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Abstract

Hand gestures are used as a way of communication in our daily

lives. Using hand gestures to interact with the virtual environment

inAugmented andVirtual reality is a natural extension from the real

to the virtual scenario. Thus, recognising hand gestures as seen by

the head-mounted Augmented and Virtual reality devices termed

as ego-hand gestures, is a problem worth exploring.

Deep neural networks recently have been used to solve the prob-

lem of ego-hand gesture recognition, as they are known for their

robustness to handle various problems posed by ego-hand gesture

recognition like varying lighting conditions, background environ-

ments, skin colour, ego-motion, motion blur and more. However,

they need a large amount of data for training and testing, making

data collection and annotation process very laborious. This work

proposed a novel data augmentation technique and published a

new ego-hand gestures dataset (Green Screen Ego-hand Gesture

Dataset) that can reduce the labour intensive data collection pro-

cess while being able to train generalisable networks.

A new deep neural network architecture that works on trimmed

video ego-hand gesture recognition paying specific attention to

ego-hands in the images was proposed. This network was trained

and testedonvarious available trimmedego-handgesture recogni-

tion dataset including the Green Screen Ego-hand gesture dataset
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weproposed, advancing the stateof theart recognitionperformance

on all the tested datasets.

Trimmed video recognition is not applicable in a real-world sce-

nario, since real-world scenario contains untrimmed videos. In con-

trast to trimmed videos, untrimmed videos contains gestures in-

terspersed with non-gesture images. StAG LSTM, an extension to

LSTM frameworkwas proposed to train ego-hand recognition deep

neural network on untrimmed videos. This addition reduces the

number of heuristics used, which are a standard part of existing

methods. A new loss function(IG Loss) that better optimises the

network and a new evaluation metric that is more useful than the

currentmetrics formeasuring accuracy of untrimmed video recog-

nition is also proposed. StAG LSTM with IG Loss advanced state of

theart performanceonego-handgesture recognitiononuntrimmed

video.
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Chapter 1

Introduction

The idea of egocentric vision was put forward in seminal work by

SteveMann [1], as humanistic computingwhereheproposeda frame-

work to put human body, mind and computing apparatus in tan-

dem with each other to facilitate better memory, safety and new

forms of communication. He further explored the idea of wear-

able intelligent camera system that records the perspective of the

wearer giving rise to the field of egocentric vision.

It was further explored as Quality of Life Technology (QoLT) for older

people, and the physically challenged by Kanade and Herbert in

[2]. As summarised by Kanade and Herbert in [2], novelty detec-

tion [3], egocentric activity detection [4, 5], context awareness [6],

interactivity [7], ego-hand gesture recognition [8] are some of the

directions of research happening in egocentric vision. Though re-

search in ego-hand gesture recognition started in the field of sign

language detection, it has evolved to the field of user interactions

[9, 10, 11, 12]. With the advent of consumer-grade Augmented Real-

ity(AR) and Virtual Reality(VR) devices, ego-hand gestures are gain-

ing popularity as natural interfaces to interact with these devices.

This work focuses on ego-hand gesture recognition in the context

of interactions with virtual elements in AR and VR devices.
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Figure 1.1: Evolution of WearComp, Prof. Steve Mann’s wearable

computing system.

1.1 Ego-hand Gestures

Presence of gestures is ubiquitous; they are found across cultures

and ages. Gestures are movements of body parts, often accom-

panied by speech to convey some form of expression. They can

be independent of speech, yet powerful enough to communicate.

Though gestures can be performed with many body parts such as

eyes, mouth, hands and any combination of these, for this docu-

ment, we restrict gestures to those performed by hands. Ego-hand

gestures are hand gestures performed by a person as observed by

a wearable camera worn by the same person. Since gestures are

an essential part of our daily communication, recognising gestures

froman egocentric perspective and using them to interactwith vir-

tual elements is a natural extension fromReality to AR and VR.

1.2 Interactions in Augmented and Virtual

Reality

Virtual Reality transports a person from the real world to a digi-

tally constructed space that can stimulate the senses like the real

2



world. Though the idea of virtual Reality has been existent before,

themodernhead-mountedVRsystemcreation is primarily attributed

to Ivan Sutherland and Bob Sproull in 1968. Since then, VR systems

have been mainly used for medical, flight and automobile simula-

tion [13, 14, 15].

Figure 1.2: Commercially available VR and AR headsets

Unlike VR, AugmentedReality (AR) aims to bridge the gap between

virtual content and the real world. It tries to present information

or content in a seamless and non-intrusive way to the user. See-

through head-mounted devices (HMD) where the user is not iso-

lated from the real world, and the virtual content displayed blends

into the surroundings is one way AR achieves this objective. The

term ’Augmented Reality’ was coined by Thomas P Caudell, while

hewasworkingwith his colleagueDavidMizell on creating an alter-

native to help factory floor workers understand wiring instructions

for manufacturing processes. Though AR was initially intended for

improving the productivity of factory workers and engineers when

it was introduced [16], experimental applications of AR exploded to

amultitude of fields like education,medicine, entertainment, gam-

ing and tourism [17, 18, 19, 20]

The large scale production and adaption of both VR and AR sys-

tems into consumer space happened recently with the advance-

ment ofmobile computing, inertial sensing technologies, and com-

puter vision algorithms. Commercially viable VR headsets like Ocu-

lus Rift, Samsung Gear VR, HTC Vive and AR headsets like Microsoft

HoloLens, Magic LeapOne (Figure 1.2) are gaining entry to into both

enterprise and consumer space. However, natural interactionswith

virtual content is still a problem to be explored. Interactions form a

majority of user experience; without easy usage, it is hard for tech-

nology to reachpeople. This is evident from themobile phone revo-

lution, one of the primary reasons for their pervasive presence apart

3



fromMoore’s Law, is the fact that they are designed for everyone to

understand their usage intuitively.

The current AR/VR headsets mostly use variations of joystick for fa-

cilitating interactions. Though some systems use hand gestures as

amode of interaction, their usage has been limited since ego-hand

gesture recognition has not been extensively explored.

1.3 Ego-hand Gesture as Natural Interfaces

for AR and VR

Gesture recognition, in general, is a hard problem to solve in com-

puter vision. It involves many challenges like identifying hands of

different skin tones, working under different lighting conditions,

varying duration of the performance. Ego-hand gesture recogni-

tion adds an additional layer of complexity since it also involves ego-

motion due tomotion of device worn, partial or obstructed views of

hands. Ego-hand gesture recognition should involve localisation in

time and work in real-time while addressing all the problemsmen-

tioned above, to be useful for interacting with virtual content.

In recent times, deep neural networks have been discovered to pro-

vide robust solutions to address most of the problems mentioned

earlier. With the motivation of recognising ego-hand gestures to

design interfaces to AR and VR devices, the following objectives

were envisioned for the research in this thesis.
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• Define characteristics of a good ego-hand gesture

dataset that can be used to train ego-hand gesture

recognition deep neural networks. To identify the prob-

lems in existing publicly available ego-hand gesture

datasets and provide a dataset that could potentially al-

leviate some of the identified issues.

• Design a deep neural network architecture that focuses

on ego-hands in the images to improve the state of the

art recognition benchmarks on existing datasets and the

new dataset.

• Identify the problems in using the existing ego-hand

gesture recognition networks, devise solutions to solve

some of the identified problems to move towards more

usable neural networks in real-world scenarios.

The thesis contributions are the following to realise the objective

conceptualised above.

• Dataset of Ego Hand Gestures to address the problem

of training new deep neural networks for ego gesture

recognition with semi-automatic annotation(Chapter 4).

• A deep neural network architecture that creates embed-

dings pertaining to ego-hand and the gesture they are

performing to the address the problem of recognising

ego-hand gestures in trimmed videos(Chapter 5).

• An extension to Long-Short TermMemory(LSTM) frame-

work to decrease dependency on heuristics, a new loss

function and a novel evaluation metric to address the

training of ego-hand gestures recognition in untrimmed

videos which are more applicable in a real-world sce-

nario(Chapter 6).

• In addition, the research done on ego-gesture recogni-

tion onuntrimmedalso lead to an on-going collaborative

research project with NVidia ISAAC team. This work is ex-

plained in the Future Work section of the last chapter.
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All these contributions lead to peer-reviewed and in-review publi-

cations listed below.

• Chalasani, T., Ondrej, J., & Smolic, A. (2018). Egocentric

Gesture Recognition for Head-Mounted AR Devices. Ad-

junct Proceedings - 2018 IEEE International Symposium

on Mixed and Augmented Reality, ISMAR-Adjunct 2018

• Chalasani, T., & Smolic, A. (2019). Simultaneous segmen-

tation and recognition: Towards more accurate ego ges-

ture recognition. Proceedings - 2019 International Con-

ference on Computer Vision Workshop, ICCVW 2019

• Chalasani, T., & Smolic, A. (2021). EgoCentric Hand Ges-

ture Recognition onUntrimmedVideos Using State Acti-

vationGate LSTMs, In-Review IEEEConference onVirtual

Reality and 3D User Interfaces (VR)

Rest of the thesis is organised as follows: Chapter 2 introduces deep

learning concepts pertaining to spatial, temporal, spatio-temporal

learning and reason the necessity for large amounts of data needed

to train these networks effectively. In Chapter 3, existing hand ges-

ture recognition and ego-hand gesture recognition methods are

reviewed, and publicly available ego-hand gesture datasets are in-

troduced. Chapter 4 presents the Green Screen Ego-hand Gesture

dataset, properties needed for an easy to use Ego-hand Gesture

Dataset, and various novel attributes of the new dataset. Network

architectures, training methods, loss functions, metrics created for

trimmed and untrimmed ego gesture recognition are presented in

Chapter 5 and Chapter 6. The final Chapter 7 concludes the the-

sis with a summary of the work done and possible future exten-

sions.
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Chapter 2

Concepts of Deep Learning

As stated earlier, the main contributions of this thesis are a new

ego hand gesture dataset for training deep neural networks and

new deep neural network architectures. It is imperative to under-

stand the basic building blocks of deep neural networks for spa-

tial, temporal and spatio-temporal learning and the necessity for

large datasets. These concepts are discussed in the following sec-

tions.

2.1 Convolutional Neural Networks

The solutions to many computer vision problems like recognition,

tracking, reconstruction, segmentation can be broadly classified

into two categories, one using handcrafted features and other us-

ing auto extracted features depending on the data. Handcrafted

featuredescriptors like Scale Invariant Feature Transforms (SIFT) [22],

Histogram of Oriented Gradients (HOG) [23], Speeded Up Robust

Features (SURF) [24] were devised and used in ML frameworks like

Support Vector Machines (SVMs), Artificial Neural Networks (ANNs)

and others. Convolutional Neural Networks (CNNs) took this step

away and let the data decide the features viable for the task in hand

[25, 26, 27, 28]. These approaches had similar performance results

in comparison to handcrafted feature until Krizhevsky et al. in [29]
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Figure 2.1: Network architecture of AlexNet. The figure here repre-

sents slightly altered AlexNet architecture, all the layers here were

split into two for training on different GPUs in the original imple-

mentation [21].

came up with a Convolutional Neural Network (CNN) architecture

that trained on a large set of images from ImageNet LSVRC (Large

Scale Visual Recognition Challenge)-2010 [30] using specialised fast

convolutional operations on Graphics Processing Units(GPUs). It

should be noted that CNNs have been used for a long time before

Krizhevsky et al. [29], like Jarret et al. [25], LeCun et al. [31], Lee et

al. [26] to cite a few examples. Krizhevsky et al’s critical contribu-

tion in [29] was optimised GPU implementation of 2D convolutions

and other necessary operations for forward and backpropagation,

finding the correct operations to deal with the inherent problem of

overfitting(discussed in Section2.3).

Krizhevsky et al. [29] used ImageNet dataset [30] which contained

1.2million high-resolution imageswith 1000 object classes of which

50% were used for training, and the remaining 50% were used for

testing. They achieved a top-1 and top-5 error rates of 37.5% and

17.0% respectively doing considerably better than then state-of-art.

The core practical principle of deep convolutional neural networks

is a fast running implementation of convolutions on GPUs. The ar-

chitecture proposedby [29] consisted of 5 convolutional layers, each

appendedwith aReLU to impart non-linearity and interspersedwith

Max Pooling layers. The fifth convolutional layer is then connected

8



Figure 2.2: Figure to the left showing resulting sizes of convolution

operation. The blue square is the input image, green square is the

convolution window and purple one is the output. Figure to right

showing max pooling operation [33].

todensely connected layers. Thewhole architecture (more famously

known as AlexNet) is illustrated in Figure 2.1.

Convolutional Neural Networks when introduced mainly used 2D

convolutions for extracting features from images, however research

by Tran et al. [32] has lead to usage of 3DConvolutions for extracting

spatio-temporal features from video data. In the following chap-

ters, we look at various building blocks that make up 2D and 3D

convolutional networks.

2.1.1 2D Convolutional Layer

A 2D Convolution Layer consists of N (usually referred to as depth)

convolution filters of a specified size. Convolution is a simplemath-

ematical operation which involves an input image (matrix) and a

convolutionfilter (usually a small squarematrix) to generate an out-

put. If the input is an image I of sizeN×M ( N-RowsandM-Columns),

and the convolutionfilter is F of sizew×w, the convolutionbetween
I and F produces an output image (matrix) of size N − 2 × bw/2c ×
M − 2 × bw/2c (Fig 2.2 showing sizes of input, window, outputs for
example convolution operation). The values of output O can be cal-

culated with standard convolution equation 2.1. It should be noted

9



that this operation is highly parallel and ideal candidate to be im-

plemented on GPU. As stated in the beginning, there are N such

convolution filters defined in a convolution layer.

Oi,j =

a=w,b=w∑
a=1,b=1

Ii+a−1,j+b−1 ∗ F (a, b) (2.1)

Each of these filters is applied to all the image channels and aver-

aged to create one output per filter. There is an additional padding

parameter that is specified. The padding adds additional rows and

columns around the input image, usually used to make the input

and output size the same. Stride is another parameter that defines

how the filter window should move.

Figure 2.3: Figure showing 3D convolution [32] operation in com-

parison to 2D convolution. Figure sourced from [34].

2.1.2 3D Convolutional Layers

A 3D convolution filter is similar to 2D convolutions, however unlike

the 2D case, 3D convolutions are applied to a sequence of images

instead of a single image. The equation 2.2 for calculating the out-

put of a 3D convolutional operation follows from the 2D equation

2.1. The convolutional filter in this case a 3 dimensional matrix F

usually of a size w × w × w. If the image I of size N × M and there

are L images in the sequence and is represented by IL. Applying F

10



to IL would result in a 3Dmatrix with size (N − 2× bw/2c)× (M − 2×
bw/2c)× (L− 2× bw/2c)

Oi,j,k =

a=w,b=w,c=w∑
a=1,b=1,c=1

Ii+a−1,j+b−1,k+c−1 ∗ F (a, b, c) (2.2)

2.1.3 Activation Layers

Activation Layers are used to introduce non-linearities into deep

neural networks.

ReLU

Rectified Linear Units are one of the activation functions used in

Deep Neural Networks to introduce non linearity, it is defined by

the equation 2.3. As explored by Nair & Hinton in [35] and Jarret et

al in [25] compared toother activation functionsReLUprovide faster

convergence.

F (x) = max(0, x) (2.3)

TanH

TanH function as defined by equation 2.4 is usually used in recur-

rent neural networks. The usage of this function will be explored

later in section 2.2.2.

ex − e−x

ex + e−x
(2.4)

Sigmoid

Sigmoid function in neural networks are used tomap the output of

a layer to [0, 1]. This function is defined by the equation 2.5. Fig 2.4

plots this function.
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(a) ReLU

(b) TanH

(c) Sigmoid

Figure 2.4: Various Activation functions. [33]

1

1 + e−x
(2.5)

SoftMax

Softmax activation or layer is used to map an input vector of J to

probability distribution function containing J probabilities. This layer

is usually used at the end of a full network for classification and is

defined by the equation 2.6

exi∑J
j=1 e

xj

(2.6)

2.1.4 Pooling Layers

Pooling layers are used for down sampling. There are several kinds

of pooling layers but we will look at two kinds Max Pooling and Av-

erage Pooling.

12



Max Pooling Layer

This function looks at the maximum value present in the filter win-

dow and assigns it to the output. This windows can be overlapping

or non-overlapping.

Average Pooling Layer

Average pooling calculates the mean of all values in the window

and assigns it to the output. Just like Max Pooling layer, the win-

dows can be overlapping or non-over lapping.

The building blocks of Deep Neural Networks explained dealt with

extracting spatial features (Section 2.1.1) and spatio-temporal fea-

tures in a windowed time frame (Section 2.1.2). However, these are

not adequate to find long term temporal relations betweendata. In

the next section, we look at a class of neural networks called recur-

rent neural networks(RNNs), that maintains a memory to extract

long and short term temporal relations between data points in se-

quential/temporal data.

2.2 Recurrent Neural Networks

Recurrent Neural Networks were introduced to tackle the problem

of sequence labelling, sequence to sequence mapping in speech

and natural language processing settings initially [36, 37, 38, 39, 40].

The ideaof using convolutions along the temporal dimension toun-

derstand the relationship between data points at different times

has explored by a large body of research [41, 32, 42]. However, all

these approaches suffer from the problem of not understanding

long term dependencies, as they always work on a limited window

of time. Theunderlyingpremiseof recurrentneural networksmodel

is the idea of estimating a hidden unit in current time based on its

previous value and the current input to the network. This kind of es-

timation leads to the understanding of long term dependencies in

a given sequence of arbitrary length theoretically. Subsection 2.2.1

delves a bit deeper into the essential flavour of RNN, its workings
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Figure 2.5: Figure showing a single RNN unit, and an unrolled RNN.

and pitfalls, and the next Subsection 2.2.2 introduces an improved

version of RNNs that can tackle the problems of basic RNNs.

