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ABSTRACT

Two dimensional materials, such as graphene, MoS2 and hexagonal boron
nitride, show wide ranging electronic and mechanical properties which make
applications such as transistors, pressure sensors and protective coatings
possible. Solvents are an essential element in the production and processing of
these two-dimensional (2D) materials. Liquid phase exfoliation (LPE) is one
such solution-processing methods capable of industrial scale production. Here,
layers are separated by the application of external force. The solvent molecules
then prevent the resulting monolayers from reaggregation, stabilizing the layers
in the solvent. It is generally assumed that these solvents do not interact
strongly with the layer and so their effects can be neglected. Yet experimental
evidence has suggested that explicit atomic-scale interactions between the
solvent and layered material may play a crucial role in exfoliation and cause
unintended electronic changes in the layer.

Here we use modern computational tools such as density functional theory (DFT),
a powerful first-principles method, to study the role of solvent molecules in the
process of liquid phase exfoliation. Molecular dynamics simulations are then used
to calculate the dynamical properties of the system.

We show using DFT that the interaction between graphene or MoS2 with
individual solvent molecules is van der Waals (vdW) in nature, with negligible
charge transferred in between them. We use MD calculations to show that,
when graphene is immersed in a solvent, distinct solvation layers are formed
irrespective of the type of solvent molecule (i.e., whether polar or non polar)
due to these vdW interactions. We show that the formation free energies of
these solvation shells is favorable for all the molecules considered. However,
energetic considerations such as these cannot explain the experimental
solvent-dependence. Instead, kinetic effects can dominate. We find that
interfacial solvent molecules with high diffusion coefficients parallel to the
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graphene layer result in the lowest experimental concentration of graphene in
solution. This can be explained by the enhanced ease of reaggregation in the
high diffusion regime. Solvents with smaller diffusion coefficients correspond to
higher experimental graphene concentrations. In the low diffusion limit
however, this relationship breaks down. We suggest that here the concentration
of graphene in solution depends primarily on the separation efficiency of the
initial LPE step.

On intercalating group-1 metal ions into the layers, we show that the
spontaneous exfoliation and stabilization of separated layers is due to the
enhanced solvation energy of charged layers of graphene. When the similar ion
intercalation procedure for exfoliation of Group-VI transition metal
dichalcogenides (TMDs, MX2, where M=Mo, W and X = S, Se), they are
known to undergo charge induced transitions from semi-conducting H phases to
metallic T phases. However, it is difficult to experimentally decouple the effect
of composition-dependent phase transition barriers from indirect effects related
to the exfoliation process. Here, we study the energetics of transition between
the different structural polytypes of four group-VI TMDs upon lithium
adsorption. We find that both the activation barrier from the H phase to the
metallic phase in charged monolayers and the reverse barrier in neutral
monolayers are required to explain experimental results. The solution
processing in the presence of the ions can result in co-intercalation, i.e. the
intercalation of both the solvent molecule and the ions simultaneously. We
develop workflows to determine the most stable configuration when both
molecules and potassium ions interact with bilayer graphene. This work flow
can be further used to filter molecules which enhance molecule—ion
cointercalation in bilayer graphene.

The edges of 2D materials are highly reactive. We show that polar molecules
align in a bistable orientation along a graphene edge, and their orientation can
be switched using an external field. Experimental data shows that this effect
can be used to tune and switch the graphene resistance, and depends on the
type of molecule and the graphene termination. Using parameters extracted
from DFT, we use an Ising-like model and Monte Carlo simulations to determine
how intermolecular van der Waals interactions, dipolar interactions, molecule -
graphene interactions and the coupling of the molecular dipole to the external
field can be used to explain the experimental results.
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CHAPTER

1

INTRODUCTION

1.1 Two-dimensional (2D) layered materials

Two-dimensional materials have attracted considerable interest in the past few
years due to their unique geometry, mechanical and electronic properties, and
improvements in production techniques that make their industrial use viable.
These materials have a thickness of a single atom or a few atoms (typically 2-3).
Many of them occur naturally as bulk layered materials, where individual
monolayers are bound together via weak van der Waals forces. The most
well-known example of such a bulk layered material is graphite. This is made up
of atomically thin layers of carbon atoms, known as graphene. A STEM image
of a graphene cross section is shown in Fig. 1.1 [1]. In addition to graphite,
numerous other materials with two-dimensional or layered geometries have been
identified. These materials show a wide variety of structural, electronic and
magnetic properties. This makes them prime candidates for various
applications.

Although the existence of such stacked materials has been known for a long
time, interest in layered materials dramatically increased when individual layers
of graphene were shown to be stable after mechanical exfoliation from graphite
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1 Introduction 2

Figure 1.1: STEM of a cross section of graphite. Figure reproduced from [1].
Insert shows the AB stacking of layers in graphite.

[2]. High quality pristine layers of graphene isolated using this method have
unique mechanical and electronic properties. This includes the highest tensile
strength ever measured of over 130 GPa [3], as well as the lowest measured
resistivity at room temperature of approximately 10−6Ωcm [4]. The isolation of
monolayer graphene via the mechanical ‘scotch tape’ exfoliation method and the
initial characterization experiments resulted in the awarding of the 2010 Nobel
Prize to Andre Geim and Konstantin Novoselov “for groundbreaking
experiments regarding the two-dimensional material graphene" [5].

Shortly thereafter, various other layered materials were identified and
subsequently exfoliated. These materials demonstrate a wide variety of
electronic and mechanical properties. As a result, these monolayers can be used
for a variety of applications including transistors [6], transparent electrodes [7],
electromagnetic interference shields [8], sensors [9], batteries [10], catalysts [11],
enzyme sensors [12], solar cells [13], supercapacitors [14], battery electrodes [15]
and photodetectors [16]. Further applications for these monolayers are
continually being found. A recent application is in the field of
superconductivity: Superconducting behavior is observed when two layers of
graphene are rotated to specific angles (e.g. 1.1◦ - known as a magic angle) with
respect to each other [17]. Furthermore, heterolayers, which are comprised of
different layer types stacked on top of each other, can behave very differently to
what one might expect based on the individual layers. For example, monolayer
graphene/black phosphorus heterostructures demonstrate a large giant
magneto-resistance [18] and SnSe2 / WSe2 heterostructures demonstrate an
ultra high current on/off ratio of 106 [19].
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1.2 Large-scale production of 2D materials

Before these materials can be incorporated into devices, fabrication on a cost-
effective, industrial scale must be achievable. Although the scotch tape method
is capable of producing high quality layers, it is slow as each individual layer is
separated manually. As a result, large scale production is not achievable. Several
other methods were developed to produce individual monolayers. These methods
can generally be characterized as either ‘top-down’ or ‘bottom-up’. Bottom-up
methods comprise those which synthesize the layered material from atomic or
molecular precursors, such as chemical vapor deposition (CVD). As this method
assembles individual atoms or fragments into extended sheets, it provides an
opportunity to produce layers with a predetermined size and shape such as in
heterolayers [20] and nanoribbons [21]. Graphene layers as large as 300 × 30
cm2 have been grown using CVD techniques [22]. While offering a high degree of
atomic control, bottom-up methods require careful optimization for each material
considered, can contain wrinkles and are not scalable [22, 23, 24].

Top-down methods involve the extraction of individual layers from a parent
layered crystal. An example of this is the isolation of a graphene monolayer
from graphite by micro-mechanical cleavage (the scotch tape method) [5]. This
method relies on the fact that the intra–layer interaction energies between the
constituent atoms is much larger than the inter–layer van der Waals interactions
holding the layers together. While cleavage techniques have been optimized to
yield high quality 2D layers, they have a relatively low yield [5]. Other methods
of separation, including laser ablation [25] and spatial charge variation due to
laser pulses [26], have also been demonstrated. These methods suffer from the
same scaling problems as the micro-mechanical method because only one layer
is produced at a time.

In contrast, the liquid-phase exfoliation (LPE) of layered materials is a scalable
top-down method, capable of producing industrial quantities of layers at a low
cost [27, 28]. Using this method, sheets with lateral sizes as large as 5 µm have
been produced [29, 30, 31, 32]. Large shear forces, introduced in the presence of a
solvent through either sonication, high-shear mixing or wet-ball milling, are used
to overcome the van der Waals interactions binding the layers together [33]. The
solvent then stabilizes the resulting nanosheets, preventing their aggregation or
precipitation. The solvent plays a critical role, with the monolayer yield showing
a strong dependence on the type of solvent used. For example, N-Methyl-2-
pyrrolidone (NMP) is one of the best solvents for the exfoliation of graphite with
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yields as high as 19 wt.% [34], whereas hexane is one of the worst solvents for
graphite exfoliation with negligible yields. The optimal solvent also depends on
the type of layers to be exfoliated. For example, cyclohexanone is the best solvent
for the exfoliation of graphite, cyclohexyl-pyrrolidinone (CHP) is the best solvent
for the exfoliation of hexagonal boron nitride and DMSO is the best solvent for
the exfoliation of WS2 [28, 32]. Determining the optimal solvent is the focus of
much research.

The exfoliation process can be accelerated, and the yield enhanced, by introducing
excess charge on the layers. This can be achieved by the addition of ions such
as lithium or potassium to the solvent. The charge transferred from the ions to
the layers accelerates the process of layer separation and enhances the stability
of the layers suspended in the solution [35, 36, 37]. However, the addition of
excess charges also has unintended consequences. For example, in the case of
group-VI transition metal dichalcogenides (TMD) these excess charges can induce
structural phase transitions from a semi-conducting H-phase to a metallic T-phase
[11, 38, 39, 40, 41, 42]. These changes may not be desirable and maintaining
control over the process is difficult.

1.3 Predicting an optimal solvent for LPE

Predicting the optimal solvent to maximize the yield of the exfoliation process is
an active area of research. These attempts mostly rely on determining the optimal
solvent–layer interactions that will result in the maximum yield. This interaction
can be modeled quantitatively via quantities such as the surface tension/energy
of the solvent or the Hildebrand and Hansen solubility parameters. These blunt
methods, which model the solvent molecules as collective entities, have limited
success and hint at the need to understand the exfoliation process in detail at the
microscopic or atomic-level. Moreover, these methods assume that the process of
exfoliation is thermodynamically driven, and kinetic effects such as sedimentation
play a minor role.

Liquid phase exfoliation is a two step process. External forces are first used to
separate the layers. The exfoliated layers are then stabilized in the solvent.
Experimentally, developing an atomic level understanding of the process is
difficult as both steps occur simultaneously in the solvent. The exact effect of
the solvent on the both the exfoliation and stabilization steps is not well
understood. Solvent exchange methods, where different solvents are used in the
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exfoliation and stabilization steps, find that solvents which do not perform well
in exfoliating monolayers from the bulk material may perform very well in
maintaining a stable dispersion of already exfoliated monolayers. This clearly
demonstrates the fact that the solvent plays a different role in the two steps
[43, 44, 45].

Several open questions remain: The exact nature of the interface between the
solute and the solvent is unknown. Likewise, it is not known if the interactions at
the interface depend on bulk properties of the solvent such as its dipole moment.
While it is generally assumed that energetic considerations, such as the solvation
energy, dominate in stabilizing the exfoliated material, there is some indication
that kinetic effects may also play a role. However, the kinetic behavior of the
solvent at the interface is not well understood.

1.4 Computational modelling of optimal LPE

solvents

It is here that computational modeling and simulations are advantageous, as
they allow us to isolate and study the individual components of the system
systematically. Another advantage is that the simulated systems need not be
physically or experimentally realizable. For example, to determine the
interaction between the solvent and solute, we can simulate an isolated molecule
on a large sheet without defects and determine the nature of interaction
between the two. This system is not easily experimentally realizable due to the
difficulty in isolating an individual molecule and placing it precisely on a
defect-free monolayer.

Once the nature of the interaction is well understood, it becomes possible to
screen for optimal solvents to exfoliate a particular layered material.
Traditionally, the discovery of new materials and their production relied on
trial-and-error experimental work. Due to the development of accurate quantum
mechanical calculation methods, computational screening has become possible.
These methods have several advantages over the traditional experimental
method as they can be automated and require minimal human input. These
screening methods are trivially parallel and are only limited by the amount of
computational resources available.

Identification of exfoliable materials is one such example where computational
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screening was successfully used. Previously, suitable materials for exfoliation were
identified from crystallographic data. Acquiring this data can be expensive and
time consuming. To accelerate the discovery of promising layered materials for
exfoliation, Mounet et al. developed a method using predetermined van der Waals
radii and inter-atomic distances to automatically identify materials that can be
exfoliated into layers [46]. This method relies on accurate quantum mechanical
calculations using Density Functional Theory (DFT) to determine the geometry
and other structural properties. Haastrup et al. extended this, by attempting to
determine all stable two dimensional materials irrespective of the existence of their
bulk counter-parts. These stable structures can then be synthesized chemically
using ‘bottom-up’ methods such as CVD [47].

Finding optimal solvents for liquid phase exfoliation is a prime candidate for
computational screening. The inability to identify an optimal solvent for the
exfoliation of a particular material is the main limitation for the extensive use of
this process. Currently, the experimental procedure to identify suitable solvents
is slow and costly, requiring a large amount of human intervention. It typically
requires that data is acquired for tens of different solvents and the best-performing
solvents identified. Solvents with similar bulk properties, such as surface tension,
are then tested. This procedure is then repeated until the optimal solvent for
that particular layered material is found. Of course, there is no guarantee that
the best solvent will be found in this way.

A major advantage of computational screening in this context is that the
suitability of toxic solvents can be ascertained without having to test them in a
laboratory. NMP and cyclopentanone are common solvents for the exfoliation of
graphite and molybdenite, but are toxic for humans. Finding replacements for
these solvents will be necessary before LPE can become an industrially viable
production method of individual monolayers. Additionally, this method can be
used to accelerate the search for solvents with particular properties such as
those with low boiling points. Currently, many of the solvents used in the
exfoliation of graphite have very high boiling points. For example,
cyclopentanone has a boiling point of 131◦C, NMP has a boiling point of 202◦C
and DMF has a boiling point of 153◦C. As a result, it can be very difficult to
remove the solvent from the exfoliated materials. This limits their use in several
applications where pristine monolayers are required. The aim of computational
screening methods is not to completely replace experiments, but to replace the
trial-and-error experimental search.
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1.5 Importance of exposed layer edges

Realistic 2D materials contain exposed edges. These are highly reactive and can
play an important role in the exfoliation process. They can act as “wedging” sites,
where the solvent can pry the layers apart, facilitating their separation [48, 49].
Their high reactivity can also play an important role in some applications and
must be considered when designing, for example, gas sensors.

Typically, the edges are largely ignored in simulations. The layer is generally
modeled as a infinite periodic structure or as having passivated edges so that the
edge plays a minimal role in the simulation. In reality these idealized structures
are impossible to realize and the effect of the edge cannot be neglected.

Caridad. et al. demonstrated that the interaction between small polar molecules
and the edges of a graphene sheet has a measurable and switchable effect on the
graphene resistance [50]. When molecules adsorb on its edge sites, graphene shows
a bistable resistance behavior (hysteresis) that depends on the type of molecule
and the type of edge passivation. This originates in the induced charge density
on graphene due to the aligned dipole moment of the molecules. An external
field, applied with a gate, can be used to switch the resistive behaviour. In order
to optimize the performance of this device, a through understanding of the effect
of the graphene edge on the molecule behavior and vice versa is necessary.
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1.6 Thesis Organization

This thesis systematically investigates the nature of the interface between
layered materials and solvents, and determines how these atomic-scale
interactions play a role in the liquid phase exfoliation and subsequent
stabilization of layered materials. To do this, we primarily use density
functional theory and classical molecular dynamics.

Chapter 2 contains the underlying theory and simulation techniques used in this
Thesis. We give a brief overview of the Hohenberg-Kohn theorems and the
Kohn-Sham scheme. We discuss the practical implementation of the
Kohn-Sham scheme in each of the VASP, QuantumEspresso and CP2K codes.
We present the continuum solvent model, which is a hybrid model developed to
simulate liquid solvents. The molecular dynamics technique is introduced
together with the concepts of force fields, ensemble averages and thermostats.
Finally, we discuss methods to calculate the free energies of interaction using
alchemical analysis techniques, and to calculate diffusion coefficients using the
Smoluchowski equation.

In Chapter 3, we study the liquid phase exfoliation of pristine graphite and
MoS2 in detail. We start by determining the nature of the interaction between
individual solvent molecules and monolayers of graphene and MoS2. We do this
by calculating the potential energy surface (PES) of these molecules on the
surface using high throughput density functional theory calculations. We then
extend this investigation to consider how the bulk liquid solvent behaves in the
vicinity of a graphene monolayer. We calculate the thermodynamic and the
kinetic properties of the molecules using classical molecular dynamics. As we
are particularly interested in the behavior of the solvent directly at the
interface, we present the solvation structure, free energies of interaction and the
diffusion of molecules on the surface of graphene.

In Chapter 4, we discuss the ion-assisted exfoliation of layers. We use the
continuum solvation model to determine how the interlayer binding energies of
intercalated graphite depends on the presence of a solvent. We show that the
spontaneous disintegration of ion-intercalated layers is due to the enhancement
of the solvation energy as a result of the residual charge from the ions. We then
show that such an excess charge can induce a phase transition in group-VI
transition metal dichalcogenides, and discuss how this depends on the chemical
composition of the monolayer. Finally, we develop a method to determine the
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relative orientation of two layers of graphene, a solvent molecule and a
potassium ion. This method can be used to explore co-intercalation effects
which can occur in the salt-assisted exfoliation of graphite.

In Chapter 5, we consider explicitly how small molecules such as H2O and NO2

interact with the edge of a graphene sheet. We are particularly interested in
understanding the origin of a large and ambipolar charge bistability in graphene
found experimentally. First, we determine the ground state structure of these
molecules adsorbed on the graphene edge. We find that the ferroelectric-like
behavior of the molecules can be simulated using an Ising-model for molecular
dipoles, modified to account for hydrogen bonding and an interaction with an
external field. We show how the required parameters for this model can be
extracted from density functional theory calculations. From the Ising-model and
Monte-Carlo simulations we determine the relative importance of these
interaction terms to the experimental observation of hysteresis.

Finally, we conclude the thesis with a short summary of the work presented
here and discuss some outstanding problems that would benefit from further
investigation.
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CHAPTER

2

COMPUTATIONAL METHODS

The electronic properties of an arrangement of M atoms each at positions
R1,R2, ...,RM−1,RM and N electrons with coordinates r1, r2, ..., rN−1, rN is
described by the Schrödinger equation [51] and is given as,

Ĥ ψ(r1, ..., rN ,R1, ...,RM) = Eψ(r1, ..., rN ,R1, ...,RM) (1)

where Ĥ is the Hamiltonian of the system, E is the energy and
ψ(r1, ..., rN ,R1, ...,RN) is the wavefunction [52, 53]. Eq. 1 is an eigen problem
where E and ψ are the eigen values and eigen vector of the Hamiltonian Ĥ

respectively. The Hamiltonian Ĥ is the sum of the kinetic energy operator and
the Coulomb interaction potential of all the electrons and nuclei. It is given
as,

Ĥ = T̂e + T̂nuc + V̂e−e + V̂nuc−nuc + V̂e−nuc (2)

where, in atomic units, T̂e = −1
2

∑
i ∇2

i is the electron kinetic energy,
T̂nuc = −

∑
J

1
2MJ
∇2

J is the nuclear kinetic energy, V̂e−e = 1
2

∑N
i ,j ;i 6=j

1
|ri−rj |

is the

electron-electron Coulomb interaction, V̂nuc−nuc = 1
2

∑M
I ,J

ZJ ZI

|RI−RJ |
is the

11
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nuclear-nuclear Coulomb interaction and V̂e−nuc = −
∑N,M

i ,J
ZJ

|ri−RJ |
is the

electron-nuclear Coulomb interaction.

The complete Schrödinger equation described in Eq. 1 with Hamiltonian described
in Eq. 2 has 6M + 3N independent variables, where the factor of 6 (=3 × 2)
takes into account 3 spatial and 2 spin degrees of freedom for the electrons. This
equation can only be solved analytically for a one electron system [51] - for any
realistic system the number of variables is very large, making a numerical solution
intractable.

2.1 Born-Oppenheimer approximation

To make the numerical solution tractable a reduction in the number of variables
(degrees of freedom) is desirable. The first approximation that can be made is the
Born-Oppenheimer approximation [54]. In this, the mass ratio between nucleus
and electrons, which is of the order of 105, is exploited to decouple the nuclear
and electronic degrees of freedom.

The complete wavefunction ψ is written as a product of the nuclear and electronic
wavefunction, [55]:

ψ(rN ;RM) = φ[RM ](rN)u(RM) (3)

where u(RM) is the nuclear wavefunction and φ[RM ](rN) is a function of electronic
coordinates with the nuclear coordinates as a parameters. The electronic part
of the wavefunction is the solution of the system where the lattice is static with
the nuclei fixed at positions {RJ}. The Schrödinger equation for the static lattice
system is given as,[

T̂e + V̂ee + V̂e−nuc

]
φ[RM ](rN) = Eeφ[RM ](rN) (4)

Substituting approximations Eq. 3 and Eq. 4 in Eq. 1:

Ĥψ =
[
T̂e + T̂nuc + V̂e−e + V̂nuc−nuc + V̂e−nuc

]
φ[RM ](rN)u(RM)

=
[
T̂nuc + Ee + V̂nuc−nuc

]
φ[RM ](rN)u(RM)

= φ[RM ](rN)
[
T̂nuc + Ee + V̂nuc−nuc

]
u(RM)

−
∑

J

1

MJ

[
2∇Jφ[RM ](rN)∇Ju(RM) + u(RM)∇2

Jφ[RM ](rN)
]

(5)
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The final summed last therm is a result of the dependence of φ[RM ](rN) on the
nuclear coordinates {RJ}. The first order energy contribution of this term is:

δE =∫
dr dR φ∗[RM ](rN)u∗(RM)

∑
J

h̄2

2MJ

[
2∇Jφ[RM ](rN)∇Ju(RM)u(RM)∇2

Jφ[RM ](rN)
]

(6)

The first term in Eq. 6 vanishes for frozen nuclei as the integral results in terms
of form: ∫

drφ∗[RM ](rN)∇Jφ[RM ](rN) =
1

2
∇J

∫
dr
∣∣φ[RM ](rN)

∣∣2
=

1

2
∇Jne

= 0

(7)

In cases when the electrons are tightly bound to the nucleus, the second term in
Eq. 6 contributes approximately 1

MJ
Eke ≈ 10−5Eke , where Eke is the kinetic energy

of electrons. This contribution is small and can be neglected.

Finally, we can neglect the first order term in Eq. 6 and decouple the nuclear
degrees of freedom from the electronic degrees of freedom. If this term is neglected
then the total energy can be obtained by solving the equation:

[
T̂nuc + Ee + V̂nuc−nuc

]
u(RM) = Eu(RM). (8)

The set of equations given in Eq. 4, Eq. 8 and Eq. 3 together completely define
the wave function in the Born-Oppenheimer approximation.

2.2 Hohenberg – Kohn theorems

With the Born-Oppenheimer approximation the number of degrees for the
electronic problem is reduced to 6N. The reduced degrees of freedom are still
not numerically tractable and further approximations are necessary. One such
approximation is to remap the wavefunction problem into a electron density
problem. The electron density is defined as,

n(r) =

∫
φ∗(r1, r2, ..., rN−1, rN)φ(r1, r2, ..., rN−1, rN) dr2 ... drN−1 drN

=

∫
|φ(r1, r2, ..., rN−1, rN)|2 dr2 ... drN−1 drN

(9)
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and indicates the probability that an electron is present at position r . Irrespective
of the system size, only 3 independent spatial coordinate variables are required
to describe the electron density. For this re-mapping of the problem we must first
show that the Hamiltonian is a functional of electron density.

Clearly the wavefunction is a functional of the electron density and hence by
extension all the quantities that depend only on the electron wavefunctions,
namely the kinetic and electron-electron interaction energy terms in Eq. 4, are a
functional of the density. This functional is defined as:

F [n(r)] =
〈
φ
∣∣∣T̂e + V̂e−e

∣∣∣φ〉 (10)

The functional F [n(r)] is universal irrespective of the remaining electron-nuclear
term. The functional form of F [n(r)] is unknown and is a major hurdle to the
exact solution of Eq. 4.

The electron-nuclear interaction energy term depends on the nuclear positions and
the uniqueness of this potential was established formally by Hohenberg and Kohn
[56]. They showed that the external potential Ven is a unique functional of the
ground state density, i.e., every electron density corresponds to a unique external
potential. This can be shown by contradiction. Suppose a ground state electron
density n(r) corresponds to the wavefunction φ, energy E and external potential
Ven. If the external potential is not unique then there exists a corresponding
external potential V ′en and wavefunction φ

′ which results in same ground state
density n(r). Clearly, φ′ 6= φ if Ven − V

′
en 6= constant. The corresponding ground

state energy is

E
′

=
〈
φ
′∗
∣∣∣[Te + V

′

en + Vee

]∣∣∣φ′〉
=
〈
φ
′∗
∣∣∣[Te + Ven + Vee + V

′

en − Ven

]∣∣∣φ′〉
<
〈
φ∗
∣∣∣[Te + Ven + Vee + V

′

en − Ven

]∣∣∣φ〉
= 〈φ∗ |[Te + Ven + Vee ]|φ〉+

〈
φ∗
∣∣∣[V ′en − Ven

]∣∣∣φ〉
= E +

〈
φ∗
∣∣∣[V ′en − Ven

]∣∣∣φ〉
= E +

∫
d3r n(r)

[
V
′

en − Ven

]
(11)

Following the same arguments starting from non-primed quantities we can show
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that,

E = E
′

+

∫
d3r n(r)

[
Ven − V

′

en

]
(12)

Taking a sum of Eq. 11 and Eq. 12 gives,

E
′

+ E < E + E
′

(13)

which is a contradiction. Hence we can conclude that the external potential (Ven)

is a unique functional of the electron density (n(r)).

Hohenberg and Kohn also show that, for an external potential (Ven) and its
corresponding density n(r), the energy functional

EVen [n(r)] = F [n(r)] +

∫
Venn(r) d3r (14)

has a minima at the ground state density when the ground state is non-degenerate.
The minimization is over all densities where the total number of electrons are
conserved. i.e.

∫
n(r) d3r = N . The non-degeneracy condition can be removed

by using Levy’s constraint search formalism [57]. This constraint minimization
is equivalent to solving an Euler-Lagrange equation

δF [n]

δn(r)
+ Ven(r) = µ (15)

where µ is the chemical potential, which is the Lagrange multiplier introduced to
satisfy the electron conservation and is given as δE

δN
.

2.3 Kohn – Sham scheme

The Hohenberg and Kohn theorems show the existence of the universal
functional and show that the remapped density problem can be solved using a
variational minimization procedure over the density due to the presence of the
energy minimum at the correct density [56]. The exact form of the functional is
unknown and is an active area of research. The current widely used formalism
of density functional theory is based on a scheme proposed by Kohn and Sham
[58]. They re-mapped the interacting many electron problem into an effective
non-interacting problem. This remapped system has an electron density and
energy identical to the original system.

In the Kohn-Sham (KS) scheme the non interacting single electron wavefunction
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satisfies: [
− h̄2

2me
∇2 + v s

eff

]
φs

i = εiφ
s
i (16)

where εi is the i th eigenvalue corresponding to the single electron wavefunction
φs

i and v s
eff is the effective potential. For a N-electron system the equivalent

many-body electron density is recovered as

n(r) =
N∑

i=1

∫
d3r fi |φs

i |
2 (17)

where fi is the i th orbital occupation function.

Note the absence of an electron-electron interaction potential in Eq. 16. This is
because the system is non-interacting by definition. The electron-electron
interaction term from Eq. 4 is absorbed in the effective potential (v s

eff ). In the
Kohn-Sham scheme the non-interacting kinetic energy is defined as

Ts [n] =
{

Φ[n]
∣∣∣T̂ ∣∣∣Φ[n]

}
(18)

where Φ[n] denotes the minimization over the Kohn-Sham wavefunctions such
that Eq. 17 is satisfied and is different than the actual many-body kinetic energy.
The universal functional in Eq. 10 is reformulated as

F [n] = Ts [n] + U[n] + Exc [n] (19)

where, U[n] =
∫
d3r n(r)n(r

′
)

|r−r ′| is the Hartree energy and the rest of the “unknown”

parts of the functional are contained in the exchange-correlation energy Exc [n].
The corresponding exchange-correlation potential is defined as Vxc(r) = δExc

δn(r)
.

Comparing Eq. 16, Eq. 4 and Eq. 19, the effective potential v s
eff is given as,

v s
eff [n] = Ven(r) +

∫
d3r

n(r)

|r − r ′|
+ Vxc [n](r) (20)

The exchange-correlation energies are further broken into separate exchange and
correlation energies. The exact exchange energy is the difference between the
many-body electron-electron interaction energy and the Hartree energy,

Ex [n] =
〈

Φ[n]
∣∣∣V̂ee

∣∣∣Φ[n]
〉
− U[n] (21)

where, the first term is similar to Ts [n] and is minimized over the Kohn-Sham
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wavefunctions such that Eq. 17 is satisfied and is not the same as the actual
many-body electron-electron interaction energy. The exact correlation energy
given as,

Ec [n] = F [n]− Ts [n]− U[n]− Ex [n]

= (T [n]− Ts [n]) + (Vee [n]− U[n]− Ex [n])
(22)

The Kohn-Sham scheme described in Eq. 16 along with Eq. 20, Eq. 22 and Eq. 21
is exact and contain no approximations. The calculation of the exact exchange
energy and the exact correlation energy using the equations Eq. 22 and Eq. 21
is not possible as the actual form of these terms as a functional of the electron
density is unknown. In practice, approximate functionals based upon the electron
density must be introduced to describe these terms.

2.4 Practical implementation of Density

Functional Theory

2.4.1 Self Consistent Field

In the Kohn-Sham scheme described in Eq. 16, the effective Hamiltonian (Eq. 20)
is dependent on the electronic density via the effective potential and is solved self
consistently. A flow chart of the self-consistent scheme is shown in Fig. 2.1.

Another simplification is the use of pseudopotentials to represent the core
electrons and reduce the number of electrons in the system. The
pseudopotentials can be viewed as the combined effective potential of the
nucleus and the core electrons experienced by the valence electrons. With this
simplification the total many-body Hamiltonian in Eq. 2 can be written as

Ĥ = T̂e + T̂core + V̂e−e + V̂core−core + V̂e−core (23)

where the nucleus is replaced by the effective core and the corresponding Kohn-
Sham Hamiltonian is also modified. This modification is dependent on the basis
set used and is discussed in Section 2.4.2.

2.4.2 Basis functions

For numerical simplification and ease of numerical implementation on computers,
the single particle wavefunctions (ψi ) are represented as a linear combination of
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Guess initial electron density

System

Get effective potential (Eq. 20)

Solve Eq. 16 to get φs
i

Get total energy EKS

electron
density update

Is energy
converged?

Final energy and density

no

yes

Figure 2.1: Flowchart describing the self consistent Kohn-Sham scheme.

basis functions.

ψi (r) =
∑

c i
j bj (r) (24)

where c i
j are the expansion coefficients, bj are the basis functions and the sum is

over all basis functions in the basis set. Some of the popular basis functions used
are plane waves (PW), projected augmented waves (PAW) [59], gaussian functions
(GTO) [60], mixed gaussian–plane waves (GPW) [61] and numeric atomic orbitals
(NAO) [62]. The accuracy of the calculated density and energy is dependent on
the number of basis functions in the basis set and not on the type of basis function
used for the expansion. Some basis functions can have some advantages for the
system under consideration. For example, for non-periodic systems, finite basis
sets such as gaussian functions (GTO) or numeric atomic orbitals (NAO), reduce
the number of basis functions required compared to plane wave basis functions.
This reduces the amount of computer memory required.

If PWs are used, the wave-function can be expanded as a Fourier expansion over
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a set of plane-waves:

ψi (r) =
N∑
k

c i
ke

ιk.r (25)

where k represents the wave number of the plane wave and N represents the
number of plane waves. The number of basis functions (wave numbers k) required
can be infinite, so a cutoff is defined in terms of the largest wave number kmax or
kinetic energy Ecut of the plane wave used to represent the wavefunction. This
wave number and the kinetic energy are related by Ecut = h̄2

2me
|kmax |2.

