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Summary

This work aims to resolve some resource management problems that arise due to changes in the

mobile network market and business models, brought by recent trends in commercial mobile

networks, such as the widening range of services offered by Mobile Network Operators (MNOs), and

the increasing importance of vertical industries and service providers as sources of revenue. These

changes led the 3GPP to introduce network slicing, proposing a logical division of the mobile network

infrastructure into independent virtual networks, known as Network Slices (NSs). Each NS acts as a

completely isolated End-to-End (E2E) network, tailored with different resources and functionality to

support applications with specific Quality of Service (QoS) requirements. Similarly to the separation

of mobile networks into Core Network (CN) and Radio Access Network (RAN) segments, the offer

of NSs can be split into CN as a Service (CNaaS) and RAN as a Service (RANaaS), allowing MNOs

to provide their clients with custom CN slices, custom RAN slices, or a combination of both, forming

fully custom E2E NSs. In particular, this thesis studies the resource management functionality for

enabling E2E network slicing through radio virtualisation. The problems we address in this thesis

can be summarised in the form of the following research questions:

• What are the requirements for using radio hypervisors to support RANaaS?

• How can radio hypervisors provision and instantiate custom virtual radios on demand?

• How to model the embedding of heterogeneous RAN slices on RANaaS platforms?

• Could separate specialised orchestrators be used to provide fine-grained resource allocation on

E2E networks?

• How to coordinate multiple network segments and orchestrators to guarantee a consistent QoS

for E2E NSs?

To addresses these questions, we apply a range of experimental approaches, analytical methods,

and new architectural proposals, including the qualitative review of the vast literature on radio
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virtualisation, radio slicing and RANaaS; the implementation of a software layer that provides

radio hypervisors with resource management features for supporting RANaaS; the discussion and

formalisation of the radio processing isolation problem; the modelling of the resource allocation of

heterogeneous RAN slices on RANaaS platforms; and the proposal of a hierarchical orchestration

architecture for E2E networks as well as its implementation as a proof-of-concept prototype.

First, we investigate the functionality and challenges for enabling RANaaS through radio virtualisa-

tion. We identify the key requirements for using radio hypervisors to support RANaaS, evaluate how

radio hypervisors in the literature meet these requirements, and observe that most of the existing

radio hypervisors lack some of the essential features for RANaaS. Then, we introduce a modular

software layer that can sit on top of existing radio hypervisors and provide them with the missing

slicing functionality to support RANaaS. We integrate our software layer with a radio hypervisor

and validate its ability to create and deploy virtual radios with different Radio Access Technologies

(RATs) or numerologies on-demand, capable of displaying performance comparable to bare metal.

Next, we focus on the resource management of RANaaS platforms regarding the mapping of real

radio resources to realise virtual radios, also known as the virtual wireless network embedding

problem. We observe that current models and solutions for the embedding of RAN slices are tied to

particular radio virtualisation mechanisms, not being suitable for virtual radios with different RATs

or numerologies. Then, we introduce a technology-agnostic modelling approach for embedding

heterogeneous RAN slices, which is transparent to the characteristics of the underlying virtual

radios. We also propose a resource management optimisation problem that is solved at the MNO, for

determining the optimal allocation of RAN slices to minimise the total isolation overhead.

Finally, we look into the coordination of the resource management across multiple network segments

to deploy E2E NSs with consistent QoS. We propose a hierarchical orchestration architecture that

addresses the limited support and oversimplified resource allocation on different network segments

of existing E2E orchestration solutions, by enabling the independent management of each network

segment using existing distributed specialised orchestrators used to manage a real network infras-

tructure. Then, we present a prototype higher-level orchestrator, the hyperstrator, for coordinating

the resource management of the existing specialised orchestrators and the deployment of E2E NSs

across network segments. We also verify that the distributed nature of our orchestration architecture

introduces a negligible overhead for instantiating E2E NSs.
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Introduction

“ Every journey begins with a choice.