2.2.1 Basic RNNs

The idea of current state being a function of previous state is the

basis of a dynamic system. Recurrent neural networks follow the

idea of dynamic systems, and also consider the input from current

time step to update the hidden state along with the hidden state

from previous time step, as described by equation 2.7. They add a

tanh activation described in Section 2.1.3 to add non linearity to the

system. Once the hidden state is updated, the output of a recurrent

unit is calculated as a function theupdatedhidden state. Equations

2.8, 2.9 describe a unit of RNN.

ht = f(ht−1, xt; θ) (2.7)

ht = tanh(bh +Wh ∗ ht−1 +Wx ∗ xt) (2.8)

ot = bo +Wo ∗ ht (2.9)

Where xt is the input, ht is the hidden state and ot is the output at

time step t. W, b are the weights and biases. As it can be seen from

figure 2.5 and the equations 2.7, 2.8, 2.9 the output of RNN at cur-
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rent time step is dependent on all the previous time steps. This con-

cept is powerful enough to simulate a TuringMachine [43], however

there are two practical problems of using RNNs which arise during

training using back propagation:

• Exploding Gradient

• Vanishing Gradient

Backpropagation for calculating theweights inRNNs is done through

loop unrolling. In this technique, as the weight updates from com-

puting the gradients are applied, they either keep exponentially

diminishing or increasing. The books Deep Learning [44] and Su-

pervised Sequence Labelling with Recurrent Neural Networks [45]

both give an excellent in-depth explanation of exploding and van-

ishing gradient problems faced while training an RNN. Hochreiter

introducedLongShort-TermMemory (LSTM) andSchmidhuber [46]

to specifically deal with this problem, the following Section 2.2.2 ex-

pounds on LSTM.

2.2.2 Long-Short Term Memory Units

The concept of Constant Error Carousal(CEC) which forms the ba-

sis of LSTM was introduced by Hochreiter and Schmidhuber [46] to

deal with exploding and vanishing gradients. CEC was introduced

as a mechanism to maintain the derivative of the recursive term

to be approximately close to 1. In such a scenario, repeated multi-

plication over loop unrolling for long sequences would not lead to

exponential increase or decrease in the gradient, giving a solution

to the problems created during training a naive RNN.

Forget, input and output gates are used to maintain the flow of in-

formation over time to update the memory contents in LSTM, in-

stead of direct updates done in a naive RNN (equation 2.8). The

forget gate (equation 2.10) helps reduce the effects of irrelevant in-

formation from the previous state depending on the current input

and hidden state.
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Figure 2.6: Forget, Input, Output gates of the LSTM that update the

memory and hidden states

ft = σ(Wxf ∗ xt + bxf +Whf ∗ ht1 + bhf ) (2.10)

The input gate (equation 2.11) selects the amount of relevant infor-

mation that needs to be added to the previousmemory state from

the current input and hidden state (equation 2.12). This selection in

combination with forget gate is used to update the current mem-

ory state(equation 2.13).

it = σ(Wxi ∗ xt + bxi +Whi ∗ ht−1 + bhi) (2.11)

gt = tanh(Wxg ∗ xt + bxg +Whg ∗ ht−1 + bhg) (2.12)

ct = ft � ct−1 + it � gt (2.13)

The final output gate (equation 2.14) regulates the amount of in-

formation from the current memory to update the hidden state

(equation 2.15). The figure 2.6 shows the connections between the

various gates of an LSTMand the flowofmemory and hidden states

inside it. The derivatives calculated for the hidden state and mem-

ory cell (ht, ct) in the cases above are not just directly dependent on

their previous state, but through the gates that update them. This

process helps themmaintain CEC.
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ot = σ(Wxo ∗ xt + bxo +Who ∗ ht1 + bho) (2.14)

ht = ot � tanh(ct) (2.15)

2.3 Data

The first successful deep neural network with a practical workable

implementation on GPUs was introduced by Krizhevsky et al. [29].

The total number of parameters that was estimated in the network

is approximately 61 Million, table 2.1 summarises the parameters in

each layer.

Layer Size Parameters to be Estimated

L1 (Convolution) 96× 11× 11× 3 34848

L2 (Convolution) 256× 5× 5× 48 307200

L3 (Convolution) 384× 3× 3× 256 884736

L4 (Convolution) 384× 3× 3× 192 663552

L5 (Convolution) 256× 3× 3× 192 442368

L6 (Linear) 9216× 4096 37748736

L7 (Linear) 4096× 4096 16777216

L8 (Linear) 4096× 1000 4096000

Total 60954656

Table 2.1: Parameters in each AlexNet Layer

The input to this network is a 224×224RGB image, implying theneed

for a large number of images not to overfit and estimate the 61 Mil-

lion parameters to generalise well. This network was implemented

on GPU with only 3GB of memory, with increasingly available GPU

memory since then, the networks proposed grew larger requiring

larger amounts of data to train. This requirement also gave rise to

various techniques of data augmentation.

Krizhevsky et al. [29] employed label-preserving transforms as data

augmentation techniques. They used random patch extractions,

translation and horizontal reflections to inflate the training dataset

by 2048 times the original size. Data augmentation techniques like
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thesewere inspired fromearlierworksbySimardet. al [47] andCire-

gan et al. [48]. Without employee these techniques they observed

a considerable amount of overfitting since the parameters to be es-

timated were way higher than constraints available.

Overfitting is the problem that occurs when a network learns the

training dataset too well, losing it’s capacity of generalise. In such

a scenarios the training error and any performance metrics on the

training dataset are optimised, but the test and validation dataset

accuracies deteriorate considerably.

Krizhevsky et al. also used another form of data augmentation by

varying the intensities of RGB channels of images in the training

dataset. They performed PCA on the RGB pixel values from all the

images in the ImageNet training set. They multiplied each eigen

value with an random value drawn fromGaussian withmean 0 and

standard deviation of 0.1, and multiplied with the corresponding

eigen vector to reconstruct each RGB pixel in the training images.

This kind of augmentation captured the property that identity of

the images is invariant under changes in the intensity and colour

of the illumination. This data augmentation technique reduced the

top-1 error rate by 1%.

2.4 Summary

This chapter introduced the foundational concepts of deep convo-

lutional and recurrent neural networks. We also looked at the ne-

cessity for large amounts of data that is needed to train these net-

works. In the following chapter, the existing research pertinent to

gesture recognition and ego-hand gesture recognition before and

after the advent of deep neural networks are looked into in detail.

The publicly available datasets that can be used to train ego-hand

gesture recognition networks are also reviewed.
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Chapter 3

Literature Review

Prof. David McNeill in the book Hand and Mind: What Gestures

Reveal About Thought [49] argued that hand gestures are as in-

nate to human communication as speech itself. Before his work,

most of the emphasis for human communication had been on ver-

bal speech and gestures were considered an accompaniment to

speech. However, David’swork argued the contrary sayinggestures

of thehandare as integral to communicationas verbal speech,went

a step further to point to research that showed hand gestures as

a communication tool preceded speech. Around the same time,

seminal work by Tamura and Kawasaki [50] introduced research on

gesture recognition through images to computer vision. They pro-

posed anovelway to classifymotion images(video clip) of deaf-and-

mute sign language, under the supposition that the sign language

word is a time sequence of units called cheremes. They described

the chreme using hand-shape, movement, and hand location to

make a dictionary for each word composed of cherems. They used

this dictionary to recognise a sign language word frommotion im-

ages.

This idea of using hand-shape, movement and location in different

ways formed the basis of gesture recognition in both egocentric

andnon-ego-centric gesture recognition. Sincenon-egocentric ges-

ture recognition paved the way for egocentric gesture recognition,
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it beckons us to understand the state of the art gesture recognition

as a basis for egocentric hand gesture recognition. In the following

section, we look at research related to non-ego-centric hand ges-

ture recognition.

3.1 Gesture Recognition

Classic gesture recognition was different from themore recent ap-

proaches. Several handcrafted features SIFT [22], SURF [24] in con-

junctionwithmachine learning techniques like support vectorma-

chines, hidden markov models were employed. However, more re-

cent approaches have seen a shift toward deep neural networks.

Following this difference in approaches, gesture recognition before

deep learning is discussed in the next section. The research based

on deep learning is discussed in the one after.

3.1.1 Pre Deep Learning

One of the earliest attempts at gesture recognition was to inter-

face with a robot arm, to move the robot arm using hand gestures

[51]. Torige and Kono achieved this by using a coloured glove that is

different from the surroundings and extracting the coloured area

giving the approximate location of the fingers. They used a stereo-

graphic camera to record stereo images. The 3D location of fingers

is calculated per frame using standard procedure since the point

correspondences are available from the calibrated stereo rig. The

3D positions from the image sequence are used to classify the ges-

ture and interface with the robotic arm to move four directions.

Though a simple system by current standards, it was a precursor

to complex systems developed since then.

Darrell andPentlandeliminated theuseof colouredgloves, by track-

ing the templateof ahandwithNormalisedCross-Correlation (NCC)

across a give sequence in [52]. The algorithm then uses the NCC

score of each image in the sequence as time-series information and

predicts the gesture performed using Dynamic Time Warping al-

20



gorithm. However, this approach requires amodel to be generated

per gesture per user to achieve good recognition accuracy.

Davis and Shah [53] proposed a method to use markers on finger-

tips(akin to a coloured glove), track the trajectories of markers as

vectors. They proposed dividing the performance of gesture into

four phases and used a finite state machine to track the changes

from one phase to another. The trajectories of each fingertip are

calculated according to motion correspondences calculated using

[54]; each gesture is then modelled and encoded into motion bit

vectors using the magnitude and direction of the trajectories. The

gesture recognition is done by matching the encoded bit vectors

to those stored in the dictionary.

Hidden Markov Models (HMMs) were introduced to gesture recog-

nition as sequence classification technique in [55] by Starner et al.

taking inspiration from [56] for using HMMs to classify a sequence

of images. They create handcrafted feature vector of size eight con-

taining each hand’s x and y position, angle of the axis of least iner-

tia, and eccentricity of bounding ellipse per each image. This fea-

ture vector is calculated per image. The sequence of feature vec-

tors is used with embedded training strategy to train an HMM for

sequence classification. It should be noted that the method still

needs the use of a coloured glove to identify the hand in an image.

Min et al. [57] used HMM-based framework to recognise hand ges-

ture to interface with a graphics software. It was one of the first at-

tempts to use hand gestures as an interface to interact with virtual

environments.

Segen et al. introduced Finite State Machine (FSM) without the use

of colouredmarkers for gesture classifications in [58]. Similar to [51]

they built a stereo-rig and used image subtraction for the hand ex-

traction process, whichmakes thismethodnot capable of handling

dynamic backgrounds. Once the hand is extracted from each of

the two images from the stereo rig, they calculated 2D correspon-

dences. These correspondences are then used to generate 3D pose

of the hand. They looked at the curvature along the boundaries of
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the hands, defined peak as the feature with positive curvature and

valley as the feature with negative curvature at the local extremas.

These peaks and valleys are used to do a coarse recognition of ges-

tures into four predefined classes. Then the features are again used

in a finite state machine to perform classification at finer levels. It

is one of the first methods to forgo the use of coloured gloves and

have a unifiedmodel for all gestures independent of the users.

The previous algorithm in [58] is extended by Du et al. in [59] by

using skin detection filter developed by Zarit et al. in [60] and ex-

cluding the use of a stereo-rig. Their system follows similar archi-

tecture to [58], replaces the 3D pose generation module with skin

detection module to perform segmentation. Once segmentation

of hand is done, peak and valley features defined in [58] are used in

FSM architecture to recognise hand gestures.

Yoon et al. in [61] built a system from the ground up. For hand seg-

mentation, they use YIQ colour space to reduce light intensity and

build a histogram-based model for hand colour detection. Their

system has an initialisation step where the user has to show the

hand for a few seconds to build up the colour histogram model.

They combine 4x4 pixels into a cell and perform histogram inter-

section algorithm proposed by [62], to classify each cell as a region

belonging to hand or not based on a variable threshold. They em-

ployed spotting rule to isolate an identified gesture,meaningwhen

the user wants his/her gesture to be recognised by the system, the

hand needs to be static for few seconds before and after the ges-

ture is performed. Once a sequence of images is identified to be

belonging to a gesture, three different features (location, orienta-

tion, velocity) are extracted per image, and a k-means clustering

algorithm is used to generate discretised features for HMM code-

book.

Ramamoorthy et al. introduced a hand tracking component using

Kalman Filtering techniques in [63], which gave the ability to track

hand under cluttered background, variable lighting condition and

reduced the necessity to detect hand in every frame. A hand in a
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frame is detected using probabilistic contour discriminant, in this

method the contours of a handposemodels are stored as reference

for the class of hand shapes. The user is expected to place the hand

in the centre of the camera, the contour of hand is extracted using

colour segmentation and then matched to one of the templates

stored using contour discriminant proposed in [64]. Once there is

a close match, the contour region is sent for tracking, the output

of tracker is sampled periodically, and contour-discriminant-based

features are extracted which are used as inputs to HMMs for recog-

nising gestures.

One of the more recent works by Suk et al. in [65] used Dynamic

Bayesian Networks (DBNs) to model gestures. DBNs are a more

generalised version of HiddenMarkovModels in the sense that they

can have multiple independent states at a give time instance. In

contrast, HMMs are limited to one hidden state variable. DBNs be-

ing more expressive than HMMs can theoretically represent ges-

tures which are a complex series of events in time better. Face and

hands in the images are detected separately using HSV colour his-

togram with Haar-detectors and colour range model in YIQ colour

space correspondingly. Once a hand is detected, a two-dimension

Gaussian is fit around the hand, and optical flow is used to track

it. Features like location, the relative position of the two hands, the

position of each hand with respect to the face are extracted. The

proposed DBN architecture has three hidden states two states to

represent left and right hands and the third state to resolve ambi-

guities between similar gestures. The observed inputs location and

distance from the face are feed to the corresponding first two hid-

den states. The fifth observed input, which is the relative position

of two hands is feed into the third hidden state. OneDBN is created

per gesture, and the whole network is trained cyclically with the in-

clusion of a network for filler gestures. This procedure resulted in a

network that could identify continuous non-isolated gestures im-

proving over the previous methods.
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Figure 3.1: MPCNNarchitectureusing alternating convolutional and

max-pooling layers [66].

3.1.2 DeepLearningbasedHandGestureRecognition

Nagi et al. were first to apply deep learning to gesture recognition

problem in [66]. Their proposed approach used a coloured glove to

segment hand. The YCbCr colour space containing luminance (Y)

and chrominance (CbCr) is used to deal with uneven illumination.

The glove colour chrominance is modelled as an elliptical Gaussian

joint Probability Distribution Function. They used Mahalanobis dis-

tance, thresholded to a practical value to categorise a given pixel

as belonging to the glove or not. The binarised image of the seg-

mented hand is preprocessed with smoothing filter, resized and

padded to 32× 32 pixels and used as an input to aDeepNeural Net-
work. They defined six static gestures, created a dataset with 6000

images with 60/40 split for training and testing. Their network ar-

chitecture similar to AlexNet is illustrated in Figure 3.1. Compared to

methods that involved creating handcrafted features like FFT, Spa-

tial Pyramid, PHOG coupled with SVM architecture performedwell.

It has to be noted that this method still needs the user to wear a

coloured glove, and there is also a need to segment the hand sep-

arately before classification. Though it has limitations compared to

methods we have described until now and not end to end learn-

able, it still is one of the first paper to apply Deep Learning to solve

the problem of gesture recognition.

One of the first end-to-end learnable gesture recognition system

using CNNs was designed by Barros et al. in [67]. They used a Multi
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Figure 3.2: Multi Channel CNNarchitecture proposed in [67] for ges-

ture recognition.

Channel CNN (MCCNN) architecture to achieve this. They also ap-

plied a cubic filter concept in their first layer, unlike a 2D convo-

lution filter a cubic filter operates on a stack of images moving in

all three directions. For their training, they stack together images

which belong to the same gesture class as input to their MCCNN,

and for the testingpurpose, theyuse the same imagemultiple times

as input. The hypothesis is that the cubic kernel can learn variance

in gestures belonging to the same classes quicker. They also calcu-

late Sobel images in both X and Y directions and supply themwith

the original greyscale image as three-column input to the MCCNN.

The three columns in their architecture share a similar structure for

layer one and layer 2, but theweights are independent. The outputs

of all the columns after layer two are connected through densely

connected layers, and this densely connected layer is connected to

a Logistic Regression layer. Figure 3.2 illustrates the MCCNN archi-

tecture used. They used the database defined in [68], which has

tenhandpostures, executedby 24peoplewith threedifferent back-

grounds to validate their model.

Ji et al. introduced 3D/cubic kernels to infer motion information

from a sequence of images and perform human action recogni-

tion in videos in [69]. Unlike [67] they use the sequence of images

from videos as input to the 3D Convolutional Neural Networks for

simultaneously extracting spatial and temporal features. Tang et
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Figure 3.3: Multi Gesture recognition framework from [70], the ar-

chitecture of Deep Network is similar to the one from Figure 3.2,

but the input includes motion images to represent temporal di-

mension. This addition gives the network ability to detect dynamic

gestures.

al. in [70] exploited this idea of using 3D cubic kernels for creating

spatio-temporal features and combined this strategy with MCCNN

proposed in [67] and came up with an end-to-end learnable net-

work that can identify dynamic gestures. The architecture is simi-

lar to the one illustrated in Figure 3.2, the only difference here is the

input. Input to the network in this architecture is a sequence of im-

ageswhere the subject performs the gestures. Figure 3.3 illustrates

the architecture, you can see that it is the same as the one from

[67] but the only difference being the input to one of the columns,

where the standard greyscale image is replaced bymotion images

(similar to optical flow). This addition of motion images gives their

system the ability to recognise dynamic gestures since their net-

work can infer temporal features from this input column.