The advantage of plane waves is the O{N log(N)} time required for the Fourier
transform using the fast fourier transform (FFT) algorithm. The Fourier
transforms also have several major advantages when calculating the various
energy contributions. One such advantage is the ease of calculation of the
Coulomb energy as it can be represented as a matrix multiplication in Fourier
space. Another advantage is achieved during the calculation of the kinetic
energy, as the derivative in real space becomes a multiplication by the wave
number in Fourier space. In theory, plane wave basis sets can be made highly
accurate by increasing the number of basis functions at the expense of
increasing the computational cost.

Practically, the direct use of plane waves is computationally prohibitive because
of the requirement to use a large energy cutoff Ecut to represent oscillations in
higher energy single electron wavefunctions near the nucleus. To over-come this
problem, while keeping the advantages related to plane waves, projector
augmented wave (PAW) basis functions use a hybrid of real space and frequency
dependent functions [59, 63]. The general idea is to represent the highly
oscillating region near the nucleus using real space functions and the smooth
part of the wavefunctions using the plane waves. This separation is not
straightforward because abrupt switching from real space to Fourier space will
not decrease the required plane waves appreciably. This is because the number
of plane waves required to accurately describe the step-like function at the
boundary is large.

The formulation of Blöchl [59] restricts the real space basis to an augmentation
sphere of radius r a

c around the nucleus. Outside this augmentation sphere the
wavefunction is represented using a smooth wavefunction

(
|ψ̃n〉

)
which can be

represented using plane waves. This smooth wavefunction is non-zero inside the
augmentation sphere, effectively decreasing the number of plane waves required.
The augmentation spheres are non-intersecting and all the quantities related to
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the augmentation spheres are represented on spherical coordinates in contrast to
the (pseudo) smooth wavefunction

(
|ψ̃n〉

)
which is represented on a regular 3D

Cartesian grid determined by the plane wave energy cutoff. In this formulation
the electron wavefunction can be written as

|ψn〉 = |ψ̃n〉+
∑

a

∑
i

(
|φa

i 〉 − |φ̃a
i 〉
)
〈p̃a

i |ψ̃n〉 (26)

where, a is the atom index running over all the atoms, i , n corresponds to the
quantum numbers l ,m, |ψn〉 is the total wavefunction, |ψ̃n〉 is the (pseudo) smooth
wavefunction, |φi〉 are the all electron partial waves, |φ̃i〉 are the (pseudo) smooth
partial waves corresponding to each all electron partial wave (|φi〉) and |p̃i〉 are
the smooth projector functions. Note that Eq. 26 can be re-written as a linear
transform,

|ψn〉 = T |ψ̃n〉 =

(
1 +

∑
a

T a

)
|ψ̃n〉 (27)

where T is a transformation operator which can be written as a sum of local
transformation operators T a acting inside the augmentation spheres.

The total wavefunction can be expanded as a linear combination of the all-electron
partial waves inside the augmentation sphere,

|ψn〉 =
∑

i

〈p̃a
i |ψ̃n〉|φa

i 〉, for r < r a
c (28)

The corresponding (pseudo) smooth wavefunction can be expanded as a linear
combination of the (pseudo) smooth partial waves inside the augmentation sphere
as

|ψ̃n〉 =
∑

i

〈p̃a
i |ψ̃n〉|φ̃a

i 〉, for r < r a
c (29)

and outside the augmentation sphere,

|φa
i 〉 = |φ̃a

i 〉, for r > r a
c (30)

The choice of the projector functions (p̃a
i ) and the partial waves (φ̃a

i , φa
i ) are
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Figure 2.2: Schematic of the basis functions represented in Eq. 31. Figure
reproduced from Ref. [65]

not unique and optimized data sets exist for each element of the periodic table
[59, 63, 64].

To visualize the expansion we can rewrite the Eq. 26 as,

|ψn〉 =

[
|ψ̃n〉 −

∑
a

∑
i

|φ̃a
i 〉〈p̃a

i |ψ̃n〉

]
+
∑

a

∑
i

|φa
i 〉〈p̃a

i |ψ̃n〉 (31)

where the quantity in square brackets is zero inside the augmentation sphere
due to the condition enforced in Eq. 29 and the last term adds the correct total
wavefunction inside the augmentation sphere due to the condition enforced in
Eq. 28. Outside the augmentation sphere the partial wave quantities cancel and
the total wavefunction is recovered from the smooth wavefunction due to the
condition enforced in Eq. 30. This expansion procedure can be visualized as
shown in Fig. 2.2.

Gaussian functions are another popular basis set to expand the wave functions.
With the use of Gaussian functions the advantages gained in calculating the
Coulomb potential are lost. To overcome this problem, the Gaussian and plane
wave (GPW) formalism uses an auxiliary plane wave expansion of the Gaussian
functions. The terms of total energy such as kinetic energy and core interaction
energies can be calculated analytically in this basis and are therefore
computationally cheap. Terms such as the Hartree energy and the exchange
correlation energy, which can be cheaply computed in Fourier space, are
calculated using the Fourier transforms of the charge density. The use of a plane
wave auxiliary basis again enforces the periodicity of the system which is not
required when only real space Gaussian functions are used.

In contrast to the PAW formalism, where the charge density or wavefunction
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is not available on the same grid without interpolation, in the GPW formalism
the charge density is available in both real and Fourier spaces. This has some
advantages in imposing boundary conditions while solving the Poisson equation
as discussed in Section. 2.7.

The specific choice of basis function is not important provided the basic set is
sufficiently large. In most cases, the choice of basis set affects only the
computational cost without affecting the results.

2.4.3 Exchange and correlation approximations

The approximations for the exchange correlation functional can be categorized
depending on the parameters used to arrive at the functional form. These
approximations can be categorized into a hierarchical structure depending on
the parameters used in the functional form, with each subsequent level adding
new parameters [66]. For example, the local density approximation (LDA) is
located on the first level. This level contains the set of all functionals that
depend only on the electron density at a point. The generalized gradient
approximation (GGA) is located on the next level. It contains the set of
functionals that depend on both the density and the gradient of the density at a
point [67].

It is expected that with the addition of new ingredients, the accuracy of the
approximation increases and by some level chemical accuracy would be reached.
In reality this does not occur. Extensive tests of functionals show that functionals
higher in the hierarchy do not necessarily result in increased accuracy [68]. This is
because within each level there is more than one functional form, each satisfying
various physical constraints. Because of this the choice of functional is system
dependent and a truly universal functional is not known.

LDA is a good choice for systems with slowly varying density. GGA is nonlocal in
density, so includes non-homogeneity on top of LDA. Both these functionals fail
to give reasonable results in systems with significant non-local contributions such
as those with significant van der Waals interactions. In cases like graphite, when
the interlayer binding is due to van der Waals attraction, the application of the
GGA functional fails to produce any attraction [69] whereas LDA underestimates
the attraction [70].
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2.4.4 Van der Waals correction

Attempts to include the van der Waals (vdW) contribution to the correlation
functional can be divided into two distinct categories. The first category is based
on calculating the pairwise CAB

6 coefficient between atom A and atom B. The
total vdW contribution is the sum of all such pairwise contributions and is added
to the total Kohn-Sham DFT energy as:

Etot = EKS−DFT + EvdW (32)

The semi-emperical correction due to Grimme et al. (Grimme-D2) is based on
pre-calculated static atomic polarizabilities to calculate the individual atomic C6

coefficients and cutoff radii R0 [71]. The total van der Waals contribution (EvdW )

is given as:

EvdW = −1

2

∑
A,B

fdamp(RAB ,R0
A,R0

B)C 6
ABR

−6
AB (33)

where RAB is the distance between atom A and atom B. The damping term
fdamp(RAB ,R0

A,R0
B) is included to ensure that the potentials do not diverge at very

short distances between two atoms. To obtain the pairwise interaction coefficient
C 6

AB and the equilibrium distance, R0
AB , individual contributions are mixed using

predefined rules. C 6
AB is obtained as the geometric mean of the individual atom

coefficients, i.e., C 6
AB =

√
C 6

AC
6
B . R

0
AB is given as the sum of corresponding cutoff

radii, i.e., R0
AB = R0

A + R0
B .

This method was then extended in the Grimme-D3 scheme where the pairwise
quantities are calculated from first principles to account for the local chemical
environment and an additional CAB

8 term is added to increase accuracy [72]. The
total van der Waals contributions (EvdW ) are given as,

EvdW = −1

2

∑
A,B

f 6
damp(RAB ,R0

A,R0
B)C 6

ABR
−6
AB +

∑
A,B

f 8
damp(RAB ,R0

A,R0
B)C 8

ABR
−6
AB (34)

where the damping functions f
6/8

damp(RAB ,R0
A,R0

B) are again added to prevent
divergences at small inter-atom distances. This damping function is further
optimised resulting in better performance for non-bonded atoms [73].

The Tkatchenko-Scheffler (TS) approach uses a pairwise contribution similar to
Eq. 33 to calculate the vdW energy contribution [74]. The calculation of pairwise



2 Computational Methods 24

C 6
AB coefficients is based on the London formula,

C 6
AB =

2C 6
AAC

6
AA[

α0
B

α0
A
C 6

AA +
α0

A

α0
B
C 6

BB

] (35)

where C 6
AA/BB is the pairwise coefficient of two atoms A or B and α0

A/B is the
static polarizability of atoms A or B. These homo-nuclear quantities are derived
from tabulated reference data for free atoms. To account for local chemical
environments, the effective coefficient C 6

AA,eff is derived from the free coefficients
(C 6

AA) as

C 6
AA,eff =

(
V eff

A

V free
A

)
C 6

AA (36)

where V eff
A is the effective volume of the atoms in the local environment which

is derived from the converged electron density. V free
A is the volume of the free

atoms. The cutoff radius R0 is also calculated from the free atom radius and the
effective volume as

R0
AA,eff =

(
V eff

A

V free
A

) 1
3

C 0
AA (37)

Eqns. 35, Eq. 36 and Eq. 37 assume that the contributions are isotropic. This
approximation was relaxed in the many-body dispersion energy method
(TS-MBD) by introducing a polarizability tensor instead of atomic polarization
[75]. This was calculated using the self-consistent screening equations of
classical electrodynamics. This is further improved upon using a
range-separated self-consistent screening of atomic polarizabilities. The range
separation increases the accuracy as part of the short range correlations are
already included in the traditional correlation functional [76].

The second category is based on deriving fully non-local functionals for
correlations starting from the fluctuation-dissipation theorem. Unlike the
pairwise functionals which are added after the self-consistent density is
determined in the Kohn-Sham scheme, these functionals are used at each step of
the self consistent iteration. The functional due to Dion et al. approximates the
total exchange-correlation energy by splitting it into a local term and a long
range non-local term [77]:
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Exc = EGGA
x + E LDA

c + E nl
c (38)

where EGGA
x is the GGA exchange energy, E LDA

c is the local correlation energy
approximated using the LDA correlation functional and E nl

c is the non-local
correlation functional.

It is written in the form

E nl
c =

1

2

∫
d3rd3r ′n(r)φ(r , r ′)n(r ′). (39)

where φ(r , r
′
) is the kernel function which can be pre-calculated for efficiency. The

exact functional form of exchange and correlation functionals used in Eq. 38 is an
active area of research with optimizations available for specific types of systems
[78, 79, 80]. In the absence of a universal functional for non-local correlation,
the choice of the functional is system dependent, with benchmarks indicating the
appropriate functionals for a given system [81, 82].

2.4.5 Periodic boundary correction

Due to the periodic nature of plane waves, the periodicity of the wavefunction is
enforced. To study lower dimensional structures such as slabs and molecules a
work-around to this enforced periodicity is to include a vacuum region in between
periodic images. The size of the vacuum region is chosen such that the potential
due to the electron-nucleus system is constant in the region between periodic
images, i.e. the periodic images are completely decoupled.

Obtaining a constant potential between periodic images is difficult when there is
a net dipole across the structure or the structure is not charge neutral. This is
because in these cases the potential is conditionally convergent depending on the
shape of the system under consideration. In the first case, the potential decays
at a slower rate requiring a larger amount of vacuum region. This increases the
computational cost. Several methods exist to decrease the amount of vacuum
required based on real space or Fourier space approaches. The general idea is to
compensate for the leading terms in a Taylor series expansion of the Coulomb
interaction. One of the simplest and more popular methods - inspired by the
Makov-Payne correction scheme [83, 84] - is to apply a reverse dipole in the
vacuum effectively canceling the effect of the dipole-dipole interaction between
periodic images. The exact functional form of the correction depends on the
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dimensionality of the system under consideration. This method is demonstrated
for a 2D molecular sheet in Fig. 2.3, which shows the average Hartree potential
perpendicular to the slab. The dashed line is the uncorrected potential showing a
gradient in the Hartree potential vH and the solid line shows the corrected Hartree
potential with a jump at the position of the external dipole. The correction
potential due to the applied external dipole, positioned in the red shaded area,
is shown by the dotted line. Using this correction the vacuum region cannot
be reduced arbitrarily as the correction accounts for only the leading terms in
the Taylor expansion. For example, in the correction schemes for slabs shown in
Fig. 2.3, up to quadrapole terms ( 1

R4 ) are corrected. The vacuum needs be large
enough that the next term ( 1

R5 ) becomes negligible. Note that the functional form
of the correction is dependent on the dimensionality of the system.

Figure 2.3: The average Hartree potential perpendicular to a 2-dimensional
system of NMP molecular slab demonstrating the periodic correction using the
Makov-Payne correction scheme [83, 84]. The dashed line is the uncorrected
potential showing a gradient in the Hartree potential vH , the dotted line indicates
the dipole electric potential due to the applied external dipole which is indicated
by the red shaded area and the solid line shows the corrected Hartree potential
with the jump at position of the external dipole.

Another special case occurs when the structure is not charge neutral. This
difficulty can be illustrated using the Fourier transform of Hartree potential
which is given by V (G ) = ρ(G)

G 2 , where G is the wavenumber of the plane wave.
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When the system is charge neutral ρ(G = 0) = 0, and the problems associated
with division by zero are avoided. However, when the system is not charge
neutral ρ(G = 0) 6= 0 and the Hartree energy approaches infinity due to division
by zero at G = 0. One way around this problem is to add a uniform background
charge making the unit cell charge neutral. This results in an ambiguous
definition of the reference energy of vacuum and a comparison between different
systems with different charges becomes difficult.

For some negatively charged systems we cannot have an arbitrarily large vacuum
to simulate isolated charged systems. For example, in the case of a negatively
charged slab a finite quantum well is formed and, for some particular value of
excess charge, the electrons will prefer to occupy the energy levels in the vacuum
formed as a result of this quantum well [85].

Similar to the dipole correction method, the necessary potential correction term
to the self consistent DFT potential can be calculated using the point counter
charge correction (PCC) method [86, 87]. In this scheme, with this background
charge added, we can obtain a closed form expression for the correction term
for a point-like charge in a cubic unit cell by solving Poisson’s equation. This
expression can be extended to a random distribution of charges by modeling
them as a collection of point charges which preserve the multi-pole moment of
the original charge distribution.

Other methods used for periodic corrections include the Martyna-Tuckerman
(MT) method for molecules (where the correction is applied in the Fourier
transform of the potential in contrast to the real space approaches discussed
above [88]), wavelet based methods in which the potential is derived in terms of
the charge density expanded in wavelet basis sets [89, 90], the effective screening
method (ESM) for slabs where the appropriate Green’s function for the Poisson
equation is derived to account for non-periodicity [91], terminated Coulomb
interaction methods where the Coulomb interaction potential is replaced by a
range limited function [92] so that pre-calculated potential correction terms are
not required, and real space Poisson solvers. In these cases the boundary
conditions for the Poisson equation can be explicitly enforced.
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2.5 Dielectric permittivity of layered

structures

In the presence of an external electric field the electron density migrates in
response to the applied field. For two dimensional systems, when the external
field is perpendicular to the layer, the local dielectric constant can be obtained
using density functional theory [93, 94]. The local permittivity is related to the
change in the local electron density in response to an external applied field
(Eext). It is given as,

ε(z) = 1 +
〈pind (z)〉
ε0 〈Eeff (z)〉

(40)

where 〈pind (z)〉 is the planar averaged local polarizability and 〈Eeff (z)〉 is the
effective electric field. This local permittivity profile (ε(z)) can be interpreted as
originating only from the local migration of electron density due to the applied
external field, while artificially fixing the nuclear positions. This is different from
the total permittivity where the movement of ions will also contribute. The
local polarizability can be directly calculated from the electron density with and
without external electric field. It is given as:

∂ 〈pind (z)〉
∂z

= −〈ρind (z)〉 =
−1

A

∫
plane

(ρE − ρ0)dx dy (41)

where 〈ρind (z)〉 is the planar average of the induced density in response to the
applied external electric field, A is the area of the periodic unit cell, ρE is the total
electron density when an external electric field is applied and ρ0 is the electron
density with no external electric field. The effective electric field (〈Eeff (z)〉) can
be calculated from the Hartree potential with and without an external electric
field. It is given as:

〈Eeff (z)〉 =
∂(
〈
V H

E (z)
〉
−
〈
V H

0 (z)
〉

)

∂z
(42)

where
〈
V H

E (z)
〉
and

〈
V H

0 (z)
〉
are the planar averaged Hartree potential with and

without external applied electric field, respectively. The procedure to derive the
relative permitivity is only valid for isolated systems. This constraint is enforced
in calculating the Hartree potential used in Eq. 42 by including the periodic
boundary correction to the Hartree potential discussed in Section. 2.4.5.
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Figure 2.4: Pictorial representation of transition energy barrier and the nudged
elastic band (NEB) method.

2.6 Transition path calculations

Of all the spatial arrangements for a set of atoms, the stable configurations
present local energetic minima with respect to changes in the atomic
coordinates. The most stable configuration (global minimum) is the
configuration with the lowest energy. This global minimum can be manipulated
via various external perturbations such as temperature, pressure or
charge.

Transitions between stable configurations proceed via intermediate
configurations which are not stable. The total instantaneous energy required for
the transition is the difference between the energy of the intermediate
configuration with maximum energy and the starting configuration. This is also
known as the barrier energy Eb. The rate of transition between the
configurations is given as,

R ∝ e
Eb

kbT (43)
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where kb is the Boltzmann constant and T is the temperature. Because of the
exponential dependence on the barrier, the path followed is the one with the
lowest energy barrier which belongs to the saddle point with respect to the
atomic coordinates. This saddle point can be calculated using the nudged elastic
band method (NEB) [95], or the chain method. In the elastic band method the
intermediate configurations are connected by springs which store the energy and
constrain the configurations from collapsing to the nearest minimum. This
ensures a uniform distribution of intermediates as shown in Fig. 2.4.

The maximum energy configuration can be obtained using geometry optimization
to minimize the forces on each configuration, where the forces are modified to
account for the added springs. The minimization over the usual KS-DFT forces
(Fi ) is replaced by a minimization over effective forces on configuration i . This is
given by:

min[Fi ]→ min[F
s‖
i + F⊥i ] (44)

where F
s‖
i is the spring force parallel to the transition path and F⊥i is the force

of the configuration parallel to the transition path. The equally spaced
configurations obtained using this minimization along the transition path can
then be used to obtain the energy barrier for transition. One disadvantage of
this method is that the presence of the maximum energy configuration is not
guaranteed. One way to get around this is to fit a function to the points, the
maxima of the function is then the energy barrier.

To guarantee the presence of a maximum in the energies of configurations the NEB
procedure can be modified such that the minimization of the spring-dependent
force on the maximum energy image given in Eq. 44 is replaced with

min[Fmax ]→ min[Fmax − 2F ‖max ]

→ min[−F ‖max + (Fmax − F ‖max )]
(45)

Here, Fmax is the total force on the maximum energy configuration and F
‖
max is

the force parallel to the transition path on the maximum energy configuration
[96]. From the last line in Eq. 45 it can be concluded that the minimization of
force will move the configuration up in the potential energy surface parallel to
the transition path and down the potential energy surface perpendicular to the
path. This method is also known as climbing image - nudged elastic band method
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(CI-NEB).

2.7 Field effect transistor

The field effect transistor typically consists of a gate which controls the
current–voltage characteristic of the device via the application of a voltage.
This gate voltage results in an external field leading to movement of electrons.
The accumulation/depletion of electrons can be measured as a change in the I-V
characteristic curve of the device.

Typically the gate is separated from the device via an insulating layer which acts
as a dielectric intermediate layer. The gate, the insulating layer and the device
can be modelled as a capacitor where the gate is one terminal and the bulk device
is another terminal. Within this picture the gate voltage and the induced charge
are related via the capacitor equation given as,

Qeff = Ceff Vg (46)

where Qeff is the effective charge that is rearranged, Ceff is the effective
capacitance and Vg is the applied gate voltage. To simulate the gate-like
behavior within DFT, two approaches have been introduced: the first relies on
controlling the charge (Qeff ) [97] and the second relies on controlling the
external gate voltage (Vg ) [98].

Both these approaches enter via the Hartree potential, which is a function of the
electron density in the unit cell. The Hartree potential satisfies the generalized
Poisson equation given as

−∇ · (ε(x)∇vH(x)) = 4πn(x) (47)

where x is the spatial variable, ε(x) is the spatially dependent dielectric constant,
vH is the Hartree potential and n(x) is the electron density. The solution to the
second order differential equation requires defining boundary conditions.

Within the first approach the charge is introduced as an extra electron density
added to the unit cell. The effect of the gate is introduced as Dirichlet (constant
potential) boundary conditions on one side of the device and von Neumann (no
potential gradient) boundary conditions on the other side of the device to mimic
vacuum. The insulator-like behavior is introduced via a dielectric region between



2 Computational Methods 32

Figure 2.5: (a) Hartree potential for device shown in (b) for different dielectric
regions in between the gate and the graphene layer. Figure reproduced from
Ref. [97]

the device and the enforced boundary conditions. A device simulated using this
approach is shown in Fig. 2.5. This device consists of a graphene layer and a
dielectric region as shown in the insert.

Within the second approach the relative voltage is fixed by applying constraints
to the Hartree potential in the unit cell during the solution of the Poisson
equation given in Eq. 47. To decouple the periodic images, von Neumann
boundary conditions are applied to the edge of the unit cell to mimic vacuum.
A device simulated using this approach is shown in Fig. 2.6. This device
consists of a graphene nanoribbon with edge-adsorbed water molecules
sandwiched in between a dielectric region as shown in the insert. In this case a
voltage of 10 V is applied to the bottom the dielectric region (blue) and a
voltage of 0 V is applied to the top of the dielectric region. The applied gate
region is shown by the red line.

2.8 Continuum solvation model

Solvation describes the interaction between solute and solvent in a solution.
This interaction can be stabilizing (favorable solute-solvent interaction) or
non-stabilizing (unfavorable solute-solvent interaction). In order to classify a
particular solute-solvent interaction as favorable or unfavorable we need to
calculate the free energy of solvation, ∆G sol . It is defined as:

∆G sol = Gsolvent − Gvacuum
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Figure 2.6: Hartree potential is for device where a graphene nanoribbon with
edge-adsorbed water molecules sandwiched in between a dielectric region. A
voltage of 10 V is applied to the bottom of the dielectric region (blue) and a
voltage of 0 V is applied to the top of the dielectric region.

where Gsolvent is the free energy of the solute in solvent and Gvacuum is the free
energy of the isolated solute in vacuum. This solvation free energy can be
calculated by either an explicit solvation model where we explicitly include each
solvent molecule along with the solute in the simulation or by an implicit
solvent model where we treat the solvent molecules as a continuous dielectric
which is dependent on the solute electron density.

Explicit ab-initio modeling of solute particles in solvent molecules is
computationally prohibitive in some cases because of the large unit cell sizes
needed and the requirement to sample a large number of different
configurations. However, if the molecule interacts with the solute predominantly
via Coulomb-like interaction, we can use an implicit solvation model. Here, we
model the solvent semi-classically as a continuous polarizable medium in which
the solute particles are present. This is the polarizable continuum model (PCM)
originally proposed by Tomasi and co-workers [99].

In the self-consistent continuum solvation (SCCS) model described below [87],
a key assumption is that the dielectric medium self-consistently depends on the
electronic density of the solute:

ε(~r) = ε(ρelec(~r))

Far from the solute, the dielectric constant is equal to the bulk dielectric constant
(ε) of the solvent - emulating free solvent - and there is no polarization charge.
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Inside the solute, all the electrons are taken into account explicitly in the Kohn-
Sham energy calculation. As a result, the dielectric constant is set equal to 1
and there is no polarization charge. However, at the boundary of the solute and
the solvent, there is an ambiguous region where the solute and solvent electron
densities have no independent identity, creating partially bound electrons. Here,
we assume that the dielectric constant is dependent on the solute electron density.
This dielectric constant will smoothly vary between 1 and the bulk dielectric
constant (ε). Loosely speaking, the value of the dielectric constant in the region
indicates how “solute-like” the electron density in that region is.

To summarize, the electron density dependent dielectric constant ε(ρelec(~r)), of
the solvent is defined as:

ε(ρelec(~r)) =


1, if ρelec > ρmax

s(ρelec), if ρmin < ρelec < ρmax

ε, if ρelec < ρmin

where s(ρelec) is the shape function, which defines the smooth variation of the
dielectric constant at the boundary between the solute and solvent. It is a function
of the bulk dielectric constant (ε) of the solvent and the density parameters, ρmin

and ρmax , which define the bulk “solute-like” and bulk “solvent-like” density values,
respectively.

The solvation free energy (∆G sol ) within the SCCS model is given by:

∆G sol = ∆G el + ∆G cav + ∆G rep + ∆G disp + P∆V (48)

The first term in Eq. 48 accounts for the electrostatic effects while the remaining
terms account for non-electrostatic effects. Here:

• ∆G el accounts for the electrostatic interaction between the solute and
solvent.

• ∆G cav accounts for the energy required to create a cavity in the solvent in
which the solute is placed. This process is independent of the nature of
solute and depends only on its geometry.

• ∆G rep accounts for the short range repulsion due to the Pauli exclusion
principle.

• ∆G disp accounts for the van der Waals dispersion interaction between the
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solute and the solvent.

• P∆V accounts for the change in volume of solvated system.

Each of these terms will be discussed below.

2.8.1 Electrostatic contribution to solvation

For a solute embedded in an continuous dielectric, the total electrostatic potential
(φtot(r)) can be determined by the standard Maxwell equation:

∇.~D(~r) = ρsolute(~r) (49)

where D(r) is the displacement field and ρsolute is the solute charge density which
is equal to the sum of the electron charge density (ρelec) and the ionic charge
density (ρions) of the solute. The displacement field D(~r) is defined as:

~D(~r) = ε0
~E (~r) + ~P(~r) = ε(~r)~E (~r) (50)

where ~E (~r) is the electric field and ~P(~r) the polarization. The total electrostatic
potential (φtot(~r)) is a solution of the Poission equation:

∇ε(ρelec(~r))∇φtot(~r) = −ρsolute(~r)

Using Eq. 50, this can be reformulated to a vacuum-like Poission equation:

∇2φtot(~r) = −(ρsolute(~r) + ρpol (~r))

where the polarization charge density (ρpol (~r)) is given by,

ρpol (~r) = −∇.~P(~r) = ∇.
(
(ε(ρelec(~r))− 1)∇φtot(~r)

)
Using this self-consistent electrostatic potential (φtot(~r)), the electrostatic energy
due to this potential can be defined as:

E el =
1

2

∫
~E (~r).~D(~r) d~r

which can be further simplified into an expression with known quantities, namely
φtot(~r) and ε(ρelec(~r)):
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E el =
1

2

∫
ε(ρelec(~r))|∇ φtot |2 d~r

This can be decomposed into two components:

E el = E solute + E pol

where the polarization electrostatic energy (E pol ) is the electrostatic interaction
energy between the polarization charge and the electrostatic potential due to the
solute charge density in vacuum. It is defined as:

E pol =
1

2

∫
ρpol (~r)φsolute(~r)d~r

The solvation terms [100] in the Kohn-Sham density functional theory
formalism can be formally derived from the total thermodynamic free energy
within the Born-Oppenheimer approximation using Levy’s constrained search
algorithm [101]. The Kohn-Sham energy expression is given as:

E tot [ρelec , ρions ] = (E tot [ρelec , ρions ])solute + E pol [ρelec , ρions ]

In practice, the polarization charge density need not be calculated explicitly.
Instead, the total Kohn-Sham energy can be rewritten as:

E tot [ρelec , ρions ] = E kin[ρelec ] + E el [ρelec , ρions ] + E xc [ρelec ]

where E kin[ρelec ] is the kinetic energy of the non-interacting solute electrons,
E xc [ρelec ] is the exchange-correlation energy of the solute electrons and E el is the
total electrostatic energy.

Using this total energy, the electrostatic solvation free energy ∆G el (ε0, ρmin, ρmax ),
(the first term in Eq. 48) can be calculated as the difference between the ab-initio
energy in vacuum and solvent. The entropic change due to the change in geometry
of the solute in gas and in solution is neglected as it is very small.

2.8.2 Non-electrostatic contributions to solvation

The non-electrostatic terms in Eq. 48 all depend on the nature of the cavity
formed by the solute in the solvent, and in particular on ν, the ‘quantum volume’
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occupied by the solute charge density, and the surface area of this volume, S
[102].

The cavitation energy is the free energy required to create a cavity around the
solute in the bulk solvent. Uhlig initially proposed that the work required to
produce the cavity could be expressed as a product between the surface tension
of the solvent and the surface area of a cavity [99, 103]:

∆G cav = γS

The repulsion (∆G rep) and dispersion (∆G disp) terms are assumed to depend
linearly on the surface area and quantum volume, respectively:

∆G rep + ∆G disp = αS + βν

where the parameters α and β are solvent specific fitting parameters.

The final expression for the free energy of solvation, ∆G sol , given in Eq. 48 can
be rewritten as:

∆G sol = ((E tot)solution − (E tot)vacuum) + γS + αS + βν + P∆V

where (E tot)solution/vacuum is the DFT energy calculated in solution/vacuum.

The final term in Eq. 48, P∆V , is negligible for the systems under consideration
here. As we always consider the difference in solvation energy between layered
slabs of different thickness when calculating the binding energy, the
volume-dependent terms cancel and so can be safely ignored. This is also true
for the βν term.

α and γ both depend linearly on the surface area of the cavity and, in practice,
are combined into one adjustable parameter (γ + α). However, α is usually very
small compared to γ, i.e., α << γ, so this term is referred to only as the surface
tension. ρmin and ρmax are also tunable parameters, here fixed to 0.0001 and 0.005,
respectively.

An important thing to note is that the polarization charges also need to be
included in the periodic boundary corrections described in Section. 2.4.5,
especially for calculations involving anions [104].
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2.9 Dynamics

Properties of a system such as diffusion and solvation depend of the collective
motion of more than one nucleus at a given temperature (T). Within the Born-
Oppenheimer approximation discussed in Section. 2.1 the motion of nuclei can
be derived using the nuclear part of the total Hamiltonian given in Eq. 8. The
nuclear part of the Hamiltonian can be rewritten in the form

H = T̂nuc +
[
Ee + V̂nuc−nuc

]
=
∑

I

p2
I

2MI
+ V ({RI}) (51)

where pI is the momentum of nucleus I and V ({RI}) is the potential energy
function dependent on all the nuclei. The equation of motion corresponding to
the Hamiltonian in Eq. 51 for the nuclei is given as

α̇I =
∂H

∂pαI
=

pαI
MI

= vαI

ṗαI = − ∂H
∂αI

= −∂V ({RI})
∂αI

= FαI = MIa
α
I

(52)

where αI ∈ {xI , yI , zI} is the position of nucleus I , pαI is the momentum of nucleus I
in direction α, FαI is the force on nucleus I in direction α and aαI is the acceleration
of nucleus I in direction α. Eq. 52 corresponds to Newton’s equation of motion
for the nuclei [105]. The flowchart showing an implementation of Eq. 52 is shown
in Fig. 2.7.

The motion depends on the electrons of the system via the electronic energy
(Ee) which can be obtained by solving the electronic equation in Eq. 4 using
DFT approximations. In this scheme, the force FαI corresponds to the
Hellmann-Feynman forces and is also known as Born-Oppenheimer ab-initio
molecular dynamics (BO-AIMD).

In some cases the solution of the electronic equation in Eq. 4 is computationally
prohibitive using any of the available methods. In such cases the potential
V ({RI}) is approximated using a combination of rules based on the relative
orientations of nuclei. These rules are also known as force fields. This method of
potential approximation without the exact solution of electronic Hamiltonian is
known as classical molecular dynamics (MD).
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Initialize the positions
and velocity (t=0)

System

Get forces on each nucleus (t)

Evolve nuclear posisions
using Eq. 52 (t → t + ∆ t)

Analyse the new
positions and velocities

loop

Timestep
t < T?

Done

yes

no

Figure 2.7: Typical flow chart of molecular dynamics calculations.