”
Professor Oak, Pokémon Red & Green, 1996

T
HIS thesis studies the resource management functionality for enabling End-to-End (E2E)

network slicing through radio virtualisation. We propose a solution that leverages radio

hypervisors to enable sharing physical network infrastructure, and supports services with diverging

performance requirements using virtual radios. We enable the provision of tailored virtual radios with

different Radio Access Technologies (RATs) and numerologies in real-time, delivering performance

comparable to bare metal. Then, we model the embedding of virtual radios on top of physical radio

hardware, and introduce a resource management method that minimises the total overhead required to

ensure their independent operation. Furthermore, we present a hierarchical orchestration architecture

for managing virtual resources across multiple network segments, and deploying Network Slices

(NSs) with consistent Quality of Service (QoS). Figure 1.1 illustrates the scope of this PhD thesis.

Scope 
of this 
thesis

Cross-SegmentMulti-Service

Cohesive 
Resource 
Allocation

Diverging
Performance
Requirements

On-Demand
Scalable Business Model

FIGURE 1.1: A diagram of the scope of this PhD thesis.

PhD Thesis Joao Felipe Faco Cals Cruz SANTOS



4 Chapter 1. Introduction

1.1 Overview

Mobile Network Operators (MNOs) face an accelerating mobile data traffic Compound Annual

Growth Rate (CAGR), accompanied by a decrease in their Average Revenue Per User (ARPU),

leading to a widely known revenue gap in the mobile network industry [1] [2]. As a result, the

MNOs are searching for innovative ways to increase their revenue and ensure profitability, such

as providing other communication services beyond Mobile Broadband (MBB) to end-users [3].

In recent years, the MNOs started exploring new markets, e.g., the Internet of Things (IoT) and

multimedia broadcast, with the offer of Narrowband IoT (NB-IoT) and Multimedia Broadcast

Multicast Service (MBMS), respectively. However, mobile network architectures up to 4G were not

designed to support communication services with a wide range of different requirements in terms

of performance, scalability and availability [4]. Consequently, there are limitations on the types of

communication services that existing mobile network infrastructures can readily accommodate. For

example, enabling the support for low-cost, low-power IoT services on top of 4G with NB-IoT was a

complex and time-consuming process, which entailed in the development of a new type of RAT, a

new release of the LTE standard, and the manufacture of new NB-IoT-compatible base stations [5].

In contrast to previous generations of mobile network architectures, 5G is envisioned from the very

beginning to be forward compatible and support a variety of different communication services [5] [6].

As part of its development and standardisation process, the 3rd Generation Partnership Project

(3GPP) identified over 50 new potential markets and use cases for 5G that MNOs can target for

increasing their revenue [7]. These new communication services fall under four major categories:

Enhanced Mobile Broadband (eMBB), Enhanced Vehicular-to-Everything (eV2X), Critical Com-

munications (CriC), and Massive IoT (MIoT), each of which has its own set of challenging and

diverging performance requirements [8] [9]. To cope with the requirements of such diverse set of

communication services, the 3GPP introduced the concept of network slicing for 5G, which proposes

partitioning the physical network infrastructure of an MNO into independent virtual E2E networks,

known as NSs [10]. Each NS operates as a completely isolated E2E network that can be individually

tailored and configured on the fly for serving different purposes [8]. In this way, network slicing

allows MNOs to design and deploy customised NSs on-demand, supporting a wide range of new

types of communication services without requiring modifications on the underlying standard or

networking equipment [11].
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The ability to dynamically deploy customised virtual E2E networks grants versatility to 5G mobile

networks [12], enabling new ways that MNOs can monetise their physical network infrastructure

and opening unprecedented business opportunities for the mobile network market [13]. For example,

MNOs can offer NS as a Service (NSaaS) to business owners with networking demands, providing

them with E2E networking solutions in the form of NSs with customised performance and function-

ality [10], and turning business owners into tenants whose virtual E2E networks seamlessly coexist

on top of the MNO’s shared physical network infrastructure [14]. Therefore, network slicing breaks

the monolithic nature of legacy mobile networks into value-chain networks [15], enabling MNOs

to go beyond providing traditional Business-to-consumer (B2C) services to their end-users, and

establish a scalable business model by providing Business-to-business (B2B) services to vertical

industries, e.g., automotive and healthcare, and Business-to-business-to-consumer (B2B2C) services

to service providers, e.g., Mobile Virtual Network Operators (MVNOs) [13] [16].

