,50%,30%] INT8 nm nm nm nm

ZCU104-FINN nm nm nm nm nm nm
FPGA

ZCU104-BISMO nm nm nm nm nm nm
TX2-maxn [FP16,FP32] [FP16,FP32] nm nm nm nm
TX2-maxp [FP16,FP32] [FP16,FP32] nm nm nm nmGPU
TX2-maxq [FP16,FP32] [FP16,FP32] nm nm nm nm

TPU-fast clk nm INT8 INT8 INT8 INT8 INT8TPU TPU-slow clk nm INT8 INT8 INT8 INT8 INT8
VLIW NCS FP16 nm nm nm nm nm
CPU U96-Quadcore A53 nm nm nm nm nm nm

Table 5.6: Overview of all MNIST and CIFAR-10 experiments

MNIST CIFAR-10
MLP CNV

ZCU102-DPU nm nm
ZCU104-DPU nm nm
Ultra96-DPU nm nm

ZCU104-FINN [INT2,INT4] x [100%, 75%, 50%, 25%] [INT2,INT4] x [100%, 75%, 50%, 25%]
FPGA

ZCU104-BISMO [INT2,INT4] x [100%, 75%, 50%, 25%] [INT2,INT4] x [100%, 75%, 50%, 25%]
TX2-maxn [FP16,FP32] x [100%, 75%, 50%, 25%] [FP16,FP32] x [100%, 75%, 50%, 25%]
TX2-maxp [FP16,FP32] x [100%, 75%, 50%, 25%] [FP16,FP32] x [100%, 75%, 50%, 25%]GPU
TX2-maxq [FP16,FP32] x [100%, 75%, 50%, 25%] [FP16,FP32] x [100%, 75%, 50%, 25%]

TPU-fast clk nm nmTPU TPU-slow clk nm nm
VLIW NCS FP16 x [100%, 75%, 50%, 25%] FP16 x [100%, 75%, 50%, 25%]
CPU U96-Quadcore A53 [INT2,INT4] x [100%, 75%, 50%, 25%] [INT2,INT4] x [100%, 75%, 50%, 25%]

5.2.4 Envisioned Future Scope

While the current plan already involves a significant amount of experimentation, it will only

address a small part of the overall design space. Ideally the benchmark would address a much

broader scope of ML applications and CNN topologies. A provisional list for the future is

included in Table 5.7.

Table 5.7: Planned applications, datasets and models

Learning Technique Application QuTiBench
Dataset Model

Supervised Vision Image Classification ImageNet, MNIST ResNet50, MobileNet(V1), GoogleNet, MLP
Vision Object Detection Pascal VOC SSD-ResNet34, YoloV2
Vision Semantic Segmentation Pascal VOC Mask R-CNN, SSD-MobileNet
NLP Machine Translation WMT’14 English-to-French&German GNMT [161]
NLP Speech Recognition Librispeech DeepSpeech2
NLP Sentiment Analysis SST, IMDB, SemEval2018 Multiplicative LSTM
NLP Language Modeling babI Memory Network
Recommendation Movies Movielens 20M NCF

Unsupervised Vision Feature Extraction MNIST autoencoder
Vision Adversarial Learning ImangeNet WGAN

Deep Reinforcement Learning Game Go Go MiniGo
Atari ALE Atari ALE DeepQ
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5.3 Applying our Measurement Methodology

We introduced the measurement methodology in Chapter 4. When applying the methodology to

the chosen hardware platforms, there are a few important details to be noted, which we discuss

below: In regards to power, we only report platform power measured at the socket to ensure

memory subsystems are taken into account. For the USB devices, we used a USB power meter

(Innovateking, A3A3-B). While not as accurate as current sampling on the board, we typically

found the numbers to be within 10%. Also it allowed us to adopt a consistent way of measuring

across all platforms. We conduct all our experiments across the spectrum of all operating and

power modes unless specifically annotated. Specifically: The TPU Coral stick from Google

can operate with a fast or a slow clock. The Nvidia GPU Jetson TX2 platform can run in

either maxn, maxp or maxq modes. Maxn is the high performance mode with highest power

consumption. Maxp is the most efficient mode, with lowest power but also lowest performance,

and maxq. In regards to other deployment settings, we run a large sweep over batch sizes,

thread counts and stream sizes, which we believe to expose representative behaviour of the

test system. Table 5.8 summarizes the collected datapoints per experiment with regard to the

spectrum of these deployment settings.

Table 5.8: Deployment settings for all measurements

Hardware Platforms Deployment Settings
Batch, Thread, Stream Size Power or Operating Mode

Ultra96-DPU 1,2,3,4,5,6,7,8 na
ZCU104-DPU 1,2,3,4,5,6,7,8 na
ZCU102-DPU 1,2,3,4,5,6,7,8 na

ZCU104-FINN 1,2,4,8,16,32,64,128, 256, 512 na
ZCU104-BISMO 2,4,8,16,32,64,128 na

TX2 1,2,4,8,16,32,64,128 maxn, maxp, maq
TPU 1 fast, slow

NCS (MyriadX) 1,2,4,8,16,32,64,128 na
U96-Quadcore A53 2,4,8,16,32,64,128 na

5.4 Concluding Remarks

In this chapter, we set the scope of theoretical and experimental analysis to provide an overview

of the experimental effort which included 3 machine learning tasks (ImageNet, CIFAR-10,

MNIST classification), with different types of topologies (ResNet50, MobileNetv1, GoogleNetev1,

EfficientNet, CNV and MLP) on 9 different hardware platforms. This included 5 different
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FPGA based implementations as they can provide the broadest sets of architectures, including a

matrix of processing engine based approaches, synchronous feed forward dataflow architectures

as well as bitserial implementations. We also included an ARM processor (A53), a Nvidia

GPU (Tx2), Google’s coral TPU and the Intel Neural compute stick. All experimentation was

conducted over a sweep of batch sizes, stream sizes and thread counts and over all possible

operating modes, both in respects to system and compute only behaviour, including accuracy,

throughput in frames per second (fps) and giga operations per second (GOP/sec), latency in msec,

and power consumption breakdown in Watts. Also we explore comparisons with systematically

quantized and pruned CNNs. Overall close to a thousand experiments were conducted. In

the next chapter, we will evaluate these scenarios theoretically, followed by an experimental

analysis in Chapter 7. A key challenge is finding fair comparisons and carrying out systematic

experimentation as we are constrained by what the various hardware platforms offer and many

have limitations in regards to supported models. Finally, we discussed how the measurement

methodology was applied to the hardware platforms. In the next two chapters, we will evaluate

our approach using the in this chapter outlined scope of test cases and methods.
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6 Theoretical Analysis with QuTiBench

6.1 Introduction

This chapter provides the theoretical analysis of applying level-0 of the benchmarking meth-

odology to all the experiments. It covers compute and memory analysis of the given set of

algorithms and platforms, performance predictions with roofline models, as well as an analysis

of the expected behaviour of quantization and pruning. This provides instant estimates for

expected performance for given use cases, whereby the real experiments are provided in the

next section. The scope of theoretical and experimental analysis is as defined in the previous

chapter.

Figure 6.1: Location within the thesis
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6.2 Compute and Memory Requirements in the Chosen

Applications

As introduced in Section 5, we leveraged 6 different topologies with numerous variants across 3

different categories of machine learning tasks. Table 6.1 summarizes the level-0 results for these

topologies. This includes their compute requirements in number of operations per a single input

in giga operations (GOPs), their associated model size in millions of elements (ME) independent

of datatype used, plus the specific Operational or Arithmetic Intensity (OI) for each individual

datatype. Corresponding accuracy figures, which are not part of the theoretical analysis, can

be found in Chapter 5. Trained topologies are highlighted in green and untrained topologies

are shown in black. For those, we have no corresponding accuracy figures. ResNet50 is by far

the highest in regards to compute and memory requirements, followed by GoogleNetv1, which

is in complexity somewhere between a 30% and 50% pruned ResNet50. In regards to OI, we

show values for all leveraged datatypes on the assumption that the weights reside off-chip and

all intermediate results are kept on-chip and batch size equals 1. GoogLeNet is the highest

and therefore the least likely to be bound by memory subsystems, while the MLP variants are

the lowest. This is expected as MLP consists of exclusively fully connected layers which are

memory intensive. We will leverage these numbers for performance predictions in Section 6.4.

Table 6.1: Experimental CNNs and their requirements over all pruning and quantization
variants (batch size = 1). This includes compute, model size and operational intensity for
different datatypes.

Total OPs Total Model Size OI (INT2) OI (INT4) OI (INT8) OI (FP16) OI (FP32)
GOPs [ME] [OPs/Byte] [OPs/Byte] [OPs/Byte] [OPs/Byte] [OPs/Byte]

GoogLeNetv1 3.1 6.0 2,093.97 1,046.99 523.49 261.75 130.87
MobileNetv1 1.1 4.2 1,075.47 537.74 268.87 134.43 67.22

ResNet50 100% 7.7 25.5 1,210.84 605.42 302.71 151.36 75.68
ResNet50 80% 6.5 23.7 1,086.59 543.30 271.65 135.82 67.91
ResNet50 50% 3.8 15.8 949.85 474.93 237.46 118.73 59.37
ResNet50 30% 2.5 10.1 970.16 485.08 242.54 121.27 60.64

EfficientNet Edge S 4.7 5.4 3481.48 1740.74 870.37 435.18 217.59
EfficientNet Edge M 7.4 6.9 4289.86 2144.93 1072.46 536.23 268.12
EfficientNet Edge L 19.4 10.6 7313.21 3656.60 1828.30 914.15 457.08

CNV 100% 0.47 6.16 304.95 152.48 76.24 38.12 19.06
CNV 50% 0.12 1.54 308.32 154.16 77.08 38.54 19.27
CNV 25% 0.03 0.39 315.01 157.51 78.75 39.38 19.69

CNV 12.5% 0.01 0.10 332.61 166.30 83.15 41.58 20.79
MLP 100% 0.02 10.01 8.00 4.00 2.00 1.00 0.50
MLP 50% 0.01 2.91 8.00 4.00 2.00 1.00 0.50
MLP 25% 0.00 0.93 8.00 4.00 2.00 1.00 0.50

MLP 12.5% 0.00 0.33 8.00 4.00 2.00 1.00 0.50
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6.3 Theoretical Peak Performance of Selected Hardware

Platforms

We have introduced the selection of hardware platforms in the previous chapter. In Table 6.2,

we summarize the level-0 characteristics of these platforms, which include theoretical peak

performance for different datatypes, memory bandwidth, memory capacity and thermal design

power. Graphics Processing Units (GPUs) are highest in regards to memory subsystem for both

access bandwidth and capacity. In regards to power consumption, the USB accelerators (Neural

Compute Stick (NCS) and Tensor Processing Unit (TPU)) stand out with ranges from 1-2Watt,

but are also by far the lowest in regards to performance (maximum of 4 tera operations per

second (TOP/sec))9.

Table 6.2: Experimental hardware platforms and their peak performance, power and memory
bandwidth and capacity

Hardware Platforms INT2 INT4 INT8 FP16 FP32 Memory Bandwidth Memory Capacity Power
[TOP/sec] [TOP/sec] [TOP/sec] [TOP/sec] [TOP/sec] [GB/sec] [GByte] [Watt]

Ultra96-DPU na na 0.96 na na 4.26 2 na
ZCU104-DPU na na 4.60 na na 19.20 4 na
ZCU102-DPU na na 6.71 na na 19.20 4 na

ZCU104-FINN 30.7 8.8 na na na 19.20 4 na
ZCU104-BISMO 30.7 8.8 na na na 19.20 4 na

TX2 - maxn na na na 1.33 0.67 59.70 8 15
TX2 - maxp na na na 1.15 0.57 59.70 8 15
TX2 - maxq na na na 0.87 0.44 59.70 8 15

TPU-fast na na 4 na na 25.6 1 2
TPU-slow na na 2 na na 25.6 1 2

NCS (MyriadX) na na 1 0.5 na 12.8 2 1
U96-Quadcore A53 0.192 0.192 0.192 na na 4.26 2 na

For performance, the highest performance is achievable with the lowest precisions in Field

Programmable Gate Arrays (FPGAs), which is the only device where hardware can leverage the

reduced cost of the corresponding smaller operators. The compute performance scales with the

smaller datatypes as far as they are natively supported in all platforms. For example for the

TX2, the 16-bit Floating Point Representation (FP16) performance is double compared to 32-bit

Floating Point Representation (FP32). Peak performance and memory bandwidth feed into the

performance predictions in the next section. Whereby when the lower precision datatype is

not supported in a given hardware platform, it can be emulated in the carrier datatype. The

performance in Table 6.2 is the shown as equal to the carrier datatype. For example, INT2 and

INT4 are emulated in an INT8 carrier datatype for the Quadcore ARM processor. For FPGA

platforms, we assume 100% resource utilization. For INT8, as assume 2 operations (vector

9We only show the peak performance for the datatypes that were leveraged in the experimentation.
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Figure 6.2: Effect of quantization on operational intensity and potential performance impact
for different hardware platforms - visualized with rooflines

width of 2) for each DSP slice. Finally clock frequency is estimated at 666MHz for DSPs and

500MHz for LUTs.

6.4 Performance Predictions with Rooflines

As discussed in Chapter 4, rooflines can be leveraged for performance prediction whereby the

maximum peak performance achievable for a given CNN lies at the intersection point between

the operational intensity and the roofline of the hardware platform. In Figure 6.2, we visualize

this for all Convolutional Neural Network (CNN) topologies that are part of the evaluation for a

specific datatype. For example the CNN’s operational intensity for INT8 ranges from 2 - 523

OPs/Byte. We show the range for INT2, and INT8 and FP32. From this it is visible that for

FP32, the execution for the majority of all CNNs will be memory bound on the majority of

platforms. With reduced precision, the intersection points migrate to the compute bound part

of the rooflines, however even for INT2, the topologies are still memory bound on half of the
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platforms. Again, this is under the assumption that weights have to reside off-chip and batch =

1. With larger batch sizes, the operational intensity moves to the right.

6.5 Expected Performance

With the following heatmaps, we visualize the theoretical peak performance for all experiments

split over the various machine learning tasks, ImageNet, CIFAR-10 and MNIST classification to

be specific. These are computed as described in Chapter 4.

Here are some of the computed results and visualized as heatmaps in Figures 6.3, 6.4 and

6.5. The donation in the heatmaps was also explained in Chapter 4. For ImageNet, we expect

MobileNetv1 to deliver the highest performance, in particular on the TPU, which is as expected

as it is significantly lower in compute than alternative networks. We can observe how the pruned

and quantized variants should bring significant performance scaling. For example comparing

ResNet50 pruned variants and GoogleNetv1 in INT8, FP16 and FP32. For CIFAR-10 and

MNIST, combined quantization and pruning should deliver the highest performance. FPGAs

which are the only platform offering native support for INT2 and INT4 are expected to shine

here. We will discuss the reasons in more detail in the following subsection.

Figure 6.3: Theoretical performance predictions for ImageNet via heatmaps
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Figure 6.4: Theoretical performance predictions for CIFAR-10 via heatmaps

Figure 6.5: Theoretical performance predictions for MNIST via heatmaps

6.5.1 Expected Behavior of Optimizations

In this subsection we analyze mathematically what the expected impact of pruning and

quantization should be, beginning with quantization. When reducing the precision, the amount

of external memory required for weight storage naturally decreases, and therefore the operational

intensity increases and the resulting implementation is more likely to be compute bound. At

the same time, the peak performance of the platform increases when native hardware support

for the datatype is available and expected performance jumps to the reduced precision peak

performance. Therefore, the benefit is compounded. For a ZCU104, from INT16 to INT4, this

implies an improvement by a factor of 16x. These trade-offs are depicted in Figure 6.6.

In regards to pruning, the characteristics of the hardware platform do not change, however
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Figure 6.6: Reducing precision scales performance and increases OI

both the required modelsize as well as the compute load are reduced, and in fact the resulting

operational intensity of the algorithms is roughly the same. This is detailed in Table 6.3. In

regards to achievable performance, this means the following: The overall compute performance

in regards to operations per second does not change as per roofline analysis, but the required

amount of compute per input has reduced. Therefore the resulting throughput measured in

fps should scale linearly with the reduction achieved through pruning in compute operations.

For example, performance for a 50% pruned variant shows 4x less compute. As a result, we

expect the performance to quadruple. Table 6.4 visualizes the reduction in compute, memory

and behaviour of the operational intensity as a function of the pruning percentage.

The graph in Figure 6.7 shows that there is a significant reduction in both compute and

memory, even quadratic in regard to pruning percentage for CNV and MLP, while the arithmetic

density, which is defined as compute operation per memory byte read or written10, remains

mostly level.

10assuming only the model remains externally in memory
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Figure 6.7: Impact of filter pruning on compute, memory and operational intensity

Table 6.3: Impact of pruning on OI

Operational Intensity [OPs/Byte]
Scale 100% 80% 50% 30% 25% 12.50%

ResNet50, INT8, b=1 302.71 271.65 237.46 242.54 na na
CNV, INT8, b=1 76.24 na 77.08 na 78.75 83.15
MLP, INT8, b=1 2.00 na 2.00 na 2.00 2.00

Table 6.4: Impact of pruning on compute requirements

Absolute and Relative Compute [MOPS]
Scale 100% 80% 50% 30% 25% 12.5%

RN50 7,720 (100%) 6,450 (84%) 3,750 (48%) 2450 (32%) na na
CNV 469 (100%) na 119 (25%) na 31 (6%) 8 (2%)
MLP 20 (100%) na 6 (29%) na 2 (9%) 1 (3%)

Table 6.5: Impact of pruning on memory requirements

Absolute and Relative Memory Requirements [ME]
Scale 100% 80% 50% 30% 25% 12.5%

RN50 25.5 (100%) 23.73 (93%) 15.8 (62%) 10.09 (40%) na na
CNV 6.16 (100%) na 1.54 (25%) na 0.39 (6%) 0.10 (2%)
MLP 10.01 (100%) na 2.91 (29%) na 0.93 (9%) 0.33 (3%)

6.5.2 Theoretical Estimate of Pareto Optimal Solutions

Leveraging the performance predictions from Section 6.4 and combining them with the accuracy

from the trained topologies, including the optimized variants, allows to predict potentially

pareto optimal solutions. These are visualized in the Figures 6.8, 6.9 and 6.10. According to

these, we would expect pruned and quantized INT4 and INT2 variants on the FPGA-based

platforms to dominate MNIST and CIFAR-10 classification. For ImageNet classification, we

expect the highest performance from the MobileNetv1 implementation on the TPU with fast

clock. Furthermore, we anticipate that the pruned ResNet50 variants on the FPGA platform

ZCU102 with INT8 are pareto dominant. We will evaluate these compared to the real measured
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results in Chapter 7, where we superimpose the theoretical with the measured pareto frontiers.

Figure 6.8: Theoretical estimate of pareto-optimal design points for CIFAR-10

Figure 6.9: Theoretical estimate of pareto-optimal design points for MNIST
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Figure 6.10: Theoretical estimate of pareto-optimal design points for ImageNet

6.6 Concluding Remarks

In this chapter, we submitted all use cases to level-0 analysis as defined in QuTibench. We first

analyzed all CNNs for their compute and memory requriements. The MLP and CNV networks

were lightest on compute requirements, with comptue requirements being below 1 GOPs per

input, while ImageNet classification models required up to 20 GOPs. Model size varied up

to 25.5 MEs in the case of ResNet50. The roofline analysis showed that the majority of the

workload is memory bound, whereby MLPs have typically the lowest OI. In regards to the

hardware platforms, we can roughly divide them into 2 performance-power categories. While all

platforms perform in the range of 1-10TOPs (8-bit Fixed Point INTEGER (INT8)) with power

consumption being between 1-20Watts, the selected USB sticks are below 2Watts and in the

bottom range of the performance together with the ARM processor and BISMO.

In regards to optimizations, we can make the following predictions: Pruning has no effect

on operational intensity but as the compute per frame is reduced, the overall frame rate of

the algorithm should increase in proportion to the pruning scale. Quantization doubles the

benefits as it lowers the amount of data read and written from memory, thereby increasing the

operational intensity. Furthermore, quantization also increases the theoretical performance of

the platform if the new datatypes are natively supported. Resulting from this, we can carry out
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performance predictions: We expect MobileNetv1 to outperform on ImageNet Classification,

and reduced precision and pruned variants to outperform for CIFAR-10 and MNIST using our

theoretical pareto charts.

In the next chapter, we will present the actual measured data. Correlating this with the

performance predictions from this chapter, should give us a good indication whether the level-0

data is representative of the actually achievable performance and as such whether level-0 analysis

is useful as a first estimate. Further, the performance predictions may also be useful to guide

future optimizations as they provide a reference point of what the hardware platform could be

in principal capable of.
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7 Experimental Results, Evaluation &

Comparison

7.1 Introduction

In this section we evaluate the key characteristics of QuTiBench with experimental data, whereby

the scope of the evaluation was defined in previous chapters. We restrict ourselves to a subset of

the datapoints and present only what is relevant to the evaluation. The complete measurements

together with all data visualizations can be found in the appendix as well as on our web portal

located here: https://rcl-lab.github.io/QutibenchWeb. In the following, we will revisit

each contribution of the benchmark separately and evaluate QuTiBench towards the specific

aspects. In particular, these are:

• Multi-tiered approach with theoretical analysis for performance predictions, to track

compute efficiency throughout and predict pareto-optimal design points

• Microbenchmarks to help understand system bottlenecks

• Clear definition of measurement methodology and consideration of deployment parameters

• Enabling comparisons within a multi-dimensional design space to support algorithmic

optimizations using data visualization

We will show that the theoretical predictions can give reasonable insights without having

to run any experimentation including predicting performance which optimizations in 7.2 and

optimal design points in 7.3. Regarding the microbenchmarking (level-1 and level-2 results),

we ran into many practical constraints that limited the scope of the evaluation, however some

interesting results could be obtained: 7.4. The measurement methodology with the distinction
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between system and compute level performance has been shown to be very useful to illustrate

data movement constraints on the various hardware platforms 7.5. The systematic exploration

of other deployment settings provides more clarity in the design space. Additionally, the chosen

comparisons and data visualizations in Section 7.6 aid providing fair comparisons between

fundamentally different hardware platforms, different topologies and include the scope of

potential optimizations. All of this is discussed in greater detail within this chapter. We end

with a detailed comparison to the most prominent existing benchmark 7.7.

Figure 7.1: Location within the thesis

7.2 Relating Theoretical to Measured Performance

The aim of the multi-tiered approach is to provide a range of compromises for benchmarking in

regard to quality of prediction and effort, whereby the theoretical level serves as a rough first

guess for performance on different systems as well as a measuring stick for experimental data.

The key question in this regard is: How representative are the performance predictions and can

we achieve performance close to this in real deployments? In the next section we will analyze

whether the theoretical analysis can predict the pareto-optimal solutions with level-0 and get

meaningful estimates for optimization schemes, but first we will focus on achieved performance

compared to predicted performance and compute efficiency.

For this, we will use efficiency charts in forms of bar charts, which show on the y-axis

predicted performance in inputs per second (ips) versus measured performance in ips for the same

topology and hardware combination. Further, we are annotating the measured performance with

achieved percentage out of predicted performance. When the measured performance exceeds
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the predicted performance, then I’m adding another bar for theoretical peak performance as

for example for the quantized MLP models on FINN. As a quick reminder, the performance

predictions are based on the assumption that all weights reside completely off-chip and that

all activations remain on-chip. As such there is no variation over batch size, thread counts

and stream sizes. As experimental data points, we will use the best measured performance

measured over all batch sizes, thread counts, and stream size. Furthermore, we compare

compute performance only, in inputs/sec, as the theoretical model does not include system

level assumptions, which would involve potential preprocessing of data, moving data to the

accelerator and retrieving results. We’ll discuss the different types of hardware platforms

separately. Finally, we leverage correlation coefficient to analyze the prediction quality.

7.2.1 FPGA Platforms

DPU

Clearly the performance trends are well estimated for the different topologies for both shown

platforms (Ultra96 and ZCU102 using the DPU architecture). The biggest concern is that there

is a large difference between predicted and measured performance. As shown in Figure 7.2,

the efficiency is fairly low (between 12% and 25%). However, it is consistent across all

topologies with correlation coefficient = 0.78. The discrepancy is attributable to the enormous

flexibility in FPGAs. The performance predictions assume 100% utilization, whereby the DPU

implementation would use only a fraction of that. Also, clock frequency might not be at

theoretical peak. Nevertheless, the performance trend is clearly captured by the predictions.

The quality of prediction drops with increasingly pruned variants of ResNet50. This is most

likely caused by the reduced overall compute in the pruned networks which results in lower

achievable utilization of compute resources. Hence, the discrepancy between predicted and

measured performance increases with higher pruning scale. This can be addressed in future by

introducing an expected compute efficiency factor to peak compute performance and scaling

this factor with the pruning degree.

FINN

Similar observations can be made when analyzing performance predictions for FINN for pruned

and quantized variants of the neural networks. Overall, efficiency averages at 19%, which is
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Figure 7.2: Performance: Level-0 versus level-3 for FPGAs with DPU on ImageNet. Actual
measurements are within 12-25% of predicted performance.

similar to the above, however with stronger variations. Similarly to the DPU, the efficiency drops

with increased pruning scale. However, it seems that for quantization, the smaller precision

has slightly better predictions. Finally, for CIFAR-10 the performance predictions seem to

represent the trends for both pruning and quantization well, apart from the overall relatively

low efficiency. The correlation efficient overall is very high with 0.96. Overall, we expect that

predictions can be improved by adjusting resource utilization and clock frequency for peak

performance within the assumptions.

Figure 7.3: Performance: Level-0 versus level-3 for FPGAs with FINN on CIFAR-10. Actual
measurements are within 8%-35% of predicted performance.

Regarding MLP topologies, again the predictions relative to each other, across quantized and

pruned variants are representative, with a correlation coefficient of 0.93 for pruning and 0.99 for

quantization. However, there are substantial differences in the behaviour for MLP networks as

shown in Figure 7.4. First, the measured performance exceeds the predictions by 20x on average
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as the theoretical analysis assumes the weight memory to be off-chip and the computation being

memory bottlenecked. This is due to the performance prediction using a very low operational

intensity for these types of networks, which are memory heavy. Therefore the prediction foresees

the performance being memory bottlenecked. This is not the case, as the heavily quantized

models end up being small enough to fit in on-chip memory (which is not consistent with

the original assumption for the theoretical model). As this eradicates the memory bottleneck

completely, the measured performance was substantially above the predicted performance. It

therefore makes more sense to leverage the theoretical peak compute performance p hw pp,

shown as the striped bars in Figure 7.4, as a reference point. With disregard of memory

interfaces, the measured performance in regards ips averages around 11%. To improve the

prediction quality for extremely quantized models, we could either ignore memory constraints,

or alternatively, refine the model and introduce an on-chip memory capacity assumption.

Figure 7.4: Performance: Level-0 versus level-3 for FPGAs with FINN on MNIST, with peak
compute performance. Actual measurements are greater than predicted.

Summary for FPGAs

Overall it seems that the level-0 predictions reflect achievable performance well whereby the

trends for pruning and quantization are reflected, and achieved measured performance is typically

around 10-20% of what is predicted across all types of models. However with increasing pruning

scale, the predictions becomes less accurate for all networks and the same effect can be observed

in regard to quantization. This is most likely because overheads are starting to dominate and

compute efficiency reduces with smaller model sizes and compute complexity. An interesting
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artefact was observed for MLP type of topologies, where the quantized models became so

small that they were completely retained in on-chip memory. This was not reflected in the

level-0 model. As this eradicated the memory bottleneck completely, the measured performance

was substantially above the predicted performance in the end, however on average 11% of

the theoretical peak compute performance. In future, the performance predictions could be

improved by taking actual resource utilization and achieved clock frequency of the FPGA circuit

into account. In addition integrating an on-chip memory model for level-0 analysis could provide

more accurate estimates for heavily quantized CNNs. This would simply require a model size

versus on-chip memory capacity comparison. If the model fits on-chip, we would then ignore

the memory access completely.

7.2.2 GPU Platforms

Regarding ImageNet Classification, as illustrated in Figure 7.5, we observe that efficiency for

GoogleNet is up to 37% for FP16 and 52% for FP32 across operating modes. For ResNet50,

it seems to be much higher with 60% for FP16 and 71% for FP32. Operating modes are

nicely reflected in the performance predictions. However, there seems to be larger variation in

efficiency between the topologies. This could be caused by a poor estimation of the operational

intensity which when memory bottlenecked can have a significant impact on the performance

prediction. For example if intermediate activations exceed on-chip memory capacity, they need

to spill to external memory, which would lower operational intensity and correlated efficiency.

