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Summary

Trinity College Library contains several million books. Catalogues for the more 
modern books have been computerised to allow readers a fast and efficient means 
of locating a book.

The 1872 Printed Catalogue which lists books owned by the library before 1872 
has not yet been computerised. The catalogue lists 165,000 books, some of which 
are the most valuable in the library. The purpose of this project is to write a 
computer program that will automatically computerise the catalogue using optical 
character recognition (OCR). OCR is the process by which a digital picture of a 
portion of text is converted into computer readable text. Each character on the 
page is represented by a group or ’blob’ of dots or pixels. The role of the computer 
is twofold; first to decide which pixels should be grouped together (ie which belong 
to the same character) and second to decide what character each of the blobs of 
pixels represents.

The output of the OCR program is sent to a database and will eventually be 
incorporated into the existing DYNIX© database, currently in use in the library.

The thesis contains a review of several different approaches to OCR, including 
feature vector analysis, discrimination trees, stroke analysis and neural networks. 
The implementation and results of a selection of these methods are described. The 
recognition or classification method used in this project, template matching, has 
not been implemented before as a primary classification method. The results of this 
thesis show that template matching compares very favourably with other classifi­
cation methods. The thesis describes the considerable work undertaken in deriving 
a good matching algorithm which is the key to success of template matching. The 
segmentation of lines and characters is described in full including the development 
of a very efficient perimeter tracing algorithm.

Before the final chapters on results, conclusion and future work, there is a chapter



explaining how a state machine is used, while classifying, to delimit the fields within 
each entry on a catalogue page.
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Chapter 1

Introduction

Trinity College Library currently contains almost 3 million books and is continually 
expanding. Catalogues for the more modern books have been converted to computer 
database form to allow readers a fast and efficient means of locating a book. The 
1872 Printed Catalogue which lists books obtained by the library before 1872 has 
not yet been added to the database. The catalogue lists some 165,000 books, some 
of which are the most valuable in the library. The purpose of this project is to write 
a computer program that will automatically convert the catalogue into computer 
readable text, using optical character recognition. The output of the OCR program 
will be sent to a database and will eventually be incorporated into the existing 
DYNfX^ database currently in use in the library. This thesis details the development 
of the project and describes the stages involved in converting a physical page of text 
to database readable form. Converting a physical page of text to database readable 
form involves several stages. The stages detailed in the thesis include: scanning, data 
compression and expansion, entry segmentation, line and character segmentation, 
field segmentation with a state machine, classification by template matching, split 
and merge detection and post processing.

1.1 Overview of this Chapter

This chapter describes the development of Optical Character Recognition over the 
last few decades and reviews the current status. There is also a description of

^DYNIX is a trademark of Sequent Computer Systems.



the layout of the catalogue pages and a factual history of the development of the 
catalogue itself from its conception in the mind of Bartholomew Lloyd in 1831 to its 
completion in 1887. The section on layout contains a picture of a typical catalogue 
page as well as a description of the format of an entry and a very detailed description 
of the format of shelf marks.

1.2 Optical Character Recognition

Optical character recognition (OCR) is the process by which a digital picture of a 
portion of text is converted into computer readable text. Each character on the page 
is represented by a group or ‘blob’ of dots or pixels. The role of the computer is 
twofold; first to decide which pixels should be grouped together (ie which belong to 
the same character) and second to decide what character each of the blobs of pixels 
represents.

Over the past four decades or more, much research has been undertaken into 
optical character readers or reading machines. The need for character readers sprang 
from the inability to store and process vast quantities of documents. There were 
other needs too, including the need to automatically find literature references, the 
need to translate human languages and the need to provide access to literature 
for the blind^. There was also the desire to replicate the functions of the human 
brain. Computers allowed huge amounts of data to be stored in very small physical 
areas but the problem of getting the data off the paper and into the computer 
still remained. In the late sixties and early seventies large, crude and extremely 
expensive character readers appeared on the market and were used in government 
departments and large institutions whei'e large quantities of paper were produced. 
These machines cost one million dollars or more and were usually only good for 
one font type or page structure. A standard machine readable font was described 
to improve efficiency. The research of the seventies and eighties largely solved the 
problem of reading printed text and research switched to reading handwriting[14, 16, 
20, 26, 27]. Recognition of handwriting on the fly is referred to as On-Line Character 
Recognition(OLCR) and is generally regarded as being easier than recognising pre­
written text as the strokes can be followed as they are made. Much of this research 
was and is taking place in Japan where Chinese and Japanese ideographs provide 
particular problems [3, 9, 20, 23, 27].

^In conjunction with a speech synthesizer.



There are now several OCR packages available off the shelf for personal comput­
ers and these packages are, by in large, very successful. A variety of classification 
methods are used including feature extraction and stroke analysis. A few of the 
more popular and ingenious methods are described in Chapter 2. The primary clas­
sification method used in this project, template matching, is described in Chapter 4.

1.3 The Printed Catalogue

1.3.1 Layout

An example of a library catalogue page can be seen in Figure 1.1. The page has two 
columns of text separated by a vertical solid line. Above the two columns is a single 
line of text giving information about the page. On the left of this line are three 
letters showing the opening letters of the first entry on the page. On the right are 
three letters showing the opening letters of the last entry on the page. In the middle 
of the line, above the dividing center line is the page number enclosed in round 
brackets. Section 4.6.1 describes how this line can be used to find the slope or angle 
of tilt of the page. The two columns of text can logically be considered to be one 
continuous column. This logical column of text is broken up into entries. As this is a 
library catalogue, each entry describes either a book or an author. Where an author 
has several books in the library, each separate book entry is shown by an elongated 
hyphen ‘—’. Each entry usually contains several fields (described below) and takes 
up several lines of text. To segment the page, the entries are first segmented and 
then, for each entry, the individual lines and characters are segmented. With the 
a priori knowledge of the page layout, the top left corner of the first character in the 
first entry can be found (if the page is aligned correctly (See Section 4.6.1)). This 
gives a point of reference from where everything else on the page can be found.

The pages contain several diffei'ent languages including English, Erench, Ger­
man, Dutch and Latin. These languages use the Roman alphabet. In addition there 
is Hebrew, Syriac, Russian, Arabic and Greek which use their own alphabets. Fig­
ure D.4 in Appendix D is a screen photograph showing an entry consisting entirely 
of Greek characters. The typeface has been identified by two independent sources 
as Old Style 2. Most of the text is llpt but the three-letter leaders at the top of the 
page are a larger size.
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Figure 1.1: Page 160



Page statistics

There are, on average, 4800 characters per page, 48 entries per page, giving an 
average of 100 characters per entry. There are 1.52 lines per page, giving an average 
of 32 characters per line and 3 lines per entry.

Format of an entry

An entry can be several lines long and usually contains the name of the author, a 
description of his work, the place and date of publication and the shelf mark. Extra 
fields can also appear. When the catalogue was being devised, several rules were 
drawn up to aid the editors in the layout. These rules can be found in Appendix A. 
The first field in the entry is usually the author name. However, if an author has 
several books listed, an elongated hyphen will show the start of the entry. The author 
name field is always in capitals, with a few rare exceptions, for example d’ARCY. 
The author name or surname can be followed directly by the book description but 
is more usually followed by the author’s first name. This usually appears in round 
brackets. The first name may be followed by the description or there may be another 
field that qualifies the author. The start of the book description is always signaled 
by an elongated hyphen. The description may contain all types of characters and 
can be several lines long. The location field does not always appear but when it 
does, it always begins a new line, after the description and is always in italics. The 
location is followed by the date field which is usually just four digits but can be 
surrounded by square brackets. The date field may be followed by a format field 
that can describe the size and/or the type of book. The format field is always 
followed by the shelf mark. The shelf mark occurs in the bottom right corner of the 
entry. There can be multiple shelf marks.

Shelf Marks

Most shelf marks have three sepai'ate sub-fields. These sub-fields show the Bay, 
Shelf and Place on the shelf where the book can be located. What can appear in 
each of the sub-fields depends on the location or what collection the book belongs 
to. The bay sub-field may be preceded by a prefix showing the building or 
collection. The following prefixes are possible:



• Gall, (for the gallery of the Long Room or for the east and west pavilions of 
the old library)

• Fag. (for the Fagel collection)

• Press, (for bookcases originally in the Librarian’s office)

• Quin, (for the Quin collection)

Where there is no prefix, the book is shelved in the Long Room. The bay, shelf 
and place follow the following format, depending in the prefix:

• Gall. (Long Room Gallery)

Bay: Capitals (A-Z, AA-ZZ)

Shelf: number with at most 2 digits 

Place: number with at most 3 digits 

Example: Gall. DD. 18. 39.

• Gall, (east and west pavilion)

Bay: number with at most 2 digits 

Shelf: lower case characters (a-z, aa-zz) 

Place: number with at most 3 digits 

Example: Gall. 5. k. 69.

• Fag.

Bay: Capitals (A-Z, AA-ZZ)

Shelf: number with at most 2 digits 

Place: number with at most 3 digits 

Example: Fag. C. 15. 110.

• Press.

Bay: Capitals (A-Z)

Shelf: number with at most 2 digits 

Place: number with at most 2 digits 

Example: Press. A. 1. 1.
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• Quin.

Quin is followed by a number in the range 1 to 127 and has the format: 
Quin, N° .127.

• <no prefix> (Long Room)

Bay: Capitals (A-Z, AA-ZZ)

Shelf: Lower case characters (a-z, aa-zz)

Place: number 

Example: K. mm. 32.

Where a single work spans more than one volume, extended bay marks may 
appear. For example 11. ee. 17, 18. shows that work occupies places 18 and 19 on 
the shelf and Y. e. 1-3. shows the work spans places 1 to 3 on the shelf.

1.3.2 History

In 1800^, Trinity College Library contained about 50,000 volumes. In 1801, the 
Copyright Act was extended to Ireland which allowed the library to obtain a copy 
of every book published in Britain and Ireland. In the years following, the size of 
the library grew rapidly. In 1802, the collection of Hendrik Fagel, Chief Minister of 
Holland, was acquired. This added about 20,000 volumes.

In 1831, Bartholomew Lloyd was appointed Provost. Lloyd was a radical who 
immediately set about reorganising many areas of college. It was always evident to 
academics that the library was not being utilised to its fullest extent through the lack 
of a proper catalogue. It was under Lloyd’s leadership that the college authorities 
began to consider undertaking the enormous task of compiling a catalogue. Up 
to that point and during the compilation of the catalogue, the library used the 
catalogue of the Bodleian library, with Trinity shelf marks added.

Work commenced on the catalogue unofficially in 1835. The initial cataloguing 
was done by preparing slips containing the basic information about the books. The 
catalogue was officially sanctioned on 11 Feb. 1837. Rev. James Henthorn Todd was 
appointed editor of what would be known officially as Catalogus librorum impresso- 
rum. qui in Bibliotheca CoUegii ... Trinitatis ... adservantur, known as the Printed

^Most of the information in this section has been gained from Kinane and 0’Brien[19].



Catalogue. Dr. Thomas Fisher was appointed Todd’s assistant in 1844. Todd and 
Fisher set about the task that would take fifty years to complete and who’s comple­
tion neither would see. The design of the catalogue was based on the rules'* used in 
completing the Bodleian catalogue and also that of the British Museum. It was to 
be a demy folio in small pica font (llpt.). Todd and Fisher made very slow progress. 
The first letter, ‘A’ was not completed until 1853 and it was not until 1864 that the 
volume containing ‘A’ and ‘B’ was printed. Todd died in 1867 and Fisher in 1869.

After the deaths of Todd and Fisher, the project was allowed to slide until 
1872 when Henry Dix Hutton was appointed editor. Jan Hendrik Hessels, was 
appointed his assistant. Hessels was Dutch and was thought useful in cataloguing 
the largely Dutch Fagel collection. Slow progress continued and Hutton and Hessels 
did not work well together. Hessels favoured complete accuracy while Hutton was a 
pragmatist and was aware of time constraints. The letter ‘C’ was completed in 1874. 
Hessels eventually lost favour with college and his contract was not renewed in 1878. 
T.V. Keenan was appointed as Hessels replacement. Hutton and Keenan worked 
together to the completion of the project in 1887. At completion, it documented 
about 165,000 books.

The catalogue was printed by the Dublin University Press and was the biggest 
job they had ever undertaken. It has 5,606 pages and the total cost approached 
£20,000; a huge sum at that time.

Because of its age, the paper in the catalogue has become very delicate and 
several attempts have been made to preserve it. In the 1960s, a company in New 
York made an unauthorised microfilm version and in 1987, the centenary of the 
completion of the catalogue, college decided to authorise a microfiche version. The 
next stage was to combine the catalogue with the current library database of modern 
books and so this project was born.

1.4 Plan of the Thesis

Chapter 2 is a review of several different approaches to OCR. In most cases, there is 
a discussion of a documented implementation of the method and, where possible, a 
discussion of the merits and problems of the method and the results. There is also 
a brief description of template matching.

*See Appendix A.



Chapter 3 describes how the project was designed and discusses the modules, 
functions and data structures used.

Chapter 4 is a discussion of template matching in general as well as the particular 
implementation in this project. Several ‘matching’ algorithms are discussed as well 
as the reasons for choosing the particular one used in this project. Some methods 
for improving template matching such as filters and multiple matching are discussed 
as well as a description of the problems involved with template matching. System 
training is also discussed and advice is given on choosing the right instances of 
characters as templates.

Chapter 5 describes how individual characters are segmented prior to classifi­
cation. The segmentation process is described in full, from segmenting entries to 
segmenting lines and characters by finding the bounding box through perimeter 
tracing. Segmentation problems are discussed as well as the considerable problem 
of splits and mei'ges on which the author spent much time.

Segmenting fields within entries was done by means of a state machine which is 
the subject of Chapter 6. The structure and use of a state machine is explained and 
the states and trigger conditions of the state machine in this project are described. 
Reduced template sets are introduced and their merits and problems are discussed 
along with a discussion of the merits and problems of the state machine.

Chapter 7 is a description of how postprocessing and context can be used to 
improve the accuracy of an OCR system. Several documented methodologies are 
described as well as the methods used and investigated for this project.

The penultimate chapter is Chapter 8, discussing the results and performance of 
the system. Errors in the text output are described and discussed and the success 
rate for several pages are given in tabular form. The system speed is also discussed 
as well as the use of time stamps to discover bottlenecks.

Chapter 9 discusses the success of the whole system and of template matching in 
particular and includes a section on suggested future work the might enhance this 
system or make template matching more effective. There are three appendices: A, 
B and C. Appendix A is a transcription of the original rules used to construct the 
catalogue. These were useful to the author in writing the software and are included 
as being of interest to the reader. Appendix B is a list of the hardware and software 
used throughout the project and Appendix C is a description of run length encoding
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which was used to in compressing the catalogue page. Finally there is a bibliography 
of the literature referred to throughout the project.
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Chapter 2

Review of OCR methods

2.1 Overview of this Chapter

The primary OCR method used in this project is template matching. Template 
matching is described briefly in Section 2.2 and in detail in Chapter 4. It is usual in 
an OCR system to use several recognition or classification methods. In general, one 
method is the primary method and one or more secondary methods may
be used to resolve ambiguities. For example, where a template matching system 
may have difhculty distinguishing between an ‘e’, ‘c’ and ‘o’, a feature vector or 
stroke analysis system may be used. Distinctive features such as the crossbar on 
the ‘e’ or the totally enclosed space of the ‘o’ can then be used to distinguish the 
character. The ‘c’ could be resolved by its area or perimeter length. Several other 
OCR methods are described in this chapter. Some of these have been used with 
some success on their own or may have been used with others. Where possible, 
results and performance have been included and the advantages and disadvantages 
of each method are evaluated.