1.2 Motivation

The E2E network infrastructure of MNOs may comprise multiple network segments, each of which

can be independently orchestrated, sliced, and combined for creating different types of NSs [8]. For

mobile networks, the 3GPP defines E2E NSs as the combination of Core Network (CN) slices and

Radio Access Network (RAN) slices [17], as illustrated in Fig. 1.2. Likewise, the offer of NSaaS can

be split into a conjunction of CN as a Service (CNaaS) [18] and RAN as a Service (RANaaS) [19].

Such separation gives MNOs the versatility and granularity to offer tenants: customised CN slices,

where each tenant can define its own authentication schemes, mobility and session management,

whilst sharing a common RAN among all clients; customised RAN slices, where each tenant can

specify its own coverage area, RATs and numerologies, whilst sharing a common CN among all

clients; or fully customised E2E NSs, where tenants can define both their CN and RAN [16].

The slicing process is realised by entities known as hypervisors, which are specific to the virtualisation

of a particular type of resource and hardware platform [20] [21]. However, while the virtualisation

of the CN is a mature area, with carrier-grade virtualisation solutions being adopted in production

networks, the virtualisation of the RAN remains a new research topic [21]. The proof-of-concept

implementations of radio hypervisors are essential for analysing the benefits of RAN virtualisation,

as well as its drawbacks, e.g., performance impacts due to virtualisation overheads, and signal
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FIGURE 1.2: Example of a mobile network infrastructure comprised of RAN and
CN segments, both of which can have different sets of RAN and CN slices logically
connected to each other to form E2E NSs. The data from the User Equipments (UEs)
traverses through the combination of RAN and CN slices to reach external networks

or private domains.

degradations due the isolation between virtual radios [21] [22]. The current prototypes of radio

hypervisors available in the literature can create virtual radios for realising RAN slices using either

low-level radio resources, e.g., time and frequency; or high-level radio resources, e.g., Physical

Resource Blocks (PRBs) and frames [22]. Although paving the way for the realisation of RAN

slicing, these prototypes mainly focus on development of scheduling or multiplexing techniques

for enabling the coexistence of multiple RAN slices on top of a single physical hardware platform,

without considering the additional requirements for RANaaS.

The majority of existing hypervisors operate in a static manner, not allowing the creation, alteration

or removal of virtual radios on-demand [23]. In addition, these prototypes lack negotiation and

monitoring capabilities for tenants to communicate and query the available radio resources, request

RAN slices, and assess the performance of their RAN deployment, which prevents their use for

supporting RANaaS [24]. To address these obstacles, in Chapter 3, we identify the requirements

for using radio hypervisors to support RANaaS, and we introduce a software layer that can wrap

around existing radio hypervisors to provide them with the missing slicing functionality. Another

fundamental challenge related to RAN slicing is deciding how to efficiently and optimally map radio

resources from the physical radio to realise different RAN slices, also known as the virtual wireless

network embedding problem [22]. However, current models and solutions for embedding RAN
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slices are limited to particular RATs and numerologies, assuming that every virtual radio possesses

the same type and granularity of radio resources, which does not hold for heterogeneous RAN slices.

Also, these approaches do not factor the additional overhead required to ensure isolation between

different virtual radios. In Chapter 4, we introduce a novel modelling approach for embedding

heterogeneous RAN slices on RANaaS platforms, which is transparent to the type and granularity of

resources of the individual virtual radios, and considers the additional overhead to ensure isolation

between RAN slices by design.