Alternatively this could relate to topological features. Furthermore, the higher precision variant

(FP32) achieves higher efficiency, as do larger topologies (ResNet50 is about twice the size to

GoogLeNetv1 - see Chapter 5). In summary, it seems that the performance predictions from

level-0 vary greatly, whereby the cause for this is most likely the assumptions for operational

intensity. To improve this, similar to the FPGA conclusions, we could refine the memory model

in the theoretical analysis, or perhaps exclude it and work exclusively of the theoretical peak

performance.

For CIFAR-10, where we can leverage the systematically quantized and pruned topologies,

as shown in Figure 7.6, we observe similar trends with an overall high correlation coefficient

of 0.96. Predicted performance accurately matches that of experimental results, although we

observe that the prediction accuracy diminishes with growing pruning scales and shrinking sizes

of the CNNs. The smaller the network, the lower is the efficiency that we achieve (3%-7%).
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Figure 7.5: Performance: Level-0 versus level-3 for GPUs for ImageNet. Actual measurements
are within 23-71% of predicted performance.

However, the correlation coefficient for pruned variants is very high with 0.98. This is consistent

with our results for ImageNet and most likely relating to the fact, that with lower compute, we

will get increasing effects of overhead. Similarly, for quantization, the efficiency is also lower

with smaller datatypes. For example the CNV-12.5% shows FP16 efficiency of 55% - 57%, while

the FP32 efficiency is between 69% and 72%, across the various operating modes. Overall, in

regards to quantization, the correlation coefficient remains high with 0.98 for FP32 and 0.97 for

FP16. Operating modes are nicely reflected in the performance predictions.

Figure 7.6: Performance: Level-0 versus level-3 for GPUs for CIFAR-10, visualizing a much
higher discrepancy in prediction of heavily pruned variants.

Finally, for MNIST classification, large mismatches between predictions and actually meas-

ured performance can be observed, similar to our observations with regards to FPGAs. These

discrepancies relate to the assumptions in regards to where data is stored, which results in

large variations in operational intensity which can easily result in performance predictions being

incorrect, and particularly in measured performance being beyond predicted peak. To prove this
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point, we added the peak compute performance of the platforms into the graphs for the 100%

variants in Figure 7.7, which is well beyond predicted and measured performance. Secondly,

similar to all previous results we can observe again that the measured performance is closer

to the predicted performance for FP32, compared to FP16. Finally, performance for smaller

networks is predicted too optimistically, and efficiency results in being lower.

Figure 7.7: Performance: Level-0 versus level-3 for GPUs for MNIST, visualizing a much
higher discrepancy in prediction of heavily pruned variants.

In summary, theoretical predictions work for GPUs as well and reflect benefits gained

through optimizations (even though a bit too optimistic) and operating modes. Also, we expect

that the built-in memory assumptions distort the image and is a key contributor to discrepancies

between predictions and measured performance.

7.2.3 TPU & NCS

For ImageNet classification on the TPU, as shown in Figure 7.8, we observe similar behaviour.

The general trends are predicted by the theoretical analysis, however the actual efficiency is low

and the discrepancies are largest for the smallest CNNs (which is MobileNetv1 in this case).

For the NCS with ResNet50, which is not shown in the graph but can be found on our web

portal, we achieve 27% of the predicted performance.

In regards to CIFAR-10 classification, again it appears that performance predictions for

smaller (more optimized CNNs) are overly optimistic, and efficiency numbers for the most

pruned topology, CNV12.5%, is the lowest, whereby overall efficiency is between 1% and 18%.

Discrepancies are largest for the smallest CNNs (e.g. MobileNetv1). Introducing an overall
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efficiency factor for peak performance in equation 4.2, that decreases with the size of the network

could alleviate these discrepancies. Overall, the efficiency numbers for both the TPU and the

NCS are on average even lower than for FPGAs and GPUs, but the general trends are predicted

by the theoretical analysis with a correlation coefficient=0.78 for TPU and 0.64 for NCS2.

Figure 7.8: Performance: Level-0 versus level-3 for NCS & TPU, showing similar trends in
the predictions with large discrepancies.

7.2.4 Summary

In summary, theoretical predictions work. They are representative of achievable performance

and reflect improvements achievable through optimization techniques and operating modes.

while overall discrepancies exist, the results are well correlated. In the following Table 7.1, we

have summarized the correlation coefficients over these experiments, which are consistently

high.

Table 7.1: Correlation Coefficient for ImageNet (IN), CIFAR 10 (C) and MNIST (MN) over
selected hardware platforms

DPU (IN) FINN (C) FINN (MN) TX2 (C) NCS2 (C) TPU (IN)
cc 0.78 0.96 0.90 0.96 0.64 0.88

There are clearly limitations in regards to the memory model. As an outcome of this research,

we would suggest either refinement of the memory model and assumptions in regard to what

data is stored on and off-chip, or alternatively removing of memory bottleneck as given through

the roofline model and using only peak compute performance for performance predictions.

Having said this, the memory aspect of the roofline is still useful to highlight expected memory

challenges in the platforms, but not for quantitative performance predictions unless further
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refined. Another limitation which has been consistently observed, is that for smaller CNNs,

clearly overheads which are not modelled as part of the theoretical analysis, start dominating

performance and as such achieved efficiency is lower than for larger topologies. We expect that

we can improve this in future versions by introducing a scalar efficiency factor for performance,

which decreases with smaller model size and compute complexity to counterbalance this effect.

Finally, for FPGAs specifically the estimates could be much more refined when factoring in

actual resource usage and achieved clock frequency.

7.3 Predictions of Pareto-optimal Design Points with

Theoretical Analysis

The other key question that we would like to address is whether the theoretical analysis is able

to correctly predict the pareto-optimal design points as were presented in Chapter 6. For this

we consider the three different classification tasks separately.

For CIFAR-10, the theoretical pareto charts predicted the pruned CNV variants on the

ZCU104 with FINN and BISMO using INT2 and INT4 precision as building the pareto frontier.

This was shown in Figure 6.8. The actual measurements confirm that ZCU104-FINN with

INT2 and INT4 result in pareto-optimal implementations. However, BISMO performance is

significantly lower than estimated with the theoretical model. This was anticipated as BISMO

leverages only a fraction of the device resources. Clearly, a refinement of the peak performance

for the FPGA platforms can avoid this false prediction. Secondly, in the actual measurements,

We also observe 2 TX2 with FP16 and pruned variants on the pareto frontier. This is consistent

with the observation in the previous Section 7.2.1 that indicated that the actually achieved

performance for GPUs was closer to the prediction than for FPGAs. If we were to refine the

FINN performance estimates using actually used resources and clock speed, the TX2 data

points would have started to emerge in pareto curves of the theoretical analysis. We show an

overlapped pareto curve that contains both theoretical predictions as well as the corresponding

measured data points in one chart in Figure 7.9. Experimental data points can be correlated

with their theoretical counterparts through colour. The theoretical pareto-optimal datapoints

and the measured pareto-optimal datapoints are connected through two separate lines in yellow

and blue respectively.

For MNIST classification, shown in Figure 7.10, the exact same predictions were made and
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Figure 7.9: CIFAR-10 classification design space with predicted versus measured pareto-
optimal design points

the actual measured results are consistent with the predictions with the exception of BISMO,

for the reasons as explained above. Finally for ImageNet Classification, the theoretical analysis

predicted the following optimal solutions to be ZCU104 and ZCU102-DPU variants of ResNet50,

ZCU102-DPU with GoogleNetv1 as well as the TPU for MobileNetv1. This reflects fairly well

the actual measurements. Small discrepancies observed are due to missing measurements for

the pruned ZCU102 ResNet50 variants and the overly optimistic predictions for FPGAs. Rsults

are visualized in Figure 7.11.

7.3.1 Summary

In summary, while the performance predictions where quantitatively perhaps not accurate, the

predictions for pareto-optimal design points can save substantial implementations and provide
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Figure 7.10: MNIST classification design space with predicted versus measured pareto-optimal
design points

good guidance on what combinations of topologies, optimization strategies and complementary

hardware platforms can provide best implementation alternatives, especially when applying the

proposed refinements of the theoretical models.

7.4 Benefits and Challenges with Microbenchmarks

As discussed before, microbenchmarks at level-1 expose achievable compute performance

for typical compute patterns for specific layer types, encountered within neural networks.

Microbenchmarks at level-2 are comprised of simple combinations of level-1 tests to capture
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Figure 7.11: ImageNet classification design space with predicted versus measured pareto-
optimal design points

potential bottlenecks caused by tensor movement between layers, as well as storage requirements.

We restrict the evaluation of level-1 and level-2 to ResNet50, as this is sufficient to make

the key observations. The ResNet50 topology is relatively regular in structure, consisting of

a top convolutional layer with pooling combination, 16 residual blocks, and a fully connected

layer. Each residual block is comprised of thresholding layers, convolutions, and elementwise

additions. Since the platform-specific frameworks perform layer fusion as network optimization,

level-1 represents the smallest possible fused layer structure. We restrict level-1 to convolutions

of different sizes and select the residual layers res2a, res3a, res4a and res5a to get an overview

over the whole network. Results are shown in Table 7.2. The table contains level-1 and level-2

latency results for one TX2 hardware configuration (MaxN, FP16) with different batch sizes

as well as level-1 results for ZCU104 with different thread numbers. Complete results can be

found in the appendix and the web portal.
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One of the key challenges encountered relates to limited support by the hardware-specific

tool chains. The cleanest way to describe fair microbenchmarks would be to create topologies

of subsets of layers. However many of the vendor-specific toolchains did not support execution

of this. These tools are restricted to execution of full topologies which process inputs to

classification results rather than converting tensors. We ran into such limitations with most

of the hardware platforms. We tried to work around this issue in whatever way possible. To

give one example, for the chosen FPGA DPU implementation, the only way to produce level-1

results was through profiling a full network which shows latency per layer. While one could

argue that this is okay for level-1 results, this is pointless for level-2 as these would be a simple

sum of level-1 equivalent numbers and as such render the results as superfluous with no added

information. This limitation through vendor specific tool chains was the largest hindering block

to many of the level-1 and level-2 experiments.

In regards to achieved measurements, we observe a large discrepancy in execution time for

different residual stacks, even though the compute requirements within each are similar. This is

in direct conflict with performance prediction assumptions in level-0, which is based on compute

requirements. It is likely that data movement varies significantly depending on the incoming

and outgoing tensor dimensions. Therefore, it is important to include as many layer types inside

level-1 and 2 testing. We would expect this to be even more pronounced for other topologies,

as they may be less balanced than ResNet50. We also observe a large discrepancy between the

performance of different convolutional layers (Table 7.2, level-1). Unlike the residual blocks,

this is anticipated, as they come with very different compute requirements. Furthermore, the

differences are more pronounced with larger batch size. As such it would be essential to include

the full spectrum of convolutional layers within level-1, which will make the mircobenchmarking

a substantial task. It can further be observed that level-2 layers show latency in strong excess

over the sum of the latencies of the contributing level-1 components, clearly highlighting the

contribution of data movements to latency. For example, when summing up all level-1 results

for res2a, with batch size 1 on level-1, this would result in a predicted latency for level-2 of

0.64msec, whereas level-2 reports 1.37msec, which is a factor of 2x overhead. As such level-2

can really help characterize intra-layer bottlenecks.

How well do the performance predictions of the microbenchmarks approximate system and

compute only performance at level-3? Figure 7.12 depicts the performance measurements of

the various levels for MaxN, FP16 configuration on TX2, and a subset of microbenchmarks on

level-1 and level-2, for a spectrum of batch sizes. Note that the theoretical peak performance is
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Table 7.2: Level-1 and 2 - discrepancy between latency of different convolutions and residual
layers

Level-2 Level-1

Residual TX2, MaxN, FP16 Conv. TX2, MaxN, FP16 ZCU104,INT8
Layer [MOP] b=1 [ms] b=128 [ms] Layer [MOP] b=1 [ms] b=128 [ms] t=1 [ms] t=8 [ms]

res2a 462.44 1.37 119.12 res2a branch2a, 1x1 25.70 0.06 5.05 0.06 0.08
res2b 436.74 1.12 108.24 res2a branch2b, 3x3 231.20 0.19 22.78 0.19 0.19
res2c 436.74 1.12 108.07 res2a branch2c, 1x1 102.80 0.18 20.15 0.22 0.26
res3a 590.88 1.39 133.09 res2a branch1, 1x1 102.80 0.21 23.66 0.43 0.46
res3b 436.74 1.03 87.72 res3a branch2a, 1x1 51.40 0.09 7.19 0.09 0.13
res3c 436.74 1.05 87.87 res3a branch2b, 3x3 231.20 0.21 24.63 0.21 0.21
res3d 436.74 1.04 88.66 res3a branch2c, 1x1 102.80 0.15 15.18 0.21 0.25
res4a 590.88 1.20 104.66 res3a branch1, 1x1 205.50 0.29 30.35 0.33 0.39
res4b 436.74 1.03 71.33 res4a branch2a, 1x1 51.40 0.08 7.10 0.12 0.13
res4c 436.74 1.03 72.52 res4a branch2b, 3x3 231.20 0.20 23.12 0.21 0.23
res4d 436.74 1.02 72.01 res4a branch2c, 1x1 102.80 0.15 13.01 0.29 0.38
res4e 436.74 1.02 72.39 res4a branch1, 1x1 205.50 0.28 29.23 0.43 0.50
res4f 436.74 1.02 71.76 res5a branch2a, 1x1 51.40 0.14 7.61 0.12 0.19
res5a 590.88 1.73 95.61 res5a branch2b, 3x3 231.20 0.31 24.90 0.33 0.49
res5b 436.74 1.24 61.55 res5a branch2c, 1x1 102.80 0.27 12.53 0.47 0.60
res5c 436.74 1.23 61.58 res5a branch1, 1x1 205.50 0.51 30.92 0.52 0.69
Min 1.02 61.55 Min 0.06 5.05 0.06 0.08
Max 1.73 133.09 Max 0.51 30.92 0.52 0.69
Var 0.04 454.94 Var 0.01 79.42 0.02 0.03

significantly higher than measured performance, as already discussed in Section 7.2 and only

within reach of individual layers that fit the hardware architecture well. The system (level-3)

achieves from 41.1% to 60.7% efficiency, where larger batch sizes achieve higher performance.

Level-2 results are on average more negative than achieved performance (level-3) and a fairly

good approximation within 16% of the achievable level-3 system performance, but far off level-3

compute performance. Level-1 results have usually higher performance than the level-2 results.

This makes intuitively sense, as a limited amount of bottlenecks are exposed during execution

of the benchmark. In particular lower weight storage is required, which is most likely contained

on-chip, thereby alleviating any potential memory bottlenecks. Also it can be said that the

averaged level-1 results provide a good estimation of possible compute performance on level-3.

As already mentioned, for level-1 and 2 results, we observe large variations in performance ranges

for different dimensions of convolutions. The insight is that to provide a good projection from

level-1 or level-2 to level-3, we need to provide full coverage of convolutional layers. Another

challenge is that many backend tools perform automated layer fusion such as merging batch

normalization with convolutions, which makes testing in isolation inaccurate.

7.4.1 Summary

Clearly the microbenchmarks at level-1 and level-2 can offer early insights into system level

bottlenecks caused by data movement. Furthermore, level-1 can highlight specific bottleneck
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Figure 7.12: Performance comparison level-0, level-1, level-2 and level-3 for TX2 (MaxN,
FP16 configuration)

layers which cannot be anticipated from the theoretical performance predictions (the reported

level-1 latencies differ substantially even though the compute requirements are very similar).

Finally, as expected and shown for ResNet50 on TX2, level-1 and level-2 microbenchmarks can

clearly provide much more accurate performance predictions than level-0, whereby it is arguable

whether the added benefit from level-2 is worth the additional effort. Perhaps the greatest

advantage of level-2 comes from characterizing individual hardware platforms. Although level-1

and 2 provide these useful platform insights and improved performance predictions, the Achilles

heal of this approach is the vendor specific and highly limited toolchain support which prevents

the execution of topologies which only consist of a subset of the layers. In addition, the scope

of testing required is significant, in particular for level-2. Perhaps this could be addressed with

larger community support. As such level-1 and level-2 results will be very challenging until

toolchains of the various vendors mature and enable consistent support for microbenchmarking.

7.5 Gains from the Measurement Methodology

QutTiBench provides clear guidelines on how to measure power, latency and throughput on

fundamentally different hardware platforms, differentiates system and compute only measure-

ments, and proposes how to include deployment parameters such as batch sizes and operating

modes in a fair manner. This brings specific benefits which are discussed individually in the

following sections.
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7.5.1 Systematic Measurement of all Figures of Merit for all De-

ployment Parameters

Many of the hardware platforms offer different deployment options in order to support different

compromises between power and throughput as well as latency and throughput. Firstly, many

of the platforms require large batch sizes in order to ensure high compute utilization, however

this comes at the expense of latency. Separately, low power modes are offered, which can for

example run at reduced clock speed, however this will also reduce overall compute performance.

In our benchmark, we ensure to cover a systematic exploration of all of the provided deployment

options regarding all figures of merit to ensure a fair comparison and thorough understanding

of the design compromises and avoid cherry picking. We evaluate this below for latency vs

throughput and power vs throughput separately.

Latency versus Performance

We consider the compromise between latency and performance in the following charts: 7.13, and

7.1411. More datapoints are visualized in the web portal, where the charts are also interactive

and easier to parse. The lines correspond to all measurements over a spectrum of batch sizes and

similar, for one hardware platform and for one topology. FINN delivers lowest latency with no

jitter for increasing stream sizes, whereby the performance in regards to fps will saturate when

the pipeline is fully utilized. This is reflected in the right part of Figure 7.13, where the FINN

results almost overlap with the actual y-axis. For the layer-by-layer compute platforms such as

the NCS, BISMO, A53, and TX2, one can observe that the latency always increases with larger

batch size and thread counts respectively, because a sequence of images has to be buffered before

each of the layers can be executed which adds significant delays. The compute performance

flattens out once peak performance has been reached. The extreme variant is the NCS which has

already achieved full throughput at batch=1. Therefore with increasing batch size only latency

rises but throughput stays constant. The DPU implementations reach performance saturation

for very small thread counts. To show that it is important to visualize the full spectrum of batch

sizes, please consider in Figure 7.14 the lines for ZCU102-INT8-RN100% and TX2-FP32-GNv1.

Depending on latency requirements either the ZCU102 or the TX offers the better performance

11We had to split up hardware platforms into different charts due to the large difference in ranges in
Figures 7.13 and 7.14.
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which is determined by the batch size or respective thread count. If the latency is constraint to

12msec, then the batch size will be limited and with that the corresponding throughput. In

this scenario, the ZCU102 offers higher throughput at lower latency while for larger latency

constraints, the TX2 is the better option. As such it is really important to benchmark the full

spectrum and visualize all options.

Figure 7.13: CIFAR-10 classification design space: Trade-offs between latency and throughput,
visualizing the impact of increased batch sizes, stream sizes and thread counts

Power versus Performance

As discussed in Chapter 2, many of the chosen platforms offer different power or operating

modes which provide a compromise between power consumption and achievable throughput,

for example by regulating clock speed or disabling parts of the circuit. A specific example, is

the TPU Coral stick from Google which can operate with a fast or a slow clock. The NVIDIA

GPU Jetson TX2 platform can run in either maxn, maxp or maxq modes. Maxn is the high

performance mode with highest power consumption. Maxq is the most efficient mode, with

lowest power but also lowest performance, and maxp is the middle compromise. Examples of

this behaviour are shown in Figure 7.15 and 7.16 indicating substantial differences in regards to

power and performance for different modes and batch sizes, where naturally higher performance

comes with higher power consumption. In this regard the benchmark really aids the system

designer by highlighting the behaviour of the platform and shows the power cost of the different
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Figure 7.14: ImageNet classification design space: Trade-offs between latency and throughput,
visualizing the impact of increased batch sizes, stream sizes and thread counts

operating modes. Furthermore the benchmark results illustrate that for the TX2, the batch size

impact (which is essential to scaling performance) comes at a limited power penalty of 1-2W,

which shrinks further with the low power modes.

Figure 7.15: Power versus performance for CNV: Higher performance comes at higher power
consumption, while higher precision is higher in power consumption and lower in performance
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Figure 7.16: Power versus performance for MLP, while higher precision is higher in power
consumption and lower in performance. Performance benefits of lower precision are marginal
for low batch sizes.

7.5.2 System versus Compute

Reporting system and compute only performance separately brings two distinct benefits. Firstly,

it brings clarity regarding how the data was measured and whether it includes data movement to

accelerators or not. Secondly, it can show systematically the cost of data movement for different

platforms, topologies and optimization strategies over a spectrum of deployment settings. In

the following Figures 7.17, 7.18, 7.19, which show the difference between system and compute

latency and throughput, we will highlight some of the observations that can be made thanks to

this benchmarking methodology. For example, Figure 7.17 shows latency and throughput for

CNV on both the TX2 and the NCS platforms. Here it can be observed that data movement

overheads for TX2 are much lower compared to NCS, which is as expected, as for NCS data

has to be transferred via USB to the accelerator first. Secondly, for both platforms, overheads

directly correlate to batch size. In regards to throughput, the overhead seems to be relatively

constant, only small increase over batch size until platform reaches peak performance, for both

NCS and TX2. In the case of the MLP networks, as shown in Figure 7.18, we can observe that

although quantization should half the amount of data to be transferred, the data movement

overhead seems to be roughly the same, both for FP16 and FP32, and consistent over all power

modes. Throughput almost doubles for FP16 compared to FP32 which is as expected thanks to

the native support for FP16 in the TX2. Another curious artefact can be observed in regards

to the TX2 for throughput: While the compute throughput starts to level off with batch size 64
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and 128, the system-level throughput depends heavily on the data movement overhead and as

such the difference continues to increase with batch size. Finally, in Figure 7.19 we can observe

the effect of pruning on the data movement overhead. In the case of the FPGA platform,

pruning clearly improves the data movement overheads. In regards to throughput, for thread

count 112, there are larger discrepancies, while for higher thread count, the difference seems to

become constant. Also, unlike GPUs, the difference decreases with thread count, which clearly

shows, that the FPGA platform increasingly overlaps data movement with compute for higher

thread count. However, this is less for increased pruning scale.

Figure 7.17: Difference between system and compute latency and throughput for CNV

Figure 7.18: Difference between system and compute latency and throughput for MLP with
different precisions

12There is a missing datapoint for the 30% pruned variant, where the experiment produced a hardware
error.
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Figure 7.19: Difference between system and compute latency and throughput for pruned
ResNet50 variants

These are some examples of observations that can be made with this benchmark and are

not possible with other benchmarks such as MLPerf. We believe it is clear from this and the

fundamentally different behaviours showcased in the presented figures, that reporting system

and compute latency and performance separately can really help to create a better platform

understanding, as the benchmark intends. Note, that this is just a selection of datapoints. The

remaining data is available on the web portal and in the appendix.

7.5.3 Summary

Overall, we showed that the defined measurement methodology is instrumental for categorizing

fundamentally different hardware platforms for different neural networks. The systematic

measurements over all deployment parameters provides a clear and quantified understanding of

the various system-level trade-offs between the various figures of merit such as power, latency and

throughput and shows the impact of low power operating modes, or latency penalties associated

with large batch sizes. Finally, differentiating system and compute-only measurements, can yield

surprising insights in regard to data movement overheads: for example no savings in regards

to quantization for the TX2 GPU, while pruning visibly reduces overhead for all hardware

platforms. The FPGA DPU clearly overlaps data movement with compute and thereby reduces

overhead. Overall we observe significantly larger overheads for MLPs compared to CNVs, which

makes sense as they are more memory intensive. The aim here is not to provide a complete

understanding of the insights gathered but rather to illustrate the type of insights that can be

gathered with this benchmark.
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7.6 Benefits of Full Design Space Visualization for Op-

timization Strategies

In this section, we want to illustrate that the chosen data visualizations can be an effective

method to provide interesting insights and answer important design questions up front. For

example, system designers might wonder, for the same level of accuracy, do we derive more benefit

from pruning or using reduced precision for ImageNet, CIFAR-10 and MNIST classification?

QutiBench aims to identify these optimal solutions along the pareto frontier in the graphs

between accuracy and performance or latency. We show example graphs in Figures 7.20, 7.22

and 7.21. These visualizations allow system designers to draw conclusions about the potential

of various optimization strategies. In the following discussion, we present a few example

conclusions, that can be drawn for our three example machine learning tasks using the proposed

methods of comparison and visualization.

When looking at the design space of platforms and optimization techniques, we can observe

that overall, combining pruning and quantization delivers the best result. Pruning seems to

be more effective than quantization across a broader spectrum of platforms and topologies,

however reducing precision is more effective for MLPs as shown in Figure 7.21. For example,

FINN-INT2-25% outperforms FINN-INT4-12.5%. In this scenario, FINN also outperforms other

architectures by far. This is due to the memory bound nature of the topology for FP16 and

FP32 which throttles the compute performance on NCS and TX2. For INT4 and INT2, the

model can remain on-chip for FINN while still offering competitive accuracy for this dataset

and topology.

We also make several other observations from these graphs: The USB devices are far lower

in overall performance as expected from the theoretical analysis as can be seen in Figure 7.20.

Secondly, the bit-serial implementations do not feature on the Pareto frontier, which is as

expected, as these implementations are not performance optimized. Thirdly, FPGAs outperform

others with regards to throughput in particular where quantization is available.

In the following, we will discuss the results in more detail for the various ML tasks: For

ImageNet classification, as shown in Figure 7.22, we have a few more topologies to compare

with, and we can see that they have a massive impact in regards to performance and accuracy

and in fact outweigh benefits from optimization techniques. Quantization from FP32 to FP16
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Figure 7.20: Visualization of pareto-optimal solutions in the CIFAR-10 classification design
space

Figure 7.21: Visualization of pareto-optimal solutions in the MNIST classification design
space
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Figure 7.22: Visualization of pareto-optimal solutions in the ImageNet classification design
space

has in essence no impact on accuracy and FP16 variants bring massive performance benefits.

Pruning impacts accuracy when dropping below 50%, but up to then the performance benefits

come basically for free. The NCS is far below competitive devices in regards to performance

overall. The TPU offers GoogLeNetv1 performance on par with the TX2 whereby the INT8

accuracy is higher than TX2’s FP16 and FP32, most likely due to superior image preprocessing

in TensorFlow. The TPU provides pareto optimal design points with MobileNetv1, clearly

showing that MobileNetv1 is an exceptional topology with regard to compute cost-accuracy

compromise and outperforms GoogLeNetv1 variants on other devices. For the Ultra96, one

can observe that pruning brings performance benefits at small accuracy reduction, except for

the 80% variant which remains equivalent to the original version. Finally, the ZCU102-DPU

provides pareto optimal implementations with both GoogLeNet and ResNet variants. Overall,

this figure visualizes clearly the impact that topology variations, which are in essence a form

of algorithmic variations, have on design space trade-offs. Further, the charts visualize many

design points that would be invisible if accuracy would be a hard target as is the case in other

benchmarks. These are significant benefits that QuTiBench can offer to system designers and

hardware architects.
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7.7 QuTiBench and MLPerf

One of the most promising industry-wide efforts in regards to benchmarking NNs is MLPerf [150]

with 600 reproducible inference performance measurements from 14 organizations, representing

over 30 hardware platforms. A summary of MLPerf was provided in the Related Work Section

in 3. MLPerf emerged shortly after the start of my PhD and has significantly unfolded during

the course of the thesis. Yet, despite a similar motivation, namely driving clarity into this highly

complicated design space, there are substantial differences with the approaches taken. In this

section, we discuss these key differences. With QuTiBench we aim to provide more system-

level insights, offer more generality and clarity regarding optimizations. Compared to

MLPerf, QuTiBench brings the following additional benefits:

• QuTiBench’s multi-tiered approach includes microbenchmarking and theoretical analysis

and performance predictions (→ system-level insights)

• QuTiBench’s measurement methodology includes systematic testing across all deployment

parameters, system vs compute, and reporting of all figures of merit (→ generality and

system-level insights)

• QuTiBench does not have constraints towards specific application scenarios and considers

a more complete design space (→ generality)

• QuTiBench has specific support for optimization techniques, which are only added to

MLPerf as an afterthought in the open section (→ optimization support)

• Qutibench provides additional consideration of data visualization (→ system-level insights)

In summary, QuTiBench has more focus on providing a deeper system level understanding

for the various hardware platforms, through a much more general and systematic measurement of

all figures of merit, and with that allows to provide predictions and guidance for new application

scenarios. In contrast, MLPerf is dedicated to very specific, yet representative, application

scenarios, having selected two image classification and object detection CNNs (one light-weight

and one heavy-weight each) plus a machine translation network. All 5 of them are tested in 4

different load scenarios (single stream, multi-stream, server and offline). For each of the load

scenarios, only 1 specific figure of merit is reported for a specific minimum application accuracy,

whereas QuTiBench rigorously reports everything and is not constraint to these 5 application
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scenarios. As such QuTiBench can illustrate and identify potential system-level trade-offs which

provide optimal solutions under application constraints that may not be covered by MLPerf.