2.9.1 Integrating the equations of motion

The nuclear positions are evolved using a finite difference approximation of Eq. 52.
The simplest form of this finite difference algorithm can be derived using the
Taylor series expansion of position. For small timestep (δt) the Taylor series
expansion of position around current time (t) is given as,

r(t + δt) = r(t) + v(t)δt +
1

2
a(t)δt2 +O(δt3) (53)

where r(t + δt) is the position of particle at time t + δt, v(t) is the velocity at
time t and a(t) is the acceleration at time t. Increasing the accuracy of Eq. 53
requires higher order derivatives which are not directly available. The accuracy
of this expansion method can be trivially extended by considering both forward
expansion given in Eq. 53 and reverse expansion given as,

r(t − δt) = r(t)− v(t)δt +
1

2
a(t)δt2 +O(δt3) (54)
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Summing Eq. 53 and Eq. 54 we get the position at time t + δt as,

r(t + δt) = 2r(t)− r(t − δt) + a(t)δt2 +O(δt4) (55)

which introduces an error of O(δt4) in comparison to O(δt3) by direct Taylor
expansion [106]. Another advantage of using Eq. 55 is that the position is
computed in terms of positions and acceleration which are directly available
quantities. Note the velocity can also be obtained using a similar finite
difference method and has no effect on the actual trajectory. The calculated
velocity at time t + δt can be obtained with an minimum error of O(δt2)

as,

v(t + δt) =
r(t + δt)− r(t)

δt
(56)

which requires storage of two positions at times t + δt and t. The precision can
be improved (O(δt3)) for time t which is a time step behind the position as,

v(t) =
r(t + δt)− r(t − δt)

δt
(57)

This requires the storage of three positions at times t + δt, t and t − δt. The
storage problem can be improved using the velocity Verlet scheme which is
equivalent to Eq. 53 terminated at the second order term for position and the
velocity. It is calculated as

v(t + δt) = v(t) +
1

2
[a(t) + a(t + δt)] δt (58)

A direct implementation of this equation requires the storage of acceleration at
two different time steps which is avoided in the three step process [107]. The
three steps velocity Verlet scheme is,

1. evolve velocity by half time step: v(t + 1
2
δt) = v(t) + 1

2
a(t)δt

2. evolve positions by complete time step: r(t + δt) = r(t) + v(t + 1
2
δt)δt

3. evolve velocity by half time step v(t + δt) = v(t + 1
2
δt) + 1

2
a(t + δt)δt

where the storage of quantities at only one time is necessary. The choice of time
step δt is important and is dependent on the mass of the atoms in the simulation.
Atoms with lower mass generally requires a lower time step as compared to heavy
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atoms.

2.9.2 Force Field

The force fields are designed to reproduce properties such as density, bond
energies, vibrational frequency, binding energies and volume. The design of
force fields involves two steps: the first is to determine the functional form of
the force field and second is to fit the parameters to produce experimental data.
In some cases, in addition to the observable properties, various quantities
derived from quantum mechanical calculations are also used as target quantities
to fit.

The choice of force field is not unique and generally depends on the quantity
that is calculated in the MD simulation. For example, if reproducing the density
or the volume of organic molecular solvents is desired then OPLS-AA force
fields can be used [108]. If determining properties depending on the
polarizability of water is important then the TIP4P force field can be used
[109]. If accurate bond dissociation is required then the reaxFF force field can
be used [110]. In some cases, such as molecular solvent mixtures, more than one
type of force field is needed to model the different types of molecules and
inter-molecule interactions.

Recently, quantum mechanical force fields have been developed, in which the force
field is fitted to reproduce quantum mechanical calculations. The inputs for such
force fields are bi-spectrum components which represent the local environment of
the atoms on a 4-dimensional sphere [111]. As these force fields replicate quantum
mechanical calculations, typically DFT, the approximations used to calculate the
target quantities are inherent in the force field. This could be a problem if there
is significant van der Waals or hydrogen bonding contributions, as inaccurate
descriptions of these quantities will result in incorrect volumes or densities.

In the case of organic liquids the ‘Optimized Potentials for Liquid Simulations’
(OPLS) force field reproduces the correct bulk properties and intermolecular
interactions [108]. In the OPLS force field the atoms are modeled as point
charges. The total energy as a function of nuclear positions is given as,

E
(
rN
)

= Ebonds + Eangles + Edihedrals + Enonbonded (59)

where rN is the set of coordinates of all N atoms, Ebonds is the bonding energy
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between two bonded atoms, Eangles is the three atom energy which is written as a
function of angle, Edihedrals is the four atom energy which is written as function of
dihedral angle and Enonbonded is the non covalent bonded energy term containing
van der Waals, hydrogen bonding and Coulomb interactions. Here, the first three
terms are intra-molecular terms and the last term is the intermolecular energy
term. The functional form of each energy term is discussed below.

The bonding energy or stretching is modeled as a spring around the equilibrium
bond distance. It is given as,

Ebonds =
∑
bonds

Kr (r − r0)2 (60)

where the sum is over all the bonds, Kr is the spring constant and r0 is the
equilibrium bond distance. The three atom energy term is modeled using a
parabolic approximation around the equilibrium angle and represents the energy
of bending two bonds around a center. It is given as,

Eangles =
∑

angles

kθ(θ − θ0)2 (61)

where the sum is over all the triplets such that two atoms of the triplets are
bonded to a common atom, kθ is the energy of bending around the equilibrium
and θ0 is the equilibrium angle. The four atom energy term or dihedral energy
represents the torsional contributions. This energy is generally represented as a
Fourier series expansion and is given as,

Edihedrals =
∑

dihedrals

V1

2
[1 + cos(φ− φ1)] +

V2

2
[1− cos(2φ− φ2)]

+
V3

2
[1 + cos(3φ− φ3)] +

V4

2
[1− cos(4φ− φ4)]

(62)

where the sum is over all the four atom sets such that the four atoms are connected
continuously via bonds, φ is the dihedral angle, φ1,2,3,4 are the phase factors and
V1,2,3,4 are the Fourier series expansion coefficients. The non covalent bonding
components is given as,

Enonbonded =
∑
i>j

fij

(
Aij

r 12
ij

− Cij

r 6
ij

+
qiqje

2

4πε0rij

)
(63)
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where the sum is over all the atom pairs such that the two atoms are at least
3 bonds apart (1-4 contribution), rij is the distance between atom i and atom j ,
Aij ,Cij are the usual 6-12 Lennard-Jones potential parameters, qi is the charge on
atom i and fij is the fudge factor. The fudge factor is taken as fij = 0.5 for atoms
that are connected by three intermediate bonds and fij = 1 otherwise.

The 6-12 Lennard-Jones potential can be re-written in terms of the energy of
interaction and the distance betweeen the atoms at equilibrium. The new recast
form is given as,

ELJ =
∑
i>j

Aij

r 12
ij

− Cij

r 6
ij

=
∑
i>j

εij

(
σij

r 12
ij

− σij

r 6
ij

) (64)

where εij is the energy of interaction at equilibrium and σij is the equilibrium
distance. Another advantage of this new form is that the parameters can be
tabulated for pairs of similar atoms. For two different atoms the parameters can
be derived using mixing rules.

If the atoms are modeled as hard spheres then the Lorentz rules [112] are used
to determine the equilibrium distance between two atoms of different type. The
rule is given as,

σij =
σi + σj

2
(65)

where σi is the equilibrium distance between similar atoms of type i . In some
cases the atoms are modeled as soft spheres – in this case the Good-Hope rule
[113] is used to determine the equilibrium distance between two atoms of different
type. The rule is given as,

σij =
√
σiσj (66)

Similarly, the energy of interaction between two atoms of different type can be
derived from the interaction energy of atoms of same kind using the Berthelot
rule [114] given as,

εij =
√
εiεj (67)
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where εi is the binding energy of similar atom of type type i .

In the case of OPLS-AA potentials, the Good-Hope rule given in Eq. 66 is used
to determine the equilibrium distance and Berthelot rule in Eq. 67 is used to
determine the interaction energy.

2.9.3 Ensembles and averages

In statistical mechanics a micro state of N particles is defined as the set of
positions and momenta

{
rN , pN

}
of all particles. The phase space is defined as

all the possible micro states for a system of N particles. An ensemble is defined
as a phase space with certain restrictions or constraints which are generally a
set of conserved quantities. When the conserved quantities are the number of
particles (N), volume (V ) and energy (E ) the ensemble is known as the
micro-canonical ensemble (NVE ). When the conserved quantities are the
number of particles (N), volume (V ) and temperature (T ) the ensemble is
known as the canonical ensemble (NVT ) and when the conserved quantities are
the number of particles (N), volume (V ) and pressure (P) the ensemble is
known as the isothermal-isobaric ensemble (NPT ).

The ensemble average of an observable is the average of an observable in the
phase space. For a observable O(rN , pN) of a micro state

{
rN , pN

}
, the ensemble

average of the observable (O) is given as,

〈
O(rN , pN)

〉
ensemble

=

∫
phasespace

dpndrNO(rN , pN)ρ(rN , pN) (68)

where ρ(rN , pN) is the probability density. ρ(rN , pN)∆rN∆pN indicates the
probability of micro state

{
rN , pN

}
and the integration is over all the phase

space. Similarly a time average is defined as,

〈
O(rN , pN)

〉
time

= lim
t→∞

∫ t

τ=0

dτO(rN(τ), pN(τ))

≈ 1

T

T∑
i=0

O(rN , pN)

(69)

where the discrete time average can be directly calculated from snapshots of a
molecular dynamics simulation. In the limit of a large number of snapshots,
according to the ergodic hypothesis
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〈
O(rN , pN)

〉
ensemble

=
〈
O(rN , pN)

〉
time

(70)

This is the approximation that is used to calculate ensemble averages in molecular
dynamics simulations.

2.9.4 Thermostats and Barostats

The equation of motion in Eq. 52 corresponds to a Hamiltonian, so the conserved
quantities are the energy, volume and number of particles (NVE ). In some cases
it is desirable to control the temperature or pressure of the simulation – in such
a case we use a thermostat to control the temperature or a barostat to control
the pressure.

The temperature of N particles can be calculated as,

T =
2 〈K 〉
3NkB

=
1

M

∑
i

Ti (71)

where 〈K 〉 is the ensemble average of the total kinetic energy, kB is the
Boltzmann’s constant, M is the total number of time steps and Ti = 2Ki

Nf kB
is the

temperature of snapshot i . The job of the thermostat is to maintain a constant
average temperature (T ) and not fix Ti for individual snapshot. Fixing Ti for
individual snapshot corresponds to fixing the total kinetic energy of the system
which is not desirable.

The pressure of a three dimensional system of N particles can be calculated using
the virial formula as

P =
NkBT

V
+

1

3V

〈
N∑

i<j

rij · fij

〉

=
1

3V

〈
K +

N′∑
j

rj · fj

〉

=
1

3V

1

M

M∑
i

[
Ki +

N′∑
j

r i
j · f i

j

]
=

1

3V

1

M

M∑
i

Pi

(72)

where V is the volume, rj is the position vector, fj is the force vector, N ′ indicates
the number of interacting atoms in the periodic system and the dot (·) indicates
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a dot product. The sum over dot products includes pairwise the two-atom, three-
atom, four-atom, many-atom and long-range interactions. As for the thermostat,
the aim of the barostat is not to fix the individual snapshot pressure Pi but the
average pressure P for a simulation window.

Developing thermostats or barostats is a active area of research with several
different strategies. Each of the available thermostats or barostats have some
advantages with the choice dependent on the target of the simulation.

2.10 Free energy calculation

For a system of N particles with volume V and temperature T in the canonical
ensemble, the partition function (Q) is given as

Q(N ,V ,T ) =
1

N !h3N

∫
e−βH(rN ,pN )drNdpN (73)

where N is the number of particles, β = kBT , h is Planck’s constant, H(rN , pN) is
the Hamiltonian given in Eq. 51 and the integration is over all the phase space.
The Helmholtz free energy (A) of the system is given as

A = − 1

β
lnQ =

1

β
ln

1

Q
(74)

substituting Eq. 73 in Eq. 74

A =
1

β
ln

1
1

N !h3N

∫
e−βH(rN ,pN )drNdpN

(75)

Using the identity eβHe−βH = 1 in the numerator,

A =
1

β
ln

∫
eβH(rN ,pN )e−βH(rN ,pN )drNdpN∫

e−βH(rN ,pN )drNdpN

=
1

β
ln

∫
eβH(rN ,pN )ρ(rN , pN)drNdpN

(76)

where ρ(rN , pN) probability density of micro state
{
rN , pN

}
. In the second line

the quantity inside the natural logarithm is of the from of an ensemble average
shown in Eq. 68. The ensemble average expression is
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A =
1

β
ln
〈

eβH(rN ,pN )
〉

(77)

where the ensemble average can be done using MD simulations. However, due
to the presence of the exponential in energy, the averaging is generally unstable
as the higher energy configurations will be poorly sampled but will contribute
exponentially. As a result, the direct computation of free energies using this
method is avoided.

In most cases we are interested in the free energy change of transition from state
0 to state 1 as it indicates the spontaneity of transition. The free energy change
between state 0 with Hamiltonian H0 to state 1 with Hamiltonian H1 can be
obtained using Eq. 73 as,

∆A = − 1

β
ln

(
Q1

Q0

)
(78)

where Qi is the partition function of the corresponding state i . This can be further
simplified by multiplying the identity eβH0e−βH0 = 1 in the numerator giving the
final expression as

∆A = − 1

β
ln
〈
e−β(H1−H0)

〉
0

(79)

where the subscript indicating the ensemble average is in the phase space of
state 0. Again this leads to under sampling in the phase space of state 1 as they
are generally inaccessible for a system in state 0. To solve this problem, a
strategy of stratification is used, where a fictitious Hamiltonian is introduced
with a continuous variable λ which slowly switches the Hamiltonian of the
system from state 0 to state 1. Using this fictitious Hamiltonian we can generate
intermediate states in between the two end points which are close in phase
space. The total free energy change is then the sum of free energy changes for
each small step in λ. Various formulations of this strategy are available such as
free energy perturbation (FEP)[115], finite difference thermodynamic
integration (FDTI) [116] and thermodynamic integration (TI)[117, 118].

In the thermodynamic integration method, the free energy change can be written
as
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∆A = A(λ = 1)− A(λ = 0) =

∫ 1

0

(
dA

dλ

)
dλ (80)

The derivative term can be written as an ensemble average by substituting the
partition function (Qλ) corresponding to the λ dependent Hamiltonian
(H(rN , pN ; λ)) and is given as,

dA

dλ
= − 1

β

d

dλ
lnQλ = − 1

β

1

Qλ

dQλ

dλ

= − 1

β

[
1

1
N !h3N

∫
e−βH(rN ,pN ; λ)drNdpN

] [
d

dλ

1

N !h3N

∫
e−βH(rN ,pN ; λ)drNdpN

]

=

∫ (∂H(rN ,pN ; λ)
∂λ

)
e−βH(rN ,pN ; λ)drNdpN∫

e−βH(rN ,pN ; λ)drNdpN

=

〈
∂H(rN , pN ; λ)

∂λ

〉
λ

(81)

where the ensemble average is over the phase space of a fixed λ. Substituting the
expression for the derivative derived in Eq. 81 into Eq. 80 the free energy change
is given as,

∆A1
0 =

∫ 1

0

〈
∂H(rN , pN ; λ)

∂λ

〉
λ

dλ (82)

Usually for a constant mass system, where the mass of the atoms remain constant,
the kinetic energy is independent of λ. In this case the free energy change is only
a function of the λ – dependent potential energy. This free energy change is given
as,

∆A1
0 =

∫ 1

0

〈
∂V (rN ; λ)

∂λ

〉
λ

dλ (83)

where V (rN ; λ) is the λ- and position- dependent potential energy function. The
derivative can be expanded using a finite difference scheme:
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∆A1
0 =

∫ 1

0

〈
∂V (rN ; λ)

∂λ

〉
λ

dλ

=
n−1∑
i=0

wi

〈
∂V (rN ; λ)

∂λ

〉
λi

=
n−1∑
i=0

wi

〈
V (rN ; λi + δ)− V (rN ; λi )

δ

〉
λi

(84)

where λ is discretized to n intermediate points λiε[0,λ1, ... ,λn−2, 1] in the range
(0, 1) and δ is the small step used to compute the derivative. Note that the free
energy to go from state 1 to state 0 is related to the reverse process as

∆A1
0 = −∆A0

1 (85)

where ∆A0
1 can be calculated as,

∆A0
1 =

n−1∑
i=0

wi

〈
V (rN ; λi − δ)− V (rN ; λi )

δ

〉
λi

(86)

where the discretized points λi ε [1,λ1, ... ,λn−2, 0].

The λ dependence of the potential can be achieved using a direct interpolation
in the case of Coulomb and van der Waals interactions. In practice, a slight
modification to the potential is required to avoid charged particles approaching
arbitrarily close which will result in infinite energy [118, 119, 120].

The modified Lennard-Jones potentials for the van der Waals interaction as a
function of λ is given as,

U(λ) =
λ24εlj[

αLJ(1− λ)2 +
(

r
σ

)6
]2 −

λ24εlj

αLJ(1− λ)2 +
(

r
σ

)6 (87)

where εlj is the depth of the interaction well, σ is the van der Waals radius
and αLJ is the soft core parameter which prevents the Coulomb interaction from
diverging at small distances. This potential is shown in Fig. 2.8(a) with varying
λ. Ultimately when λ = 1 the usual Lennard-Jones potential is recovered.

The effect of varying λ on a system of graphene interacting with cyclopentanone
molecules is shown in Fig. 2.8(b–e). When λ = 0 the atoms near in the graphene
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Figure 2.8: (a) Soft core potential as a function of the parameter λ which controls
the strength of interaction between the atoms of graphene layers and atoms in
the molecules with the soft core radius of 0.5. The effect of potential is shown
in (b – e). When the parameter λ = 0 the atoms in graphene and molecules
do not interact and the can be arbitrarily close to each other as seen in (b).
On increasing the parameter λ to 0.3 the exclusion region near the graphene
layer where the molecule density is very low as shown in (c) and is a result of the
energy penalty when inter atomic distance is small. This energy penalty increases
rapidly on further increasing λ to 0.6 as shown in (d) with no molecules present
in the exclusion region. Finally, when λ = 1 the usual Lennard-Jones potential
is recovered.

layer are effectively not present so they have no effect on the atoms around them.
This can also be seen from the snapshots shown in Fig. 2.8(e). On increasing λ
the molecules near the graphene surface move away as shown in Fig. 2.8(c–d).
This un-physical switching where the atoms spontaneously appear is also called
“alchemical analysis”.

2.11 Free energy calculations: methods

The change in free energy indicates the thermodynamic favourability of a process
such as solvation and conversion reactions. The calculated free energy is known as
the Helmholtz free energy when the volume of the system is kept fixed throughout
the process. If the volume changes during the process, the calculated energy is the
Gibbs free energy. In the context of molecular solvents interacting with graphene,
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the free energy can be calculated using the method discussed in section 2.8 and
in section 2.10.

The free energy calculated using density functional theory extended to include
the effects of a solvent as a continuous dielectric is described in section 2.8. This
takes into account the change in volume during the solvation process. Hence the
solvation energies calculated using this formalism are the Gibbs free energies of
solvation. For this method, model parameters for a particular solvent have to be
determined by fitting the solvation energies for a variety of solutes immersed in
that solvent. However general trends such as electrostatic interaction dependence
and cavity formation dependence can be studied using this method.

To determine the favourability of the formation of solvation shells for a particular
solvent, we can use the method described in section 2.10. This method explicitly
include individual molecules and calculated energies indicate the favourability of
formation of the solvation shells around a solute. These calculations do not take
into account the change in volume of the system due to the solvation process.
Hence the Helmholtz free energy is calculated for the formation of the solvation
shells.

2.12 Diffusion coefficient of confined particles

In this section we describe the diffusion of particles confined in an external
potential. This external potential could be due to the presence of a surface,
interface or could be artificially applied. For a subset of M particles present in
this confining potential from a total of N particles present in the region, where
M << N , the motion of the particles is governed by the Langevin equation.
This is given as,

mr̈ = −γ ṙ + F (r) + ση(t) (88)

where m is the mass, ṙ is the velocity, r̈ is the acceleration, γ is the friction
coefficient, F (r) is the external force, σ is the magnitude of fluctuations and η(t)

is the noise term. The term γ ṙ is the drag term which indicates a penalty for
acceleration [121]. In the strong friction limit |γ ṙ | � |mr̈ | so the drag dominates
over the acceleration. The Langevin equation is then given as,

γ ṙ = F (r) + ση(t) (89)

Due to randomized nature of Eq. 89 via the noise term η(t), simulating a
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specific trajectory from all the possible trajectories may not be desirable.
Instead, the probability distribution of evolution is required. The Fokker-Plank
equation describes this evolution. The Fokker-Plank equation corresponding to
Eq. 89 is given as,

∂tp(r , t|r0, t0) =

(
∇2σ2

2γ2
−∇ · F (r)

γ

)
p(r , t|r0, t0) (90)

where p(r , t|r0, t0) is the conditional probability that the particle is at position
r at time t given it was at position r0 at time t0 and ∂t is the derivative of the
probability with respect to time. The diffusion coefficient is defined as

D =
σ2

2γ
→ D(r) (91)

and is position dependent. If the force can be written as

F (r) = −∇U(r) (92)

where U(r) is a scalar potential, then the Boltzmann distribution (e−βU(r)) is a
stationary solution, i.e.(

∇ · ∇D −∇ · F (r)

γ(r)

)
exp−βU(r) = 0 (93)

here, we have also assumed that the friction term is position dependent.
Substituting this definition of the diffusion coefficient in Eq. 90 results in the
Smoluchowski equation [122] given as,

∂tp(r , t|r0, t0) = ∇ · D(∇− βF (r))p(r , t|r0, t0) (94)

Note that the famous Einstein equation is a special case of Eq. 94 when the
external force F (r) = 0 [123].

For slab–like 2D geometries, the external force is perpendicular to the surface,
i.e.,

F (r)→ F (z) = ∇W (z) (95)
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where W (z) is the potential due to the surface in the direction perpendicular to
it. Additionally, assuming that the diffusion tensor is diagonal

Dxx 0 0

0 Dyy 0

0 0 Dzz

 (96)

where Dxx , Dyy and Dzz are the diffusion coefficients in the x , y and z direction,
the probabilities can be written as,

p(r , t|r0, t0) = p(z , t|z0, t0)p(x , t|x0, t0)p(y , t|y0, t0) (97)

where the conditional probability is in the corresponding direction. Using
Eq. 96 and Eq. 97, and the Smoluchowski equation given in Eq. 94, the diffusion
coefficient parallel to a surface can be written as

∂tp(x , t|x0, t0) = Dxx∂
2
xp(r , t|r0, t0) (98)

In the direction perpendicular to the surface it can be written as

∂tp(z , t|z0, t0) = Dzz∂z [∂z + β(∂zW (z))]p(z , t|z0, t0) (99)

It is convenient to relate this diffusion relation to quantities that can be
calculated using molecular dynamics simulations. For this, consider the mean
square displacement (〈∆x(t)2〉{a,b}) of particles in direction parallel to the
surface in a region a < z < b,

〈
∆x(t)2

〉
{a,b} =

∫
Va,b

d3r

∫
Va,b

d3r0p(r , t|r0, t0)p(r0)(x − x0)2 (100)

where the Va,b indicates the region a < z < b, p(r0) is the probability that the
particle is at position r0 at time t0 and x is the x component of the position
vector. Using the Smoluchowski equation the mean square displacement can be
can be recast as,

〈
∆x(t)2

〉
{a,b} = 2P(t)Dxxt (101)
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where P(t) is the survival probability which indicates the probability that a
particle remains in the region a < z < b for time window t. The diffusion
coefficient is then,

Dxx = lim
t→∞

〈∆x(t)2〉{a,b}

2tP(t)
(102)

The quantities on the right hand side can be calculated using standard molecular
dynamics simulations [124, 125]. Rewriting the averages in terms of the molecular
dynamics trajectories, the mean square displacement is given as,

〈
∆x(τ)2

〉
{a,b} =

1

T

T∑
t=1

1

N(t)

∑
iεζ(t,t+τ)

(xi (t + τ)− xi (t))2 (103)

where ζ(t, t + τ) is the set of all particles that stay in the region a < z < b from
time t to t + τ , N(t) is the number of particles in the region a < z < b at time
t and T is the number of time steps to average. The survival probablity can be
calculated as,

P(τ) =
1

T

T∑
t

N(t, t + τ)

N(t)
(104)

where N(t, t + τ) is the number of particles that stay within the region a < z <

b between times t and t + τ . The parameters in the calculation of diffusion
coefficient are τ , T and the definition of the region between a and b.



CHAPTER

3

EXFOLIATION OF GRAPHITE AND
MOS2

3.1 Introduction

Liquid phase exfoliation of graphite is one of the most promising and
inexpensive methods to produce graphene on the scale required to be
industrially viable [29, 126, 127, 128]. It uses an energy input, typically
sonication [27, 129, 130] or high-shear mixing[131, 132], to mechanically
exfoliate [133] layered solids into mono-layer or few-layer two-dimensional (2D)
nanosheets in a solvent. The method is not restricted to graphite, and has been
successfully applied to a wide range of other layered materials, including MoS2

[31], black phosphorus [134], antimonene [135] and hexagonal boron nitride
[136]. The dispersions produced in this way can then be used for a variety of
applications such as inks for printed flexible electronics [137, 138], fire resistant
coatings [139] and printed capacitors [140].

The effectiveness of the method is measured as the concentration of monolayer
to few layer slabs that remain suspended in the solvent. This concentration is
measured directly as the mass of suspended flakes or using optical experiments

55
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which measure the light absorbed by the layers in the solvent [141]. Unfortunately,
yields can be very low, both in terms of the number of monolayers obtained and
in the amount of unexfoliated material that remains. The outcome depends on
the choice of solvent, and finding the best solvent for a particular material is
an important processing step. For example, concentrations as high as 2 mg/ml
can be achieved in the case of of NMP with an yield of 10% [34, 142], whereas
some solvents such as hydrocarbon chains barely exfoliate graphene layers. NMP
is also an effective solvent for MoS2, resulting in concentrations as high as 7.5
mg/ml and yields as large as 40% [31].

As well as aiming to maximize monolayer yield, there are other restrictions on
the choice of solvent. For example, many of the better solvents for graphite
exfoliation, including NMP, DMA and DMF, are toxic and face restrictions by the
European Chemicals Agency rendering them unsustainable for future industrial
use [143]. It is therefore critical to devise screening tools to identify non-toxic,
low-boiling point solvents which do not compromise on performance [144]. Ideally
these screening tools would be generalizable to other two-dimensional materials
beyond graphene.

Exactly how the nature of a solvent affects the resulting yield is not clearly
understood. The liquid phase exfoliation process can be divided into two steps:
the initial separation of the layers and the subsequent stabilization to prevent
reaggregation. As stated previously, the first step involves the separation of
the layers via the application of an external force to overcome the interlayer
interactions. These forces can originate from sonication, shear mixing or wet
ball milling. Next, the separated layers are stabilized via various solvent-layer
interactions and remain separated, resulting in a dispersion of monolayers and/or
few-layer graphene sheets in the solvent.

It is generally accepted that the solvent plays a minor role in the first step –
with extensive exfoliation occurring in most solvents due to the energy
introduced by sonication or shear mixing [145, 146, 147, 148]. Despite this, the
subsequent dispersion is not always stable with extensive reaggregation and
sedimentation found in some cases. The fact that the solvent properties
optimum for the initial exfoliation step do not necessarily align with those
required to maintain a stable dispersion is most evident by considering the
results of solvent exchange experiments [43, 44, 45]. Here, the separation and
dispersion steps use different solvents. For example Zang et. al. first exfoliated
graphite in NMP, then exchanged NMP with ethanol. This results in a higher
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concentration of up to 0.04 mg/ml of graphene in the dispersion compared to
using either NMP (4.7 ± 1.9 µg/ml) or ethanol (1.6 ± 0.7 µg/ml) alone
[43].

As the concentration of the graphene layers is directly dependent on the number
of layers that are initially separated, it is important to compare experimental
concentrations where the procedure used for the production of the suspended
graphene layers is identical. Parameters such as sonication time, centrifugation
speed and centrifugation time have a direct impact on number of exfoliated layers.
Optimizing these parameters for a particular solvent can result in concentrations
which are order of magnitudes higher than those found initially. For example,
the concentration of graphene in NMP can be increased from 4.7 ± 1.9 µg/ml
[43] to as high as 2 mg/ml [34] by optimizing the sonication times.

One of the first experimental attempts to screen for effective solvents for
graphite exfoliation found that the concentration of dispersed graphene was
maximized for those solvents with a surface energy or tension similar to that of
graphite [149]. This follows the traditional surface wettability argument. For a
liquid to completely cover (wet) a surface by forming a thin film over it, the
surface tensions should match. Even a slight mismatch can result in solvent
beading on the surface. Full surface coverage (wetting) is desired as the presence
of these molecules can prevent reaggregation. Although this method has had
some successes, there are also examples where it breaks down: Cyclopentanone
and 1-Dodecyl-2-pyrrolidinone (N12P) have very similar surface tensions at
33.31 mJ/m2 and 34.5 mJ/m2, respectively, yet cyclopentanone is a very good
solvent resulting in a graphene concentration of 8.5 µg/ml whereas N12P results
in a graphene concentration of only 2.1 µg/ml [145].

Hansen solubility parameters, characterized by three intermolecular
interactions, namely hydrogen bonding, polar and nonpolar (dispersive), were
used successfully to predict the solubility of polymers in solvents, and as a
result were adapted to apply to small molecules and nanosheets [150]. The
enthalpy of mixing will be minimized when solvent and solute have similar
values of all three Hansen solubility parameters. These solvent parameters are
based on the idea that solvents with similar intermolecular energies are
intersoluble. The Hildebrand solubility parameters of a particular solvent are
are determined based on the enthalpy of vaporization and can be interpreted as
the energy difference between infinitely separated solvent molecules and those
same molecules in a liquid. These parameters are given in column 5 (δT ) of
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Table 3.1. The Hansen solubility parameters separate the intermolecular
interactions into a polar component (δP) due to molecular dipoles, a dispersion
component (δD) due to the van der Waals interaction and a hydrogen bonding
component (δH). These parameters are listed in Table 3.1. These components
are related to the Hildebrand solubility parameters as,

δ2
T = δ2

P + δ2
D + δ2

H (1)

This separation is empirical (based on experimental measurements). To
determine the optimal solvent for a given solute, the distance (Rα) in 3D space
given by

Rα =
√

(δsolute
P − δsolvent

P )2 + (δsolute
D − δsolvent

D )2 + (δsolute
H − δsolvent

H )2 (2)

is minimized. In order to determine the solubility parameters for graphene,
Hernandez et al. exfoliated graphene in 40 different solvent molecules using the
same exfoliation parameters to enable a direct comparison between them [145].
The list of these 40 solvents along with the corresponding graphene
concentrations are listed in Table 3.1 in decreasing order of the resulting
concentration of graphene in the solution (CG ). Using Eq. 2 and an assumption
that the distance Rα is minimized for the most favorable solvent, Hernandez et.
al. determined the optimal solvent parameters for graphene using the data
shown in Table. 3.1. In this way, graphene was found to have Hansen
dispersion, hydrogen bonding and polar solubility parameters of δD = 18

MPa1/2, δP = 9.3 MPa1/2, and δH = 7.7 MPa1/2, respectively.

From the experimental data we can see that pristine graphene – which is non-
polar in nature – is stabilized in slightly polar solvents. In fact, non-polar solvents
such as hexane, heptane and toluene are ineffective, as are highly polar solvents
such as water or formamide. From this it is clear that the simplified rule-of-thumb
for solvation – that polar solvents dissolve polar solutes and non-polar solvents
dissolve non-polar solutes – is no longer applicable.