We can extend the concept of network slicing to other kinds of E2E network infrastructures, e.g.,

metro networks from Internet Service Providers (ISPs) or cloud networks from Cloud Providers

(CPs), where the E2E NSs consist of a combination of different types of Network Segment Slices

(NSSs), e.g., Transport Network (TN) and Data Centre Network (DCN) slices [25]. Regardless

of their type, every NSS contributes to the overall QoS of an NS, as the inappropriate resource

allocation in a single NSS not only leads to localised bottlenecks but also impairs the performance of

all communication services running on the NS [26]. Therefore, guaranteeing consistent QoS for NSs

requires cohesive resource allocation across multiple network segments [10] [25]. However, each

type of network segment has different paradigms and abstractions, entailing distinct orchestration

approaches that require domain expertise [27].

There are specialised orchestrators tailored for the particularities of specific segments, e.g., the

Open Network Operating System (ONOS) [28] and the Open-source MANO (OSM) [29], which

provide fine-grained resource allocation in the TN and DCN segments, respectively. However, the

interaction between different orchestrators for a joint orchestration of multiple network segments in

E2E networks remains an open challenge [25]. Conversely, there are one-size-fits-all orchestrators

that aim at orchestrating entire E2E networks, e.g., CORD [30] and 5G-EmPOWER [31], which

provide a central point of management for the entire E2E infrastructure. However, one-size-fits-all

orchestrators tend to oversimplify the particularities of certain network segments and only support

limited technologies and standards; being exceedingly complex for adding new functionality, e.g.,

the state-of-the-art on resource management, or incorporating new types of network segments, e.g.,

mmWave and satellite networks [32]. To tackle these issues, in Chapter 5, we propose a hierarchical

orchestration architecture for E2E networks, leveraging domain expertise and enabling the inde-

pendent management of each network segment using existing distributed specialised orchestrators
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already deployed in the network infrastructure.

1.3 Research Questions

This thesis addresses the following Research Questions (RQs):

• What are the requirements for using radio hypervisors to support RANaaS?

• How can radio hypervisors provision and instantiate custom virtual radios on demand?

• How to model the embedding of heterogeneous RAN slices on RANaaS platforms?

• Could separate specialised orchestrators be used to provide fine-grained resource allocation on

E2E networks?

• How to coordinate multiple network segments and orchestrators to guarantee a consistent QoS

for E2E NSs?

1.4 Contributions

In this section, we summarise the key research contributions of this PhD thesis.

Design and Development of a Technology-agnostic RANaaS Platform – Chapter 3

• Identifying the key requirements for using radio hypervisors to support RANaaS.

• Developing a modular software layer that can sit on top of existing radio hypervisors and

provide them with the missing slicing functionality.

• Integrating our software layer with HyDRA [21] for creating and deploying virtual radios with

different RATs or numerologies on-demand.

• First work to quantify the delay and signal degradation introduced by radio virtualisation.
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Embedding of Heterogeneous Virtual Wireless Networks – Chapter 4

• First work to formulate the embedding of heterogeneous RAN slices using a Travelling

Salesman Problem (TSP)-based approach.

• Proposing a resource management optimisation problem for minimising the total isolation

overhead between virtual radios.

• Assessing the performance and computation complexity for solving the embedding of hetero-

geneous RAN slices using different heuristic methods.

Breaking Down the E2E Resource Management and Network Slicing – Chapter 5

• Enabling the independent management of each network segment, leveraging existing dis-

tributed specialised orchestrators.

• Developing a prototype higher-level orchestrator, the hyperstrator, for coordinating the resource

management of the specialised orchestrators.

• First work to decentralise the control over the physical infrastructure and the decision over the

resource management for E2E networks comprised of different network segments.

• Evaluating the overhead introduced by our hierarchical orchestration architecture to provision

NSs, and the impact of each NSS on the performance of NSs.