Furthermore, through its theoretical analysis and performance predictions, QuTiBench can

provide predictions and insights for completely new topologies, such as which optimization

techniques are the most likely to provide optimal solutions, or how certain techniques will

impact performance and power consumption without having to try every single one. Finally,

the explicit support for optimizations at all tiers of the benchmark are vital in particular in the

embedded space, where most solutions are co-designed with the hardware and heavily optimized.

However, to be real, QuTiBench is just a PhD project and as such cannot compete with the

general level of industry support and level of adoption that MLPerf has achieved. Also, MLPerf

has substantially more detail when it comes to providing statistical relevance and ensuring

reproducibility, and system level evaluation, addressing potential cheat techniques such as taking

advantage of on-the-fly caching detection. Ideally, as the techniques on QuTiBench and MLPerf

complement each other, the benchmarks could get combined. We discuss the details of this and

how this could manifest itself in the last Chapter 8.

7.8 Concluding Remarks

In this chapter, we evaluated the benchmarking methodology. We have learned that the

theoretical predictions can give reasonable insights for new application scenarios without

having to run any experimentation, depending on the type of accelerator platform. We also

highlighted a couple of options regarding how to make the predictions more accurate in the

future and illustrated that the theoretical pareto plots could predict many of the most beneficial

optimization techniques. The measurement methodology with the distinction between system

and compute level performance has been shown to be very useful to illustrate the individual

data movement characteristics of the various hardware platforms. The systematic exploration

of other deployment settings provides more clarity in the design space. And finally, the chosen

comparisons and data visualizations aid providing fair comparisons between fundamentally

different hardware platforms, different topologies and include the scope of potential optimizations.

A key challenge was microbenchmarking level-1 and level-2 results. While we could show the

benefits and more accurate performance predictions, we ran into too many practical constraints

that rendered this as limited in scope due to limitations of current vendor-specific tooling.

Further, we found that the chosen data visualizations were effective to break-down the complexity
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of the design space. Finally, we discussed how QuTiBench compares to MLPerf, which is the

number one industry-wide effort in this space. Most notably, QuTiBench brings additional

system-level insights, offers optimization support and brings more generality compared to

MLPerf. In the next chapter, which concludes the thesis, we’ll discuss how to create an impact

on the research efforts within this space, in particular in comparison and conjunction with

MLPerf, offer lessons learned and provide a future outlook.
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8 Conclusions, Impact & Future Work

8.1 Introduction

This chapter concludes the thesis. It summarizes the overall effort and offers a critical review of

the key findings and lessons learned. This includes a section on interesting insights for the various

hardware architectures that we have gathered through the experimentation. We also incorporate

a discussion around how we aim to maximize our impact on the wider research community with

FAIR data, a web portal and specific suggestions on how to integrate QuTiBench with MLPerf.

We finish with an outlook into our future efforts.

Figure 8.1: Location within the thesis

8.2 QuTiBench

Neural networks are fast gaining popularity across an increasing number of applications. However,

they are accompanied by challenging compute and memory requirements, which is seriously

challenging the semiconductor industry which is facing performance scalability issues. This

is of particular importance for embedded computing environments, where real estate, power

and available compute and memory resources are at a premium. The industry is turning to

both algorithmic innovation in the form of new topologies, quantization, and pruning strategies,

as well as architectural innovation with increasingly complex and heterogeneous devices. The
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latter resulted in specialized compute architectures for Convolutional Neural Networks (CNNs)

which are typically referred to as Deep Learning Processing Units (DPUs). To facilitate better

insights into the increasingly complex space of end solutions which involve hardware-software

codesign and evaluate new concepts in computer architecture, novel CNN system benchmarks

are needed.

QuTiBench is a proposed novel benchmarking methodology to help represent all possibilities

within the solution spectrum fairly and to drive hardware innovation by providing valuable

insights for system level designers. QuTiBench creates an understanding of possible performance

accuracy trade-offs for newly devised and fine-tuned algorithms combined with highly customized

accelerators.

Key contributions are the concepts that allow benchmarking of highly optimized algorithms

by tying hardware characteristics back to the end-application, thereby providing the necessary

algorithmic freedom. Another unique characteristic of this benchmarking concept is the

introduction of the multi-tiered approach including a theoretical level and consideration of a

spectrum of numerical representations at all levels. As such the benchmark can provide insights

at various abstraction levels. This brings three key advantages: a) It provides a spectrum of

insights. Users can choose from instant but perhaps crude results, which can be elaborated upon

at a later stage with real implementations and more in-depth evaluation; b) The multi-tiered

approach provides insights into system bottlenecks. For example, are the recurrent or the

fully connected layers the challenge? Or is the bottleneck the data movement in between?; c)

We can track performance optimizations with the theoretical analysis and predict potentially

pareto-optimal design points. This can save substantial experimental efforts. Furthermore,

QuTiBench is enabling understanding by providing thoughtful data visualizations such as the

pareto-comparison charts, box and whiskers charts as well as heatmaps. Other differentiators

of our approach include the clear measurement methodology, which investigates both system

and compute throughput and latency, and the systematic evaluation across all optimization

techniques, topologies, hardware platforms with all deploymentment parameters. Finally, similar

to other benchmarking efforts, we understand the critical need for a community to support this

effort as well as open and FAIR data to generate meaningful research impact. As such we have

put significant effort into the data storing and access (more detail below) and a web portal

located here: https://rcl-lab.github.io/QutibenchWeb. This portal supports third party

contributions and provides downloadable access to all measured and theoretical data points. It

also includes all data analysis and visualizations that were derived within the thesis in open
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source format such that the community can leverage and further build on top of it.

8.3 Lessons Learned

Through careful evaluations with close to a thousand experiments over a spectrum of hardware

platforms, optimizations, and machine learning tasks with different topologies, we have learned

a number of lessons which we can be grouped into two categories: The first set of lessons relates

to benchmarking ML applications and which aspects of QuTiBench have worked well and which

haven’t. The second relates to actual insights regarding the various hardware architectures.

While this is perhaps slightly tangential to the thesis, it might still be interesting to many

readers. Both sets are discussed in greater detail within the following subsections.

8.3.1 Lessons in Benchmarking

One of the most important lessons we have learned is that the implemented theoretical predictions

can give representative insights for performance in new application scenarios which are well

correlated with the actual measurements. This is really significant as it allows to narrow down

the design space without having to run any time-consuming experimentation. In addition, we

found that the theoretical aspect of the benchmark with its pareto plots could predict many

of the most promising solutions and beneficial optimization techniques. Again this can save

significant amount of time as it narrows the scope of experimentation. We have identified

a number of options on how to make the predictions more accurate in the future. First of

all in regards to Field Programmable Gate Arrays (FPGAs), we can take resource cost into

account (how much of the available compute resources was actually used). Secondly, we can

improve the estimates by considering memory capacity for calculating operational intensity

of the various CNN topologies. If the required memory fits into on-chip resources, external

memory considerations should be removed from the model assumptions. Finally, throughout

the experimentation we have observed that with smaller model size the achieved compute

efficiency decreases. This insight could be leveraged to improve the performance predictions by

introducing a simple scalar factor that is inversely proportional to the size of the CNN.

In addition to the theoretical analysis, we’ve provided experimental proof that the measure-

ment methodology with the distinction between system and compute level performance has been
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shown to be very useful to illustrate the individual data movement characteristics of the various

hardware platforms. Also, the systematic exploration of other deployment settings provided

more clarity in the design space in regards to throughput, latency and power compromises.

Finally, we found that the chosen data visualizations can significantly aid with gaining valuable

insights from the vast amount of complex and multi-dimensional data points. They aid with

fair comparisons between fundamentally different hardware platforms, different topologies and

include the scope of potential optimizations.

A substantial challenge was encountered in regard to microbenchmarking level-1 and level-2

results. While they clearly showed benefits, including interesting system-level insights as well

as much more accurate performance predictions, we ran into too many practical constraints

that rendered this as limited in scope. This is due to two reasons: Firstly, benchmarking all

layer types and combinations thereof, is highly time-intensive and it is questionable whether it

is worth the effort compared to a refined theoretical estimate. Alternatively, perhaps through

community effort, this could become feasible. Secondly, we ran into many constraints regarding

the vendor-specific toolchains. In more detail: Ideally, one would describe the microbenchmarks

as individual topologies that consist only of one to a few layers. However, many of the available

tools did not support execution of these. The alternative was to use profiling tools, but again

these are vendor specific and as such inconsistent between the various hardware platforms. The

resulting conclusion here is that it would make sense to postpone the microbenchmarks to the

future, until the available tools have matured. But even then, in particular the level-2 results

are still highly time-intensive, and it is not clear whether they are worth the effort unless this

becomes a one-time effort that a whole community is going to leverage going forward.

Finally, we compared in-depth QuTiBench to MLPerf, which is the number one industry-

wide effort in this space. Firstly, QuTiBench emphasizes providing a deeper system level

understanding for the various hardware platforms, through a much more general and systematic

measurement of all figures of merit. This way allows QuTiBench to provide predictions and

guidance for new application scenarios. MLPerf on the other hand is dedicated to very distinct

application scenarios, having selected two image classification and object detection CNNs (one

light-weight and one heavy-weight each) plus a machine translation network at the time of

this writing. All 5 of them are tested in 4 different load scenarios (single stream, multi-stream,

server and offline). For each of the load scenarios, only 1 specific figure of merit is reported for

a specific minimum application accuracy, whereas QuTiBench rigorously reports everything

and is not constraint to these 5 application scenarios. As such QuTiBench can illustrate and
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identify potential system-level trade-offs which provide optimal solutions under application

constraints that may not be covered by MLPerf. Furthermore, through its theoretical analysis

and performance predictions, QuTiBench can provide predictions and insights for completely

new topologies, such as which optimization techniques are the most likely to provide optimal

solutions, or how certain techniques will impact performance and power consumption without

having to try every single one. Finally, the explicit support for optimizations at all tiers of the

benchmark are vital in particular in the embedded space, where most solutions are co-designed

with the hardware and heavily optimized. However, to be real, QuTiBench is just a PhD

project and as such cannot compete with the general level of industry support and level of

adoption that MLPerf has achieved. Also, MLPerf has substantially more detail when it comes

to providing statistical relevance and ensuring reproducibility, and system level evaluation,

addressing potential cheat techniques such as taking advantage of on-the-fly caching detection.

Ideally, as the techniques on QuTiBench and MLPerf complement each other, the benchmarks

could get combined. We analyze this aspect (on how adding some aspects of QuTiBench to

MLPerf) further below. We expect that this could significantly improve the scope of MLPerf, in

particular for system designers, and for solutions that are more focused on the embedded space.

Overall, the theoretical analysis was clearly worth the effort, as was the systematic exploration

across all figures of merit. This provides real system-level insights for future system and

hardware architects, for example the observed data movement overheads over batch sizes for

the different hardware platforms. The application-level visualization, which offers complete

algorithmic freedom, is essential for benchmarking embedded devices where co-design is standard.

Implementations in the embedded space are often written for specific platforms and cannot

be executed on other platforms. Particularly within this context, MLPerf, with its strict

accuracy requirements, is too rigid and potentially doesn’t expose the interesting parts of

the design space. On a side note, I would also like to add, that from working within the

industrial context, I can observe that these type of results that have been generated through

QuTiBench are of high interest in order to design next generation devices for this application

space, as well as to understand the competitive landscape. These observations are also confirmed

by initial interest I’m receiving from colleagues in the field. However, it is clear that while

the scope of experimentation was sufficient to prove benchmarking concepts, it is overall too

limited, as there are only a few individual participants. In order to create real impact, a

community effort is essential. While the web portal opens up this possibility, it might be

more advantageous to integrate the complementary aspects of QuTiBench with the existing
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MLPerf to create the biggest impact within the field. This includes in particular the theoretical

analysis, the systematic and more general capturing of all figures of merit, and eventually the

microbenchmarks once the vendor-tool chains mature enough to support sub-topologies. We

will discuss the details of this further below.

8.3.2 Insights for the Various Hardware Architectures

While the thesis is dedicated to the benchmarking methodology, we have also gained some

interesting insights in regards to the behaviour of a broad spectrum of customized and hetero-

geneous compute accelerators and what optimizations, specifically pruning and quantization,

are of greatest benefits in what situations. In the following, we’ll summarize our observations

regarding latency, performance, power and efficiency with quantization and pruning:

Latency

In this section, we’ll investigate the effects of pruning and quantization on latency for the

different hardware architectures. As expected by our theoretical analysis, all platforms benefit

from pruning in equal measure and directly related to the remaining compute in the network.

This is visualized in Figure 8.2 and 8.3 annotated through the red arrows. (Please refer back

to Section 4 regarding the details of the visualization techniques.) This applies to all tested

topologies13. Quantization benefits, highlighted by the blue arrows in Figure 8.2 and 8.3 are

shown for the hardware platforms with the supported datatypes; for example, A53 derives no

benefit. TX2 benefits from going from FP32 to FP16 almost by 2x for larger batch sizes, less so

for batch=1. FINN derives the greatest benefit (3.7x) due to the greater than linear reduction in

hardware cost when going from INT4 to INT2, however for smaller networks (as we increase the

pruning factor), the speedup converges to 1.3x, as we increasingly encounter hardware overheads.

BISMO improves by up to 2x for larger batch sizes in reduction from INT4 to INT2. It is worth

noting that quantization is beneficial independent of whether we have a layer-by-layer compute

architecture or a full dataflow for all tested topologies. Furthermore, there is a significant

difference in regards to latency variation to be observed between dataflow architectures (FINN),

which shows no jitter, and all others. This is as predicted by the theoretical analysis.

13however for ResNet50, we could only use the Ultra96-INT8 platform, as this was the only one which
would execute the pruned CNNs.

Ph.D. Thesis Michaela Blott



8.3 LESSONS LEARNED 145

Figure 8.2: Effect on latency with pruning and quantization for MLP topologies

Figure 8.3: Effect on latency with pruning and quantization for ResNet50

Finally, it can be observed that quantization and pruning can be effectively combined, and

the overall speedup and latency reduction is an almost direct combination of the individual

gains. We have visualized this with the green arrows in Figure 8.2, and discuss this further

below under the heading ”Orthogonality of Pruning and Quantization”.

Performance

Similar to latency, direct speedup can be derived from both quantization and pruning. This is

visualized in Figure 8.4 and Figure 8.5 for CNV, MLP and ResNet50. The speed-up is mostly

correlated to the amount of compute per input required (which has been included in the figures

as the first column and is annotated in red. Quantization brings the greatest benefit for FINN;
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Figure 8.4: Effect on throughput with pruning and quantization for CNV

Figure 8.5: Effect on throughput with pruning and quantization for MLP

2x on average for all pruned versions and all networks (annotated in blue). TX2 performance

also improves between FP32 and FP16 but only by a factor of 1.42x for CNV and much less for

MLP. We assume this is because MLP is, according to the theoretical analysis, memory bound

given the operational intensity shown in Figure 2.13. The DPU on Ultra96 gets a significant

but not quite linear improvement. Specifically, by taking the pruning scale factor for ResNet50

from 100% to 30% the speed-up is 1.81x. Furthermore, it can again be observed that pruning

and quantization can be effectively combined (green annotation). We analyze this further below

under the heading ”Orthogonality of Pruning and Quantization”.
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Figure 8.6: Effect on throughput with pruning and quantization for ResNet50

Figure 8.7: Effect on power with pruning and quantization for CNV

Power

The effects of pruning and quantization on overall board power are naturally much more

modest, as there is significant overhead in regards to board peripherals with idle power being a

substantial component, as shown in Figure 4.7. This applies in particular for FPGA devices

(FINN and BISMO). But also the USB device shows only modest improvements with more

pruning and quantization. The GPU platform derives the greatest benefits from pruning, with

quantization bringing only limited benefits in regards to power (see Figure 8.7, blue and red

annotations). Also note that power measurements are done at the socket and come with a 10%

error margin, which may explain some of the erratic measurements.
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Figure 8.8: Effect on efficiency (throughput/power) with pruning and quantization for CNV

Efficiency

For NCS, the power efficiency seems to be linear, while TX2, FINN, BISMO and A53 improve

more in line with the reduction in compute relating to pruning which is the square of the pruning

scale. In addition, quantization for Tx2, provides almost a 2x improvement going from FP32 to

FP16, while for FPGAs this is even more pronounced, where the improvement is greater than

2x, and for BISMO it is almost exactly 2x. Furthermore, for A53 below INT8 compute, there

is naturally no difference as the compute is carried out in INT8 carrier datatypes using the

gemmlowp library. For MLPs, thus the greatest benefit can be seen for the FPGA designs. We

depict only the MLP and CNV example in Figure 8.9 and Figure 8.8, however the same applies

to other topologies which can be observed on the web portal. Finally, as with the other figures

of merit, it is shown that pruning and quantization can be effectively combined (annotated in

green), as discussed below under the heading ”Orthogonality of Pruning and Quantization”.

Orthogonality of Pruning and Quantization

As previously mentioned, quantization and pruning can be effectively combined. In this

subsection we quantify this in more detail. In order to do so, we must first introduce the

nomenclature shown in Figure 8.10. For each topology and each platform, we provide datapoints

(latency and throughput) for the original variant (A), a quantized variant (B), a pruned

variant (C) and a quantized and pruned variant (D). p1, q1, p2, q2 symbolize the improvements

achieved with first degree and second degree optimization, whereby p1, p1 are the first degree
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Figure 8.9: Effect on efficiency (throughput/power) with pruning and quantization for MLP

Figure 8.10: Orthogonality of pruning and quantization

optimizations, and p2, q2 the second degree optimizations. p stands for pruning and q stands

for quantization. If D is better than C and B (lower for latency, and higher for throughput),

then the optimizations are complimentary. If p2/p1 = 1 and q2/q1 = 1, then the optimizations

are perfectly orthogonal.

In Table 8.1 we show some examples for the CNV and MLP topologies. We only included

examples where optimizations were effective and both pruning and quantization on the same

CNN can be applied 14. As can be seen, the measured results show that D is always greater

than B and C and the ratios p2/p1 and q2/q1 are, apart from a couple exceptions, close to

100%, showing that they are orthogonal and can be effectively combined.

14Note: We report for latency batch size = 1 and for throughput highest batch size.
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Table 8.1: Orthogonal optimizations

Metric CNN Hardware Scenario A B C D p1 q1 p2 q2 p2/p1 q2/q1

Latency [msec]

CNV
TX2, 100%-50%, FP32-FP16 1.69 1.12 0.65 0.53 0.38 0.66 0.47 0.82 123% 123%
FINN, 100%-50%, INT4-INT2 4.87 0.51 1.30 0.27 0.27 0.10 0.53 0.21 198% 198%
BISMO, 50%-25%,INT4-INT2 6.86 4.21 4.18 2.66 0.61 0.61 0.63 0.64 104% 104%

MLP
TX2, 100%-50%, FP32-FP16 0.72 0.63 0.29 0.29 0.40 0.88 0.46 1.00 114% 114%

BISMO, 100%-50%,INT4-INT2 3.26 2.15 1.19 0.85 0.37 0.66 0.40 0.71 108% 108%
A53, 100%-50%,INT4-INT2 101.38 100.79 26.78 26.68 0.26 0.99 0.26 1.00 100% 100%

Throughput [fps]

CNV
TX2, 100%-50%, FP32-FP16 1,236 2,231 4,385 7,707 3.55 1.81 3.45 1.76 97% 97%
FINN, 100%-50%, INT4-INT2 683 2,979 8,149 17,030 11.93 4.36 5.72 2.09 48% 48%
BISMO, 100%-50%,INT4-INT2 7,643 19,044 14,172 33,542 1.85 2.49 1.76 2.37 95% 95%

MLP
TX2, 100%-50%, FP32-FP16 45,810 70,611 120,414 162,308 2.63 1.54 2.30 1.35 87% 87%
FINN, 50%-25%, INT4-INT2 242,884 484,849 598,131 1,932,075 2.46 2.00 3.98 3.23 162% 162%

BISMO, 100%-50%,INT4-INT2 828 1,605 2,728 5,104 3.29 1.94 3.18 1.87 97% 97%

Overall Design Space

The remaining questions are, first, for the same level of accuracy, do we derive more benefit

from pruning or using reduced precision for ImageNet, CIFAR-10 and MNIST classification?

The optimal solutions can be identified along the pareto frontier in the graph between accuracy

and performance (or latency). Second, in embedded applications, latency is typically critical,

and it is essential to understand what performance can be achieved within a given latency

constraint. This can potentially limit the exploitation of batch- or thread-level parallelism. As

such it is important to understand to what extend pruning and quantization can help and affect

overall behaviour. In order to answer this questions, we look at at accuracy versus performance

trade-offs and latency versus throughput separately below.

Accuracy versus Performance. We first examine the trade-off between accuracy and

performance in regards to fps and ips. When looking at the design space of platforms and

optimization techniques, we can observe that overall, combining pruning and quantization

delivers the best result. Pruning seems to be more effective than quantization across a broader

spectrum of platforms and topologies, however reducing precision is more effective for MLPs.

For example, FINN-INT2-25% outperforms the FINN-INT4-12.5%. In this scenario, FINN also

outperforms other architectures by far. This is due to the memory bound nature of the topology

for FP16 and FP32 which throttles the compute performance on NCS and TX2. For INT4

and INT2, the model can remain on-chip for FINN while still offering competitive accuracy for

this dataset and topology. We also make several other observations from these graphs. First,

the USB devices are far lower in overall performance as expected from the theoretical analysis.

Second, the bit-serial implementations do not feature on the pareto frontier, which is expected,

as these implementations are not performance optimized. Third, FPGAs outperform others

with regards to throughput in particular where quantization is available.
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Figure 8.11: MNIST classification design space

Figure 8.12: CIFAR-10 classification design space

For ImageNet classification, as shown in Figure 8.13, we have a few more topologies to

compare with, and we can see that they have a massive impact in regards to performance and

accuracy and in fact outweigh benefits from optimization techniques. Quantization from FP32 to
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Figure 8.13: ImageNet classification design space

FP16 has in essence no impact on accuracy and FP16 variants bring massive performance benefits.

Pruning impacts accuracy when dropping below 50%, but up to then the performance benefits

come basically for free. The NCS is far below competitive devices in regards to performance

overall. The TPU offers GoogLeNetv1 performance on par with the TX2 whereby the INT8

accuracy is higher than TX2’s FP16 and FP32, most likely due to superior image preprocessing

in TensorFlow. The TPU provides a pareto optimal design point with MobileNetv1, clearly

showing that MobileNetv1 is an exceptional topology with regard to compute cost-accuracy

compromise and outperforms GoogLeNetv1 variants on other devices. For the Ultra96, one

can observe that pruning brings performance benefits at small accuracy reduction, above 80%,

however overall the Ultra96 is too low in performance to offer optimal solutions. Finally, the

ZCU102-DPU provides pareto optimal implementations with both GoogLeNet and ResNet

variants. Unfortunately, in regards to ImageNet classification, we were not able to carry out

a more systematic evaluation as many models were not supported by the various hardware

platforms. Many more comparisons could be conducted by correlating power and latency with

accuracy, or latency with throughput. This will be addressed in future work.

Latency versus Performance. Finally, we consider the compromise between latency

and performance in Figures 7.13 and 7.14. More datapoints are visualized in the web portal,

where the charts are also interactive and easier to parse. As detailed in Section 3, many

hardware platforms require increased batch sizes, thread counts or stream sizes in order to
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extract maximum performance out of a hardware platform and achieve high compute efficiency.

However, this can result in substantially different latency as is visualized in the following

graphs, whereby we had to split up hardware platforms into different charts due to the large

difference in ranges. As shown in previous results and explained in Section 3, FINN delivers

lowest latency with no jitter for increasing stream sizes, whereby the performance in regards

to fps will saturate when the pipeline is fully utilized. This is reflected in the right part of

Figure 7.13, where the FINN results almost overlap with the actual y-axis. This is true for all

platforms. Shown here is only a subset, namely CIFAR-10 and ImageNet classification. For the

layer-by-layer compute platforms such as NCS, BISMO, A53, and TX2, one can observe that

the latency always increases with larger batch size and thread counts respectively, because a

sequence of images has to be buffered before each of the layers can be executed which adds

significant delays. The compute performance flattens out once peak performance has been

reached. The extreme variant is the NCS which has already achieved full throughput at batch=1.

Therefore with increasing batch size only latency rises but throughput stays constant. The

DPU implementations reach performance saturation for very small thread counts. Finally, for

the TPU we have only 2 datapoints: one for slow clock and one for fast clock operation, hence

the unusual shape in the diagram.

Summary

In summary, the following observations were made:

• Pruning brings performance, latency and power benefits across all platforms for all tested

topologies in direct correlation to the reduction in giga operation (GOP) per input.

• Quantization brings benefits on all topologies but only to the extent that the hardware

platform provide native support for the reduced precision datatype. As a result, FP-

GAs can benefit the most from this technique, as arbitrary datatype operators can be

implemented (as long as fixed overlays are not used), even more so than from pruning.

Compute performance scales directly with the precision reduction, in particular for MLP

where the reduction in model size helps lower the inherent memory bottleneck. The

chosen GPU, TPU, NCS, and ARM processor can only support a subset of INT8, FP16,

and FP32, and when moving from FP32 to FP16 on these platforms where possible, linear

speedup is achieved.
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• Power improvements are limited with FPGAs as idle power dominates overall power

consumption, whereas for all other devices we see a small improvement with pruning or

quantization.

• Furthermore, we provide the experimental proof that quantization and pruning are

orthogonal to each other and that the overall speedup and latency reduction is a direct

combination of the individual gains. Combined pruning and quantization delivers the best

result in the overall design space. This might not necessarily be intuitive as we expect

there is a limited amount of redundancy within the CNN.

• Among the chosen test platforms, FPGAs outperform, in particular for MLPs, in regards

to latency and throughput in particular when quantization yields acceptable accuracy.

• Layer-by-layer compute approaches result in much higher latency and latency variation,

as a lot of buffering is required in order to achieve high compute efficiency.

• Finally, CNN topologies have a massive impact on compute performance and accuracy

and can outweigh benefits from optimization techniques.

8.4 Impact on the Wider Research Community

In order to maximize the impact of our efforts, we applied the following ideas:

1. Firstly, we adhere to open and FAIR data principles. This way we provide free open

access to all data in a specific format, catalogued with meta data and under clear and

suitable licenses.

2. All code is open source. This allows the community to adopt existing visualization

routines with ease and expand upon the various implementations.

3. We enable community contributions through a web portal through a separate section

where third party contributions both theoretical and measured can be contributed. The

web portal also serves as a platform to bring a community together.

4. We describe a concrete proposal to integrate QuTiBench with MLPerf. We will discuss

the details of this further below.
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8.4.1 Combining QuTiBench and MLPerf

As mentioned before, one of the most important industry-wide efforts in regards to benchmarking

NNs is MLPerf, which emerged after the start of my PhD and has significantly unfolded during

the course of the thesis. Yet, despite a similar motivation, namely driving clarity into this

highly complicated design space, there are substantial differences with the approaches taken.

The details of this have been discussed in the previous Chapter 7. In summary, QuTiBench has

more focus on providing a deeper system level understanding for the various hardware platforms,

through a much more general and systematic measurement of all figures of merit. With that,

QuTiBench provides predictions and guidance for new application scenarios. In contrast, MLPerf

is dedicated to very specific, yet representative, application scenarios, having selected two image

classification and object detection CNNs (one light-weight and one heavy-weight each) plus

a machine translation network. All 5 of them are tested in 4 different load scenarios (single

stream, multi-stream, server and offline). For each of the load scenarios, only 1 specific figure of

merit is reported for a specific minimum application accuracy, whereas QuTiBench rigorously

reports everything and is not constraint to these 5 application scenarios. As such QuTiBench

can illustrate and identify potential system-level trade-offs which provide optimal solutions

under application constraints that may not be covered by MLPerf. Furthermore, through its

theoretical analysis and performance predictions, a missing concept from MLPerf, QuTiBench

can provide predictions and insights for completely new topologies, such as which optimization

techniques are the most likely to provide optimal solutions, or how certain techniques will

impact performance and power consumption without having to try every single one. Finally,

the explicit support for optimizations at all tiers of the benchmark are vital in particular in

the embedded space, where most solutions are co-designed with the hardware and heavily

optimized. However, to be real, QuTiBench is just a PhD project and as such cannot compete

with the general level of industry support and level of adoption that MLPerf has achieved.