2.2 Template Matching

Template matching is the primary OCR method used in this project and is described 
briefly in this section. The method is described in detail in Chapter 4.

Template matching requires at least one image or template, of every class of 
character that can be encountered, to be stored in memory. With each template
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is stored the name (in ASCII) and any other useful information such as the width, 
height, perimeter length and area. When an input character is to be classified, it 
is compared with each of the templates in memory. The name of the template that 
best matches the input character is returned by the classifier. Matching is achieved 
by superimposing the input character on each of the templates and counting the pix­
els that match. Each template then has a score for the given input character. The 
template with the highest score is the winnerl There are several scoring method­
ologies. The one used in this project was developed by the author and is described 
in Section 4.3. The advantages of template matching are its simplicity, ease of 
training and extendibility and the ability to readily identify the general structure 
of a character without having to view all the details. It also lends itself well to 
parallel processing. It’s disadvantages are its sensitivity to noise and orientation 
and insensitivity to distinctive features.

2.2.1 Results and Performance for Template Matching

Results and performance for template matching in this project can be found in 
Chapter 8.

2.3 Feature Vectors

Feature vectors though not used in this project, are widely used as a classification 
method. The idea is to record several key independent features of each character 
to be classified. Feature vectors can be simple or complex. In the simpler systems, 
features can include width, height, perimeter and moments, to name but a few. More 
complex systems include arc lengths, enclosed areas and stroke sizes. Statistics 
are gathered for each character to be classified. For each feature, the mean and 
standard deviation are calculated. If n distinct features are used, each character can 
occupy a unique area in n dimensional space. The features of an input character 
are plotted in the n dimensional space and the character is classified as that which 
it is geometrically closest to. Ambiguities can arise when the standard deviations 
overlap. This can be overcome by choosing more features or by ensuring that those 
features chosen are indeed distinct. Choosing distinct features is non-trivial in itself 
as for example, there is always some relationship between the perimeter and area of
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a character. A statistically based decision-theoretic feature system such as this was 
described as early as 1972 by Harmon[14, pages 1171—1172].

2.3.1 Line Adjacency Graphs

In a paper that is cited in many reports on OCR, Kahan et.al. [17] describe a clas­
sification system using Line Adjacency Graphs (LAGs). The aim was to recognise 
printed characters of any font and size. The line adjacency graph is really a method 
of representing the characters, the primary classification method being based on 
stroke-generated features. However according to the authors, the LAG allows for 
extremely fast thinning and feature extraction. LAG based thinning required 3 
minutes per page as against 20 minutes for conventional pixel based thinning.

A LAG is constructed from a scanned and run-length encoded image file (see Ap­
pendix C). The LAG consists of nodes corresponding to black areas in the image 
and branches that join nodes whose corresponding black areas touch. Blobs are 
represented as connected components of the LAG. The LAG is used to thin (see Sec­
tion 5.5.3) the input characters before classification, for contour or perimeter tracing 
and for feature extraction. When the LAG is traversed for thinning, the following 
features are extracted:

• character strokes

• number of holes

• hole location and size

• concavities in the skeleton

• stroke crossings

• vertical endpoints

• the minimum bounding box

A stroke is initially described by its two endpoint coordinates, < a^i, J/i, 2:2,2/2 >• 
This rectangular description is transformed to a polar one thus: < x,y,r^i > where 
< x,y > is the center point of the stroke and < r,i > represents the orientation 
and scaled length. When strokes are extracted and parameterised in this way, they
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can be plotted in parameter space. Similar stroke lie close together in parameter 
space and dissimilar strokes lie far apart. When several examples of the same class 
of character are plotted together they tend to cluster in a small area of parameter 
space. Input characters whose strokes fall within some of these cluster regions can 
be recognised as the relevant class. The full classification algorithm is more complex 
and too lengthy to describe here. The output of the classifier is a list of possible 
matches in descending order of probability.

Where the match provided by the statistically based primary classifier belongs 
to a known confusion group, a secondary classifier based on contour analysis is 
invoked. In general, the confusion group contain characters that are generally ‘com­
pactly shaped and nearly convex.’ Contour analysis using the LAG representation 
is faster than conventional contour analysis but the contour representation is an 
approximation. The contour is represented by eight line segments and classification 
is by means of a decision tree.

After classification, further improvements are made using layout and linguistic 
context. These methods are discussed in Chapter 7.

Results and Performance for Line Adjacency Graphs

Results and performance for the Line Adjacency Graph system of Kahan et.al.

• Scanner resolution: 200 dots per inch

• Page size: 1728 by 2048

• Processing speed: 5 characters per second on a DEC VAX 11/750

• Print quality: excellent

For testing, an alphabet of 70 characters were used, consisting of 26 upper case, 
26 lower case (not including ‘i’ and ‘j’) and 20 other characters. Tests were done with 
both single and several fonts. Small punctuation characters, multi-blob characters^, 
ligatures^ and other special characters were omitted from the test and this should be 
remembered in considering the results. Training and test character sets were disjoint.

^See Section 5.3.1. 
^See Section 5.5.2.
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Results described here are only a summary of more complex results listed by the 
authors[17]. For single and multiple fonts of size 12 to 18 point, the recognition rate 
was better than 99.5%. At or below 10 point size characters, the recognition rate 
went below 98%. For six fonts, the rate was 97%.

The authors suggest that bad recognition rates with small size characters could be 
remedied by using a higher resolution scanner (e.g. 300 dpi as used in this project). 
For speed considerations, the authors suggest using purpose built hardware.

The authors claim speed of 5 characters per second for the whole process. It is 
useful to compare this to the results of this project (see Chapter 8). The library 
pages contain roughly 4800 characters per page. This would translate to a time of 
16 minutes per page if the system of Kalian et.al. were used on the library pages, 
which is about twice the time taken by the software used in this project. It must also 
be remembered that only 70 characters were used in Kahan’s test, whereas over 300 
templates were used in this project. Remember also that Kahan’s system ran on a 
VAX 11/750 while the software for this project runs on an InMos T800 transputer.

2.3.2 Convex and concave features

Yamamoto[27] describes a system for classifying characters by the number and shape 
of the convexities and concavities in the contour or perimeter of the character. After 
the perimeter of the character has been found, it is divided into convex and concave 
segments. The segments are found by tracing the perimeter in two directions, both 
clockwise and anti-clockwise. Segment start points are found on the clockwise trace 
and end points are found while traveling anti-clockwise. Equation (2.1) gives the 
criteria for a point i being the starting point of a convex segment.

0i — $e > Si (2.1)

where 6i is the angle perpendicular to the tracing direction, 6^ is the minimum angle 
between the point i — 1 and the starting point and is a constant.

When each curve segment has been extracted, nine features are used to describe
it:

1. C, the index of convexity or concavity

2. G{Gx,Gy), the center of gravity of the segment
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3. LI, the arc length of the segment

4. L2, the linear distance between the start point and end point

5. Lq the degree of concavity

6. AG, the angle perpendicular to the line running through the start and end 
points

7. D12, the ratio of LI to L2

8. L12, the difference between LI and L2

9. H(r), the angular distribution of 0, for the segment

A mask is constructed for each standard character that consists of the maximum 
and minimum value for each feature. During classification, the features of input 
characters are extracted and matched against each of the standard masks, the one 
with the biggest score being the winner.

Results and Performance for Convex and Concave Features

16,800 handwritten characters were used for testing. 9,600 of these were used for 
training data and the rest for test data. When the training data was tested against 
itself, a rate of 99.95% was obtained! When tested against the test data, a rate of 
97.2% was obtained. Unfortunately no speed results were given.

2.4 Discrimination Trees

James Geller[ll] describes a character recognition method using a quadtree. A 
quadtree is a tree structure representing a picture, where every node is a leaf or has 
exactly four sons.

Each character is divided exactly into four regions. These regions are subdivided 
into four further regions and so on recursively until a region is a single pixel. Each 
region is represented by a node on the tree. Each node of the tree is either a leaf 
or has four sons. Nodes contain a ‘W’ or a ‘B’ if the corresponding area of the 
character is all black or all white, or an ‘M’ if the region is grey. A pixel represents
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one leaf on the tree. Every character could have its own tree but in Geller’s system, 
all characters are combined into a single tree. At each node of the tree, a hint list 
is kept. The hint list lists all the characters with a region described by this node.

When a character is to be added to a tree (during the learning or training phase), 
it is analysed by dividing it up into relevant regions. The character name is added 
to the hint list at every node that represents a region of the character.

In the recognition or classification phase, an input letter is analysed in the same 
way as in the learning phase. While the character is being analysed, the correspond­
ing nodes of the quadtree are traced through. If the input or unknown character 
contains a corresponding black or white area at the given level, then the hint list at 
that level is added to a result list. The letter returned by the classifier as the one 
being most similar to the input letter is the one that occurs most frequently in the 
result list. Geller uses an extra feature for recognition. At each node, a number be­
tween 0 and 1 is stored that represents the black pixel density, relative to the number 
of black pixels in the parent region. This density value is used during the recognition 
phase. Instead of keeping one hint list at every node, several may by kept, each cor­
responding to a different pixel density. For example, the following information may 
be stored at a node[ll]: {{w 0.3 (a e o) 0.4 {g q)) nil [m (...) 0.3 {j k 1) 0.41 (m n)))^. 
This shows, if the region is all white(‘w’) and the black pixel density for the parent 
region is 0.3 then the suggested letter's are ‘a’, ‘e’ and ‘o’. If the region is all white 
and the density is 0.4 then the hint list contains ‘g’ and ‘q’. The nil shows that 
there are no characters whose cori'esponding regions are all black. The ‘m’ shows 
the region is a grey area with different pixel densities for the hint lists (j k 1) and 
(m n). During recognition, only those hint-lists whose black pixel densities match 
those of the corresponding regions of the input character are added to the result list.

2.4.1 Results and Performance for Discrimination Trees

Tests were carried out on a VAX-750. 4 classes of character were used for testing: 
‘a’, ‘b’, ‘g’ and ‘o’. The system was trained with one instance of each class and 
was then tested with ten distoi'tions of each. Characters were handwritten. On the 
first run, 31 out of 40 or 77.5% were recognised. Better results could be obtained 
by raising the effort level of the program though this would inhibit performance. 
Learning times were less than 1 minute for a letter! Recognition times “varied

3LISP list.
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between several seconds and almost a minute”! The average recognition time was 
fifteen seconds. These times make the system completely impractical.

In a second test, an entire alphabet was presented to the system. One alphabet 
set was used as the training data and one as the test data. 17 out of 26 or 65% of 
the letters were recognised. 8 letters required additional teaching.

The advantages of this system seem to be its tolerance of character size and 
stroke-width variation. Its disadvantages are its intolerance to rotation and its lack 
of use of the base-line position.

2.5 Stroke Analysis

Stroke analysis involves analysing and extracting the strokes or straight lines of a 
character and can be thought of as a subset of the feature extraction method. For 
each character to be classified, each stroke is extracted, analysed and stored. The 
strokes of the input characters are analysed and compared with the stored sets to 
find the best match. For example, a capital ‘A’ consists of three strokes. One left 
to right diagonal, one horizontal and one right to left diagonal. The length of each 
stroke might also be stored. This could be stored in pixels (ie 20 pixels long) or it 
could be quantised (eg one of small, medium or long). So, for the ‘A’, one stroke 
is short and the other two are long. Stroke analysis is particularly useful for hand 
printed characters.

Banno et.aL[3] describe a system using stroke analysis. In their system, the char­
acter is first skeletonised (a process similar to thinning (see Section 5.5.3)) which 
reduces it to pixel-wide strokes. Features such as junctions, end points, inflection 
points and line segments are extracted. Strokes are extracted by calculating the 
probability of line segments joining together. After the strokes have been extracted, 
features of each stroke, such as direction, length and mid point are extracted. Di­
rections can be one of four:

• horizontal

• vertical

• left diagonal
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• right diagonal 

Length can be one of three:

• short

• medium

• long

Templates for each feature are created. There are four directions and three sizes 
so seven templates are used. For example, template one contains only the horizontal 
strokes in the character. Template five contains only the short strokes. Similarity is 
a function of the value of each template for each feature.

In addition to the stroke analysis, each 3x3 sub-area of the character is analysed 
for contour direction, junctions, end points and inflection points. Similarity of these 
features is a function of the difference between the input character and the standard 
character. Language processing is used to resolve errors.

2.5.1 Complexity indices

Saki and Mori[23] describe a preliminary classification system using stroke analysis. 
Their original paper is in Japanese and is described by Mori and Masuda[20] in 
English.

Complexity indices were developed for Chinese characters and give a value of how 
complex a character is in terms of the number of strokes and sub blobs it contains. 
Although developed for Chinese characters that have their own particular problems 
in relation to OCR, complexity indices may be useful as a quick pre-classification 
system for the Roman alphabet. Chinese Katakana characters are composed mainly 
of vertical and horizontal stroke components. The horizontal and vertical complexity 
indices for a character, given below, are defined as the ratio of its overall stroke length 
to the spread value of the pattern.

Cx —

Cy I
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Where Cx is the vertical complexity index, Cy is the horizontal complexity index, lx 
and ly are the total stroke lengths in the horizontal and vertical directions respec­
tively and ax and ay are spread values in each direction.

Diagonal strokes can be described in terms of horizontal and vertical components. 
The spread values are calculated from the second order moments around the central 
axes. Complexity indices could be used as a preliminai-y filter system, those standard 
characters whose complexity indices are not similar to the input character’s indices, 
being filtered out.

Results and Performance for Complexity Indices

No results were given for this method.

2.6 Neural Networks

Rajavelu et.al.[22] describe a comprehensive system for character recognition, using a 
neural network. A computerised neural network mimics the neural interconnections 
of the human brain. A neural network has input nodes and output nodes and one or 
more layers of internal nodes with node interconnections having different weights. 
Rajavelu et.al. extract features from an input character before submitting it to the 
neural net. Twenty features are extracted using Walsh functions [4]. These twenty 
features provide twenty inputs to the neural net. As the output of the net is to 
be a single character, that being the one most similar to the input character, the 
number of outputs is relative to the number of characters that can be recognised. 
Each output can represent one bit of a character name. Therefore, if eight outputs 
are used, one character is represented. As Rajevelu et.al. don’t need 256 characters, 
they use only seven outputs. For optimum convergence and recognition time, forty 
hidden nodes were used. Learning involves presenting each set of 20 features of each 
standard character, one at a time. Learning is implemented using back-propagation 
which involves changing the interconnection weights by feeding outputs back to 
inputs until convergence is attained.
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2.6.1 Results and performance for Neural Networks

When tested under different conditions, recognition rates of between 97% and 99% 
were achieved. The system failed to distinguish between the characters ‘r(el) and 
‘r(one) but this is standard for OCR systems. Another problem was that, as char­
acters are scaled to a standard size before recognition, similar upper and lower case 
characters can be confused. This could be remedied by adding a length feature to 
the input. In general, a problem of neural net systems is the slowness of the training 
phase.

The authors cite the advantages of this neural network system over existing 
techniques as being:

1. high speed of recognition

2. recognition for characters with improper alignment

3. font independence

The authors claim that the preprocessing techniques used are far less computa­
tionally expensive than those used in existing methodologies such as the line adja­
cency system of Kahan et.al. [17] while retaining efficiency and versatility.