The ChaLearn Dataset and challengewas introduced in 2012 for ac-

tion and gesture recognition. The improved version of this dataset

published in 2014was one of the first data sets big enough to be us-

able for Deep Learning [71]. It had multimodal data containing the

depth and intensity of each hand separately, and full-body pose in-

formation all synchronised together. Paper [72] used all themodal-

ities together in a deep learning framework and achieved top per-
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Figure 3.4: Fig (a) shows the multi-scale framework from [72] that

deals with different duration of gestures. Fig (b) illustrates the net-

work architecture, the same architecture is used thrice in themulti-

scale framework.

formance in the competition. It was also one of the first works to

use multimodal information successfully in deep learning applied

to gesture recognition.

They also introduced a framework that could handle gestures with

varied duration, which they termed as multi-scale. As illustrated

in Figure 3.4, the input sequence is sampled at three levels and

sent to the three networks independently. All the networks shared

the same architecture, which contained threemodules to deal with

right-handdata (greyscale anddepth), left-handdata(greyscale and

depth) and pose data separately. They train the threemodules sep-

arately in the first phase and do a late fusion with densely con-

nected layers in the end with weights transferred from the first

phase (see Figure 3.4).

R3DCNNs, a combination of recurrent neural networks (RNN) and

3DCNNs to recognise hand gestures, was introduced byMolchanov

et al. in [73]. Similar to [72] they use three modalities depth, RGB

and infra-red. Unlike CNNs, RNNs can model a sequence of data.

Thus they have been used heavily in speech processing and natural

language processing. They have been recently introduced to com-

puter vision tasks like video recognition, activity recognition, image

caption generation [74, 75, 76]. Molchanov et al. use CNNs gener-

ated output akin to a small encoding as input to RNNs to get frame

by frame label given a sequence of images. They have published

a dataset collected with a set up of RGB, depth and infra-red cam-
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eras, consisting of 25 different gestures performed by 20 different

subjects. The dataset consists of a fair amount of data for training

deep learning models, and their system set up is illustrated in Fig-

ure 3.7. They train the R3DCNN network (architecture illustrated

in Figure 3.7) with each modality separately and instead of using

a fusion layer like [72], they average the class-conditional probabil-

ity vectors of each of the three models and supply it as an input

to the RNN in the final step. They train the model in two phases;

the first phase involves the training of the threemodels with differ-

ent modalities independently. Furthermore, in the second phase,

they average the output of three models, supply it as an input to

the RNNs and train the entire R3DCNN together. With this training

strategy and R3DCNN model no only did they achieved better re-

sults on the dataset they published compared to other state of the

artmethods, but also they performwell on ChaLearn2014, and SKIG

RGBD datasets [71, 77]

Gesture recognition should work on untrimmed videos for being

useful in application scenarios. Untrimmed videos consist of ges-

tures performedby a person interspersedwith frameswithout ges-

tures. Inmost of the cases above, all the networks assume one ges-

ture per videowhich is not the case in the realworld. Gesture recog-

nition fromanuntrimmedvideohas beendealtwith a combination

of Gesture spotting, and gesture recognition [78, 79, 80]. Gesture

spotting identifies the beginning and ending from an untrimmed

video once the gesture is made and the frames between the be-

ginning and end are sent to a separate algorithm or network for

recognition.

Lee et al. [78] solved the gesture spotting problem under the as-

sumption that when a gesture begins and ends with the person’s

hands near the legs in standing position under a third-person view

as illustrated in Figure 3.5. Once the frames with gestures are iden-

tified, Motion Histogram Images(MHI) [81] are calculated, and then

HistogramofGradient features are calculatedon theseMHIs to iden-

tify the gesture. Similarities between the gesture boundaries and

recognition after the completionof thegesturewere the limitations
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Figure 3.5: The beginning and ending of a gesture is identified by

recognising the pose of the person if the hands are near the legs of

the person. This strategy was introduced by Lee et al. in [78]

of Lee et al.’s work.

An end-to-end gesture segmentation/spotting network, as shown

in Figure 3.6 with Temporal dilation and a balanced square hinge

loss was proposed by Zhu et al. [79]. Once the gesture boundaries

are identified, they proposed another network with 3DCNN + Con-

vLSTM + 2DCNN to recognise the gesture between the boundary

frames. Thismethod does not impose the restriction of the bound-

ary frames to have similar pose as the previous one [78] however,

the segmentation and recognition are again disjoint, and recogni-

tion happens after the gesture is completed.

Benitez-Garcia et al. [80] proposed a conceptually similar method

to [78] to spot and recognise gestures in a car to interact devices in

the car in a touch-lessmanner. Their spotting algorithmwas based

under the assumption that the beginning and ending boundaries

of gesture frames have similar finger poses in their particular sce-

nario. They experimented with handcrafted features (Histogram of

Gradients and Histogram of Optical Flow) and deep learned fea-

tures, defined the boundaries based on the similarity score of these

features. Once the boundaries are detected similar to [78, 79], they

used a different framework to recognise the gesture.
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Figure 3.6: Zhu et al. [79] proposed a two different networks one

for isolating gesture frames from continuous video with Temporal

Dialated Res3D modules and another with 3DCNN + ConvLSTM +

2DCNN for recognising the gesture from isolated gesture frames.

Figure 3.7: Figure to the left shows the architecture of R3DCNN

used in [73] for recognising gestures from differentmodalities. Fig-

ure to the right shows the system used to collect RGB and Depth

data.
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Figure 3.8: One of the first interactive AR system based on gesture

recognition introducedbyBuchmannet al.[82] A: Theyplaced three

markers on the tip of the index finger, thumb, and the joint be-

tween the two. B: The pose of the hand is calculated by continu-

ously tracking the three templates relative positions. C: Their sys-

tem worked under partial occlusions.

3.2 Ego-hand Gesture Recognition

Similar to gesture recognition the landscape of research changed

after the advent of deep learning. Sowe look at research before and

after deep learning in the following subsections.

3.2.1 Pre Deep Learning

Buchmann et al. [82] engineered a system called FingARTips to in-

teract with virtual elements in AR in 2004. They used ARToolKit [83]

as the main framework to track templates attached to the thumb,

index and middle fingers of the user as illustrated in Figure 3.8A.

The gesture is recognised by tracking the positions of uniquemark-

ers placed on the three fingertips. Once the markers are tracked,

their relative positions to each other are calculated, as shown in

Figure 3.8B. As shown in Figure 3.8C, their system could handle

gestures when interacting with the virtual object under partial ob-

struction as long as at least two markers were in view.

Li and Kitani [84] were one of the first to have proposed identify-

ing hands from egocentric videos without usingmarkers or gloves.

Similar to standard gesture recognition identifying the hand was
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Figure 3.9: Dynamic hand gestures for robot and AR control. (a) AR

– move; (b) AR – pointing; (c), (d) robot – arm rotation; (e) robot –

x/y/z axial motion; (f) robot – stop; (g) AR – zoom in/out; (b) robot –

suspend [86].

the first step used in ego gesture recognition. However, the set

of problems for ego-hand recognition consisted considerable vari-

ation of backgrounds due to ego-motion, the variation of lighting

conditionsbecauseof change from indoor tooutdoor environments,

motion blur introduced due to constant movement of the device

wearer, whichwere not inherent to third-person view, static camera

hand/gesture recognition. Li and Kitani proposed a combination of

local appearancebased colour and texture features of the hand and

a global illumination dependent colour histogram using t-SNE [85]

to achieve pixel-wise hand detection in egocentric views.

Wen et al. [86] proposed using gestures as an interface in AR as-

sisted robotic surgery. Their work proposed using Kinect placed

over the top of the surgery table (as shown in Figure 3.10), they iden-

tify the hands with depth data from Kinect. They defined eight dif-

ferent gestures that were used to control the assistive robot Figure

3.9. Inspired by [55] they trained HMMs to recognise hand gestures

from handcrafted features like hand motion trajectory.

In [10] Serra et al. approached ego-hand gesture recognition in a

similar manner to non-ego-hand gesture recognition. They pro-

posed segmenting the hand using Simple Linear Iterative Cluster-

ing (SLIC) algorithm to extract superpixels. Besides, they used the
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Figure 3.10: Cooperative Robotics System: Kinect is placed on the

top to capture hand movement which was used for recognising

gestures for AR system [86].

Figure 3.11: 21 key points recognised using HandPoseNet from [87]

illustrated on 4 hand gestures that are recognised in [88].

33



previous frame’s segmentation to introduce temporal consistency

and GrabCut algorithm to introduce spatial consistency. Once a

segment of hand is detected, they used Exemplar-SVM [89] to clas-

sify the segment into one of the five defined gestures. Thismethod

does not deal with dynamic gestures.

Baraldi et al. introduced the usage of dense feature trajectories to

identify both static and dynamic gestures in [90]. They used hand

segmentation method proposed in [10], to extract regions of hand

and feature points are sampled from the segmented hand area

and tracked during the gesture. Spatio-Temporal feature descrip-

tors like Histogram of Gradients, Histogram of Optical Flow, Motion

Boundary Histograms are calculated. Using these feature as Bag of

Words an SVM is trained to classify the gestures. It should be noted

that homography is calculated between each frame. The headmo-

tion is compensated with warping the current frame to the earlier

frame using the homography. Baraldi et al.’s work was one of the

first attempts to consider headmotion compensation in ego-hand

gesture recognition.

Hegde et al. were one of the first to introduce ego-hand gesture

recognition algorithm that could run on amobile device in [91]. The

hand is segmentedusing the chromachannelsCb, Cr in Y CbCr colour

space using the Gaussian Mixture Model. Once a hand is detected

feature points are extracted and tracked using the Lukas-Kanade

flow tracker. They only recognise two gestures, swipe up and swipe

down,which theydistinguishbyusing thedirectionof flowper frame

and giving the maximum label for the entire sequence.

We now look at Ego Centric Gesture recognition using Deep Learn-

ing algorithms.

3.2.2 DeepLearningbasedEgo-handGestureRecog-

nition

Aswehave seenearlier, egocentric andnon-egocentric gesture recog-

nition both need to operable on untrimmed videos for the algo-
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Figure 3.12: A: Full network architecture proposed by Cao et al.[12].

B: Structure of the Recurrent Spatio-Temporal Transformer Mod-

ule(STTM). STTMmodule recurrently proposed an affine/homogra-

phy transformwhichwas applied to 3D features createdby theprior

network. C: Illustration of the grid before and after the transforma-

tion generated by STTM is applied to the grid features.

rithms to be practically applicable. However, exploring deep neu-

ral networks that recognise egocentric hand gestures on trimmed

videos is worth studying because some of themethods from these

can be transferred to recognition on untrimmed videos. We look

at some of the recent network architectures that deal with ego-

centric hand gesture recognition on trimmed videos followed by

research performed on untrimmed video ego-hand gesture recog-

nition.

Ego-hand Gesture Recognition from Trimmed Videos

The method proposed in [88] by Jain et al. used per frame pose

information of hands generated as described in [87] using Hand-

PoseNet and passes this information to an LSTM(Section 2.2.2) net-

work to identify four dynamic gestures. HandPoseNet is a Deep

Neural Network architecture that is composedofmodules that seg-

ment hand and input the segmented handmask to a PoseNet that
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identifies 21 key points on a hand (Figure 3.11 illustrates the 21 key

points on a hand while performing the four gestures). We briefly

described Recurrent Neural Networks in Chapter 2.2.1 as networks

that could recognise time sequence information. However, they of-

ten suffer from the problems of exploding gradients or oscillating

weights. LSTMnetworkswere introducedbyHochreiter et al. in [46]

particularly to deal with these issues. Themethod proposed by Jain

et al. using the 21 key points generated by HandPoseNet per frame

as time sequence input to an LSTM(described in Chapter 2.2.2) to

recognise the gesture.

Cao et al. proposed the first end to end learnable architecture that

can recognise ego gestures in [12]. They incorporated a recurrent

Spatio Temporal Transformer Module that automatically finds the

corrective homography or affine transformation and applies it to

the feature maps generated by a 3D CNN. These transformed fea-

ture maps are then sent to LSTM for recognising the gesture. Fig-

ure 3.12A describes the network architecture proposed; it has four

main components. A 3D CNN to extract spatial and temporal fea-

tures, a localisation network to estimate the transformation from

the current to the previous frame, a grid sampler that applies the

estimated transformation to featuremapsgeneratedby the 3DCNN

andfinally an LSTM that take these transformed featuremaps as in-

puts to recognise the gesture.

In [92] Abavisani et al. proposed a method to learn from different

available modalities. They posited that under the availability of dif-

ferent modalities like RGB, Flow, Depth, each modality brought in

different strengths and proposed a framework in which network

trained on one modality can optimise their weights better if the

performance of network learned on another modality is better. To

achieve theyusedproposedaSpatio-Temporal SemanticAlignment

loss(SSA Loss), summarised by the Equation 3.1

lm,n
ssa = ρm,n ‖ corr(Fm)− corr(Fn) ‖2F (3.1)
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Figure 3.13: A: 3D Deformable convolutions proposed by Zhang et

al.[94]

Where corr(F )denotes covariance ofmatrix F . The SSALoss is based

on covariance matrix alignment from source to target. The under-

lying assumption for ssaloss is that networks trained on modalities

m and n should develop correlated spatiotemporal blocks extract-

ing similar semantic features from inputs. In this case, if modality n

has better performance over modality m, the loss dynamically reg-

ularised by ρ pushes the covariance of Fm closer to that of Fn. Using

this strategy and I3D [93] as backbone they achieved better perfor-

mance than RSTTM proposed by [12] on EgoGesture dataset.

Zhang et al. [94] proposed deformable 3D convolutions to deal with

selectively applying spatiotemporal convolutions. They argued that

while Cao et al. [12] calculated homography/affine transformations

and applied them to the entire grid, applying spatio-temporal con-

volutional selectively through their deformable 3D CNN modules

yields better focus on hands and their movements which lead to

improved results on theEgoGesturedataset. Theirmethod involved

learning 3×3×3 kernels which provided offsets to normal 3D convo-

lutions (illustrated in Figure 3.13A). Equation 3.2 represents the stan-

dard 3D convolution.

Y (po) =
∑
pn

W (pn).X(pi + pn) (3.2)

Where pi is the input point, pn are the points around pi. The De-
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formable 3D Convolutions are represented by Equation3.3.

Y (po) =
∑
pn

W (pn).X(pi + pn + δi,n) (3.3)

The δi,n is dependent on the input and the neighbouring pixel selec-

tion, giving the kernel a deformable nature. The offset learned was

fractional, to get a differentiable network they applied tri-linear in-

terpolation as illustrated inFigure 3.13B togenerate thefinal output.

With 3D Deformable Convolutions added to the later part of net-

work yieldedgood results for recognitiononEgoGesturedataset.

We saw the research done on Ego Gesture recognition on trimmed

video so far, in the next section, we explore the research available

on ego gesture recognition on untrimmed videos.

Ego-hand Gesture Recognition from Untrimmed Videos

Untrimmed videos contain gestures being performed interspersed

with a lot of inactivities or other activity. These two phases in the

video must be identified to recognise the gestures in the video.

As we have seen in Section 3.1 gesture isolation/spotting and then

recognising the gestures is oneway to dealwith untrimmed videos.

However, this technique limits the interface designers in AR/VR en-

vironments since it inevitably introduces lag between the perfor-

mance of the gesture and the response from the system. There has

been some work done in action recognition on untrimmed videos

[95, 96], which are reviewed below, then the two available works [9,

97] onuntrimmedvideo egogesture recognition are reviewed.

Buch et al. [95] proposed the use of semantically constrained re-

currentmodules to deal with action detection, which is akin to ges-

ture spotting. The features from input video are encodedusingC3D

network, and the encoded features are sent to the Recurrent mod-

ule for further processing. The semantically constrained recurrent

modules consisted of a n layers of Gated Recurrent Units (a kind

of RNNs), and the output from the final hidden layer at each tem-

poral step t is divided into K segments which are evaluated fur-
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Figure 3.14: Two networks with the same architecture, one trained

on untrimmed video and another trained on trimmed video. The

weights are transferred using the transfer module from trimmed

to the untrimmed network to make its recognition better [96]

ther to check for presence or absence of an action. These semanti-

cally constrained recurrent units were called action proposal units

since they only detected the presence or absence of an action but

did not classify the proposed areas. The hidden states from these

are passed on to another set of semantically constrained recurrent

units where the classification task was performed. The length of

the video and the number of actions performedwere input to their

network. Their work focusedmore on offline recognitionwhich can

not be useful for ego gesture recognition as discussed earlier. In

[96] Zhang et al. approached this problem in a different setting.

They argued that learning from trimmed action recognition can be

transferred to untrimmed video action recognition. In this regard,

they designed two networks with the same architecture, trained

them separately on trimmed and untrimmed videos. Transferred

theweights fromtrimmedvideo tountrimmedvideousingaknowl-

edge transfer module (shown in Figure 3.14). Once the trimmed

video network is trained, the parameters from intermediate fully

connected layers are used in the transfer module. The Maximum

Mean Discrepancy distance from analogous untrimmed network
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parameters is calculated and optimised over a loss in addition to

the classification loss. However, their solution assumes that there

is only one action per video, having such an assumption would not

work in the case of egocentric gesture recognition.