Also, MLPerf has substantially more detail when it comes to providing statistical relevance

and ensuring reproducibility, and system level evaluation, addressing potential cheat techniques

such as taking advantage of on-the-fly caching detection.

Ideally, as the techniques on QuTiBench and MLPerf mostly complement each other, the

benchmarks could get combined. There is real scope of adding some of the QuTiBench aspects

to MLPerf. We discuss below the specifics on how this could work and have visualized this

in Figure 8.14. MLPerf is shown with its 5 different machine learning tasks, in 4 different
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Figure 8.14: Proposal on how MLPerf and QuTiBench could be potentially combined

load scenarios (offline, server, single- and multi-stream) for both closed and open sections.

Firstly, adding theoretical performance and corresponding analysis in MLPerf can help with

tracking of achieved compute efficiency within the given application contexts and also enable

performance predictions for system designers. A key consideration in this regard is whether

to provide theoretical analysis for all load scenarios or just for a subset. Either way, this

could be considered as another tier to the existing MLPerf benchmark. Similarly, systematic

capturing of all figures of merit over all deployment settings would offer much more generality

to MLPerf. This could be considered as separate category, an additional mode for both closed

and open division, where systematically all figures of merit, both system and compute only

aspects, and latency, throughput and power are captured, across all possible deployment sections.

Furthermore, beyond the single figure of merit, we would propose to report all figures of merit,

in all other load scenarios. In addition, microbenchmarking, as shown in the previous chapter

(as well as the reporting of compute only performance), can bring highly useful system-level

insights and characterize difficult compute patterns, data movement bottlenecks, and buffer

limitations. Again this would form a complete additional tier, for all machine learning tasks,

although in this context, it would not make sense to differentiate between the load scenarios

and open and closed section. The microbenchmarking aspect of QuTiBench could augment

MLPerf in a way that would make it much more interesting for system designers, whereby

there wouldn’t be any differentiation between scenarios and sections. Finally, the support for

co-designed implementations is very restricted due to accuracy limitations within the closed

section, and only exposes a small fraction of the design space. The MLPerf open section helps,
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however reports only a subset of the figures of merit. As shown in the previous chapter, the

systematic reporting of all potential solutions and the visualizations over the full design space,

and separate reporting of system and compute performance and latency, can provide highly

interesting system-level insights and expose additional and essential solutions within the design

space. As such, a combination of both approaches could bring significant benefits.

8.5 Future Work

This effort is just at the beginning and there are so many aspects that we couldn’t complete as

part of this thesis. Future work will focus on a number of those which we summarize here and

discussed in greater detail below:

1. Broadening application scope, including new topologies, data center platforms, and CNN

training

2. Refining theoretical models

3. Out-of-the-box versus optimized performance

4. Testbeds, reproducibility, & recorded measurements

5. Outreach

Broadening Scope. Firstly in regard to broadening scope: The design space in this field is

extremely complex and increasing further every day, as other algorithms are getting replaced

with CNNs. To provide some examples: According to OpenAI, compute has been doubling

every 3.4 months15, in particular through the rise of language processing with Alexa, Siri, and

GPT-3 to name a few examples. Typical models in this space are 10x to 200x larger than

ResNet50. In particular, Turing-NLG is a 17-billion-parameter language model by Microsoft

(Feb,2020)16, and OpenAI’s GPT-3 has 175 billion-parameters. The continuous growth of model

size is further fueled by Reinforcement Learning and Network Architecture Search.

This needs to be carefully addressed and continuously evolve. Not only the topologies are

changing and getting bigger and more complex, but also novel hardware architectures are
15https://blog.openai.com/ai-and-compute
16https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-

model-by-microsoft
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continually emerging. Also, we have so far only focused on embedded deployments. There

are as many server-class accelerator platforms available, that have not been considered in our

experimentation. Benchmarking with these brings new challenges, in particular in regards to

isolating power measurements for accelerators, and comparing CPUs on motherboards with

accelerator cards. Finally, as part of this thesis, we have only addressed inference. CNN training

will be a significant aspect to our future work. Training is even more complex compared to

inference due to the numerous hyperparameters that influence the behaviours. Examples are

optimization strategy, learning rates, and initialization. Overall, we plan to proactively broaden

the scope of machine learning tasks and topologies and include novel accelerator approaches

and optimization techniques as they become available and expand to data center platforms and

include training.

Refinements. In regard to refinement, we plan to expand on level-0 first, by refining theoretical

predictions as was suggested in previous chapters. Most importantly, this would leverage

percentage of compute resources used for FPGAs, and perhaps entail for other platforms some

form of expected utilization. Also, the refining of the memory model, by taking on-chip memory

into account, is easy to carry out and should bring significant benefits. Finally, we intend to

introduce a scalar factor that ameliorates the effect of lower compute efficiency with smaller

model size.

Out-of-the-box versus Optimized Performance. For all hardware platforms, one could always

argue that there is scope for improving the performance. As such the question whether a given

measured performance is representative is hard to answer. Furthermore, is it fair to compare a

solution which has been fine-tuned over a year, to one that you get from a naive implementation?

As a consequence, it is really important to take development effort into account. We plan to

extend our efforts by bringing development effort in as an additional figure of merit which can

help qualify the results. Furthermore, we intend to include naive or out-of-the-box performance

too. Bringing both of these aspects into the benchmarking will bring additional insights to the

community and relativise the measurements

Testbeds, Reproducibility, & Recorded Measurements. In order to improve the usefulness

of the scientific results, it would be very helpful to validate all experiments and measurements.

Specifically, all input data to the test suites should be openly accessible and all test code
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open source. Furthermore, an open testbed may be advisable where a few instances of each

accelerator type is available through the cloud. This could be considered as an extension to

these benchmark which enables the community to run experimentation on a broad selection of

diverse hardware accelerators and brings considerable benefits in regard to reproducibility (when

all users run the same code on the same platforms). As the higher levels of benchmarks may

require a long time to run and hardware may not be available, we advocate recording of results,

whereby each entry would be ideally validated by a third party such that results are guaranteed

to be a) reproducible and b) correct. Our colleagues in the Request Tournament effort [127]

leverage ACM’s rigorous artifact evaluation technology and the Collective Knowledge Workflow

Framework [134] do an outstanding job addressing this. We aim to adopt the same principles

in the future.

Outreach. In addition to the specific extensions to our work, as explained above, we plan to

work on outreach. The success of this effort depends on its adoption within the industry. Spe-

cifically, we’re planning to work on the proliferation of this effort through talks and publications.

We intend to take an active roll in the MLPerf working groups to drive adoption of QuTiBench

aspects into MLPerf. Finally, we intend to kick off a social media campaign for QuTiBench as

the web portal has slowly matured into a state where it can handle community contributions.

8.6 Closing Remarks.

With this, we reach the end of the thesis. In conclusion, we hope that the benchmarking meth-

odology brings useful insights to the community and helps drive fair and objective benchmarking

of an increasingly diverse and complex spectrum of hardware architectures in the future. Finally,

we hope that the numerous results that we have provided create a wider understanding of the

current state of the art in CNN accelerators, in what can and cannot be achieved, and the

individual strengths and weaknesses of the various hardware platforms.
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List of Acronyms

ADAS Advanced Driver Assistance System

ASIC Application Specific Integrated Circuits

BNN Binary Neural Network

CNN Convolutional Neural Network

DPU Deep Learning Processing Unit

FP32 32-bit Floating Point Representation

FP16 16-bit Floating Point Representation

fps frames per second

FPGA Field Programmable Gate Array

GB/sec giga byte per second

GOP giga operation

GOP/sec giga operations per second

GPU Graphics Processing Unit

ips inputs per second

INT8 8-bit Fixed Point INTEGER

MAC Multiply Accumulate

ME millions of elements

ML Machine Learning
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MPE Matrix of Processing Engines

msec milliseconds

NCS Neural Compute Stick

NLP Natural Language Processing

NN Neural Network

OI Operational or Arithmetic Intensity

QNN Quantized Neural Networks

SGD Stochastic Gradient Descent

TDP Thermal Design Power

TOP tera operation

TOP/sec tera operations per second

TPU Tensor Processing Unit

VLIW Very Large Instruction Word

W Watt
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A Measurements

Figure A.1: Measurements

In this chapter, we provide all experimental data points. These are however only a snapshot in

time while our web portal at: https://rcl-lab.github.io/QutibenchWeb will be continuously

updated and where also third party contributions are located. In more detail, the reader can

find all level-1, level-2 and level-3 results in this part. The corresponding theoretical analysis is

captured in chapter 6.
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Table A.1: Level-1 -ZCU104 inference results ResNet50 individual convolutional layers

ZCU104 Network Parameters Figures of Merit
thread=1 thread=8

Layer [MOP] in dim in ch filter stride out ch Latency Throughput (Eff) Latency Throughput (Eff)
[ms] [GOPs] [ms] [GOPs]

res2a branch2a 25.7 56 64 1 1 64 0.060 428.05 (0.09) 0.082 630.21 (0.14)
res2a branch2b 231.2 56 64 3 1 64 0.190 1216.84 (0.26) 0.190 2428.70 (0.53)
res2a branch2c 102.8 56 64 1 1 256 0.220 467.23 (0.10) 0.258 798.45 (0.17)
res2a branch1 102.8 56 64 1 1 256 0.430 239.08 (0.05) 0.464 443.34 (0.10)
res2b branch2a 102.8 56 256 1 1 64 0.142 725.63 (0.16) 0.196 1049.57 (0.23)
res2b branch2b 231.2 56 64 3 1 64 0.190 1216.84 (0.26) 0.190 2428.19 (0.53)
res2b branch2c 102.8 56 64 1 1 256 0.429 239.64 (0.05) 0.463 443.98 (0.10)
res2c branch2a 102.8 56 256 1 1 64 0.140 734.13 (0.16) 0.193 1063.14 (0.23)
res2c branch2b 231.2 56 64 3 1 64 0.190 1216.84 (0.26) 0.190 2428.32 (0.53)
res2c branch2c 102.8 56 64 1 1 256 0.435 236.20 (0.05) 0.462 444.69 (0.10)
res3a branch2a 51.4 28 256 1 2 128 0.090 571.05 (0.12) 0.128 800.12 (0.17)
res3a branch2b 231.2 28 128 3 1 128 0.210 1100.95 (0.24) 0.214 2159.44 (0.47)
res3a branch2c 102.8 28 128 1 1 512 0.210 489.52 (0.11) 0.247 832.79 (0.18)
res3a branch1 205.5 28 256 1 2 512 0.330 622.71 (0.14) 0.390 1052.87 (0.23)
res3b branch2a 102.8 28 512 1 1 128 0.120 856.45 (0.19) 0.148 1391.07 (0.30)
res3b branch2b 231.2 28 128 3 1 128 0.210 1100.95 (0.24) 0.214 2165.20 (0.47)
res3b branch2c 102.8 28 128 1 1 512 0.320 321.24 (0.07) 0.353 582.88 (0.13)
res3c branch2a 102.8 28 512 1 1 128 0.120 856.60 (0.19) 0.151 1361.41 (0.30)
res3c branch2b 231.2 28 128 3 1 128 0.210 1100.95 (0.24) 0.215 2154.81 (0.47)
res3c branch2c 102.8 28 128 1 1 512 0.303 339.02 (0.07) 0.354 580.14 (0.13)
res3d branch2a 102.8 28 512 1 1 128 0.120 856.52 (0.19) 0.149 1383.86 (0.30)
res3d branch2b 231.2 28 128 3 1 128 0.210 1100.95 (0.24) 0.214 2165.50 (0.47)
res3d branch2c 102.8 28 128 1 1 512 0.301 341.20 (0.07) 0.353 582.72 (0.13)
res4a branch2a 51.4 14 512 1 2 256 0.120 428.80 (0.09) 0.133 774.21 (0.17)
res4a branch2b 231.2 14 256 3 1 256 0.210 1100.95 (0.24) 0.230 2011.48 (0.44)
res4a branch2c 102.8 14 256 1 1 1024 0.290 354.46 (0.08) 0.379 541.92 (0.12)
res4a branch1 205.5 14 512 1 2 1024 0.430 477.87 (0.10) 0.500 821.34 (0.18)
res4b branch2a 102.8 14 1024 1 1 256 0.130 790.71 (0.17) 0.162 1271.41 (0.28)
res4b branch2b 231.2 14 256 3 1 256 0.210 1100.95 (0.24) 0.229 2015.61 (0.44)
res4b branch2c 102.8 14 256 1 1 1024 0.350 293.69 (0.06) 0.436 471.20 (0.10)
res4c branch2a 102.8 14 1024 1 1 256 0.130 790.71 (0.17) 0.163 1263.60 (0.27)
res4c branch2b 231.2 14 256 3 1 256 0.210 1100.95 (0.24) 0.231 2002.86 (0.44)
res4c branch2c 102.8 14 256 1 1 1024 0.360 285.52 (0.06) 0.438 469.22 (0.10)
res4d branch2a 102.8 14 1024 1 1 256 0.130 790.65 (0.17) 0.164 1251.14 (0.27)
res4d branch2b 231.2 14 256 3 1 256 0.210 1100.95 (0.24) 0.229 2019.57 (0.44)
res4d branch2c 102.8 14 256 1 1 1024 0.350 293.76 (0.06) 0.425 484.02 (0.11)
res4e branch2a 102.8 14 1024 1 1 256 0.130 790.71 (0.17) 0.162 1267.18 (0.28)
res4e branch2b 231.2 14 256 3 1 256 0.210 1100.90 (0.24) 0.230 2014.73 (0.44)
res4e branch2c 102.8 14 256 1 1 1024 0.350 293.68 (0.06) 0.438 469.19 (0.10)
res4f branch2a 102.8 14 1024 1 1 256 0.130 790.53 (0.17) 0.162 1265.78 (0.27)
res4f branch2b 231.2 14 256 3 1 256 0.210 1100.95 (0.24) 0.230 2007.12 (0.44)
res4f branch2c 102.8 14 256 1 1 1024 0.360 285.49 (0.06) 0.421 488.23 (0.11)
res5a branch2a 51.4 7 1024 1 2 512 0.120 427.94 (0.09) 0.188 546.52 (0.12)
res5a branch2b 231.2 7 512 3 1 512 0.330 699.93 (0.15) 0.493 937.72 (0.20)
res5a branch2c 102.8 7 512 1 1 2048 0.470 218.66 (0.05) 0.600 342.79 (0.07)
res5a branch1 205.5 7 1024 1 2 2048 0.517 397.60 (0.09) 0.691 594.55 (0.13)
res5b branch2a 102.8 7 2048 1 1 512 0.170 604.28 (0.13) 0.272 755.16 (0.16)
res5b branch2b 231.2 7 512 3 1 512 0.331 698.07 (0.15) 0.499 926.34 (0.20)
res5b branch2c 102.8 7 512 1 1 2048 0.500 205.56 (0.04) 0.628 327.34 (0.07)
res5c branch2a 102.8 7 2048 1 1 512 0.170 604.49 (0.13) 0.265 775.00 (0.17)
res5c branch2b 231.2 7 512 3 1 512 0.340 679.68 (0.15) 0.503 918.94 (0.20)
res5c branch2c 102.8 7 512 1 1 2048 0.500 205.55 (0.04) 0.632 325.22 (0.07)
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Table A.2: Level-1 -TX2 (MaxN, FP16) inference results ResNet50 individual convolutional
layers

TX2 Network Parameters Figures of Merit
MaxN, FP16, batch=1 MaxN, FP16, batch=128

Layer [MOP] in dim in ch filter stride out ch Latency Throughput (Eff) Latency Throughput (Eff)
[ms] [GOPs] [ms] [GOPs]

res2a branch2a 25.7 56 64 1 1 64 0.06 414.52 (0.31) 5.05 651.15 (0.49)
res2a branch2b 231.2 56 64 3 1 64 0.19 1197.93 (0.90) 22.78 1299.39 (0.97)
res2a branch2c 102.8 56 64 1 1 256 0.18 577.53 (0.43) 20.15 653.15 (0.49)
res2a branch1 102.8 56 64 1 1 256 0.21 487.20 (0.37) 23.66 556.19 (0.42)
res2b branch2a 102.8 56 256 1 1 64 0.13 778.79 (0.58) 13.74 957.60 (0.72)
res2b branch2b 231.2 56 64 3 1 64 0.19 1210.47 (0.91) 22.87 1293.82 (0.97)
res2b branch2c 102.8 56 64 1 1 256 0.21 489.52 (0.37) 23.68 555.77 (0.42)
res2c branch2a 102.8 56 256 1 1 64 0.13 784.73 (0.59) 13.74 957.88 (0.72)
res2c branch2b 231.2 56 64 3 1 64 0.19 1210.47 (0.91) 22.85 1295.01 (0.97)
res2c branch2c 102.8 56 64 1 1 256 0.21 489.52 (0.37) 23.67 555.82 (0.42)
res3a branch2a 51.4 28 256 1 2 128 0.09 584.09 (0.44) 7.19 915.30 (0.69)
res3a branch2b 231.2 28 128 3 1 128 0.21 1095.73 (0.82) 24.63 1201.33 (0.90)
res3a branch2c 102.8 28 128 1 1 512 0.15 694.59 (0.52) 15.18 866.82 (0.65)
res3a branch1 205.5 28 256 1 2 512 0.29 718.53 (0.54) 30.35 866.60 (0.65)
res3b branch2a 102.8 28 512 1 1 128 0.13 767.16 (0.58) 12.07 1090.45 (0.82)
res3b branch2b 231.2 28 128 3 1 128 0.21 1106.22 (0.83) 24.66 1199.92 (0.90)
res3b branch2c 102.8 28 128 1 1 512 0.16 634.57 (0.48) 16.68 788.87 (0.59)
res3c branch2a 102.8 28 512 1 1 128 0.13 767.16 (0.58) 12.10 1087.11 (0.82)
res3c branch2b 231.2 28 128 3 1 128 0.21 1100.95 (0.83) 24.47 1209.19 (0.91)
res3c branch2c 102.8 28 128 1 1 512 0.16 634.57 (0.48) 16.71 787.65 (0.59)
res3d branch2a 102.8 28 512 1 1 128 0.13 767.16 (0.58) 12.12 1085.95 (0.81)
res3d branch2b 231.2 28 128 3 1 128 0.21 1106.22 (0.83) 24.69 1198.56 (0.90)
res3d branch2c 102.8 28 128 1 1 512 0.16 630.67 (0.47) 16.67 789.35 (0.59)
res4a branch2a 51.4 14 512 1 2 256 0.08 642.50 (0.48) 7.10 926.26 (0.69)
res4a branch2b 231.2 14 256 3 1 256 0.20 1185.64 (0.89) 23.12 1279.89 (0.96)
res4a branch2c 102.8 14 256 1 1 1024 0.15 708.97 (0.53) 13.01 1011.64 (0.76)
res4a branch1 205.5 14 512 1 2 1024 0.28 728.72 (0.55) 29.23 899.87 (0.68)
res4b branch2a 102.8 14 1024 1 1 256 0.13 784.73 (0.59) 11.55 1139.45 (0.85)
res4b branch2b 231.2 14 256 3 1 256 0.20 1179.59 (0.88) 22.33 1325.28 (0.99)
res4b branch2c 102.8 14 256 1 1 1024 0.15 680.79 (0.51) 13.75 957.18 (0.72)
res4c branch2a 102.8 14 1024 1 1 256 0.13 778.79 (0.58) 11.62 1132.10 (0.85)
res4c branch2b 231.2 14 256 3 1 256 0.20 1173.60 (0.88) 22.99 1287.35 (0.97)
res4c branch2c 102.8 14 256 1 1 1024 0.15 680.79 (0.51) 13.76 956.14 (0.72)
res4d branch2a 102.8 14 1024 1 1 256 0.13 778.79 (0.58) 11.57 1137.09 (0.85)
res4d branch2b 231.2 14 256 3 1 256 0.20 1185.64 (0.89) 22.92 1291.17 (0.97)
res4d branch2c 102.8 14 256 1 1 1024 0.15 680.79 (0.51) 13.76 956.00 (0.72)
res4e branch2a 102.8 14 1024 1 1 256 0.13 778.79 (0.58) 11.59 1135.32 (0.85)
res4e branch2b 231.2 14 256 3 1 256 0.20 1185.64 (0.89) 22.85 1295.41 (0.97)
res4e branch2c 102.8 14 256 1 1 1024 0.15 680.79 (0.51) 13.78 954.89 (0.72)
res4f branch2a 102.8 14 1024 1 1 256 0.13 784.73 (0.59) 11.65 1129.96 (0.85)
res4f branch2b 231.2 14 256 3 1 256 0.20 1179.59 (0.88) 22.40 1321.26 (0.99)
res4f branch2c 102.8 14 256 1 1 1024 0.15 680.79 (0.51) 13.78 955.17 (0.72)
res5a branch2a 51.4 7 1024 1 2 512 0.14 372.46 (0.28) 7.61 864.77 (0.65)
res5a branch2b 231.2 7 512 3 1 512 0.31 748.22 (0.56) 24.90 1188.59 (0.89)
res5a branch2c 102.8 7 512 1 1 2048 0.27 386.47 (0.29) 12.53 1049.90 (0.79)
res5a branch1 205.5 7 1024 1 2 2048 0.51 406.93 (0.31) 30.92 850.85 (0.64)
res5b branch2a 102.8 7 2048 1 1 512 0.22 475.93 (0.36) 11.35 1159.74 (0.87)
res5b branch2b 231.2 7 512 3 1 512 0.30 763.04 (0.57) 24.91 1188.26 (0.89)
res5b branch2c 102.8 7 512 1 1 2048 0.27 382.16 (0.29) 13.21 995.87 (0.75)
res5c branch2a 102.8 7 2048 1 1 512 0.22 473.73 (0.36) 11.39 1155.36 (0.87)
res5c branch2b 231.2 7 512 3 1 512 0.31 753.09 (0.56) 24.91 1187.88 (0.89)
res5c branch2c 102.8 7 512 1 1 2048 0.28 371.12 (0.28) 13.09 1005.53 (0.75)
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Table A.3: Level-2 - Inference results ResNet50 residual layers

MaxN MaxQ MaxP
HW Layer Parameters Lat Throughput (Eff) Lat Throughput (Eff) Lat Throughput (Eff)

[ms] [GOPs] ([%]) [ms] [GOPs] ([%]) [ms] [GOPs] ([%])

TX2 res2a FP16, b=1 1.37 431.27 (0.32) 1.90 292.13 (0.25) 1.58 371.40 (0.42)
TX2 res2a FP16, b=2 2.17 464.25 (0.35) 3.08 314.23 (0.27) 2.50 401.64 (0.46)
TX2 res2a FP16, b=4 3.97 481.73 (0.36) 5.83 325.90 (0.28) 4.61 418.69 (0.48)
TX2 res2a FP16, b=8 7.69 491.73 (0.37) 11.30 330.22 (0.29) 8.91 426.23 (0.49)
TX2 res2a FP16, b=16 15.11 495.85 (0.37) 22.39 333.24 (0.29) 17.48 428.54 (0.49)
TX2 res2a FP16, b=32 30.39 436.04 (0.33) 44.20 333.95 (0.29) 34.49 430.49 (0.49)
TX2 res2a FP16, b=64 60.41 492.24 (0.37) 88.98 334.18 (0.29) 68.93 430.10 (0.49)
TX2 res2a FP16, b=128 119.12 495.33 (0.37) 177.37 333.95 (0.29) 137.24 430.10 (0.49)
TX2 res2b FP16, b=1 1.12 443.23 (0.33) 1.57 303.00 (0.26) 1.32 382.90 (0.44)
TX2 res2b FP16, b=2 1.95 481.92 (0.36) 2.77 333.25 (0.29) 2.29 416.41 (0.48)
TX2 res2b FP16, b=4 3.63 502.50 (0.38) 5.24 343.22 (0.30) 4.19 437.17 (0.50)
TX2 res2b FP16, b=8 6.95 509.95 (0.38) 10.06 352.14 (0.31) 7.99 445.00 (0.51)
TX2 res2b FP16, b=16 13.62 515.82 (0.39) 19.90 354.66 (0.31) 15.86 448.12 (0.51)
TX2 res2b FP16, b=32 27.19 518.82 (0.39) 39.57 356.64 (0.31) 31.05 451.28 (0.52)
TX2 res2b FP16, b=64 54.32 515.82 (0.39) 78.80 356.35 (0.31) 62.09 452.20 (0.52)
TX2 res2b FP16, b=128 108.24 517.02 (0.39) 158.53 355.50 (0.31) 124.29 450.38 (0.52)
TX2 res2c FP16, b=1 1.12 446.33 (0.33) 1.59 301.77 (0.26) 1.32 380.94 (0.44)
TX2 res2c FP16, b=2 1.96 483.48 (0.36) 2.75 333.75 (0.29) 2.27 419.53 (0.48)
TX2 res2c FP16, b=4 3.60 504.19 (0.38) 5.16 346.15 (0.30) 4.17 438.88 (0.50)
TX2 res2c FP16, b=8 6.89 512.87 (0.38) 10.12 347.49 (0.30) 8.04 446.33 (0.51)
TX2 res2c FP16, b=16 13.59 516.42 (0.39) 19.86 355.50 (0.31) 15.70 451.28 (0.52)
TX2 res2c FP16, b=32 27.01 518.22 (0.39) 39.22 356.92 (0.31) 31.14 451.74 (0.52)
TX2 res2c FP16, b=64 54.36 515.82 (0.39) 78.66 356.64 (0.31) 62.06 448.57 (0.51)
TX2 res2c FP16, b=128 108.07 516.42 (0.39) 158.11 355.22 (0.31) 123.99 449.92 (0.51)
TX2 res3a FP16, b=1 1.39 475.68 (0.36) 1.96 323.22 (0.28) 1.66 406.90 (0.47)
TX2 res3a FP16, b=2 2.38 523.41 (0.39) 3.45 356.13 (0.31) 2.81 449.19 (0.51)
TX2 res3a FP16, b=4 4.39 555.61 (0.42) 6.43 374.19 (0.33) 5.18 476.43 (0.55)
TX2 res3a FP16, b=8 8.46 563.90 (0.42) 12.39 385.63 (0.34) 9.80 490.72 (0.56)
TX2 res3a FP16, b=16 16.53 575.15 (0.43) 24.45 390.61 (0.34) 19.22 495.95 (0.57)
TX2 res3a FP16, b=32 32.86 576.80 (0.43) 48.62 391.37 (0.34) 38.07 498.40 (0.57)
TX2 res3a FP16, b=64 65.46 577.35 (0.43) 96.24 393.92 (0.34) 75.66 500.05 (0.57)
TX2 res3a FP16, b=128 133.09 568.13 (0.43) 194.49 389.61 (0.34) 151.72 496.77 (0.57)
TX2 res3b FP16, b=1 1.03 511.11 (0.38) 1.41 347.49 (0.30) 1.21 438.45 (0.50)
TX2 res3b FP16, b=2 1.69 562.54 (0.42) 2.40 385.54 (0.34) 1.96 488.23 (0.56)
TX2 res3b FP16, b=4 3.05 597.89 (0.45) 4.43 407.31 (0.35) 3.58 517.02 (0.59)
TX2 res3b FP16, b=8 5.80 616.86 (0.46) 8.45 420.72 (0.37) 6.75 533.04 (0.61)
TX2 res3b FP16, b=16 11.26 629.89 (0.47) 16.50 426.74 (0.37) 12.95 544.73 (0.62)
TX2 res3b FP16, b=32 22.24 630.78 (0.47) 33.51 428.78 (0.37) 25.61 547.40 (0.63)
TX2 res3b FP16, b=64 44.38 628.12 (0.47) 65.79 434.20 (0.38) 51.07 546.72 (0.63)
TX2 res3b FP16, b=128 87.72 636.16 (0.48) 129.87 434.62 (0.38) 101.77 548.74 (0.63)
TX2 res3c FP16, b=1 1.05 506.48 (0.38) 1.42 343.22 (0.30) 1.22 436.74 (0.50)
TX2 res3c FP16, b=2 1.70 561.84 (0.42) 2.43 380.61 (0.33) 1.96 486.64 (0.56)
TX2 res3c FP16, b=4 3.06 598.69 (0.45) 4.46 406.57 (0.35) 3.56 515.82 (0.59)
TX2 res3c FP16, b=8 5.81 613.47 (0.46) 8.47 419.93 (0.37) 6.70 536.24 (0.61)
TX2 res3c FP16, b=16 11.19 630.78 (0.47) 16.40 428.78 (0.37) 12.97 541.43 (0.62)
TX2 res3c FP16, b=32 22.05 632.56 (0.47) 32.55 430.43 (0.37) 25.68 546.72 (0.63)
TX2 res3c FP16, b=64 43.94 637.07 (0.48) 64.34 434.20 (0.38) 50.46 552.13 (0.63)
TX2 res3c FP16, b=128 87.87 636.16 (0.48) 129.02 431.68 (0.38) 101.34 550.09 (0.63)
TX2 res3d FP16, b=1 1.04 504.19 (0.38) 1.40 347.76 (0.30) 1.22 438.45 (0.50)
TX2 res3d FP16, b=2 1.70 561.13 (0.42) 2.40 385.20 (0.34) 1.95 488.77 (0.56)
TX2 res3d FP16, b=4 3.08 592.35 (0.44) 4.43 408.05 (0.36) 3.55 515.23 (0.59)
TX2 res3d FP16, b=8 5.84 613.47 (0.46) 8.41 423.10 (0.37) 6.71 536.88 (0.61)
TX2 res3d FP16, b=16 11.25 624.61 (0.47) 16.48 427.15 (0.37) 12.93 546.72 (0.63)
TX2 res3d FP16, b=32 22.04 631.67 (0.47) 32.74 430.85 (0.37) 25.51 551.45 (0.63)
TX2 res3d FP16, b=64 44.27 633.46 (0.48) 64.21 435.89 (0.38) 50.51 553.49 (0.63)
TX2 res3d FP16, b=128 88.66 630.78 (0.47) 129.91 431.27 (0.38) 101.91 549.41 (0.63)
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Table A.4: Level-2 - Inference results ResNet50 residual layers