2.7 Summary of this chapter

This chapter details several different character recognition methods. The methods 
cited vary from the well known (eg Stroke Analysis) to more unusual algorithms (eg 
using convex and concave features). Where possible, results obtained by the respec­
tive authors are shown. These results prove very difficult to compare and contrast 
because of the very different testing techniques, number and types of characters used 
and widely varying hardware. The recognition system used in this project, template 
matching, is described initially. Template matching was chosen as the primary clas­
sification method because of its simplicity, ease of training and extendibility and 
the ability to readily identify the general structure of a character without having to 
view all the details. It also lends itself well to parallel processing. In addition, global 
template matching has rarely been used as a primary classification method because
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of its perception of being more simplistic than more sophisticated methods. As can 
been seen fi'om the chapter on results, this project has shown template matching to 
perform very well.
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Chapter 3

System Overview

3.1 Overview of this Chapter

This chapter details the design and development of the project. The project is 
described from a top-down orientation showing how a full page is classified first 
by segmenting entries and then individual characters. All the modules and main 
functions used are described. Finally, the main data structures are listed.

3.2 Development Steps and Modules

The aim of this project is to design and construct OCR software that will be used 
to computerise Trinity College Old Library Catalogue, that is, to scan each page of 
the catalogue, convert to ASCII code, segment the fields of each entry so that they 
may be added to a database.

The project has several steps:

1. Scan each page with a digital scanner, compress and save to disk.

2. Run the OCR software on each page.

3. Write all segmented entries and fields to a database.

Step 2 can be broken down into a number of sub steps:
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1. Detect the beginning and end point of every entry on the page.

2. For every entry, segment the lines of text one by one.

3. For every line, classify every character in the line primarily by template match­
ing.

4. Using a state table, run through every classified character and delimit individ­
ual fields.

The software was originally written in Turbo-C and ran on an IBM AT. Because 
of the memory limitations of MS-DOS and the lack of processing power, the project 
was ported to an InMOS T800 transputer running Parallel C. The main procedure 
of the program consists solely of a large case statement that traps key presses. The 
main OCR functions are called from this case statement as well as several test 
functions, some of which have been combined with the main OCR and some of 
which have been discarded. The program consists of several modules as shown in 
Table 3.1. There is a ‘C’ header file for each module as well as two extra header 
files, tocr.var.h and tocr.def.h which list variable definitions and define commands 
respectively.

Module name Description
tocr.c main case statement and declarations
tocr_anl.c OCR high level functions
tocr_an2.c OCR low level functions
tocrJo.c input/output functions
tocr_util.c utility functions
tocr.help.c help text
tocr_scan.c digital scanning functions
graphics.c transputer to PC graphics

Table 3.1: Modules used in the project.

The ‘tocr.c’ module contains the mainline and consists of a large case statement 
that calls the other functions. The ‘tocr.anl.c’ module contains high level OCR 
functions that call the low level OCR functions of ‘tocr_an2.c’. The ‘tocrJo.c’ mod­
ule contains input/output functions concerned with screen, disk and printer. The 
‘tocr_util.c’ module contains utility and user interface functions. The ‘tocrJielp.c’ 
module contains a help function that provides help on all the operations available 
to the user. The ‘tocr_scan.c’ module contains functions for digitising a page in the
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scanner. Finally, the ‘graphics.c’ function is concerned with drawing graphics in 
transputer memory and then transferring them to the PC host VDU via the Alien 
File Server.

Figure 3.1 is a representation of the structure of the project. Only the central 
functions are depicted. For clarity, all other functions are left out. The arrows from 
one function to another indicate that the target function is called by the other. The 
function may be called more than once. For clarity, no loops are depicted. The 
numbers in the bottom right corner of the function boxes indicate the level of the 
function. Thus, the level one function is broken down into level two functions, each 
of which are broken down into level three functions and so on. Only the important 
functions are broken down. No training or tracing functions are shown.

3.3 Classifying a full page

The program (see Figure 3.1) provides various functions to classify either a single 
character, a single line or a single entry. These were used as development tools to 
test the OCR software. When the software is invoked to fully classify an entire page, 
the guesspage^ function is called. This is the upgraded version of the old^guesspage 
function that classified an entire page line by line. The guesspage function uses the 
full OCR software described in this project to classify a page entry by entry and using 
a state machine (see Chapter 6). Guesspage starts off by calling the mark-entries 
function. The mark_entries function finds the fii'st character of each entry on the 
page and writes the coordinates of each of these characters into an entry array. 
In this way the location of each entry is known. Next, the find-header function is 
called. This function reads the two three-letter headers at the top of the page. These 
are used to gain alphabetical knowledge about the page (see Chapter 7). Next, the 
first-and-last function is called. This function reads the first and last surname on the 
page and finds which characters are common (see Chapter 7 again). Guesspage then 
calls the guessentry function, for every entry on the page found by the mark-entries 
function. The guessentry function does most of the heavy work and is described in 
detail in Section 3.3.1.

4n this section, functions are written initially in italics and thereafter in normal text.

25



Figure 3.1: Functional breakdown of the project.

26



3.3.1 Classifying entries

The guessentry function takes the number of an entry as a parameter and then clas­
sifies that entry line by line, using a state machine. How an entry is segmented is 
described in Section 5.2. Guessentry first calls segmentJine which searches for a 
line of blobs within the given coordinates and places each blob found in a linked list. 
The list is later used by the character recognition software. Next, guessentry calls 
the findspHt function. Findsplit looks at the blobs in the linked list created by seg­
mentJine and using character recognition, decides if any of these blobs are character 
fragments and should be joined together. When full characters are found and classi­
fied, they are passed on to the state machine in the function delimiLfields. Findsplit 
calls the function checkspace to look for spaces between words and calls the func­
tion guessletter to classify characters. The main character recognition by template 
matching happens in the guessletter function and is described in Section 3.3.1. The 
delimitJields function contains a large case (switch) statement where the switch 
condition is the current state. Thus when a character is sent into the delimit Jields 
function, the correct case arms test for a state trigger condition and may change the 
current state. Then delimit Jields returns and findsplit finds and classifies another 
character. The perimeter tracing functions are described in Chapter 5.

Classifying characters

The character recognition or classification happens inside the guessletter function. 
The coordinates of the bounding box of a blob are sent into the function. The 
function then compares this blob or input character with all the templates in each 
of the template sets associated with the current state. The name of the best match 
character is returned as the function. The function also returns the number of the 
state from which the template came, the number of the template within that set 
and the score for the match. Before matching, templates are filtered by width and 
height (see Section 4.4). The function contains a case (switch) statement to allow 
for different template scoring methods. The switch condition is the current method. 
Scoring methods are described in Section 4.3.
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3.4 Main data structures

A digitised catalogue page was represented by a 2-D array, 3900 pixels long and 2544 
pixels wide. An array of this size (over 1.2 Megabytes) would not fit in memory as 
one contiguous block, so memory for each line of the page was allocated dynamically. 
So the data structure used is:

#define WIDTH 2544 
#define LENGTH 3900

unsigned char *page[LENGTH];

fordoop = 0; loop < LENGTH; loop++)
if( (pageEloop] = (char*)calloc(WIDTH/8,1)) == NULL){ 

printf("Error [etc.]\n"); 
exit(1);

}

Memory for the template data structure is also allocated dynamically. As de­
scribed in Section 6.3.3, templates are divided into sets. Each set is allowed a 
maximum of 100 templates. Templates consist of a bitmap and associated statistics 
including width and height as follows:

#define SETS 8 
#define SIZE 48 
#define ALPHABETSIZE 100

typedef struct{ 
char name[5]; 
char font; 
int width; 
int height; 
int perimeter; 
int width;

}st;

typedef struct{
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unsigned char bitmap[SIZE][SIZE/8];
St stats;

}tmplt;

tmplt *alpha[SETS];

for(loop = 0;loop < SETS;loop++)
if( (alpha[loop] = (tmplt *)calloc(ALPHABETSIZE,sizeof(tmplt))) == NULL){ 

printf("Error [etc.]\n"); 
exit(1) ;

}
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Chapter 4

Template Matching

4.1 Overview of this Chapter

In this project, a page is represented by a two dimensional array of pixels or picture 
elements. In the segmentation stage, this collection of dots is examined to decide 
which dots belong together and constitute a character. These collections of related 
pixels, which are called blobs are then presented to the classifier which decides 
which printed character they represent. The primary classification method used in 
this project is called template matching and is the subject of this chapter. Several 
matching algorithms are described and evaluated. Filters are introduced and their 
success in this project is analysed. The problems of template matching are described 
and ways to improve the process are discussed.

4.2 How template matching is used

Template matching can be used in two distinct ways:

1. To decide if a known pattern exists, eg. to decide if a picture contains a bird, 
a template of a bird would be tried in every possible position on the picture.

2. When presented with a pattern, to classify that pattern as one of a known 
type. eg. if we have a picture of a bird, the picture can be compared with a 
set of known bird templates to decide what type of bird it is.
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For OCR, template matching is used in the latter fashion. Each segmented blob 
of pixels is presented to the classifier. During the classification stage, the blob is 
known as the input character. To decide what the input character is, ie A,B,C etc., 
the classifier compares it to an array of character templates it holds in memory. 
These characters are known as the golden templates and are explicitly identified to 
the computer during the training stage, before recognition. The classifier overlays 
the input character directly on each golden template and by matching pixel against 
pixel, a probability score is generated for each template. The template with the 
highest score is the one that most closely matches the input character.

4.3 Probability scoring

A probability score is generated for each template with respect to an input character 
by superimposing the template on top of the character and counting how many 
pixels match. While in essence, a simple operation, a number of difficulties arise. 
Should both black and white pixels be matched or just black pixels on their own? 
What should be done with pixels that don’t match? What is the correct position to 
superimpose the template? The first two questions can be answered by an analysis 
of the pros and cons of different scoring methods. 1 have analysed five distinct 
methods of scoring as follows:

1. Give one point for each black pixel that matches.

2. Give one point for each black or white pixel that matches.

3. Give one point for each black pixel that matches and take away one point for 
every pixel that does not match.

4. Give one point for each black or white pixel that matches and take away one 
point for every pixel that does not match.

5. Take away one point for every pixel that does not match.

See Tables 4.1 and 4.2 for examples of each scoring method. Method 3 can be 
shown to be superior to method 1 because it will discriminate between characters 
that method 1 will render with the same score. Method 1 renders some characters
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with the same score because some characters are complete subsets of other charac­
ters. For example the letter ‘F may be matched perfectly with the letter ‘H’ (using 
method 1) as the left leg of the ‘H’ forms a perfect ‘F. See Figure 4.1. While methods
2 and 4 give a higher score value, adding in the white pixels merely adds a fixed 
amount to the score of every template and is therefore not productive. For these 
reasons, I have chosen method 3. Note that through filtering based on width and 
height (see Section 4.4), not all templates have been matched. In Table 4.1, the top 
score for each method is shown in bold. The second highest score for each method is 
underlined. For both characters, ‘E’ and ‘e’, method 3 gives the greatest difference 
between the highest and second highest score. For character ‘E’, method 3, the 
highest score is 65, the second highest is 40 giving a difference of 25. The other 
differences are 18, 1, 1 and 1 showing clearly that method 3 discriminates best. Eor 
character ‘e’, method 3, the highest score is 92, the second highest is 46, giving a 
difference of 44. The other differences are 26, 1, 3 and 1 showing again that method
3 discriminates best.

Method Max. C S G 0 T V P B H L E F

1 128 35 46 48 33 46 47 91 105 69 88 123 95
2 128 105 104 102 101 107 107 115 115 105 119 119 120
3 128 -121 -122 -124 -150 -98 -99 0 17 -88 29 65 40
4 128 83 80 77 74 87 87 102 102 83 111 111 112
5 128 106 105 103 102 108 108 116 116 106 120 120 121

Table 4.1; Score values for the character ‘E’ (highest values in bold).

Method Max. r s a z c e o u n

1 128 53 51 92 76 92 118 88 81 74
2 128 119 118 120 120 124 125 121 119 117
3 128 -53 -71 -2 -25 46 92 9 -27 -56
4 128 111 109 113 112 120 123 115 111 107
5 128 120 119 121 121 125 126 122 120 118

Table 4.2: Score values for the character ‘e’ (highest values in bold).

In practice, counting black pixels that match can be done with an AND function 
and counting pixels that are different can be done with an XOR function. Eor 
speed, operations can be done a byte at a time. One byte from the input character 
is ANDed with the corresponding byte from the template and then the bits in the 
result are counted. Again, for speed, the counting can be done with a look up table 
(LUT). The LUT is set up once initially by counting the bits in each number from
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Figure 4.1: The character ‘H’ can be mistaken for ‘I-P

0 to 255. The score for a byte is then given by:

LUT[c AND i] - LUT[c XOR t] (4.1)

where t is a byte from the template and c is the corresponding byte from the input 
character. Note that AND and XOR refer to numerical bitwise functions, not logical 
functions. The score for the whole character is given by:

score = ^ LUT[cx AND t^] — LUT[cx XOR tx] (4.2)
a:=l

where n is the number of bytes in the template.

In practice, there is a more efficient way to get the desired result. As mentioned 
in the above paragraph, the black pixel area of both the template and the input 
character are known. When the template and character are ANDed together, the 
value of the two blobs XORed together is given by the area minus the AND value 
as the only pixels left out of the area must be those that don’t match. This must be 
done for both template and character. This means that, for a template containing 
n bytes, n XOR operations can be replaced by two subtractions and one addition 
operation as follows. From equation 4.2, the total number of black pixels (the AND 
value) that match is given by:

Y, LUT[cx AND tx] (4.3)
x=\

The total number of pixels that do not match (the XOR value) is then given by:
n

Y, LUT[cx XOR tx] — {carea — n) {tarea — /i) (4-4)
a:=l
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where carea is the number of black pixels in the input character and tarea is the 
number of black pixels in the template.

Substituting terms into equation 4.2, the total score is then given by (4.3) minus 
(4.4) ie:

score = /r — {carea — n -\- tarea — /i) (4.5)

which gives:
score = /X — carea + /x — tarea + /x (4.6)

giving the total score as:

score = 3 * /X — carea — tarea

n

score = 3 * ^ LUT[cx AND t^] — carea — tarea
X=l

thus eliminating the XOR term from equation (4.2).

or

(4.7)

(4.8)

If we wish to use a threshold with the character score, that is, we want a cut­
off point for bad matches, then we need to normalise the score. The score is not 
naturally normalised because characters can vary in size and so the maximum score 
available for each template can be very different. To normalise the score, a percent­
age can be used. The normalised score then, is given by:

{real score) * 100
{area of character) (4.9)

Note that the maximum score possible is given by the area of the character, i.e., 
the number of black pixels in the character. Note also, to optimise for speed, 128 
may be used rather than 100 so that a shift operation is used rather than a multiply.

4.4 Filters

Filters can greatly reduce the number of template matches and can sometimes in­
crease accuracy. Normally, to identify what template an input character is most like, 
it is compared to all the templates in a template set. Using a filter however negates 
the need to match against all templates. Some templates, which are obviously dis­
similar to the input can be filtered out. Templates are ‘obviously dissimilar’ when
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Figure 4.2: Matching the character ‘A’ by Method 3.

for example their width or height is completely different to that of the input. For 
example, comparing a ‘W’ template with a full stop character wastes a lot of time 
when a simple check on the width difference can filter out that match. Refer back to 
Tables 4.1 and 4.2 again in Section 4.3. In Table 4.1, the character ‘E’ is matched 
only against 12 templates, not the full alphabet. In Table 4.2, the character ‘e’ is 
matched only against 9 templates. Close inspection will show that those templates 
matched against the charactei's are all similar in height and width.

Several filters can be used. Width and height filters were used in this project 
but perimeter and area filters could also have been used. It was found however 
that perimeters and areas deviated much more than widths and heights and were 
generally unreliable as filters. It must also be remembered that, for best results filter 
features must be independent of each other. Area and perimeter are not totally 
independent of width and height and so will generally filter out the same templates 
as the width and height filters, with no gain. The perimeter value was even more 
unreliable in cases where a character illegally touched itself thus enclosing an area 
and altering the perimeter length (see Figure 4.3). For example, if the end points of 
the ‘c’ character should join making an ‘o’, the perimeter length is thus made much 
smaller than it should be for a standard ‘c’.