Ego Gesture recognition from an untrimmed video is a sequence

to sequence mapping represented by Equation 3.4.

lt = F (It), t = 1 . . . T (3.4)

where It is the input sequence of images, and lt is the correspond-

ing sequence of labels. Zhang et al. [9] solved the problem of ego

gesture recognition using a combination of 3D CNNs to encode vi-

sual and motion aspects and then using a recurrent neural net-

work to infer from the encoded features. This kind of approach is

commonly used in action, and gesture recognition [95, 98, 99, 100,

101, 102, 103]. They used the 3D CNN + RSTTM proposed by Cao

et al. [12] for encoding the visual and motion features and used

LSTM for labelling the encoded features. However, since the num-

ber of frames without gestures are much higher than those with

gestures theyneeded touseheuristics like includinga certainnum-

ber of frames and sub-sampling the videos with gestures to a cer-

tain length. These heuristics affect the network’s performance, and

figuring out the right combination is not a trivial task.

Kopuklu et al. [97] proposed using two separate networks, one to

recognise if the frame contains a gesture or not and another to de-

tect the gesture after accumulating the gesture frames recognised

the first network. Their systemmaintains a queue which gets pop-

ulated by frames detected as gesture frames. The crux of their al-

gorithm relies on a postprocessing step which looks at the results

from the detection queue and assigns a label to the entire queue in

one step. They only solve partial labelling problem where they as-

sign the gesture label after finding the beginning and partial com-

pletion of the gesture depending on a threshold.
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3.3 Datasets

To train ageneralisabledeepneural network, weneed largeamounts

of labelled data; we have already seen the reasons for this in Section

2.3. There have a wealth of Ego Centric Activity Datasets recently,

TheSomethingSomethingdataset [104], EpicKitchensDataset [105],

Extended Georgia Tech Egocentric Activity Dataset(EGTEA) [106].

However, these datasets pose a different set of problems compared

to recognising gestures from egocentric videos. They have interac-

tionswith objectswhich arenot present in egocentric gestures. An-

other differentiating factor is recognition on these datasets are de-

pendent on thebackground information too, sousing thesedatasets

to train and test egocentric gesture recognition networks is not vi-

able. There are useful non-egocentric gesture datasets like IsoGD,

ConGD [107]; however, like ego action datasets, they pose a differ-

ent set of challenges compared to egocentric gesture recognition.

We used NVGesture [73], AirGestAR [88], EgoGesture [9] datasets to

train and test our network architectures in addition to the dataset

we created. These datasets are reviewed below.

NVGesture dataset was created to enable gesture communication

in a car. The setup for recording the video data included driving

simulator environment where the person performing the gestures

sat in the driving seat with a steering wheel(Figure 3.7). They de-

fined 25 unique gestures that can be used for interfacing with con-

trol systems in an automobile. 20 different subjects performed the

25 defined gestures in 2 different sessions. The gestures were per-

formed by using the right hand, while the subjects left hand was

intended to control the steering wheel in the simulation environ-

ment. A SoftKinectic DS325 sensor was used to collect the colour

and depth data, while a DUO 3D sensor was used to collect the

stereo IR data. Though this dataset is not recorded from an ego-

centric perspective, it shares most of the features of an egocentric

dataset. Unlike other non-egocentric datasets like IsoGD, ConGD

[107], this does set captures mostly the user’s hand movements,

making it a useful dataset for testing egocentric gesture recogni-
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Figure 3.15: (A)EgoGesture [9] dataset capture setup, consists of an

Intel RealSense SR300 mounted in a harness worn on a subject’s

head. (B) Some of the Gestures in the dataset, showing variations

in style for the same gesture, variation in the background. The pic-

ture also illustrates someof the challenging scenarioswith extreme

motion blur, partial hand views, cluttered background.

tion networks.

Jain et al. addressed a lack of dedicated ego gesture dataset by

publishing AirGestAR [88]. This dataset consisted of four gestures

(Bloom, Click, Zoom-in, Zoom-out shown in Figure 3.11) performed

by six different subjects of varying skin colours and lighting con-

ditions. The data was recorded using a mobile phone mounted

on a Google Cardboard box. Though the dataset consisted of ego

hand gestures, the number of gestures were small, and the num-

ber of subjects performing the gestures was also small, there were

no changes in the background, the environment was only indoors.

Considering the above factors, the dataset was of limited use for

training good networks for ego gesture recognition.

EgoGesture dataset [9] published by Zhang et al. was one of the

first comprehensive ego gesture dataset introduced for training,

testing and benchmarking different deep neural networks. In com-

parison to Jain et al.’s four gestures, they recorded83 different static

and dynamic gestures. Their dataset also included dynamic back-

grounds, in both indoor and outdoor environments. 50 different

subjects participated in collecting the dataset, giving it a wider va-

riety of gesture durations and individual styles per gesture. Their
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Figure 3.16: 83 different static and dynamic ego hand gestures in

EgoGesture [9] dataset

setup consisted of Intel RealSense SR300 mounted on a harness

that is worn on the user’s head simulating an egocentric AR/VR de-

vice (illustrated in Figure 3.15

Data for twomodalities depth and colour were collected at a fram-

erate of 30 fps. Since both cameras are on the same device, the

timestamps are synchronised aligning both the depth and colour

videos. The gestures were performed in 4 indoor and two outdoor

scenes, and this also included the subject being stationary or in

motion while performing the gestures, adding more ego-motion

to the videos to incorporate realistic scenarios. However, to add a

new gesture to this dataset would require 50 subjects performing

the gesture in a different environment to have a balanced dataset.

We introduced the Green Screen Ego-hand Gesture dataset (Pub-

lished work in ISMAR Adjunct 2018) to alleviate this problem.

3.4 Summary

In this chapter, we lookedat various approaches to recognisingboth

ego-hand gestures and non-ego-hand gestures from images. The

approaches to solving ego-hand gesture recognition prior to deep

learning were also discussed to get a broad perspective of research

that was done. Furthermore, to gain an understanding and appre-

ciation for using deep neural networks in comparison to the classi-

cal methods. The current available datasets, their advantages and
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limitations to train and test ego-handgesture recognitionnetworks

were also reviewed.

The classical approaches suffered from limitations like using colou-

red gloves, keeping the hands stationary for few seconds in the

beginning, stopping in between phases of gestures for identifying

state transitions impeding the user severely to perform hand ges-

tures naturally. Most of these limitationswere overcomeby the cur-

rent deepneural network approaches. The state of the art approach

to recognise ego-hand gestures from trimmed videos calculates

data based convolutional features and compensate for the head

motion through homography or affine transforms estimated using

recurrent spatio-temporal transformmodules. However, these ho-

mography or affine transforms do not pay particular attention to

ego-hands in imageswhich canpotentially explain thedifference in

recognitionaccuraciesbetween the stationary case (noego-motion)

and the non-stationary case (with ego-motion). To address this is-

sue during recognition, the proposed approach discussed in Chap-

ter 5 uses a network that can learn the spatial and temporal posi-

tioning of ego-hand while simultaneously recognising the gesture

performed by the user.

In the case of recognition of ego-hand gestures from untrimmed

videos, the current approaches copy thenetwork architectures from

trimmed videos, introduced heuristics to use the training data se-

lectively. The use of such heuristics makes training the networks

for recognising ego-hand gestures from untrimmed videos which

were originally meant for trimmed videos extremely difficult. To

avoid these difficulties and improve upon the current state of the

art ego-hand gesture recognition on untrimmed videos an exten-

sion to LSTM with a novel loss function were proposed (explained

concisely in Chapter 6).

The existing ego-hand gesture datasets used for training and test-

ing recognition deep neural networks are hard to extend owing to

the extensive number of times and different background environ-

ment a gesture needs to be performed by a user. The Green Screen
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Ego-hand Gesture dataset discussed in the next chapter addresses

this issue.
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Chapter 4

Green Screen Ego-hand

Gesture Dataset

We have established the need for a large dataset to train a gener-

alisable deep neural network(Chapter 2.3). Thus, having a database

with a large amount of different egocentric hand gestures like Ego-

Gesture [9] is essential and also helps with the evaluation of differ-

ent recognition algorithms. However, gestures are usually coupled

with a specific task and are rarely the same across different appli-

cations. Defining a new gesture in the existing datasets like [9] is

a cumbersome task since the new gesture needs to be performed

by many subjects in many different scenarios. A useful dataset for

training andevaluatingdeepneural networksmust have a separate

training, validation and test splits and correctly annotated labels.

We present the additional characteristics required for a useful ego

gesture dataset in the following section. Furthermore, the Green

Screen Ego Gesture dataset and an augmentationmethod that al-

leviates the problem of data collection in different environments

and manual annotation are presented in the later sections.
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4.1 Characteristics of an Ego-hand Gesture

Dataset

In addition to general characteristics needed for a good dataset

to be useful for training deep neural networks, we defined some

of the characteristics specific to handle ego-hand gesture recogni-

tion

• Gesture style and duration

Each person performing gesture has a unique natural style

and speed. A useful dataset needs to capture this variation

giving the subject the flexibility to perform a gesture at their

own pace and style.

• Gestures using all combination of hands

Gestures can be performed with left or right or both hands.

A useful dataset should have gestures performed by all the

three combinations, so the networks trained can recognise all

of them.

• Skin colour

Human skin has a wide range of colours across the world pop-

ulation. Training a network with little variance of skin colour

can create aheavybias to aparticular colour. Agoodego-hand

gesture trainingdataset needs tohaveeverygestureperformed

by subjects of varying skin colours, to avoid the bias towards a

particular skin colour.

• Background

Anetwork shouldbeable to identify anego-handgestureobliv-

ious to the environment it is being performed in. Whilst the

background environment for recognising an ego-hand ges-

ture itself is not essential, however, a dataset for ego-handges-

turesmust contain awide variety of backgroundenvironments

includingbutnot limited to combinations like indoors andout-
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doors, cluttered and uncluttered. Having such a variation in

the background would help a deep neural network to differ-

entiate an ego-hand from the background.

• Lighting conditions

Images canbeoverexposedorunderexposed, due to themove-

ment of hands closer and farther away from the egocentric

camera capturing thehandmovements. Sodatasetmust con-

tain agood sampleof images that overexposed, underexposed

and sufficiently exposed.

• Ego Motion

One of the challenges in ego-hand gesture recognition is the

presence of ego-motion, which include head movement or

movement of the subject or both. A good ego gesture dataset

should contain gestures performed while stationary and dur-

ing motion so that a network trained can rightfully isolate the

handmovementwith respect to changingbackground if there

is any relative motion in the background.

With the characteristics required for an ego-hand gesture dataset

defined, we look at the different gestures, data collection, annota-

tionprocess of theGreenScreenEgoGesture dataset, and compare

it to EgoGesture, AirGestAR datasets in terms of the defined char-

acteristics they satisfy in the following sections.

4.2 Green Screen Dataset

One of the main limitations of existing large ego-hand gestures

dataset [9] is the difficulty in extending it. A gesture needs to be

performed by 50 different people in 6 different locations, to add a

newgesture to this dataset. Weproposed theGreenScreenDataset

to alleviate this particular issue. A set of 10 gestures that use left,

right and both hands (see Figure 4.1) were defined. The gestures

defined were intended to be playful interactions in a video game.

Thedata collectionprocesswas designed in such away that it could
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0 - Right

Shoot

1 - Left Shoot 2 - Smash 3 - Right

punch

4 - Left Punch

5 - Push Back 6 - Right

Block

7 - Left Block 8 - Right Tele-

port

9 - Left Tele-

port

Figure 4.1: Our training set of 10 gestures captured in front of a

green screen.

Figure 4.2: Data Collection Process for training set:: Step 1: User per-

forms gestures in front of a green screen wearing HoloLens: Step

2: Record the images taken from Ego View camera in HoloLens

which sees user’s hand performing gestures and green screen

background. Step 3: Transfer frame images to a computer and use

agreen screenextraction software togeneratehandmasks for each

of the images. Step 4: Save themasks alongwith its corresponding

RGB images.

capturemost of the characteristicsmentioned above if not all.

4.2.1 Data Collection

We collected training gestures from 20 users, each repeated the

gesture three times. The users were performing these gesture in

front of a green screen wore a head-mounted AR device, HoloLens

in our case. The users were shown the ten gestures in advance to

get acquaintedwith them. They performed these gestureswithout

any restrictions on the duration or style of each gesture, allowing

them to express naturally. This process resulted in a large variance

in the duration per gesture and per user, which is described in Fig-
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Database # of Subjects # of Backgrounds

AirGestAR 6 6

EgoGesture 50 8

GreenScreen 20 1

Table 4.1: Table comparing the number of backgrounds needed

for existing ego-hand gesture databases with ours. Our database

needs only one background compared to others making it much

easier to collect data for adding new gestures.

ure 4.3. Since theuserswere also given the freedomto express their

style, we could capture variations in style for each gesture, e.g. the

”shoot” gesture was performedwith a single finger by few subjects,

while other used two fingers. In addition to the images (RGB) cap-

tured by the egocentric camera, we also collected the 6DOF cam-

era/head pose information that is given by the HoloLens. This col-

lection of gestures performed in front of a green screen constituted

our training dataset. The primary idea of such a training dataset is

to replace the green screenwith any required backgrounddecreas-

ing the data collection burden. As noted in Table 4.1 we require only

1 background, namely green screen to collect training data whilst

EgoGesture [9] and AirGestAR [88] require 8 and 6 different back-

ground correspondingly.

In addition to our training dataset we have generated testing ges-

tures in natural settings, i.e. without green screen. These gestures

were captured in real officeenvironmentswith variousbackgrounds.

We have collected testing gestures from 6 users, each gesture be-

ing repeated twice. After inspecting each video, we removed ges-

tures that were performed outside the camera’s field of view (FOV)

and we ended up with 7 to 9 samples per gesture.

4.2.2 Data Annotation

Weprovided two annotations for the training dataset. A handmask

annotation for every frame in which an ego-hand appears, and a

label for each frame specifying the gesture if it contains any. The

handmaskannotationwas createdautomatically byprocessing the
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Figure 4.3: Bar graphs describing the variance in the number of

frames the user needed to perform a gesture. The graph in green

corresponds to left hand gestures, yellow both hands and red to

right hand.

recorded images in the training set using a green screen segmen-

tation algorithm of a typical video editing software (Natron), elimi-

nating the need for manual generation of hand masks per image.

Figure 4.2 illustrates the process of database generation. The hand

masks, alongwith their corresponding images and labels per frame

were stored. Besides, we also collected and stored the ego posi-

tion generated by HoloLens per frame. Our dataset is generated

from users with varying skin tones, under different lighting condi-

tions, some users wearing full sleeves, and some wearing watches

or bracelets, to reflect real-world situations. In comparison, in pre-

viously captured datasets (i.e. [9, 88]), the gestures aremore clinical

in a sense that each gesture has the same movement of hands or

restricted duration. Unlike others, we showed users a video of each

gesture at the beginning of the capture and then let them express

the gesture naturally.

4.3 Summary

This chapter introduced theGreenScreenEgo-handgesturedataset,

which was created to alleviate the problem of large scale data col-

lection for training ego-hand gesture recognition deep neural net-

works. The data collection and annotation strategy, the differences
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Style and Duration Hand Combinations Skin Colour Background Ligthing Conditions EgoMotion

GreenScreen X X X X X
EgoGesture [9] X X X X X
AirGestAR [88] X

Table 4.2: Table listing the three ego-hand gesture databases and

the characters defined in Section 4.1 they adhere to are represented

with a X

between training and testing sets were explained in detail. The

properties thatwouldmake a good ego-handgesture datasetwere

discussed. The Green Screen dataset was compared to two other

publicly available ego-hand gesture datasets in terms of the prop-

erties these datasets adhere to and the difficulty involved in adding

new gestures to them. In the following chapters novel deep neu-

ral network architectures, a new loss function and evaluation met-

ric for ego-hand gesture recognition, trained and tested on various

available ego-hand gesture datasets including the Green Screen

dataset is introduced.
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Chapter 5

Ego-hand Gesture

Recognition on Trimmed

Video

Ego-handgestures canbeusedas interfaces inhead-mountedAR/VR

devices to interact with the virtual elements, as they are a natural

way for humans to communicate. We have seen various ego-hand

gesture recognition algorithms that utilised classical methods of

calculatinghandcrafted featureswith various techniques like SVMs,

HMMs and also more current methods which are based on deep

neural networks, and their limitations in Section 3.2. In this chap-

ter, the work on recognising ego-hand gestures on trimmed video

using simultaneous segmentation is explained. The idea of ’Simul-

taneous Segmentation and Recognition’ is presented first followed

by the deep neural network architecture and experiments and re-

sults performed on the Green Screen Dataset(Chapter 4) and Ego-

Gesture [9], AirgestAR [88].

53



5.1 Simultaneous Segmentation andRecog-

nition

The idea of segmenting ego-hands from images recorded through

head-mounted devices and calculating features on the segmented

images to recognise egocentric activity has been employed in var-

ious works like [108, 109, 110]. In all these approaches, variants of

convolutional neural networks are used to create a segmentation of

ego-hands, and these segmentations are separated. The separated

segments, alongwith some handcrafted features, are used in a dis-

joint neural network to recognise the activity being performed in

the input video. In Simultaneous Segmentation and Recognition,

this problem is approachedby attempting to findembeddings that

simultaneous help recognises a gesture in a sequence of images

and also the ego-hand segmentation map. This idea is formalised

below.

Let Is be the sequence of images containing ego-hands that we

want to recognise an egogesture fromand l its corresponding class

label. The problem of ego gesture recognition can then be defined

as finding a function f , such that itmaps thegiven image sequence

Is to l as described in equation 5.1.

f(Is) = l (5.1)

So far the approach tofinding the function f usinghand segmenta-

tion has been (represented by equation 5.2), to find three functions

g, h, k where

• g takes in a sequence of images Is, produces a sequence of

ego-hand masksMs.