The effectiveness of LPE for other monolayers such as WS2, MoS2 and h-BN is also
dependent critically on the choice of solvent [28, 32] with no obvious similarities
in between them. From a list of 20 solvents, the best solvent for WS2 is found to
be DMSO while it only the seventh best solvent for MoS2 and eleventh for h-BN.
Instead the best solvent for MoS2 is NVP. This is the second best solvent for WS2,
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Solvent δD δP δH δT CG ∆CG

(MPa
1
2 ) (MPa

1
2 ) (MPa

1
2 ) (MPa

1
2 ) (µg/ml)(µg/ml)

Graphene 18 9.3 7.7 - - -
Cyclopentanone (CPO) 17.9 11.9 5.2 22.1 8.5 1.2
Cyclohexanone 17.8 8.4 5.1 20.3 7.3 1.3
N-formyl piperidine (NFP) 18.7 10.6 7.8 22.9 7.2 1
Vinyl pyrrolidone (NVP) 16.4 9.3 5.9 19.8 5.5 1.5
1,3-Dimethyl-2-
imidazolidinone (DMEU)

18 10.5 9.7 23 5.4 1.3

Bromobenzene 19.2 5.5 4.1 20.4 5.1 0
Benzonitrile 18.8 12 3.3 22.5 4.8 0.6
N-methyl-pyrrolidone
(NMP)

18 12.3 7.2 23 4.7 1.9

Benzyl Benzoate 20 5.1 5.2 21.3 4.7 1.9
N,N’-Dimethylpropylene
urea (DMPU)

17.8 9.5 9.3 22.2 4.6 1.3

γ - Butrylactone (GBL) 18 16.6 7.4 25.6 4.1 1.1
Dimethylformamide (DMF) 17.4 13.7 11.3 24.9 4.1 1.4
N-ethyl-pyrrolidone (NEP) 18 12 7 22.7 4 0.7
Dimethylacetamide (DMA) 16.8 11.5 9.4 22.4 3.9 1.5
Cyclohexylpyrrolidone
(CHP)

18.2 6.8 6.5 20.5 3.7 1

DMSO 18.4 16.4 10.2 26.7 3.7 1.5
Dibenzyl ether 19.6 3.4 5.2 20.6 3.5 0.6
Chloroform 17.8 3.1 5.7 18.9 3.4 0.7
Iso-propylalcohol (IPA) 15.8 6.1 16.4 23.6 3.1 1
Cholobenzene 19 4.3 2 19.6 2.9 0.5
1-Octyl-2-pyrrolidone (N8P) 17.4 6.2 4.8 19.1 2.8 1
1-3 dioxolane 18.1 6.6 9.3 21.4 2.8 1.4
Ethyl acetate 15.8 5.3 7.2 18.2 2.6 1.2
Quinoline 20.5 5.6 5.7 22 2.6 0.6
Benzaldehyde 19.4 7.4 5.3 21.4 2.5 1.5
Ethanolamine 17.5 6.8 18 26 2.5 0.4
Diethyl phthalate 17.6 9.6 4.5 20.5 2.2 1.9
N-Dodecyl-2-pyrrolidone
(N12P)

17.5 4.1 3.2 18.3 2.1 1.1
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Pyridine 19 8.8 5.9 21.8 2 1.7
Dimethyl phthalate 18.6 10.8 4.9 22.1 1.8 0.4
Formamide 17.2 26.2 19 36.7 1.7 0
Ethanol 15.8 8.8 19.4 26.5 1.6 0.7
Vinyl acetate 16 7.2 5.9 18.5 1.5 0.7
Acetone 15.5 10.4 7 19.9 1.2 0.4
Water 15.5 16 42.3 47.8 1.1 0.4
Ethylene glycol 17 11 26 33 1 0.8
Toluene 18 1.4 2 18.2 0.8 0.4
Heptane 15.3 0 0 15.3 0.3 0.4
Hexane 14.9 0 0 14.9 0.2 0.1
Pentane 14.5 0 0 14.5 0.16 0.05

Table 3.1: The table describes the polar component (δP), dispersion component
(δD), and hydrogen bonding component (δH) of Hansen solubility parameters, δT

the Hildebrand solubility parameter, the experimental dispersed concentration of
graphene (CG ) and the uncertainty (∆CG ) reported by Hernandez. et. al.[145]

but only sixth best for h-BN. Although higher concentrations of monolayers can be
achieved by optimizing the exfoliation parameters, the solvent order is generally
maintained, i.e., the previously designated poor solvents will in general continue
to have lower yields than the others.

Searching for new solvents with solubility parameters close to those determined
for graphene led to the prediction and confirmation of cyclopentanone and
cyclohexanone as very good solvents of graphene. However, here again, there
are some examples where this screening technique fails: dimethyl phthalate has
very similar Hansen parameters to cyclopentanone, yet is a poor graphene
solvent (see Table 3.1). This suggests that matching solubility parameters is
quite a blunt tool, missing some information about the stabilization
mechanism [151]. In particular, the approach makes the approximation that
thermodynamic effects alone determine the nanosheet concentration. This will
not be the case, with sedimentation and other effects also playing a role.
Nonetheless, semi-empirical methods provide a useful starting point for solvent
screening.

The failure of these empirical solubility models suggests that considering only
macroscopic solution thermodynamics is not sufficient to find good solvents
[152]. Instead, explicit structural and electronic interactions between the solvent
molecules and the solute may play an important role. It has been suggested
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that solvent molecules can act as a ‘wedge’, prising the layers apart at the
edges, thereby improving the efficiency of subsequent exfoliation
attempts [48, 49]. Mutual interactions may also result in the confinement of the
solvent molecules at the surface or in interlayer spaces, resulting in changes to
the entropic contribution to exfoliation [153, 154, 155, 156, 157, 158].

In this chapter we systematically study the origin of the solvent dependence
of the process of liquid phase exfoliation. In Section 3.2 we study the nature
of interaction between individual solvent molecules with graphene and MoS2.
We find that the nature of interaction is van der Waals with negligible charge
transferred between them. In Section 3.3 we study the collective behavior of
multiple molecules near the surface of graphene monolayer, and show that kinetic
effects play a major role in the stabilization of the graphene sheets in a solvent,
rather than thermodynamic effects alone.
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3.2 Adsorption of common solvent molecules on

graphene and MoS2 from first-principles

It is generally assumed that solvent molecules interact only weakly with the
layered materials and so their effects can be neglected. However, this is not
always the case and given the atomic thickness and large surface area of 2D
layers, there may be unintended effects on the structural and electronic
properties of the layer. For example, Choi et al. found that common solvents
can transfer sufficient charge to transition metal dichalcogenide layers to cause
measurable changes in their electrical and optical properties [159].

Very little is known about the nature of the interaction between solvent
molecules and 2D layered materials on the atomic level. In this work, we use
density functional theory to systematically determine the ground state
adsorption configuration of a variety of solvent molecules on two of the most
widely studied 2D materials, namely graphene and hexagonal MoS2. We choose
six representative solvents from the polar protic (2-propanol), polar aprotic
(bendaldehyde, cyclopentanone and N-Methyl-2-pyrrolidone (NMP)) and
non-polar (toluene and chloroform) solvent families. These are shown in
Fig. 3.1(a). Our aim is to determine whether observed differences in the ability
of particular solvents to exfoliate layered materials can be attributed to
differences in how individual molecules interact with the surface of that
material. We determine their adsorption configuration and binding energy and
show that these molecules are physisorbed on the surface with little charge
transfer between the two. Despite this, a significant charge rearrangement
occurs at the interface due to an induced dipole interaction.

3.2.1 Computational Methods

3.2.1.1 Density Functional Theory

Density functional theory (DFT) calculations are performed using the projected
augmented wave (PAW) method as implemented the vasp code
[160, 161, 162, 163]. The Perdew-Burke-Ernzerhof (PBE-PAW) potentials
[59, 63] provided with the package are used. The optimized optB86b-vdW
functional [77, 78, 82, 164, 165] is used to approximate the exchange-correlation
functional and to self-consistently account for van der Waals (vdW)
interactions. Here, the exchange-correlation energy (Exc) is given by
Exc = EGGA

x + E LDA
c + ENL

c , where EGGA
x is the exchange energy calculated using
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an optimized version of the B86b exchange functional[166], E LDA
c is the

correlation energy calculated using the local density approximation (LDA) and
ENL

c is the non-local contribution to the correlation energy. This latter term
encompasses the long-range interactions. The optB86b-vdW functional was
previously shown to provide accurate binding energies for both gas phase
clusters and bulk solids and for molecular adsorption on transition metal
surfaces[167].

In order to model the adsorption of isolated molecules, a 3× 5 orthorhombic unit
cell of both graphene and MoS2 is used, as shown in Fig. 3.1(b) and (c). As
a result, there is a minimum distance of at least 10 Å between periodic images
of the molecules. Furthermore, a vacuum layer of at least 15 Å is included in
the direction normal to the surface to ensure no spurious interactions between
repeating layers, and the dipole correction is applied.

The graphene (MoS2) Brillouin zone is sampled with a 5 × 5 × 1 (3 × 3 × 1)
Monkhorst-Pack mesh [168] to carry out structural relaxations to a force tolerance
of 0.02 eV/Å. All atoms in the unit cell are allowed to move, including those of the
substrate. The electronic properties are then calculated using a k-point sampling
of 11× 11× 1. In all cases, a plane wave cutoff of 500 eV is used to converge the
basis set.

The determination of charge transfer depends sensitively on how the charge
density is assigned to each atom. Here, we use both the Density Derived
Electrostatic and Chemical (DDEC) net atomic charges [169] scheme as
implemented in the chargemol program and the Bader partitioning scheme
[170, 171].

3.2.1.2 Mapping the Configuration Space

For multi-atom adsorbents, such as the molecules considered here, there is a large
phase space of possible adsorption configurations. In order to find the lowest
energy binding site, we follow a process similar to Åkesson et al. [172], extended
to include molecular rotations. Note that while the symmetry of the substrate is
taken into account when creating the initial adsorption configurations, nothing is
assumed about the molecular symmetry.

In order to calculate the correct potential energy surface, the atomic
coordinates of the molecule at a fixed in-plane position should be allowed to
relax. However, this is computationally prohibitive. Instead, we fix the center of
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Figure 3.1: (a) Geometry of the six solvent molecules considered in this study.
Top and side view of the (b) graphene and (c) MoS2 supercell used in this work.
The 12 irreducible adsorption points are shown as black dots on the lattice.
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mass of the molecule at a constant height above the surface for all considered
molecular rotations.

The following work-flow is used to determine the ground state binding
configuration: The individual components, i.e., the molecule and the 2D layered
material, are first relaxed to determine their isolated structures. A uniform grid
is then defined at a typical binding height (3.5 Å) above the surface of each
material, as shown in Fig. 3.1(b) and (c). The binding height of the molecules is
defined as the distance between the center of mass of the molecule and the
surface of the 2D layer. The grid spacing is defined as d/2 where d is the C–C
or Mo–S bond length, projected in-plane. The center of mass of each molecule is
placed at each grid point.

Due to the low adsorption concentration considered here, each molecule will
minimize its total energy by maximising its total area of overlap with the
surface, i.e., planar molecules adsorb flat against the substrate [173, 174]. With
this restriction, molecular rotations, in steps of 5◦, around an axis normal to the
basal plane of the substrate are considered. Out-of-plane rotations are also
included. Planar molecules such as benzaldehyde have only one
indistinguishable out-of-plane rotation. NMP, cyclopentanone and toluene are
non-planar with two possible rotational configurations obtained by a 180◦

rotation out-of-plane. Chloroform has four possible rotational configurations:
two in which the H–C bond is perpendicular to the plane of graphene, and
another two in which the H–C bond is at 60◦ to the plane. Finally, 2-propanol
also has four possible rotational configurations: two orientations in which the
C–O bond is perpendicular to the surface and another two in which it is
parallel. A structure matching algorithm, as implemented in pymatgen [175],
then reduces the total number of configurations.

The total energy of each of these configurations, without relaxation, is
calculated for a fixed binding height. The entire procedure is then repeated for
a sub-set of these configurations at a lower height in steps of 0.25 Å until the
lowest energy adsorption height is found. At this stage, a structural
optimization of all structures at local minima with total energies within 0.05 eV
of the global minimum is performed. During the structural optimization, the
coordinates of all atoms in the unit cell are allowed to move. The
configuratation with the lowest total energy after this structural optimization is
the ground state configuration.
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3.2.2 Results and Discussion

3.2.2.1 Ground State Configurations

The solvent molecules are found to adsorb at an average binding height of 3.35 Å
from the surface of both graphene and MoS2. The binding heights are shown
in Fig. 3.2. The smallest binding height is found for benzaldehyde on graphene
(3.00 Å), while the largest binding height of 3.56 Å is found for 2-propanol on
graphene. These heights are consistent with physisorption [172, 174, 176].

to
lu
en
e

be
nz
al
de
hy
de

cy
clo

pe
nt
an
on
e

2-
pr
op
an
ol

NM
P

ch
lo
ro
fo
rm

2.75

3.00

3.25

3.50

d 
(Å
)

Graphene MoS2

Figure 3.2: The binding height of center of mass of the molecule from the surface
of the substrate.

The potential energy surface (PES) for these molecules is four-dimensional,
involving the in-plane translational coordinates as well as both in-plane and
out-of-plane rotations. An example is shown in the Section 3.2.2.2 for a fixed
rotational angle. In the following we present only the final, geometrically
optimized, minimum energy configurations for each of the solvent molecules.
These are shown in Fig. 3.3.

The adsorption positions of each of the six solvent molecules adsorbed on
graphene are shown in the top panel of Fig. 3.3. Molecules which contain a
six-member ring are found to adsorb such that every alternate atom of the
carbon ring is on top of a carbon atom in the graphene sheet, similar to the
AB-stacking of two adjacent carbon layers in a graphite crystal [177]. This is
particularly evident for toluene and benzaldehyde where small deviations from
the perfect AB-type stacking are dictated by the functional group attached to
the ring. The methyl group of toluene is adsorbed at a ‘top’ position, i.e., on top
of a graphene carbon atom, with the edge of the methyl group tripod facing the
graphene lattice, in agreement with Borck et al.[176] In contrast, the aldehyde
(CHO) functional group of benzaldehyde is adsorbed at a hollow position. This
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is due to the different hybridizations of the carbon atoms in the two functional
groups – the carbon atom in the methyl group is sp3 hybridized, whereas it is
sp2 hybridized in the CHO group. As the aldehyde oxygen atom has a partial
negative charge, it prefers to adsorb close to a graphene bridge site.

Toluene Benzaldehyde Cyclopentanone 2-propanol NMP Chloroform

Figure 3.3: Top (bottom) panel: Side and top view of the lowest energy binding
site of the solvent molecule on graphene (MoS2).

The carbon atoms in cyclopentanone are sp3 hybridized with the exception of that
bonded to oxygen, which is sp2 hybridized. The three carbon atoms bonded to
hydrogen atoms which point towards the graphene layer are located above hollow
sites. The carbon atom bonded to a hydrogen atom which points away from the
graphene layer is adsorbed above a carbon top site. The remaining electropositive
carbon atom is adsorbed on a graphene top site, while the electronegative oxygen
atom is located close to a graphene bridge site. Similarly, the oxygen atom in
2-propanol adsorbs close to a bridge site and all sp3 hybridized carbon atoms
avoid the top sites. It maximizes its surface contact area by adsorbing such that
the C–O bond is approximately parallel to the graphene layer.

For the case of NMP, the electronegative oxygen and nitrogen atoms dictate the
orientation of adsorption by adsorbing close to bridge sites. Fixing the adsorption
position of these two atoms determines the orientation of the rest of the molecule.
Finally, for the case of chloroform, each of the chlorine atoms adsorbs close to a
hollow site, with the hydrogen pointing away from the layer in a so-called “H-up”
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configuration. Note that this is a different adsorption configuration to that found
by Åkesson et al. due to the more restrictive configuration space considered in
that work [172]. In all cases the deformation in the graphene substrate is less
than 0.1 Å.

The geometrically optimized configurations of the molecules adsorbed on MoS2

are shown in the bottom panel of Fig. 3.3. In all cases, molecules with hydrogen
atoms which point towards the MoS2 surface prefer to adsorb such that they
are located in the hollow formed by the sulfur atoms, i.e., directly on top of
the metal atoms. For benzaldehyde and toluene, the carbon ring prefers to have
alternate carbon atoms above the metal atoms with the center of the ring directly
above a sulfur atom. Similarly, for cyclopentanone, the center of the carbon ring
prefers to adsorb directly above a sulfur atom with the carbon atoms located
either directly on top of the molybdenum atoms or in the hollow of the substrate
hexagon. 2-propanol occupies the valley created by the sulfur atoms, with the
functionalized carbon atom located on top of the metal atom. Note that this is
a 180◦ out-of-plane rotation with respect to the orientation of the same molecule
on graphene. For the case of NMP, the electronegative oxygen atom is adsorbed
on top of the metal atom with the orientation of the rest of the molecule dictated
by the hydrogen atoms which point towards the surface.

Finally, the hydrogen atom of chloroform also prefers to adsorb in the valley
created by the sulfur atoms, directly above the metal atom, so that the molecule
is in a “H-down” configuration. This is in contrast to its binding configuration
on graphene where it adsorbs with the hydrogen atom pointing away from the
surface, i.e. “H-up”. In all cases the deformation of MoS2 substrate after solvent
adsorption is negligible.

3.2.2.2 Potential energy surface for chloroform

In the following, we show the PES for chloroform adsorbed on both graphene and
MoS2 at a particular rotational angle. This molecule and angle is chosen such due
to its small size, which makes demonstration of the concepts easier. The inferences
drawn from this PES are transferable to all the other molecules and orientation.
The ground-state adsorption configuration of this molecule is rotated by 180◦

out-of-plane on these two surfaces. The PES for a specific rotational angle can
illustrate the physical mechanism behind the differing adsorption configurations.
In this case, the in-plane rotational angle is fixed at that found for the ground
state configuration, as shown in Fig. 3.3.
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The PES for chloroform adsorbed in a “H-down” configuration on graphene at a
constant height of 3.5 Å is shown in Fig. 3.4(a). Recall that the black dots in
these figures corresponds to the adsorption position of the center of mass (COM)
of the molecule. When the H atom is adsorbed directly above a carbon atom, the
short distance between the two atoms results in a large pz − s orbital repulsion
and hence a maximum in the global energy. In contrast, when the H atom is
adsorbed directly above the hollow site, the distance between the H atom and
the carbon atoms is large, resulting in a small pz − s orbital repulsion and thus
a local minimum in the total energy.
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Figure 3.4: Potential energy surface (PES) at a fixed in-plane rotational angle
for chloroform in (a) the “H-down” configuration on graphene, (b) the “H-up”
configuration on graphene, (c) the “H-down” configuration on MoS2 and (d) the
“H-up” configuration on MoS2.

Similarly, for the case of the “H-up” adsorption configuration (shown in
Fig. 3.4(b)), when the three chlorine atoms are adsorbed directly above the
hollow site (so that the COM of the molecule is above a carbon atom), the pz -
lone pair repulsion is minimized, resulting in the global minimum in the total
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energy. When the chlorine atoms are adsorbed directly above the carbon atoms,
maximum pz - lone pair repulsion occurs leading to a local maximum in the
total energy.

The PES for chloroform adsorbed in a “H-down” configuration on MoS2 is shown
in Fig. 3.4(c). When the H atom is adsorbed directly above the sulfur atom (the
yellow dashed lines), the small distance between the atoms results in maximum
lone pair - s orbital repulsion and hence a global maximum in the total energy.
In contrast, when the H atom is adsorbed directly above the metal atom, in the
hollow formed by the sulfur atoms, four atoms are now involved in van der Waals
interactions without any increase in orbital repulsion. This leads to a global
minimum in the total energy.

Similarly, for the case of the “H-up” adsorption configuration (shown in
Fig. 3.4(d)), the adsorption of the central carbon atom (and COM) directly
above metal atom results in a local maximum in energy. The minimum in
energy is found when the central atom is adsorbed on top of the sulfur atom so
that the chlorine atoms adsorb directly on top of the hollow site.

In the case of asymmetric molecules such as chloroform where the center of mass
is closer to the chlorine atoms, on rotating the molecule out of plane, the atoms
can be unphysically close to the surface of the layer. This can explain the large
variation in the corrugation of the potential energy surface shown in Fig. 3.4 for
‘H-up’ and ‘H-down’. In this approach the corrugation is overestimated for a
particular rotation. However, the associated uncertainty for the minimum energy
configuration is reduced by geometrically optimizing candidates from both the
‘H-up’ and ‘H-down’ configurations.

An alternative to this approach that provides a better approximation for the
corrugation in the potential energy surface is to make the binding height a
function of molecular rotation. While providing a better approximation for the
potential energy surface, this approach also eliminates the requirement for
geometry optimization of candidate structures. The binding height can be
chosen by performing geometry optimizations for a candidate configuration from
all the out-of-plane rotations and then using the optimized binding height to
calculate the potential energy surface for that rotation.
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Figure 3.5: (a) Binding energy of each molecule on a graphene (blue) and
MoS2 (orange) substrate. (b) Binding energies normalized by the number of
non hydrogen atoms, N , in the molecule.

3.2.2.3 Binding Energy

The binding energy between the layered material and the adsorbed solvent
molecule is defined as:

Eb = Emol+layer − Elayer − Emol

where Elayer is the total energy of the clean monolayer, Emol is the total energy of
the isolated molecule and Emol+layer is the total energy of the combined system.
The binding energies of each solvent molecule adsorbed on both graphene and
MoS2 are shown in Fig. 3.5(a). They range between -0.4 eV and -0.79 eV per
molecule. The binding energy of each molecule differs by no more than 7% when
adsorbed on graphene compared to MoS2. The molecular binding energy rescaled
by the total number of atoms in that molecule, excluding hydrogen, N , is then
shown in Fig. 3.5(b). In all cases, the normalized binding energies lie in a narrow
range between approximately 90 and 120 meV/atom, and with a difference of
no more than 5 meV/atom between individual molecules adsorbed on graphene
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and MoS2. A similarly narrow range of normalized binding energy was found for
aromatic and conjugated compounds adsorbed on MoS2 [174] and graphene [178]
and shown experimentally for acenes adsorbed on copper surfaces [179]. This
is evidence of the dominance of the van der Waals contribution to the binding
energy. Further evidence is found by neglecting the non-local contribution to
the correlation energy in the optB86b-vdW functional. In this case a positive
binding energy can be found for all the molecules considered on both surfaces. In
a similar way, the interlayer binding energy of graphite was previously shown to
be positive using the optB86b-vdW functional when only local contributions to
the correlation energy are considered[70].

3.2.2.4 Charge Transfer and Rearrangement

The magnitude of total charge transfer between the molecules and both graphene
and MoS2 is no more than 0.11e− per molecule as determined by both the Bader
and the DDEC methods. In some cases, these two methods do not agree on the
direction of the charge transfer. Given the difficulties in partitioning space in
order to assign charge to the molecule or substrate, this magnitude of the charge
transfer may be considered essentially zero.

This is corroborated by a negligible difference in the charge density located on
the monolayers before and after adsorption, as shown in Fig. 3.6. From this,
we can conclude that the changes in the photoluminescence spectra found by
Choi et al. after solvent adsorption on MoS2 and attributed to charge transfer
to/from the layer, must be due to interactions between the solvent molecules and
defects in the layers, or with edge sites [159]. Such defects and edge sites have
previously been shown to be considerably more reactive than the pristine surface
[180, 181, 182].

Notwithstanding the negligible charge transfer involved, significant charge
reorganization occurs on both the molecule and the 2D layer as as result of their
interaction. To visualize this, we show in Fig. 3.7 a slice through the charge
density difference that occurs after molecular adsorption on graphene and MoS2

at a height of 0.5 Å above the surface of the monolayer. This height highlights
the changes that occur in the outermost valence orbitals of the 2D layers. The
charge density difference is defined as:

∆ρ = ρmol+layer − ρmol − ρlayer

where ρmol+layer, ρmol and ρlayer are the charge densities of the molecule adsorbed
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Figure 3.6: Planar average of the charge density of each of the six molecules
adsorbed on (a) graphene and (b) MoS2 compared to the pristine monolayers.
The vertical lines indicate the positions of atoms in the monolayers. Note that
the average values of the charge density is dependent on the unit cell size and so
only qualitative analysis is possible using this quantity.

system, the isolated molecule and the isolated layer, respectively. A charge
rearrangement reminiscent of image charges[183] on a metal is found to occur
after molecular adsorption on graphene. As a result of their high
polarizabilities[184], the substrate’s charge density is modified by the polar
bonds of the adsorbing molecule. This can be seen as the response of the layer
to the net dipole of the molecule. The molecule then interacts with its image
charge.

For the case of toluene, the small net molecular dipole points towards the methyl
group. As a result, a small charge accumulation (red) is evident beneath the
methyl group and a charge depletion (blue) occurs beneath the carbon ring. This
dependence of the charge rearrangement on the molecular dipole is particularly
evident for molecules with an electronegative oxygen atom, such as benzaldehyde,



3 Exfoliation of graphite and MoS2 74

x 10-4 e/�2

x 10-4 e/�2

Toluene Benzaldehyde Cyclopentanone 2-propanol NMP Chloroform

Figure 3.7: Top (bottom) panel: A slice through the charge density difference
0.5 Å above the graphene (MoS2) plane. Blue represents electron density
depletion and red represents an electron density accumulation. The arrows
represent the in-plane direction (but not magnitude) of the molecular dipole.
The dipole of chloroform is perpendicular to the plane of the monolayer, pointing
towards (away from) the layer for the case of graphene (MoS2).

cyclopentanone and NMP. In these cases, charge depletion occurs beneath the
oxygen atom, whereas there is charge accumulation beneath the carbon ring. This
is true for those molecules adsorbed on both graphene and MoS2. Similarly, in 2-
propanol the net dipole points away from the oxygen atom. However, the response
of the 2D layer to 2-propanol depends on the out-of-plane rotation of the molecule.
For the case of graphene, the molecule is adsorbed with the hydrogen atom, which
is bound to the oxygen atom, pointing towards the surface. This hydrogen atom
has a partial positive charge, and so results in charge accumulation in the layer
directly beneath it. When adsorbed on MoS2, that hydrogen atom points away
from the surface. The charge depletion in the sulfur atoms of the substrate is then
as a result of the partial negative charge on the oxygen atom. Finally, for the case
of chloroform adsorption, the net dipole is perpendicular to the layers so that the
changes in charge density around the molecule are symmetric. As the chlorine
atoms have partial negative charges, charge depletion is evident directly beneath
them when adsorbed on graphene, whereas there is a charge accumulation beneath
the hydrogen atom which adsorbs on top of the metal atom of MoS2.

3.2.3 Conclusion

In conclusion, we have determined the adsorption configuration of six common
solvent molecules on the basal plane of both graphene and MoS2 using first-
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principles calculations which take van der Waals interactions into account. The
calculated binding energies, adsorption heights and charge transfer all show that
the solvent molecules are physisorbed on graphene and MoS2, with only minor
variations in binding height and binding energy between the different molecules
and on the two different monolayers.

For those molecules which contain a carbon ring, we find the the lowest energy
adsorption configuration on graphene to be one in which a Bernal-like stacking
arrangement of the carbon atoms is achieved. Non-planar molecules which have
hydrogen atoms pointing towards the surface adsorb such that those atoms are
located in the hollow site of the substrate lattice. We find that the orientation of
both 2-propanol and chloroform are rotated by 180◦ when comparing adsorption
on graphene and MoS2.

Finally, despite negligible charge transfer between the solvent and monolayers,
there is a significant charge rearrangement within the substrate layers in response
to the partial charges on the atoms in the molecules, similar to the creation of an
image charge in metals.

Liquid-phase exfoliation is strongly dependent on the type and nature of solvent
as well as the material being exfoliated. Here, we have shown that this cannot be
attributed to differences in how individual molecules of that solvent interact with
the surface of the 2D layer. Instead, the collective behavior of these molecules at
high concentrations may play a important role. In the next section we show that
the interaction energy is independent of the molecule type at high concentrations
and that the dynamical behaviour of molecules near the graphene surface should
be considered.
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3.3 Interaction of liquid solvents with

graphene

In the absence of any differentiation in the nature of the interaction between
individual molecules, the next step is to include multiple molecules.
Intermolecular interactions now become important, as these can modify the
orientation and interaction of the solvent molecules with the surface.

In this section, we address three open questions: (1) Does the behavior of the
solvent at the interface between solid and liquid play a role in the stabilization
of the monolayers in dispersion or, in other words, is it sufficient to consider only
energetic effects via the enthalpy of mixing when choosing screening descriptors,
(2) What is the physical mechanism leading to the experimental finding of a non-
zero polar component of the Hansen solubility parameter of graphene and (3)
How important are kinetic effects, such as reaggregation, to the stabilization of
graphene?

We find that there is a molecular-level structural and orientational ordering of
the solvent molecules at the solid-liquid interface which extends up to 30 Å
away from the graphene layer. These solvation layers form in all cases and
behaves similarly irrespective of the solvent polarity. The formation of these
solvation shells can explain the non-zero polar Hansen solubility parameter as it
is not isolated graphene that is measured experimentally but that of an effective
solute comprised of graphene and its solvation shells. These interfacial layers of
solvent do not behave similarly to the bulk solvent. Due to surface confinement,
the dielectric constant associated with these interfacial molecular layers will be
dramatically reduced. Finally, we find that kinetic effects, and in particular the
diffusion behaviour of these solvation shells parallel to the graphene sheet, is a
reliable descriptor determining the stability of graphene monolayers in
solution.

3.3.1 Methods

The twelve solvents included in this investigation are listed in Table 3.2 and
were chosen to include those reported by Hernandez et al. [145] to result in a
wide range of graphene concentrations after exfoliation. They include
cyclopentanone (best performing solvent, polar aprotic), benzaldehyde (low
performance, polar aprotic), bromobenzene (intermediate performanace, slightly
non-polar) and toluene (low performance, non-polar). All others have
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intermediate performance or polar properties. The maximum graphene
concentration was achieved by exfoliation in cyclopentanone, resulting in a
concentration of 8.5 ± 1.2 µg/ml. Exfoliation in non-polar solvents, including
toluene, heptane, hexane and pentane, resulted in much lower graphene
concentrations of 0.8 ± 0.4 µg/ml, 0.3 ± 0.4 µg/ml, 0.2 ± 0.1 µg/ml and 0.16 ±
0.05 µg/ml, respectively. However, some highly polar molecules such as water
and formamide also perform poorly, with the best performing solvents having a
slightly polar nature (although not all slightly polar solvents perform
well).

3.3.2 Molecular Dynamics

Molecular dynamics calculations are performed using the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) [185]. As the
interaction between graphene and isolated solvent molecules was found be
primarily attractive disperion forces [186, 187], it can be modelled accurately
using classical van der Waals (vdW) force fields.

The graphene monolayer is modeled as uncharged vdW spheres. These spheres
are described by interaction parameters originally reported by Steele et al. [188]
and later used to describe the interaction between graphene and molecular
adsorbants [189, 190, 191, 192]. The molecules are described by the All Atom
Optimized Potentials for Liquid Simulations (OPLS-AA) potentials, which were
obtained from LigPargen web server [193, 194, 195]. The pair interaction
coefficients between graphene and the molecules are obtained using
Lorentz-Berthelot rules [112, 114]. Binding energies calculated using these
potentials agree with experiment for small organic molecules adsorbed on
graphene [186].

The initial solvent structure was created using packmol [196] in a box size of
105.91 Å × 106.65 Å × 120.0 Å to reproduce the experimental room-temperature
densities (given in Table 3.2). The graphene monolayer was then included in the
simulation box by increasing the box size in the direction normal to the plane
by (2 × 3.5)Å to account for the increase in the volume due to the introduction
of graphene. The python package pymatgen was used to generate the LAMMPS
structural data file [197].

The system was annealed from 600 K to 300 K for 50 fs with an integration
timestep of 0.01 fs and then equilibriated at 300 K for 1 ns with an integration
timestep of 1 fs. The system was further simulated with the NVE ensemble for
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Molecules density (g/ml) dipole moment (D)

Cyclopentanone 0.95 3.28
Cyclohexanone 0.95 2.9
NFP 1.02 -
Bromobenzene 1.5 1.74
Benzonitrile 1.01 3.2
NMP 1.03 4.1
Chlorobenzene 1.11 1.55
1,3-dioxolane 1.06 1.19
Quinoline 1.09 2.0
Benzaldehyde 1.04 2.89
Acetone 0.78 2.9
Toluene 0.87 0.31

Table 3.2: Experimental densities and dipole moments of the molecules used
in the calculations. These numbers are extracted from the on-line databases.
[198, 199]

2 ns, of which 2000 samples from the last 1 ns were used to generate statistical
distribution functions. For the duration of the complete simulation the graphene
layer is held fixed.

3.3.2.1 Diffusion Coefficients

The diffusion coefficient of solvent molecules confined in a region [a, b] parallel
to the graphene sheet, D‖, can be determined from MD trajectories using the
method described in Liu et al. [125], Agosta et al. [124] and summarized in
Section 2.12.

For these calculations, the equilibrated structure was simulated with the NVE
ensemble for 150 ps and the center of mass of each molecule recorded at each time
step. A time window (τ) of 35 ps is used to calculate the diffusion coefficient.