Filtering is achieved by subtracting the template value from the character value 
and comparing the absolute value of the result with an a priori threshold percentage 
and ignoring templates above the threshold percentage. If a high threshold value is 
used, eg. >50%, then the value of the filter is diminished as templates which are 
obviously dissimilar will be matched. On the other hand if a very low threshold
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Figure 4.3: Character ‘o’ has a much smaller perimeter than character ‘c’.

percentage is used, eg <5% then templates of the correct class may be erroneously 
removed. A value must be chosen that is high enough to ensure that ‘good’ templates 
are never removed. Experiment showed that character widths and heights could 
deviate from their means by as much as 10%. A threshold percentage of 15% was 
chosen to ensure that characters of the correct class were not ignored. Thus if a 
template’s width and height were not within 15% of the input character’s width and 
height respectively, the template was filtered out. For small characters (full stops, 
commas etc.), the 15% value was replaced by a constant value of 5 pixels because 
small characters tended to deviate by a lot more than the standard 10%. The width 
filter used in this project is given by:

filter = {abs{twidth — cwidth) < max{5, cwidth * 15/100)) (4-fO)

where twidth is the width of the template and cwidth is the width of the character.

4.4.1 Analysis of success of filters

At the time of testing the success of the filters there were 314 templates used by the 
system. Table 6.3 in Section 6.3.3 shows that these 314 templates were divided into 
8 groups. When an input character was matched only against the one set to which 
it belonged, between 36% and 94% of templates were filtered out. On average 70% 
of templates were filtered out. When the same input character was matched against 
all 314 templates, between 78% and 99% of templates were filtered out. On average, 
87% were filtered. The figure of 87% means that out of 314 matching operations, 273
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could be avoided, leaving 41 templates to be matched. If a set were used, containing 
on average 40 templates, 70% percent or 28 of these would be filtered out leaving 
only 12 (or 4%) of the original 314 templates to be matched, making the matching 
process about 25 times faster.

The filtering percentage of course depends on the input character. For example, 
characters with distinctive heights or widths eg: ‘i’, ‘t’, ‘W’ are dissimilar to
most other characters and hence most templates will be filtered. Other characters 
such as ‘e’, and ‘L’ have more average dimensions and so fewer templates will be 
filtered.

4.5 Multiple matching by shifting position

What is the correct position to superimpose the template on the input character?

In the segmentation stage, the bounding box of an input character is found 
by tracing the perimeter of the blob and recording the limits in four directions. 
The simplest way then to match the input character against the templates is to 
‘superimpose’ the template on the input character so that the top left corners of the 
boxes match up. I will refer to this position as the central position. This may not 
be the optimum position. The input character is never perfect. If it was, the OCR 
process would be trivial. For various reasons, including dirt on the page, dust on the 
scanner window, excess ink when printing or shards of metal on the printing blocks, 
a character may contain ‘spikes’. A spike will erroneously extend the bounding box 
of a character in a particular direction. Because of the spike, the central position is 
no longer the optimum position. To find the optimum position, a series of matches 
must be made, by shifting the template one or more pixels in every direction. Casey 
and Nagy[9] matched as much as seven pixels away from the center. ‘Every’ direction 
may mean the four points of the compass - top, bottom, left, right or may include 
the diagonals - top left, top right, bottom left, bottom right, making nine positions 
in all, including the center. The optimum position is then the one that gives the 
highest score. In the early seventies, when primitive OCR machines were large and 
expensive, shifting was done in hardware, using huge shift registers that allowed the 
characters to shift past the sensors at very high speed[7]. Hardware solutions are no 
longer absolutely necessary thanks to high speed processors.

If care is taken to keep the scanner and page as free of dust as possible and
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Figure 4.4: Multiple matching in four extra positions.

contrast and brightness settings are carefully chosen, then, in most cases, spikes are 
not significant and the central position will give a good match. This is important 
because matching a template six times over in shifted positions makes the program 
six times slower. Multiple matching is computationally expensive but can be useful 
in resolving doubtful matches. For example, it could be used only when a direct 
match at the central position has produced a very low match score. The author 
experimented with multiple matching and found it to be very useful. However, 
recognition speed is reduced dramatically if the method is used for every match. 
The usefulness of multiple matching seems to lie in resolving bad matches. Thus, 
when used only rarely, recognition speed will not drop dramatically.

4.6 Problems with template matching

As a pattern recognition system, template matching is very elementary and takes no 
notice of the shape or detailed physical characteristics of the character. As a result, 
some problems arise. These problems are described in the following sections.

4.6.1 Erroneous match because of tilted text

WTen an input character is to be matched against a set of templates, care must be 
taken to ensure that the character and templates are in the same plane. For example.
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there is no guarantee that the page has been aligned properly in the scanner, or that 
the original text was not printed at an angle to the normal. It must also be made 
certain that all the templates are in the same plane and that that plane is known.

Let us examine what will happen if the page^ is inserted in the scanner at an 
angle to the norm. If the tilt is very serious (ie greater than a few degrees), the 
first problems will be encountered in the segmentation stage as lines of text will 
not be straight. However, for the purpose of template matching, let us presume the 
characters have been segmented correctly. Let us presume also that the templates 
have been aligned correctly. Because template matching does not take account of 
the physical characteristics of the character, it cannot decide which pixels in the 
character and template correspond. Because it scores the pixels line by line in a 
horizontal grid, the wrong pixels will be matched and a bad score will result. The 
worse the angle of tilt, the worse the score.

To avoid this problem, one of several things can be done:

1. While placing the page in the scanner, make sure it is aligned properly by eye.

2. Calculate the angle of tilt of the page and adjust the character or templates 
accordingly.

3. Calculate the angle of tilt of the page and instruct the operator to readjust 
the page.

4. Calculate the angle of tilt of the page and rotate the page mathematically.

Initially, while developing the software, I relied on method 1 above. This proved 
to be unsatisfactory as the software was intolerant to a very small degree of tilt. 
This made it impossible to judge with the human eye. It was clear I needed to 
calculate the slope of the page.

Methods 2 and 4 both relied on a rotation algorithm. I disliked this for two 
reasons. First, rotation is time consuming and secondly I felt that the extra element 
of distortion brought in by the rotation would be unacceptable. The library pages 
have a title line containing two three character leaders (see Figure 1.1). I was able 
to read this line and then calculate the slope. In practice, this meant the scanner

picture of a library page can be seen in Figure 1.1, in Section 1.3.1 towards the front of the
thesis.
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reading a small portion of the top of the page, finding the title line, calculating the 
slope and then reporting to the operator if the slope was outside a certain tolerance 
and then rechecking when the operator had corrected the alignment. This is effec­
tively method 3 above. This worked well in practice but it must be remembered, 
the method becomes more unstable as the angle of tilt increases. This was not a 
problem as the human eye can align the page sufficiently initially.

4.6.2 Erroneous match because of bias

Template matching as 1 have implemented it causes another problem which was not 
apparent to me initially.

When an input character is ready to be matched, it is copied from the page 
into a two dimensional array. The character is copied pixel by pixel into the top 
left of the array (see Figure 4.5). This causes problems as it presupposes that the 
top and left hand sides of the character are as they should be and do not contain 
spikes (see Section 4.5). If there are spikes on the top or left, the character will not 
be aligned properly with the template. The author has not addressed this problem 
but solutions include multiple matching as described in Section 4.5 or aligning the 
character with the template by finding the center point of each.

Figure 4.5: A character is stored in the top left corner of the template array.
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4.7 Training

For any system to recognise characters, it must have some description of what each 
character looks like and its corresponding name. When a candidate character is 
ready for classification, it is compared with each character description or set of rules 
(depending on the classification system) and the name of the character it most closely 
matches is returned. The process by which a system is configured with the character 
names and descriptions is called training. Some OCR systems need minimal training 
and this can be hard-wired into the program so the user is oblivious to it. Such 
systems try to provide general purpose OCR and will attempt to recognise any font; 
best results being gained from standard printed text on A4 paper. For a system to 
give good results with unusual fonts and page layouts, it must be possible for the 
user to reconfigure it. Thus the package usually has a training option where the user 
can identify new fonts to the system. As this project is specifically concerned with 
recognising pages from the old library catalogue, a comprehensive run time training 
system was important. As the primary classification system used in this project is 
template matching, this section only concerns itself with template training.

In training mode, a blob or candidate character is found in the normal way. 
During normal recognition, this would be passed on to the classifier. In training 
however, the blob is highlighted on the screen. I chose to highlight the blob by 
drawing its bounding box rectangle. The blob could also be highlighted in reverse 
video. Blob statistics such as area, perimeter, width and height are also displayed. 
When the blob is highlighted on the screen, the user is invited to explicitly identify 
the character by name. After typing the name, the user is asked which character 
set the template should be put in. The use of reduced character sets is described in 
Section 6.3. The character bitmap or template is then copied from the page array to 
the end of the relevant template array if there is space for more templates. The new 
template set is not saved to disc until the user wishes it to be. Other information 
such as the character’s perimeter, area width and height can also be saved. The 
following C structure is the template data structure used in the program:

#define TEMPLATESIZE 48

typedef struct { 
char naimeLS] ; 
char font;
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int width; 
int height; 
int perimeter; 
int area;

}st;

typedef struct {
unsigned char bitmap[TEMPLATESIZE][TEMPLATESIZE/8]; 
st stats;

}tmplt;

4.7.1 Template Selection

Selecting which instances of a character to store as a template is very important. 
Ideally, the template should be an average of all instances that can be encountered. 
This would ensure that the difference between any input character and its template 
would be kept to a minimum. In practice, the template is chosen by the operator. 
The template should not necessarily be a perfect representation of the character. 
If the system is biased in some way (for example, the scanner contrast settings are 
too high) then a template that reflects that bias should be chosen. Noise will not 
necessarily average out.

It is also important to realise that templates should not be taken from a page that 
is tilted too much. Tilted templates will obviously lead to bad results. This should 
not be a problem if some form of tilt correction system is being used (see Section 
4.6.1). Where a page is tilted beyond a certain tolerance, I chose to have the 
page manually repositioned rather than doing a bitwise rotation to correct it. If a 
rotation algorithm were used, templates could be taken from any page at any angle 
and rotationally corrected.
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Chapter 5

Segmentation

5.1 Overview of this Chapter

The process by which the computer decides which pixels should be grouped together 
to form a character, which characters form a word and which words form lines, is 
called segmentation and will be the subject of this chapter. The process of segment­
ing a character is described in depth from finding the bounding box by perimeter 
tracing, to resolving split and merged characters. Other problems such as multi-blob 
characters and what to do with inter-word spacing are also dealt with.

5.2 Segmenting entries

When the top left of the first character in the first entry has been found, that point 
is marked as the coordinate of the top left of the first entry. The perimeter of the 
blob can then be traced to find its bounding box (see Section 5.4.2 and Figure 5.2). 
As can be seen in Figure 5.1, the first word in each entry protrudes slightly to the 
left of the rest of the text in the entry. This means that the first character in the 
next entry can be found by scanning directly down from the first character until the 
first character in the next entry is located. From the top left of that character, we 
have both the top left coordinate of the second entry and the bottom left coordinate 
of the first entry. The distance from the left hand side of the text to the center line 
is known and hence the four coordinates of a box totally enclosing the entry can be 
calculated. By hopping from the first character in each entry, an array of bounding
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TALLEYRAND (Henry cle), compte de Chalais.—
Recit de son execution [tom. V. p. 131, 2de serie, 
Archives curieuses de I’histoire de France par 
F. DANJOU]. Gall. M. 14. 34.

TALLEYRAND - PERIGORD (Charles Maurice, 
prince de).—Memoirs of him, containing the par­
ticulars of his private and public life, of his intrigues 
in boudoirs as well as in cabinets, by the author of 
the Revolutionary Plutarch.
Lond. 1805. 12°2 vols 0. mm. 63, 64.

— Causeries sur les affaires du terns entre les deux 
premiers jongleurs de I’Europe [Louis Phillipe et 
Talleyrand ].
[car. tit.] 8°. G. tt. 27. N°. 5.

Figure 5.1: 3 Entries from page T12 of the catalogue.

coordinates can be constructed for each entry. The next stage is to take one entry 
at a time and segment the lines and characters within that entry.

5.3 Segmenting lines and characters

To segment the lines in an entry, the top left coordinate of the entry is found, which is 
the top left of the first character in the entry and the bounding box of that character 
is found by tracing its perimeter. The next character is found simply by scanning 
to the right of the first character and tracing its perimeter in similar fashion. In 
this way each character in a line can be segmented. Segmenting characters must 
stop before hitting the center line which is a known distance from the beginning of 
text. When a character has been segmented, it can be immediately passed on to the 
recognition software to be classified or it can be retained in a buffer. In the early 
development stages of this project, the former method was used. The project was 
later changed so that all characters in a line are segmented, stored in a buffer and 
then passed one at a time to the classifier. By storing the characters in a buffer, they 
can be manipulated before classification. Why might it be desirable to manipulate
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Figure 5.2: Bounding boxes of two characters.

the characters? Because characters are found by looking to the right of a previous 
character, two things can happen: some characters or parts of characters can be 
missed such as dots on ‘i’s (see Section 5.3.1) and punctuation marks and extra 
characters and noise can be interpreted as legitimate characters such as characters 
on the preceding or following line. By storing the characters in a buffer, the real high 
and low limits of the line can be decided and descenders can therefore be removed 
from the line above and ascenders from the line below and we can look for dots on 
‘i’s. Rather than use an array, I used a doubly linked list to optimise for speed. 
Using a buffer can also help with splits and joins as described in Section 5.5

5.3.1 Problems with multi-blob characters

Some characters are composed of multiple blobs such as the characters ‘i’, ‘j’. 
Except for the quotation mark (”), all these characters are split 

in the vertical plane. The quotation mark (”) is split in the horizontal plane and as 
such, it is usually resolved by the split detection system. For characters split in the 
vertical plane, the bounding boxes of the individual blobs must be merged together
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to form the bounding box of the whole character. When a blob is found, the area 
directly above and below that blob must be scanned for sub-blobs. When a blob has 
been found, it is passed to the findsub.blob function which scans above and below 
the blob within the confines of the current line. Sub-blobs of a multi-blob character 
are then joined by finding the combined bounding box of the constituent blobs. For 
example, the character ‘i’, is a multi-blob character containing two blobs: the main 
shaft of the ‘i’ and the dot. The main shaft is usually found first as it protrudes 
slightly more to the left. By scanning directly above the shaft, within its width, the 
dot can be found. There is no need to scan below the shaft as its base corresponds 
with the bottom of the line. If the dot is found first, scanning below will find the 
main shaft.

Scanning for sub-blobs presents problems when dealing with italics as italic char­
acters tend to lean over each other. Becanse of this leaning, dots on ’i’s etc. may 
be overlooked or the previous character may be re-traced with disastrous effects, 
so it is best to turn off sub-blob scanning while classifying italics and rely on split 
detection to resolve multi-blob characters. This means that the point where text 
changes to italics and the point where it changes back must be detected. Detecting 
these change points is relatively easy if template sets are used and if not, the change 
can still be detected by storing the font type and style with the template.

5.3.2 The space character

As well as the characters that compose words, the space characters (‘ ’) which 
separate words must be detected. Once detected, a space can simply be converted 
to the ASCII space character and included in the output. There is no need for 
a ‘space’ template. Space characters are detected be measuring the gap between 
characters. This is done in conjunction with the split detection system. If the gap is 
below a certain threshold, a split character is suspected and investigated. Otherwise 
a space character (ASCII 32) is added to the output text. Sometimes, a large space 
is deliberately left between successive characters. This space can constitute several 
space characters and it is a matter of taste whether all these space characters should 
be processed. I chose to condense all space down to one character as the layout of 
the entries is not important to the output which is sent to a database.

struct space_structure { 
int character;
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int size;
}

In this project, a simple structure was used for a space character containing two 
fields, a boolean, indicating if a space is present or not and a size field, showing the 
size of the space. When a space is detected, the space structure is set accordingly 
and this is passed to a state machine (see Section 6.3). The size field is necessary 
as it is used in some of the trigger conditions in the state machine.