• h takes in the sequence of ego-hand masks Ms generated by

g, extracts a set of features Xs, where dim(Xs) � dim(Is)

• k takes in the set of features Xs generated by h, andmaps it to

the corresponding class label l
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f(Is) = g(Is) ◦ h(Ms) ◦ k(Xs) (5.2)

We rephrase this problem as finding the feature set Es for the se-

quence of images Is which can be simultaneously used for finding

their corresponding segmented hand masksMs and also the class

label l. In our approach, we define 3 functions a, b, c, where

• a takes in a sequence of images Is, produces a feature set Es,

where dim(Es) � dim(Is)

• b and c take in the feature set Es, and simultaneously produce

ego-hand masksMs and class label l.

Equation 5.3 summarises the concept of simultaneous segmenta-

tion and recognition. One advantage we have over previous meth-

ods is that, once the functions a, b, c are estimated, we do not need

the function b that generates ego-hand masks for recognising the

class label.

f(Is) = a(Is) ◦ c(Es) � b(Es) = Ms (5.3)

We used deep neural networks to design our functions a, b, c. Au-

toencoders [44] are well studied and known for finding a reduced

representation of the input. Thusweused them for designing func-

tions a, b with a modification. In general, the input and the output

for an autoencoder are the same. However, we use an RGB image

with ego-hand as input and a segmented ego-hand mask as an

output. This strategy helps our network to find a reduced repre-

sentation of ego-hand masks from the input RGB images.

There are two components to an autoencoder, an encoder network

which encodes the input to a short, intermediate feature vector and

a decoder network which recovers the output from this intermedi-

ate representation. In our case function a represents the encoder

part of the network and function b represents the decoder part of

the network. We use the embedding generator and the LSTM as

the function c, which also takes in the intermediate feature vector
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Figure 5.1: Our network architecture. The Decoder outputs a seg-

mented ego hand map per image in the sequence. This part of

the architecture is not needed once the network is trained. The se-

quence of images converted to embeddings corresponding to ego

hand segmentation is used by LSTMs to recognise the ego gesture.

as input andgenerates the class labels for sequences of images. We

elaborate on the network architecture of each component in Sec-

tion 5.2. The end-to-end training for simultaneous segmentation

and recognition is explained in Section 5.3.

Our network design and training approach yielded a considerable

improvement compared to stateof theart onEgoGesture [9], Airges-

tAR [88] and also Green Screen Dataset. The details of the network

architecture, training and experimental results are discussed in the

following sections.

5.2 Network Architecture

Our network architecture consists of twomain components (Figure

5.1), an autoencoder like network that generates segmented ego-

hand images and embeddings for LSTMs, and LSTMs that feed on

this component to recognise the corresponding ego gesture. An

autoencoder is a neural network that is intended to reproduce the

input. Internally it reduces the input to a hidden state whose di-

mensions are lower than that of the input. The lower-dimensional

hidden state is used to replicate the input. However, in our archi-

tecture, instead of replicating the input, we generate a segmented
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ego-hand image with the same dimensions as the input. This out-

put maps each pixel in the input image to either ego-hand or not.

Besides, we also output the embedding generated from the hid-

den state, whose dimensions are much smaller than the input im-

age. Though there exists other networks like the U-Net [111] and its

variants for segmentation, one of their main features are the short-

cuts that occur from higher-level convolution to high-level decon-

volution layers. In such a scenario, there is a loss of information

that would not be passed down to the hidden layer that gener-

ates the embedding that we use to infer the ego-hand gestures.

Networks like these can use be more useful for ego-hand segmen-

tation, but not for gesture recognition, so autoencoder network is

preferred.

For the encoder, we used the first two layers in ResNet18 [112]. Fur-

ther, we add more convolutional layers, progressively decreasing

the size of feature maps by setting the stride to 2 and simultane-

ously increasing the number of features to n, also the size of gener-

ated embedding. This size n is a hyperparameter that is set depend-

ing on the complexity of the recognition problem. For a dataset

like EgoGesture with a large number of gestures n is larger and

for dataset sets like Green Screen and AirGestAR, n can be set to

a smaller size. Each of the convolutional layers is followed by batch

normalisation and ReLU layers.

The decoder has a series of deconvolutional filters, takes in the hid-

den state generated by the encoder as input, upsamples the fea-

tures back to the size of the input image and simultaneously de-

creases the number of features. The final deconvolution layer out-

puts a two-channel image with the input size. The two channels

in the output contain the probability of the pixel belonging to ego-

hand and the background.

Dependingon the complexity of thedata, additional fully connected

layers are added to the generated hidden state, before feeding as

an input to LSTM layers. LSTMs have been widely used for video

classification [113], action recognition [114, 115] and gesture recogni-
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tion [73, 12]. In all the approaches above, the embeddings provided

to LSTMs as input play a vital role in determining the recognition

accuracy. In our architecture, embeddings based on segmented

ego-hands as described in Section 5.1 provide inputs specific for

ego-hands to LSTMs, leading to better recognition accuracy.

5.3 Training Strategy

Three datasets Green Screen Dataset, AirGestAR, EgoGesture, were

used for training and testing the network. These three datasets

though intended for ego-hand gesture recognition, are different

from each other. EgoGesture’s intended purpose is to train and

benchmark recognition deep neural networks, while Green Screen

dataset was introduced as a way to decrease data collection. Fur-

thermore, AirGestAR was a small dataset which can be used for a

first pass evaluation since it had only four gestures and the bench-

markaccuracy scoreswhen itwas introducedwerealreadyat around

93%. Since these three datasets are very different though the over-

archingnetwork architecture remained the same, it had tobe tuned

for each of themdifferently. However, the following steps (as shown

in Figure 5.2) were followed for the datasetswhere ego-handmasks

were available.

1. Train theAutoEncoderwhenground truth ego-handmask are

available (Fig5.3).

2. Train theAutoEncoder +Classifier on individual imagesby con-

necting the hidden state to SoftMax Classification (Fig5.4).

3. Train the LSTMsusing the intermediatehidden state represen-

tation as input (Fig5.5).

4. Train the entire network together using the weights from the

previous steps to initialise the weights (Fig5.6).

Cross Entropy loss which is used for training all the phases, is cal-

culated using the equation 5.4. Where n is the number of classes,
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Figure 5.2: Parameter transfer from various phases of training.

Figure 5.3: Phase 1: In the first phase we train the ego-hand Auto

Encoder network. This part of the network consists of the Encoder

which encodes RGB images into hidden states and the Decoder

that decodes the ego-hand masks from these hidden states. At

this stage of training the order of images does notmatter, since we

create ego-hand mask from its corresponding single RGB image.

CrossEntropy Loss was used to train the AutoEncoder network.

yi = 1 if i is the ground-truth class label, else yi = 0 and pi is the prob-

ability output for class i by the network after SoftMax layer.

Lce = −
n∑

i=1

yilog(pi) (5.4)

The training strategyandparameters for eachdataset arediscussed

below.
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Figure 5.4: Phase 2: In the second phase, the hidden state from

the AutoEncoder in Phase 1 is connected to an embedding gen-

erator. This embedding generator is then connected to a Softmax

classifier to recognise a gesture in individual RGB images. The sum

of CrossEntropy loss for Ego-hand mask and CrossEntropy Loss for

gesture label is used to train the network in Phase2.

Figure 5.5: Phase 3: A sequence of embeddings are created for

corresponding sequence of RGB images using the network from

Phase 2. These embeddings sequences with corresponding ges-

ture labels are used to train a LSTM with Softmax Classification.

Training the LSTMs in this manner gives us the ability to train

with large batches resulting in better generalisation capabilities.

CrossEntropy loss for gesture label is used to train the LSTM.
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Figure 5.6: Phase 4: In the final phase, all the weights for differ-

ent parts of the networks trained in previous phases are used to

initialise the full network. And the entire network is trainedwith se-

quence of images and their corresponding labels to fine tune the

network. Since the individual network parts are already trained, we

could train the network with a sum of three CrossEntropy losses

used in the previous phases, without any need for weighting.
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Figure 5.7: Inference: Since the primary aim of our network is to

recognise a gesture in Trimmed video, we do not need the decoder

during inference. As illustrated the encoder is directly connected

to the embedding generator.

5.3.1 Green Screen Dataset

The Green Screen dataset as the name suggests contains egocen-

tric views of hand gestures performed in front of a green screen for

the training set. The primary purpose of this dataset as discussed in

Chapter 4 is to allow easier addition of new gestures. The training

dataset needs to be augmented with real-world images to learn to

discern ego-hand from the background. This process of augment-

ing the training dataset is discussed next followed by the training

strategy used for this dataset.

Data Preprocessing

The data preprocessing step for preparing the training dataset in-

volves replacing the green screen with a real-world image. To per-

form this using mask that was obtained by the green screen re-

moval process as described in Section 4.2.2 and the corresponding

egocentric image and a natural background image are combined

to replace the green screen with the natural background image.

The followingAlgorithm 1 summarises the process of data augmen-

tation.
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Figure 5.8: Data augmentation step. The training image on the

right is a combination of a random background and a segmented

frame using a binary mask (on the left).

The Figure 5.8 shows the mask applied to one of the images. This

process creates n images from one captured image with the same

mask. As background, we chose n random images from a set of

40,000 images from the COCO Test dataset [116]. For our training,

we set n = 5, which increases the size of the dataset fivefold. In

addition, we also add one of the following ’none’, ’poisson’, ’gaus-

sian’, or ’salt&pepper’ noises randomly, to ensure that we are not

over-fitting data. Then, we store each of these images separately

along with the gesture id and their corresponding mask. We scale

downall the images andmasks to 224×126 resolution andnormalise

them.
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Algorithm 1 Data Augmentation for the training set in Green

Screen Dataset.

1: n = 5 . Initialise to the value of desired increase in dataset size, 5 is chosen for the experiments.

2: B = B1, B2, . . . Bn be the set of background images

3: G = G1, G2, . . . Gm be the set of green screen training image

4: M = M1,M2, . . .Mm be the set of corresponding masks.

5: T = set of augmented training images . initialised to empty set.

6: for gi,mi ∈ G,M do

7: b = set of n random images from B
8: j = 1
9: t = set of training images for gi
10: x = Randomly chose a noise type from (none, poisson, gaussian, salt & pepper)

11: for j ≤ n do

12: tj = bj
13: replace all pixels in tj with pixels from gi where mi 6= 0
14: Add x to tj
15: append tj to t
16: j = j + 1

17: append t to T

18: return T

Training Strategy

The training data is 90/10 split for training and validation, respec-

tively. The network is trained in 3 phases; parameters from each

phase are transferred to the next one(Figure 5.2). In the first phase,

the autoencoder is trained with one loss function appended to de-

convolution layers learning the ego-hand masks. 2D cross entropy

loss and ADAM optimiser with learning rate 10−5 are used to train

during Phase 1. The data is shuffled and trained for five epochswith

a batch size of 50. All the parameters used are summarised in Table

5.1.
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Input Layers Output

Encoder RGB Image (224x126)

inp, out, size, stride, padding

Resnet18 Layer1

Resnet18 Layer2

Resnet18 Layer3

Conv2D(128, 128, 3, 2, 1), BatchNorm, ReLU

Conv2D(128, 64, 3, 2, 1), BatchNorm, ReLU

Hidden State

Decoder Hidden State

inp, out, size, stride, padding

Deconv2D(64, 32, 4, 2, 1)

Deconv2D(32, 16, 4, 2, 1)

Deconv2D(16, 8, 4, 2, 1)

Deconv2D(8, 4, 4, 2, 1)

Deconv2D(4, 2, 4, 2, (2, 1))

EgoHandMask

Embedding Generator Hidden State

inp, out

AvgragePooling(7x4x64, 1x1x64)

FullyConnected(64,10/4)

Embedding

LSTM Embedding

inp, hidden, layers

LSTM(64, 128, 3)

FullyConnected(128, 10/4)

Class Label

Table 5.1: The hyperparameters used in various components of SSAR network trained for Green Screen and

AirGestAR Datasets.
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Phase Optimiser Loss Function Batch Size Epochs

Mask Generation Adam, 10−5 2D Cross Entropy 50 5

Mask Generation

+

Frame Level Recognition

Adam, lr=10−6

2D Cross Entropy

+

1D Cross Entropy

50 18

Sequence Level Recognition
SGD, lr=10−6,

momentum=0.7
1D Cross Entropy 1 60

Table 5.2: Parameters used in various phases of training. Slow learning rate in Phase 1 provided most stable

training error reduction. Phase 2 learning rate is smaller than phase 1 since the encoder and decoder are

already trained.
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In the second phase, an average pooling layer is appended to the

embedding generated by the encoder and then a fully connected

layer with outputs size Ng(number of gestures in the dataset, 10

in the case of Green Screen Dataset) . A 1D Cross Entropy loss is

added to do per frame gesture recognition. The parameters ob-

tained from Phase 1 are transferred to Phase 2. Then the network

is trained on a combined loss function using 2D cross entropy loss

from phase 1 and 1D cross entropy loss from this phase with equal

weight for both loss functions. We use ADAM optimiser with learn-

ing rate 10−6 and train for 18 epochs with batch size of 50. At this

point a frame level gesture recognition is obtained, which is inac-

curate. The inaccuracies stem from the fact that a single frameonly

captures the pose of hand at a moment in time which can be the

same across many gestures. However, a sequence of images can

rightly identify a gesture, and phase 3 is used for this.

For the final phase, the data augmentation approach is modified

slightly. Instead of using a random background and noise for ev-

ery image, we now use the same random background and noise

for the whole gesture sequence, such that each of the sequences

has the same background and noise. The embeddings generated

by the autoencoder after Phase 2 training are stored on disk per

gesture sequence. The saved sequences are as input to the LSTM.

The hidden layer from the last sequence is connected to a fully con-

nected layer with output size Ng and then to a 1D cross entropy loss

for sequence recognition. All the parameters from earlier phases

are used to initialise the weights of the entire network together,

and a final end-to-end training combining the three loss functions

is performed. For optimisation, we use a Stochastic Gradient De-

scent algorithm, with a learning rate of 10−6 and momentum 0.7.

We train for 60 epochs. All the hyper-parameters used for training

are summarised in Table 5.2. After this final phase, we get our full

network for sequence gesture recognition.
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5.3.2 AirGestAR

Unlike theGreenScreenDataset or theEgoGestureDataset, AirGes-

tAR does not have handmask annotations for the training data. To

avoid manual mask creation, the Phase 1 network that was trained

with the Green Screen Dataset was to used generate these masks

automatically. After initial visual verification, we used these masks

as ground truth in addition to the frame-level labels in the Phase

2 training. Finally, we followed the same procedure mentioned in

Section 5.3.1 for Phase 3 training. The number of parameters that

need to be estimated can approximate the complexity and size of a

network. All the parameters used are summarised in Table 5.1. The

proposed network compared to the network by Jain et al. [88] is

much smaller but yields better results under the same experimen-

tal setup(Table 5.3 lists the total number of estimated parameters

for our network in comparison to the AirGestAR network).

# of Parameters

SSAR 960485

AirGestAR 17535551

Table 5.3: Size of SSAR network in comparison to AirGestAR [88] in

terms of number of parameters to be estimated.

5.3.3 EgoGesture Dataset

In the EgoGesture Dataset, there are no explicit hand masks pro-

vided. However, the depth images providedwere used to create bi-

nary ego-hand masks by thresholding them. The ego-hand masks

created thiswaywereusedasground truthannotateddata forPhase

1 of training the network. The first phase consisted of training the

encoder, decoder and embedding generator together to output

the segmented ego-hand image and the input to LSTMs. Unlike

the scenario for Green Screen and AirGestAR datasets, simple aver-

age pooling did not provide enough expressive power for the em-

beddings generated by the encoder. Two fully connected layers de-

creasing the final embedding size to 84 were introduced. In this

training step, each image is considered an individual entity. We

68



shuffle all the images with ego-hands without respecting their or-

der in a video, split the total images into training, validation and

testing sets. We use two loss functions, one to control the gener-

ation of segmented ego-hand images and another to label each

embeddingwith the corresponding gesture. Cross-entropy loss for

segmented ego-hand images and label loss with equal weights are

used for backpropagation.

The LSTM layers are trained in the second step to recognise ego-

hand gestures from sequences of embeddings. The videos each

containing a single gesture are split into training, validation and

testing sets. Embeddings for videos are generated using the net-

work weights from Phase 1. These embeddings are then used to

train the LSTMs. Isolating LSTM training allowed the usage of big-

ger batch sizes which helped in better generalisation and also to

use sequences of arbitrary length. Cross entropy loss is used on the

final fully connected layer to classify each sequence.

In the final step, we train the entire network together, end-to-end

by connecting the embedding generator branch to LSTMs as in-

put. We initialise the encoder, decoder, embedding generator with

weights from step 1 and LSTMs with weights from step 2. The fi-

nal loss function is the sum of Cross-Entropy label loss from LSTMs

and segmented ego-hand images loss from the decoder are. All

the hyperparameters are summarised in Table 5.4.

The experiments and results in comparison to state of the art on

three datasets are reported in the following section.
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Input Layers Output

Encoder RGB Image (224x126)

inp, out, size, stride, padding

Conv2D(3, 64, 7, 2, 3), BatchNorm, ReLU

Resnet18 Layer1

Resnet18 Layer2

Conv2D(128, 128, 3, 2, 1), BatchNorm, ReLU

Conv2D(128, 256, 3, 2, 1), BatchNorm, ReLU

Hidden State

Decoder Hidden State

inp, out, size, stride, padding

Deconv2D(256, 64, 4, 2, 1)

Deconv2D(64, 32, 4, 2, 1)

Deconv2D(32, 16, 4, 2, 1)

Deconv2D(16, 8, 4, 2, 1)

Deconv2D(8, 2, 4, 2, (2, 1))

EgoHandMask

Embedding Generator Hidden State

inp, out

FullyConnected(7168, 2048), BatchNorm, ReLU

FullyConnected(2048, 83)

Embedding

LSTM Embedding

inp, hidden, layers

LSTM(83, 83, 4)

FullyConnected(83, 83)

Class Label

Table 5.4: The hyperparameters used in various components of SSARnetwork trained for EgoGestureDataset.