3.3.2.2 Helmoltz Free Energy

The Helmoltz free energy of interaction is determined using the finite difference
thermodynamic integration method (FDTI) described in Section 2.10.
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The free energy is then calculated as:

∆H =

∫ 〈
∂U(λ)

∂λ

〉
≈

N−1∑
i=0

wi

〈
U(λi + δ)− U(λi )

δ

〉
(3)

where 〈...〉 indicates an ensemble average, wi are integral weights and δ is the finite
difference parameter which satisfies (λi − λi−1) >> δ. For these calculations we
simulate the system for 10 ns in the NVT ensemble at 300K. The parameter λ
is incremented in 40 steps or every 250 ps with the finite difference parameter δ
of 0.001. For each λ, first 100 ps are discarded for equilibration. A sample taken
every 20 fs from the last 150 ps is used to calculate the ensemble average at that
λ.

This calculated free energy can further be decomposed into the enthalpy and
entropy contributions. These are determined as the slope and y-intercept of the
line ∆G

T
versus 1

T
, respectively. The free energy is calculated at temperatures

290 K, 300 K and 310 K.

3.3.2.3 Local Permittivity

To calculate the local permittivity for a periodic molecular slab, the density
functional theory (DFT) calculations are performed using the projected
augmented wave (PAW) method as implemented the quantumEspresso code.
Pseusopotentials (pbe-kjpaw) from the pslibrary (V1.0.0) are used. A
wavefunction cutoff of 94 Ry is used for all calculations. The Brillouin zone is
sampled with a 10 × 10 × 1 Monkhorst-Pack mesh [168] with a Gaussian
smearing width of 0.0018 Ry. All electronic calculations are converged with a
threshold of 7 × 10−9 Ry. No geometry optimization is performed, so that the
molecular orientation is kept fixed.

To make the calculations computationally tractable, for a molecule in a given
orientation, the unit cell contains one molecule. The size of the orthorhombic
unit cell is chosen such that the atoms in the adjacent molecules are at least
3.5 Å apart in the periodic direction of the molecular slab. In the direction
perpendicular to the slabs, a vacuum of 20 Å is included to decouple the periodic
images. In this direction the dipole correction is enabled with the counter dipole
placed in the center of the vacuum region.

To aid convergence, the charge density is first calculated without the inclusion
of the required dipole correction. The dipole correction is then added, and the
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corresponding charge density (ρ0) and the Hartree potential (V H
0 ) are saved.

Finally, an external electric field of 0.001 Ry a.u. is applied and the
corresponding charge density (ρE ) and the Hartree potential (V H

E ) are saved. In
the last two steps, the electron density and the Hartree potential are saved on
the three dimensional FFT grid. This can then be used to calculate the relative
permittivity profile, ε(z) using Eq. 40, Eq. 41 and Eq. 42, as described in
Section 2.5. From ε(z) the effective dielectric constant perpendicular to the
molecular layer can be calculated as:

εlayer =
1

z2 − z1

∫ z2

z1

1

ε(z)
dz (4)

where z1 and z2 are the planes between which the molecular layer is bound. The
limits z1 and z2 are defined by the positions where the average electron density
(ρ0) falls below 0.001 Å−3.

This calculated local dielectric constant (εlayer) is the true dielectric constant only
when the molecules are confined and cannot move after the application of an
external electric field. In the intermediate case where the molecules have reduced
freedom to rotate, the dielectric constant will be higher than this calculated
value. These calculated local dielectric constants (εlayer) are an indication of the
electronic contribution to the local permittivity. The true permittivity of the
first solvation shell could be higher than these calculated values here and can be
calculated using molecular dynamics simulations.

3.3.3 Results

3.3.3.1 Solvation Shell Formation

The position distribution function g(z), the polar angle distribution function
θ(z) and the azimuthal angle distribution angle φ(z) of the molecular dipoles
close to graphene are shown in Fig. 3.8. The graphene layer is located at 0 Å.
The polar angle is measured with respect to the axis aligned to the positive
direction (towards the right). g(z) is given relative to the bulk solvent number
density so that a value greater (less) than 1 indicates an accumulation
(depletion) of molecules relative to the bulk solvent. θ(z) is the probability
distribution function of the polar angle of the molecular dipole, where 90◦

corresponds to the molecular dipole in the plane parallel to graphene and 0◦ (or
180◦) corresponds to the molecular dipole in the plane perpendicular to the
plane of graphene. The panels of Fig. 3.8 shows the 90◦ orientation of the
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Figure 3.8: Pair distribution functions for the center of mass of the molecule
and the graphene layer. (Top panel) g(z) a histogram of the center of mass of
the solvent molecules normalised by ( N

L
dz) where N is the number of molecules

in the unit cell, L is the length of the unit cell and dz is the bin width. The
graphene monolayer is located at z = 0 Å. (Middle panel) θ(z) is the probability
distribution function of the polar angle of the molecular dipole, where 90◦

corresponding to the molecular dipole in the plane parallel to graphene and 0◦

(180◦) corresponds to the molecular dipole in the plane perpendicular to the plane
of graphene. (Bottom panel) φ(z) is the probability distribution function of the
azimuthal angle of the molecular dipole, indicating the orientation of the dipole
in the plane parallel to the plane of graphene, with 0◦ (180◦) corresponding to
the orientation along positive (negative) x-axis, 90◦ (−90◦) corresponding to the
orientation along the positive (negative) y -axis.
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molecule molecular dipole with the polar axis out of the plane of the paper.
φ(z) is the probability distribution function of the azimuthal angle of the
molecular dipole, indicating the orientation of the dipole in the plane parallel to
the plane of graphene, with 0◦ (180◦) corresponding to the orientation along
positive (negative) x-axis, 90◦ (−90◦) corresponding to the orientation along the
positive (negative) y -axis.

Although the molecular dipole is located in the molecular plane, in order to
completely determine the orientation of the molecule with respect to the graphene
layer the angle (α) made by the normal to the plane of the molecule with respect
to the z axis is necessary. The position distribution function (g(z)) and the
angle distribution function α(z) with the z axis aligned to the positive direction
(towards right) is shown in Fig. 3.9. The graphene layer is again located at
0 Å.

By examining Fig. 3.8, we see that, irrespective of the polar nature of the
molecule, distinct solvation shells are formed next to the graphene layer as a
result of surface confinement, molecule-molecule interactions and
molecule-graphene interactions. The first solvation shell can be recognized as a
peak in g(z) followed by a deep trough near the surface of graphene (grey
shaded area). The distance between graphene and the atom of the molecule
nearest graphene is determined by the vdW interaction, and so is very similar,
regardless of the particular orientation of the molecule. It varies from 1.99 Å for
bromobenzene to 2.07 Å for benzaldehyde, as summarized in Table 3.3.

The first solvation shell has a complex structure in most cases due to the way
the molecules adsorb on graphene. This is particularly evident for
cyclopentanone (Fig. 3.8(a)) and NMP (Fig. 3.8(f)) where the first solvation
shell is composed of two distinct peaks. The reason for this can be found by
looking at α(z) in Fig. 3.9(a,f): the solvent adsorbs on graphene with two
distinct angular orientations – one with the molecular plane lying
approximately parallel to the surface and one with the plane almost
perpendicular. As the distribution function is based on the centre of mass of the
molecules, this manifests as a double peak structure. As a result, the dipole
moments of the molecules also show two distinct polar angles (Θ(z)), whereas
the azimuthal angle (φ(z)) shows no distinct orientation preference indicating
no in-plane ordering of dipoles. The two peaked behavior is schematically
illustrated in Fig. 3.10. This behavior was previously found in molecular
dynamic calculations involving NMP interacting with both graphene and
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Figure 3.9: Pair distribution functions for the center of mass of the molecule
and the graphene layer. (Top panel) g(z) is the distribution of center of mass of
molecules (i.e., the same as presented in Fig. 3.8). (Bottom panel) α(z) is the
angle made by the normal to the plane of molecule with the axis perpendicular
to the plane of graphene.

Figure 3.10: Toy model demonstrating the origin of the two peaked behavior in
g(z).
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carbon nanotubes [191, 200, 201].

In other cases, the distinction between the two peaks is not as clear. For
example, the first solvation shell of cyclohexanone (Fig. 3.8(b)) has a small peak
corresponding to those molecules located closest to graphene and orientated
parallel to graphene, but the remainder of the molecules in the first solvation
shell do not exhibit an angular preference. This is also the case for NFP
(Fig. 3.8(c)), bromobenzene (Fig. 3.8(d)), chlorobenzene (Fig. 3.8(g)), dioxolane
(Fig. 3.8(h)), quinoline (Fig. 3.8(i)), acetone (Fig. 3.8(k)) and toluene
(Fig. 3.8(l)). In all cases, the dipole moments of the molecules show polar
angles consistent with the orientation of the molecular planes. For the case of
benzonitrile (Fig. 3.8(e)) and benzaldehyde (Fig. 3.8(j)) the first solvation shell
is comprised almost entirely of molecules lying parallel to the graphene layer,
with no second peak visible.

This distinction in the molecules could be due to the orientation dependence
of the binding energy in between the graphene layers and the molecules. This
orientation dependence is due to the nature of the van der Waals interaction,
where the interaction energy is the sum of pair wise interaction between all the
atoms in the molecules. The molecules orient in such a way that the number of
atoms near the graphene layer is maximized. Molecules that are found to orient
perpendicular to the plane of graphene fill all the gaps that exist in between the
flat-lying molecules.

Within the first solvation shell we can determine the percentage of molecules in
each of these two peaks, particularly for those with two very distinct peaks. In
the case of cyclopentanone, 49% of the molecules are present in the first peak of
the first solvation shell, that is lying parallel to the graphene plane. This value
reduces to 48%, 41% and 37% for NMP, toluene and quinoline, respectively.

To visualize this orientational ordering, Fig. 3.11 shows a snapshot from the
molecular dynamics simulation showing only the first solvation shell of
benzonitrile and NMP. As expected in the case of benzonitrile from Fig. 3.8(e),
the majority of molecules are adsorbed with their plane orientated parallel to
graphene (shaded in red) and very few molecules are adsorbed perpendicularly
to graphene (green shading). In the case of NMP, a small but significant number
of NMP molecules are adsorbed perpendicularly to the sheet (Fig. 3.8(e)). This
is evident in the larger proportion of molecules shaded in green as compared
molecules shaded in red. Note however that strong long-range lateral order is
not present. This can be verified by calculating the pair correlation functions
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Figure 3.11: A snapshot of molecules in first solvation shell of benzonitrile (left)
and NMP (right) with red circles indicating molecules belonging to the first peak
in the solvation shell and green circles indicating the rest of the molecules. It can
be seen that the molecules in the first peak are parallel (θ ≈ 0◦) to the plane of
graphene and the molecules in the second peak are biased towards the transverse
direction (θ ≈ 90◦).

for the geometric centers for the molecules in the first solvation shell and is
shown in Fig. 3.12. In all cases, there is a local ordering around the center (0,0)
due to the presence of an exclusion zone around the molecule. This ordering
decays rapidly moving away from the center. The strongest ordering is seen in
case of cyclopentanone (Fig. 3.12(a)), cyclohexanone (Fig. 3.12(b)) and
1,3-dioxolane (Fig. 3.12(h)). Intermediate ordering behaviour is seen in case of
NFP (Fig. 3.12(c)), benzonitrile (Fig. 3.12(e)), NMP (Fig. 3.12(f)), quinoline
(Fig. 3.12(i)), acetone (Fig. 3.12(k)) and toluene (Fig. 3.12(i)), with no ordering
beyond the first shell seen in case of bromobenzene (Fig. 3.12(d)),
chlorobenzene (Fig. 3.12(g)) and benzaldehyde (Fig. 3.12(j)).

Terrones et al. previously found that a monolayer of NMP molecules confined
between two graphene sheets exhibit long-range hexagonal ordering, but that
this is ordering is lost as the thickness of the molecular layer increases. This
agrees with our calculations, which show very little ordering near the graphene
sheet [201]. The confinement of molecules near the surface of graphene can also
be measured experimentally [153]. Arunachalam et al. showed that the NMP
molecules near the surface of graphene show a reduction in rotational degrees of
freedom using rotating frame Overhauser effect spectroscopy – nuclear magnetic
resonance (ROESY–NMR) technique [153].
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Figure 3.12: Pair correlation function of the center of geometry of the molecules
present in the first solvation shell.

The peak associated with the first solvation shell is also the sharpest, indicating
that the highest degree of transverse ordering occurs for those closest to graphene.
In response to the formation of the first molecular layer, the rest of the solvent
reorganizes to form further solvation shells as seen in Fig. 3.8. As expected,
the amplitude of the peak decays as the effect of the solute vanishes, finally
approaching a constant, indicating bulk solvent behaviour.

The positions of the atoms closest to the graphene layer, the number of solvation
shells (Nshells), the depth to which the solvation shells extend from graphene, the
average distance between two consecutive solvation shells and the excess number
of molecules in the first solvation shell (Nexcess

1 ) are given in Table. 3.3. For all
molecules the atoms closest to the graphene layer lie in a very narrow window
around 2 Å, with a minimum of 1.99 Å for bromobenzene and a maximum of 2.07
Å for benzaldehyde. The positions of the solvation shells are extracted manually
with the last shell defined as the last peak that deviates from bulk by at most
5%. The number of solvation shells varies from a minimum of 3 in the case of
bromobenzene, benzonitrile, chlorobenzene and benzaldehyde to a maximum of
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Molecules Zmin Nshells Depth (Å) Period (Å) Nexcess
1 %

Cyclopentanone 2.03 5 23.34 4.97 54.57
Cyclohexanone 2.02 6 29.31 5.02 56.57
NFP 2.0 5 24.67 5.14 49.56
Bromobenzene 1.99 3 13.11 4.95 35.3
Benzonitrile 2.03 3 12.16 4.25 28.03
NMP 2.0 4 18.7 5.08 46.12
Chlorobenzene 2.02 3 12.92 4.64 36.16
1,3-dioxolane 2.05 6 25.94 4.41 47.6
Quinoline 2.0 5 24.86 5.25 37.66
Benzaldehyde 2.07 3 12.41 4.38 33.21
Acetone 2.02 4 17.37 4.7 48.3
Toluene 2.01 4 18.51 4.95 40.24

Table 3.3: The table contains data extracted from the histograms in Fig. 3.8. Zmin

indicates the distance of atom nearest to graphene, Nshells indicates the number of
solvation shells, depth indicates the distance of last solvation shell from graphene,
period indicates the average periodicity of the solvation shells and Nexcess

1 indicates
the percentage of excess molecules in the first solvation shell. If we define the the
last solvation shell to be that with a maximum peak which deviates from bulk by
at most 5%.

6 for cyclohexanone and 1,3-dioxolane. The average distance between adjacent
solvation shells ranges from 4.25 Å for benzonitrile to 5.25 Å for quinoline.

Despite these differences, it is clear from Fig. 3.8 that the solvation structure
cannot be used to explain the observed phenomenon of solvent-dependent
graphene stabilization. For example, there is no appreciable difference between
the solvation structure of cyclopentanone and toluene, one of the best and worst
solvents for the LPE of graphite, respectively.

3.3.3.2 Effect of Confinement on Electric Permittivity of First
Solvation Shell

The dielectric response of polar molecules to an external electric field, Eext , is
a result of both the alignment of the permanent dipoles (µper ) to Eext and any
induced dipole moment (µind ) resulting from the electron density relaxation in
response to the external field. The polar molecules in the first solvation shell do
not behave as they would in the bulk liquid due to the confining potential of the
graphene surface. If they are no longer free to rotate with an external electric
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field [153], their response will be dominated by µind alone.

To determine how this depends of the type of solvent, we calculate the local
dielectric constant associated with the molecules in the first solvation shell
assuming a toy example where the molecules are held fixed by the graphene
layer and are not free to rotate. The calculations are done using using density
functional theory for a periodic slab with one molecule per unit cell as described
in section 3.3.2.3. To make this computationally tractable, we make the
assumption that all molecules are fixed in certain representative orientations.
These orientations are chosen in such a way that the dipole moment of the
molecule rotates in the plane perpendicular to the plane of the two dimensional
layer.

The first thing to note is that the electronic response is not affected by the
magnitude of the solvent dipole moment, with very similar average values found
for chlorobenzene (bulk dielectric constant of 5.7) and NMP (bulk dielectric
constant of 32.0). We rotate the molecule in 12 steps such that the dipole
moment of the molecule rotates a full 360◦ in the plane perpendicular to the two
dimensional slab. In Table 3.4, we present the maximum and minimum
calculated dielectric constant of all rotations, as well as the average value. The
calculated dielectric constant for the fixed molecular monolayer does not depend
strongly on the orientation of the polar molecule. It lies in a very narrow range
with maximum value of 2.08 for chlorobenzene and minimum value of 1.52 for
cyclopentanone and cyclohexanone.

This reduction in the permittivity of confined molecules are previously observed
for the case of water confined in a graphene slit pore. Fumagalli et al. reported a
surface-layer dielectric constant of 2, compared with the bulk value of 80 for water,
and attributed this to an inhibition of rotational motion of water at the surface
[202]. In some cases, confinement can even result in the observation of a negative
local permittivity. This was shown to be the case for water confined between the
layers of titanium carbide MXene nanosheets in the presence of Group-1 metal
ions [203].

3.3.3.3 Free Energy of Formation

Near the surface of a graphene monolayer, a negative Helmholtz free energy of
interaction (∆Gmix) is an indication of the favorable formation of a solvation
structure. As ∆Gmix = ∆Hmix−T∆Smix, where ∆Hmix and ∆Gmix are the enthalpy
and entropy of mixing, a requirement of mixing is that ∆Hmix < T∆Smix.
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Solvent εbulk εmax εmin εavg

Cyclopentanone 1.56 1.52 1.54 13.6
Cyclohexanone 1.56 1.52 1.54 15.0
Bromobenzene 2.3 2.11 2.21 5.4
Benzonitrile 2.0 1.82 1.92 26.0
NMP 1.6 1.52 1.56 32.0
Chlorobenzene 2.18 2.05 2.12 5.7
Benzaldehyde 2.16 2.02 2.08 17.8

Table 3.4: The calculated local dielectric constant of frozen solvent molecule
monolayers. The first column indicates the maximum of the effective dielectric
constant for a range of rotations, the second column contains the corresponding
minimum, the third column contains the average and the final column contains the
experimental bulk dielectric constant of the solvents for the purpose of comparison
[204, 205, 206, 207].

The free energy of mixing for graphene in all 10 solvents has been determined
from molecular dynamics simulations using the finite difference thermodynamic
integration method (FDTI), as described in Section 2.10. This will indicate the
spontaneity of formation of the solvation structures presented in the previous
section.

The results are shown in the first column of Table 3.5. At 300 K, ∆Gmix is
always negative, irrespective of the solvent. It ranges from -11.08 MJ/mol for
quinoline to -7.57 MJ/mol for cyclohexanone. This suggests the favorable
solubility of monolayer graphene in each of the solvents. However, no
correlation can be found between the magnitude of ∆Gsolv and the
experimentally-determined concentrations. As such, this cannot be used as a
mechanism of screening for more effective solvents. Note that Oyer et
al. calculated a change in the Helmholtz free energy upon graphene aggregation
in various solvents to be in the range of 1 MJ/mol. This magnitude is consistent
with the values reported here for the free energy of mixing of graphene in
similar solvents[208].

The decomposition of the solvation energy into its enthalpic and entropic
contributions are then given in the second and third column of Table 3.5,
respectively. In all cases, except for bromobenzene, there is a significant entropic
penalty for solvating graphene. This is because the bulk solvent molecules must
rearrange to form solvation shells around graphene. The entropic penalty is
compensated by a strong vdW interaction in all cases which results in a large
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Solvent ∆Gmix (MJ/mol) ∆Hmix (MJ/mol) T∆Smix (MJ/mol)

Cyclopentanone -8.33 -24.07 -15.74
Cyclohexanone -7.57 -22.26 -14.69
NMP -10.172 -28.15 -18.01
Bromobenzene -10.41 -9.57 0.83
Benzonitrile -8.94 -21.98 -13.06
Chlorobenzene -9.65 -23.10 -13.45
1,3-dioxolane -9.22 -25.23 -16.0
Benzaldehyde -9.90 -26.57 -16.64
Toluene -8.99 -21.10 -12.07
Quinoline -11.08 -28.32 -17.13

Table 3.5: The calculated Helmholtz free energy ∆Gmix, corresponding enthalpy
∆Hmix and the entropy term at room temperature T∆Smix.

negative Helmholtz free energy of interaction. The solvation of graphene is most
favourable in quinoline (∆Gmix =-11.08 MJ/mol) followed by bromobenzene
(∆Gmix =-11.41 MJ/mol). However, the decomposition into enthalpy and
entropy contributions in these two solvents are remarkable different.

The enthalpy change associated with the mixing of graphene in these solvents
lies in a very narrow range between -28.32 MJ/mol (associated with quinoline)
to -21.10 MJ/mol (associated with toluene). The exception is for graphene in a
bromobenzene dispersion. In this case, ∆Hmix is much smaller in magnitude at
-9.57 MJ/mol. Likewise, the entropy contribution (T∆Smix) is very similar for
all solvents, lying between -17.13 MJ/mol and -12.07 MJ/mol, except again for
bromobenzene. The entropy contribution is here is positive at 0.83 MJ/mol.
Overall, however, this unusual behavior of the bromobenzene solvent is not
evident in the Helmoltz free energy of mixing.

Parameter matching - whether surface energies, Hildebrand solubility parameters
or Hansen solubility parameters methods - works by minimizing the enthalpic
contribution to the free energy of mixing. Poor predictability with this method
in some specific cases was attributed to neglecting the entropic effects associated
with interfacial interactions. Yet, here we show that there is a significant entropic
contribution to the total free energy of mixing in all solvents, with the exception
of bromobenzene.



3 Exfoliation of graphite and MoS2 91

Figure 3.13: Simple model describing the process of reaggregation for two layers
of graphene suspended in a solvent. (a) First, the isolated graphene layers move
towards each other (indicated by red arrows) so that the molecules in between
the layers are expelled (indicated by blue arrows), (b) the molecules in the first
solvation shell then form a sandwich like structure in between the two graphene
layers, and (c) Finally, the molecules in the first solvation shell diffuse from in
between the layers completing the reaggregation process.

3.3.3.4 Dynamics of the First Solvation Layer

If the solvent-dependence of monolayer graphene stability in a dispersion is
instead determined by re-aggregation effects, then solvent descriptors based on
energetic considerations alone are not appropriate. Descriptors based on kinetic
considerations, such as viscosity on the macroscopic scale, or diffusion of
molecules on the nanoscale, should be considered.

For dispersions of graphene, long-term stability can only be obtained if the
dispersion is kinetically stabilized against reaggregation when layer collision
occurs. For this reason, surfactants or polymers are typically added to the
dispersion. They adhere to the exfoliated sheets thereby preventing
reaggregation. We hypothesize here that, in some cases, interactions between
the graphene surface and the organic solvent molecules themselves may be
sufficient to stabilize the graphene layers in solvent.

The re-aggregation of two neighboring graphene monolayers requires the solvent
molecules between the two layers to be ejected. If the layers are far apart, this
will be determined by the viscosity of the solvent [144]. When the layers are close
together, the diffusion coefficient of the molecules parallel to the graphene sheet
will determine the ease at which the molecules will be ejected. The molecules in
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Figure 3.14: The diffusion coefficient of the molecules in the first solvation shell
plotted against the concentration of graphene CG (µg/ml) in the solution.

the first solvation shell, confined as they are on the graphene surface, will play a
particularly important role.

To visualize this, consider a slab of graphene layers suspended in a solvent. The
solvent molecules around the layers form a solvation structure as shown in
Fig. 3.13(a). This solvation structure can be divided into the first shell and the
rest of the solvent molecules. For the graphene layers to reaggregate, the
molecules in between these layers have to be ejected. This ejection can proceed
in two steps: First, all the molecules in the rest of the solvation shells are
ejected. This is illustrated in Fig. 3.13(a). This ejection of molecules results in
the molecules in the first solvation shell sandwiched in between the graphene
layers as shown in Fig. 3.13(b). Second. to complete the reaggregation process,
those molecules in between the layers have to be ejected. This results in
reaggregated layers suspended in the solution as shown in Fig. 3.13(c). If the
solvent molecules are easily expelled from between two graphene layers, they
will not hinder graphene reaggregation. This will lower the concentration of
graphene in the dispersion.

To determine the extent to which the solvent molecules considered here can
kinetically block reaggregation, we calculate the diffusion coefficient for the
molecules in the first solvation shell in the direction parallel to the graphene
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surface. The results are shown in Fig. 3.14 as a function of the experimental
graphene concentration taken from Ref. [145]. The highest parallel diffusion
coefficient is found for acetone, at 0.35 Å2/ps. This is followed by toluene (0.18
Å2/ps), dioxolane (0.16 Å2/ps) and chlorobenzene (0.16 Å2/ps). Interestingly,
these are all poor solvents for the exfoliation of graphite, with the worst solvent
corresponding to that with the largest parallel diffusion coefficient. As the
diffusion constant decreases, the experimental concentration increases, with the
best solvent (cyclopentanone) having a parallel diffusion constant of 0.085
Å2/ps.

However, in the very-low diffusion regimen the concentration does not follow
this upward trend. Here, the molecular hindrance to re-aggregation is higher, so
one would expect that the exfoliated layers would remain in the dispersion and
increasing stability would be found for solvents with lower diffusion coefficients
parallel to the plane. Instead, the experimental concentration decreases again.
It is possible that the actual concentration of graphene is now dependent on the
ease of exfoliation.

To summarise, when the diffusion rate is high, the concentration of graphene
layers in the solvent will decrease over time due to reaggregation. When the
diffusion rate is low the concentration of graphene layers will be maintained due
to a low reaggregation rate resulting in same graphene concentration at the
beginning. In other words, when the diffusion coefficient is high the graphene
concentration is always low due to higher rate of reaggregation, whereas when
the diffusion rate is low, the graphene concentration will directly depend on
number of layers that were initially present in the solution.

Experimentally, the solvent dependence of exfoliation can be inferred from the
variation in the separation efficiency. This can be calculated as the percentage
of monolayers in the exfoliated graphene slabs. Hernandez.et al. showed that the
exfoliation in NMP results in 29% monolayers as compared to 7% in acetone and
5% in cyclopentanone [145].

To conclude, the diffusion coefficient calculated here a very good candidate for
computational screening of the solvent molecules. In such a screening method,
the diffusion coefficient of molecules can be calculated for a small set of
molecules for which exfoliation experiment data is available. Comparing the two
will then give an cut-off for the diffusion coefficient above which the solvent
molecules will not perform well. This information can then be used to filter
other molecules. We can then further identify solvent molecules for which the
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graphene concentration will be enhanced by optimizing the separation process.
For example, given that toluene has a high diffusion coefficient, it will result in
low concentration dispersion even if larger amount of layers are initially created.
Benzaldehyde, on the other hand, is a good candidate for the optimization of
the separation process as it has a low surface diffusion coefficient.

In the analysis up until now, we have assumed that the separation is not
affected by the solvent molecule due to the large forces involved. This may not
be necessarily true, and in certain conditions is the most important
consideration and needs further investigation.

3.3.4 Discussion

3.3.4.1 Non-zero Polar Hansen Solubility Parameter

The physical mechanism leading to the non-zero polar Hansen solubility
parameters of non-polar graphene (δP = 9.3 MPa1/2) is so far unknown. There
was some discussion in the literature regarding the contribution of edge-sites,
but these should cancel to a large degree, leaving only unintentional chemical
functionalisation of the basal plane as a potential physical mechanism [33]. Yet,
Raman spectra typically find little evidence for this [209].

Here, we argue that rather than being assigned to monolayer graphene alone, the
Hansen solubility parameters extracted from experimental data must be assigned
to an effective solute, comprised of the graphene monolayer and its solvation
shells, and in particular the first solvation shell. As our results show, these
solvent molecules have a molecular-level structural and orientational ordering on
the graphene surface.

The high non-dispersion components of the fitted solubility parameters must
then be due to the dipole moment of the ordered solvent molecules. Due to this
ordering, the effective solute, from a distance, appears to carry a net charge.
For example, NMP orders in such a way that oxygen atoms are orientated away
from the graphene sheet. The effective solute then appears to have a surface
charge, resulting in the polar component of the assigned Hansen solubility
parameter.

3.3.5 Conclusion

The solvent molecules near the surface of graphene re-organize into solvation
shells. These solvation shells are formed such the first solvation shell is distinct
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and is followed by a deep trough. The subsequent solvation shells are broader
and decay rapidly away from the surface of the graphene layer. The number of
solvation shells and the distance at which the last shell is formed varies in a very
narrow range for all the molecules. The formation and the nature of the solvation
shells is similar for all the considered molecules, irrespective of whether they are
polar or non-polar.

Within the first solvation shell the molecules are organized in two distinct
categories. These appear as two peaks in the position distribution function. The
molecules associated with the first peak are adsorbed on graphene such that the
plane of molecules is parallel to the graphene plane. The molecules associated
with the second peak are oriented in such a way that the molecular plane lies
perpendicular to the graphene plane. Some intermediate orientations can occur
in some cases. This out-of-plane ordering is also seen in the orientation of the
dipole moment of the molecules. In contrast to the strong out-of-plane ordering,
the lateral ordering of these molecules is negligible. This is reflected in both the
distributions of the molecular positions and their dipolar orientation. The
molecules confined in the first solvation shell also have a drastically reduced
dielectric permittivity. If they are immobilized due to surface confinement. This
prevents the permanent dipole from aligning to an externally applied electric
field.

The formation of these solvation shells is also favorable as indicated by the free
energy and its decomposition in enthalpy and entropy contributions. This
independence of the solvation structure on the nature of the solvent molecule
hints that non energetic contributions may be responsible for the observed
solvent-dependence of graphene stabilization. We propose that the diffusion
coefficient of molecules in the first solvation shell is an appropriate property to
determine the possibility of re-aggregation in a solvent. We note that in the
low-diffusion limit, this appears to break-down, at least for the solvents
investigated here. This origin of this requires further work, but could be related
to the role of the solvent in the separation step which is typically thought to
play a minor role.

We also speculate that the non-polar Hansen parameter obtained by fitting the
experimental data can be attributed to the formation of solvation shells. The
molecules in the first solvation shell and the graphene form an effective solute.
Due to partial charges on the atoms of the first solvation shell, at a distance the
effective solute appears to have surface charges. This results in the designation
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of a non-zero polar solubility parameter.



CHAPTER

4

ION-ASSISTED EXFOLIATION

4.1 Introduction

An alternative strategy for the exfoliation of individual layers from their
corresponding bulk structures is to use Group-1 metal ions, such as lithium or
potassium, to accelerate the process [11, 35, 36, 37, 210]. This is known as
ion-assisted exfoliation, and the effectiveness of this method is attributed to the
charge transferred from the ions to the layers. It avoids the use of large forces to
separate the layers, and the associated degradation of the exfoliated layers [211].
Ion-assisted methods generally involve introducing ions between the layers,
followed by spontaneous exfoliation in presence of polar solvents.

Figure 4.1: Layers intercalates with group-1 metal ions. (Left – Right) lithium
intercalated TiS2, potassium intercalated Bi2Te3 and potassium intercalated
MoS2. Figure reproduced from Ref. [35]

97
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The intercalation of ions in a layered material is generally not a spontaneous
process but it can be achieved via various methods. Fan et al. mixed
n-butyllithium (BuLi) and MoS2 in hexane at room temperature [36]. This was
sonicated for 1.5 hours, resulting in Li intercalation between the MoS2 layers.
These intercalated layers were then separated from the mixture using
centrifugation and exfoliated by sonicating the mixture of intercalated layers
and water for 5 min. Cullen et al. mixed alkali metals and a variety of bulk
layered materials such as MoS2, TiS2, FeSe and V2O5, in an environment of
ammonia gas, at low temperatures of -63◦C and at pressures of less than 10−6

mbar. This resulted in intercalated layers [35], as shown in Fig. 4.1. High
temperatures can also be used to enhance intercalation. Wang et al. used a
mixture of lithium salts and layered material in water at 100◦C to achieve
intercalation [210]. These intercalated layers can then be removed from the
intercalating solvent mixture and used for exfoliation.

Cullen et al. also showed an interesting phenomenon for partially intercalated
layers of Bi2Te3 [35]: High-angle annular dark field (HAADF) scanning TEM
(STEM) found that these layers stack in a very particular way upon deposition.
The adjacent few layer slabs are offset in such a way that the intercalation layer
(positive) is adjacent to the negatively charged layer of Bi2Te3.