1.5 Thesis Outline

The remainder of this PhD thesis is organised as follows:

Chapter 2 – Background

In Chapter 2, we provide technical background on the concepts used throughout this PhD thesis

and review the literature relevant to the scope of our work. First, we examine the concepts of soft-

warisation, virtualisation and orchestration, using examples of their application in mobile networks.

Then, we review the state-of-the-art on radio virtualisation, and categorise existing radio hypervisors
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with respect to their radio virtualisation mechanisms. Finally, we assess the current cross-network

segment orchestration solutions regarding their orchestration characteristics, as well as their support

for different technologies and slicing of network segments.

Chapter 3 – Leveraging Radio Hypervisors to Enable RANaaS

In Chapter 3, we investigate the functionality and challenges for enabling RANaaS through radio

virtualisation. We analyse the requirements for using radio hypervisors to support RANaaS, and

we evaluate how the current state-of-the-art on radio virtualisation meets such requirements. We

identify, formalise and address the key resource management functionality missing from existing

radio hypervisors. Then, we introduce eXtensible Virtualisation Layer (XVL), a software layer that

provides the missing resource management functionality for enabling RANaaS and can be added

on top of existing radio hypervisors. We detail the integration of XVL with HyDRA, forming a

RANaaS platform that can provision heterogeneous RAN slices as a service. Next, we outline XVL’s

architecture and design choices, as well as evaluate its performance in terms of the computational

overhead, the delay to provision virtual radios, the delay introduced to forward In-phase & Quadrature

(IQ) samples, and the signal degradation. Our results show that XVL enables leveraging existing

radio hypervisors for supporting the RANaaS paradigm.

Chapter 4 – Embedding Heterogeneous RAN Slices on RANaaS Platforms

In Chapter 4, we focus on the resource management of virtual radios on RANaaS platforms. First,

we assess how the current virtual wireless network embedding solutions model the allocation of real

radio resources to virtual radios, and demonstrate how they are not suitable for embedding hetero-

geneous RAN slices. Then, we introduce a novel graph-based modelling approach for embedding

heterogeneous RAN slices, and propose a new formulation that considers the additional required

guard bands to ensure isolation between RAN slices by design, while also being transparent to the

type and granularity of radio resources of the individual virtual radios, and extensible to support

new RATs and numerologies. Based on this formulation, we also propose a resource management

optimisation problem that is solved at the MNO, for determining the optimal allocation of RAN

slices to minimise the total isolation overhead. Finally, we assess different methods for solving

the resource management optimisation problem, and compare the computational footprint of the
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optimal solution against two heuristic algorithms that provide a good solution for the problem while

possessing a lower computational footprint.

Chapter 5 – Orchestrating Multiple Network Segments to Create E2E NSs

In Chapter 5, we address the limited support and oversimplified resource allocation on different

network segments of existing E2E orchestration solutions. We propose a hierarchical orchestration

architecture for E2E networks, breaking down the E2E resource management and network slicing

problems per network segment. We introduce a higher-level orchestrator, the hyperstrator, to

coordinate existing distributed orchestrators and deploy NSs across multiple network segments in

current network deployments. Then, we detail a prototype implementation of the hyperstrator and

validate our hierarchical orchestration concept with two proof-of-concept experiments, showing the

NS deployment and how the resource allocation per network segment impacts the performance of NSs.

The results show that the distributed nature of our orchestration architecture introduces negligible

overhead for provisioning NSs in our particular setting, and confirm the need of a hyperstrator for

coordinating multiple network segments and ensuring consistent QoS for the NSs.

Chapter 6 – Conclusions and Future Directions

In the last chapter, we conclude this PhD thesis by summarising our key contributions and discussing

the outcomes of our research efforts. In addition, we examine future directions for potential

extensions to the contributions achieved during the PhD project.
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Background

“ Things are only impossible until they are not.