5.4 Finding the bounding box

To find text on the page, the page is scanned backwards and forwards, line by line 
in an area of the page where something is expected to be found, until a black pixel 
is found. Having found the pixel, it must be ascertained if it is a piece of noise 
or part of a character. To do this, any other pixels that may be connected to it 
must be found. All neighbouring pixels could be examined recursively and a map 
of the blob built up or the perimeter of the blob associated with the pixel could be 
traced. As the first method is obviously slower, I chose the second. Using perimeter 
tracing, both the area and perimeter of the blob can be calculated as a byproduct 
of the perimeter trace algorithm. Perimeter tracing can also produce a chain code 
which is just a list of all the positions on the perimeter. Chain codes can give useful 
information about a blob, including the location and size of features such as strokes 
and corners. The author experimented with chain codes in an attempt to calculate 
the area of a character while tracing its perimeter. This was unsuccessful and was 
not pursued.

Banno e<.a/.[3] use vertical and horizontal signature analysis (see Section 5.5.2) to 
find all the bounding boxes of characters in a line. A horizontal signature analysis or 
projection is performed on the entire page, which delimits the lines of text. Vertical 
signature analysis is then done on each of these text lines to segment each blob in 
the line. As each blob is segmented, its bounding rectangle is revealed. This method 
was not used in this project. Banno et.al. do not say how how the signatures are 
analysed to find the individual blobs. The author of this project felt that this was 
non-trivial and that the straightforward perimeter tracing method described above, 
was at least as fast and rendered more useful information.
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5.4.1 Connectivity

A brief discussion of connectivity will make the perimeter tracing process easier to 
understand. Connectivity is about which neighbouring pixels are connected to a 
central pixel. With 8-way connectivity, the central pixel is connected to all eight 
neighbouring pixels. With 4-way connectivity the central pixel is connected only 
to the four pixels at the poles of the compass. See Figure 5.3. In a binary image, 
background and foreground pixels must be of opposite connectivity (ie. 4-way and 
8-way or vice versa). If they are not, impossible situations occur. In Figure 5.4, 
if both the white pixels and the black pixels are 8-way connected, then the two 
white pixels are connected to each other and the two black pixels are connected to 
each other which is impossible. If the white pixels are 4-way connected and the 
black pixels are 8-way connected then normality is restored. For perimeter tracing 
purposes therefore, background (white) pixels are considered 4-way connected and 
foreground (black) pixels are considered 8-way connected.

Figure 5.3: 4 and 8-way connectivity.

5.4.2 Perimeter tracing

In the wider area of computer vision and pattern matching, perimeter tracing is 
often referred to as contour analysis. In a binary image as used here, the term 
‘perimeter tracing’ is adequate.

To trace the perimeter of a blob, a start point is needed. This start point is 
provided by an initial search procedure as described above. The function of the
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Figure 5.4: Black pixels are 8-way, white pixels are 4-way connected.
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perimeter tracer is to move around the perimeter of the blob until it returns to 
the start point, while recording the bounding box. The perimeter length and area 
can also be calculated ‘on the fly’ as described below. My trace algorithm follows 
below. It is a refinement of a more primitive algorithm described and constructed 
previously by myself [1]. It traces the blob in one direction (eg down) while trying 
to change direction (eg right). A blob may be traced clockwise or anti-clockwise. 
I deemed that the direction would be anti-clockwise so the sequence of directions 
is: DOWN —* RIGHT —> UP —* LEFT. My perimeter trace algorithm follows 
below. The key variable is the direction variable ‘dir’. This contains the direction 
we are currently traveling around the blob. It may have values in the range [0..3] 
representing the four directions. The perimeter variable is used to calculate the 
perimeter by incrementing after every step. The perimeter value returned is four 
more than it should be and needs to be corrected. This is because the algorithm 
does not actually count the perimeter pixels but counts all the pixels surrounding the 
blob. For example, consider a blob containing just one pixel. It’s perimeter length 
is four but the number of pixels surrounding it is eight. So, for this algorithm, four 
must be subtracted from the perimeter length before it is returned.

A initially go in the DOWN direction but try to change to */ 
A the RIGHT direction */
A down:0, right: 1, up:2, left:3 */

dir =0; A ie DOWN */
perimeter =0; A set perimeter counter to zero */

do{
check bounding box
if the pixel in the next (dir+1 mod 4) direction is on{ 

if the pixel in the current (dir) direction is on
if the pixel in the previous (dir+3 mod 4) direction is on 

A we^re in a cul-de-sac so reverse direction */ 
dir = (dir+2) mod 4

else A travel out around the obstruction */
A go back to the previous direction */ 
dir = (dir+3) mod 4

}
else A increment the direction +/
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dir = (dir+1) mod 4
go one step forward in the dir direction 
perimeter++

}while not back at the starting point

Calculating the area while perimeter tracing

The author investigated the possibility of calculating the area of the blob, that is the 
number of black pixels, while tracing the perimeter. A simple way of calculating this 
area was developed, for all characters that do not contain enclosed space as found in 
an ‘A’ or ‘O’ for example. Because of the existence of characters containing enclosed 
space, it proved easier to simply count the pixels row by row rather than calculate 
the enclosed space.

5.5 Splits and merges

There are two related problems that pose a challenge to character recognition. The 
first is where a character may be split up into two or more pieces and the second 
is where a character may become merged with a neighbouring character. Because 
of these problems, it is not merely sufficient to segment single blobs and pass them 
on to the classifier, one after the other. To have any chance of approaching a 100% 
recognition rate some attempt has to be made to decide if a blob is really two or 
more blobs stuck together or just a small fragment of a larger blob. These problems 
are non-trivial. I had much more trouble with splits than merges.

Splits and merges in characters can occur for several reasons. These include: 
bad scanning parameters, insufficient or too much ink on the printing blocks, badly 
finished or worn printing blocks, dirt on the scanner screen or page, bad thresholding 
in the scanner, or even ink fading. Some of these problems can be addressed such 
as choosing the best scanner contrast and brightness settings, cleaning the scanner 
screen and even choosing a good quality scanner. The other problems remain and 
must be resolved with software. Figure D.l in Appendix D is a screen photograph 
showing three entries each indicated by a leading hyphen. The first hyphen is split 
in two parts.
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5.5.1 Splits

My initial approach to resolving splits was to take a simple ad hoc approach. This 
solution proved unworkable but is worth commenting on as it demonstrated the com­
plexity of the problem. Because the library pages are of standard format (see Sec­
tion 1.3.1), the maximum character width and the average inter character gap are 
known. With this information, a primitive split detection system can be constructed. 
If it is known that the average gap between characters is, x pixels wide, it can be 
supposed that gaps smaller than x constitute a split in a character. This informa­
tion alone is not enough. As the maximum character width is also known, it can be 
said that, any two blobs whose combined width is less than or equal to the maxi­
mum width and whose inter character gap is less than the average gap, constitute 
a character with a split. This was the basic split detection system used in the early 
stages of the project. Initially, the project was only concerned with segmenting and 
classifying the author names. Author names are all in capitals and this meant that 
the combined width of almost any two blobs would not exceed the maximum char­
acter width. This meant that with two combined blobs whose widths were less than 
the maximum width, it could be said that they constituted two fragments of a split 
character. The system was quite successful under these conditions.

As the system was developed, it became clear (as I suspected) that the ad hoc 
solution was not sufficient. With a mixture of fonts, the standard deviation of 
character widths was very high so that two lower case characters could be joined 
together, without exceeding the maximum character width, in the mistaken belief 
that they formed two fragments of an upper case character. The inter character 
gap also varied enough to make it unreliable. This method raised the question of 
whether it would ever be possible to find splits during the segmentation stage with­
out resorting to character recognition. This was a fundamental question for me 
that I couldn’t answer initially. If it could be done without character recognition, 
the system would probably be faster as recognition is very CPU intensive. Clearly 
however, using character recognition can give a good idea whether blobs are frag­
ments or whole characters. Character recognition is used to see if blobs constitute 
fragments or whole characters by looking at the probability scores for a match. If 
the score is low, the blob is probably a fragment. If the score is high, the blob is 
likely to be a whole character though more testing is then needed.

Is character recognition necessary to resolve splits properly? To answer the 
question, it is useful to consider how the human vision system solves the problem.
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The human brain processes massively in parallel and can afford to use as much high 
level information as necessary. Consider the characters ‘c’ ‘1’ and ‘d’. Where a ‘c’ 
is closely followed by an ‘T, how does the system decide that the ‘c’ and ‘1’ are not 
two fragments of a ‘d’? Take a look at Figure 5.6. Is the bird in the picture a duck 
or a chicken? Where it can, the human brain uses context, spelling and even higher 
level information to resolve ambiguities. It is interesting to note that humans have 
a 4% error rate when reading without the aid of context [16]. Clearly the ad hoc 
method could never match the recognition method in terms of accuracy. Accuracy 
was all important. The speed problem could always be overcome with more powerful 
machines.

Using character recognition during the segmentation phase meant that segmen­
tation and classification were no longer two distinct phases. It was important, for 
performance considerations, to avoid classifying the same blob twice. My first ap­
proach to resolving splits using recognition used an array as a circular buffer and is 
described below.

Figure 5.6: Duck or chicken?

Method 1

This method was the first implemented, after the ad hoc method, using character 
recognition. It was superseeded by Method 2, described in the next section.

When a blob is discovei'ed, the four coordinates delimiting its bounding box, are 
placed in a circular buffer. The blob to the right of the current blob is also placed 
in the buffer if the following conditions are met:
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1. The inter-blob gap is sufficiently small.

2. The overall width of all the blobs in the buffer does not exceed the maximum 
character size.

This process is continued until adding another blob would break one of the preceding 
conditions. Let us suppose that there are n blobs in the buffer. The classifier works 
backwards through the buffer, first matching n blobs, then u — 1, n — 2 etc. until 
one of the combined set of blobs returns a match score that is higher than an a 
priori threshold. See Figure 5.7. If no combination exceeds the threshold, then the 
very last blob is taken by default. When a good match is found, the x blobs that 
constituted the match are removed from the buffer and the process is started again 
with new blobs being added to the n — x blobs remaining in the buffer if conditions 
1 and 2 above are met.

There are several problems with this method. First, in taking the first match 
that reaches the threshold, a better match can be missed. Second, when no match 
reaches the threshold, the best match should be taken, not the last one. In trying to 
overcome these drawbacks, a new method was developed which is described below.

Figure 5.7: Finding splits with Method 1.

Method 2

This is the second method attempted for resolving split characters using character 
recognition.
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Two side by side blobs are traced and pointers to them are placed in a buffer. 
Each blob is matched separately and their scores are recorded. The combined blob 
is then matched and its score is recorded. The scores for each individual blob are 
averaged. If the averaged score is greater than that of the combined blob, then it 
is presumed that there are two distinct characters present. If the averaged score 
is less than that of the combined blob, then it is presumed that the two blobs are 
one character split in two. The conditions regarding the inter character gap and 
maximum width described for Method 1 still hold. Consider two examples. In 
Figure 5.8, two blobs representing the characters ‘t’ and ‘o’ are side by side. When 
the two blobs are matched individually, let us assume that the classifier matches 
the first blob as a ‘t’ with 70% probability and the second blob as an ‘o’ with 
80% probability. The average match then for the two blobs is 75%. Let us then 
assume that the combined ‘to’ blob is then matched and the classifier matches it 
as a ‘W’ with probability 5%. As the average probability (75%) is larger than 
the combined probability (5%) it is assumed that there is no split and hence two 
separate characters. Also in Figure 5.8, two blobs representing two fragments of the 
character ‘b’ ai'e side by side. Again, when the two blobs are matched individually, 
let’s assume that the first fragment is matched as an ‘1’ with probability 50% and the 
second fragment is matched as an ‘o’ with .30% probability. The average match for 
the two blobs is 40%. The combined blob is then matched as a ‘b’ with probability 
95%. As the average probability (40%) is smaller than the combined probability 
(95%) it is assumed that there is only one character present, split into two fragments. 
The advantage of this method is that no threshold value is needed and, as all three 
possible combinations have been tried, we can be reasonably sure that the best 
match has been found. One disadvantage is that it is presumed there is no more 
than one split per character. I settled on this second method as a compromise.

The definitive solution to split detection

The ideal solution would be to put as many blobs as possible in a buffer and match 
every legal combination of blobs and take the highest score or combination of scores. 
Obviously, this would reduce performance drastically as the number of matches for 
each character would increase greatly. The author did some investigation to work 
out the cost. For n blobs in the buffer, there would be 2”“^ legal ways in which the 
blobs could be grouped (see Table 5.1). Thus for example, 3 blobs could be grouped 
4 different ways. See Figure 5.9. Working out the number of matches per grouping 
is a little more difficult. When the groups are drawn out and counted, binomial
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Figure 5.8: Finding splits with Method 2.

coefficients appear as in Pascal’s triangle. Investigation shows the formula for the 
number of matches (fi) for n blobs is given by Equation 5.1:

n—l

.{r + 1), n > 0 (5.1)
7-=0

Thus, 3 blobs, grouped 4 ways would require 8 matches or, 6 blobs, grouped 32 
different ways would require 112 matches.. This would be very expensive but the 
number of blobs grouped together can always be minimised by the maximum width 
of a character (see condition 2 for Method 1). Thus, if characters were very badly 
fragmented, the system would be far too slow to be useful but if characters were only 
split into one or two blobs, the number of matches needed to resolve the splits could 
be kept at a reasonable level. In any case, if the text was that badly fragmented it 
is likely that recognition would be extremely poor anyway.

This method is mentioned by Banno et.al.[3, page 177]. Unfortunately the au­
thors provide no figures for the success or cost of their system.

n blobs 1 2 3 4 5 6

no. of groupings(2"“^) 1 2 4 8 16 32
no. of matches(/i) 1 3 8 20 48 112

Table 5.1: No. of ways n blobs can be grouped and no. of matches per grouping.
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5.5.2 Merges

Merges occur when two separate characters become joined at a point to form a single 
blob. Reasons why merges can occur are described in Section 5.5. In this project, 
merges occurred very rarely and so no action was taken to resolve them. However, 
in the interests of striving to attain 100% recognition, I will describe a few merge 
resolving methodologies. As with splits, it must be realised that resolving some 
merges can only be done with a considerable amount of contextual information. 
Consider Figure 5.6 once again. It must also be remembered that some characters 
are naturally merged. For example, the ligatures ‘d5’ and ‘oe’. The best solution 
to natural ligatures, and the one implemented in this project, is to treat them as 
a single character and allow template names to be more than one character long. 
Thus, the name of the ae template would be ‘ae’. This project originally ran on an 
IBM PC and so some well known ligatures were included in the character set. This 
meant that single character names could be used. When the project was ported 
to a transputer that did not have an extended character set, it became clear that 
template names of more than one character were the answer. I allowed templates 
have names up to five characters long. Another advantage of this approach was that 
merges that occurred more frequently than others (like ‘ry’ in this project) could 
be handled by treating them as a single character with a two-character name thus 
avoiding merge resolving problems for that particular character pair.
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Signature Analysis for Merge Detection

Kahan ei.a/.[17] describe three stages in resolving merged characters. They iden­
tify what they call the Recognition stage where a blob is flagged as being merged, 
the Segmentation stage where the position of the merge is located and lastly, the 
Reclassification stage where the components of the blob are classified both individ­
ually and as a merged character. They use a very simplistic system for flagging a 
character as merged. If the probability score for the character, as returned by the 
classifier, is less than the a priori probability for that character, then the character 
is flagged as merged.