MaxN MaxQ MaxP
HW Layer Parameters Lat Throughput (Eff) Lat Throughput (Eff) Lat Throughput (Eff)

[ms] [GOPs] ([%]) [ms] [GOPs] ([%]) [ms] [GOPs] ([%])

TX2 res4a FP16, b=1 1.20 575.15 (0.43) 1.66 386.37 (0.34) 1.39 496.77 (0.57)
TX2 res4a FP16, b=2 2.09 604.46 (0.45) 3.01 411.33 (0.36) 2.41 524.32 (0.60)
TX2 res4a FP16, b=4 3.74 654.12 (0.49) 5.46 446.87 (0.39) 4.34 569.20 (0.65)
TX2 res4a FP16, b=8 7.00 688.35 (0.52) 10.16 472.33 (0.41) 8.03 600.26 (0.69)
TX2 res4a FP16, b=16 13.40 706.02 (0.53) 19.71 480.59 (0.42) 15.37 621.85 (0.71)
TX2 res4a FP16, b=32 26.40 713.52 (0.54) 38.60 493.12 (0.43) 30.30 627.01 (0.72)
TX2 res4a FP16, b=64 52.32 722.89 (0.54) 76.46 494.33 (0.43) 60.23 628.96 (0.72)
TX2 res4a FP16, b=128 104.66 723.76 (0.54) 152.47 496.77 (0.43) 119.12 633.57 (0.72)
TX2 res4b FP16, b=1 1.03 599.49 (0.45) 1.40 407.31 (0.35) 1.16 514.64 (0.59)
TX2 res4b FP16, b=2 1.53 644.41 (0.48) 2.11 437.60 (0.38) 1.74 562.54 (0.64)
TX2 res4b FP16, b=4 2.60 706.51 (0.53) 3.81 474.76 (0.41) 3.03 610.96 (0.70)
TX2 res4b FP16, b=8 4.87 740.43 (0.56) 7.16 497.46 (0.43) 5.58 648.15 (0.74)
TX2 res4b FP16, b=16 9.33 763.18 (0.57) 13.65 520.03 (0.45) 10.82 660.60 (0.76)
TX2 res4b FP16, b=32 18.13 769.75 (0.58) 26.64 526.15 (0.46) 20.84 674.54 (0.77)
TX2 res4b FP16, b=64 36.31 776.43 (0.58) 52.95 530.51 (0.46) 41.50 675.56 (0.77)
TX2 res4b FP16, b=128 71.33 780.49 (0.59) 105.55 529.88 (0.46) 82.15 680.70 (0.78)
TX2 res4c FP16, b=1 1.03 598.69 (0.45) 1.40 408.42 (0.36) 1.16 511.11 (0.58)
TX2 res4c FP16, b=2 1.52 647.21 (0.49) 2.12 437.60 (0.38) 1.74 557.63 (0.64)
TX2 res4c FP16, b=4 2.63 695.53 (0.52) 3.79 474.76 (0.41) 3.06 602.72 (0.69)
TX2 res4c FP16, b=8 5.17 697.69 (0.52) 7.11 499.69 (0.43) 5.61 644.41 (0.74)
TX2 res4c FP16, b=16 9.29 764.48 (0.57) 13.64 518.82 (0.45) 10.74 660.60 (0.76)
TX2 res4c FP16, b=32 18.15 773.74 (0.58) 26.63 528.63 (0.46) 21.05 666.50 (0.76)
TX2 res4c FP16, b=64 35.81 780.49 (0.59) 52.86 530.51 (0.46) 41.59 674.54 (0.77)
TX2 res4c FP16, b=128 72.52 773.74 (0.58) 105.65 527.39 (0.46) 82.21 680.70 (0.78)
TX2 res4d FP16, b=1 1.02 599.49 (0.45) 1.40 408.05 (0.36) 1.16 514.64 (0.59)
TX2 res4d FP16, b=2 1.52 650.98 (0.49) 2.12 438.02 (0.38) 1.74 558.33 (0.64)
TX2 res4d FP16, b=4 2.62 703.18 (0.53) 3.82 474.26 (0.41) 3.02 613.47 (0.70)
TX2 res4d FP16, b=8 4.84 745.37 (0.56) 7.13 503.06 (0.44) 5.60 644.41 (0.74)
TX2 res4d FP16, b=16 9.29 763.18 (0.57) 13.58 521.24 (0.45) 10.72 661.57 (0.76)
TX2 res4d FP16, b=32 18.32 769.75 (0.58) 26.49 529.88 (0.46) 20.92 673.53 (0.77)
TX2 res4d FP16, b=64 36.17 775.08 (0.58) 53.11 528.63 (0.46) 41.41 678.64 (0.78)
TX2 res4d FP16, b=128 72.01 779.13 (0.58) 105.92 526.15 (0.46) 82.10 679.67 (0.78)
TX2 res4e FP16, b=1 1.02 601.10 (0.45) 1.40 407.31 (0.35) 1.16 514.64 (0.59)
TX2 res4e FP16, b=2 1.53 649.09 (0.49) 2.12 437.17 (0.38) 1.75 560.43 (0.64)
TX2 res4e FP16, b=4 2.64 696.61 (0.52) 3.81 474.26 (0.41) 3.03 610.13 (0.70)
TX2 res4e FP16, b=8 4.85 740.43 (0.56) 7.19 500.81 (0.44) 5.63 644.41 (0.74)
TX2 res4e FP16, b=16 9.33 758.00 (0.57) 13.67 518.22 (0.45) 10.68 663.53 (0.76)
TX2 res4e FP16, b=32 18.10 771.07 (0.58) 26.59 526.15 (0.46) 20.95 671.51 (0.77)
TX2 res4e FP16, b=64 35.83 780.49 (0.59) 52.81 531.14 (0.46) 41.24 676.58 (0.77)
TX2 res4e FP16, b=128 72.39 775.08 (0.58) 105.40 529.25 (0.46) 82.50 679.67 (0.78)
TX2 res4f FP16, b=1 1.02 599.49 (0.45) 1.39 408.42 (0.36) 1.17 514.05 (0.59)
TX2 res4f FP16, b=2 1.51 650.03 (0.49) 2.12 437.17 (0.38) 1.75 559.03 (0.64)
TX2 res4f FP16, b=4 2.64 699.88 (0.53) 3.80 474.76 (0.41) 3.02 610.96 (0.70)
TX2 res4f FP16, b=8 4.83 741.66 (0.56) 7.10 500.81 (0.44) 5.60 642.56 (0.74)
TX2 res4f FP16, b=16 9.27 763.18 (0.57) 13.57 521.85 (0.45) 10.76 664.52 (0.76)
TX2 res4f FP16, b=32 18.24 767.10 (0.58) 26.66 525.52 (0.46) 21.02 669.49 (0.77)
TX2 res4f FP16, b=64 36.10 771.07 (0.58) 52.77 532.41 (0.46) 41.20 675.56 (0.77)
TX2 res4f FP16, b=128 71.76 776.43 (0.58) 105.63 533.68 (0.46) 82.10 677.61 (0.78)
TX2 res5a FP16, b=1 1.73 413.29 (0.31) 2.43 281.55 (0.25) 1.98 357.60 (0.41)
TX2 res5a FP16, b=2 2.05 634.24 (0.48) 2.88 430.04 (0.37) 2.34 552.57 (0.63)
TX2 res5a FP16, b=4 3.68 664.17 (0.50) 5.44 447.20 (0.39) 4.29 576.80 (0.66)
TX2 res5a FP16, b=8 7.30 659.82 (0.49) 10.75 445.88 (0.39) 8.45 572.43 (0.65)
TX2 res5a FP16, b=16 13.52 707.67 (0.53) 19.64 484.05 (0.42) 15.51 615.53 (0.70)
TX2 res5a FP16, b=32 25.37 746.07 (0.56) 36.80 514.95 (0.45) 29.04 656.96 (0.75)
TX2 res5a FP16, b=64 48.45 778.71 (0.58) 71.37 532.16 (0.46) 56.06 675.29 (0.77)
TX2 res5a FP16, b=128 95.61 791.96 (0.59) 140.12 540.72 (0.47) 110.13 686.01 (0.78)
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Table A.5: Level-2 - Inference results ResNet50 residual layers

MaxN MaxQ MaxP
HW Layer Parameters Lat Throughput (Eff) Lat Throughput (Eff) Lat Throughput (Eff)

[ms] [GOPs] ([%]) [ms] [GOPs] ([%]) [ms] [GOPs] ([%])

TX2 res5b FP16, b=1 1.24 456.82 (0.34) 1.71 307.16 (0.27) 1.41 391.96 (0.45)
TX2 res5b FP16, b=2 1.60 666.50 (0.50) 2.29 447.22 (0.39) 1.84 572.63 (0.66)
TX2 res5b FP16, b=4 2.66 704.29 (0.53) 3.85 472.75 (0.41) 3.12 607.64 (0.70)
TX2 res5b FP16, b=8 4.98 723.66 (0.54) 7.40 481.40 (0.42) 5.79 626.36 (0.72)
TX2 res5b FP16, b=16 8.79 810.18 (0.61) 13.01 540.78 (0.47) 10.17 704.29 (0.81)
TX2 res5b FP16, b=32 16.33 861.70 (0.65) 24.27 577.06 (0.50) 18.76 752.90 (0.86)
TX2 res5b FP16, b=64 31.47 892.66 (0.67) 47.00 596.29 (0.52) 36.27 775.08 (0.89)
TX2 res5b FP16, b=128 61.55 907.14 (0.68) 92.43 606.82 (0.53) 71.35 787.36 (0.90)
TX2 res5c FP16, b=1 1.23 460.58 (0.35) 1.71 312.74 (0.27) 1.38 398.95 (0.46)
TX2 res5c FP16, b=2 1.59 665.51 (0.50) 2.28 448.57 (0.39) 1.84 571.89 (0.65)
TX2 res5c FP16, b=4 2.66 705.40 (0.53) 3.85 469.77 (0.41) 3.10 610.13 (0.70)
TX2 res5c FP16, b=8 4.99 720.16 (0.54) 7.48 480.37 (0.42) 5.80 626.36 (0.72)
TX2 res5c FP16, b=16 8.79 811.66 (0.61) 13.08 540.78 (0.47) 10.11 703.18 (0.80)
TX2 res5c FP16, b=32 16.42 863.36 (0.65) 24.29 576.32 (0.50) 18.80 746.62 (0.85)
TX2 res5c FP16, b=64 31.34 892.66 (0.67) 47.02 596.29 (0.52) 36.12 777.78 (0.89)
TX2 res5c FP16, b=128 61.58 907.14 (0.68) 92.32 603.54 (0.53) 71.16 787.36 (0.90)

Table A.6: Level-1 and 2 - Discrepancy between latency of different convolutions and residual
layers

level-2 level-1

Residual TX2, MaxN, FP16 Conv. TX2, MaxN, FP16 ZCU104,INT8
Layer [MOP] b=1 [ms] b=128 [ms] Layer [MOP] b=1 [ms] b=128 [ms] t=1 [ms] t=8 [ms]

res2a 462.44 1.37 119.12 res2a branch2a, 1x1 25.70 0.06 5.05 0.06 0.08
res2b 436.74 1.12 108.24 res2a branch2b, 3x3 231.20 0.19 22.78 0.19 0.19
res2c 436.74 1.12 108.07 res2a branch2c, 1x1 102.80 0.18 20.15 0.22 0.26
res3a 590.88 1.39 133.09 res2a branch1, 1x1 102.80 0.21 23.66 0.43 0.46
res3b 436.74 1.03 87.72 res3a branch2a, 1x1 51.40 0.09 7.19 0.09 0.13
res3c 436.74 1.05 87.87 res3a branch2b, 3x3 231.20 0.21 24.63 0.21 0.21
res3d 436.74 1.04 88.66 res3a branch2c, 1x1 102.80 0.15 15.18 0.21 0.25
res4a 590.88 1.20 104.66 res3a branch1, 1x1 205.50 0.29 30.35 0.33 0.39
res4b 436.74 1.03 71.33 res4a branch2a, 1x1 51.40 0.08 7.10 0.12 0.13
res4c 436.74 1.03 72.52 res4a branch2b, 3x3 231.20 0.20 23.12 0.21 0.23
res4d 436.74 1.02 72.01 res4a branch2c, 1x1 102.80 0.15 13.01 0.29 0.38
res4e 436.74 1.02 72.39 res4a branch1, 1x1 205.50 0.28 29.23 0.43 0.50
res4f 436.74 1.02 71.76 res5a branch2a, 1x1 51.40 0.14 7.61 0.12 0.19
res5a 590.88 1.73 95.61 res5a branch2b, 3x3 231.20 0.31 24.90 0.33 0.49
res5b 436.74 1.24 61.55 res5a branch2c, 1x1 102.80 0.27 12.53 0.47 0.60
res5c 436.74 1.23 61.58 res5a branch1, 1x1 205.50 0.51 30.92 0.52 0.69
Min 1.02 61.55 Min 0.06 5.05 0.06 0.08
Max 1.73 133.09 Max 0.51 30.92 0.52 0.69
Var 0.04 454.94 Var 0.01 79.42 0.02 0.03
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Table A.7: Level-3 - Inference results CNV TX2

NN Topology hw quant prun Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
CNV GPU FP16 100% maxp 1 1.78 1.304400 567.942 785.639 266.620372 368.818229 87.06 na 1.8 4.7 10.3
CNV GPU FP16 100% maxp 2 2.89 2.086500 695.180 976.935 326.352251 458.622136 87.06 na 1.8 4.7 10.4
CNV GPU FP16 100% maxp 4 4.68 3.468830 867.797 1153.660 407.387302 541.585687 87.06 na 1.8 4.7 10.1
CNV GPU FP16 100% maxp 8 7.78 5.500290 1048.110 1454.760 492.035239 682.937082 87.06 na 1.8 4.7 10.9
CNV GPU FP16 100% maxp 16 14.14 9.843110 1149.270 1666.980 539.524801 782.563761 87.06 na 1.8 4.7 10.9
CNV GPU FP16 100% maxp 32 26.19 17.631200 1232.250 1831.750 578.479762 859.915037 87.06 na 1.8 4.7 10.9
CNV GPU FP16 100% maxp 64 50.40 33.654900 1286.430 1909.280 603.914563 896.311496 87.06 na 1.8 4.7 10.9
CNV GPU FP16 100% maxp 128 101.61 66.364800 1302.800 1939.600 611.599460 910.545220 87.06 na 1.8 4.7 10.8
CNV GPU FP32 100% maxp 1 2.35 1.940500 430.252 515.510 201.981801 242.006169 87.06 na 1.8 4.7 11.1
CNV GPU FP32 100% maxp 2 3.99 3.345520 501.224 598.786 235.299607 281.100088 87.06 na 1.8 4.7 12.4
CNV GPU FP32 100% maxp 4 6.86 5.684520 585.812 703.573 275.009443 330.292345 87.06 na 1.8 4.7 11.8
CNV GPU FP32 100% maxp 8 11.61 9.380380 691.425 851.171 324.589466 399.582226 87.06 na 1.8 4.7 11.8
CNV GPU FP32 100% maxp 16 21.17 16.990300 757.396 954.766 355.559552 448.214899 87.06 na 1.8 4.7 11.7
CNV GPU FP32 100% maxp 32 39.81 31.282800 809.486 1031.790 380.013203 484.373816 87.06 na 1.8 4.7 11.6
CNV GPU FP32 100% maxp 64 77.63 61.085700 829.822 1057.700 389.559938 496.537265 87.06 na 1.8 4.7 12.4
CNV GPU FP32 100% maxp 128 152.63 119.453000 839.344 1072.660 394.030041 503.560237 87.06 na 1.8 4.7 12.4
CNV GPU FP16 50% maxp 1 1.03 0.608011 965.127 1740.870 114.776412 207.030590 85.57 na 1.8 4.7 7.8
CNV GPU FP16 50% maxp 2 1.58 0.862916 1272.050 2359.870 151.276811 280.644321 85.57 na 1.8 4.7 7.7
CNV GPU FP16 50% maxp 4 2.63 1.312840 1568.150 3121.110 186.490100 371.173750 85.57 na 1.8 4.7 8.4
CNV GPU FP16 50% maxp 8 4.22 1.890530 1906.890 4365.680 226.774292 519.182539 85.57 na 1.8 4.7 8.4
CNV GPU FP16 50% maxp 16 7.57 3.090030 2155.790 5392.770 256.374385 641.327817 85.57 na 1.8 4.7 7.6
CNV GPU FP16 50% maxp 32 13.75 5.447190 2316.740 6025.160 275.515144 716.533935 85.57 na 1.8 4.7 7.5
CNV GPU FP16 50% maxp 64 26.79 10.151100 2432.300 6478.430 289.257960 770.438451 85.57 na 1.8 4.7 7.5
CNV GPU FP16 50% maxp 128 51.16 19.256300 2528.400 6618.150 300.686521 787.054462 85.57 na 1.8 4.7 8.4
CNV GPU FP32 50% maxp 1 1.18 0.751665 853.333 1327.070 101.481463 157.819990 85.60 na 1.8 4.7 8.5
CNV GPU FP32 50% maxp 2 1.91 1.201480 1058.950 1675.520 125.934184 199.258931 85.60 na 1.8 4.7 9.2
CNV GPU FP32 50% maxp 4 3.25 2.028070 1245.740 2001.730 148.147930 238.053010 85.60 na 1.8 4.7 9.2
CNV GPU FP32 50% maxp 8 5.42 3.060010 1508.100 2638.560 179.348735 313.787149 85.60 na 1.8 4.7 9.1
CNV GPU FP32 50% maxp 16 9.52 5.215470 1678.690 3124.470 199.635919 371.573333 85.60 na 1.8 4.7 9.3
CNV GPU FP32 50% maxp 32 17.46 9.299470 1818.830 3455.320 216.301877 410.919218 85.60 na 1.8 4.7 9.2
CNV GPU FP32 50% maxp 64 33.53 17.423000 1903.350 3713.930 226.353303 441.674059 85.60 na 1.8 4.7 9.3
CNV GPU FP32 50% maxp 128 65.09 33.716400 1943.070 3744.290 231.076949 445.284581 85.60 na 1.8 4.7 9.3
CNV GPU FP16 25% maxp 1 1.00 0.571742 1025.030 1869.410 31.275441 57.038937 83.31 na 1.8 4.7 6.3
CNV GPU FP16 25% maxp 2 1.32 0.627033 1542.170 3449.150 47.054278 105.239540 83.31 na 1.8 4.7 6.2
CNV GPU FP16 25% maxp 4 1.89 0.709281 2133.330 5862.890 65.091593 178.886928 83.31 na 1.8 4.7 6.8
CNV GPU FP16 25% maxp 8 3.24 0.931445 2534.650 9056.340 77.336562 276.324619 83.31 na 1.8 4.7 6.9
CNV GPU FP16 25% maxp 16 5.67 1.401970 2813.190 12232.400 85.835299 373.231711 83.31 na 1.8 4.7 7.0
CNV GPU FP16 25% maxp 32 10.51 2.365910 3084.340 14952.400 94.108555 456.223622 83.31 na 1.8 4.7 6.9
CNV GPU FP16 25% maxp 64 19.95 4.128690 3230.280 16486.900 98.561438 503.043874 83.31 na 1.8 4.7 6.9
CNV GPU FP16 25% maxp 128 38.90 7.459370 3335.500 17483.400 101.771882 533.448815 83.31 na 1.8 4.7 7.0
CNV GPU FP32 25% maxp 1 0.92 0.513143 1109.430 2075.170 33.850631 63.317031 83.25 na 1.8 4.7 6.8
CNV GPU FP32 25% maxp 2 1.23 0.563732 1635.780 3575.820 49.910481 109.104462 83.25 na 1.8 4.7 7.4
CNV GPU FP32 25% maxp 4 2.13 0.901777 1917.600 4504.010 58.509297 137.425146 83.25 na 1.8 4.7 7.1
CNV GPU FP32 25% maxp 8 3.48 1.271340 2327.270 6430.590 71.009039 196.208439 83.25 na 1.8 4.7 7.3
CNV GPU FP32 25% maxp 16 6.33 1.979410 2572.860 8374.360 78.502415 255.516228 83.25 na 1.8 4.7 7.4
CNV GPU FP32 25% maxp 32 11.56 3.308250 2852.370 9900.220 87.030749 302.072859 83.25 na 1.8 4.7 7.3
CNV GPU FP32 25% maxp 64 22.18 6.260000 2925.710 10667.300 89.268479 325.477799 83.25 na 1.8 4.7 7.3
CNV GPU FP32 25% maxp 128 42.80 11.409000 3038.580 11247.100 92.712339 343.168501 83.25 na 1.8 4.7 7.2
CNV GPU FP16 12.50% maxp 1 0.96 0.552353 1051.330 1888.200 8.430275 15.140864 77.81 na 1.8 4.7 5.7
CNV GPU FP16 12.50% maxp 2 1.29 0.593285 1590.060 3644.020 12.750176 29.220216 77.81 na 1.8 4.7 5.6
CNV GPU FP16 12.50% maxp 4 1.80 0.614004 2295.960 7367.220 18.410559 59.075350 77.81 na 1.8 4.7 5.5
CNV GPU FP16 12.50% maxp 8 2.90 0.654227 2860.340 12703.000 22.936140 101.861241 77.81 na 1.8 4.7 5.5
CNV GPU FP16 12.50% maxp 16 5.27 0.963234 3084.340 18132.600 24.732323 145.399444 77.81 na 1.8 4.7 5.9
CNV GPU FP16 12.50% maxp 32 9.60 1.466280 3390.730 23181.600 27.189165 185.885740 77.81 na 1.8 4.7 6.3
CNV GPU FP16 12.50% maxp 64 18.36 2.444440 3555.560 27244.900 28.510884 218.468026 77.81 na 1.8 4.7 6.4
CNV GPU FP16 12.50% maxp 128 36.44 4.405000 3631.210 29763.100 29.117496 238.660656 77.81 na 1.8 4.7 6.3
CNV GPU FP32 12.50% maxp 1 0.95 0.508646 1116.680 2095.260 8.954295 16.801211 77.84 na 1.8 4.7 5.5
CNV GPU FP32 12.50% maxp 2 1.20 0.526775 1706.670 4135.700 13.685234 33.162838 77.84 na 1.8 4.7 6.3
CNV GPU FP32 12.50% maxp 4 1.70 0.537918 2386.950 8205.260 19.140179 65.795321 77.84 na 1.8 4.7 6.9
CNV GPU FP32 12.50% maxp 8 3.01 0.781062 2737.970 10589.700 21.954894 84.915373 77.84 na 1.8 4.7 6.8
CNV GPU FP32 12.50% maxp 16 5.41 1.148410 3065.870 14488.200 24.584218 116.176182 77.84 na 1.8 4.7 6.2
CNV GPU FP32 12.50% maxp 32 10.26 2.177810 3210.030 16511.900 25.740191 132.403576 77.84 na 1.8 4.7 6.3
CNV GPU FP32 12.50% maxp 64 19.36 3.606190 3368.420 18975.300 27.010269 152.156783 77.84 na 1.8 4.7 6.2
CNV GPU FP32 12.50% maxp 128 38.41 6.471000 3471.190 20283.300 27.834348 162.645211 77.84 na 1.8 4.7 6.1
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Table A.8: Level-3 - Inference results CNV NCS

NN Topology hw quant prun Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
CNV NCS FP16 100% na 1 6.60 4.97914 151.555 200.838 71.147495 94.283399 87.02 na 0.53 1.2 1.728796
CNV NCS FP16 100% na 2 12.29 8.93829 162.738 223.757 76.397354 105.042724 87.02 na 0.53 1.2 1.780300
CNV NCS FP16 100% na 4 23.35 16.84730 171.284 237.426 80.409274 111.459636 87.02 na 0.53 1.2 1.823024
CNV NCS FP16 100% na 8 45.13 31.86580 177.259 251.053 83.214238 117.856831 87.02 na 0.53 1.2 1.860921
CNV NCS FP16 100% na 16 88.10 61.77320 181.621 259.012 85.261978 121.593183 87.02 na 0.53 1.2 1.879459
CNV NCS FP16 100% na 32 174.80 121.82500 183.067 262.673 85.940803 123.311840 87.02 na 0.53 1.2 1.903725
CNV NCS FP16 100% na 64 348.38 242.09800 183.706 264.356 86.240782 124.101924 87.02 na 0.53 1.2 1.903671
CNV NCS FP16 100% na 128 694.75 481.67500 184.240 265.739 86.491468 124.751174 87.02 na 0.53 1.2 1.911020
CNV NCS FP16 50% na 1 3.97 2.38549 251.922 419.201 29.959480 49.852907 85.55 na 0.53 1.2 1.655401
CNV NCS FP16 50% na 2 7.03 3.93902 284.481 507.740 33.831515 60.382287 85.55 na 0.53 1.2 1.676720
CNV NCS FP16 50% na 4 12.86 6.68938 310.979 597.963 36.982753 71.111934 85.55 na 0.53 1.2 1.710000
CNV NCS FP16 50% na 8 24.89 12.41530 321.433 644.367 38.225981 76.630467 85.55 na 0.53 1.2 1.730000
CNV NCS FP16 50% na 16 47.84 23.13690 334.428 691.537 39.771394 82.240094 85.55 na 0.53 1.2 1.750000
CNV NCS FP16 50% na 32 94.62 44.70660 338.178 715.779 40.217357 85.123041 85.55 na 0.53 1.2 1.770000
CNV NCS FP16 50% na 64 187.07 87.24440 342.120 733.571 40.686154 87.238931 85.55 na 0.53 1.2 1.780000
CNV NCS FP16 50% na 128 370.83 173.15800 345.169 739.209 41.048753 87.909422 85.55 na 0.53 1.2 1.800000
CNV NCS FP16 25% na 1 3.50 1.95433 285.517 511.684 8.711618 15.612365 83.28 na 0.53 1.2 1.590000
CNV NCS FP16 25% na 2 5.80 2.80634 344.874 712.672 10.522703 21.744857 83.28 na 0.53 1.2 1.620000
CNV NCS FP16 25% na 4 10.73 4.62598 372.730 864.682 11.372638 26.382945 83.28 na 0.53 1.2 1.620000
CNV NCS FP16 25% na 8 20.31 7.97099 393.913 1003.640 12.018968 30.622795 83.28 na 0.53 1.2 1.630000
CNV NCS FP16 25% na 16 39.23 14.64030 407.873 1092.870 12.444912 33.345357 83.28 na 0.53 1.2 1.640000
CNV NCS FP16 25% na 32 76.52 27.92100 418.169 1146.090 12.759060 34.969191 83.28 na 0.53 1.2 1.650000
CNV NCS FP16 25% na 64 151.57 53.29490 422.250 1200.870 12.883579 36.640624 83.28 na 0.53 1.2 1.650000
CNV NCS FP16 25% na 128 299.80 105.63000 426.946 1211.780 13.026862 36.973507 83.28 na 0.53 1.2 1.670000
CNV NCS FP16 12.50% na 1 3.40 1.90004 293.812 526.305 2.355983 4.220269 77.82 na 0.53 1.2 1.560000
CNV NCS FP16 12.50% na 2 5.61 2.55363 356.569 783.197 2.859211 6.280203 77.82 na 0.53 1.2 1.580000
CNV NCS FP16 12.50% na 4 10.09 3.94931 396.432 1012.840 3.178860 8.121636 77.82 na 0.53 1.2 1.590000
CNV NCS FP16 12.50% na 8 19.18 6.92008 417.172 1156.060 3.345167 9.270071 77.82 na 0.53 1.2 1.590000
CNV NCS FP16 12.50% na 16 37.01 12.60460 432.293 1269.380 3.466418 10.178747 77.82 na 0.53 1.2 1.580000
CNV NCS FP16 12.50% na 32 72.74 23.68960 439.912 1350.800 3.527512 10.831628 77.82 na 0.53 1.2 1.580000
CNV NCS FP16 12.50% na 64 143.09 45.67720 447.278 1401.140 3.586577 11.235288 77.82 na 0.53 1.2 1.590000
CNV NCS FP16 12.50% na 128 284.73 89.22510 449.542 1434.570 3.604732 11.503352 77.82 na 0.53 1.2 1.580000