”
Jean-Luc Picard, Star Trek: The Next Generation, 1988

I
N this chapter, we provide the background on the broader context of the research challenges

addressed by this PhD thesis. We examine the fundamental concepts of softwarisation,

virtualisation and orchestration, and review the literature in the research areas relevant to this PhD

thesis, regarding radio virtualisation and E2E network orchestration.

In Section 2.1, we lay out the theoretical dimension of softwarisation, virtualisation, and orches-

tration, clarifying the differences and relationship between these concepts, and outline the roles of

hypervisors, orchestrators, and controllers used throughout this thesis. In Section 2.2, we review

the literature about radio virtualisation as the technological enabler of RAN slicing, and categorise

existing radio hypervisors with respect to their radio virtualisation mechanisms. Finally, in Sec-

tion 2.3, we assess the state-of-the-art on the orchestration of E2E networks, and evaluate existing

solutions regarding their orchestration characteristics, support for different technologies, and slicing

of network segments.

2.1 Softwarisation, Virtualisation and Orchestration

In this section, we discuss the fundamental concepts of softwarisation, virtualisation, and orchestra-

tion, clarifying their differences and relationships. In addition, we outline the roles of hypervisors,

orchestrators, and controllers in the context of mobile networks.
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2.1.1 Softwarisation

According to the principle of computational equivalence between hardware and software [33]: hard-

ware and software platforms are logically equivalent, and either of them can realise any computing

operation. For example, the training of Artificial Neural Networks (ANNs), the routing of network

packets, or the (de)mapping of symbols to bits are operations that can be built directly into the hard-

ware, e.g., Application-Specific Integrated Circuit (ASIC), or run as software on General-purpose

Processors (GPPs), e.g., Advanced RISC Machines (ARM) [34]. However, such operations do not

perform the same in both computing platforms, as there are intrinsic trade-offs between the perfor-

mance of hardware, regarding execution speed and energy efficiency, and the flexibility of software,

regarding versatility and reconfigurability [35]. This dichotomy motivated the development of hybrid

hardware-software platforms for achieving different levels of compromise between performance and

flexibility [36] [37], bringing certain reconfigurability to hardware with programmable-logic chips,

e.g., Field-Programmable Gate Arrays (FPGAs), or accelerating specific software instructions with

programmable processors, e.g., Digital Signal Processors (DSPs) [38], [39], as depicted in Fig. 2.1.

FIGURE 2.1: An illustration of the trade-offs between different computing platforms,
regarding performance and flexibility [40].

Mobile networks are becoming increasingly dynamic and context-aware, reacting and adapting to

sudden changes in network traffic, demand and health [41]. This movement towards self-organisation

calls for reconfigurability over the network functionality, leading to the exploitation of software-based

technologies gaining popularity in recent years [42]. The term softwarisation refers to the process of

realising computing operations that previously were mainly carried out in dedicated hardware, now

through software running on top of GPPs [22] [42] [43]. Some notable examples of softwarisation in
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mobile networks are software-defined hardware platforms such as Software-defined Switches (SDSs)

and Software-defined Radio (SDR), which allow the decomposition and reprogrammability over the

switching and radio functionality, respectively [44]. SDSs can realise different packet processing

and routing protocols in software, not limited to vendor-specific implementations on dedicated

hardware [45]. The use of SDSs facilitated the development of tailored networking solutions to cater

to business needs [46], and enabled Software-defined Networking (SDN) technology for network

control and management [47]. SDRs can realise different digital signal processing chains in software,

not limited to a particular RAT as conventional radio platforms [12]. The use of SDRs shortened the

testing and prototyping cycles for wireless networks [48] and enabled the development of cognitive

radio systems [49].