Wang et al. used salts such as Li2SO4 to achieve simultaneous cation-anion
cointercalation [210]. They showed that the presence of the cation is critical for
exfoliation. They propose that the simultaneous presence of anion species
greatly accelerates the process of exfoliation and results in larger ratio of
monolayer graphene layers [210]. They find that for this to occur, the geometry
of the anion is important - similar enhancements are observed for KCl and not
for LiCl.

Molecules, can also co-intercalate between graphite layers. In such cases the
molecular structure plays a important role. This is demonstrated in case of
ethylene carbonate (EC) and propylene carbonate (PC) electrolyte solutions
[212]. In the case of PC, which differs in structure from EC by just a CH3

functional group, molecule-ion cointercalation results in exfoliation of the
graphite slab. In contrast, EC does not cointercalate and no exfoliation
occurs.

Intercalating ions donate charge to the individual layers. In some cases this
excess charge can modify the entire structural and electronic properties of the
layered material. This is the case for alkali-metal intercalated group-VI transition
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metal dichalcogenides (TMD) [11, 38, 39, 40, 41, 42], where the charge induces
a structural phase transition from a semi-conducting H phase to a metallic T
phase.

In Section 4.2 we show that the spontaneous disintegration of alkali-metal
(specifically potassium) intercalated graphite is due to an enhanced solvation
energy of the now-charged graphene layers. In Section 4.3 we discuss the
changes to the structural and electronic properties of group-VI transition metal
dichalcogenides (TMD) that occurs due to the presence of excess charge.
Finally, in Section 4.4 we develop a computational methodology to determine
whether selective ion intercalation, selective molecule intercalation or
molecule–ion co-intercalation will occur when a layered material is placed in a
solvent containing alkali metal-ions.
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4.2 Ion-assisted Liquid Phase Exfoliation

Some graphene intercalation compounds have been shown to spontaneously
exfoliate when mixed with a polar solvent [11, 35, 36, 37, 210]. This
spontaneous disintegration is desired as it avoids the fragmentation of the slabs
which occurs with the introduction of shear forces in the LPE method. The
spontaneity of this process and the final product of the disintegration can be
estimated by calculating the binding energy of the intercalated slabs in a
solvent medium. A positive binding energy indicates an unstable structure
which will spontaneously exfoliate releasing energy. A negative binding energy
indicates a stable structure which will not spontaneously exfoliate.

4.2.1 Disintegration into neutral slabs

Experimental evidence suggests that for a potassium-intercalated slab of graphite,
the exfoliation in polar solvents is spontaneous and results in charged layers [35].
First we determine if this is the only possibility or if exfoliation into neutral
layers is also possible. For this we calculate the binding energy of a potassium
intercalated graphene bilyer as shown in Fig. 4.3(a). Here, we use the potassium
concentration of KC6 as this is one of the highest concentrations that can be
achieved experimentally [213]. Higher concentrations such as KC4 require extreme
conditions [214].

Here, the DFT calculations were performed with vasp, using the additional
module VASPsol [83, 84] to account for implicit solvent interactions. A
description of the implicit solvation method is given in Section 2.8. The
Brillouin zone was sampled with a 11 × 11 × 1 Γ−centered mesh. The unit cell
is hexagonal with the in-plane unit cell size of size 4.29 Å × 4.29 Å. We allow
all atoms in the unit cell to move. In all cases, a plane wave cutoff of 700eV was
used to converge the basis set.

In vacuum, the potassium intercalated graphene bilayer is stable. This is
confirmed by a negative binding energy of -1.6 eV associated with the slab
exfoliating into two neutral monolayers and isolated potassium atoms. It is
defined as:

EBE = E2L+K − E1L − E1L − EK (1)

where, EBE is the binding energy of the intercalated graphene bilayer, E2L+K
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is the total energy of the intercalated graphene bilayer, E1L is the total energy
of a graphene monolayer and EK is the total energy of an isolated potassium
atom.

From experiment, we know that alkali-metal intercalated graphite is exfoliated
upon immersion in a polar solvent [11, 35, 36, 37, 210]. We therefore calculate
the binding energy, EBE , of an intercalated bilayer slab in an implicit solvent
environment as a function of the relative permittivity (εr ) and surface tension
(τ) of the solvent. The results are showed in shown in Fig. 4.2. The Coulombic
interaction between the solvent molecules and the layer (solute) is included in
the relative permittivity term, which fixes the charge density and the boundary
between the solute and solvent. The surface tension term accounts for the other
non-electrostatic contributions. These contributions are dependent on the
boundary between the solute and the solvent. As a result, when we increase the
surface tension, the binding energy increases linearly for a fixed relative
permittivity (εr ). We find a negative binding energy for all values of εr and τ , so
that exfoliation into neutral graphene monolayers and isolated potassium
methods is not energetically favorable, regardless of the solvent
parameters.

4.2.2 Disintegration into charged slabs

Next we consider a process where the neutral slab disintegrates into charged
products, i.e., into isolated monolayer anions and a isolated potassium cation.
The description of anions in DFT must be performed carefully for two main
reasons: (1) In VASP a negatively charged system can converge to a state in

Figure 4.2: Binding energy of KC6, calculated according to Eqn. 1, as a function
of the relative permittivity of bulk solvent (εr ) and the surface tension of the
solvent (τ).



4 Ion-assisted exfoliation 102

which positive eigen-values are occupied - an unconverged result [215], and (2)
the linear term in periodic corrections for 2D systems is not implemented. The
effect of a polarization charge is also neglected. This leads to charge leakage
into the solvent in VASP. Instead, we use QuantumEspresso to perform DFT
calculations in this section with the additional plugin Environ[87] to account
for solvent interaction. This choice was motivated by the fact that this code
has implemented suitable periodic boundary conditions for the solvent potential
[86].

As polar solvents are required to screen the excess charge on the graphene
sheet, this gives a lower bound of the relative permittivity. Here, we consider
only εr > 20. We consider a few different experimentally relevant concentrations
for potassium intercalated bilayers. Cullen et al. achieved a concentration of
KC24, so here we consider concentrations KC12, KC24, KC16 and KC32, to test
the robustness of the analysis to changing concentrations [35]. The unit cell for
KC12 and KC24 is hexagonal with an in-plane unit cell size of 8.58 Å × 4.29 Å
and 8.58 Å × 8.58 Å respectively, whereas for KC16 and KC32 it is
orthorohombic with an in-plane unit cell size of 8.52 Å × 4.92 Å and 8.52 Å ×
9.84 Å respectively. Furthermore, a vacuum layer of 20 Å was included in the
direction normal to the surface. In all cases, a plane wave cutoff of 75 Ry was
used to converge the basis set. This high cutoff is required to resolve the cavity,
which has a very sharp gradient. The PBE-PAW potentials provided with the
pslibrary.1.0.0 were used. These potentials were tested by reproducing common
properties of graphene and bulk potassium. The optimized optB86b-vdW
functional was used. The Brillouin zone was sampled with a 6 × 11 × 1

Γ−centered mesh for KC12 and KC16, whereas for KC24 and KC32 a 6 × 6 × 1

Γ−centered mesh is used. For structural relaxations a force tolerance of
3.88 × 10−4 Ry/Bohr is used. We allow all atoms in the unit cell to move. The
point counter charge correction for 2D slabs was used for the monopole and
dipole correction.

Fig. 4.3(a) shows a schematic of the potassium intercalated bilayer graphene.
Fig. 4.3(b) shows the solvation energy of positively charged potassium ions. This
energy decreases for higher values of εr due to increased Coulomb interaction
between the charged atom and the solvent. Fig. 4.3(c) shows the binding energy
for a potassium intercalated bilayer graphene slab with concentration KC12 as a
function of the relative permittivity (εr ) and surface tension (τ) of the solvent.
To calculate this binding energy the intercalated slab is split into an isolated
positively charged potassium and two isolated monolayers of graphene each with



4 Ion-assisted exfoliation 103

(a) (b)

(c) (d)

(e) (f)

Figure 4.3: (a) Schematic of a graphene bilayer intercalated with a potassium
atom, (b)The solvation energy of a positively charged potassium ion as a function
of the relative permittivity of bulk solvent (εr ) and the surface tension of the
solvent. Binding energy of graphene intercalated with potassium(K) atoms.
Binding energy is calculated for case when the 2-layer intercalated slab breaks
into positively charged potassium ion and two negatively charged monolayers each
with a total excess charge of 0.5 electron. The binding energy is calculated as a
function of both relative permittivity of bulk solvent (εr ) and the surface tension
of the solvent with varying ion concentration, (c)KC12, (d)KC16, (e)KC24, (f)KC32;
the common legend is given is (b)
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half an extra electron per 12 carbon atoms. That is, the binding energy is defined
as:

EBE = E2L+K − E1L0.5− − E1L0.5− − EK + (2)

where, EBE is the binding energy of the intercalated graphene bilayer, E2L+K is the
total energy of the intercalated graphene bilayer, E1L0.5− is the energy of monolayer
graphene with an excess charge of 0.5e on the layer and EK is the energy of a
positively charged potassium ion. A positive binding energy (EBE ) indicates a
spontaneous splitting of the graphene bilayer into two charged monolayers without
the application of external forces.

For a fixed value of εr , increasing τ results in a much reduced or even negative
binding energy. This is because the energy gained as a result of the Coulomb
interaction between the charge density of the solute and polarization charge of the
solvent (dictated by εr ) is used to create a cavity in the solvent. This can be seen
from the rigid shift of isolines downwards with increasing τ in Fig. 4.3(c).

However, for a fixed value of τ , increasing εr will result in an increased binding
energy. This is because increasing εr results in a higher polarization charge of the
solvent, which results in a higher Coulomb attraction between it and the charge
density of the solute. This increase in attraction will be higher for the charged
solutes than for the neutral solutes. This can be seen from the monotonic increase
of the isolines going from left to right in Fig. 4.3(c) with increasing εr .

When decreasing the concentration of adsorbed potassium from KC12 to KC32

(shown in Fig. 4.3(f)), the energy required to create the cavity for a fixed τ

increases because of the larger overall quantum volume. As a result, a higher
Coulomb attraction compensates for this increase in energy. This results in a
much reduced or even negative binding energy for same value of εr and τ

compared to the system with a higher potassium concentration. The binding
energies for intermediate concentrations KC16 and KC24 are shown in
Fig. 4.3(d) and Fig. 4.3(e), respectively.

We can therefore conclude from Fig. 4.3 that a spontaneous splitting of an
intercalated bilayer graphene into charged species will be achieved for higher
potassium ion concentration in the intercalated slab, for higher relative
permitivities of the bulk solvent (εr ) and lower surface tensions (τ) of the
solvent. The spontaneous splitting of these intercalated slabs into individual
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layers of graphene suspended in the solvent without the introduction of external
forces is advantageous because the application of external forces can damage the
exfoliated layers, with the amount of damage proportional to the applied force
[216]. This damage is often observed as defects or a reduced surface area of
separated layers.

The solvation energy is defined as an energy gain or loss as a result of solute-
solvent interaction. It is calculated as:

Esolvation = Ein solvent − Ein vacuum

where Ein solvent is the energy of the solute in solvent and Ein vacuum is the energy
of solute in vacuum. As we cannot calculate the energy of anions in vacuum[85],
due to problems associated with charge leakage, we cannot calculate the exact
ab-initio solvation energy of the individual charged graphene layers. However,
from the solvation energy of the positively charged potassium, shown in
Fig. 4.3(b), and the binding energy, we can conclude that the solvation energy
of the negatively charged slab will be very large compared to a neutral slab.
These large solvation energies associated with both charged species is
responsible for the spontaneous exfoliation of the intercalated slabs: the
exfoliated charged products are better stabilized than the neutral parent slab.
The charge on the monolayers also prevents the re-aggregation of the individual
layers due to Coulomb repulsion.

We note that the case considered here required the bilayer slab to disintegrate into
charged slabs, but this may not be necessary in other cases when the solvation
energy of the neutral disintegrated products is large enough to compensate for
the binding energy.

4.2.3 Conclusion

The experimentally observed spontaneous disintegration of intercalated layered
materials into their charged components can be explained by the large solvation
energy of charged species. The increase in binding energy of the intercalated
slabs compared to non-intercalated slabs can be countered by this solvation
energy.
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4.3 Phase transitions in group-VI transition metal

dichalcogenides

The charge donated by the group-1 metal ions to the layers can have unintended
consequences, such as a modification of electronic or structural properties of the
exfoliated layers. Achieving control over these modifications is desirable.

Transition metal dichalcogenides (TMDs), comprised of layered sheets of
transition metal atoms sandwiched between two layers of chalcogen atoms
(MX2), are chemically versatile, exhibiting a broad range of electronic
properties from insulating (ZrS2) to superconducting (NbSe2) [217]. As well as
by changing the composition, the conductivity of a TMD can be modified by
inducing a structural transition between different polymorphs. Several such
polymorphs exist, distinguished by the metal coordination of the chalcogen
atoms. In the semi-conducting H phase, the chalcogen atoms are AA-stacked so
that the metal atoms occupy alternate trigonal-prismatic voids. The metallic T
phase, on the other hand, has a tetragonal symmetry, with the metal atoms
occupying octahedral voids between AB-stacked chalcogen atoms. This
particular phase can transform to a semi-metallic distorted octahedral phase,
designated here T′. Recently, a further mixed phase, designated T′′, which can
be viewed as a series of alternating H and T′ phases, was theoretically predicted
to be lower in energy than the T′ phase for MoS2 [218].

The ability to induce a transition in MoS2 from its ground state H phase to an
octahedral phase via alkali metal intercalation has been known since the
1980s [40]. This phase transition was attributed to a transfer of charge from the
intercalated atom to the TMD, and more specifically to the d states of the
transition metal atom [219, 220]. Indeed, the entire family of group-VI TMDs,
where M = Mo, W and X = S, Se and Te, can be manipulated to undergo phase
transitions close to ambient conditions [38]. This has been achieved using a
variety of methods, including alkali metal adsorption [39, 40, 41, 42], the
introduction of impurities or vacancies [221, 222, 223], electron or laser
irradiation [36, 222, 224, 225, 226, 227] and electrostatic gating [228, 229].

The electronic properties of a TMD are evidently strongly dependent on its
structural phase. In MoS2 the conductivity of the T phase was found to be up
to 107 times higher than that of the semiconducting H phase [230]. The ability
to reversibly and reliably switch between these two phases would result in
applications as monolayer-thick field effect transistors [231], gas sensors [232]
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and catalysts [233]. Such applications require precise control over the phase
transition process so that a complete phase change to T′ phase can be achieved
and maintained.

Liquid phase exfoliation, with the aid of alkali metal intercalation, is a common
and effective way of isolating TMD monolayers from the bulk on an industrial
scale. In such experiments, the alkali metal atoms are first intercalated into the
bulk TMD using an organolithium compound. The intercalated TMD is then
solvated in a polar solvent. This results in the discharging of the monolayers, the
deintercalation of the metal ion and the exfoliation of individual monolayers from
the bulk materials. These layers are subsequently measured to have both H and
T phases present.

Of the group-VI TMDs, the phase transition in MoS2 has been investigated in
detail. Yet, compared to other group-VI TMDs, the phase transition efficiency
in MoS2 can be relatively low: a comprehensive side-by-side comparison of the
experimental transition efficiency in four group-VI TMDs – MoS2, MoSe2, WS2

and WSe2 – found that WS2 exhibited the largest increase in the proportion of
the 1T phase compared to the starting 2H phase (i.e., the 1T/2H ratio), followed
by MoSe2 and WSe2, and eventually MoS2. [11] While the exact ratios were
subsequently found to depend on the nature of the organolithium intercalant
group used in the experiment, the general trend remained: WX2 compounds
display a higher proportion of T phase compared to MoX2, for both X = S and
Se [12, 234].

In these alkali metal induced exfoliation experiments, the measured phase
transition efficiency will depend not only on the intrinsic composition-dependent
free-energy barrier between the different phases, but also on the
composition-dependent exfoliation efficiency of the chosen organolithium
intercalant. Experimentally, it is difficult to decouple these two contributions.
As ion-assisted liquid phase exfoliation is the most suitable method of
producing sufficient T phase TMDs on an industrial scale, a complete
understanding the mechanism is essential to maximize the amount of metallic
phase produced and to prevent a transition back to the H phase.

Previous computational investigations of the phase transition barrier have
concentrated on MoS2, looking primarily at the threshold charge density
required to induce the phase transition. However, a disconcertingly wide range
of values have been reported, including 0.35 e per formula unit (f.u.) [235],
0.55 e per f.u. [218], 0.78 e per f.u. [236] and almost 2 e per f.u. [237]. The
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origin of this discrepancy is discussed in detail in Section 4.3.3

Here, using first-principles calculations, we determine the transition barriers
between all possible polytypes of both the pristine and Li-adsorbed group-IV
TMDs, with the aim of determining whether the composition dependence of
experimental transition efficiency in four group-VI TMDs can be explained
using the intrinsic barriers to the phase transitions alone.

4.3.1 Computational Methods

Density functional theory (DFT) calculations were performed using the vasp-

5.4 code [63, 162, 163]. The optB86b-vdW exchange-correlation functional was
used to account for long range dispersion interactions [77, 82]. This functional
was previously shown to give accurate lattice parameters and energies for layered
materials [81, 187]. All calculations are performed with a cutoff energy of 500 eV
for the plane wave basis set. A Γ centered K-point grid of 11×7×1 is used to
calculate the total energy of the H and T′ phases, while a 11×5×1 grid is used
for the T′′ mixed phase.

The structures were relaxed until the force on each atom was less than 0.01 eV/Å.
The unit cell length in the direction normal to the plane was fixed at 25 Å for
H and T′ phase calculations, and 26 Å for T′′ mixed phase calculations and all
transition state calculations. This corresponds to a minimum vacuum of 18 Å
between repeating monolayers and dipole corrections were applied.

Transition states are determined using the climbing image nudged elastic band
(CI-NEB) method [96, 238] with a spring constant of 5 eV/Å. The CI-NEB is
used to determine the transition barrier between two different phases. The
transition barrier is determined by a constrained geometry optimization of a
series of interpolated structures between the stable phases connected by springs.
The structure with highest energy after optimization determines the transition
barrier. The role of the spring is to prevent the interpolated structures from
converging to the nearest stable phase. All atoms in the transition state
calculations are optimized so that the force on each atom is less than
0.05 eV/Å.

4.3.2 Neutral Monolayers

The crystal structures of the H, T′ and T′′ mixed phases are shown in Fig. 4.4. The
structural parameters determined for all neutral monolayers (without adsorbed
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H phase T' phase T'' phase

HT'

b

a

Figure 4.4: Top and side view of the H, T′ and T′′ polytypes. The orthorhombic
cells of all three phases are shown as blue shaded regions. Note that the T′′ mixed
phase can be viewed as alternating T′ and H phases. The blue circles indicate
the possible candidate sites for lithium adsorption.

H T′ T′′

a b a b a b

MoS2 5.48 3.16 5.57 3.22 11.23 3.16

MoSe2 5.71 3.30 5.79 3.34 11.69 3.27

WS2 5.48 3.17 5.59 3.23 11.24 3.18

WSe2 5.71 3.30 5.81 3.35 11.69 3.28

Table 4.1: The lattice parameters a, b (in Å) of the H, the T′, and the T′′ mixed
phase of MoS2, MoSe2, WS2 and WSe2.

Li) are given in Table 4.1. The lattice constants are dictated by the chalcogen
atom, with MoS2 andWS2 having very similar values in all three phases. Likewise,
MoSe2 and WSe2 have almost identical lattice constants. These values are in good
agreement with the available experimental data [239, 240, 241, 242, 243, 244, 245,
246, 247, 248] and with previous calculations[249, 250, 251, 252] in the literature.
For the T′ phase, the calculated a lattice constant of 5.57 Å for MoS2 is consistent
with the experimentally observed length of 5.6 Å.

In agreement with previous DFT studies, we find the H phase to be the ground
state structure for all four materials[222, 229, 236, 237, 253, 254, 255]. The total
energy differences between this phase and both the T′ phase and the T′′ mixed
phase are given in Fig. 4.5. We find that the energy difference between the H
phase and the T′ phase is larger for the sulphides compared to the selenides. It
reduces from 0.57 eV for MoS2 to 0.35 eV for MoSe2 and from 0.56 eV for WS2 to
0.29 eV for WSe2. Similarly, the energy difference between the H phase and the
T′′ mixed phase reduces from 0.49 eV for MoS2 to 0.35 eV for MoSe2 and from
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Figure 4.5: The relative energy difference and transition barrier between the H
phase, the T′ phase and the T′′ mixed phase of (a) MoS2, (b) MoSe2, (c) WS2
and (d) WSe2. Energies are referred to that of the H phase for each material.

0.52 eV for WS2 to 0.35 eV for WSe2. While the H phase is the ground state in all
four cases, the T′ phase is energetically more favourable than the T′′ mixed phase
for WSe2 but the ordering is opposite for the MoS2 and WSe2 (the difference is
negligible for MoSe2).

The band structures of these materials in all three phases are shown in Fig. 4.6.
The opening of a band-gap in the H phase is due to a mixing of the pz orbitals
from the top and bottom chalcogen atoms at K-point of the hexagonal Brillouin
zone [219]. We find a bandgap of 1.74, 1.50, 1.90 and 1.62 eV for MoS2, MoSe2,
WS2 and WSe2, respectively, in good agreement with previous calculations in
the literature [256, 257]. The band gaps for the MSe2 compounds are smaller
compared to the corresponding MS2 compounds. As a result of the AB-type
stacking of the chalogen atoms in the T phase, this particular pz interlayer mixing
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is absent, and the band-gap closes. The distortion of the T phase to produce the
T′ phase facilitates in part this interaction again, so that the resulting phase
is semimetallic [219](The inclusion of spin-orbit coupling opens a small band
gap. [258]) The relative energy ordering of the H and the T′ phase is driven by
this interlayer interaction.

The alternating H (insulating) and T′ (metallic) stripes in the T′′ phase (cf.
Fig. 4.4) produces an effective one-dimensional (1D) quantum well structure, with
flat bands evident perpendicular to the direction of confinement (here, along Γ

– X). This confinement causes the overlapping energy levels in the T′ phase to
split, opening a small band-gap of 0.27, 0.29, 0.05 and 0.25 eV for MoS2, MoSe2,
WS2 and WSe2, respectively, in good agreement with the previous calculations of
Ma et al. [218]. The formation of these 1D quantum wells causes the T′′ phase
to be lower in energy than the T′ phase for MoS2, MoSe2 and WS2.

The activation barriers to induce a phase transition from the H phase to the T′ and
T′′ mixed phases, as calculated with the CI-NEB method, for all four materials
are also shown in Fig. 4.5. In all cases, the energy barrier to transition directly
from the H phase to the T′ phase is large, ranging between 1.22 eV and 1.54 eV.
In general, the barrier is smaller for MSe2 than for MS2. The energy barrier to
transition from the H phase to the T′′ mixed phase is smaller, ranging between
0.64 eV and 1.01 eV. Again, the smallest values occur for the MSe2 compounds.
In all cases the energy barrier to transition from the ground state H phase to the
lowest-lying T phase (namely, T′′ for MoS2, MoSe2 and WS2, and T′ for WSe2) lies
between 0.64 eV and 1.22 eV. Evidently, the H phase is very stable and will not
convert to the T phase spontaneously, in agreement with experiment. Note that
the transition from the T′ phase to the T′′ mixed phase requires the conversion of
only half of the lattice from the T′ phase to the H phase while keeping the other
half fixed. Consequently, the barrier to transition from the T′ phase to the T′′

mixed phase is lower (by between 50 and 65%) than the barrier to undergo the
complete transition from T′ phase to the H phase.

The calculated barriers reported here are in units of eV per formula unit (MX2)
to facilitate comparison between four materials and the total activation energy
required for transition will scale with the number of formula units which transition
simultaneously [227]. Note that the phase transition between the H phase and the
T phase was shown to be diffusive, rather than a simultaneous phase transition of
the entire monolayer. As a result, the activation barrier per f.u. will be modified
by the exact details of the nucleation process.
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Figure 4.6: The band structure of the H, T′ and T′′ phases of MoS2, MoSe2, WS2
and WSe2.

4.3.3 Implicit Charging

We highlight here some issues related to statically charging monolayers or slabs in
DFT with periodic boundary conditions, as it is to these issues that we attribute
the wide range of values reported in the literature for the critical charge required
to induce a structural phase transition in TMDs.

For the case of isolated charged slabs, such as the TMD monolayers considered
here, the electric field due to the extra uniform charge density is constant and
should result in potential that varies linearly with distance from the surface of the
slab. When periodic boundary conditions are implemented, this linear potential
is replaced by the combined effective potential due to the consecutive periodic
images. The quantities relating to the isolated slabs can be recovered from these
periodic calculations by applying a correction term to the effective potential and
total energy. The exact functional form of this potential is discussed in detail by
Andreussi at al. [86] As discussed in manual for vasp (in the section Monopole,
Dipole and Quadrupole corrections) the leading term of this correction, which
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cancels the interaction of the linear potential with the background compensating
charge, is absent. As a result, the total energy is essentially incorrect and cannot
be relied upon.

Furthermore, we find that above a certain critical charge, positive eigenvalues are
occupied. The occupation of positive eigenvalues could be due to the ambiguous
reference energy for periodic DFT calculations or due to self-interaction error as
was previously shown to occur for atomic anions [215].

Finally, Topsakal et al. showed that, when the basis set is present in the vacuum
region, excess negative charge does not stay on the slab but spills over in the
vacuum, beyond a critical value which depends on the vacuum thickness [259].
This phenomenon is demonstrated in Fig. 4.7(a) for the H phase of MoS2 with a
vacuum length of 25 Å perpendicular to the surface of the slab and was previously
shown for graphene [260]. The excess charge density added is placed in the
vacuum and on the outer faces of the monolayer rather than on the d orbital of
the metal atom.

To illustrate how these issues affect the determination of the critical charge
required to induce a structural phase transition, we show in Fig. 4.7(b) the total
energy difference between the H and the T′ phase of MoS2 as a function of
excess charge, and for two different vacuum lengths. All three sources of error
are now present, namely charge has spilled into the vacuum (above a certain
critical excess charge value), the appropriate monopole correction is absent and
positive eigenvalues are occupied. We find that the vacuum length of 15 Å (blue
squares) shows a phase transition for excess charge of around 0.5 e per f.u. On
increasing the vacuum length to 25 Å (orange circles) no such transition is
observed.

Clearly, it is not possible to get physically meaningful results using statically
charged slabs combined with periodic boundary conditions using the current
implemetation of VASP (V5.4.1). A similar erroneous dependence on the
vacuum length was also reported by Bal et al. for adsorbed molecules on
charged surfaces, further highlighting the irreproducibility of such results[261].
These problems can be mitigated by applying correct boundary conditions when
calculating the Hartree potential[91, 92, 97, 98, 262], e.g., by applying open
boundary conditions in the direction perpendicular to the slab while keeping the
periodic boundary conditions in the plane of the slab.
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Figure 4.7: (a) Planar average of the charge density across the TMD monolayers
showing charge leakage into the vacuum region for typical values of excess charge.
The positions of the chalcogen atoms are marked by black dashed lines. (b) The
energy difference between the T′ and the H phase of MoS2 as a function of excess
static charge for two different vacuum thickness, compared to the values found
by explicitly charging the slab using Li atoms.

4.3.4 Charged Monolayers

Introducing extra charge to the TMD via an interaction with
explicitly-modelled strong donor atoms bypasses these issues related to static
charging. We consider two different concentrations of Li atoms adsorbed on the
surface of the monolayers, namely Li0.5MX2 and Li1MX2. The stability of the
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alkali metal-adsorbed monolayer decreases at higher concentrations, and
eventually becomes unstable for Li1.5MX2, in agreement with
experiment.[263, 264, 265]

The adsorption sites were determined by calculating the total energy of lithium
adsorbed on all of the unique candidate sites, shown as blue circles in Fig. 4.4.
These sites include those directly on top of the metal atom, on top of the chalcogen
atoms and on the hollow site. In agreement with previous calculations in the
literature [266], we find that irrespective of the material or phase the lowest energy
adsorption site is on top of the metal atom (The preferred adsorption position on
the T′ phase is shown with a dashed circle in Fig. 4.4). When increasing the Li
concentration to LiMX2, the second Li atom per unit cell adsorbs on the opposite
surface, minimizing the electrostatic interaction between the two Li atoms. This
configuration is 0.1 eV per formula unit lower in energy than that with both Li
atoms adsorbed on the same side of the monolayer. For the case of the T′′ mixed
phase, the lithium atoms are also positioned on top of the metal atoms. For
Li0.5MX2, one lithium atom is placed in the H phase region and another in the
T′ phase region. For Li1MX2, the remaining lithium atoms were placed on top
the metal atoms on the opposite side of the slab. The adsorption on opposite
surfaces is consistent with a uniform intercalation in the bulk material[36].

The extra charge introduced by the Li atoms causes an expansion of the TMD
lattice constants. These values are given in Table 4.2. A Li concentration of
Li0.5MX2 increases the lattice constants of the H phase by between 0.3 and 1.75%
compared to the neutral lattice. Similarly, Li adsorption increases the lattice
constants of the T′ phase by between 9% and 3.23%. Increasing the lithium
concentration causes the lattice to expand further, and the expansion is higher in
the selenides compared to the sulfides. Bader charge analysis [171] finds that, for
both concentrations considered here, each Li atom donates approximately 0.82
electrons per formula unit. This value is independent of the material type and
phase, indicating that the nature of the interaction is similar.

The energy differences between the different polytypes, for all four compounds
and for both Li concentrations, are summarized in Fig. 4.8. The T′ phase becomes
the ground state structure of all four Li-adsorbed TMDs. This is followed by the H
phase and finally the T′′ mixed phase. This is in agreement with previous studies
on MoS2 which have shown a phase transition to occur at a Li concentration of
Li0.4MoS2[267], a K concentration of K0.225WSe2[42] and a Na concentration of
Na0.375MoS2[264].
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H T′ T′′

Å a b a b a b

MoS2 5.53 3.19 5.75 3.25 11.49 3.20

Li0.5MX2
MoSe2 5.8 3.32 6. 3.37 11.95 3.34

WS2 5.51 3.18 5.74 3.26 11.47 3.19

WSe2 5.81 3.29 5.97 3.4 11.90 3.33

MoS2 5.68 3.23 5.9 3.29 11.79 3.22

LiMX2
MoSe2 5.98 3.36 6.12 3.46 12.2 3.38

WS2 5.98 3.36 5.88 3.27 11.72 3.19

WSe2 5.94 3.33 6.06 3.47 12.30 3.33

Table 4.2: The lattice parameters a, b (in Å) of the H, the T′, and the T′′ mixed
phase of Li0.5MX2 and LiMX2 in the orthorhombic unit cell.

The energy difference between both the T′ and T′′ mixed phases compared to the
H phase increases going down the group from S to Se and also going from Mo to
W for both considered Li concentrations. On increasing the lithium concentration
from Li0.5MX2 to Li1MX2, the energy difference between the T′′ mixed phase and
the H phase decreases slightly for the sulfides but increases for the selenides. In
contrast to our observation that the energy of the T′′ mixed phase increases with
respect to the H phase, Ma et al. reported a threshold of 0.4 e per MoS2 to induce
the transition from the H phase to the T′′ mixed phase [218]. This discrepancy
could be a consequence of the static charging method used in obtaining those
results.

These trends in stability can be explained by simple electron filling in the rigid
band approximation [42]. For the H and T′′ mixed phases, excess electrons cause
an increase in total energy equal to the band gap. As the T′ phase is semi-
metallic, the next available energy level is at the Fermi level, and so this phase
becomes lower in energy.

The barriers for the H to T′ phase transition in the charged monolayers are also
shown in Fig. 4.8. In all cases, the barrier for the phase transition decreases due
to lithium adsorption. The maximum barrier for the transition from the H phase
to the T′ phase is found for MoS2 at a value of 0.96 eV for Li0.5MoS2 and 0.57 eV
for Li0.5MoS2. The minimum transition barrier from the H phase to the T′ phase
is found for WSe2 with a barrier of 0.62 eV for Li0.5WSe2 and 0.24 eV for Li1WSe2.
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Figure 4.8: The relative energy difference and transition barrier between the H
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WS2 has the second highest barrier, at a value of 0.55 eV for the Li1WS2 structure,
while MoSe2 has a barrier of 0.42 eV at the same Li concentration. In all cases,
the barrier to transition does not decrease to zero. As such, the transition cannot
be spontaneous and an energy equal to the barrier height needs to be provided
to induce the transition.