Table A.9: Level-3 - Inference results CNV U96 A53

NN Topology hw quant prun Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
CNV U96-Quadcore A53 INT2 50% na 2 na 34.132 na 58.596039 na 6.968454 84.29 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 50% na 4 na 52.668 na 75.947444 na 9.031946 84.29 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 50% na 8 na 89.495 na 89.390469 na 10.630640 84.29 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 50% na 16 na 164.939 na 97.005560 na 11.536254 84.29 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 50% na 32 na 320.240 na 99.925056 na 11.883451 84.29 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 50% na 64 na 620.131 na 103.204000 na 12.273395 84.29 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 50% na 128 na 1227.069 na 104.313612 na 12.405354 84.29 na 9.2 na 14.5
CNV U96-Quadcore A53 INT4 25% na 2 na 8.550 na 233.918129 na 7.137247 81.09 na 9.2 na 14.5
CNV U96-Quadcore A53 INT4 25% na 4 na 14.137 na 282.945462 na 8.633156 81.09 na 9.2 na 14.5
CNV U96-Quadcore A53 INT4 25% na 8 na 25.200 na 317.460317 na 9.686264 81.09 na 9.2 na 14.5
CNV U96-Quadcore A53 INT4 25% na 16 na 46.580 na 343.495062 na 10.480629 81.09 na 9.2 na 14.5
CNV U96-Quadcore A53 INT4 25% na 32 na 90.412 na 353.935318 na 10.799180 81.09 na 9.2 na 14.5
CNV U96-Quadcore A53 INT4 25% na 64 na 178.848 na 357.845769 na 10.918494 81.09 na 9.2 na 14.5
CNV U96-Quadcore A53 INT4 25% na 128 na 353.671 na 361.918280 na 11.042754 81.09 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 25% na 2 na 8.433 na 237.163524 na 7.236270 79.89 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 25% na 4 na 14.103 na 283.627597 na 8.653969 79.89 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 25% na 8 na 24.808 na 322.476620 na 9.839320 79.89 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 25% na 16 na 46.974 na 340.613957 na 10.392722 79.89 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 25% na 32 na 90.564 na 353.341283 na 10.781055 79.89 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 25% na 64 na 178.144 na 359.259925 na 10.961643 79.89 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 25% na 128 na 351.970 na 363.667358 na 11.096121 79.89 na 9.2 na 14.5
CNV U96-Quadcore A53 INT4 12.50% na 2 na 3.625 na 551.724138 na 4.424097 75.85 na 9.2 na 14.5
CNV U96-Quadcore A53 INT4 12.50% na 4 na 6.410 na 624.024961 na 5.003854 75.85 na 9.2 na 14.5
CNV U96-Quadcore A53 INT4 12.50% na 8 na 11.712 na 683.060109 na 5.477238 75.85 na 9.2 na 14.5
CNV U96-Quadcore A53 INT4 12.50% na 16 na 22.370 na 715.243630 na 5.735307 75.85 na 9.2 na 14.5
CNV U96-Quadcore A53 INT4 12.50% na 32 na 43.397 na 737.378160 na 5.912797 75.85 na 9.2 na 14.5
CNV U96-Quadcore A53 INT4 12.50% na 64 na 85.380 na 749.590068 na 6.010720 75.85 na 9.2 na 14.5
CNV U96-Quadcore A53 INT4 12.50% na 128 na 168.071 na 761.582903 na 6.106887 75.85 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 12.50% na 2 na 3.651 na 547.795125 na 4.392592 73.64 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 12.50% na 4 na 6.306 na 634.316524 na 5.086379 73.64 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 12.50% na 8 na 11.731 na 681.953798 na 5.468367 73.64 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 12.50% na 16 na 22.210 na 720.396218 na 5.776624 73.64 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 12.50% na 32 na 43.493 na 735.750581 na 5.899746 73.64 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 12.50% na 64 na 85.127 na 751.817872 na 6.028584 73.64 na 9.2 na 14.5
CNV U96-Quadcore A53 INT2 12.50% na 128 na 167.092 na 766.045053 na 6.142667 73.64 na 9.2 na 14.5
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Table A.10: Level-3 - Inference results CNV ZCU104 BISMO

NN Topology hw quant prun Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
CNV ZCU104-BISMO INT2 50% na 2 na 9.114334 na 219.434577 na 26.095958 84.29 na 9.2 na 15.000
CNV ZCU104-BISMO INT2 50% na 4 na 16.680774 na 239.797026 na 28.517534 84.29 na 9.2 na 15.150
CNV ZCU104-BISMO INT2 50% na 8 na 31.695208 na 252.404088 na 30.016812 84.29 na 9.2 na 15.250
CNV ZCU104-BISMO INT2 50% na 16 na 63.422265 na 252.277334 na 30.001738 84.29 na 9.2 na 15.475
CNV ZCU104-BISMO INT2 50% na 32 na 121.255614 na 263.905307 na 31.384579 84.29 na 9.2 na 15.475
CNV ZCU104-BISMO INT2 50% na 64 na 247.773838 na 258.300071 na 30.717984 84.29 na 9.2 na 15.600
CNV ZCU104-BISMO INT2 50% na 128 na 498.197604 na 256.926165 na 30.554594 84.29 na 9.2 na 15.750
CNV ZCU104-BISMO INT4 25% na 2 na 6.862861 na 291.423671 na 8.891841 81.09 na 9.2 na 14.975
CNV ZCU104-BISMO INT4 25% na 4 na 12.062617 na 331.603010 na 10.117782 81.09 na 9.2 na 15.025
CNV ZCU104-BISMO INT4 25% na 8 na 25.337448 na 315.738192 na 9.633719 81.09 na 9.2 na 15.225
CNV ZCU104-BISMO INT4 25% na 16 na 44.035643 na 363.342036 na 11.086195 81.09 na 9.2 na 15.400
CNV ZCU104-BISMO INT4 25% na 32 na 88.454574 na 361.767614 na 11.038156 81.09 na 9.2 na 15.500
CNV ZCU104-BISMO INT4 25% na 64 na 188.719159 na 339.128260 na 10.347391 81.09 na 9.2 na 15.475
CNV ZCU104-BISMO INT4 25% na 128 na 347.028579 na 368.845703 na 11.254121 81.09 na 9.2 na 15.650
CNV ZCU104-BISMO INT2 25% na 2 na 4.206040 na 475.506641 na 14.508531 79.89 na 9.2 na 14.825
CNV ZCU104-BISMO INT2 25% na 4 na 7.654349 na 522.578719 na 15.944782 79.89 na 9.2 na 14.975
CNV ZCU104-BISMO INT2 25% na 8 na 15.170309 na 527.345897 na 16.090237 79.89 na 9.2 na 15.000
CNV ZCU104-BISMO INT2 25% na 16 na 27.868153 na 574.132053 na 17.517763 79.89 na 9.2 na 15.275
CNV ZCU104-BISMO INT2 25% na 32 na 55.855311 na 572.908811 na 17.480440 79.89 na 9.2 na 15.475
CNV ZCU104-BISMO INT2 25% na 64 na 114.312915 na 559.866750 na 17.082504 79.89 na 9.2 na 15.475
CNV ZCU104-BISMO INT2 25% na 128 na 220.039205 na 581.714518 na 17.749117 79.89 na 9.2 na 15.500
CNV ZCU104-BISMO INT4 12.50% na 2 na 4.180616 na 478.398456 na 3.836122 75.85 na 9.2 na 14.850
CNV ZCU104-BISMO INT4 12.50% na 4 na 7.281409 na 549.344265 na 4.405014 75.85 na 9.2 na 14.825
CNV ZCU104-BISMO INT4 12.50% na 8 na 14.385140 na 556.129466 na 4.459422 75.85 na 9.2 na 14.950
CNV ZCU104-BISMO INT4 12.50% na 16 na 31.355124 na 510.283428 na 4.091797 75.85 na 9.2 na 15.275
CNV ZCU104-BISMO INT4 12.50% na 32 na 56.983773 na 561.563375 na 4.502995 75.85 na 9.2 na 15.475
CNV ZCU104-BISMO INT4 12.50% na 64 na 119.823216 na 534.120199 na 4.282937 75.85 na 9.2 na 15.500
CNV ZCU104-BISMO INT4 12.50% na 128 na 211.559943 na 605.029469 na 4.851535 75.85 na 9.2 na 15.525
CNV ZCU104-BISMO INT2 12.50% na 2 na 2.664596 na 750.582799 na 6.018680 73.64 na 9.2 na 14.850
CNV ZCU104-BISMO INT2 12.50% na 4 na 4.831999 na 827.814775 na 6.637978 73.64 na 9.2 na 14.775
CNV ZCU104-BISMO INT2 12.50% na 8 na 9.481912 na 843.711735 na 6.765451 73.64 na 9.2 na 14.875
CNV ZCU104-BISMO INT2 12.50% na 16 na 19.575715 na 817.339260 na 6.553979 73.64 na 9.2 na 15.125
CNV ZCU104-BISMO INT2 12.50% na 32 na 37.490798 na 853.542770 na 6.844283 73.64 na 9.2 na 15.475
CNV ZCU104-BISMO INT2 12.50% na 64 na 76.311300 na 838.670023 na 6.725023 73.64 na 9.2 na 15.475
CNV ZCU104-BISMO INT2 12.50% na 128 na 144.856425 na 883.633570 na 7.085571 73.64 na 9.2 na 15.500
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Table A.11: Level-3 - Inference results CNV ZCU104 FINN

NN Topology hw quant prun Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
CNV ZCU104-FINN INT4 100% na 1 na 4.874 na 205.170 na 96.317057 87.42 na 9.2 11.8 15.0250
CNV ZCU104-FINN INT4 100% na 2 na 6.872 na 291.078 na 136.646567 87.42 na 9.2 11.8 15.4000
CNV ZCU104-FINN INT4 100% na 4 na 9.884 na 404.694 na 189.983598 87.42 na 9.2 11.8 15.8750
CNV ZCU104-FINN INT4 100% na 8 na 15.704 na 509.359 na 239.118583 87.42 na 9.2 11.8 16.7000
CNV ZCU104-FINN INT4 100% na 16 na 27.344 na 584.988 na 274.622617 87.42 na 9.2 11.8 17.5750
CNV ZCU104-FINN INT4 100% na 32 na 50.656 na 631.874 na 296.633249 87.42 na 9.2 11.8 19.2500
CNV ZCU104-FINN INT4 100% na 64 na 97.216 na 658.267 na 309.023443 87.42 na 9.2 11.8 19.3000
CNV ZCU104-FINN INT4 100% na 128 na 190.336 na 672.301 na 315.611704 87.42 na 9.2 11.8 19.2750
CNV ZCU104-FINN INT4 100% na 256 na 376.832 na 679.548 na 319.013809 87.42 na 9.2 11.8 19.3500
CNV ZCU104-FINN INT4 100% na 512 na 749.568 na 683.229 na 320.741854 87.42 na 9.2 11.8 19.3750
CNV ZCU104-FINN INT4 100% na 10000 na 14561.129 na 686.760 na 322.399482 87.42 na 9.2 11.8 19.7625
CNV ZCU104-FINN INT2 100% na 1 na 1.299 na 769.823 na 361.393407 86.86 na 9.2 11.6 14.3000
CNV ZCU104-FINN INT2 100% na 2 na 1.784 na 1121.076 na 526.289128 86.86 na 9.2 11.6 14.4250
CNV ZCU104-FINN INT2 100% na 4 na 2.600 na 1539.053 na 722.508431 86.86 na 9.2 11.6 14.4750
CNV ZCU104-FINN INT2 100% na 8 na 3.928 na 2034.588 na 955.137337 86.86 na 9.2 11.6 14.3500
CNV ZCU104-FINN INT2 100% na 16 na 6.592 na 2425.345 na 1138.578210 86.86 na 9.2 11.6 14.8250
CNV ZCU104-FINN INT2 100% na 32 na 11.936 na 2682.763 na 1259.423090 86.86 na 9.2 11.6 14.9500
CNV ZCU104-FINN INT2 100% na 64 na 22.592 na 2832.987 na 1329.945747 86.86 na 9.2 11.6 15.9250
CNV ZCU104-FINN INT2 100% na 128 na 43.904 na 2914.655 na 1368.284790 86.86 na 9.2 11.6 17.1750
CNV ZCU104-FINN INT2 100% na 256 na 86.528 na 2957.315 na 1388.311527 86.86 na 9.2 11.6 17.1750
CNV ZCU104-FINN INT2 100% na 512 na 172.032 na 2979.082 na 1398.530045 86.86 na 9.2 11.6 17.1750
CNV ZCU104-FINN INT4 50% na 1 na 0.507 na 1972.387 na 234.563434 84.88 na 9.2 12.0 14.6750
CNV ZCU104-FINN INT4 50% na 2 na 0.680 na 2941.176 na 349.775344 84.88 na 9.2 12.0 14.4750
CNV ZCU104-FINN INT4 50% na 4 na 0.972 na 4115.226 na 489.397639 84.88 na 9.2 12.0 14.7500
CNV ZCU104-FINN INT4 50% na 8 na 1.456 na 5486.968 na 652.530185 84.88 na 9.2 12.0 15.0000
CNV ZCU104-FINN INT4 50% na 16 na 2.432 na 6576.243 na 782.070729 84.88 na 9.2 12.0 14.9750
CNV ZCU104-FINN INT4 50% na 32 na 4.384 na 7304.268 na 868.650109 84.88 na 9.2 12.0 14.9750
CNV ZCU104-FINN INT4 50% na 64 na 8.250 na 7732.270 na 919.549663 84.88 na 9.2 12.0 15.8000
CNV ZCU104-FINN INT4 50% na 128 na 16.128 na 7965.152 na 947.244837 84.88 na 9.2 12.0 17.1250
CNV ZCU104-FINN INT4 50% na 256 na 31.744 na 8086.935 na 961.727714 84.88 na 9.2 12.0 20.2750
CNV ZCU104-FINN INT4 50% na 512 na 62.976 na 8149.233 na 969.136419 84.88 na 9.2 12.0 21.1750
CNV ZCU104-FINN INT4 50% na 10000 na 1218.125 na 8209.332 na 976.283611 84.88 na 9.2 12.0 21.3575
CNV ZCU104-FINN INT2 50% na 1 na 0.270 na 3703.704 na 440.457946 84.29 na 9.2 12.0 13.7500
CNV ZCU104-FINN INT2 50% na 2 na 0.366 na 5449.591 na 648.085176 84.29 na 9.2 12.0 13.7250
CNV ZCU104-FINN INT2 50% na 4 na 0.528 na 7575.758 na 900.936687 84.29 na 9.2 12.0 13.4750
CNV ZCU104-FINN INT2 50% na 8 na 0.776 na 10309.278 na 1226.016824 84.29 na 9.2 12.0 13.4750
CNV ZCU104-FINN INT2 50% na 16 na 1.248 na 12892.828 na 1533.261984 84.29 na 9.2 12.0 13.6750
CNV ZCU104-FINN INT2 50% na 32 na 2.176 na 14739.751 na 1752.904783 84.29 na 9.2 12.0 13.5000
CNV ZCU104-FINN INT2 50% na 64 na 4.032 na 15880.893 na 1888.613538 84.29 na 9.2 12.0 13.7750
CNV ZCU104-FINN INT2 50% na 128 na 7.808 na 16516.129 na 1964.158113 84.29 na 9.2 12.0 14.1000
CNV ZCU104-FINN INT2 50% na 256 na 15.104 na 16855.412 na 2004.506881 84.29 na 9.2 12.0 14.8750
CNV ZCU104-FINN INT2 50% na 512 na 30.208 na 17029.769 na 2025.242050 84.29 na 9.2 12.0 15.7750
CNV ZCU104-FINN INT4 25% na 1 na 0.161 na 6211.180 na 189.513860 81.09 na 9.2 11.5 13.8500
CNV ZCU104-FINN INT4 25% na 2 na 0.244 na 8163.265 na 249.075354 81.09 na 9.2 11.5 13.8500
CNV ZCU104-FINN INT4 25% na 4 na 0.396 na 10075.567 na 307.423000 81.09 na 9.2 11.5 14.2000
CNV ZCU104-FINN INT4 25% na 8 na 0.664 na 12121.212 na 369.839172 81.09 na 9.2 11.5 13.8000
CNV ZCU104-FINN INT4 25% na 16 na 1.184 na 13547.841 na 413.368094 81.09 na 9.2 11.5 13.8750
CNV ZCU104-FINN INT4 25% na 32 na 2.240 na 14388.489 na 439.017720 81.09 na 9.2 11.5 13.9250
CNV ZCU104-FINN INT4 25% na 64 na 4.288 na 14852.634 na 453.179588 81.09 na 9.2 11.5 13.9000
CNV ZCU104-FINN INT4 25% na 128 na 8.448 na 15094.340 na 460.554457 81.09 na 9.2 11.5 14.2500
CNV ZCU104-FINN INT4 25% na 256 na 16.896 na 15219.071 na 464.360216 81.09 na 9.2 11.5 14.9500
CNV ZCU104-FINN INT4 25% na 512 na 33.280 na 15282.214 na 466.286818 81.09 na 9.2 11.5 15.4000
CNV ZCU104-FINN INT4 25% na 10000 na 651.779 na 15342.620 na 468.129910 81.09 na 9.2 11.5 16.6250
CNV ZCU104-FINN INT2 25% na 1 na 0.119 na 8403.361 na 256.401099 79.89 na 9.2 11.5 13.4750
CNV ZCU104-FINN INT2 25% na 2 na 0.164 na 12195.122 na 372.094294 79.89 na 9.2 11.5 13.3750
CNV ZCU104-FINN INT2 25% na 4 na 0.252 na 15936.255 na 486.242742 79.89 na 9.2 11.5 13.0750
CNV ZCU104-FINN INT2 25% na 8 na 0.384 na 20942.408 na 638.989140 79.89 na 9.2 11.5 13.0750
CNV ZCU104-FINN INT2 25% na 16 na 0.640 na 24844.720 na 758.055438 79.89 na 9.2 11.5 13.0250
CNV ZCU104-FINN INT2 25% na 32 na 1.184 na 27373.824 na 835.222782 79.89 na 9.2 11.5 12.9500
CNV ZCU104-FINN INT2 25% na 64 na 2.240 na 28854.824 na 880.410657 79.89 na 9.2 11.5 13.0750
CNV ZCU104-FINN INT2 25% na 128 na 4.352 na 29657.090 na 904.889182 79.89 na 9.2 11.5 13.2250
CNV ZCU104-FINN INT2 25% na 256 na 8.448 na 30075.188 na 917.646076 79.89 na 9.2 11.5 13.3250
CNV ZCU104-FINN INT2 25% na 512 na 16.896 na 30286.897 na 924.105684 79.89 na 9.2 11.5 13.8250
CNV ZCU104-FINN INT4 12.50% na 1 0.07 0.072 na 13888.889 na 111.370501 75.85 na 9.2 11.0 13.7000
CNV ZCU104-FINN INT4 12.50% na 2 na 0.120 na 16666.667 na 133.644603 75.85 na 9.2 11.0 13.3500
CNV ZCU104-FINN INT4 12.50% na 4 na 0.208 na 19138.756 na 153.467483 75.85 na 9.2 11.0 13.3000
CNV ZCU104-FINN INT4 12.50% na 8 na 0.368 na 21739.130 na 174.319040 75.85 na 9.2 11.0 13.5500
CNV ZCU104-FINN INT4 12.50% na 16 na 0.688 na 23357.664 na 187.297540 75.85 na 9.2 11.0 13.2250
CNV ZCU104-FINN INT4 12.50% na 32 na 1.312 na 24242.424 na 194.392144 75.85 na 9.2 11.0 13.1500
CNV ZCU104-FINN INT4 12.50% na 64 na 2.560 na 24719.969 na 198.221422 75.85 na 9.2 11.0 13.1750
CNV ZCU104-FINN INT4 12.50% na 128 na 5.120 na 24960.998 na 200.154156 75.85 na 9.2 11.0 13.2750
CNV ZCU104-FINN INT4 12.50% na 256 na 10.240 na 25085.742 na 201.154437 75.85 na 9.2 11.0 13.4000
CNV ZCU104-FINN INT4 12.50% na 512 na 20.480 na 25146.113 na 201.638533 75.85 na 9.2 11.0 13.5000
CNV ZCU104-FINN INT4 12.50% na 10000 na 396.730 na 25206.016 na 202.118876 75.85 na 9.2 11.0 14.3475
CNV ZCU104-FINN INT2 12.50% na 1 0.05 0.086 na 23255.814 na 186.480838 73.64 na 9.2 11.0 13.2250
CNV ZCU104-FINN INT2 12.50% na 2 na 0.126 na 31746.032 na 254.561145 73.64 na 9.2 11.0 12.8750
CNV ZCU104-FINN INT2 12.50% na 4 na 0.200 na 40201.006 na 322.358842 73.64 na 9.2 11.0 13.1500
CNV ZCU104-FINN INT2 12.50% na 8 na 0.328 na 48484.848 na 388.784287 73.64 na 9.2 11.0 12.7750
CNV ZCU104-FINN INT2 12.50% na 16 na 0.592 na 53962.900 na 432.711011 73.64 na 9.2 11.0 12.7500
CNV ZCU104-FINN INT2 12.50% na 32 na 1.120 na 57296.330 na 459.440706 73.64 na 9.2 11.0 12.6750
CNV ZCU104-FINN INT2 12.50% na 64 na 2.176 na 59095.106 na 473.864508 73.64 na 9.2 11.0 12.6250
CNV ZCU104-FINN INT2 12.50% na 128 na 4.224 na 60037.524 na 481.421453 73.64 na 9.2 11.0 12.6750
CNV ZCU104-FINN INT2 12.50% na 256 na 8.448 na 60512.942 na 485.233676 73.64 na 9.2 11.0 12.7250
CNV ZCU104-FINN INT2 12.50% na 512 na 16.896 na 60757.090 na 487.191419 73.64 na 9.2 11.0 12.6750
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Table A.12: Level-3 - Inference results MLP TX2

NN Topology hw quant prun Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
MLP GPU FP16 100% maxp 1 1.03 0.698266 976.168 1466.41 19.551669 29.370726 97.30 na 1.8 4.7 9.881
MLP GPU FP16 100% maxp 2 1.25 0.739980 1635.780 2785.55 32.763038 55.791781 97.30 na 1.8 4.7 9.903
MLP GPU FP16 100% maxp 4 1.61 0.766234 2515.970 5392.60 50.392363 108.008385 97.30 na 1.8 4.7 10.262
MLP GPU FP16 100% maxp 8 2.65 1.161670 3093.660 7027.46 61.962916 140.752996 97.30 na 1.8 4.7 9.645
MLP GPU FP16 100% maxp 16 4.05 1.248630 4112.450 13008.00 82.368261 260.537232 97.30 na 1.8 4.7 11.359
MLP GPU FP16 100% maxp 32 6.61 1.201560 5044.330 29751.90 101.032886 595.900805 97.30 na 1.8 4.7 10.959
MLP GPU FP16 100% maxp 64 11.72 1.370560 5688.890 56369.00 113.942778 1129.014701 97.30 na 1.8 4.7 11.215
MLP GPU FP16 100% maxp 128 23.07 2.305000 5885.060 61409.30 117.871867 1229.966870 97.30 na 1.8 4.7 12.142
MLP GPU FP32 100% maxp 1 1.14 0.819372 877.464 1231.27 17.574726 24.661107 97.31 na 1.8 4.7 10.895
MLP GPU FP32 100% maxp 2 1.38 0.894066 1376.340 1991.41 27.566714 39.885951 97.31 na 1.8 4.7 10.915
MLP GPU FP32 100% maxp 4 1.85 0.958605 2115.700 4023.29 42.375355 80.582475 97.31 na 1.8 4.7 11.193
MLP GPU FP32 100% maxp 8 2.70 1.204900 3002.930 6766.27 60.145685 135.521622 97.31 na 1.8 4.7 11.915
MLP GPU FP32 100% maxp 16 4.24 1.252610 4129.030 13126.40 82.700342 262.908666 97.31 na 1.8 4.7 12.021
MLP GPU FP32 100% maxp 32 6.90 1.519840 4697.250 24259.70 94.081220 485.897531 97.31 na 1.8 4.7 12.271
MLP GPU FP32 100% maxp 64 13.30 2.768870 4899.520 25678.30 98.132486 514.310671 97.31 na 1.8 4.7 12.950
MLP GPU FP32 100% maxp 128 24.10 3.442500 5475.940 39802.50 109.677602 797.204273 97.31 na 1.8 4.7 12.366
MLP GPU FP16 50% maxp 1 0.67 0.335562 1526.080 3009.65 8.881786 17.516163 97.46 na 1.8 4.7 8.718
MLP GPU FP16 50% maxp 2 0.86 0.356855 2386.950 5676.31 13.892049 33.036124 97.46 na 1.8 4.7 8.650
MLP GPU FP16 50% maxp 4 1.20 0.354211 3482.990 11532.10 20.271002 67.116822 97.46 na 1.8 4.7 8.868
MLP GPU FP16 50% maxp 8 2.01 0.509430 4179.590 15901.40 24.325214 92.546148 97.46 na 1.8 4.7 8.795
MLP GPU FP16 50% maxp 16 3.34 0.527234 5044.330 30770.20 29.358001 179.082564 97.46 na 1.8 4.7 9.686
MLP GPU FP16 50% maxp 32 6.21 0.628219 5505.380 62458.10 32.041312 363.506142 97.46 na 1.8 4.7 9.003
MLP GPU FP16 50% maxp 64 11.48 0.898875 5851.430 94587.10 34.055323 550.496922 97.46 na 1.8 4.7 8.679
MLP GPU FP16 50% maxp 128 21.56 1.126880 6168.670 141671.00 35.901659 824.525220 97.46 na 1.8 4.7 9.883
MLP GPU FP32 50% maxp 1 0.65 0.334122 1560.980 2952.86 9.084904 17.185645 97.46 na 1.8 4.7 9.321
MLP GPU FP32 50% maxp 2 0.86 0.377549 2398.130 5282.05 13.957117 30.741531 97.46 na 1.8 4.7 9.532
MLP GPU FP32 50% maxp 4 1.17 0.380160 3482.990 10581.10 20.271002 61.582002 97.46 na 1.8 4.7 9.563
MLP GPU FP32 50% maxp 8 2.26 0.660625 4047.430 15793.70 23.556043 91.919334 97.46 na 1.8 4.7 10.240
MLP GPU FP32 50% maxp 16 3.51 0.749047 4807.510 30638.50 27.979708 178.316070 97.46 na 1.8 4.7 10.356
MLP GPU FP32 50% maxp 32 6.10 0.790344 5446.810 57302.70 31.700434 333.501714 97.46 na 1.8 4.7 10.371
MLP GPU FP32 50% maxp 64 11.67 1.198060 5720.670 66823.30 33.294299 388.911606 97.46 na 1.8 4.7 11.478
MLP GPU FP32 50% maxp 128 21.95 1.454250 6095.240 103759.00 35.474297 603.877380 97.46 na 1.8 4.7 11.120
MLP GPU FP16 25% maxp 1 0.59 0.278191 1750.430 3848.74 3.259301 7.166354 97.44 na 1.8 4.7 7.334
MLP GPU FP16 25% maxp 2 0.73 0.259730 2820.940 8504.14 5.252590 15.834709 97.44 na 1.8 4.7 7.364
MLP GPU FP16 25% maxp 4 1.09 0.287484 3792.590 15125.30 7.061803 28.163309 97.44 na 1.8 4.7 7.284
MLP GPU FP16 25% maxp 8 1.79 0.307859 4697.250 29380.50 8.746279 54.706491 97.44 na 1.8 4.7 8.149
MLP GPU FP16 25% maxp 16 3.31 0.363625 5171.720 56844.70 9.629743 105.844831 97.44 na 1.8 4.7 8.354
MLP GPU FP16 25% maxp 32 6.15 0.526344 5919.080 115863.00 11.021327 215.736906 97.44 na 1.8 4.7 8.161
MLP GPU FP16 25% maxp 64 11.14 0.661312 5988.300 145166.00 11.150215 270.299092 97.44 na 1.8 4.7 8.740
MLP GPU FP16 25% maxp 128 21.25 0.800375 6243.900 220832.00 11.626142 411.189184 97.44 na 1.8 4.7 8.066
MLP GPU FP32 25% maxp 1 0.51 0.222530 1980.660 4836.44 3.687989 9.005451 97.44 na 1.8 4.7 8.068
MLP GPU FP32 25% maxp 2 0.81 0.227563 2968.120 9610.87 5.526639 17.895440 97.44 na 1.8 4.7 7.972
MLP GPU FP32 25% maxp 4 1.09 0.235293 4063.490 18903.80 7.566218 35.198876 97.44 na 1.8 4.7 8.158
MLP GPU FP32 25% maxp 8 1.98 0.282313 4923.080 29516.00 9.166775 54.958792 97.44 na 1.8 4.7 8.505
MLP GPU FP32 25% maxp 16 3.26 0.514938 5120.000 56496.60 9.533440 105.196669 97.44 na 1.8 4.7 8.612
MLP GPU FP32 25% maxp 32 5.95 0.532937 5688.890 105938.00 10.592713 197.256556 97.44 na 1.8 4.7 8.547
MLP GPU FP32 25% maxp 64 11.18 0.692438 5953.490 134489.00 11.085398 250.418518 97.44 na 1.8 4.7 8.318
MLP GPU FP32 25% maxp 128 21.70 0.872125 6168.670 193866.00 11.486064 360.978492 97.44 na 1.8 4.7 9.199
MLP GPU FP16 12.50% maxp 1 0.57 0.278080 1759.450 3864.97 1.177072 2.585665 97.15 na 1.8 4.7 6.661
MLP GPU FP16 12.50% maxp 2 0.75 0.285041 2716.180 7639.51 1.817124 5.110832 97.15 na 1.8 4.7 6.510
MLP GPU FP16 12.50% maxp 4 1.10 0.290605 3849.620 15091.20 2.575396 10.096013 97.15 na 1.8 4.7 6.643
MLP GPU FP16 12.50% maxp 8 1.64 0.306844 4785.050 29828.10 3.201198 19.954999 97.15 na 1.8 4.7 7.353
MLP GPU FP16 12.50% maxp 16 3.12 0.342703 5657.460 71794.20 3.784841 48.030320 97.15 na 1.8 4.7 7.652
MLP GPU FP16 12.50% maxp 32 5.61 0.317250 6023.530 121789.00 4.029742 81.476841 97.15 na 1.8 4.7 7.543
MLP GPU FP16 12.50% maxp 64 9.11 0.463625 6206.060 192120.00 4.151854 128.528280 97.15 na 1.8 4.7 7.886
MLP GPU FP16 12.50% maxp 128 21.57 0.665250 6360.250 278034.00 4.255007 186.004746 97.15 na 1.8 4.7 8.382
MLP GPU FP32 12.50% maxp 1 0.60 0.216087 2019.720 4963.28 1.351193 3.320434 97.15 na 1.8 4.7 7.411
MLP GPU FP32 12.50% maxp 2 0.87 0.287818 3002.930 9745.51 2.008960 6.519746 97.15 na 1.8 4.7 7.265
MLP GPU FP32 12.50% maxp 4 1.22 0.369457 4129.030 19384.00 2.762321 12.967896 97.15 na 1.8 4.7 7.309
MLP GPU FP32 12.50% maxp 8 1.69 0.237187 5019.610 36867.70 3.358119 24.664491 97.15 na 1.8 4.7 7.732
MLP GPU FP32 12.50% maxp 16 3.19 0.410703 5688.890 72480.20 3.805867 48.489254 97.15 na 1.8 4.7 7.861
MLP GPU FP32 12.50% maxp 32 5.71 0.453156 5851.430 140466.00 3.914607 93.971754 97.15 na 1.8 4.7 7.759
MLP GPU FP32 12.50% maxp 64 10.87 0.591562 6095.240 173530.00 4.077716 116.091570 97.15 na 1.8 4.7 7.935
MLP GPU FP32 12.50% maxp 128 21.53 0.684250 6320.990 264873.00 4.228742 177.200037 97.15 na 1.8 4.7 8.310
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Table A.13: Level-3 - Inference results MLP NCS