In the Segmentation stage, two different types of merges are identified: serif 
joins and double-o joins. Serif joins are those caused by the very top or very bottom 
of a character merging at extreme points. Double-o joins are caused by round 
bulbous characters touching at the extreme points of their arcs. The authors use the 
vertical signature or, vertical projection to find the position of the merge. A vertical 
signature is simply a function mapping a horizontal position to the number of pixels 
in the vertical column at that position. See Figure 5.10. (Figure D.2 in Appendix D 
is a screen photograph showing a window with a ‘P’ template. The template’s 
horizontal signature is to its right while its vertical signature is below.) The merge 
point can be identified as a low point on the signature. All low points however are 
not necessarily merges. To verify if a low point on the signature corresponds to a 
merge, it is necessary to look for a sharp dip and a sharp rise in the signature, before 
and after the low point. The authors recommend looking one place before and one 
place after the low point. A breakpoint criterion function can be derived from the 
signature function V. The function recommended is

V{x - 1) - 2 * V{x) + V{x + 1) (5.2)

which is quite straightforward. The author of this project did some experimentation 
with this function and found it to be very successful but it was not used in the project 
because merges were not a serious problem and the cost on recognition speed could 
not be justified.

Finally, in the Reclassification stage, the left and right fragments of the merged 
blob are classified individually. If the probability scores for the individual blobs are 
worse than for the merged blob then the merge is ignored. Note that this system 
could use recursion to find multiple merges.
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Figure 5.10: Finding a merge by signature analysis.

5.5.3 Thinning and expanding

Thinning^ and expanding^ are two operations used widely in the area of computer 
vision that may be used to resolve merges and splits respectively. Thinning is the 
process by which one or more pixels are removed from the boundary of a blob, 
at every point on the boundary. Expanding is similar except that pixels are added 
rather than removed. Pixels can be added or removed either by tracing the perimeter 
and removing or adding pixels during the trace or by placing a small filter window 
(eg 3x3) at every position on the character and changing the contents of the window 
depending on the operation required. There has been much research in this area 
and several different thinning filters have been devised.

Using thinning to resolve merges

Thinning can be used to resolve merges as follows. After a blob has been found, one 
pixel is removed from the perimeter of the blob, all the way around. The perimeter 
of the blob is then retraced from the original point. If the perimeter is different, we 
can presume that we have split the blob into sub blobs. If the individual blobs are 
then classified, we can get a good idea from their probability scores, whether their 
is a legitimate merge present.

^Also referred to as skeletonising. 
^Also referred to as region growing.
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Using expanding to resolve splits

Using expanding to I'esolve splits is a similar process to that of using thinning to 
resolve merges. When a blob has been found, one pixel is added to the perimeter 
of the blob, all the way around. The perimeter of the blob is then retraced starting 
from the same point as before. If the perimeter is different, it can be assumed that 
the blob has merged with a neighbouring blob. This combined blob can then be 
classified and its probability score examined to decide if a legitimate split is present.

In this project, splits were detected by the method described in Section 5.5.1 
and no merge detection was necessary so thinning and expanding were not used.
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Chapter 6

Using a State Machine to Delimit 
Fields

6.1 Overview of this Chapter

The aim of this chapter is to describe how fields were delimited within entries using a 
state machine. The structure of a field is described in Section 1.3.1. State machines 
in general are discussed and the state machine used in this project is described 
in detail. The states used are described in Section 6.3.1 and Figure 6.1 shows a 
comprehensive picture of the state machine. Table 6.2 shows all state transitions 
and associated trigger conditions. Finally, reduced template sets are introduced.

6.2 Delimiting Fields

As the ASCII output from this system was to be fed into a database and that 
database was in turn to be combined with the current database in use in the library, 
it was useful to be able to delimit fields within entrys. This meant that text passed 
on to the database would contain control characters showing the starting positions 
of the different fields present. Thus the following entry:

PALIN (William).—Cheshire farming: a report on 
the agriculture of Cheshire.
Lond. 1845. 8°. A. r. 46. N°. 14.
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would become:

=APALIN
=F(William).
=T—Cheshire farming: a report on the agriculture of Cheshire. 
=LLond.
=D1845.
=f8°.
=SA. r. 46. N°. 14.

where the beginning of each field is indicated by the following tokens:

• ‘=A’ indicates the author suimame

• ‘=F’ indicates the first name

• ‘=T’ indicates the text

• ‘=L’ indicates the publishing location

• ‘=D’ indicates the date of publishing

• ‘=f’ indicates the format of the volume

• ‘=S’ indicates the shelf number

To decide where one field ends and another field begins, the conditions that end 
and/or begin a field must be known. For example, the text field starts with an 
elongated hyphen ‘—’. The start/end conditions are not always so simple however 
and often depend on the preceding field. For example, the text field can be followed 
by the location field or the shelf field, or by no field. So the text field can end 
under different conditions. Thus, to delimit the fields, a list of trigger conditions for 
each different field transition must be known. One solution to these problems is to 
use a state machine. Delimiting the fields can be done either in a post-processing 
stage or at the recognition stage. However, if done during the recognition stage, 
considerable benefits in time and accuracy can be gained by using reduced template 
sets (see Section 6.3.3).
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6.3 State machine

A state machine consists of a number of different states (including a start and end 
state) and a set of trigger conditions for each state transition. Thus each state may 
only be entered under certain conditions and may only be left under certain other 
conditions. This lends itself well to the problem of delimiting fields. Fields can be 
made correspond to states. Thus, for example, the author field corresponds to the 
author state. A transition can be made from the start state to the author state if 
the first letter encountered in an entry is a capital. If, on the other hand, the first 
letter encountered is an elongated hyphen ‘—’, the transition is from the start state 
to the text state.

As each character in an entry is classified, it is passed to the state machine. The 
machine resets to state 0 (the start state) at the beginning of each entry. A transition 
from one state to another is triggered by special trigger characters associated with 
each state. Each state has a number of trigger conditions associated with it and a 
number of reduced template sets (see Section 6.3.3). Trigger conditions are listed in 
Table 6.2. Table 6.1 lists each of the possible states.

Num. State Description

0 START Start state
1 SUR Surname
2 FIRST First name
3 ALT Alternative
4 TEXT Descriptive Text
5 QUAL Qualification
6 LOG Publication location
7 DATE Date of publication
8 FORMAT Format of book
9 SHELF Shelf number
10 HEADER Three letter headers
11 TRAINING Template training
12 FIR_QUAL Dummy state

Table 6.1: State names and descriptions.
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State Transition Trigger condition

START^TEXT ; ?

START^SUR not
SUR^TEXT 4 '1

SUR-vALT ‘,’or‘[’
SUR^FIRST
ALT->TEXT 4 ?

ALT->FIRST ‘(’
FIRST->TEXT 4 )

FIRST-^FIR_QUAL
FIR_QUAL^TEXT 4_9

FIR_QUAL-^QUAL not
QUAL->TEXT 4_9

text-4 END no more characters
TEXT->LOC character is italic and starts a new line
TEXT^SHELF new line and large space and not italics
TEXT^SHELF no new line but large space
LOC^DATE digit or ‘[’
DATE-^FORMAT or ‘[’
FORMAT^SHELF 4 ^

SHELF-»LOC character is italic and starts a new line
SHELF^SHELF new line and large space before character
SHELF-4F0RMAT new line and not italic and no space
SHELF-4END no more characters

Table 6.2: Trigger Conditions.
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6.3.1 Description of states

State 0 is a dummy state, the START state. State 1 (SUR) is the author surname 
state. State 2 (FIRST) is the author first name state. State 3 (ALT) is a state for the 
alternative name for the author. State 4 (TEXT) is the state containing book title 
text.State 5 (QUAL) is the state for the author’s qualifications or other descriptive 
text. State 6 (LOG) is the state in which the location of publication appears. State 
7 (DATE) is the state in which the date of publication appears. State 8 (FORMAT) 
is the state in which the format of a book appears. This can be the size of the 
book and/or information on the number of volumes, edition or other information 
(see Section 6.3.2). State 9 (SHELF) is the state for the shelf marks. A detailed 
description of the sub-fields that can occur in the shelf field appears in Section 1.3.1. 
State 10 (HEADER) is a special state which is used purely for the two 3-letter 
headers that appear at the top of each catalogue page. State 11 (TRAINING) is a 
special state which is used exclusively in training mode (see Section 4.7). State 12 
(FIR_QUAL) is a dummy state which is used between the FIRST and QUAL states. 
A dummy state was necessary here because the FIRST state is terminated with a 
closing bracket (‘)’). All other states are terminated by the character that starts the 
next state. When the FIRST state terminates with a closing bracket, the next state 
entered is the FIR_QUAL state. This is a transition state and another state may be 
immediately entered, depending on the first character after the FIRST state.

A more detailed description of the fields associated with each state appears in 
Section 1.3.1.

6.3.2 Description of trigger conditions

The TEXT state always begins with an elongated hyphen (‘—’)^ so transitions from 
the START, SUR, ALT, FIRST and QUAL states to the TEXT state occur on an 
elongated hyphen. The START to SUR transition and the FIR_QUAL to QUAL 
transition occur when the character is not an elongated hyphen. The transition from 
SUR to ALT occurs when the character is either a comma (‘,’) or an opening square 
bracket (‘[’) as these are the characters that can start the ALT field. The FIRST field 
always starts with an opening round bracket (‘(’) so this is the transition character 
from both the SUR state and the ALT state to the FIRST state. The FIRST state

^The character ‘—’ is represented by an underscore character (‘_’) to distinguish it from a 
normal hyphen (‘-’).
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*1 new line and not italic and no space 
*2 character is italic and starts a new line 
*3 new line and large space before character

Figure 6.1: Complete state machine.
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ends with a closing round bracket (‘)’) so this is the transition character to the 
FIR_QUAL state. The condition for the transition from TEXT to LOG is that a 
character is in italics (set 4) and starts on a new line. The new line proviso is the 
only way of preventing italics within the text field being taken as the start of the 
location field. This is also the transition condition from the SHELF state to the 
LOG state. The SHELF to LOG transition is needed as some books have several 
places of publishing as well as different shelf marks. For the transition from the LOG 
state to the DATE state, the trigger character is either a digit (set 5) or an opening 
square bracket (‘[’). The trigger characters for the DATE to FORMAT transition 
are either a full stop (‘.’) or an opening left bracket (‘[’). The condition for the 
SHELF to SHELF transition is that the character starts a new line and is well over 
on the right. Detecting the boundaries between the SHELF and FORMAT fields 
presented some difficulties and the transition conditions used are described in the 
following section.

Difficulties with the format and shelf mark fields

The format and shelf fields vary enormously and detecting their boundaries was a 
difficult task that was not completed successfully. The format field usually contains 
the book’s page size, of the form (8°). but other information can appear here. The 
following list shows the sort of thing that can occur in the format field. Several 
combinations of these types of sub-field can occur.

• 2 parties en 1 tom.

• vol. 1 [Family library]

• 2 vols.

• new ed.

• 2 tom.

• 2nd. ed.

• fob

The variations made it impossible to settle on a trigger condition. The one settled 
on for the FORMAT to SHELF transition was a full stop character (‘.’) but this
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is clearly insufficient. Detecting the transition from TEXT to SHELF, or DATE to 
FORMAT was also very difficult. The TEXT to SHELF transition settled on was 
the following condition: the character must (be an italic and start a new line and 
be well over on the right) or must (not start a new line and start well over on the 
right).

The successful determination of the fields may be possible using postprocessing 
as described in Chapter 7.

6.3.3 Reduced template sets

One of the advantages of using a state machine is that reduced template sets may be 
used. A reduced template set is simply a subset of all the templates stored. In certain 
states, certain characters or groups of characters can never occur (for example, only 
digits and certain punctuation marks can occur in the date field). In these states, 
it is not necessary to match candidate characters against all templates. Thus, the 
complete template set can be split up into subsets or reduced template sets and 
all or some of these sets can be combined together depending on the current state. 
This means that both performance and accuracy improve, sometimes dramatically. 
Performance improves because the number of template matches is greatly reduced. 
Accuracy improves because there are fewer templates and thus less chance of error. 
So, by using a state machine, performance and accuracy improve and individual 
fields have been delimited. Table 6.3 shows the template sets used in this project. 
Table 6.4 shows the template sets associated with each state.

Description of sets

Set 0 includes all punctuation marks and is used in every state except the SHELF 
and HEADER states^. Set 1 contains all large capital letters. Set 2 contains all lower 
case letters. Set 3 contains small capital letters. This font is used mainly in the 
shelf mark but also appears in the ‘alt’ and text fields. Set 4 contains italics. Italics 
are used mainly in the location field but can also appear in the text field. Set 5 
contains the digits 0 to 9. Set 6 contains the header templates. These templates 
are used exclusively for the 3-letter headers that appear over both columns of the 
catalogue page and which are slightly larger than the other fonts on the page. Set 7

^The shelf set heis its own punctuation templates.
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is a set used exclusively in the SHELF state. The characters that appear in the shelf 
field are of the same fonts that appear elsewhere in the entry. However, because 
the shelf field gave particular problems (as described in Section 6.3.2) and because 
of its importance, it was felt that templates used in the shelf field should only be 
taken from shelf marks in the belief that perhaps the same printing blocks were used 
for all shelf marks. Thus the SHELF state has its own template set, the shelf set 
(set 7).

Set Name

0 Punctuation
1 Capitals
2 Lower case
3 Small capitals
4 Italics
5 Digits
6 Header
7 Shelf

Table 6.3: Template sets.

State Associated template sets

0 1 2 3 4 5 6 7
START V s/
SUR
FIRST v/ y
ALT v/ s/ V
TEXT v/ v/ ^/ v/
QUAL v/ V v/
LOG v/ V
DATE v/ v/
FORMAT v/ y v/
SHELF V v/
HEADER V
TRAINING v s/ y V v/
FIR_QUAL s/

Table 6.4: Sets associated with states.
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6.4 Errors introduced by the state machine

Overall, the state machine improves accuracy and recognition speed. However, it 
does introduce some errors of its own. Problems can arise when a trigger character is 
misclassified. Because reduced template sets are associated with each state, missing 
a trigger character can mean that the following field may be classified with the wrong 
template sets with disastrous consequences.

This is a very difficult error to deal with as any character can be misclassified. 
One way of reducing the chances of the error would be to weight the template set 
with several instances of the character. However, there are other non character 
based trigger conditions than can be misidentified.
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Chapter 7

Postprocessing and Context

7.1 Overview of this Chapter

This chapter describes how text output from the classification system may be cor­
rected and improved both after classification in a postprocessing phase and during 
classification with a feedback mechanism. Several types of context are described in­
cluding layout, spelling and grammer with reference to several documented systems 
and the context used in this project is discused.

7.2 Introduction to Postprocessing and Context

Postprocessing is useful in any OCR system, to correct characters that have been 
misclassified by the recognition system. In all but the most rigidly structured and 
scientific documents, the text will contain some context. Context is useful to any 
OCR system including humans and it has been said many times in OCR literature 
that human readers often misidentify single letters taken out of context[14, 25]. It 
is apparently possible to rewrite English text using only a quarter of the characters 
required[6, 24] though according to Chapanis[10] if more than 25% of characters are 
randomly deleted, humans cannot restore the text by context.

There are several levels of context including, layout, spelling, grammar and the 
actual idea conveyed by the text. Spelling, grammar and sometimes alphabetical 
order may be used to correct errors and with so much research being done in the area
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of artificial intelligence it may not be long before the idea inherent in the sentences 
may also be available. Other simple rules can be utilised such as detecting a capital 
letter between two lower case ones.