4.3.5 Discussion

Li adsorption is an exothermic process. The adsorption energies, defined as
Eads = ELix MX2 − EMX2 − xELi where ELix MX2 is the total energy of the Li adsorbed
structure, ELix MX2 is the total energy of the pristine monolayer, ELi is the energy
of an isolated Li atom and x refers to the Li concentration, for all four materials
are given in Table 4.3. The Li adsorption energy is higher for T′ phase as
compared to the H phase. For Li0.5MX2, the adsorption energy is largest for
WSe2 at −1.03 eV followed by MoSe2 and MoS2 at −0.99 and −0.97 eV per
formula unit respectively, and smallest for WS2 at −0.85 eV per formula unit.
This energy is comparable to the energy barrier to the phase transition at this
Li concentration. For Li1MX2, the adsorption energy per MX2 approximately
doubles, to at least 2.5 times the energy barrier. If some of this energy is used
to overcome the barrier to the transition, Li adsorption may be sufficient to
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Li0.5MX2 LiMX2

EH
ads ET′

ads EH
ads ET′

ads

MoS2 -0.97 -1.64 -2.51 -3.24

MoSe2 -0.99 -1.41 -2.36 -2.89

WS2 -0.85 -1.58 -2.26 -2.98

WSe2 -1.03 -1.38 -2.16 -2.70

Table 4.3: Adsorption energy, Eads, of lithium on the H and T′ TMD phases (eV
per unit MX2).

make the process spontaneous. Furthermore, given that the rate of transition
decreases exponentially with activation energy (as per the Arrhenius equation),
we can conclude that, for a given X, WX2 will transition at a slightly higher
rate than MoX2. Likewise, for a given M, MSe2 will transition at a higher rate
than MS2.

This is contradictory to the observation of a higher percentage of T′ phase found
for WS2 compared to MoSe2 and WSe2. To explain this, we must also consider
the fact that in order to measure the T/H ratio experimentally, the exfoliated
monolayers are washed with deionized water and dried in vacuum. In this process
the Li ions desorb and the monolayers revert to their neutral state. They are
prevented from transitioning immediately back to the ground-state H phase by
an energy barrier. This is supported by the observation of the M4+ oxidation
state in X-ray photoelectron spectra (XPS) [11, 12, 264].

The barriers for the reverse transition from the neutral T′ phase to the neutral
H phase, shown in Fig. 4.5, are now relevant. For all materials, the barrier to
return directly to the H phase is prohibitively high, ranging between 0.90 eV and
0.99 eV. Instead, the barrier to transition to a mixed T′′ type phase is significantly
lower, ranging between 0.39 eV and 0.48 eV. Experimental evidence for such an
indirect transition from the T′ phase back to the H phase for MoS2 via a mixed
T′′ mixed phase can be found: By fitting the rate equation to in-situ Raman
measurements, the barrier to transform from the meta-stable metallic phase to
the ground state was found to be 400 meV [227]. This barrier value is consistent
with the calculated barrier to transition from the T′′ mixed phase to the H phase
of 450 meV calculated here (cf. Fig. 4.5) whereas the barrier to transition from
the T′ phase back to the H phase directly is 970 meV. This suggests that the
transition from the T′ phase to the H phase occurs in two steps for this material,
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via the T′′ mixed phase.

The barrier to transition from the T′′ mixed phase to the H phase is smallest
for the two selenium compounds at 0.23 eV and 0.27 eV for MoSe2 and WSe2,
respectively. The barrier for WS2 is twice as high, at 0.49 eV. The significance
of this difference in barrier for WS2 and WSe2 can be determined by calculating
the exponential factor of the Arrhenius equation at room temperature (kBT =

25.7 meV). This is of the order of 5 × 10−9 for WS2, whereas it is of the order
of 1× 10−4 for WSe2. This rate difference is significant and its effects should be
experimentally observable. This can explain the significant difference between the
percentage of T′ phase observed in WS2 compared to both MoSe2 and WSe2, [11].
However, the calculated activation barriers cannot explain the low 1T/2H ratio
found in exfoliated MoS2. This discrepancy could be due to non-electronic effects,
such as a poor exfoliation efficiency in certain organometallic compounds, edge
effects related to the change in lateral size of the exfoliated monolayers, the
presence of defects or the oxidation of the exfoliated layers. Another possibility is
that the simplified phase transition mechanism considered here does not consider
the full nucleation process.

Finally, we note that the T′′ mixed phase comprises of alternating H and T′

phases, each a unit cell thick, as illustrated in Fig. 4.4. However, this phase can
be viewed as just one example of a family of mixed T′ and H phase structures.
By changing the T′:H ratio in MoS2 from 1:1 for the T′′ structure to 2:1, the
total energy difference between it and the H phase increases from 0.49 eV to
0.51 eV. By increasing the ratio further to 3:1, the energy difference increases
further to 0.52 eV. Clearly, the total energy of MoS2 is strongly dependent upon
the fraction of H phase. The energy of all such families of confined structures
will be higher than that of the H phase but lower than that of the T′ phase. The
exact composition of such confined structures will be dependent on the available
energy and the TMD flake size and shape and are not confined to the idealised one
dimensional structures discussed here. Experimentally, the boundary between the
H phase and T′ phase areas are observed to be atomically sharp, as in the T′′

mixed phase. This boundary evolves over time via a transversal displacement
of one of the S planes [224, 268] leading to the complete phase transition of the
flake. The observed partial phases, with mixed metallic (T′) and insulating (H)
regions, can be understood as intermediate stable structures which have lower
barriers of transition.
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4.3.6 Conclusion

Group-VI TMDs are known to undergo structural phase transitions from a
semi-conducting H phase to a metallic T phase when subjected to alkali-metal
assisted exfoliation. The efficiency of this process is strongly dependent on the
chemical composition of the material. We show that the ratio of T′ to H phase
is maximized if the charge-induced transition from the H phase to the T′ phase
is favourable and the reverse transition upon removal of charge is unfavorable.
For example, the high proportion of T phase found in WS2 monolayers after
alkali treatment can be explained by a high barrier to revert back to the H
phase after the initial phase transition has been induced. While charged MSe2

materials have the lowest energy barriers to the phase transition, the barriers to
revert back to the H phase are also low. This can explain the relatively low
content of metallic phase found in MoSe2 and WSe2 after exfoliation. Finally,
the low proportion of metallic phase found in MoS2 monolayers in some
experiments cannot be explained using the activation barriers alone and so
non-electronic effects, such as a differing exfoliation efficiency or differing levels
of monolayer oxidation, must also contribute to the outcome.
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4.4 Cointercalation

To achieve selective intercalation of ions, molecules, or both simultaneously, an
atomic level understanding of the relative energetics of the various scenarios is
necessary. Computationally, due to increasing degrees of freedom, attempting a
brute force geometry optimization to determine the minimum energy
configurations is not feasible. Here, we present a work-flow to determine the
lowest energy configurations when both a representative alkali metal ion
(potassium), and a selection of organic molecules, namely benzaldehyde, NMP,
chloroform and toluene, interact with each other and with a graphene bilayer.
The work-flow is both ion and molecule independent.

Several possible relative orientations of the solvent molecule (M), the two
graphene layers (L) and the potassium ion (K) are possible:

• LMLK – the molecule is intercalated between the two graphene layers while
the potassium ion is adsorbed on the outer graphene layer.

• LMKL – both molecule and potassium ions intercalate between the two
graphene layers.

• LLMK – both the molecule and potassium ion do not intercalate, but
instead adsorb on the surface of the bilayer.

• LKLM – the potassium ions intercalate between the layers while the
molecule is adsorbed on the outside.

To determine the most likely configuration of a given molecule-ion pair, we can
rank the relative orientations based on their calculated total energies. The
orientation with lowest energy is energetically most favorable. The orientation
with the highest total energy is least likely to form.

The desired relative orientation depends on the application. In some cases, it is
vital that co-intercalation of ion and molecule does not occur. For example, the
co-intercalation of propylene carbonate (PC) with Li ions is understood to be
responsible for the degradation of graphite electrodes, primarily by exfoliation.
This is the LMKL orientation. In other cases, exfoliation may be the desired
outcome, such as in salt-assisted exfoliation techniques.

Calculations are done using VASP (V5.4) and the recommended PAW-PBE
potentials. To account for long range van der Waals interactions, the
optB86b-vdW exchange-correlation functional was used [77, 82]. This is used
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due to its broader applicability in the presence of charge transfer [81, 187].

Each layer of graphene contains 60 atoms with an in-plane unit cell size of 12.80 Å
× 12.31 Å. In the direction perpendicular to the graphene plane we add a vacuum
region of 15 Å to decouple the periodic images. To remove spurious interactions
between periodic images the dipole corrections enabled.

For all calculations, a plane wave energy cutoff of 640 eV is used for the plane
wave basis set with the energy convergence criteria of 10−7eV. All the energy and
geometry calculations are carried out using a Γ-centered K-point grid of 5×5×1.
The positions of the atoms are relaxed until the force is less than 0.025 eV/Å on
all atoms.

4.4.1 Determination of relative orientations

To determine the relative orientations of all components, we use an additive
method in which the position of each new component such as graphene layer,
molecule and potassium is obtained assuming the components already present
remain fixed. For example, to obtain the orientation of a molecule absorbed on top
of the bilayer graphene slab, we first find the relative orientation of the molecule
with respect to the monolayer graphene and then assume that the second layer
of graphene will be in the same orientation as bilayer graphene. This assumption
is valid due to the van der Waals nature of the graphene–molecule interaction.
Similarly, when a molecule is intercalated in bilayer graphene, we first determine
the relative orientation of the molecule with monolayer graphene and then add
the second graphene layer on top of the molecule. Again, this is valid due to
the van der Waals nature of the interaction between the molecule and graphene.
Following this strategy the relative positions of various components are discussed
below.

4.4.1.1 Potassium interacting with monolayer graphene

To determine the position of potassium with respect to a graphene layer, we
calculate the total energy of the monolayer – potassium system for the three
high-symmetry adsorption sites, namely on-top, bridge and hollow site. These
positions are shown in Fig. 4.9 for a potassium ion adsorbed at a height of 2.7 Å
from the graphene surface. This distance was chosen as the van der Waals radius
of potassium is 2.8 Å. From this we find that the lowest energy adsorption site of
K is at the hollow site, followed by the bridge site with an energy 82 meV above
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Figure 4.9: The three high-symmetry adsorption sites on graphene, namely on-
top, bridge and hollow sites.

that of the hollow site and finally the on-top site with an energy 94 meV above
that of the hollow site.

To determine the final position of the potassium ion near the graphene surface, the
geometry is optimized with the potassium atom placed at the hollow site, while
keeping the graphene layer fixed. For this optimized geometry, the potassium ion
adsorbed at a height of 2.59 Å above the surface of graphene. This adsorption
position of K is used to determine all graphene-potassium distances. In cases
where the potassium ion is present in between the layers, we assume that the
layers are stacked in the AA configuration with the potassium ion adsorbed on
the hollow site in between the layers.

4.4.1.2 Solvent molecule interacting with monolayer and bilayer
graphene

When a molecule is adsorbed on the outer surface of the graphene bilayer, we
can use the potential energy surface calculated in Section 3.2.1.2 to determine
the minimum energy orientation. In cases where the molecule is intercalated
between two graphene layers, we have to determine the potential energy surface
of molecules with respect to two layers. We start by using the potential energy
surface of a molecule adsorbed on monolayer graphene, as calculated in
Section 3.2.1.2, to determine the position of the molecule for a given rotation.
Of these, we discard all positions higher in energy than the absolute minimum
by at least 100 meV. For all the remaining positions within 100meV of the
minimum, we allow only two choices for the registry of the second graphene
layer - either AB or AC stacking with respect to the first graphene layer. The
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AB stacking is defined as that found when the second layer is shifted along the
armchair direction by one bond length in the positive direction, while AC
stacking is defined as that found when the second layer is shifted along the
armchair direction by the same amount in the negative direction. The second
graphene layer is placed at a height of 3.5 Å above the center of mass of the
molecule. The total energy is calculated for each of these structure. For the
configuration with the lowest energy, we optimize the distance between the two
graphene layers and the molecule to find the equilibrium structure. This is then
designated the ground-state structure for that configuration.

4.4.1.3 Co-adsorption on monolayer graphene

We first determine the lowest-energy configuration when both the potassium and
molecule adsorb on opposite sides of a graphene layer. Their relative positions
can be determined from a potential energy surface. We restrict the orientation of
molecule and graphene layer to the one determined in Section 4.4.1.2 and optimize
the position of the potassium atom. Only the on-top, hollow and bridge sites are
considered as the candidate positions for potassium.

We find that, in all cases, the potassium adsorbs on the hollow site located closest
to the most electronegative site of the molecule. We assume that when both the
molecule and ion are adsorbed on the same side of a graphene layer, K also adsorbs
on the hollow site closest to the most electronegative site of the molecule.

4.4.2 Determining the Equilibrium Structures

To determined the relative orientations of the two graphene layers, the molecule
and the potassium ion, static calculations are combined to obtain the starting
point for a full structural relaxation. Using the determined position of the
molecule in between the graphene layer and the position of potassium ion when
the molecule is present on the opposite side of the layers, we determine the
configuration where the molecule in present in between the layer and potassium
is on top (LMLK). Using the same position of the molecule in between the
bilayer, and the fact that the molecule–graphene distance is larger than the
potassium–graphene distance we can obtain the configuration where both the
molecule and the potassium in present in between the layers (LMKL).

Using the positions determined for the molecules near monolayer graphene and
assuming that the potassium ion adsorbs on the hollow site, we can determine
the configuration where the molecule is on top of the layer and the potassium
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Molecule L1–L2 K–L1 K–L2 M–L1 M–L2
benzaldehyde 5.18 2.59 2.59 8.41 3.23
NMP 5.18 2.59 2.59 8.56 3.38
toluene 5.18 2.59 2.59 8.5 3.32
chloroform 5.18 2.59 2.59 8.58 3.4
cyclopentanone 5.18 2.59 2.59 8.65 3.48

Table 4.4: Relative distances (in Å) between the center of masses of each
components in the LKLM arrangement.

Molecule L1–L2 K–L1 K–L2 M–L1 M–L2
benzaldehyde 3.35 6.11 2.75 6.81 3.46
NMP 3.35 6.05 2.69 6.84 3.49
toluene 3.35 6.04 2.68 6.82 3.46
chloroform 3.35 6.02 2.66 6.91 3.56
cyclopentanone 3.35 6.02 2.67 6.9 3.54

Table 4.5: Relative distances (in Å) between the center of masses of each
components in the LLMK arrangement.

is present in between the layers (LKLM). For the same position of the molecule
and the potassium ion adsorbed on the nearest hollow site, we can determine the
configuration where the molecule and potassium are both present on top of the
bilayer (LLMK).

These configurations are the starting points for full structural relaxations (the
atoms in the graphene layers are held fixed). The final relaxed structures are
shown in Fig. 4.10. For all optimized structures, the total energies relative to
the lowest energy orientation are given in Tab. 4.8. The minimum energy
configuration occurs when the molecule and potassium ion are absorbed outside
the bilayer (LLMK) regardless of the molecule type. The next most
energetically favorable configuration depends on the molecule. In the case of
chloroform and toluene, the minimum energy configuration is followed by that
where the potassium has intercalated between the layers while the molecule
remains adsorbed on top, i.e., the LKLM configuration. In the case of NMP and
benzaldehyde, the minimum energy configuration is followed by that where both
the molecule and potassium intercalate between the layers (LMKL). Finally in
case of cyclopentanone, the energies are similar for both the configuration where
potassium alone has intercalated and the molecule is adsorbed on top (LKLM)
and that where the molecule and ion co-intercalate.
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Molecule L1–L2 K–L1 K–L2 M–L1 M–L2
benzaldehyde 6.57 9.14 2.57 3.31 3.27
NMP 7.05 9.63 2.57 3.59 3.46
toluene 6.72 9.3 2.58 3.3 3.43
chloroform 7.34 9.91 2.57 3.57 3.77
cyclopentanone 7.15 9.72 2.57 3.62 3.53

Table 4.6: Relative distances (in Å) between the center of masses of each
components in the LMLK arrangement.

Molecule L1–L2 K–L1 K–L2 M–L1 M–L2
benzaldehyde 6.57 3.3 3.27 3.29 3.28
NMP 7.05 3.49 3.56 3.53 3.52
toluene 6.72 3.86 2.87 3.3 3.42
chloroform 7.34 4.39 2.95 3.59 3.75
cyclopentanone 7.15 3.68 3.47 3.58 3.57

Table 4.7: Relative distances (in Å) between the center of masses of each
components in the LMKL arrangement.

For all optimized structures, the distances between the centers of mass of the
various components are given in Table 4.4 for configuration LKLM, Table 4.5
for configuration LLMK, table 4.6 for configuration LMLK and Table 4.7 for
configuration LMKL. The distance given is measured in the direction
perpendicular to the graphene layers. L1 is the bottom-most layer and L2 is the
top-most graphene layer. The layers are labeled such that the potassium ion is
always adsorbed on the top-most layer (L2) when it is not between the
layers.

If the molecule is adsorbed on the surface of the bilayer (Table 4.4 and 4.5), the
distance between the molecule and layer depends on the position of the K atom.
If K is also located outside the bilayer, the M-L2 distance is higher than when
the K is intercalated between the layers. The interlayer distance decreases due
to K intercalation.

When K is adsorbed on the surface of the graphene layer and the molecule is
intercalated between the layers, the K–L2 distance is similar to the equilibrium
distance of 2.59 Å when no molecule is present. When both the molecule and the
potassium are present in between the layers, the potassium is equidistant from
both the layers regardless of the molecule type. This is shown by the distances
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Molecule LKLM LLMK LMKL LMLK
benzaldehyde 2.88 0 2.47 3.64
chloroform 2.37 0 2.95 3.58
cyclopentanone 2.92 0 2.94 4.05
NMP 3.02 0 2.78 4.04
toluene 2.09 0 2.5 2.99

Table 4.8: Energies (in eV/u.c.) of all configuration, given relative to the
minimum energy configuration (0 eV/u.c.).

K–L1 and K–L2 in Table 4.7.

The lowest energy for the configuration LLMK is due to the higher van der Waals
binding energy of the bilayer graphene (Ebilayer

b = 3.90 eV/u.c.) as compared to
both the molecule–layer and potassium–layer binding energy. For a molecule or
potassium ion to intercalate between the layers, the binding energy of molecules
or potassium has to compensate for this interlayer binding energy of graphene. In
all cases, 2Emolecule−layer

b << Ebilayer
b , where 2Emolecule−layer

b is the molecular binding
energy on monolayer graphene and where the factor of 2 is to compensate for
the molecule in contact with the two graphene layers. Similarly, the potassium–
graphene layer binding energy of 1.4 eV is also not comparable to the interlayer
binding energy (E bilayer

b ).

The relative energies for next two configurations, namely LMKL and LKLM,
can be understood by considering the structure for those configurations. When
a molecule is intercalated between the layers, the interlayer distance is larger
than that when only potassium is present. Hence the interaction between the
potassium ion and the graphene layers is negligible when the molecule is also
located between the layers. Additionally, the molecule–layer binding energy is
smaller than the potassium–layer binding energy. Highly polar molecules such
as benzaldehyde, cyclopentanone and NMP which can accept electrons, prefer
to bind to the potassium ion. This is not the case for non-polar toluene and
chloroform. As a result, for these two molecules, the binding energy is maximized
when the potassium atom alone remains between the layers, while the molecule
binds on the outside of the bilayer. Finally, the LMLK configuration has the
highest relative energy due to the lower molecule–layer interaction compared to
the potassium–bilayer interaction and the absence of any potassium–molecule
interaction.

The total charge on each component can be calculated using Bader charges.
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Figure 4.10: The top view (top panel) and the side view (bottom panel) of all
optimized structures.
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Figure 4.11: Total charge present on the bottom layer (L1), top layer (L2),
molecule (M) and the potassium ion (K) for all the arrangements LKLM (blue),
LLMK (orange), LMKL (green) and LMLK (red) arrangement for the molecules
considered here.

The total charge on each component in all considered arrangements is shown in
Fig. 4.11. In all cases, electrons are transferred from the potassium ions to the
nearest components. In the LMLK arrangement, charge is predominantly
transferred to the molecule (M) and the layer nearest to potassium (L2) with
negligible charge transferred to the farthest layer (L1). In the LKLM
arrangement, charge is transferred equally to both layers (L1 and L2) with
minimal charge transferred to the molecule. In the LMKL and LLMK
arrangements, charge is distributed to both the layers and molecules. When the
molecule is near the potassium ions the charge is distributed over both layers
and molecules.

From these charge transfer calculations we can conclude that the potassium
transfers equal amounts of charge irrespective of the arrangement of the
components. Most of this charge is transferred to the nearest components with
components not directly in contact with the ion receiving negligible
charge.
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4.4.3 Conclusions

We have developed a work-flow to determine the relative orientations of
molecules, metal ion and bilayer graphene. This work-flow takes into account all
the possible intercalation configurations while considering the symmetry of the
molecules to eliminate duplicate structures, hence reducing the computational
cost. This work-flow can be further improved by performing geometry
optimizations for all the possible configurations. This can be achieved by
considering individual components such as the molecule, the metal ion and the
two layers as rigid bodies which can move only in the direction perpendicular to
the graphene layers. This approach will eliminate the requirement of
determining the equilibrium distances for each pair of components.

For the particular molecular and ionic concentration considered here, total energy
calculations suggest that neither the molecule or potassium ion intercalate the
bilayer graphene. The calculated energies also show that the intercalation of the
molecule alone is the most unfavorable configuration. The charge transferred
from potassium is localized to the nearest molecule and the layer in contact with
the ion.

This initial work can be extended to consider other concentrations of molecules
or ions to model more realistic experimental situations. It can also be further
improved by considering other graphene stacking. This work flow can then be
used to screen solvents that enable spontaneous ion- or molecular-intercalation
without the use of particular experimental procedures requiring high
temperatures or pressure.



CHAPTER

5

FERROELECTRIC MOLECULAR
SWITCH

5.1 Introduction

Electronic sensors detect external stimuli, whether gas molecules
[269, 270, 271, 272], mechanical deformations [273] or variations in temperature
[274], by measuring changes in the current voltage (I-V) characteristics. Gas
sensors detect the presence of a particular molecule or a class of gas molecules.
They generally consist of an exposed surface on which the molecules adsorb.
These molecules modify the local electronic structure thereby modifying the
transport properties of the device. This modification can then be measured as a
change in the I-V response. For example, the Ga doped ZnO surface is used for
the sensing of CO molecules and the SnO2 surface is used to detect small
hydrocarbons [275]. The choice of surface dictates the gas molecules that will be
detected by the sensor.

Since their discovery, graphene and other two dimensional materials have emerged
as prime candidates for electronic sensors due to their high specific area, i.e.,
the high surface area available for adsorption per unit mass. The surface, also
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Figure 5.1: An example of NMP molecule bound to the dangling bonds of the
graphene flake due to their high reactivity.

known as the basal plane, can act as a host on which the molecules can adsorb.
Graphene in particular has attracted considerable attention due to its high specific
surface area of close to 2600 m2g−1 [276], its ability to accept and donate electrons
simultaneously and its ability to detect of fractional charges [277]. In practice,
manufacturing the ideal surface that demonstrates these unique properties can
be a challenge. Edges are more reactive than the basal plane. Due to their high
reactivity, molecules can be chemisorbed on the edge rather than physiorb on the
surface. An example is shown in Fig. 5.1. The chemisorption process is generally
irreversible and molecule agnostic. If the dangling bonds are passivated, i.e.,
terminated with some functional groups such as hydrogen, fluorine or oxygen,
this reduces the reactivity of the edge. These passivated edge sites can then
act as physisorption sites for small molecules which bind via a combination of
dispersion and Coulomb interactions.

Molecular adsorption can modify the charge transport properties of the
monolayer. Caridad et al. demonstrated that polar molecules (water, ammonia,
and nitrogen dioxide) adsorbed on graphene edges can be switched reproducibly
between two available states in response to an external electric field [50]. This
switching introduces large changes in the graphene resistance. This change in
resistance can be attributed to a ferroelectric-like behavior of the polar
molecules. A schematic of the experimental device is shown in Fig. 5.2(a). A
flake of graphene is encapsulated between layers of hexagonal boron nitride
(h-BN). This encapsulation prevents molecules from adsorbing on the surface of
graphene and instead to adsorb only on the terminated edge sites. A scanning
electron micrograph (SEM) of the fabricated device is shown in
Fig. 5.2(b).

The resistance is measured for two types of graphene edge terminations (oxygen
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Figure 5.2: (a) A schematic of the fabricated device of graphene encapsulated
inside hexagonal Boron Nitride layers with oxygen terminated edge and adsorbed
H2O molecules, (b) Scanning electron micrograph (SEM) of a fabricated device
shown, (c) measured resistance of device with oxygen terminated edges when
exposed to vacuum, dry air and air with 1% humidity, (d) measured resistance of
device with oxygen terminated edges when exposed to H2O, NO2 and NH3, (e)
measured resistance of device with oxygen and flourine terminated when exposed
to H2O molecules. (f) measured resistance of a freshly prepared device with
oxygen terminated edges when exposed to water molecules, here the gate voltage
cycle 0V→ Vmax → 0V→ Vmax is indicated as arrows. All figures are reproduced
from Caridad et al. [50]

and fluorine), when exposed to different environmental conditions: vacuum, dry
air, dry air mixed with 1% water vapor, dry air mixed with 1% nitrogen dioxide
and dry air mixed with 1% ammonia. In vacuum, when a gate voltage is
applied, the resistance across the graphene sheet decreases, as seen from the red
line in Fig. 5.2(c). On exposing this device to dry ambient air (i.e., without
water molecules), the resistance of the device behaves similarly to the case when
as exposed to vacuum as seen from the blue line in Fig. 5.2(c). The peak in the
measured resistance is designated the charge neutrality point (CNP) and
corresponds to a zero net polarization of the graphene electron density. On
application of a gate voltage, the electron density polarizes which results in a
lower measured resistance. However, when the device is exposed to water
molecules (1% H2O in ambient air) the resistance trends of the device change.
The measured resistance now shows two distinct peaks depending on the
direction of the voltage sweep, as seen from the black lines in Fig. 5.2(c). The
distinction between the curves for two directions of gate voltage sweep can be
interpreted as a hysteretic behavior which can be controlled by the gate voltage.



5 Ferroelectric molecular switch 134

The change in the position of the peaks corresponds to a shift in the neutrality
point of the device. The position of the peak relative to that in vacuum is an
indication of the molecules ability to polarize the electron density of the device,
and the ability of the gate to align the molecular dipoles.

The resistance behavior has a strong dependence on both the type of adsorbed
molecule and the type of edge termination. For an oxygen terminated device, H2O
molecules induce the strongest hysteresis effect, closely followed by NH3 with NO2

showing essentially no hysteresis behavior, as shown in Fig. 5.2(d). This trend
roughly follows the electric dipole moment of the molecules which is highest for
H2O (1.85D) followed by NH3 (1.74D) and then NO2 (0.4D). On changing the
type of graphene edge termination, from oxygen to fluorine, the peak separation
in the case of H2O drastically reduces as shown in Fig. 5.2(e).

The mechanism for hysteresis can be understood from experimental
measurements starting from a fresh sample where the gate voltage is cycled from
0V → Vmax → 0V → Vmax this is shown in Fig. 5.2(f). For a freshly prepared
sample the charge neutrality point is at 0V. From this one can expect that the
molecules are randomly oriented. As a result, there is a net cancellation of the
polarizing effect of the molecular dipoles on the electron density of the device.
This is seen as a peak in the resistance measurements at 0V. On increasing the
gate voltage from 0V → Vmax the resistance decreases rapidly due to the
polarization of electron density. This is similar to what happens when the
device is in vacuum (red line in Fig. 5.2(c)). The gate voltage also induces the
alignment of the molecular dipoles to the external field. When the voltage is
reversed from Vmax → 0V the external field decreases in strength while
maintaining its direction. The molecules do not immediately revert back to
their original random orientations. As a result, there is still a net polarization of
the device electron density. This polarization is present even at 0V and can be
seen from the lower resistance at 0V at the end of this sweep cycle. Since the
polarizing effect of the dipoles is opposite to that of the gate, the voltage at
which these two effects cancel each other corresponds to the charge neutrality
point, i.e., the charge density of the device shows no net polarization and
corresponds to a peak in the resistance measurements. The position of this peak
does not shift in subsequent cycles as seen from the voltage cycle 0V → Vmax.
As the position of peaks depends on the alignment of molecules to the external
field, the molecules will change direction on reversal of the gate voltage. As a
result, the peak is symmetric around 0V as shown in Fig. 5.2(c,d,e).
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Using density functional theory calculations, Caridad et al. showed that the
adsorbed molecules have two stable positions with respect to the graphene
layer: one where the molecules are below the plane of graphene and another
where the molecules are above the plane of graphene. These two positions are
mirror images of each other with respect the graphene layer, with the
orientation of the molecular dipoles opposite to each other. To determine the
effect of the external field on the orientation of the molecules, they also
calculated the total energy of the device when the molecules are aligned to the
external field and when they are misaligned to the external field. They find that
the energy is lower when the molecular dipoles are aligned to the external field.
For the oxygen terminated device, the magnitude of the energy difference
between the two cases depends on the type of molecule. It is highest for H2O
followed by NH3 and with NO2 showing a very small difference. In the case of
H2O this large magnitude vanishes on changing the termination of the device
from oxygen to fluorine. This dependence on the edge termination would
suggest that the molecule dipole strength is not the sole parameter that dictates
the effect of orientation of the molecules.

They also show that the observed resistance changes are due to a realignment of
molecules, with the position of the peak dependent on the difference in the number
of molecules (Ns) present in the two stable positions. To do this, they modeled
the molecules as a chain of dipoles. The dipoles can either be parallel (i.e.,
located on same side of the graphene) or anti-parallel (located on different sides
of the graphene). When equal number of molecules are present in both the stable
positions, i. e., Ns = 0, the peak is exactly at 0V as the effect of the molecular
dipoles on the electron density of the device cancel each other. On increasing the
difference between molecular populations, so that Ns > 0, the effect of the dipoles
in the parallel and anti-parallel configurations no longer cancel. This results in
the peak in the resistance shifting away from zero. This shift is maximum when
all the molecules are present in one of the two positions.

From both the experiment and the calculations it is clear that the hysteresis is
due to an alignment of the molecular dipoles to the external field of the gate.
Additionally, in order to maximize the hysteresis, the molecular dipoles have to
align in the parallel configuration, similar to ferromagnets. The dipoles in this
parallel configuration must then be effectively coupled to the external electric
field in order for them to change direction with the change in the sign of the gate
voltage. To tune the performance of the device and to understand the effect of the
molecule type and edge termination of the hysteresis, it is essential to determine
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the factors affecting the alignment of molecular dipoles and its coupling to the
external field.

The aim of this work is to understand (1) what is the effect of the edge
termination on the orientation of molecules, (2) what is the effect of the edge
termination on the molecule–molecule interaction, (3) under what conditions
the molecular dipoles align parallel to each other, (4) what is the effect of the
device edge termination on the molecule dipole – gate interaction and (5) to
develop an effective Ising-like model to study the relative importance of these
effects on the measured hysteresis.

5.2 Computational Details

All density functional theory calculations are performed using CP2K (V7.1)
[278] code, with DZVP-MOLOPT-SR-GTH basis sets and the corresponding
recommended pseudopotentials [279]. For all the energy calculations the
tolerance of 10−7Ry was used. In the non-periodic directions a vacuum length of
at least 16 Å was used.

The geometry optimizations used a relative cutoff of 50 Ry and cutoff of 850 Ry
with the progression factor of 3 and 4 multi grids. A k-point grid of 21×1×1
was used. The calculations used a Fermi-Dirac smearing scheme with an
electronic temperature of 300 K. The Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm was used for geometry optimization with a force tolerance of
1.9× 10−4Ry/Bohr.

The gate calculations used a relative cutoff of 50 Ry and cutoff of 850 Ry with
the progression factor of 3 and 4 multi grids. The calculations used a Fermi-Dirac
smearing scheme with an electronic temperature of 300 K. The implicit Poisson
equation with the applied gate voltage is converged to a tolerance of 10−7Ry. The
gate region was set to have a width of 0.5 Å and a smoothing width of 0.2 Å.
Similarly, for the gate dielectric we use the a smoothing width of 0.2 Å.