NN Topology hw quant prun Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
MLP NCS FP16 100% na 1 4.57 2.89257 218.893 345.713 4.384208 6.924286 98.86 na 0.53 1.2 1.794
MLP NCS FP16 100% na 2 8.09 4.68459 247.308 426.931 4.953332 8.551001 98.86 na 0.53 1.2 1.949
MLP NCS FP16 100% na 4 14.84 8.11821 269.491 492.719 5.397635 9.868669 98.86 na 0.53 1.2 1.946
MLP NCS FP16 100% na 8 28.30 14.80380 282.686 540.400 5.661918 10.823672 98.86 na 0.53 1.2 2.084
MLP NCS FP16 100% na 16 54.64 27.49350 292.848 581.956 5.865453 11.655997 98.86 na 0.53 1.2 2.136
MLP NCS FP16 100% na 32 107.39 53.05720 297.970 603.122 5.968041 12.079931 98.86 na 0.53 1.2 2.135
MLP NCS FP16 100% na 64 212.26 104.43500 301.514 612.823 6.039024 12.274232 98.86 na 0.53 1.2 2.186
MLP NCS FP16 100% na 128 421.84 206.00700 303.434 621.337 6.077480 12.444759 98.86 na 0.53 1.2 2.212
MLP NCS FP16 50% na 1 3.53 1.93663 283.339 516.360 1.649033 3.005215 98.75 na 0.53 1.2 1.809
MLP NCS FP16 50% na 2 5.93 2.76217 337.009 724.068 1.961392 4.214076 98.75 na 0.53 1.2 1.838
MLP NCS FP16 50% na 4 10.65 4.33873 375.488 921.928 2.185340 5.365621 98.75 na 0.53 1.2 1.864
MLP NCS FP16 50% na 8 20.03 7.23535 399.446 1105.680 2.324776 6.435058 98.75 na 0.53 1.2 1.933
MLP NCS FP16 50% na 16 38.83 13.33140 412.007 1200.170 2.397881 6.984989 98.75 na 0.53 1.2 1.926
MLP NCS FP16 50% na 32 75.78 24.59050 422.289 1301.310 2.457722 7.573624 98.75 na 0.53 1.2 1.956
MLP NCS FP16 50% na 64 149.82 47.95140 427.188 1334.680 2.486234 7.767838 98.75 na 0.53 1.2 1.985
MLP NCS FP16 50% na 128 297.84 93.36540 429.768 1370.960 2.501250 7.978987 98.75 na 0.53 1.2 2.010
MLP NCS FP16 25% na 1 3.23 1.66639 309.240 600.099 0.575805 1.117384 98.49 na 0.53 1.2 1.620
MLP NCS FP16 25% na 2 5.24 2.12441 381.922 941.439 0.711139 1.752959 98.49 na 0.53 1.2 1.710
MLP NCS FP16 25% na 4 9.33 3.07935 428.685 1298.980 0.798211 2.418701 98.49 na 0.53 1.2 1.744
MLP NCS FP16 25% na 8 17.48 5.06905 457.574 1578.210 0.852003 2.938627 98.49 na 0.53 1.2 1.779
MLP NCS FP16 25% na 16 33.60 8.64809 476.212 1850.120 0.886707 3.444923 98.49 na 0.53 1.2 1.816
MLP NCS FP16 25% na 32 66.10 16.10990 484.102 1986.350 0.901398 3.698584 98.49 na 0.53 1.2 1.835
MLP NCS FP16 25% na 64 129.49 30.16850 494.267 2121.420 0.920325 3.950084 98.49 na 0.53 1.2 1.837
MLP NCS FP16 25% na 128 256.77 58.25070 498.496 2197.400 0.928200 4.091559 98.49 na 0.53 1.2 1.877
MLP NCS FP16 12.50% na 1 3.16 1.61570 316.199 618.928 0.211537 0.414063 97.95 na 0.53 1.2 1.548
MLP NCS FP16 12.50% na 2 5.08 1.97230 393.474 1014.050 0.263234 0.678399 97.95 na 0.53 1.2 1.628
MLP NCS FP16 12.50% na 4 8.87 2.67093 450.727 1497.600 0.301536 1.001894 97.95 na 0.53 1.2 1.670
MLP NCS FP16 12.50% na 8 16.44 4.18684 486.767 1910.750 0.325647 1.278292 97.95 na 0.53 1.2 1.699
MLP NCS FP16 12.50% na 16 31.79 7.11847 503.270 2247.670 0.336688 1.503691 97.95 na 0.53 1.2 1.711
MLP NCS FP16 12.50% na 32 62.05 12.94530 515.686 2471.930 0.344994 1.653721 97.95 na 0.53 1.2 1.735
MLP NCS FP16 12.50% na 64 123.00 24.00580 520.318 2666.020 0.348093 1.783567 97.95 na 0.53 1.2 1.719
MLP NCS FP16 12.50% na 128 243.20 45.77660 526.317 2796.190 0.352106 1.870651 97.95 na 0.53 1.2 1.764

Table A.14: Level-3 - Inference results MLP U96 A53

NN Topology hw datatype prun Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
MLP U96-Quadcore A53 INT4 100% na 2 na 101.382 na 19.727368 na 0.395119 98.77 na 9.2 14.3 15.314286
MLP U96-Quadcore A53 INT4 100% na 4 na 102.873 na 38.882894 na 0.778785 98.77 na 9.2 14.3 15.320663
MLP U96-Quadcore A53 INT4 100% na 8 na 100.440 na 79.649542 na 1.595301 98.77 na 9.2 14.3 15.320353
MLP U96-Quadcore A53 INT4 100% na 16 na 124.383 na 128.634942 na 2.576429 98.77 na 9.2 14.3 15.321807
MLP U96-Quadcore A53 INT4 100% na 32 na 170.250 na 187.958884 na 3.764628 98.77 na 9.2 14.3 15.310865
MLP U96-Quadcore A53 INT4 100% na 64 na 253.227 na 252.737662 na 5.062083 98.77 na 9.2 14.3 15.320570
MLP U96-Quadcore A53 INT4 100% na 128 na 434.834 na 294.365206 na 5.895841 98.77 na 9.2 14.3 15.322039
MLP U96-Quadcore A53 INT2 100% na 2 na 100.792 na 19.842845 na 0.397432 98.75 na 9.2 14.3 15.323613
MLP U96-Quadcore A53 INT2 100% na 4 na 101.204 na 39.524129 na 0.791629 98.75 na 9.2 14.3 15.334228
MLP U96-Quadcore A53 INT2 100% na 8 na 100.627 na 79.501525 na 1.592336 98.75 na 9.2 14.3 15.327745
MLP U96-Quadcore A53 INT2 100% na 16 na 125.092 na 127.905861 na 2.561826 98.75 na 9.2 14.3 15.311869
MLP U96-Quadcore A53 INT2 100% na 32 na 170.559 na 187.618361 na 3.757808 98.75 na 9.2 14.3 15.309146
MLP U96-Quadcore A53 INT2 100% na 64 na 253.599 na 252.366926 na 5.054657 98.75 na 9.2 14.3 15.318727
MLP U96-Quadcore A53 INT2 100% na 128 na 435.264 na 294.074401 na 5.890016 98.75 na 9.2 14.3 15.312922
MLP U96-Quadcore A53 INT4 50% na 2 na 26.779 na 74.685388 na 0.434669 98.62 na 9.2 14.3 15.353571
MLP U96-Quadcore A53 INT4 50% na 4 na 26.904 na 148.676777 na 0.865299 98.62 na 9.2 14.3 15.359184
MLP U96-Quadcore A53 INT4 50% na 8 na 27.285 na 293.201393 na 1.706432 98.62 na 9.2 14.3 15.370554
MLP U96-Quadcore A53 INT4 50% na 16 na 33.679 na 475.073488 na 2.764928 98.62 na 9.2 14.3 15.363093
MLP U96-Quadcore A53 INT4 50% na 32 na 47.012 na 680.677274 na 3.961542 98.62 na 9.2 14.3 15.362243
MLP U96-Quadcore A53 INT4 50% na 64 na 74.628 na 857.586965 na 4.991156 98.62 na 9.2 14.3 15.363118
MLP U96-Quadcore A53 INT4 50% na 128 na 129.957 na 984.941173 na 5.732358 98.62 na 9.2 14.3 15.360483
MLP U96-Quadcore A53 INT2 50% na 2 na 26.684 na 74.951282 na 0.436216 98.49 na 9.2 14.3 15.357660
MLP U96-Quadcore A53 INT2 50% na 4 na 27.236 na 146.864444 na 0.854751 98.49 na 9.2 14.3 15.358208
MLP U96-Quadcore A53 INT2 50% na 8 na 26.752 na 299.043062 na 1.740431 98.49 na 9.2 14.3 15.367722
MLP U96-Quadcore A53 INT2 50% na 16 na 33.614 na 475.992146 na 2.770274 98.49 na 9.2 14.3 15.367203
MLP U96-Quadcore A53 INT2 50% na 32 na 46.919 na 682.026471 na 3.969394 98.49 na 9.2 14.3 15.364860
MLP U96-Quadcore A53 INT2 50% na 64 na 74.500 na 859.060403 na 4.999732 98.49 na 9.2 14.3 15.367707
MLP U96-Quadcore A53 INT2 50% na 128 na 129.915 na 985.259593 na 5.734211 98.49 na 9.2 14.3 15.365400
MLP U96-Quadcore A53 INT4 25% na 2 na 7.828 na 255.493102 na 0.475728 98.29 na 9.2 14.3 15.348214
MLP U96-Quadcore A53 INT4 25% na 4 na 7.848 na 509.683996 na 0.949032 98.29 na 9.2 14.3 15.348087
MLP U96-Quadcore A53 INT4 25% na 8 na 7.853 na 1018.718961 na 1.896855 98.29 na 9.2 14.3 15.346164
MLP U96-Quadcore A53 INT4 25% na 16 na 10.063 na 1589.983106 na 2.960549 98.29 na 9.2 14.3 15.354819
MLP U96-Quadcore A53 INT4 25% na 32 na 14.395 na 2222.994095 na 4.139215 98.29 na 9.2 14.3 15.356949
MLP U96-Quadcore A53 INT4 25% na 64 na 23.355 na 2740.312567 na 5.102462 98.29 na 9.2 14.3 15.353874
MLP U96-Quadcore A53 INT4 25% na 128 na 41.156 na 3110.117601 na 5.791039 98.29 na 9.2 14.3 15.352365
MLP U96-Quadcore A53 INT2 25% na 2 na 7.754 na 257.931390 na 0.480268 98.04 na 9.2 14.3 15.338248
MLP U96-Quadcore A53 INT2 25% na 4 na 7.841 na 510.139013 na 0.949879 98.04 na 9.2 14.3 15.337409
MLP U96-Quadcore A53 INT2 25% na 8 na 7.850 na 1019.108280 na 1.897580 98.04 na 9.2 14.3 15.338295
MLP U96-Quadcore A53 INT2 25% na 16 na 10.115 na 1581.809194 na 2.945329 98.04 na 9.2 14.3 15.342816
MLP U96-Quadcore A53 INT2 25% na 32 na 14.387 na 2224.230208 na 4.141517 98.04 na 9.2 14.3 15.338731
MLP U96-Quadcore A53 INT2 25% na 64 na 23.176 na 2761.477390 na 5.141871 98.04 na 9.2 14.3 15.336141
MLP U96-Quadcore A53 INT2 25% na 128 na 41.228 na 3104.686136 na 5.780926 98.04 na 9.2 14.3 15.336937
MLP U96-Quadcore A53 INT4 12.50% na 2 na 2.536 na 788.643533 na 0.527603 97.54 na 9.2 14.3 15.403571
MLP U96-Quadcore A53 INT4 12.50% na 4 na 2.555 na 1565.557730 na 1.047358 97.54 na 9.2 14.3 15.405612
MLP U96-Quadcore A53 INT4 12.50% na 8 na 2.608 na 3067.484663 na 2.052147 97.54 na 9.2 14.3 15.409585
MLP U96-Quadcore A53 INT4 12.50% na 16 na 3.405 na 4698.972100 na 3.143612 97.54 na 9.2 14.3 15.420983
MLP U96-Quadcore A53 INT4 12.50% na 32 na 5.066 na 6316.620608 na 4.225819 97.54 na 9.2 14.3 15.395697
MLP U96-Quadcore A53 INT4 12.50% na 64 na 8.577 na 7461.816486 na 4.991955 97.54 na 9.2 14.3 15.393603
MLP U96-Quadcore A53 INT4 12.50% na 128 na 14.996 na 8535.609496 na 5.710323 97.54 na 9.2 14.3 15.393147
MLP U96-Quadcore A53 INT2 12.50% na 2 na 2.599 na 769.526741 na 0.514813 96.85 na 9.2 14.3 15.392657
MLP U96-Quadcore A53 INT2 12.50% na 4 na 2.577 na 1552.192472 na 1.038417 96.85 na 9.2 14.3 15.393918
MLP U96-Quadcore A53 INT2 12.50% na 8 na 2.566 na 3117.692907 na 2.085737 96.85 na 9.2 14.3 15.393484
MLP U96-Quadcore A53 INT2 12.50% na 16 na 3.458 na 4626.951995 na 3.095431 96.85 na 9.2 14.3 15.396590
MLP U96-Quadcore A53 INT2 12.50% na 32 na 5.027 na 6365.625622 na 4.258604 96.85 na 9.2 14.3 15.398132
MLP U96-Quadcore A53 INT2 12.50% na 64 na 8.325 na 7687.687688 na 5.143063 96.85 na 9.2 14.3 15.397998
MLP U96-Quadcore A53 INT2 12.50% na 128 na 15.070 na 8493.696085 na 5.682283 96.85 na 9.2 14.3 15.399641
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Table A.15: Level-3 - Inference results MLP ZCU104 BISMO

NN Topology hw datatype prun Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
MLP ZCU104-BISMO INT4 100% na 2 na 3.259364 na 613.616569 na 12.290126 98.77 na 9.2 14.3 15.225
MLP ZCU104-BISMO INT4 100% na 4 na 5.631140 na 710.335702 na 14.227314 98.77 na 9.2 14.3 15.325
MLP ZCU104-BISMO INT4 100% na 8 na 10.265632 na 779.299316 na 15.608586 98.77 na 9.2 14.3 15.300
MLP ZCU104-BISMO INT4 100% na 16 na 19.714788 na 811.573525 na 16.255006 98.77 na 9.2 14.3 15.475
MLP ZCU104-BISMO INT4 100% na 32 na 38.386224 na 833.632399 na 16.696823 98.77 na 9.2 14.3 15.175
MLP ZCU104-BISMO INT4 100% na 64 na 76.340167 na 838.352895 na 16.791370 98.77 na 9.2 14.3 15.300
MLP ZCU104-BISMO INT4 100% na 128 na 154.567620 na 828.116523 na 16.586346 98.77 na 9.2 14.3 15.300
MLP ZCU104-BISMO INT2 100% na 2 na 2.147294 na 931.404959 na 18.655110 98.75 na 9.2 14.3 15.175
MLP ZCU104-BISMO INT2 100% na 4 na 3.365645 na 1188.479510 na 23.804056 98.75 na 9.2 14.3 15.425
MLP ZCU104-BISMO INT2 100% na 8 na 5.782697 na 1383.437545 na 27.708871 98.75 na 9.2 14.3 15.550
MLP ZCU104-BISMO INT2 100% na 16 na 10.675147 na 1498.808400 na 30.019633 98.75 na 9.2 14.3 15.350
MLP ZCU104-BISMO INT2 100% na 32 na 20.320172 na 1574.789820 na 31.541465 98.75 na 9.2 14.3 15.175
MLP ZCU104-BISMO INT2 100% na 64 na 39.836965 na 1606.548089 na 32.177552 98.75 na 9.2 14.3 15.400
MLP ZCU104-BISMO INT2 100% na 128 na 79.756498 na 1604.884909 na 32.144240 98.75 na 9.2 14.3 15.225
MLP ZCU104-BISMO INT4 50% na 2 na 1.190105 na 1680.524129 na 9.780650 98.62 na 9.2 14.3 15.275
MLP ZCU104-BISMO INT4 50% na 4 na 1.907534 na 2096.948426 na 12.204240 98.62 na 9.2 14.3 15.200
MLP ZCU104-BISMO INT4 50% na 8 na 3.340349 na 2394.959329 na 13.938663 98.62 na 9.2 14.3 15.475
MLP ZCU104-BISMO INT4 50% na 16 na 6.277260 na 2548.882793 na 14.834498 98.62 na 9.2 14.3 15.375
MLP ZCU104-BISMO INT4 50% na 32 na 12.228749 na 2616.784432 na 15.229685 98.62 na 9.2 14.3 15.350
MLP ZCU104-BISMO INT4 50% na 64 na 23.566854 na 2715.678554 na 15.805249 98.62 na 9.2 14.3 15.400
MLP ZCU104-BISMO INT4 50% na 128 na 46.917617 na 2728.186302 na 15.878044 98.62 na 9.2 14.3 15.400
MLP ZCU104-BISMO INT2 50% na 2 na 0.849005 na 2355.697897 na 13.710162 98.49 na 9.2 14.3 15.350
MLP ZCU104-BISMO INT2 50% na 4 na 1.227849 na 3257.728513 na 18.959980 98.49 na 9.2 14.3 15.225
MLP ZCU104-BISMO INT2 50% na 8 na 2.001101 na 3997.798612 na 23.267188 98.49 na 9.2 14.3 15.375
MLP ZCU104-BISMO INT2 50% na 16 na 3.562573 na 4491.135663 na 26.138410 98.49 na 9.2 14.3 15.400
MLP ZCU104-BISMO INT2 50% na 32 na 6.650998 na 4811.308017 na 28.001813 98.49 na 9.2 14.3 15.325
MLP ZCU104-BISMO INT2 50% na 64 na 12.741983 na 5022.766080 na 29.232499 98.49 na 9.2 14.3 15.400
MLP ZCU104-BISMO INT2 50% na 128 na 25.079286 na 5103.813562 na 29.704195 98.49 na 9.2 14.3 15.400
MLP ZCU104-BISMO INT4 25% na 2 na 0.488890 na 4090.899793 na 7.617255 98.29 na 9.2 14.3 15.350
MLP ZCU104-BISMO INT4 25% na 4 na 0.733966 na 5449.841498 na 10.147605 98.29 na 9.2 14.3 15.375
MLP ZCU104-BISMO INT4 25% na 8 na 1.242979 na 6436.147982 na 11.984108 98.29 na 9.2 14.3 15.225
MLP ZCU104-BISMO INT4 25% na 16 na 2.257038 na 7088.935974 na 13.199599 98.29 na 9.2 14.3 15.325
MLP ZCU104-BISMO INT4 25% na 32 na 4.331067 na 7388.479559 na 13.757349 98.29 na 9.2 14.3 15.400
MLP ZCU104-BISMO INT4 25% na 64 na 8.464694 na 7560.816729 na 14.078241 98.29 na 9.2 14.3 15.375
MLP ZCU104-BISMO INT4 25% na 128 na 16.747152 na 7643.090598 na 14.231435 98.29 na 9.2 14.3 15.550
MLP ZCU104-BISMO INT2 25% na 2 na 0.378882 na 5278.693924 na 9.828928 98.04 na 9.2 14.3 15.350
MLP ZCU104-BISMO INT2 25% na 4 na 0.511098 na 7826.287718 na 14.572548 98.04 na 9.2 14.3 15.325
MLP ZCU104-BISMO INT2 25% na 8 na 0.783952 na 10204.712920 na 19.001175 98.04 na 9.2 14.3 15.275
MLP ZCU104-BISMO INT2 25% na 16 na 1.346831 na 11879.742850 na 22.120081 98.04 na 9.2 14.3 15.400
MLP ZCU104-BISMO INT2 25% na 32 na 2.448887 na 13067.161250 na 24.331054 98.04 na 9.2 14.3 15.375
MLP ZCU104-BISMO INT2 25% na 64 na 4.681727 na 13670.169150 na 25.453855 98.04 na 9.2 14.3 15.325
MLP ZCU104-BISMO INT2 25% na 128 na 9.032107 na 14171.665590 na 26.387641 98.04 na 9.2 14.3 15.225
MLP ZCU104-BISMO INT4 12.50% na 2 na 0.221656 na 9022.990580 na 6.036381 97.54 na 9.2 14.3 15.375
MLP ZCU104-BISMO INT4 12.50% na 4 na 0.326347 na 12256.884690 na 8.199856 97.54 na 9.2 14.3 15.350
MLP ZCU104-BISMO INT4 12.50% na 8 na 0.519242 na 15407.065260 na 10.307327 97.54 na 9.2 14.3 15.250
MLP ZCU104-BISMO INT4 12.50% na 16 na 0.928151 na 17238.574330 na 11.532606 97.54 na 9.2 14.3 15.775
MLP ZCU104-BISMO INT4 12.50% na 32 na 1.779600 na 17981.563840 na 12.029666 97.54 na 9.2 14.3 15.425
MLP ZCU104-BISMO INT4 12.50% na 64 na 3.351983 na 19093.175590 na 12.773334 97.54 na 9.2 14.3 15.400
MLP ZCU104-BISMO INT4 12.50% na 128 na 6.721276 na 19044.002950 na 12.740438 97.54 na 9.2 14.3 15.400
MLP ZCU104-BISMO INT2 12.50% na 2 na 0.177743 na 11252.188550 na 7.527714 96.85 na 9.2 14.3 15.375
MLP ZCU104-BISMO INT2 12.50% na 4 na 0.237272 na 16858.317640 na 11.278215 96.85 na 9.2 14.3 15.400
MLP ZCU104-BISMO INT2 12.50% na 8 na 0.352492 na 22695.544100 na 15.183319 96.85 na 9.2 14.3 15.350
MLP ZCU104-BISMO INT2 12.50% na 16 na 0.588134 na 27204.670770 na 18.199925 96.85 na 9.2 14.3 15.375
MLP ZCU104-BISMO INT2 12.50% na 32 na 1.049068 na 30503.274480 na 20.406691 96.85 na 9.2 14.3 15.400
MLP ZCU104-BISMO INT2 12.50% na 64 na 1.952913 na 32771.555480 na 21.924171 96.85 na 9.2 14.3 15.375
MLP ZCU104-BISMO INT2 12.50% na 128 na 3.816102 na 33542.080370 na 22.439652 96.85 na 9.2 14.3 15.400
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Table A.16: Level-3 - Inference results MLP ZCU104 FINN