Since EgoGesture dataset hasmore gestures than Green Screen and AirGestAR the hidden state size is set to

256 instead of 64. This allows the encoder to represent more poses that are needed to discriminate between

the large set of gestures.

7
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5.4 Experiments and Results

The deep neural network architecture proposed after following the

training strategies discussed in Section 5.3 is tested on all the three

datasets. Training and testing for the network were implemented

in PyTorch. PC with an Intel Core i7 CPU and NVidia Titan Xp GPU

was used for hardware. Test results, ablation and validation studies

oneachof thesedatasets are reported in the following sections.

5.4.1 Experiments on Green Screen Dataset

# of Gestures

Classified Cor-

rectly

# of Gestures

Classified

Wrongly

Accuracy %

Frame Level 49 35 58.33

Sequence

Level

60 24 71.42

Table 5.5: Accuracy results for gesture recognition on the Green

Screen Dataset.

The test set for Green ScreenDataset contains ten natural gestures.

There are several challenging scenarios for recognition where fin-

gers are clipped, frames have a strong motion blur, and there is a

variation of style within a gesture (see Figure 5.9 for examples). As

mentioned in Section 5.3.1, the networkwas trained in three phases.

The results from phase two and three of training are reported since

phase one training involved finding ego-hand masks, and that is

not the primary objective, no comparative studies were done for

this phase.

The network result obtained from phase two of training can per-

form recognitionper frame. The input to this network is a sequence

ofRGB images containingagesture, andweget agesture label pre-

diction for each frame. A simple voting strategy was followed, giv-

ing each gesture a vote if a frame is predicted to be that gesture.

The sequence is then assigned the label with the maximum num-

ber of votes. The process is labelled as frame level recognition.
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For sequence level recognition, we input a sequence of images to

the network from Phase 3. As we can observe from the results in

Table 5.5 sequence level recognition performs much better than

frame level. The same hand pose can be part of multiple differ-

ent gestures but during different stages of performing the gesture.

Since frame-level recognition does not consider time, it could easily

classify a gesture incorrectly. Adding a temporal recognition com-

ponent like an LSTM solves this issue as is evident from the results

in Table 5.5.

(a) Clipped Fingers (b) Strong Motion Blur (c) Gesture Variation

Figure 5.9: Examples of frames from testing sequences. a) Left

Block gesture that was not performed fully inside the camera FOV.

b) Smash gesture done at high speed with a strong motion blur

effect. c) Push Back gesture that is a variation to the one in the

training dataset.

To analyse recognition performance on each gesture we present a

normalised confusion matrix in Figure 5.10 for results from the se-

quence level recognition. The mislabelled gestures are within the

same hand (as in a left-handed gesture is being labelled as another

left-handed gesture but not a right-handed). The recognition of

gesture 7 - Left Block is especially low and is confused with Left

Shoot and Teleport gestures. Looking at the testing videos closely,

one observation that could explain this confusion is a large head

movement that creates relative motion inside the frame similar to

the one in Shoot (up-left motion) and Teleport (circular motion in

left direction). To improve the accuracy in these situations, we are

planing in the future to utilise the head pose transformation that

can be obtained from HoloLens.

Also, in the Teleport gesture, someusers used thewhole arm to cre-

ate circular motion, where others used only one finger. This small

finger-motion is especially challenging to distinguish from an ego-
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centric view as it can be occluded by the arm or hand, and can be

easily confused with Shoot or Punch gestures.

The network to find hand pose [87] which was used in AirGestAR

[88] could not recover poses for many of the ego-hand images in

our dataset. It was not designed to handle complex scenarios like

motionblur andclippedfingerswhich frequently occur in ourdataset.

Our network, however, could handle such situations which was not

the casewith AirGestAR network strategy. Sowe could not perform

a comparative study using their network.

Figure 5.10: Normalised Confusion Matrix for 10 gestures in our

database. X-axis has the predicted labels and Y-axis the ground

truth labels

5.4.2 Experiments on AirGest Dataset

The AirGestAR dataset, as discussed in Section 5.3.2, does not have

ground truth ego-hand mask annotations, which are necessary to

perform the first phase of training. In order to avoid creating the

ego-handmasks manually, the network trained with Green Screen

Dataset was used to generate ego-hand masks automatically. Af-

ter visual verification, we used these masks as ground truth in ad-

dition to frame-level labels in phase two training. The final phase of

training and testing are reported. To provide comparative results,
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we used the same training and testing data, as described in [88].

The confusion matrix is presented in Figure 5.11 and the overall ac-

curacy in Table 5.6. Our final network’s performance canmatch the

AirGestAR network’s despite being orders of magnitude smaller in

size(see Table 5.3 for reference).

Gestures

Classified

Correctly

Gestures

Classified

Wrongly

Unclassi-

fied

Probability

Threshold

(σ)

Accu-

racy

%

SSAR 77 3 0 0.5 96.25

SSAR 75 3 2 0.66 93.75

AirGes-

tAR

75 2 3 0.7 93.75

Table 5.6: Accuracy results for SSAR network and network from [88]

on AirGestAR dataset. Following the procedure used in [88] we ex-

perimented with different probability thresholds tomark a gesture

sequence as classified vs unclassified. Any sequencewith probabil-

ity lower than the mentioned threshold is marked as unclassified.

Ours with σ = 0.5 AirGest σ = 0.7

Figure 5.11: Confusion matrix for AirGest dataset.

5.4.3 Experiments on EgoGesture Dataset

EgoGesture dataset is the largest and most comprehensive Ego-

hand gesture dataset publicly available for benchmarking and test-

ing recognition deep neural networks. Hence, the SSAR network

was tested and validated thoroughly on this dataset. The dataset

contains untrimmed videos of subjects performing the gestures.

The segments of videos containingonly ego-handgestures areused

for training, validation and testing.
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Figure 5.12: EgoGesture Dataset [9] does not provide explicitly an-

notated hand mask data. We threshold depth maps provided to

extract pixels responsible for ego hands to generate ground truth

data. This process can introduce noise, but our network learns to

generate segmented ego hands without noise.

The encoder, decoder and embedding generator are trained con-

sidering the images to be independent and not part of a sequence.

The imageswith ego-handaredivided into training, validation, test-

ing sets with 0.6, 0.2, 0.2 splits yielding 536938, 178979, 178978 images

respectively. The ResNet18 layer 1, layer two are initialised with pre-

trained ImageNet weights; the rest of the weights and biases are

initialised with zeros. We used a batch size of 100, set the learning

rate to 1e − 6 and used ADAM optimiser. The training is done until

the validation accuracy does not improve. The test set accuracywas

used as an intermediary validation step. Figure 5.12 shows some

ego-hand segmentations generated by our decoder after training

theencoder anddecoder. On close inspectionof Figure 5.12, it could

be noted that though the masks predicted are not 100% aligned

with ground truth, and they are sufficient to improve the accuracy

of ego-hand gesture recognition. Once the encoder, decoder and

embedding generator are trained and tested, the embeddings are

generated and stored on the disk. Unlike, encoder, decoder and

embeddinggenerator, training the LSTMs requires sequential data.

So the embedding is generated per sequence of images that be-

long to one gesture.

Of the various initialisation techniques available for LSTMs in the

second stage of training and a combination of orthogonal [117], and

Xavier normal [118] initialisation for input and recurrentweights, and
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zeros for biasesworkedbest for convergence. Theembeddingsgen-

erated and stored per input video are used in this phase to train the

LSTMs. Unlike the state of the art [12], whose network is limited to

identifying gestures from a sequence of length 40, this step gave

the ability to train with arbitrary sequence length and large batch

size. The batch size was set to 100with padded sequences for train-

ing the LSTM layers. The input size and hidden size for LSTM lay-

ers was set to 83. The segmented ego-hand gesture videos were

divided into training, validation, testing sets with 0.6, 0.2, 0.2 splits

yielding 14495, 4831, 4831 samples, respectively. TheLSTMsare trained

with a learning rate of 1e−2 until the training loss started to diverge.

At this step, the learning rate was decreased to 1e − 3 and trained

until validation accuracy did not improve further.

In the final step, the encoder, decoder, embedding generator and

the LSTMs layers are combined. The entire network is trained with

one image sequence per batch. Weights from the earlier train-

ing steps are used to initialise the network. The entire network is

trained with label loss from the LSTM layers and segmentation loss

from the decoder. Since the two losses were trained individually

before this step, using the sum of two losses was adequate for the

final step. ADAM optimiser with a learning rate of 1e − 3 was used

and trained until the validation accuracy did not improve. The ac-

curacy reported in all cases is on the test set.

Results

The right embeddings to LSTM layers influence their recognition

capacity to a large extent. This is empirically evident from Table 5.7,

where thedifferentiating factors that influence theaccuracy are the

embedding inputs to LSTMs. Cao et al. [12] argue adding homo-

graphic spatial transformer modules to VGG embeddings and ho-

mographic recurrent spatio-temporal transformermodules to C3D

embeddings result in better embeddings to LSTMs, increasing their

recognition accuracy. However, using SSARnetwork demonstrated

that by using segmentation based embeddingswe can get consid-

erably better accuracy for the EgoGesture dataset. We posit that
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Method Modality Frames Accuracy

VGG16 + LSTM
RGB Any 0.747

VGG16 + LSTM
RGB 40 0.808

VGG16 + RSTM (H) +

LSTM

RGB 40 0.838

C3D +RSTTM (H) + LSTM
RGB 40 0.893

C3D +RSTTM (H) + LSTM
Depth 40 0.906

C3D+RSTTM (H) + LSTM
RGB + Depth 40 0.922

Segmentation based

Embedding + LSTM

(ours)

RGB Any 0.969

Table 5.7: Comparison of results on EgoGesture dataset to the state

of the art. The results reported fromCao et al. [12] are in purple. Our

network (results reported in green) produces considerably better

accuracy on just RGB data during inference and can use all the im-

ages in a sequence, while the state of the art is limited to 40 frames

per sequence and needs both RGB and Depth data for best results.

this is possible since any feature that does not belong to ego-hands

is ignored by design in our network.

This point is further fortified by visualising embeddings created by

the SSAR network are in Figure 5.13, as it can be seen that features

on and around ego-hands contributedmost for the Gradient-Class

Activation Map (Grad-CAM images)[119]. Grad-CAM highlights the

areas which contribute the most towards the final decision that is

made by the network, in the case of SSAR network, it can be seen

that areas belonging to ego-hands are highlighted the most. For

gestures like Number6 fingers on ego-hands become essential for

recognition. The SSAR network, as seen in Figure 5.13 correctly paid

most attention to fingers in the RBG images. There is a need for

understanding the spatial position of both the hands to discern the

gesture, in the case of two-handed gestures. The activation maps

showed attention rightly being paid to both the hands.
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Figure 5.13: Gradient Class Activation Maps(Grad-CAM) [119] for

showing the activations that correspond to the gesture. Each row

has three RGB images and their corresponding Grad-CAM images

from a sequence that belongs to a gesture. For illustration pur-

poses, we choose gestures that use both hands and only one hand,

to show the robustness of the network. The class activation maps

rightly highlight the areas that belong to ego-hands, intuitively in

some gestures as seen for Number6 gestures, the fingers on the

hand contribute more towards identifying the gesture correctly.

Scenario State of the Art [12] SSAR

Walking 0.828 0.962

Stationary 0.866 0.972

Table 5.8: Accuracy on scenarios with (walking) and without (sta-

tionary) ego-motion. We outperform the state of the art in both

scenarios.

Themost confused gesture in our analysis using a confusionmatrix

(Figure 5.14) was the Sweep Cross. Out of the 65 test sample for this

gesture, 57 were correctly classified, while 2 each were misclassi-

fied as Sweep Diagonal, Sweep Circle and Sweep Check-mark and

1 each as Beckon and Move Fingers upward(see Figure 5.15 for ges-

ture illustrations). Since these gestures look quite similar, it is very

probable for them to confused with each other.

The gestures were grouped into two disjoint sets, one containing

ego-motion(walking) and another containing no ego-motion(sta-

tionary), following the same procedure from the state of the art.

The results reported in Table 5.8 show thatusing segmentationbased
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Figure 5.14: Confusion matrix for all the gestures.

embeddings is sufficient to compensate for ego-motion. SSARnet-

work performed better in both the stationary and walking scenar-

ios. The difference in accuracy between stationary andwalking sce-

narios in our case is 1%, whereas it is 3.8% in the case of the state of

the art, which further illustrates that our network by not paying at-

tention to the context around ego-hands can deal with ego-motion

better. The network proposed by Cao et al. [12] calculates and cor-

rects for ego-motion through homography estimation. However,

their estimation is not particularly conditioned on ego-motion, so

any changes in the background can effect their homography es-

timation, which could be one of the causes for larger difference

between the ego-motion vs no ego-motion scenarios when com-
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Figure 5.15: Confusion matrix for all the gestures. The most con-

fused gesture as seen is Sweep Cross(19), out of the 65 samples 57

were correctly classified while 2 each were misclassified as Sweep

Diagonal, Sweep Circle, Sweep Check-mark and 1 each as Beckon

and Move Fingers Upwards.

pared to the performance of SSAR.

Validation

Ablation studies were performed and compared to the results re-

portedbyCaoet al. [12] to validate theusageof segmentationbased

embeddings. Thedecoder part of the SSARnetworkwas ignored To

remove explicit conditioning on ego-hands. The encoder was con-

nected to embedding generator, which was further connected to

LSTM. This networkwithout decoder is trainedend-to-end to recog-

nise ego-hand gestures with cross-entropy loss. The backpropaga-

tion was performed similarly to other training until validation accu-

racy did not improve. The recognition accuracy from this simple

embeddings + LSTM network (75.4%) was very close to VGG16+LSTM

(74.7%) as reported in Table 5.9. To further understand the effect of

using segmentation based embeddings the results of recognition

accuracy on SSAR network after performing phase one and two of

training as described in Section 5.3.3 are tested and reported. Af-

ter training the encoder and decoder and creating segmentation

based embeddings, LSTM were trained with these. The final fine-
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Method Accuracy

VGG16 + LSTM [12] 0.747

Simple Embedding + LSTM 0.754

Segmentation based Embedding + LSTM 0.947

Table 5.9: Table validating the use of segmentation based embed-

ding. We use the encoder as described in section 5.3.3 to gener-

ate simple embeddings for the LSTM to recognise an ego gesture.

In comparison to VGG16 + LSTM, this does not result in a signifi-

cantly increased accuracy. The segmentation based embedding

+ LSTM approach, performs only the first part and second part of

the training described in section 5.3.3. We forgo the final step of

training to isolate the effect of using segmentation based embed-

ding. The accuracy increases, when compared to the simple em-

beddings, which validates the use of segmentation based embed-

dings.

tuning stepmentionedSection 5.3.3was not performed tomeasure

the impact of using segmentation based embeddings. The recog-

nition accuracy improved considerably compared to the above two

networks, thus validating the usage of segmentation based em-

beddings. It can be posited that these embeddings carry informa-

tion particular to ego-hands, which lead to better generalisation ca-

pability than compared to simple embeddings as evident with the

improved accuracy. The accuracy of the three networks is reported

in Table 5.9.

5.5 Summary

Thus far, the concept of simultaneous segmentation and recogni-

tion(SSAR) was defined. Unlike the traditional approaches which

calculated features onego-handsafter segmenting the images, SSAR

calculates embeddings that can help spatially recognise the posi-

tion of ego-hand in an image and simultaneously encode the ges-

ture in an image. Based on the SSAR concept, a deep neural net-

work architecture called the SSAR network was presented. This

network was trained and tested for ego-hand gesture recognition

on trimmed videos on three publicly available ego-hand gesture
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datasets including the Green Screen dataset introduced in Chap-

ter 4.

On the AirGest dataset we achieved recognition accuracy of 96.25%

compared to the then state of the art which was 93.75%, using SSAR

network architecture. The size of our network was 20 times smaller

(Table 5.3) than the then state of the art network, proving the effi-

cacy of SSAR network empirically. On the EgoGesture Dataset we

achieved a recognition accuracy of 96.9% compared to the state of

the art which had a recognition accuracy of 92.2% (Table 5.5). On the

Green Screen Dataset we achieved a recognition accuracy of 71.42%

setting the benchmark for recognition accuracy. There is a consid-

erable scope for improvement of recognition accuracy on theGreen

Screen Dataset compared to AirGest and EgoGesture dataset. This

can be attributed to the fact that Green Screen dataset has a lot

more realistic and hard scenarios like extrememotion blur, clipped

fingers and large variations in gesture style which are absent in the

other two datasets.

Thorough ablation and evaluation studies showing the efficacy of

SSAR network were presented. However, for any ego-hand ges-

ture recognition to be useful, it should work on untrimmed videos.

Untrimmed videos contain ego-hand gestures information inter-

spersed with other activity or non-activity, and the network pre-

sented in this chapter can not handle such scenarios. In the follow-

ing chapter, thework recognising ego-hand gestures fromuntrim-

med video is presented.
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Chapter 6

Ego-hand Gesture

Recognition on UnTrimmed

Video

In this chapter, the work on recognising ego-hand gestures from

untrimmed video is presented. Research on recognising gestures

from trimmed videos is an interesting problem to solve, however

owing to the assumption that the input contains images with only

ego-hands performing a gesture it is not feasible to use in real sce-

narios. As it can be seen from Figure 6.1, real-world scenario con-

sists of untrimmedvideowhere ego-handgesture images are inter-

spersed with non-ego-hand gesture images. Previous works [9, 97]

discussed in Chapter 3 used heuristics to train networks to solve

this problem. Instead, network architecture with State Activation

Gate(StAG) LSTM, intra-gesture(IG) loss is proposed and explained

in the following sections. Also, shortcomings of Jaccard Index(JI)

metric, a metric used to measure the performance of sequence to

sequence classification problems are discussed and an improved

metric Continuity Favouring Jaccard Index(CFJI) is presented. The

network architecture with StAG, training strategy with IG loss and

evaluation with the proposed CFJI metric is discussed in the rest of

the chapter.
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Figure 6.1: Top Row: Gestures in untrimmed video at different time

steps, interlaced with non-gesture frames. Bottom Row: Usual

ego-hand gesture recognition problems assume only one gesture

per video with or without non-gesture frames.