To decouple the periodic images, an implicit Poisson solver with appropriate
boundary conditions is used. The boundary conditions for the implicit solver are
given along with the corresponding results.
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Figure 5.3: Side view showing a H-bonded H2O chain adsorbed on both an O-
and F-terminated graphene edge, and the absence of H-bonding for an NO2 chain
adsorbed on the O-terminated graphene edge.

5.3 Molecular orientations at graphene edge

To emulate the graphene flake in the experimental device, we use a periodic
zigzag graphene nano-ribbon with a width of 30 atoms in the lateral direction.
The width of the ribbon was chosen to avoid interactions between molecules
adsorbed on opposite edges. The graphene nano-ribbon is periodic along the
x direction. The z direction is perpendicular to the surface of the ribbon. In
order to decouple the periodic images we use a real space Poisson solver with
von Neumann boundary conditions in the y -z direction with periodic boundary
conditions in the x direction. The geometry of the unterminated nano-ribbon
was first optimized to obtain the pristine structure (before molecular adsorption).
The planar geometry was then further optimized with either oxygen or fluorine
added to the edge sites. For all further geometry optimizations the functionalised
graphene nano-ribbon structure was kept fixed.

To determine the orientation of molecules near a terminated graphene edge, we
start with molecules oriented such that they are not in the same plane as the
ribbon. The adsorption concentration is fixed at one molecule per terminating
atom. The implications of this will be discussed later. The relaxed geometry is
shown in Fig. 5.3.

In the case of oxygen functionalised edges, the oxygen atoms act as anchors
forming hydrogen bonds with the adsorbed water molecules. Due to this, one
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Figure 5.4: H-bonding structure for H2O on both oxygen/fluorine terminated
graphene and the its absence in NO2 on oxygen terminated graphene.

hydrogen atom of each molecule is bonded to the functionalised oxygen edge and
the other hydrogen atom is bonded to the oxygen atom of the neighboring water
molecule as shown in Fig. 5.4. This anchoring results in the dipoles moments
of the adjacent molecules oriented parallel to each other. In the case of fluorine
functionalised edges, the water molecule chain rotates such that the polar O-H
bond aligns with the C-F bond of the functionalised edge while maintaining the
hydrogen bond in between the molecules as shown in Fig. 5.3 and Fig. 5.4.

The angle between the molecular plane formed by the three atoms in the H2O
molecules and the functionalised graphene nano-ribbon is also dependent on the
type of edge functionalization. The angle between the normal to the molecular
plane and the z axis is 70.23◦ in the case of an oxygen termination and 52.04◦ in
the case of a fluorine termination.

In the complete absence of a H-bonding interaction between molecules, as in the
case of NO2, the molecules on adjacent edges prefer to orient on the opposite
side of the nano-ribbon. This configuration is shown in Fig. 5.3. We label this
the ‘anti–parallel’ configuration. The energy difference between this molecular
configuration and the one where all molecules are located on the same side of the
graphene edge (the ‘parallel’ configuration) is 0.48 eV/molecule. This anti-parallel
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Structure Eflip(eV )

H2O+ O-terminated -0.50
H2O+ F-terminated -0.54
NO2+ O-terminated -1.38

Table 5.1: Energy required to flip one molecule from the ground state
configuration.

alignment of the molecular dipoles is driven by the dipole–dipole interaction and
the absence of a H-bonding interaction and will be discussed further in the next
Section.

We also test the possibility that the molecules adsorb completely in the plane of
the ribbon. However, this energy is larger than either of the out-of-plane
configurations by 0.61 eV/molecule for the case of H2O adsorbed on an
O-terminated nano-ribbon.

5.3.1 Intermolecular interactions

To determine the intermolecular interactions of molecules adsorbed on the
functionalised edge, we calculate the energy required to move one molecule from
the minimum energy configuration. For example, in the case of water adsorbed
on a O-terminated graphene edge, this is defined as the energy difference
between the configuration where all the molecules form a chain beneath the
plane of graphene and the configuration where a single molecule has flipped to
the opposite side of the plane. In terms of the molecular dipole orientation, this
is the energy difference between the configurations when all the molecular
dipoles are parallel (EP) and when one molecular dipole is anti-parallel (E1AP),
i.e., Eflip = EP − E1AP . For the case of NO2 molecules, which have an
anti-parallel ground-state configuration, Eflip = EAP − E1P . These energies are
given in Table. 5.1. The energy to flip one NO2 molecule adsorbed on the
O-terminated graphene edge is -1.38 eV/molecule. This is the maximum energy
difference of all considered cases. The energy to flip one H2O molecule from the
parallel configuration is -0.50 eV/molecule and -0.54 eV/molecule for
O-terminated and F-terminated graphene edge respectively. From this
similarity it can be concluded that the effect of type of edge functionalization
has a negligible effect on the intermolecular interaction. Instead, the role of the
functionalised edge is limited to determining the orientation of the molecules
near it.
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Figure 5.5: Schematic of all the measured and derived angles used to determine
the relative dipole orientations.

As the interaction between the molecules is independent of the funtionalised
edge, the difference in relative orientation of H2O molecular chains and NO2

molecular chains can be understood from simple dipole–dipole interactions. The
interaction energy between two dipoles with dipole moment µ in S.I. units is
given as [280]:

Ep̂1,p̂2 =
µ2

4πε0r 3
(p̂1 · p̂2 − 3 (p̂1 · r̂) (p̂2 · r̂)) (1)

where p̂1 is the unit vector pointing in the direction of the first dipole, p̂2 is
the unit vector pointing in the direction of the second dipole, r is the distance
between two dipoles, r̂ is the unit vector along the line joining the centers of the
two dipoles and 1

4πε0
is Coulomb’s constant. For the case of the coplanar parallel

dipoles shown in Fig. 5.5, Eq. 1 can be simplified as:

EP =
µ2

4πε0r 3

(
1− 3 cos2 θ

)
(2)

where θ is the angle the dipole makes with the radial vector.

In the case of water molecules adsorbed on both O- and F- terminated graphene
edges, the angle θ can be derived from the optimized structure assuming that the
dipole is orientated along the angle bisector of 6 HOH and is shown in Fig. 5.5(a).
The angle θ can be calculated as θ = β − α, where β =

6 HOH
2

and α is measured
for the optimized structure shown in Fig. 5.5(a). Similarly, in the case of NO2

the dipole is along the angle bisector of 6 ONO and lies in the same plane as the
O–N–O bond. Hence the angle θ is approximately the same as the angle made
by the N–O bond with the horizontal line as shown in Fig. 5.5(b).

For coplanar anti-parallel dipoles, Eq. 1 can be simplified as:
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Structure β α θ Cθ = (1− 3 cos2 θ)

H2O+ O-terminated 51.75◦ 16.77◦ 35.0◦ -1.01
H2O+ F-terminated 51.32◦ 15.54◦ 35.8◦ -0.97
NO2+ O-terminated 100◦ +0.91

Table 5.2: The angles α, β, θ and the prefactor (Cθ) for H2O adsorbed on O-
and F-terminated graphene edge and NO2 adsorbed on O- terminated graphene
edge

EAP =
µ2

4πε0r 3
(−1− 3 cos θ cos(180− θ))

= − µ2

4πε0r 3

(
1− 3 cos2 θ

)
= −EP

(3)

where the angle between the anti-parallel dipole and the radial vector is 180− θ
due to symmetry.

The angles α,β and θ for the case of H2O molecules adsorbed on both O- and F-
terminated graphene edges are given in Table 5.2. The calculated value for the
dipole prefactor (Cθ) is -1.01 and -0.97 for H2O adsorbed on O- and
F-terminated graphene edge, respectively. These similar values indicate that the
energy difference between the molecular dipole–dipole interaction is
independent of the type of edge termination. This is consistent with the
calculated energies to flip H2O molecule on O- and F-terminated graphene edges
given in Table 5.1 which are also very similar.

In the case of NO2 adsorbed on an O-terminated edge, the measured θ is given
in Table 5.2. The calculated prefactor (Cθ) for this case is +0.909. This positive
coefficient is consistent with the anti-parallel ground state determined using
DFT.

From these calculations it is clear that the formation of the molecular chain,
which is critical for the observation of hysteresis, has a strong dependence on the
intermolecular interactions. These intermolecular interactions are independent of
the type of edge termination. Therefore, to determine the molecular properties
that are important for the formation of these molecular chains, we can consider
the molecular chains independently of the nanoribbon.



5 Ferroelectric molecular switch 142

5.3.2 Model to describe molecular orientation

For molecules with a net dipole moment, intermolecular interactions can be
broadly categorized into two types: (1) dipole–dipole interactions which account
for all Coulomb-type interactions and (2) H-bonding interactions which also
include van der Waals interactions. The ground state of a chain of molecules
with a net dipole moment is dependent on a balance between the short range
additive interaction terms (H-bonding or van der Waals) and the long range
dipole–dipole interaction terms. This competition can be verified using a
Monte-Carlo simulation for a system of dipoles with the H-bonding-like
interaction modeled as an additive term in addition to the usual dipole dipole
interaction given in Eq. 1. A simplified Hamiltonian for such as system, where
the co-planar dipoles make an angle θ with the shortest vector joining them as
shown in Fig. 5.5, can be given as:

H =
Cθ2µ

2

4πε0a3

∑
i ,j

Si · Sj

|j − i |3
+

JH

2

∑
i

abs(Si + Si+1)

= Eb

∑
i ,j

Si · Sj

|j − i |3
+

JH

2

∑
i

abs(Si + Si+1)

(4)

where Si = ±1 indicates the dipole orientation, Cθ is the θ-dependent prefactor, µ
is the dipole moment, a is the first nearest neighbor distance, JH is the hydrogen
bonding energy and Eb = Cθ2µ2

4πε0a3 . The first term in Eq. 4 is the dipole-dipole
interaction and the second term is the H-bonding interaction term. The latter
additive interaction term only contributes when the adjacent molecules are on
the same side of the graphene edge, which corresponds to parallel alignment of
molecular dipole moments.

In order to understand the competition between these two interaction terms, we
performed Monte Carlo calculations using the Hamiltonian given in Eq. 4. The
results are shown in Fig. 5.6 for three values of the additive hydrogen bonding
term when Eb > 0. A positive dipole–dipole coefficient (Eb) favors anti-parallel
alignment of the dipoles and a negative hydrogen bonding coefficient favors
parallel alignment of the adjacent dipoles. As expected, when Jh = 0 and Cθ > 0

the anti-parallel configuration is the ground state due to the dipole-dipole
interaction. This is shown in Fig. 5.6 (top panel). On increasing Jh to −2Eb,
domains with parallel dipoles are formed as shown in Fig. 5.6 (middle panel).
This is because the hydrogen bonding term only affects immediately adjacent
dipoles, so they have a tendency for parallel alignment, creating domains. On
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Figure 5.6: Monte-Carlo simulation for chain of dipoles when the first neighbor
interaction increases from 0 to -5Eb where Eb = Cθ2µ2

4πε0a3 is the dipole-dipole
interaction coefficient.

further increasing Jh to −5Eb all the dipoles align in the parallel configuration.
This is because the energy penalty for parallel alignment due to dipole–dipole
interactions is completely dominated by the hydrogen bonding energy. When
the dipole-dipole interaction coefficient (Eb) is positive, a first nearest neighbor
additive interaction with opposite sign to the dipole-dipole interaction
coefficient is required to achieve parallel alignment. When Cθ < 0, the ground
state is parallel irrespective of the first neighbor interaction.

The parallel ground state orientation of the molecular dipoles is the driving
force for the hysteresis as shown in Fig. 5.2. Additionally, the additive first
neighbor interaction is responsible for the strength of the observed hysteresis.
Free polar molecules will align such that their dipole moment aligns with an
external electric field. If the molecules are not free, but instead interact with
neighboring molecules, they will remain misaligned to the external field until
its magnitude is such that it overcomes the energy penalty associated with
breaking the intermolecular interactions. This results in a hysteretic behavior in
the alignment of the molecular dipoles with the applied field.
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Figure 5.7: (left) Side-view and (right) top view of the gated device structure
used in DFT simulations. The red layer indicates the gate constraint and the blue
layer indicates the dielectric. The total distance between the gates dg includes
the dielectric smoothing width (0.2 Å), the gate smoothing width (0.2 Å) and the
gate width (0.5 Å).

5.3.3 Coupling of the molecular dipoles to an external

electric field

To study the interaction between the molecular dipoles and an external field, we
apply external gates via Dirichlet boundary conditions in the unit cell. The gated
device structure is shown in Fig. 5.7 where the side view is shown on the left and
the top view is shown on the right. In the side view, the red layer indicates the
gate constraint and the blue layer indicates the gate dielectric region. In the top
view, the red box indicates the extent of the applied gate.

On applying a gate voltage, the energy differences between the configurations
when the molecules are located above and below the plane of graphene are shown
in Fig. 5.8. These configurations correspond to the molecular dipoles oriented
parallel and anti-parallel to the external field. This energy difference, ∆Eµ, where
µ indicates a molecular dipole moment dependence, shows a linear dependence on
the applied voltage, with the slope of line dependent on the type of termination
of the graphene edge.

In order to understand this dependence, we first consider how the total energy of
a dipole system depends on the gate voltage. The total energy of a dipole, µ, in
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Figure 5.8: Energy differences between the configurations when the molecules
are located above and below the plane of graphene as a function of voltage.

an electric field, E , is given by −µ · E . The electric field depends on the applied
voltage, V , and the distance between the gates, dg , as E = V

dg
. Therefore the final

expression for the change in energy of a dipole with the reversal of an applied
electric field is given as:

∆Eµ = 2µ
V

dg
=

(
2
µ

dg

)
V (5)

The quantity in the brackets can be extracted from the slope in Fig. 5.8 and can be
interpreted as an effective charge that interacts with the electric field of the gate.
For water adsorbed on the O-terminated device, this quantity is 0.011 e and for
water adsorbed on the F-terminated device, this is 0.0089 e. The effective voltage
coupling of water dipoles (Eeff = µ

dg
) is therefore 0.0055 e and 0.00445 e for O- and

F- terminated graphene, respectively. This quantity can also be calculated using
the ideal value of the water dipole moment (1.85D), and the inter gate distance
(dg ) of 2.18 nm for the simulated device. This idealized value of 0.017 e is higher
than the values derived from a complete device simulation. This indicates a
screening of the electric field by the device. This screening is higher in the case
of an F-terminated device compared to an O-terminated device.
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A higher coupling (Eeff) indicates a stronger tendency for the molecules to align
to the external field due to the gate voltage. It also means there will be a higher
energy penalty associated with any molecules mis-aligned to the electric field.
From the calculated values of Eeff we can see that molecular dipoles adsorbed
on O-terminated graphene edges will have a higher tendency than the molecular
dipoles adsorbed on F-terminated graphene edge to flip so that they align to the
external electric field.

5.4 Simulating hysteresis effect using an Ising-like

model

To study the influence of the gate voltage on the orientation of molecular dipoles
on the functionalised edges of graphene, a voltage term can be included in the
model Hamiltonian. Using Eq. 4, Eq. 2 and Eq. 3, this Hamiltonian is written
as:

H =
Cθµ

2

4πε0a3

N−2∑
i=0

N∑
j=2

Si · Sj

|j − i |3
+

JH

2

∑
i

abs(Si + Si+1)− µε
N−1∑
i=0

z · Si

= Eb

∑
i ,j

Si · Sj

|j − i |3
+

JH

2

∑
i

abs(Si + Si+1)− EeffV
N−1∑
i=0

z · Si

(6)

where Cθ is the prefactor calculated in Tab. 5.2 and Eeff is the effective coupling
calculated from the slope of the line in Fig. 5.8. Note that the summation in the
dipole term starts from the second nearest neighbor and all first nearest neighbor
interactions are included in the additive term via the coefficient JH . As was
shown earlier, the effect of the type of edge termination on the intermolecular
interaction is negligible, so, in this modified Hamiltonian the effect of the type of
edge termination termination enters only via Eeff .

Monte-Carlo simulations can be used to determine the effect of the individual
coefficients in the orientation of molecular dipoles. Using the model Hamiltonian
also enables us to do a sensitivity analysis for the parameters and study the
effect of small variations in the model parameters on the observed hysteresis. The
sensitivity analysis will help in understanding the relative importance of each of
the interaction terms, and in determining whether some effects can be ignored.
The Monte-Carlo simulation is performed at T = 300 K (25 meV) for a molecular
chain of size 100. The voltage is varied from -35 V to +35 V in increments
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of 1 V. At each voltage, the entire chain is looped over 8000 times of which
last 2000 iterations are used to calculate the average orientation of the dipoles
in the molecular chain. The starting configuration for each voltage is the last
configuration of the previous voltage, with the initialization at V = −35 V done
randomly. As we are interested in the relative importance of the interaction terms,
we fix the value of Cθ = −1 to preserve the appropriate sign of the interaction,
and give all energies in the units of Eb. This reduces the number of parameters
to two, namely JH and Eeff .

Note that if Cθ was positive, the adjacent dipole moments of molecules align anti-
parallel to one another as shown in Fig. 5.6 (top panel). Due to this anti-parallel
alignment the effect of the molecules on the graphene electron density cancels each
other, so no hysteresis is observed. In contrast, if Cθ and JH are both negative,
the dipoles of the molecules in the molecular chains have a tendency to align such
that their dipole moments are parallel to each other. In such cases the effect of the
voltage is then to reorient these molecular dipoles to the external field. Ideally,
for an isolated dipole present in an external field, the dipole reorients in the
direction of external electric field for any non-zero value of that field. However, for
multiple interacting dipoles the orientation is decided by a competition between
the dipole–electric field interaction and dipole–dipole interactions. In such cases,
if the energy gain due to a dipole reorientation is not sufficient to compensate
for the reduction in inter-dipole interactions, the alignment of the dipole to the
external field will be prohibited until a sufficiently high field is reached. This is the
cause of the experimentally-observed hysteresis. To study this competition, we
use Monte-Carlo simulations to determine the average orientation of the molecules
with an externally applied voltage. Note that the model is agnostic to the starting
alignment of the molecules to the external field, so simulations can be limited to
only one direction where the molecules are initially aligned in an external field
(V=-35 V). The voltage is then swept to V=35 V) in steps of 1 V. Hysteretic
behavior will be evident if the molecular dipoles do not immediately align in the
direction of the applied field (i.e., when the applied field changes from negative to
positive values). The symmetry of the calculation means that it is not necessary
to also consider sweeping the voltage from positive to negative (the result will
differ only in sign).

The simulated hysteresis is shown in Fig. 5.9 as a function of the changing additive
coefficient JH and the effective field coupling Eeff in units of Eb. As expected,
when the additive coefficient is small (JH = 0.5) the molecular dipoles follow
the external voltage very closely. This is because the interdipolar interaction is
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Figure 5.9: Result of Monte-Carlo simulation demonstrating a hysteresis with
varying model parameters JH and Eeff . Note that Eb < 0 and so is JH .

small in comparison to the dipole–field interaction. For a given value of Eeff , on
increasing the magnitude of JH (moving down the panels) increasing hysteresis is
observed. For example, when Eeff is fixed at 0.031, a voltage of 0 V is required to
flip the molecular orientations when JH is 0.5Eb, but this increases to a voltage
of 13 V when JH is increased to 2Eb. For a given JH , there is not a monotonic
relationship between Eeff and the voltage required to flip the chain orientation.
For example, JH = 3.0Eb, decreasing Eeff from 0.1|Eb| to 0.02|Eb|, increases the
voltage required to flip the molecular dipoles monotonically from 8 V to 24 V.
This is not the case when JH is 1.73Eb where the transition voltage first appears
to decrease then increase slightly.

We can extract values of JH and Eeff associated with water molecules adsorbed
on O- and F- terminated graphene edges from our DFT calculations. These
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Termination |Eb|(eV) JH (eV) Eeff (e)

F 0.1437 -0.27 0.0045
O 0.1437 -0.25 0.0055

Table 5.3: The values of the model parameters extracted from DFT for the
concentration of one H2O molecule per functional edge atom.

values are listed in Table 5.3. However, there is very little difference in the
values extracted for these two cases, with JH ≈ −1.73|Eb| and ≈ −1.84|Eb| for
F- and O-terminated edges, respectively, and Eeff = 0.03|Eb| and 0.038|Eb| for F-
and O-terminated edges, respectively. For these extracted values, our
Monte-Carlo simulations predict a very similar hysteresis effect for both O- and
F- terminations. This is in contrast to the experimental result, which finds that
H2O adsorbed on an O-terminated graphene edge demonstrates a larger
hysteresis compared to H2O adsorbed on a F-terminated graphene edge. This
may be due to the dependence of the calculated parameters on both the
concentration and orientation of optimized molecules. Further calculations are
required to determine the accuracy of the molecular concentrations enforced
here, namely one molecule per terminating atom. Changing the adsorption
concentration would change the hydrogen bonding and vdW interactions
between neighboring molecules, i.e., it would modify JH . If different
concentrations of water adsorb on O- and F- terminations, this could explain
the difference in the experimental hysteresis measurement.

5.5 Conclusion

DFT calculations show that H2O molecules adsorbed on both O- and F-
terminated graphene edges have a parallel ground state where all the molecules
are located on the same side of the graphene plane. In contrast, NO2 molecules
adsorb on an O-terminated graphene edge in an anti-parallel configuration so
that alternate molecules adsorb on the opposite sides of the graphene plane.
The effect of the termination type on the inter-molecular interaction is
negligible, with the role of edge limited to providing binding sites for
adsorption. The intermolecular interaction then dictates the edge dependent
orientation of the molecules. The coupling of the molecules to the external
electric field due to the applied gate voltage is dependent on the edge
termination, with F-terminations showing a higher screening of the electric field
compared the O-terminated edge.
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We performed Monte Carlo simulations on the 1-dimensional Ising-like model to
study the relative importance of these interactions. We find that in order to
observe a hysteresis effect, both an H-bonding additive first nearest neighbor
interaction and a dipole - field interaction are required. The hysteresis
transition voltage will depend on a fine balance between these two interactions.
These interaction parameters are in turn sensitive to the molecular orientation
and concentration. Determining the correct molecular concentration on the edge
is therefore crucial. For the correct concentration, the orientation will then
determine the correct values for the model parameters. We extracted the values
of these interaction parameters using DFT calculations. However, for the fixed
values of adsorption concentration considered here, these parameters are very
similar for water adsorbed on O- and F-terminated graphene, and so could not
be used to explain the experimental result. Further work will be required to
determine a realistic adsorption water concentration on the edges of an O- and
F-terminated graphene flake.



CHAPTER

6

CONCLUSIONS AND FUTURE
WORK

6.1 Conclusion

Two dimensional materials are used in a variety of applications due to their wide
ranging properties. Solvents play a very important role for the production of these
materials. These production processes are complex multi-step processes with
many steps occurring simultaneously. Liquid phase exfoliation (LPE) is one such
solution-processing method capable of industrial scale production. Here, layers
are separated by the application of an external force. The solvent molecules then
prevent the resulting monolayers from reaggregation, stabilizing the layers in the
solvent. It is generally assumed that these solvents do not interact strongly with
the layer and so their effects can be neglected. Yet experimental evidence has
suggested that explicit atomic-scale interactions between the solvent and layered
material may play a crucial role in exfoliation and cause unintended electronic
changes in the layer. An atomic level understanding of these processes is necessary
in order to make predictions or optimizations. This atomic level understanding
can be developed using modern computational tools.

151
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Research in exfoliation of graphene and other two dimensional layers in solvents
is mainly focused on determining the factors affecting the amount of exfoliated
layers in the solution. One important ingredient that is known to affect the
exfoliation procedure is the type of solvent that is used. Determining the type
of solvent to use is an open question and a method for the screening of solvent
molecules is desirable. Several attempts have been made in this regard based on
solubility parameters and surface energies. However, these methods fail to
provide definitive predictions. All these methods are based on effective
parameters. It is clear that atomic-level understanding of the process is
necessary for development of an effective screening procedure. In the case of
graphene, the van der Waals interactions between the layer and the molecule are
weak in nature. Therefore they are often neglected. However, their collective
behavior near the surface is distinguishable, indicated via the diffusion
coefficient and the free energy of formation of the solvation structure. This
difference in the diffusion of molecules near the surface of the graphene layer
indirectly affects the reaggregation process, and hence the graphene
concentration in the dispersion. This atomic level understanding is also
necessary for other systems involving molecules and graphene layers such as in
determining the co-intercalation of metal ions and solvent molecules betwee the
layers.

In Chapter 2, we introduced the electronic structure methods used in this
thesis, namely-density functional theory (DFT) and classical molecular
dynamics (MD), and discussed their practical implementation. We also defined
several important properties, including the permittivity, free solvation energies
and diffusion coefficients, and showed how they can be extracted from DFT and
MD calculations.

In Chapter 3, we discussed the interaction of experimentally-relevant solvent
molecules with graphene and MoS2. Using DFT, we show that the interaction of
these solvents is van der Waals in nature. The binding energies and binding
heights of molecules adsorbed on both graphene and MoS2 do not depend
strongly on the type of molecule or nanosheet under consideration. The
orientation of the molecules also show a preference towards Bernal stacking,
where molecules with hexagonal rings prefer AB style stacking with respect to
the graphene layer. We also show that a counter dipole moment is induced on
the layers in response to the dipole moment of the molecules. We show that the
solvent-dependence of liquid phase exfoliation cannot be attributed to any
difference in the molecule–layer interaction. We then simulate the bulk liquid
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solvent near monolayer graphene using classical MD. These simulations show
the formation of distinct solvation shells in all cases, irrespective of the type of
the solvent molecules. The molecules in the first solvation shell show a strong
out-of-plane ordering, with two different preferential orientations. However,
there is negligible in-plane ordering of the molecules, irrespective of the type of
the solvent. The formation of these solvation shells is energetically favorable as
indicated by the free energy of formation and its decomposition into the
enthalpic and entropic contributions. These calculations indicate that the
solvent dependence of the LPE process may not be due to thermodynamic
considerations alone and instead the kinetic behavior of molecules may be
important. To verify this, we calculated the diffusion coefficient of the molecules
in the first solvation shell. We found that a higher diffusion coefficient is
associated with a lower experimental concentration of graphene in the
dispersion. This could be due to the higher reaggregation rate in these cases, as
intercalated solvent molecules are easily ejected. However, this breaks down
when the diffusion coefficient is very low. This could be due to the separation
step of the exfoliation process. The role of the solvent in the initial separation
step should be considered in more detail. This also provides a method to screen
solvent molecules for which the exfoliation process can be optimized to achieve
higher concentration of graphene in the dispersion.

In Chapter 4, we discussed the exfoliation process in the presence of Group-1
metal ions. We find that potassium intercalated bilayers spontaneously separate
into monolayers in the presence of polar solvents. This can be attributed to the
transfer of charge from the ions to the layers. This separation is spontaneous
only when the separated layers retain a residual charge. In contrast, separation
into neutral layers will not be spontaneous. Excess charge can induce structural
and electronic phase transitions in some monolayers. This is case for Group-VI
transition metal dichalcogenides. The extent to which this occurs depends on the
chemical composition of the material. We explain this by calculating the forward
transition barrier for charged layers and reverse transition barrier for neutral
layers. Finally, we developed a computational workflow to determine whether
it is energetically favorable for particular molecules to intercalate alone or to
co-intercalate with a metal ion in bilayer graphene. The work-flow considers all
the possible intercalation configurations while considering the symmetry of the
molecules to eliminate duplicate structures, hence reducing the computational
cost. Preferentially obtaining one of these outcomes is important for applications
in exfoliation or battery electrodes.
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In Chapter 5, we discussed the formation and manipulation of molecular chains on
a functionalised graphene edge in order to understand an experimentally-observed
ferroelectric-like hysteresis effect in the resistance of the graphene sheet. We find
that in order for the hysteresis effect to occur, an additive interaction between
first nearest neighbors is necessary in addition to the molecular dipole-dipole
interaction. We find that H2O molecules adsorbed on the either an O- or F-
terminated graphene edge have a parallel ground state, where all the molecules
are on the same side of the graphene plane. In the case of NO2 adsorbed on
an O-terminated graphene edge the ground state is anti-parallel, with alternate
molecules present on opposite side of the graphene plane. The intermolecular
interaction is not affected by the edge, with the role of edge limited to orienting
the molecules into a chain. In contrast the edge has a significant effect on the
interaction of the molecules with an external field, with fluorine terminations
showing a higher screening as compared to oxygen. Monte-Carlo simulations for
a 1D Ising-like model show that both the additive H-bonding and the dipole-field
interactions are important. The hysteresis in this case depends on a fine balance
between these two interactions. The model parameters derived using DFT are
very similar for H2O adsorbed on the either a O- or F-terminated graphene edge,
so the Monte-Carlo results are inconclusive. As the model parameters will depend
sensitively on both the concentration and the orientation of the molecules, further
investigations are required to determine the correct adsorption concentration and
associated molecule orientation.

6.2 Future Work

The work here can be extended in several ways:

In Chapter 3 we determined the potential energy surface (PES) for a
molecule-layer interaction. Determining the PES for a molecule-layer
interaction is computationally very expensive. The PES is a tool to study the
adoption of molecules or ions on the basal plane of the layer or on the edge.
This is important as the adsorbate position has a direct influence on properties
such as transport, spintronic effects and optical behavior. The determination of
the adsorption sites can be accelerated using tools such as ab-initio molecular
dynamics (AIMD) and machine learning [281].

The hypothesis that solvents with high diffusion rates on the surface of
graphene are better solvents for LPE can be further tested for other materials
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and for a bigger set of molecules. Furthermore, classical MD simulations require
accurate potentials to represent interactions within the system. For the
calculations presented in this thesis, the potentials were chosen carefully to
reproduce, for example, the van der Waals interactions between molecules and
monolayers. This limits the generalization of this method due to absence of a
universal potential type that can be used irrespective of the interaction-type.
An interesting candidate for such a universal potential is one developed using
machine learning [111, 282]. This potential can be trained using DFT
calculations for a subset of representative interactions. Then used to simulate
large simulations at the same level of accuracy as the DFT calculations. In
addition it should also be seen if the diffusion coefficient calculated for an
isolated or a thin slab of molecules on the graphene layer agrees with that
calculated for the thicker solvent layer considered in this thesis. If so, the
computational cost for screening of molecules will be much lower. Furthermore,
if this behavior can be replicated in smaller systems, then ab-initio molecular
dynamics can be directly used, removing the requirement for alternate methods
or potentials. With this method we can also include the possibility that the
edges and molecule chemically interact to form bonds. Then this can then be
used to determine if the behavior of the molecules changes in the vicinity of the
edge. To make these calculations computationally tractable we can use
QM/MM [283] or subsystem DFT methods [284].

In Chapter 4, we calculated the transition barriers for the structural phase
transition between two stable states of Group-6 TMD’s. There we assumed that
the phase transition occures simultaneously for the complete layer. In reality,
this will not be the case. The transition will occur in cascading steps where a
portion of the layer transitions at a time. This behavior can be simulated using
a flake rather than a small periodic structure. These type of simulations have
just become computationally possible using modern linear scaling DFT
methods. For a non-periodic structure, dealing with a charged surface is also
not a problem, and the role of lithium in the simulation can also be eliminated.
Another possibility for the direct charging can be to use the non-periodic
boundary conditions using real space Poisson solvers. Additionally, machine
learning potentials can also be used. With appropriate training these can be
used to correctly determine the transition state structure [111]. This would
enable simulations of much larger flakes than those possible using DFT.

We have demonstrated a framework for testing molecules for cointercalation. This
framework can be improved, and applied to other materials and concentrations.
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In this thesis we have considered one molecule and ion interacting with bilayer
graphene. The ability to deal with increasing concentrations is very important to
study experimentally relevant systems. In addition to the framework discussed
here, this can also be achieved using AIMD simulations. This will also enable
us to include the rest of the solvent and study its effect on the process of co-
intercalation. In reality the intercalated ions move from the solution to between
the layers. This would allow us to study the effect of the initial ion concentration
in solution on the intercalated concentration. Furthermore, AIMD calculations
would enable us to include the effect of edges, which could play a very important
role.

In Chapter 5, we have shown that, in the case of molecules adsorbed on
functionalised graphene edges, the results depend on the molecular orientations.
Here, we have considered only two distinct orientations of molecules. This was
enforced via the periodicity of the unit cell. To determine a more realistic
configuration of a chain of molecules near a graphene edge, we can perform
molecular dynamics simulations which consider different coverages. These
simulations can be done for different lengths of unit cell and with different
coverages to get the correct orientations. Another interesting alternative is to
use grand-canonical Monte-Carlo along with DFT to determine the
concentration and orientation of molecules near the edge. Once the ground state
orientations are determined we can do molecular dynamics simulations to
determine how fast can the molecules be switched in between the two states
with the external voltage.
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