NN Topology hw datatype prun Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
MLP ZCU104-FINN INT2 100% na 1 na 0.023 na 43478.261 na 870.826090 98.75 na 9.2 13.71 13.9525
MLP ZCU104-FINN INT2 100% na 2 na 0.036 na 55555.556 na 1112.722231 98.75 na 9.2 13.71 13.9050
MLP ZCU104-FINN INT2 100% na 4 na 0.061 na 65573.770 na 1313.377039 98.75 na 9.2 13.71 13.9400
MLP ZCU104-FINN INT2 100% na 8 na 0.111 na 72072.072 na 1443.531530 98.75 na 9.2 13.71 13.9325
MLP ZCU104-FINN INT2 100% na 16 na 0.210 na 76190.476 na 1526.019044 98.75 na 9.2 13.71 13.9875
MLP ZCU104-FINN INT2 100% na 32 na 0.408 na 78431.373 na 1570.901970 98.75 na 9.2 13.71 13.9000
MLP ZCU104-FINN INT2 100% na 64 na 0.806 na 79404.467 na 1590.392070 98.75 na 9.2 13.71 14.2775
MLP ZCU104-FINN INT2 100% na 128 na 1.600 na 80000.000 na 1602.320000 98.75 na 9.2 13.71 14.3650
MLP ZCU104-FINN INT2 100% na 256 na 3.190 na 80250.784 na 1607.342953 98.75 na 9.2 13.71 14.5150
MLP ZCU104-FINN INT2 100% na 512 na 6.369 na 80389.386 na 1610.119012 98.75 na 9.2 13.71 14.9500
MLP ZCU104-FINN INT4 50% na 1 na 0.014 na 71428.571 na 415.714283 98.62 na 9.2 14.20 14.4750
MLP ZCU104-FINN INT4 50% na 2 na 0.018 na 105263.158 na 612.631580 98.62 na 9.2 14.20 14.3400
MLP ZCU104-FINN INT4 50% na 4 na 0.024 na 153846.154 na 895.384616 98.62 na 9.2 14.20 14.4100
MLP ZCU104-FINN INT4 50% na 8 na 0.040 na 186046.512 na 1082.790700 98.62 na 9.2 14.20 14.3850
MLP ZCU104-FINN INT4 50% na 16 na 0.080 na 213333.333 na 1241.599998 98.62 na 9.2 14.20 14.4325
MLP ZCU104-FINN INT4 50% na 32 na 0.128 na 226950.355 na 1320.851066 98.62 na 9.2 14.20 14.5125
MLP ZCU104-FINN INT4 50% na 64 na 0.256 na 235294.118 na 1369.411767 98.62 na 9.2 14.20 14.6400
MLP ZCU104-FINN INT4 50% na 128 na 0.512 na 239252.336 na 1392.448596 98.62 na 9.2 14.20 14.5875
MLP ZCU104-FINN INT4 50% na 256 na 1.024 na 241737.488 na 1406.912180 98.62 na 9.2 14.20 14.9800
MLP ZCU104-FINN INT4 50% na 512 na 2.048 na 242884.250 na 1413.586335 98.62 na 9.2 14.20 15.1125
MLP ZCU104-FINN INT2 50% na 1 na 0.008 na 125000.000 na 727.500000 98.49 na 9.2 12.76 13.0200
MLP ZCU104-FINN INT2 50% na 2 na 0.011 na 181818.182 na 1058.181819 98.49 na 9.2 12.76 12.9975
MLP ZCU104-FINN INT2 50% na 4 na 0.015 na 266666.667 na 1552.000002 98.49 na 9.2 12.76 13.0050
MLP ZCU104-FINN INT2 50% na 8 na 0.023 na 347826.087 na 2024.347826 98.49 na 9.2 12.76 12.9400
MLP ZCU104-FINN INT2 50% na 16 na 0.039 na 410256.410 na 2387.692306 98.49 na 9.2 12.76 12.9325
MLP ZCU104-FINN INT2 50% na 32 na 0.072 na 444444.444 na 2586.666664 98.49 na 9.2 12.76 13.0200
MLP ZCU104-FINN INT2 50% na 64 na 0.138 na 463768.116 na 2699.130435 98.49 na 9.2 12.76 13.0575
MLP ZCU104-FINN INT2 50% na 128 na 0.269 na 475836.431 na 2769.368028 98.49 na 9.2 12.76 13.0375
MLP ZCU104-FINN INT2 50% na 256 na 0.531 na 482109.228 na 2805.875707 98.49 na 9.2 12.76 13.1300
MLP ZCU104-FINN INT2 50% na 512 na 1.056 na 484848.485 na 2821.818183 98.49 na 9.2 12.76 13.1850
MLP ZCU104-FINN INT4 25% na 1 na 0.005 na 200000.000 na 372.400000 98.29 na 9.2 14.20 14.4225
MLP ZCU104-FINN INT4 25% na 2 na 0.008 na 285714.286 na 532.000001 98.29 na 9.2 14.20 14.3275
MLP ZCU104-FINN INT4 25% na 4 na 0.012 na 400000.000 na 744.800000 98.29 na 9.2 14.20 14.3250
MLP ZCU104-FINN INT4 25% na 8 na 0.016 na 470588.235 na 876.235294 98.29 na 9.2 14.20 14.3200
MLP ZCU104-FINN INT4 25% na 16 na 0.032 na 533333.333 na 993.066666 98.29 na 9.2 14.20 14.3525
MLP ZCU104-FINN INT4 25% na 32 na 0.064 na 561403.509 na 1045.333334 98.29 na 9.2 14.20 14.3350
MLP ZCU104-FINN INT4 25% na 64 na 0.128 na 576576.577 na 1073.585586 98.29 na 9.2 14.20 14.4150
MLP ZCU104-FINN INT4 25% na 128 na 0.256 na 589861.751 na 1098.322580 98.29 na 9.2 14.20 14.4675
MLP ZCU104-FINN INT4 25% na 256 na 0.512 na 595348.837 na 1108.539534 98.29 na 9.2 14.20 14.5300
MLP ZCU104-FINN INT4 25% na 512 na 1.024 na 598130.841 na 1113.719626 98.29 na 9.2 14.20 14.5950
MLP ZCU104-FINN INT2 25% na 1 na 0.002 na 500000.000 na 931.000000 98.04 na 9.2 13.86 14.1300
MLP ZCU104-FINN INT2 25% na 2 na 0.003 na 666666.667 na 1241.333334 98.04 na 9.2 13.86 14.0100
MLP ZCU104-FINN INT2 25% na 4 na 0.004 na 1000000.000 na 1862.000000 98.04 na 9.2 13.86 13.9800
MLP ZCU104-FINN INT2 25% na 8 na 0.007 na 1142857.143 na 2128.000000 98.04 na 9.2 13.86 14.0225
MLP ZCU104-FINN INT2 25% na 16 na 0.010 na 1600000.000 na 2979.200000 98.04 na 9.2 13.86 14.0600
MLP ZCU104-FINN INT2 25% na 32 na 0.019 na 1684210.526 na 3135.999999 98.04 na 9.2 13.86 14.0650
MLP ZCU104-FINN INT2 25% na 64 na 0.036 na 1777777.778 na 3310.222223 98.04 na 9.2 13.86 14.0050
MLP ZCU104-FINN INT2 25% na 128 na 0.068 na 1882352.941 na 3504.941176 98.04 na 9.2 13.86 14.1025
MLP ZCU104-FINN INT2 25% na 256 na 0.134 na 1910447.761 na 3557.253731 98.04 na 9.2 13.86 14.1450
MLP ZCU104-FINN INT2 25% na 512 na 0.265 na 1932075.472 na 3597.524529 98.04 na 9.2 13.86 14.1825
MLP ZCU104-FINN INT4 12.50% na 1 na 0.003 na 333333.330 na 222.999998 97.54 na 9.2 14.20 14.6500
MLP ZCU104-FINN INT4 12.50% na 2 na 0.004 na 500000.000 na 334.500000 97.54 na 9.2 14.20 14.6500
MLP ZCU104-FINN INT4 12.50% na 4 na 0.006 na 666666.670 na 446.000002 97.54 na 9.2 14.20 14.6500
MLP ZCU104-FINN INT4 12.50% na 8 na 0.009 na 888888.890 na 594.666667 97.54 na 9.2 14.20 14.6500
MLP ZCU104-FINN INT4 12.50% na 16 na 0.016 na 1000000.000 na 669.000000 97.54 na 9.2 14.20 14.6500
MLP ZCU104-FINN INT4 12.50% na 32 na 0.029 na 1103448.280 na 738.206899 97.54 na 9.2 14.20 14.6500
MLP ZCU104-FINN INT4 12.50% na 64 na 0.055 na 1163636.360 na 778.472725 97.54 na 9.2 14.20 14.6500
MLP ZCU104-FINN INT4 12.50% na 128 na 0.109 na 1174311.930 na 785.614681 97.54 na 9.2 14.20 14.6500
MLP ZCU104-FINN INT4 12.50% na 256 na 0.216 na 1185185.190 na 792.888892 97.54 na 9.2 14.20 14.6500
MLP ZCU104-FINN INT4 12.50% na 512 na 0.429 na 1193473.190 na 798.433564 97.54 na 9.2 14.20 14.6500
MLP ZCU104-FINN INT2 12.50% na 1 na 0.002 na 1000000.000 na 669.000000 96.85 na 9.2 13.85 14.1825
MLP ZCU104-FINN INT2 12.50% na 2 na 0.002 na 1000000.000 na 669.000000 96.85 na 9.2 13.85 14.0675
MLP ZCU104-FINN INT2 12.50% na 4 na 0.003 na 1333333.333 na 892.000000 96.85 na 9.2 13.85 14.1000
MLP ZCU104-FINN INT2 12.50% na 8 na 0.004 na 2000000.000 na 1338.000000 96.85 na 9.2 13.85 14.0200
MLP ZCU104-FINN INT2 12.50% na 16 na 0.006 na 2666666.667 na 1784.000000 96.85 na 9.2 13.85 14.0600
MLP ZCU104-FINN INT2 12.50% na 32 na 0.010 na 3200000.000 na 2140.800000 96.85 na 9.2 13.85 14.0000
MLP ZCU104-FINN INT2 12.50% na 64 na 0.019 na 3368421.053 na 2253.473684 96.85 na 9.2 13.85 14.0450
MLP ZCU104-FINN INT2 12.50% na 128 na 0.035 na 3657142.857 na 2446.628571 96.85 na 9.2 13.85 14.0550
MLP ZCU104-FINN INT2 12.50% na 256 na 0.068 na 3764705.882 na 2518.588235 96.85 na 9.2 13.85 14.0750
MLP ZCU104-FINN INT2 12.50% na 512 na 0.133 na 3849624.060 na 2575.398496 96.85 na 9.2 13.85 14.1200

Table A.17: Level-3 - Inference results ResNet50 TPU

hw quant prun net Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
EdgeTPU INT8 100% RN50V15 fast 1 na 40.44151 10.552 24.727 86.5264 202.7614 na na na na 1.1900
EdgeTPU INT8 100% RN50V15 fast 1 na 40.58504 10.589 24.640 86.8298 202.0480 na na na na 1.4900
EdgeTPU INT8 100% RN50V15 slow 1 na 42.35792 10.075 23.608 82.6150 193.5856 na na na na 0.9623
EdgeTPU INT8 100% RN50V15 slow 1 na 41.69559 7.111 23.983 58.3102 196.6606 na na na na 1.0200

Table A.18: Level-3 - Inference results ResNet50 NCS

hw datatype prun net Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
NCS FP16 100% RN50 na 1 59.0438 56.3189 16.9366 17.7560 130.750552 137.076320 75.172 92.01 0.53 1.2 1.873
NCS FP16 100% RN50 na 2 116.196 110.7510 17.2123 18.0586 132.878956 139.412392 75.172 92.01 0.53 1.2 1.899
NCS FP16 100% RN50 na 4 231.346 220.9780 17.3239 18.1367 133.740508 140.015324 75.172 92.01 0.53 1.2 1.925
NCS FP16 100% RN50 na 8 461.168 440.2860 17.3811 18.2055 134.182092 140.546460 75.172 92.01 0.53 1.2 1.925
NCS FP16 100% RN50 na 16 921.238 878.9500 17.4019 18.2391 134.342668 140.805852 75.172 92.01 0.53 1.2 1.975
NCS FP16 100% RN50 na 32 1840.64 1755.2800 17.4192 18.2663 134.476224 141.015836 75.172 92.01 0.53 1.2 2.000
NCS FP16 100% RN50 na 64 3673.91 3510.8800 17.4542 18.2647 134.746424 141.003484 75.172 92.01 0.53 1.2 1.975
NCS FP16 100% RN50 na 128 7340.08 7019.1000 17.4726 18.2716 134.888472 141.056752 75.172 92.01 0.53 1.2 2.000
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Table A.19: Level-3 - Inference results ResNet50 ZCU104 DPU

hw quant prun net Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
ZCU104-DPU INT8 100% RN50 na 1 17.96 14.9622 42.0869 66.8486 324.910868 516.071192 72.53 90.85 9.2 na 21.4111
ZCU104-DPU INT8 100% RN50 na 2 19.69 16.6310 101.8770 120.6120 786.490440 931.124640 72.53 90.85 9.2 na 25.7835
ZCU104-DPU INT8 100% RN50 na 3 25.37 22.4568 117.4590 133.3310 906.783480 1029.315320 72.53 90.85 9.2 na 26.3943
ZCU104-DPU INT8 100% RN50 na 4 33.46 30.4797 118.9440 131.8410 918.247680 1017.812520 72.53 90.85 9.2 na 26.5316
ZCU104-DPU INT8 100% RN50 na 5 40.28 37.2594 122.2610 138.2530 943.854920 1067.313160 72.53 90.85 9.2 na 26.8179
ZCU104-DPU INT8 100% RN50 na 6 47.95 45.2650 122.6650 136.8370 946.973800 1056.381640 72.53 90.85 9.2 na 26.8338
ZCU104-DPU INT8 100% RN50 na 7 56.74 53.6118 122.1980 135.7300 943.368560 1047.835600 72.53 90.85 9.2 na 26.8572
ZCU104-DPU INT8 100% RN50 na 8 64.88 62.2966 122.8050 135.2470 948.054600 1044.106840 72.53 90.85 9.2 na 26.8942

Table A.20: Level-3 - Inference results GoogLetNet TX2

hw datatype prun net Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
TX2 FP16 100% GNv1 maxp 1 9.93 6.16337 99.8245 169.3380 312.450685 530.027940 66.928 87.832 1.8 4.7 8.07
TX2 FP16 100% GNv1 maxp 2 17.06 10.61970 108.3600 192.3630 339.166800 602.096190 66.928 87.832 1.8 4.7 8.28
TX2 FP16 100% GNv1 maxp 4 30.77 18.94080 120.1170 212.5030 375.966210 665.134390 66.928 87.832 1.8 4.7 8.47
TX2 FP16 100% GNv1 maxp 8 59.85 35.75120 126.5290 224.5700 396.035770 702.904100 66.928 87.832 1.8 4.7 8.61
TX2 FP16 100% GNv1 maxp 16 112.43 68.79580 135.8450 232.7940 425.194850 728.645220 66.928 87.832 1.8 4.7 8.69
TX2 FP16 100% GNv1 maxp 32 234.31 135.18900 135.4680 236.7000 424.014840 740.871000 66.928 87.832 1.8 4.7 8.35
TX2 FP16 100% GNv1 maxp 64 507.56 267.32100 124.8020 239.2780 390.630260 748.940140 66.928 87.832 1.8 4.7 8.07
TX2 FP16 100% GNv1 maxp 128 1,090.82 532.17900 115.8900 240.6990 362.735700 753.387870 66.928 87.832 1.8 4.7 7.74
TX2 FP32 100% GNv1 maxp 1 14.66 10.24650 67.5150 100.0330 211.321950 313.103290 66.956 87.844 1.8 4.7 9.15
TX2 FP32 100% GNv1 maxp 2 25.75 18.04680 77.2597 112.3490 241.822861 351.652370 66.956 87.844 1.8 4.7 9.37
TX2 FP32 100% GNv1 maxp 4 47.16 32.91710 84.5094 121.9370 264.514422 381.662810 66.956 87.844 1.8 4.7 9.56
TX2 FP32 100% GNv1 maxp 8 84.80 62.40340 88.8812 128.5750 278.198156 402.439750 66.956 87.844 1.8 4.7 9.71
TX2 FP32 100% GNv1 maxp 16 174.47 121.70700 91.7645 131.8400 287.222885 412.659200 66.956 87.844 1.8 4.7 9.75
TX2 FP32 100% GNv1 maxp 32 338.86 238.44700 94.2997 134.2740 295.158061 420.277620 66.956 87.844 1.8 4.7 9.77
TX2 FP32 100% GNv1 maxp 64 716.89 473.49800 88.4895 135.1560 276.972135 423.038280 66.956 87.844 1.8 4.7 9.50
TX2 FP32 100% GNv1 maxp 128 1,501.33 938.02400 84.7963 136.3190 265.412419 426.678470 66.956 87.844 1.8 4.7 9.16
TX2 FP16 100% RN50 maxp 1 16.86 12.51590 58.9353 81.6541 454.980516 630.369652 75.142 92.118 1.8 4.7 9.38
TX2 FP16 100% RN50 maxp 2 28.82 21.01600 69.0865 96.1356 533.347780 742.166832 75.142 92.118 1.8 4.7 9.59
TX2 FP16 100% RN50 maxp 4 53.55 39.20770 74.5107 102.3050 575.222604 789.794600 75.142 92.118 1.8 4.7 9.71
TX2 FP16 100% RN50 maxp 8 102.85 75.83760 77.4877 105.7200 598.205044 816.158400 75.142 92.118 1.8 4.7 9.81
TX2 FP16 100% RN50 maxp 16 198.03 145.37300 80.7253 110.2530 623.199316 851.153160 75.142 92.118 1.8 4.7 9.79
TX2 FP16 100% RN50 maxp 32 384.42 283.94400 83.0158 112.5910 640.881976 869.202520 75.142 92.118 1.8 4.7 9.79
TX2 FP16 100% RN50 maxp 64 750.35 564.20200 85.2552 113.3900 658.170144 875.370800 75.142 92.118 1.8 4.7 9.81
TX2 FP16 100% RN50 maxp 128 1,505.03 1122.97000 85.9710 114.0330 663.696120 880.334760 75.142 92.118 1.8 4.7 9.86
TX2 FP32 100% RN50 maxp 1 26.60 22.11170 37.4611 45.8165 289.199692 353.703380 75.148 92.114 1.8 4.7 10.54
TX2 FP32 100% RN50 maxp 2 45.71 37.93000 43.6618 53.0236 337.069096 409.342192 75.148 92.114 1.8 4.7 10.83
TX2 FP32 100% RN50 maxp 4 86.50 72.20740 46.1865 55.4962 356.559780 428.430664 75.148 92.114 1.8 4.7 10.86
TX2 FP32 100% RN50 maxp 8 167.74 140.40100 47.6634 57.0089 367.961448 440.108708 75.148 92.114 1.8 4.7 11.01
TX2 FP32 100% RN50 maxp 16 323.77 270.67100 49.3899 59.1311 381.290028 456.492092 75.148 92.114 1.8 4.7 11.13
TX2 FP32 100% RN50 maxp 32 630.79 529.39800 50.6655 60.4808 391.137660 466.911776 75.148 92.114 1.8 4.7 11.15
TX2 FP32 100% RN50 maxp 64 1,237.70 1046.48000 51.6155 61.1055 398.471660 471.734460 75.148 92.114 1.8 4.7 11.24
TX2 FP32 100% RN50 maxp 128 2,566.91 2080.78000 49.8588 61.5141 384.909936 474.888852 75.148 92.114 1.8 4.7 10.88

Table A.21: Level-3 - Inference results GoogLeNet U96 DPU

hw datatype prun net Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
Ultra96-DPU INT8 100% GNv1 na 1 19.83 16.7913 50.4470 59.5752 157.899110 186.470376 69.41 89.31 2.5 6.8 8.02899
Ultra96-DPU INT8 100% GNv1 na 2 33.41 29.9483 59.9339 66.5095 187.593107 208.174735 69.41 89.31 2.5 6.8 8.23871
Ultra96-DPU INT8 100% GNv1 na 3 50.72 47.3482 59.6774 na 186.790262 na 69.41 89.31 2.5 6.8 8.33854
Ultra96-DPU INT8 100% GNv1 na 4 66.76 63.2061 59.7523 na 187.024699 na 69.41 89.31 2.5 6.8 8.23847
Ultra96-DPU INT8 100% GNv1 na 5 83.64 81.1080 59.5355 na 186.346115 na 69.41 89.31 2.5 6.8 8.22945
Ultra96-DPU INT8 100% GNv1 na 6 101.58 99.3080 57.3676 na 179.560588 na 69.41 89.31 2.5 6.8 8.22359
Ultra96-DPU INT8 100% GNv1 na 7 118.88 116.4740 58.8160 na 184.094080 na 69.41 89.31 2.5 6.8 8.49968
Ultra96-DPU INT8 100% GNv1 na 8 138.01 129.9520 59.4669 62.0088 186.131397 194.087544 69.41 89.31 2.5 6.8 8.23202
Ultra96-DPU INT8 100% RN50 na 1 42.35 39.2760 23.6524 25.4261 182.596528 196.289492 73.29 91.26 2.5 6.8 8.25072
Ultra96-DPU INT8 100% RN50 na 2 78.27 75.2752 25.5044 26.5641 196.893968 205.074852 73.29 91.26 2.5 6.8 8.35480
Ultra96-DPU INT8 100% RN50 na 3 117.24 114.3270 25.5303 26.2110 197.093916 202.348920 73.29 91.26 2.5 6.8 8.35110
Ultra96-DPU INT8 100% RN50 na 4 156.50 153.4290 25.5102 26.0135 196.938744 200.824220 73.29 91.26 2.5 6.8 8.35554
Ultra96-DPU INT8 100% RN50 na 5 195.55 192.3980 25.5336 26.0119 197.119392 200.811868 73.29 91.26 2.5 6.8 8.35559
Ultra96-DPU INT8 100% RN50 na 6 238.10 235.2840 25.1176 25.5712 193.907872 197.409664 73.29 91.26 2.5 6.8 8.36790
Ultra96-DPU INT8 100% RN50 na 7 277.54 275.0170 25.0032 25.6140 193.024704 197.740080 73.29 91.26 2.5 6.8 8.36065
Ultra96-DPU INT8 100% RN50 na 8 313.04 309.1250 25.3920 26.0528 196.026240 201.127616 73.29 91.26 2.5 6.8 8.36256
Ultra96-DPU INT8 80% RN50 na 1 38.72 35.6740 22.0335 27.9587 144.099090 182.849898 73.30 91.40 2.5 6.8 8.02220
Ultra96-DPU INT8 80% RN50 na 2 71.00 68.1823 28.1659 29.3968 184.204986 192.255072 73.30 91.40 2.5 6.8 8.28728
Ultra96-DPU INT8 80% RN50 na 3 106.40 103.5790 28.1043 28.9648 183.802122 189.429792 73.30 91.40 2.5 6.8 8.29845
Ultra96-DPU INT8 80% RN50 na 4 142.64 139.3070 28.1512 28.6587 184.108848 187.427898 73.30 91.40 2.5 6.8 8.31120
Ultra96-DPU INT8 80% RN50 na 5 177.23 174.5400 28.1485 28.7747 184.091190 188.186538 73.30 91.40 2.5 6.8 8.31911
Ultra96-DPU INT8 80% RN50 na 6 212.72 209.5120 28.0701 28.7418 183.578454 187.971372 73.30 91.40 2.5 6.8 8.32475
Ultra96-DPU INT8 80% RN50 na 7 248.48 244.8590 28.1002 28.7188 183.775308 187.820952 73.30 91.40 2.5 6.8 8.32831
Ultra96-DPU INT8 80% RN50 na 8 284.13 281.1500 28.1339 28.7024 183.995706 187.713696 73.30 91.40 2.5 6.8 8.33277
Ultra96-DPU INT8 50% RN50 na 1 29.87 26.9074 28.4839 37.2458 106.814625 139.671750 69.49 91.00 2.5 6.8 8.14657
Ultra96-DPU INT8 50% RN50 na 2 53.43 50.4831 37.2738 39.6200 139.776750 148.575000 69.49 91.00 2.5 6.8 8.27812
Ultra96-DPU INT8 50% RN50 na 3 80.15 77.4458 37.3879 38.6727 140.204625 145.022625 69.49 91.00 2.5 6.8 8.27480
Ultra96-DPU INT8 50% RN50 na 4 106.94 103.9280 37.3020 38.4609 139.882500 144.228375 69.49 91.00 2.5 6.8 8.28515
Ultra96-DPU INT8 50% RN50 na 5 134.06 130.7090 37.3153 38.6069 139.932375 144.775875 69.49 91.00 2.5 6.8 8.30613
Ultra96-DPU INT8 50% RN50 na 6 160.18 157.5860 37.2975 38.4986 139.865625 144.369750 69.49 91.00 2.5 6.8 8.29005
Ultra96-DPU INT8 50% RN50 na 7 186.78 184.1340 37.3479 38.4906 140.054625 144.339750 69.49 91.00 2.5 6.8 8.29093
Ultra96-DPU INT8 50% RN50 na 8 213.60 210.7190 37.2311 38.4158 139.616625 144.059250 69.49 91.00 2.5 6.8 8.29107

Ultra96-DPU INT8 30.00% RN50 na 1 24.75 21.7491 40.3083 45.9851 98.755335 112.663495 68.83 90.16 2.5 6.8 8.09695
Ultra96-DPU INT8 30.00% RN50 na 2 43.30 40.5016 46.1630 49.5801 113.099350 121.471245 68.83 90.16 2.5 6.8 8.25180
Ultra96-DPU INT8 30.00% RN50 na 3 65.10 62.6155 45.9442 48.1703 112.563290 118.017235 68.83 90.16 2.5 6.8 8.23384
Ultra96-DPU INT8 30.00% RN50 na 4 86.63 83.6273 46.0664 47.6412 112.862680 116.720940 68.83 90.16 2.5 6.8 8.23952
Ultra96-DPU INT8 30.00% RN50 na 5 108.52 105.4230 45.8889 47.8640 112.427805 117.266800 68.83 90.16 2.5 6.8 8.23772
Ultra96-DPU INT8 30.00% RN50 na 6 130.29 126.8330 45.7756 47.7383 112.150220 116.958835 68.83 90.16 2.5 6.8 8.24451
Ultra96-DPU INT8 30.00% RN50 na 7 151.77 149.9260 45.8651 47.7294 112.369495 116.937030 68.83 90.16 2.5 6.8 8.24192
Ultra96-DPU INT8 30.00% RN50 na 8 174.11 170.0950 45.6856 47.7208 111.929720 116.915960 68.83 90.16 2.5 6.8 8.23289
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Table A.22: Level-3 - Inference results GoogLeNet ZCU102 DPU

hw datatype prun net Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
ZCU102-DPU INT8 100% GNv1 na 1 9.63 6.65570 103.4310 150.3910 323.739030 470.723830 69.49 89.26 20.0 29.0 31.45
ZCU102-DPU INT8 100% GNv1 na 2 9.87048 6.84872 202.4760 290.4970 633.749880 909.255610 69.49 89.26 20.0 29.0 33.90
ZCU102-DPU INT8 100% GNv1 na 3 10.0871 7.17587 296.5550 424.3120 928.217150 1328.096560 69.49 89.26 20.0 29.0 36.40
ZCU102-DPU INT8 100% GNv1 na 4 11.5514 8.61315 341.3540 462.2150 1068.438020 1446.732950 69.49 89.26 20.0 29.0 37.90
ZCU102-DPU INT8 100% GNv1 na 5 13.533 10.36270 364.8680 529.5730 1142.036840 1657.563490 69.49 89.26 20.0 29.0 38.90
ZCU102-DPU INT8 100% GNv1 na 6 15.7128 12.83240 371.2730 544.7020 1162.084490 1704.917260 69.49 89.26 20.0 29.0 37.40
ZCU102-DPU INT8 100% GNv1 na 7 18.3435 15.44560 377.0100 536.2010 1180.041300 1678.309130 69.49 89.26 20.0 29.0 38.50
ZCU102-DPU INT8 100% GNv1 na 8 20.8812 17.82240 379.1090 535.4910 1186.611170 1676.086830 69.49 89.26 20.0 29.0 39.00
ZCU102-DPU INT8 100% RN50 na 1 17.78 14.81680 43.7478 67.6427 337.733016 522.201644 72.53 90.85 20.0 29.0 31.80
ZCU102-DPU INT8 100% RN50 na 2 18.59 15.56740 107.3730 127.6570 828.919560 985.512040 72.53 90.85 20.0 29.0 34.40
ZCU102-DPU INT8 100% RN50 na 3 20.69 17.61070 120.6650 169.7440 931.533800 1310.423680 72.53 90.85 20.0 29.0 37.50
ZCU102-DPU INT8 100% RN50 na 4 24.62 21.52290 161.7640 183.8050 1248.818080 1418.974600 72.53 90.85 20.0 29.0 39.70
ZCU102-DPU INT8 100% RN50 na 5 29.96 27.04730 165.9870 193.0190 1281.419640 1490.106680 72.53 90.85 20.0 29.0 40.10
ZCU102-DPU INT8 100% RN50 na 6 35.50 32.48100 167.6360 193.7870 1294.149920 1496.035640 72.53 90.85 20.0 29.0 40.30
ZCU102-DPU INT8 100% RN50 na 7 41.59 38.55100 168.1320 190.7860 1297.979040 1472.867920 72.53 90.85 20.0 29.0 40.50
ZCU102-DPU INT8 100% RN50 na 8 47.61 44.40620 167.2920 191.9080 1291.494240 1481.529760 72.53 90.85 20.0 29.0 40.60

Table A.23: Level-3 - Inference results MobileNetv1 TPU

hw datatype prun net Op mode batch lat-sys lat-comp fps-system fps-comp tp-system tp-comp top1 top5 [%] Base Pwr W Idle Pwr W Full Pwr W
TPU INT8 100% MNv1 slow 1 7.86 4.08249 127.256 244.949 145.07184 279.24186 69.5674 87.7058 0.253 0.253 0.462
TPU INT8 100% MNv1 fast 1 6.00 2.57047 166.533 389.034 189.84762 443.49876 69.5674 87.7058 0.253 0.253 0.532
TPU INT8 100% GNv1 slow 1 10.03 5.72131 99.741 174.785 312.18933 547.07705 69.2434 88.4458 0.253 0.253 0.463
TPU INT8 100% GNv1 fast 1 7.40 3.64852 135.087 274.084 422.82231 857.88292 69.2434 88.4458 0.253 0.253 0.538
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