Errors can be corrected in two different ways. First, contextual information may 
be used during classification to further filter out the possible candidate characters. 
Second, the errors can be corrected when all classification has ceased, in a postpro­
cessing stage. Here, characters that the classifier knows are ambiguous are flagged 
for the postprocessor but the postprocessor can also look for characters that have 
simply been misclassified, unbeknownst to the classifier.

7.3 Context in this Project

In this project, authors’ names and works are listed alphabetically in the catalogue. 
This alphabetical information allows some assumptions to be made during or af­
ter classification. For example, if the previous author’s name was ‘NOLAN’ and 
the classifier returns the current author name as ’NGLAN’, it can be reasonably 
assumed, because of alphabetical order, that the ‘0’ was misclassified as a ‘G’. 
This information could also have been given by a dictionary of proper names. The 
alphabetical information can be applied at the postprocessing stage or during clas­
sification. If used during classification, character templates which cannot occur for 
alphabetical reasons may be filtered out of the matching process.

As described in Section 1.3.1, a three-letter leader appears at the top of each of 
the two columns on every catalogue page. These two sets of three letters are the 
first three letters of the first and last surnames on the page respectively. If these two 
headers are compared to see which initial letters are common to each, then it can 
be assumed that every surname on the page starts which those common letters. For 
example, if the two headers are ‘NIL’ and ‘NIM’ respectively, then the initial letters 
common to both are ‘NT and therefore every surname on the page begins with ‘NT. 
Once again, this information may be used during the classification stage or after, as 
part of a larger postprocessing stage. This method can be taken a stage further. If 
the very first and very last surnames on the page are examined, and the common 
initial characters are extracted in the same way, then, again, it can be presumed 
that each entry begins with those common characters. For example, if the first name 
is ‘PALLADIUS’ and the last name is ‘PALLIOT’ then the four characters ‘PALL’ 
are common to all entries on that page. If the first surname is the same as the last
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surname, then, that name can be filled in for all authors and no processing need be 
done on any surname. This method was used in this project.

When a surname has been found, characters that are ‘common’ to the start of 
every surname on the page are written over it. This ‘common’ string of characters 
is deduced from the first and last entry as explained previously. The surname is 
then compared with the previously classified surname. If a character of the current 
surname is alphabetically less than a character of the previous surname then it 
is assumed that this character has been misclassified and it is replaced with the 
corresponding character of the previous surname. The comparison is done from the 
end of the ‘common’ characters to the end of the surname or until a character of 
the current surname is alphabetically greater than the corresponding character of 
the previous surname. The algorithm used (in C) follows:

A first write in common characters *! 
for(count = 0; count < strlen(common); count++) 

current[count] = common[count];
A now compare current surname with previous surname */ 
minimum = min(strlen(prev_surname) , strlen(current) ) ; 
for(count2 = count; count2 < minimum; count2++){ 

if(current[count2] > prev_surname[count2]) 
break;

if(current[count2] < prev_surname[count2]) 
current[count2] = prev_surname[count2];

}

7.4 Layout

Kahan et.a/.[17] use layout context in their now well known paper. The authors 
argue that layout context is usually language independent and hence use it as a first 
stage of postprocessing, before spelling correction. For a small segment of text, four 
guiding lines are determined. Two of these guide lines delimit the top and bottom 
of a ‘normal’ character, the other two delimit the tops and bottoms of characters 
with ascenders or descenders or capital letters. Each character has an expected 
position with respect to these lines and the actual position calculated from the 
bounding box. If these two positions are different then the character has probably 
been misclassified.
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7.5 Language

7.5.1 Spelling

Some character recognition errors can be found by looking for misspelled words. 
This involves the use of a dictionary. Spelling correction is most effective when the 
document is written in one language and scientific and proper words are seldom used. 
Alas, the opposite is the case with the library catalogue. Several languages are used 
and are mixed liberally and the pages are littered with foreign language names so a 
spelling corrector was not used although it would have been of some use. It might 
have been possible to write a language recogniser which would either look up words 
in several dictionaries or would detect the language being used by perhaps letter 
frequency and then apply the correct dictionary to correct the spelling. Because of 
time considerations, this was not explored.

Kahan et.al.[n] describe a system for detecting and correcting spelling errors. 
The UNIX^ ‘spell’ program is used. When a word is rejected, a list of variant 
spellings is generated. Each variant has an associated cost and variants are tested in 
increasing order of cost. Checking stops with a correctly spelled variant or when the 
cost is too high. In the training section, for each pair of characters, a probability of 
misclassification is generated. Thus for characters of classes X and Y, the probability 
that a character of class X was misclassified as a character of class Y is Pxy- The 
cost of a spelling variant C is given by:

c = -Y.
X = \

where the word emitted by the classifier is given by:

(7.1)

Wq = CqCq • • • q (7.2)

and the spelling variant is given by:

W = c^c^-.-c” (7.3)

Variants are generated in order of increasing cost. When a word has been iden­
tified as misspelled, n variants are generated by replacing a character of the word 
by the character with which it is most often confused. Variants are examined by

WNIX is a trademark of AT&T.
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order of least cost. When a variant is rejected, it is replaced by variants obtained 
by altering other characters in the rejected variant. Attempts are made to avoid 
generating duplicate variants. The authors point out that this correction scheme 
is asymptotically exponential to both the total number of characters and the num­
ber of misclassified characters in the word. Because few character sequences are 
rejected and most rejected sequences have only one error, the authors reckon the 
spelling correction time can be kept to a small percentage of the total recognition 
time.

7.5.2 Digrams &: trigrams

A digram is a sequence of two characters. A trigram is a sequence of three characters. 
Digrams and trigrams were used as early as the nineteen fifties to improve recognition 
of text[13, 14, 25]. There are 26 characters in the English language therefore there 
are 26^ or 17576 possible trigrams. The frequency of occurrence of trigrams in the 
any language varies greatly. For example, in the English language, the characters 
‘zzz’ never occur (except perhaps in proper names) whereas the characters ‘the’ are 
very common. This information can be used in the postprocessing phase to correct 
errors. According to Harmon]]4, page 1172] the procedure is based on two facts:

1. “in large samples of common English publication text, 42 percent of all possible 
digram combinations never occur”

2. “random substitution of one letter in a word by another letter which is selected 
with equal likelihood from the other 25 of the alphabet will produce at least 
one new digram which has zero probability 70 percent of the time in the sense 
of 1”

In Harmon’s system errors are corrected by substituting a letter, which will construct 
a legal n-gram, for the errant one. If possible, the letter selected will be one that 
is often confused with the errant one by the system. Harmon claimed that 40% of 
all single-letter errors in ordinary English text are corrected in this way. Mori and 
Masuda[20] cite Hanson et.al.[12] as reducing substantial errors from 45% to 1-2% 
using trigrams.

The author experimented with a trigram program^ but it was not used in the 
project due to the numerous languages used. Trigram frequencies are generated by

^Thanks to James Mahon for the program.

75



constructing a 26 x 26 x 26 matrix where each element of the matrix represents one 
trigram. The matrix is then filled by feeding as much text as possible (similar to 
that which will undergo OCR) into a program that extracts the trigrams and fills 
the matrix. Alternatively, the trigrams can be generated as they are used. The 
trigrams can then be used to correct errors.
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Chapter 8

Results and Performance

8.1 Overview of this Chapter

This chapter details the success rate, recognition rate and recognition speed of the 
software. The program was run on several pages of the catalogue and the errors 
are counted, classified and discussed. Two tests were carried out on each page, 
the second after some bugs had been ironed out (see Section 8.3). This led to a 
higher success rate and slower recognition time for the second test. There is a brief 
discussion of time stamping which is used to discover where most time is being spent 
in the code.

8.2 Recognition time and speed

Table 8.1 shows the compression time statistics for several catalogue pages. The 
machine used was a single InMos transputer. The page numbers have two parts, a 
single character followed by a 2 or 3 digit number. For example, ‘n80’ is page 80 
from the ‘n’ section. Decompression time was about 30 seconds. This contributed 
to between 4 and 5% of the overall recognition time. The scanning time was of 
the same order so that scanning and compression/expansion contributed to about 
10% of the overall recognition time. Delays due to page misalignment and page 
realignment were not taken into account (see Section 4.6.1).

Table 8.2 shows the recognition times and speed for the same set of pages. Recog­
nition time was in the order of 13 minutes and with about 4800 characters per page.
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this gave a recognition speed of about 6 characters per second. This compares 
favourably with those systems discussed in Chapter 2.

Page Compressed size 
(in bytes)

Decompression time 
(in seconds)

1165 348839 32.8
1167 328315 32.2
n45 370272 37.1
n77 371283 35.0
n78 368146 31.5
n79 368601 34.0
n80 379218 34.5
p207 355387 35.7
p208 348752 34.9

Table 8.1; Compression Statistics.

Page Recognition time (in minutes) Chars./sec.
test 1 test 2 test 1 test 2

1165 12.98 13.33 6.16 5.99
1167 12.02 12.42 6.30 6.09
n45 12.98 13.38 6.24 6.05
n77 13.98 14.23 5.88 5.76
n78 14.39 14.70 5.36 5.49
n79 13.37 13.70 6.24 6.08
n80 14.02 14.28 6.08 5.97
p207 12.32 12.64 6.34 6.17
p208 12.67 13.08 6.24 6.04

Table 8.2: Recognition time and speed.

8.2.1 Time Stamping

Time stamping is a very valuable way of determining where bottlenecks may occur 
in software. It’s a simple procedure that involves marking or stamping the current 
time at important points in the program and writing these times to a time stamp 
array. When the program terminates, the array can be analysed and intermediate 
times calculated thereby showing the percentage time spent in each function.
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The following C code is the timestamp structure used in this project:

#define MAX_STAMPS 100

typedef struct{
char comment[NAMESIZE]; 
int time; 
int diff;

}t_entry;

t_entry tstamps [MAX_STAMPS] ;

This allows for comments to be stored with the times to mark where the time 
stamp occurred. The tstamps array is written to by a timestamp function. A typical 
call to timestamp would be:

timestamp("At start of guessletter",timer_now() ) ;

The tstamps array can be displayed with a showMmes function that shows the 
time of each stamping and the time difference between successive stamps. The call 
to timer.now is a transputer dependent call that returns the elapsed time from the 
start of the program in transputer ticks. This is easily converted to seconds in the 
show_times function.

8.3 Success rate

Tests were carried out on full catalogue pages. These pages contain about 4800 
characters on average, in a mixture of several fonts including Hebrew, Arabic and 
Greek (see the screen photograph in Figure D.4 in Appendix D). Characters not 
from the Roman alphabet were ignored in success rate statistics. In the first test, 314 
templates were used, split up into the templates sets in Table 6.3. The test consisted 
of full classification of several catalogue pages. The results of the first test are 
displayed in Table 8.3. The errors shown in Table 8.3 are described in Section 8.3.1. 
Some of these errors were caused by bugs that were corrected and a second test was 
carried out. Note that no changes were made to the template set that would aid 
the results of the second test, excepting that two character classes that were not 
represented in the template set were added to it so that 316 templates were used in
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the second test. The results of the second test are shown in Table 8.4. The success 
rate is calculated by counting the number of errors on the page and working out 
the percentage. Errors must be counted manually as some are detectable and some 
are not (see below). An attempt was made to write code that would automatically 
count all errors and this is described in Section 8.3.2.

Page No. of
chars.

Total
errors

Merge
errors

Score
errors

Other
errors

Success
rate

1165 4794 211 14 11 186 95.59%
1167 4546 187 14 1 172 95.89%
n45 4860 251 21 11 219 94.84%
n77 4931 103 15 5 83 97.91%
n78 4626 188 8 12 168 95.94%
n79 5007 191 11 6 174 96.19%
n80 5115 142 10 3 129 97.22%
p207 4688 221 28 5 188 95.29%
p208 4745 250 14 8 228 94.73%

Table 8.3: Errors and success rate of the first test.

Page No. of
chars.

Total
errors

Merge
eri'ors

Score
errors

Other
errors

Success
rate

1165 4792 152 11 12 129 96.83%
1167 4541 142 8 2 132 96.88%
n45 4853 193 18 11 164 96.02%
n77 4920 91 13 8 70 98.15%
n78 4842 176 15 26 135 96.37%
n79 4994 159 11 16 132 96.82%
n80 5111 121 11 3 107 97.63%
p207 4680 190 18 9 163 95.94%
p208 4738 193 7 9 177 95.93%

Table 8.4: Errors and success rate of the second test.

8.3.1 Errors

Characters can be misclassified for several reasons. Sometimes the classifier realises 
that it cannot classify a character and an error character is written to the output 
file. These detectable errors fall into two different categories:
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Detectable errors

• filter errors

• score errors

Filter^ errors occur where all templates are filtered out. This can happen when a 
blob or groups of blobs are badly merged or split^, the resulting blob bearing no 
resemblance to any template. In this project, filter errors were marked by writing a 
solid block character in place of the correct character. Score errors occur when the 
best score for an input character matched against a set of templates falls below a 
threshold score. In this project, score errors were marked by writing an upside-down 
question mark in place of the correct character.

Non-detectable errors

Most of the errors made by the classifier are unknown to it. These errors come 
under the ‘Other errors’ column in Tables 8.3 and 8.4. On average, only about 
45% of these errors are mismatches. That is, only 45% of errors occur because the 
template matcher simply made a bad match. The rest of the errors are made up 
mainly of segmentation and state machine errors. The first (Table 8.3) test showed 
that 30% of the other errors were caused by a bug in the code which searches for 
multi-blob characters (see Section 5.3.1), thus causing problems with characters such 
as ‘i’, and This bug was fixed before a second test was undertaken. ‘Other 
errors’ were split up as follows:

• mismatches (45%)

• multi-blob characters (30%)

• merged characters (10%)

• line segmentation (5%)

• no template (4%)

• incorrect position (3%)

^For a description of filtering see Section 4.4,
^For a description of splits and merges see Section 5.5.
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• missed trigger characters (2%)

• split characters (1%)

10% of errors were caused by merged characters. Line segmentation errors occur 
when characters on the line above or line below are taken to be on the current line. 
4% of errors occurred because no template was stored for the class of character 
encountered. This can happen because characters such as ‘ii’ and ‘h’ may not have 
been previously encountered. 3% of errors occurred because characters have different 
names depending on their position on a line. For example, the comma (,) and the 
apostrophe (’) are the same character but in a different position. Missing a trigger 
condition in the state machine can mean that the wrong templates sets can be used 
for the following fields. Sometimes this can mean that large sections of text are 
misclassified. Finally, 1% of characters were misclassified because they were badly 
split. Note that this number is low, owing to the success of the split correction 
system (see Section 5.5.1).

8.3.2 Counting Errors

Working out the success rate means counting the errors. As there are almost 5000 
characters per page and a 5% error rate, this means searching for about 250 errors 
amongst the 5000 characters. This is time consuming and tedious. The author 
experimented with automated character counting^. This process involves first con­
structing a file for each page that is a perfect ASCII representation of the page with 
no errors. This golden page is then compared with the file containing the errors. 
Success depends on finding matching points in the two files. If there are too many 
errors or there are several errors grouped together, this can be a problem. Because 
of time constraints, the author did not get this to work properly but it can give a 
quick representation of how fast the success rate is improving.

^Thanks to James Mahon for help with this.
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Chapter 9

Conclusion and Future Work

9.1 Overview of this chapter

Results are drawn from several chapters and interpreted. The factors affecting the 
speed and success rate are discussed as well the merits of template matching. In the 
section on future work, improvements for both hardware and software are discussed.