6.1 Architecture

Acombinationof 3Dconvolutional neural network toencode spatio-

temporal features and recurrent neural network to recognise ego-

hand gestures from this sequence of encoded spatio-temporal fea-

tureswere used to design the network. Wewere inspired by various

network architectures proposed in the past for gesture and action

recognition like [74, 12, 96, 120] and SSAR presented in Chapter 5.1.

In the following sections, the 3D CNN used for the visual encoder

and StAG LSTM proposed for the sequence decoder are explained

in detail.

There had been several 3D convolutional neural network architec-

tures introduced like C3D, P3D, R(2+1)D [121, 122, 123]. The primary

ideabehind 3Dconvolutions is to capture both spatial features in an

image andmotion features across a given set of images. The input

to a 3D convolutional neural network is usually a small sequence

of consecutive images. R(2+1)D networks introduced by Tran et al.

[123] were used for visual encoder part of the network. R(2+1)D is

a variation of P3D network, which itself is an extension of ResNet
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Figure 6.2: Architecture of our network. We used R(2+1)D Convolu-

tions [24] for visual encoder and proposed StAG LSTM for sequence

decoder.StAG LSTM has state activation gate that modulates the

input and hidden state according to presence or absence of a ges-

ture. StAG LSTM isexplained in Section Architecture and Training

Overview, and illustrated with more details in Figure 6.3.

[124] from 2D to 3D space. Unlike P3D, R(2+1)D model uses a single

type of block throughout the network and factorises 3D convolu-

tions into 2D and 1D convolutions instead of bottlenecks. R(2+1)D

networks were empirically shown to be superior to other 3D net-

work architectures even with considerably less number of layers

[123]. We choose R(2+1)D networks for the above reasons. The num-

ber of blocks in each layer was set to two, using the shallowest ver-

sion of R(2+1)D Network. Though 3D convolutions can capture mo-

tion features across images, their limitation arises since they work

across the current input anddonotwork beyond it. The implication

of this limitation is to feed 3D Convolutional neural networks with

larger clip size (consecutive images in video) as input if they had to

adapt for longer input sequences. However, larger clip size places

severe GPU memory requirements for training and inference. Re-

current neural networks are used in tandemwith 3DCNN for recog-

nition on large sequences of data to capture long-term dependen-

cies in data.

6.1.1 StAG LSTM

A recurrent neural network is appended to the last encoding layer

of the visual encoder to discern the temporal relations between

video clips to give the network a larger temporal view of the video.
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Basic recurrent neural networks have twomajor practical issues for

training, explodingandvanishinggradients. Long-Short TermMem-

ory or LSTMs as they are called in short were proposed by [46] par-

ticularly to deal with these two problems and since have been ex-

tensively researched and applied to action, and gesture recognition

since then [74, 125, 102, 73, 12, 79]. To recap, LSTMs aremade of input,

forget, output gates represented by equations 6.1a . . . 6.1d. These

gates influence the current cell andhidden states decidingwhat in-

formation needs to be remembered, forgotten and to what extent.

The hidden state from each unit is then connected to a fully con-

nected layer filter to generate a gesture label using Softmax classi-

fication. The full architecture of the network is illustrated in Figure

6.2.

it = σ(Wxix
t + bxi +Whih

t−1 + bhi) (6.1a)

ft = σ(Wxfx
t + bxf +Whfh

t−1 + bhf ) (6.1b)

gt = tanh(Wxgx
t + bxg +Whgh

t−1 + bhg) (6.1c)

ot = σ(Wxox
t + bxo +Whoh

t−1 + bho) (6.1d)

ct = ft � ct−1 + it � gt (6.1e)

ht = ot � tanh(ct) (6.1f)

However, in the caseof egogesture recognitiononuntrimmedvideos,

the number of frames with non-gesture labels is higher compared

to frames with one particular gesture. In such a case using the en-

tire video for training leads the network to overfit on non-gesture

data if plain LSTMs are used, as reported in the experiments and

analysis section 6.4. Heuristics like selecting a part of the video for
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Figure 6.3: Stag LSTM. State Activation Gate is added to standard

LSTM to modulate the flow of input and hidden state. In addition

to hidden state and cell state StAG LSTMalso outputs the activation

mapping for input to optimise the activation function s. For brevity
only the state activation gate is expanded.

training the recurrent network [9, 97] andusingaparticular amount

of frameswithoutgesturesbefore andafter thegesture is performed

[9] were used to deal with the issue of overfitting. We introduced

an additional gate to the LSTM framework in order to avoid usage

of such heuristics. We call this state activation gate, the intent of a

state activation gate is tomodulate the activation of input and hid-

den state depending on the current state of the input. The equa-

tions 6.2a, 6.2b and 6.2c represent the state activation gate and the

gate being applied to the input and the hidden state. Figure 6.3

illustrates the addition of State Activation Gate to LSTM. As it can

be seen that the new activated input, hidden state are used for the
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rest of the LSTM instead of the original states (6.2d . . . 6.2i).

st = σ(s(xt)) (6.2a)

xt
a = xt � st (6.2b)

ht−1
a = ht−1 � st (6.2c)

it = σ(Wxix
t
a + bxi +Whih

t−1
a + bhi) (6.2d)

ft = σ(Wxfx
t
a + bxf +Whfh

t−1
a + bhf ) (6.2e)

gt = tanh(Wxgx
t
a + bxg +Whgh

t−1
a + bhg) (6.2f)

ot = σ(Wxox
t
a + bxo +Whoh

t−1
a + bho) (6.2g)

ct = ft � ct−1 + it � gt (6.2h)

ht = ot � tanh(ct) (6.2i)

The choice of function s for state activation gate is left to the user,

the intent of this function is to map the input xt at time t to a value

between 0 and 1, such that the gate can selectivelymodulate the in-

put andhidden state that needs to enter thenext gates in LSTM. For

the purpose of ego-hand gesture recognition, s was chosen to be

a fully connected neural network that infers if the current frame xt

has a gesture or not. In the case of EgoGesture dataset a fully con-

nected neural network with one layer was enough to discern the
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presence or absence of a gesture. The scenario is simple because,

the presence of an ego-hand implied a gesture being performed.

In more complex cases where an ego hand could visible but is not

performing a gesturemore complex s can be chosen. The output of

the function s is used in binary cross entropy loss function to learn

its parameters, in addition to the loss function back propagated

from the hidden state. This allows the network to actively modu-

late the flow of input and hidden state depending on the presence

or absence of gesture in the current frame, allowing for the param-

eters in the LSTM to be learnt for gestures instead of the no gesture

frames during training. There is no need to modulate the cell state

separately, as evident from equation 6.2h, since inputs to this gate

are already activated input andhidden states. The following section

details the training and evaluation procedure. Tables 6.1, 6.2 sum-

marise all the hyperparameters that are used to design the visual

encoder and StAG LSTM.

Blocks Input Channels Output Channels

STC 1 c 64

STR 2 64 64

STR 2 64 128

STR 2 128 256

STR 2 256 d

Table 6.1: Visual Encoder Network Parameters (STC: Spatio Tempo-

ral Convolution) and (STR: Spatio Temporal ResNet). The structure

of STR, STC is further explained in Figure 6.4. c depends on the in-
put modality 1, 3, 4 for depth, rgb, rgbd respectively. d depends on the
complexity of the dataset, d is set to 512 for the EgoGesture Dataset
and to 256 for the NVIDIA gesture dataset.

input Hidden

EgoGesture [9] 512 128

NVIDIA Gesture [73] 256 52

Table 6.2: StAG LSTM Network Parameters. The size of cell state is

same as the hidden state. The input size depends on the output of

the Spatio Temporal Pooling layer in the visual encoder. The hidden

size is set depending on the number of gestures to recognise.
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Figure 6.4: The spatio-temporal convolution(STC) block from

R(2+1)D network [123]. They factor the 3D convolution into a 2D con-

volution, followed by batch normalization and relu and 1D convolu-

tion followed by batch normalization and relu. The spatio-temporal

resnet(STR) blocks consist of the standard ResNet block with 3D

convolution replaced by the proposed STC block.
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6.2 Training

Figure 6.5: (A) Figure illustrating our label assignment procedure

during training and evaluation.(B) Figure showing how CFJI metric

would score sequences compared to JI metric.

The problem of ego-hand gesture recognition in untrimmed video

is briefly formalised, before looking into the training methodology.

V is a video containing x1 . . . xt frames, l1 . . . lt are the corresponding

gesture labels, where 0 ≤ li ≤ n, n being the number of gestures,

0 label corresponds to no gesture. We need to find a function f

that maps x1 . . . xt to l1 . . . lt. In the current case f is the combination

R(2+1)D and StAG LSTM.

The video is chunked into clips of length cl frames with a stride

cs.The following strategy is used to assign a label to the clip: if a clip

c is denoted by frames [xt, xt+cl−1] and [lt, lt+cl−1] are their correspond-

ing labels. As illustrated in Figure 6.5 a the clip label is set to maxi-

mum count of gesture labels in the interval [lt+cl−s, lt+cl−1]. cl was set

to 16 and cs to 4 for all the experiments performed.

Cross entropy loss is used with the number of classes set to n + 1,

where n is the total number of gestures, and the extra label set

to 0 for non-gesture frames to train the visual encoder. It should

be noted that unlike training methodology in [9], which uses only

some frames from videos, we used all the clip regardless of the

presenceor absenceof agesture. Once the visual encoder is trained,

the output from the final spatio-temporal pooling layer is stored for
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each video clip-wise sequentially.

The full length of the encoded video is used as input to StAG LSTM,

and we used all the videos in training split in a single batch. It must

be noted that the full video is not necessary for the inference stage;

it is only needed for training. StAG LSTM has two outputs, one from

state activation function described in equation 2a andhidden state.

Binary cross entropy loss is used for the state activation function,

and the hidden state is connected to a linear layer with n + 1 neu-

ron, n being the number of gestures. The loss function we used for

training StAG LSTM is represented by the equation 6.3.

L = LStA + LC (6.3a)

LC = LCE + LIG (6.3b)

where LStA is the state activation loss, as described earlier, binary

cross entropy is used to represent this loss. And LCE is the stan-

dard cross entropy loss, and LIG is the intra-gesture loss which is

explained in the section below.

6.2.1 Intra-Gesture Loss

A subject performs the same gesture from the beginning to the

end, so the gesture labels also remain the same throughout the

gesture(illustrated in Fig6.6). However, this property is not utilised

by methods like [97, 9] which adopt networks trained for trimmed

gesture recognition to untrimmed gesture recognition. This can

have considerable impact on the performancemetrics whichmea-

sure sequence similaritymetrics, and this is very evident in the case

of Kopuklu et at [97], further explored in Section6.4.1.

To encourage consecutive frames to have the same gesture labels

Intra-gesture loss was introduced. Intra-gesture loss is defined by

equation 6.4
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Figure 6.6: When a subject performs a gesture, the label is the

same from the beginning to the end. This phenomena is the ba-

sis for Intra-Gesture(IG) Loss. The IG loss encourages the network

to give same label to consecutive frames, by selectivelyminimising

the Kullback-Liebler distance between two consecutive prediction

probabilities.

LIG(P ||Q) =
∑
x∈X

δxl ∗ P (x) ∗ ln(P (x)/Q(x)) (6.4)

where l is the ground truth label, δ is the Kronecker delta. Intra ges-

ture loss is the product of Kronecker delta and Kullback-Liebler dis-

tance. We applied this loss to consecutive frames with gestures.

The idea of intra-gesture loss is to penalise if the distribution of pre-

diction for two consecutive frames is different. However, with the

introduction of Kronecker delta, this penalty is selectively applied

to the gesture label that matches the ground truth. In Section 6.4

the usefulness of this loss function is validated.

6.3 Evaluation

6.3.1 Intra-Gesture Loss

Jaccard Index has been used as an evaluation metric for gesture

recognition on untrimmed videos [107, 9]. Jaccard index as indi-

cated by equations 5a, 5b, 5c, measures the relative overlap between
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Figure 6.7: The current Jaccard Index(JI) metric scores the predic-

tions A & B the same in comparison to the ground truth. However,

the Continuity Favouring Jaccard Index(CFJI) metric scores B > A

since prediction B is more continuous and less segmented com-

pared to A. The CFJImetric evaluates the performance of a network

prediction not only based on the intersection with ground truth,

but also the continuity of the prediction.

the ground truth and predicted sequences.

JI(G||P )s,i =
Gs,i

⋂
Ps,i

Gs,i

⋃
Ps,i

(6.5a)

where Gs,i is the ground truth part of sequence which has gesture

i, similarly Ps,i is the predicted part of sequence which has gesture

i.

JI(G||P )s =
1

N

N∑
i=1

JIs,i (6.5b)

JI(G||P ) =
1

S

S∑
s=1

JIs (6.5c)

where JI(G||P )smeasures the Jaccard Indexbetween two sequences
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with N different gestures in it and JI(G||P ) is the mean Jaccard In-

dex of all the sequences in the set with cardinality S. However, the

Jaccard Index does not take the continuity of predicted labels into

account. For example if {0, 0, 1, 1, 1, 1, 1, 1, 0, 0} are ground truth la-

bels G for a sequence, {0, 0, 1, 0, 1, 0, 1, 0, 0, 0} is a set of predicted

labels P1, and {0, 0, 0, 0, 0, 1, 1, 1, 0, 0} is another set of predicted

labels P2, then JI(G||P1) = JI(G||P2). A metric M that would score

M(G||P2) > M(G||P1) is more suitable, since it would be more useful

if labels are continuous, instead of segmented.

6.3.2 Continuity Favouring Jaccard Index

A new metric Continuity Favouring Jaccard Index(CFJI)(see Figure

6.7) is defined that would favour continuity and also measures the

relative overlap between ground truth and predicted labels. The

following equations define CFJI.

CFJI(G||P )s,i =



Ns,i(G)

Ns,i(P )
∗ Gs,i

⋂
Ps,i

Gs,i
⋃

Ps,i
,

if Ns,i(P ) ≥ Ns,i(G)

Ns,i(P )

Ns,i(G)
∗ Gs,i

⋂
Ps,i

Gs,i
⋃

Ps,i
,

if Ns,i(G) > Ns,i(P )

0,

if Ns,i(G) = 0 or Ns,i(P ) = 0

(6.6a)

whereNs,i is the number of continuous segments of gesture i in se-

quence s. It canbe seen that if the number of continuous segments

for a gesture is different in predicted sequence labels compared to

the ground truth ourmetric CFJI decreases the score, if they are the

same it retains the JI value.

CFJI(G||P )s =
1

N

N∑
i=1

CFJIs,i (6.6b)
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CFJI(G||P ) =
1

S

S∑
s=1

CFJIs (6.6c)

In the following section, we present detailed analysis, experiments

and ablation studies performed on two publicly available ego-hand

gesture datasets that empirically show the efficacy of our network

architecture with StAG LSTM and training methodology.

6.4 Experiments and Analysis

WeusedEgoGesture [12], the largest ego-handgesturedataset avail-

able publicly, and NVIDIA Gestures [73] to validate our network ar-

chitecture and training with StAG LSTM.

6.4.1 Experiments on EgoGesture Dataset

EgoGesture dataset has a total of 2081 videos with gestures being

performed at irregular intervals recorded in different environments

with varied lighting conditions and has 83 different gestures per-

formed by 50 subjects. This set of 2081 videos is split into 1239, 411,

431 videos of training, validation and testing set respectively and

we followed the same settings mentioned in [9] for reporting the

results.

After the visual encoder is trained, the feature vectors at spatio-

temporal pooling layer (of length 512 × n where n is the number of

clips in the video) are stored. The hidden size in StAG LSTM is set to

128. The activation function is trained for first 40 epochs, by using

only the activation function loss. The classifier loss is used from41st

epoch until the validation error does not improve any more. The

output of the network is assigned per clip to the slidewindow (illus-

trated in Figure 6.5A) to generate full length of video labels to com-

pare with the ground truth labels. The metrics scores are reported

on the test set. Table 6.3 compares our network’s performancewith

the state of the art.
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Method Modality Heuristics JI

C3D+STTM [12] RGB Yes 0.670

R(2+1)D + LSTM RGB No N/A

C3D + LSTM RGB No N/A

R(2+1)D + StAG LSTM(ours) RGB No 0.684

C3D+LSTM [9] Depth Yes 0.710

R(2+1)D + StAG LSTM(ours) Depth No 0.710

R(2+1)D + LSTM Depth No N/A

C3D + LSTM Depth No N/A

C3D + LSTM [9] RGBD Yes 0.718

R(2+1)D + LSTM RGBD No N/A

C3D + LSTM RGBD No N/A

R(2+1)D + StAG LSTM(ours) RGBD No 0.722

Table 6.3: Jaccard Index scores for various networks [12, 9]. Our per-

formance on the JI metric is similar or better than the start-of-the-

art network without using heuristics. Heuristics are employed by

current methods to adapt networks trained on trimmed videos to

untrimmedvideos. Our networkwhichusesStAGLSTM (6.1.1 ) does

not employ heuristics and performs better or similar on various

modalities in comparison to existing networks. For networks using

simple LSTM without heuristics, the JI column is labelled as N/A.

The networks with simple LSTMs trained without heuristics did not

converge, this phenomena is further explained in Section6.4.1.