2.1.2 Virtualisation

The network equipment used in mobile networks possess a set of real resources, i.e., limited attributes

or capabilities, required to achieve a given purpose [9]. For example, servers have memory and

storage used for computing operations, switches have Ethernet ports and routing tables used for

routing network traffic, and radios have Radio Frequency (RF) front-ends and bandwidth used to

transmit and receive wireless signals. Usually, such resources are statically tied to the underlying

physical network infrastructure and cannot scale to serve variations in demand over time. As a

consequence, MNOs often need to overdimension their network deployments to attend peak demand

by overprovising network resources, which increases costs and decreases efficiency [50]–[52]. The

term virtualisation refers to the process of creating a virtual representation of the real resources in

software, which can be used in the same way as their real counterparts, but are more easily managed

and dynamically tailored to serve different purposes and levels of demand [22] [53] [54]. These

virtual resources are indistinguishable from real resources, giving their users the illusion of being in

possession of real resources, which allows the creation of different levels of representation and the

recursion of virtualisation, e.g., running containers inside a Virtual Machine (VM) [55].

The virtualisation process is realised by entities known as hypervisors, responsible for the abstraction

between real and virtual resources, decoupling their use from the underlying physical network

infrastructure; and the isolation between virtual resources, preventing them from interfering with

one another in harmful ways [51] [53]–[56]. The abstraction may involve different types of resource
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FIGURE 2.2: An example of the abstraction between and virtual resources, showing
the different types of resource mapping that hypervisors can perform [22].

mapping: (i) the partition of a real resource to form virtual resources; (ii) the aggregation of real

resources into a virtual resource; and (iii) the combination of both partition and aggregation [51] [53],

as illustrated in Fig. 2.2. For example, the Linux kernel’s Logical Volume Manager (LVM) acts as a

storage hypervisor [57], partitioning real storage volumes, e.g., hard disk and solid-state drives, into

virtual storage volumes that can be dynamically moved and resized at runtime; and/or aggregating

different real storage volumes into a virtual storage volume with larger space and a single standardised

interface. The LVM also ensures that any operation realised on the virtual storage volumes does

not impair the performance of each other or compromise the underlying physical storage hardware.

In that regard, network slicing can be considered a subset of network virtualisation, encompassing

only the partitioning of real network resources for creating customised virtual E2E networks that

seamlessly coexist on top of a shared physical network infrastructure [9] [22].

2.1.3 Orchestration

Mobile networks incorporate many different technologies from specialised segments, e.g., radio,

transport, and core networks [58]. Such complexity makes the design, deployment and operation of

new communication services a costly and time-consuming process in production networks, which

can take weeks or months of planning, configuring and testing through traditional Operation Support

Systems (OSSs) [58] [59]. However, softwarisation and virtualisation introduce new ways for

efficient and flexible utilisation of the mobile network infrastructure, allowing MNOs to simplify

and automate the resource management, ultimately reducing the time and costs associated with the

instantiation of communication services [59] [60]. The term orchestration refers to the process of

automatically coordinating, configuring, and monitoring the network resources, equipment, and
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applications to meet a particular objective [58]–[60]. It involves the translation of high-level service

requests with requirements, e.g., mobile coverage in a given geographical location, into the necessary

low-level network configuration to fulfil these requirements, e.g., set of Remote Radio Heads (RRHs)

with a particular amount of PRBs; as well as the interaction with the underlying physical network

infrastructure for applying the configuration on the network equipment [58]–[60].

FIGURE 2.3: An example of an orchestrator coordinating the resources of a phys-
ical SDN infrastructure to fulfil service requests, leveraging different specialised

controllers to control OpenFlow and NETCONF SDSs [61].