9.2 Conclusion

Template matching has proved to be a very successful means of character classifica­
tion. From Chapter 8 it can be seen that success rates of about 96% were achieved 
for this project. This was under operating conditions using almost 45000 input 
characters and over 300 templates for several fonts. This compares extremely well 
with more complex classification systems described earlier in this work and with 
off-the-shelf software whose claims of 99-1-% success rates are only seen in practice 
under perfect conditions. A recognition speed of about 6 characters per second was 
achieved with a single transputer. This rate compares well with the systems de­
scribed in Chapter 2 but is much slower than some of the high cost industrial text 
reading machines. The speed must be seen in the context of the hardware used. On 
a state-of-the-art work station, the speed could be perhaps doubled or tripled. As 
stated earlier, template matching lends itself well to parallelisation. Using several 
transputers to take advantage of this is discussed in the section on Future Work.
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9.2.1 Making template matching a success

In this project, the template matching process was enhanced using filters, reduced 
template sets and a good scoring algorithm. Other enhancements such as multiple 
matching were also discussed. It is this enhancement of template matching which 
makes it a success.

Filters

Section 4.4.1 analyses the success of filters. Tests showed that for a full set of 
templates, an average of 87% could be filtered out. For a reduced set, that is a set 
containing templates of the same font or group, on average 70% could be filtered out. 
The figure for reduced templates is smaller as templates within reduced sets tend to 
resemble each other more than they resemble templates from other sets. Filtering 
templates has a direct beneficial effect on the processing speed and an indirect 
beneficial effect on the success I’ate. The effect on the success rate is indirect as it 
could be argued that none of the filtered-out templates would have been chosen as 
the match in any case.

Reduced template sets

Reduced template sets were introduced in Section 6.3.3. A reduced template set is 
merely a subset of all the templates used. Sets are used to gather like templates 
together. In general, these sets can then be used when a section of text can be 
predicted to contains only those characters which appear in the set or sets used. 
Specifically, in this project, a state machine was used to delimit fields within entries 
and reduced templates sets were then used in classifying the fields as it was known 
a priori what characters could legally appear in each field. As with using filters, 
reduced template sets reduce the number of candidate templates before classifying 
an input character. If for example, three template sets are used with 40 templates 
each out of a total of 300 templates, then 60% of the templates have been rejected. 
If, as in this project, reduced template sets are combined with filtering, there can be 
further reduction. If we take the figure of 70% filtering from the previous section, it 
can be seen that up to 70% of the remaining 120 templates can be filtered, leaving 
only 36 or just over 10% of the original 300 templates.
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Splits

Splits and split resolving are discussed in detail in Section 5.5. Resolving split 
characters reduces the recognition speed of the system dramatically but to ignore 
them would be to admit that a 100% success rate is not attainable. Split and 
merge resolution has been the subject of much research and the author of this 
project spent much time on the problem. There is a definitive solution and this 
is described in Section 5.5.1 but this is an exhaustive solution and can take an 
enormous amount of time. The ideal is to find a practical solution that can be 
executed in a reasonable time. If the text is too badly fragmented, the classification 
system will most likely not work anyway. In Section 5.5.1 the author explains 
a few of the theories and methods used in this project. The method settled on 
effectively increases the processing time by about 50% as all side-by-side lower case 
characters are classified to check for splits. This must be taken into consideration 
when considering the recognition speed.

9.3 Future Work

9.3.1 Parallelism

As pointed out earlier, template matching lends itself well to parallelisation. As 
the software was developed on a single transputer, parallelisation is most definitely 
attainable. It could be approached in two ways:

1. split each page into sections

2. split each character into sections for template classification (see Figure 9.1)

Splitting each page into sections is probably the most straightforward means to 
parallelisation. The page could be split manually, before the software is run or it 
could be split by the software. Problems arise however if a line of text of broken 
in the horizontal plane across a split line. Some form of preprocessing would be 
needed to ensure this didn’t happen. In any case, this method of parallelisation is 
not very pretty and is really a very crude way of using the transputers. The second 
method, where characters are split prior to classification, is much more attractive.
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A root transputer would be in charge of the splitting operation. All segmentation 
and management operations would be handled by the root transputer. The input 
character could be easily split on byte boundaries. The x transputers being used 
would then process the same probability scoring algorithm concurrently, on their 
own piece of the character, with the sub-scores for each piece being returned to the 
root transputer. If the pieces of the character are not too small, it can be presumed 
that the recognition speed will increase in proportion to the number of transputers 
used. At some high number of transputers, X, it can be presumed that the pieces 
would be so small that the overhead in transputer communication would inhibit the 
recognition speed from increasing. This is a very practical example of future work 
that could be undertaken. It’s not very labour intensive and would make better use 
of transputer technology.

Figure 9.1: Parallel matching

9.3.2 Merged characters

Merged characters are discussed in Section 5.5.2. Merged characters are two adjacent 
characters that merge into one at one or more points. The merge can be caused at 
print time or scan time, or by dirt. In this project, no merge detection code was 
included although techniques are well discussed. The author would recommend that, 
for future work, the signature analysis method be implemented, using a breakpoint 
criterion function. This will of course lead to a di'op in recognition speed.
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9.3.3 Integration with the library database

It is planned that the output of this project will eventually be combined with the 
current library Dynix© database. At present, the output is embedded with sym­
bols which delimit fields within entries (see Section 6.2). Work is presently being 
undertaken to analyse this embedded output with a free-text analyser. Pages will 
need to be manually corrected first.

9.3.4 Context and spelling

Context and spelling can be used to great effect to improve the output of an OCR 
system. These topics are discussed fully in Chapter 7. Within this project, advan­
tage was taken of the inherent alphabetic order of the entries. This can be used to 
reduce the number of candidate templates prior to classification or can be used in a 
post-classification stage to correct errors. Through the use of a dictionary, spelling 
errors can be detected. This was not implemented in the project but is recommended 
for future work. It should be noted however that the use of several languages and 
other alphabets in the catalogue means that spell checking is a non-trivial task. It 
would be an interesting project to attempt to detect the language being used from 
the local text and to then invoke the correct dictionary for spell checking. The use 
of digrams and trigrams was also discussed. These could be very useful for error 
checking, but again, the use of different languages must be taken into consideration.

9.3.5 Averaging templates

There are two distinct methods of averaging templates that may improve the success 
rate. In the first method, templates for each character class are generated from 
several instantiations of the class. In this way, the template stored is more generally 
representative of the class of character it is representing. In the second method, 
again, several instantiations of a given class of character are used to represent that 
class. In this case however, the instantiations are not mathematically averaged 
but are stored together. Each template is then made out of several layers. During 
classification, an input character is scored against each layer in the template and the 
scores are added. This effectively weights some pixels above others. A more average 
template is stored and the success rate is bound to improve. It is clear that one of
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the drawbacks of the second method is the huge increase in storage space needed. 
Both methods have the drawback of a much more complicated training phase.

9.3.6 Graphics user interface

No user friendly interface was developed for the project. It was felt unimportant 
for development and was left as future work. If the software is to be used by non­
technical people, a simple user-friendly interface should be developed.
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Appendix A

Rules for composing the printed 
catalogue

The following rules were those devised to guide the editors of the printed catalogue. 
They were taken from Dr. Thomas Fisher’s notebook^, c. 1860. The rules in Fisher’s 
original notebook were heavily amended in pencil. The rules are listed verbatim, 
including the original errors. The rules were described as Rules to Be Observed in 
Composing the Catalogue of Printed Books in the Library of Trinity College Dublin. 
Notes have been added in scpiare brackets.

1. Titles to be arranged alphabetically under the surname of the author when 
ascertainable. In the alphabetical arrangement initial prepositions, letters or 
articles to be regarded or not as part of the name as ordinary usage may 
direct. When this is doubtful, the name is to be used primarily exclusive of 
the prefixes and a cross-reference to be made from the same name with the 
prefixes added.

2. If more than one name occurs in the title as the author, the first mentioned 
to be taken as the heading of the primary entry.

3. Sovereigns or Princes of sovereign houses to be entered under their Christian 
or first name.

4. Works of Jewish Rabbis and of oriental writers to be entered under their first 
name.

^See Section 1.3.2.
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5. Works of friars to be entered under the Christian name also persons canonized. 
Patronymics to be used as surnames. [This rule crossed out in the manuscript 
and left out in later copies.]

6. The Respondent in a Thesis to be considered its author except when it un­
equivocally appears to be the work of the Praeses.

7. Any document purporting to be issued by a corporate body (except in the 
case of Learned Societies or scientific bodies, for which a specific rule is made 
afterwards) to be entered in distinct alphabetical series under the name of the 
place from which they derive their denomination, under the name of the place 
whence their acts are issued.

8. When the name of an author appears in different languages, the entry to be 
made in that in which appears in his several works. If they vary, Latin to have 
precedence, then English, French and German. [Crossed out in pencil and left 
out of later copies.]

9. Surnames of noblemen to be used in all cases as the heading with a cross- 
reference from the Title to the name. The same rule to be followed with 
respect to bishops if the surnames are ascertainable; if not then the name of 
the see to be taken. No cross-reference necessary in the case of bishops.

10. Initials and pseudonyms (such as “Philoveritas” “Irenaeus,” etc.) to be dis­
regarded except in those cases where they have acquired such a degree of 
notoriety or importance as to entitle them to be taken as substitutes for the 
real names of anonymous authors.

11. When the author’s name does not appear in the work, it is to be treated as 
anonymous, and placed under some specific heading according to the rules 
hereafter mentioned. If the name of the author can be ascertained then the 
title in an abridged form is to be placed under the anonymous heading and 
a reference to be made to this author’s name under which the full title is to 
appear, with the term (Anon.) appended.
(If the author gives his initials only, the book to be entered under the initial of 
his last name—as a book by J. F. is to be entered under F(J) [later addition].)

12. If an anonymous publication should be a reply to or a defense of or consist 
of remarks upon the work of a known writer; the name of that writer may be 
taken as the heading of the anonymous work. (But all such anonymous works 
are to be enumerated after the list of the author’s own works and separated
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by a line, [or placed in the lists distinguished by Italics] [crossed out in pencil] 
the work to which they refer but enclosed in brackets [ ]. [All of this left out 
in later copies.])

13. Next to the names of authors, the names of other persons forming the subject of 
anonymous publications (when the authors [sfc] names cannot be ascertained) 
to be selected as the subject of the heading; next to them to rank the names 
of places.

14. In most other cases (of anonymous books) that noun substantive in the title 
which will but express the subject of the work will form the most suitable 
heading. If no one of these is sufficiently characteristic, a compound heading 
(ex. gr. “Future State,” “Poor Laws,” “Roman Catholic Emancipation Bill”) 
may be formed and in some few cases a title may be selected altogether different 
from any words to be found in the title page (ex. gr. “Bank of England” for 
the “History of the Old Lady of Threadneedle St”)—but such exceptions to 
the general rule to be avoided as much as possible.

15. In any series of printed works, which embrace the collected productions of 
various writers upon particular subjects the work is to be entered under the 
name of the editor. (But the particular authors are also to be entered, with 
reference to the collection [inserted].)

16. Works of several authors published together but under a collective title, to be 
catalogued under the name of the first author, although an editor’s name may 
appear in the work.

17. If the editor’s name do [sic] not appear, the whole collection is to be entered 
under the collective title as is the case of anonymous works.

18. Translations to be entered primarily under the name of the original author, 
secondarily under the name of the translator. The same rule to be observed 
with respect to the work of commentators, if accompanied with the complete 
text.

19. A cross-reference to be made from the name of any person who is the subject of 
a biography or narrative to its authors or in general, from any name which may 
be reasonably conceived to have equal claim to that selected for the principal 
entry.

20. The list of works under each heading to be arranged (first in order of the 
languages Oriental, Greek, Latin, English, French, German next [crossed out
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in the manuscript and not used in later copies]) in chronological order only that 
subsequent editions of any work are to be placed immediately after the original 
edition. Volumes without date or the date of which cannot be supplied, to be 
entered last.

21. All Acts, Annuals, Memoirs, Transactions, Journals, &:c of Academies, Uni­
versities or other learned Societies to be catalogued under 3 separate heads. 1. 
Memoirs, Acts or Transactions he. as the case may be. 2. Academy, Society 
or Institute he. h 3. The place from which such Transactions, he. are issued. 
Academy, Society he. to be made primary [order changed in pencil: 3 becomes 
1, 1 becomes 2, 2 becomes 3].

Where pseudonymous or fictitious names are used, the book to be entered 
under the real name h a reference to it given under the Pseudonym, except 
when this letter [szc] is better known than the real name—as Melanchton, 
whose real name Schwartzerde is known to few, Mathias Flaccius Illyricus 
he.—but in these cases there may be a reference from the Pseudonym to the 
real name. In cases where the real name cannot be ascertained the book to be 
entered under the Pseudonym.

Books published under such names as A patriot, a clergyman, a member of 
Parliament to be treated as purely anonymous.

22. Anonymous works relating to the Church Catholic or to the doctrines, princi­
ples or government of churches in general to be entered under the head Ecclesia 
if in Latin, or any foreign language, or Church if in English. Those which re­
late to separate national churches—as of Rome, England he are to be entered 
under the name of the respective nation in which the Church is situated.

23. Concordances, Cyclopaedias, Dictionaries and Lexicons to be entered primarily 
under the head of the author and secondarily under the respective words. 
Concordance he. Dictionaries or Cyclopaedias published under the sanction 
of an Academy or Society to be entered secondarily under the head Academy, 
Society, he.
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Appendix B

Equipment and software used

B.l Hardware

• IBM PC AT

• Inmos T800 Transputer

• Microtek MS-300C flatbed scanner

B.2 Software

• Borland Turbo C

• Transputer Parallel C

• Microtek Image Scanner function-call package
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Appendix C

Run-length encoding

Files used in this project were compressed by run-length encoding. This is a very 
simple means of compression, and expansion is relatively fast. Because of its sim­
plicity, compression rates are not very high. Catalogue pages (A3 size) were scanned 
at 300 pixels per inch. After some of the surrounding white space had been removed, 
the image dimensions were 2544 x 3900 pixels so each page had 1,240,200 bytes or 
just under 1.2 megabytes. Run-length encoded files were between about 300 and 
400 kilobytes, that is, between about 25% and 30% of their original size.

0 1 1 1 1 1 1 1

Table C.l: 127 run-length encoded in one byte.

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Table C.2: 128 run-length encoded in two bytes.

Images are compressed by counting the alternate runs of black and white pixels. 
For example, if the fii'st line of an image contains a run of 1000 white pixels followed 
by 2 black pixels followed by 1542 white pixels, then the first three entries in the 
run-length encoded file would be the numbers 1000, 2 and 1542. Compression is 
highest when the image contains large sections of all black or all white pixels and 
is lowest when there are frequent changes from black to white and back again. The 
files start with a 15 character text leader, followed by a three byte end of text file 
marker (DOS file) making a leader of 18 characters in all before the run data begins. 
Each line of the encoded file starts with a white run. If the actual image line begins 
with a black pixel, then a 0, indicating a white run, 0 pixels long, is entered at the
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start of the corresponding line in the compressed file. Runs are stored in one or two 
bytes. If a run is 127 bits long or less, one byte is used with its most significant bit 
(msb) set to 0 (see Table C.l). If a run is greater than 127, a second byte is used. 
This is signaled by setting the msb of the first byte to 1 (see Table C.2). This allows 
for runs between 0 and 32767 pixels long. If images wider than 32767 bits are used, 
then an extra byte will be needed.
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Appendix D

Photographs

- Tiactatns de volimtaria
- Spirituales admoiitioiK

11 I
) conci

IDIG.

Figure D.l: Screen photo, showing a hyphen split in two parts.
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Figure D.2: A ‘P’ template with its horizontal and vertical signatures.

PAmora(-
aidaclioDsrfl 
Tylmni, Haidi

.9

Figure D.3: A character enlarged within a window.
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Figure D.4: An entry composed almost entirely of Greek characters.
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