The scores for RGB modality in comparison to Depth and RGBD

modality is less in both state of the art and our network. This score is

attributed to the fact that RGB images have a lot of background sig-

nal which needs to be filtered out in addition to ego-hands. Depth

images can be easily thresholded to extract ego-hands, but they

lose some finer details, so they perform better than RGB. RGBD

modality outperforms both RGB and depth modalities because it

combines the information from these two modalities. The work

by Kopuklu et al. [97] is the other network that recognises ego-

gestures fromuntrimmedvideos inEgoGesturesdataset. However,

the performance of the two-stream network proposed by them is

deficient because the crux of their algorithm is a proposedpostpro-

cessing step. Their network scored 0.484 on JI metric without post-

processing. Applying their postprocessing does not output a se-

quence label for making a direct comparison. Their network’s per-
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formance relied on a ResNext [112] network which was used as the

primary classifier. However, it can not form long term dependen-

cies, and its performance is limited to the size of the clip, which was

chosen to be 32 in their case. It must also be noted that [97] used

training + validation set for training and then reported the scores on

the testing set. The effects of StAG LSTM, the usage of Intra-Gesture

loss for training their scores on JI and CFJI metrics are discussed in

the following section.

Ablation Studies

Figure 6.8: (A) Labels predicted for video Subject 14, Scene 3, Task4.

The model trained with IG loss showed fewer variations in pre-

dictions compared to those trained without IG loss yielding bet-

ter JI and CFJI scores. (B) Labels predicted for Subject 11, Scene 2,

Task5, even though the number of variations is less, but the model

trained with IG loss performed worse. The model trained with IG

loss predicted the wrong label consistently during the gesture is

performed, but the model trained without IG loss intermittently

predicted correct labels.

One of the problems to solve in training deep neural networks for

ego gesture recognition using untrimmed video is a large number

of training images containing no gestures compared to that with a

particular gesture. Methods like [9, 97] use heuristics like carefully

choosing a part of the training sequence, and usingweighted cross

entropy loss(weights chosen are another set of heuristics) to deal

with this issue.

We trained a plain LSTM with the same procedure used to train
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StAGLSTM. The training loss stoppeddecreasingmuchearlier com-

pared to StAG LSTM. Themetrics on the validation set also followed

the same trend. Figure 6.9 shows the training loss and validation

metrics for both LSTM and StAG LSTM. It can be seen that using

StAGLSTM leads tobetter training loss andvalidationaccuracywhile

eliminating the need for heuristics that are used in [9, 97]

Figure 6.9: Training Loss for LSTM vs StAG LSTM. We can see that

training loss stops decreasing for LSTM. However, it continues to

improve for StAG LSTM. This improvement is also reflected in the

validation Jaccard Index scores.

Loss Modality JI CFJI

LStA + LCE RGBD 0.718 0.676

LStA + LCE + LIG RGBD 0.722 0.681

LStA + LCE Depth 0.706 0.664

LStA + LCE + LIG Depth 0.710 0.665

LStA + LCE RGB 0.682 0.639

LStA + LCE + LIG RGB 0.684 0.642

Table 6.4: Jaccard Index and Continuity Favouring Jaccard Index

metrics for training with and without Intra Gesture loss. Adding

the Intra Gesture loss component improves both themetrics across

modalities.

Thenetwork is trainedwith andwithout IG losswith the threemodal-

ities to compare the effectiveness of the loss function. It could be

observed that across all the three modalities using Intra-Gesture

loss improves both the Jaccard Index and the Continuity Favouring

Jaccard Index as reported in Table 6.4. In Figure 6.8 two results are

reported, one where using IG loss helps get better CFJI score and

the other where it fails to. Gesture 63 (Thumbs Upwards) is con-

fused for gesture 68 (Thumbs Forward), in the case that does not
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employ IG loss we can see that part of the gesture is labelled as

63, but when IG loss is used the entire gesture is labelled 68 (in-

correctly). The incorrect labelling could be a potential downside,

meaning if a gesture gets mislabeled in the beginning, it could re-

tain thewrong label until thegesture ends. However, this behaviour

occurs less in comparison to predicting the correct labels, hence

the overall improvement in both JI and CGJI metrics. The increase

inCFJImetric is relativelymore compared to JImetric acrossmodal-

ities whenwe used Intra-Gesture loss. This increase showed us that

using Intra-Gesture loss helps decrease fragmentation. In this sce-

nario, CFJImetric helped us understand the continuity of predicted

labels while maintaining intersection over union.

Non Gesture Suppression

Figure 6.10: Non-Gesture Suppression: The output of our network

is a set of probability values assigned to each gesture known. The

current frame is labelled with the gesture that hasmaximum value

amongst this set. We can set a threshold value τ so that only labels
with values > τ are considered gesture frames, and everything else
is considered a non-gesture frame. The higher the value of τ , the
lesser false positives are labelled, but this comes at the cost of los-

ing some true positives. However, using IG loss with cross entropy

loss, we can set τ to higher value compared to using just cross en-
tropy loss. As shown in this figure, with IG loss the number of false

positives decrease (green dotted lines) yet, the number of true pos-

itives increases(solid green line) in comparison to a network trained

without IG loss(orange lines).
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Oneof theproblems to solve in continuousgesture recognition is to

identify non-gestures. Non-gestures aremovements of hands seen

by the camerabut arenot part of the set of gestures tobe identified.

Identifying non-gestures helps the VR/AR systems to stop taking a

requisite action under the wrong assumption that the movement

of hands of the user is an interaction. One of the ways to achieve

non-gesture suppression is to collect data specific to non-gestures

consisting of random hand movements and making the network

recognise a gesture from non-gesture. However, this involves extra

data collection, which is not a part of the EgoGesture dataset. An-

other solution to solve this problem is to use a higher threshold for

the probability values of the gesture labels which are the output of

the Softmax layer of the network (Section 6.1).

As seen in Figure 6.10, setting the threshold too high leads to sup-

pression of true positives, decreasing the accuracy of the network.

However training thenetworkwith IG (Section6.4) andCE loss leads

to better accuracy when compared to a network trained with only

CE loss, the accuracydifference increasedwith an increasing thresh-

old. This behaviour could be attributed to the fact that IG loss when

used to train StAG LSTMs, rewards if the consecutive frames have

samegesture label, but penalises the networkwhen they are differ-

ent enabling the network to learn the correct contiguous label. As

illustrated, a higher threshold can be used to suppress non-gesture

frames when trained with IG and CE loss together.

Early Detection Analysis

Detecting a gesture early can help making interactions with vir-

tual elements smoother. Each gesture in the test set is divided into

four equal temporal segments, corresponding to 0-25%,25-50%, 50-

75%, 75-100% of the duration of the gesture, to analyse early gesture

detection performance of training our network with and without

IG loss. The relative difference in mean average precision(mAP) in

each bucket is plotted (Figure 6.11), it can be seen that most of the

gain in mAP scores using IG loss occurred in the 25-50% and the 0-

25% temporal segments of a gesture performance. The gain in the
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Figure 6.11: Early detection with IG loss: The length of each gesture

is divided into four buckets: (0-25, 25-50, 50-75, 75-100)%, this graph

plots the relative mean average precision of network trained with

IG loss versus without IG loss for each bucket. Themost gains of the

network trained with IG loss can be seen in the 25-50% bucket, and

this enables us to perform early detection of the gesture which in

turn can make interactions with virtual elements quicker.

first two temporal segments could be attributed to the fact that

using IG loss forces the network score sequential frames with the

same gesture label leading to early detection mAP gains. As the

gesture performance nears the end, the confidence in labelling the

gesture increases, hence the relative gains are lower when com-

pared to the performance at the beginning.

6.4.2 Experiments on NVIDIA Gesture Dataset

NVIDIA Gesture dataset [73] was introduced before the EgoGesture

dataset. The dataset contains gestures which can be used in user

interface scenarios in untrimmed videos, making it a suitable can-

didate for testing our network and training approach. It has 1050

videos in the training set and 482 videos in the test set (there is no

validation split).

The number of gestures in this dataset is 25. We scaled down the

model accordingly, changed theencoding feature layer size inR(2+1)D

to 256, and hidden size in StAG LSTM to 52. The batch size for train-
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ing visual encoder is set to 11 and used the entire batch for training

StAG LSTM. The detection ROC+AUC scores are reported in Table

6.5.

Method Modality ROC AUC

3D-CNN + CTC Depth 0.91

R(2+1)D + StaG LSTM Depth 0.92

Table 6.5: ROC+AUC Detection Scores on NVIDIA Gestures dataset.

6.5 Summary

In this chapter, the need for recognising ego gestures fromuntrim-

med video was discussed. We have empirically shown why the ex-

isting LSTMsdoes not trainwellwithout thehelp of heuristicswhich

were employed in earlier methods. An additional gate called the

StateActivationGate (StAG)was introduced to theLSTM framework

to avoid some of the heuristics employed. A deep neural network

architecture employing StAG LSTM was proposed. A novel intra-

gesture loss function that encourages consecutive image frames to

have the same gesture label was introduced alongwith a new eval-

uation metric(CFJI) that favours continuous gesture labelling. The

deep neural network with StAG LSTM trained using the proposed

IG loss function outperformed the current state of the art neural

network for recognising ego-hand gestures fromuntrimmed video

whilst employing a lesser number of heuristics compared to the ex-

istingmethods. The proposed CFJI metric was shown to be helpful

in objectively evaluating networks to label images with the same

gesture consistently across whichwas not possible with Jaccard In-

dex metric, one of the standard metrics used to measure the per-

formance of untrimmed video recognition networks.
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Chapter 7

Conclusions and Future

Work

This chapter concludes the researchpresented in the thesis by sum-

marising the contributions done to achieve the objectives for ego-

handgesture recognition conceptualised in thebeginning. Wealso

present the collaborativeworkwithNVidia that is currently happen-

ing as an extension of the research presented and possible future

extensions that can realise the idea of using ego-hand gestures as

natural interfaces for AR/VR in the Future Work section.

7.1 Summary

As stated earlier, motivated by the idea of using ego-hand gestures

as natural interfaces to interact with virtual environments in head-

mounted AR and VR devices, the objectives for research in this the-

sis were laid out to be the following.

1. Definecharacteristics of agoodego-handgesturedataset that

can be used to train ego-hand gesture recognition deep neu-

ral networks. Create an ego-hand gesture dataset that ad-

dresses the problem of adding new gestures with lesser effort

compared to the existing publicly available datasets while ad-

hering to the characteristics defined.
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2. Design a deep neural network architecture that focuses on

ego-hands in the images to improve the state of the art recog-

nition benchmarks on existing datasets and the new dataset

on trimmed videos.

3. Identify the problems in using the existing ego-hand gesture

recognition networks for real-world scenarios, devise solutions

to solve someof the identifiedproblems tomove towardsmore

usable neural networks.

Green Screen Dataset, a new ego-hand gesture dataset was intro-

duced to reduce the laborious data collection process to satisfy the

first objective. The details of the data collection process using a

green screenas abackgroundandhow thegreen screendata could

beaugmented to traindeepneural networks to recognise ego-hand

gestures was outlined concisely in Chapter 4. A thorough compari-

son of the number of steps needs to add anewgesture to theGreen

Screen dataset vs EgoGesture, and AirGestAR datasets were anal-

ysed. We showed that using the Green Screen dataset and process

outlined for creating augmented training data, ego-gesture recog-

nition networks can be effectively trained in Chapter 5.

A novel deep neural network architecture that pays attention to

ego-hands in a picture to recognise the gesture being performed

was presented in Chapter 5. This network operates on the premise

that encoding the spatial position of ego-hand in an embedding

would improve gesture recognition accuracy. To realise this idea

of simultaneously encoding an ego-hand and recognising the ges-

ture performed, a network architecture consisting of encoder-dec-

oder, embedding generator and sequence labeller was presented.

This network was trained and tested on three different ego-hand

gesture datasets, including the Green Screen dataset. In all the

three settings, the proposed network advanced the state of the art

accuracy metrics. We have shown that using ego-hand based em-

beddings can lead tobetter performanceevenwithmuchego-mot-

ion in the videocompared tonetworks that estimate theego-motion

and compensate for the estimatedmotion. We empirically verified
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that paying specific attention to ego-hands decreases the need for

a separate ego-motion estimation and compensation step. Abla-

tion studies performed to validate the efficacy of the ego-hand seg-

mentation based embeddings showed that these embeddings act

as a regulariser, helping the network achieve the state of the art

performance.

Anovel approach to recognisingego-handgestures fromuntrimmed

videowas proposed to accomplish the final and third objective. The

existing approachesmostly solved the problemof recognising ego-

hand gestures from trimmed video. However, to aid interaction

with virtual objects in AR and VR environments, ego-hand gesture

recognitionneeds toworkonuntrimmedvideos. Untrimmedvideos

containmany imageswithout any ego-hand gestures in them. The

recognition network needs to identify these images in the video to

ignore and pay attention to only the images containing gestures.

The existing methods used heuristics and adapted the networks

trained for ego-hand gesture recognition on trimmed videos to ad-

dress recognition on untrimmed videos. Our proposed StAG LSTM,

an extension to LSTM framework overcomes the need for using he-

uristics. The network architecture proposedworks directly for train-

ing using untrimmed videos without using any heuristics. We also

proposed a new loss function(IG Loss) and a better evaluationmet-

ric(CFJI metric). The proposed loss function helps early recogni-

tion of gestures giving the AR/VR systemmore time to react to the

user’s gesture and decrease the system response time. The StAG

LSTM network with IG loss was extensively tested and evaluated on

EgoGesture dataset beating the state of the art performance met-

rics.

7.2 Future Work

Ego-hand gesture recognition can also be used for communication

in co-working environments with robots. We are currently explor-

ing this ideaof usingego-handgestures as intentpredictors inwork

environment shared with robots. The research done to explore this
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idea is presented in the next section, while we present possible ex-

tensions to ego-gesture recognition in the latter section.

7.2.1 Intent Prediction for Co-working with Robots

Through Ego-hand Gesture Recognition.

The deployment of robots, both stationary and mobile, have been

increasing recently in all industrial sectors to keep up with the pro-

duction demands. While stationary robots can be used on manu-

facturing lines to assist with various tasks, mobile robots can trans-

port and move objects helping humans on the floor and alleviate

their physical labour. In both these scenarios, robots in co-working

space must understand the human intention for the robotic sys-

tems to make decisions that are both productive and safe. AR as

an interface in human-robot co-working space is being actively re-

searched to optimise safety, and productivity [126, 127, 128, 129, 130,

131].

We are looking at predicting the intent of human gestures from

an egocentric point of view provided by AR devices. Understand-

ing and predicting human intent in a co-working environment can

lead to efficient communication between humans and robots to

provide safety for humans and better planning for robotic systems.

Collecting data from the real-world human-robot environment is

not an easy task. There is ongoing work to provide a simulation en-

vironment that comprises of a co-working environment between

humans and robots in a warehouse. Preliminary experiments per-

formed using StAG LSTM(explained in Chapter 6) to predict intent

from ego-hand gestures showed promising results both on simu-

lated and real data. This work is being done in collaboration with

the NVidia ISAAC team.

7.2.2 Possible Extensions

The research presented so far in the thesis moved towards using

ego-hand gesture recognition in a real-world scenario. However,
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the head-mounted AR/VR devices have much less compute capa-

bilities compared to a desktop. The networks designed so far need

large GPUswith considerablememory to hold the network and run

massive parallel convolutional operations. One possible extension

to the current work would be to decrease the memory footprint

and look if redundant operations could be eliminated and define

a smaller network that can run on mobile GPU platforms to recog-

nise ego-hand gestures on AR/VR devices. Computation time for

recognising a gesture is also as important as the size of the net-

work. The response time to the gesture performed determines the

experience a user would have in the AR/VR environment. This re-

sponse time has to be almost negligible for the user to have a good

experience. In this regard the computation time for gesture recog-

nition is of paramount importance. In addition to smaller memory

footprint on the device, another direction that has to be explored is

the real-time detection of gestures.

Devices like the latest Oculus Quest can locate ego-hands in space.

The network we designed that generates embeddings for gestures

and ego-hands simultaneously can take advantage of this informa-

tion and could be adapted to recognise ego-hand gestures with

their location as an additional input. The current network designed

for recognising ego-hand gestures on untrimmed video does not

pay attention to ego-hands in particular. The SSAR network can

be adapted to pay attention to the ego-hands’ motion and can fur-

ther improve on CFJI and JI metrics, and early recognition than the

current state of the art. The state activation function defined in

StAGLSTM in the currentmodule is a simple, fully connectedneural

network. It would be interesting to use different variations of this

state activation function to address more complex scenarios like

thepresenceof non-egohands, ego-hands interactingwith real ob-

jects, and adapt the network to online ego-action detection.

Gestures are task specific, meaning a set of gestures used in one

application canbedifferent from thoseused in another application.

StAG LSTM architecture can be extended to identify the task/appli-

cation at hand, route the input to the right task/application recogni-
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tionnetwork. This cangive theuser experiencedesigners the ability

to tailor gestures to a given task, in-turn giving the enduser a better

experience.

The Green Screen dataset currently provides only trimmed videos.

We have conceptually and empirically shown that it is possible to

train ego-handgesture recognition algorithms on trimmeddata by

using green screen augmentation procedure. The Green Screen

dataset can be extended for untrimmed videos. Finally, for con-

sumer adaption of ego-hand gestures as an interface, theymust be

designed considering ergonomics. Ego-hand gesture recognition

algorithms in conjunctionwith user studies on various gestures can

lead to the design of ergonomic gestures paving the way to natural

interfaces in AR and VR sans a joystick.

We want to conclude the thesis with the hope that the research

done on ego-hand gesture recognition in terms of a new dataset,

novel deepneural network architectures, extending theLSTM frame-

work, a new loss function and a new evaluationmetric would even-

tually lead to large scale adaption of ego-hand gestures as natural

interfaces to AR and VR devices.
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