Orchestrators are responsible of processing service requests, implementing the control logic behind

the requirement translation, and coordinating the operation of network equipment [58]–[60]. For

example, ONOS [28] is an SDN orchestrator that (i) responds to intents, high-level service requests

detailing an objective, e.g., balance the load, create a firewall, or establish communication between

servers; (ii) translates them into the necessary network configuration, e.g., packet matching and

routing rules; and (iii) interfaces with the underlying SDN network infrastructure, e.g., through

OpenFlow or NETCONF protocols [58] [59]. A controller often intermediates the communication

between the orchestrator and the physical network infrastructure, centralising the control over a set of

similar network equipment, which simplifies the realisation of the orchestrator [25] [58]. Each type

of controller is designed to control and abstract a particular type of physical hardware platform [62],

e.g., the OpenStack controllers manage compute nodes in DCNs, and the Radio Network Controllers

(RNCs) manage NodeBs in 3G networks. In this way, network deployments consisting of different

network equipment, or using different communication protocols, usually employ a combination of

specialised controllers [61], as illustrated in Fig. 2.3. Some controllers may act as hypervisors and,

virtualises certain programmable hardware platforms, e.g., the OpenFlow controller FlowVisor [20].
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Softwarisation, virtualisation and orchestration enable unprecedented reconfiguration and automa-

tion over the mobile network infrastructure, playing a key role in the realisation of network slic-

ing [43] [63] [64]. The utilisation of orchestrators, controllers, and hypervisors greatly simplifies

network management and operation, allowing MNOs to automate the deployment of new communi-

cation services and offer it as a service [63] [64].

2.2 Radio Virtualisation

Radio hypervisors enable shared RAN deployments, where multiple tenants share a common

physical network infrastructure, decreasing the deployment costs and the amount of underutilised

radio resources. Some radio hypervisors can support heterogeneous RAN deployments, enabling a

single physical radio to realise multiple RATs or numerologies, reducing the number of physical

radios needed for deploying heterogeneous mobile networks. Some radio hypervisors can support

heterogeneous RAN deployments, enabling a single physical radio to realise multiple RATs or

numerologies, reducing the number of physical radios needed for deploying heterogeneous mobile

networks. This sharing of infrastructure enabled by radio virtualisation can lead to cost reductions of

significant value for MNOs serving special-purpose RATs [24], or operating in Citizens Broadband

Radio Service (CBRS) and Unlicensed National Information Infrastructure (U-NII) bands that can

accommodate a number of different 3GPP and non-3GPP RATs, e.g., LTE, 5G and WiFi [65].

Fig. 2.4 illustrates two scenarios in which a radio hypervisor manages the radio resources for creating

different RAN slices. Virtual Radio [24], one of the initial works on radio virtualisation, argued

for the deployment of software-based base stations, with a tailored amount of radio resources and

protocol stack to mitigate the slow development cycle in the wireless network industry. Ultimately,

the work of [24] proposes the use of radio virtualisation for enabling the deployment of virtual

wireless networks on demand, years before the term RANaaS was coined [19]. The following

research efforts on radio virtualisation focused on enabling radio slicing by ensuring isolation at

the radio resource level [22]. The next natural step is to leverage the capabilities of current radio

hypervisors for provisioning RAN slices on-demand, towards enabling the RANaaS paradigm.

There is a vast literature on radio virtualisation, radio slicing and RANaaS [9] [43] [66]. However,

the majority of current research efforts in these areas have been theoretical, while the number of

experimental and prototype radio virtualisation platforms pales in comparison [22]. Among the
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FIGURE 2.4: Radio hypervisors enable sharing of the physical network infrastructure
by multiple tenants and/or the use of a single hardware platform to realise heteroge-
neous RATs. The different colours (green and red) indicate RAN slices belonging to

different tenants.

existing experimental research efforts, their proof-of-concept radio hypervisors may differ in terms

of approaches to radio virtualisation. We can classify the existing radio hypervisors into two main

categories: technology-specific and general-purpose radio hypervisors. In this section, we describe

each of these classes, outline their differences, and list some notable examples in the literature.

2.2.1 Technology-specific Radio Hypervisors

Most of the existing radio hypervisors focus on the virtualisation of a single RAT, leveraging the

resource allocation capabilities of the given RAT for creating virtual radios. This class of radio

hypervisors typically operates at the MAC layer, virtualising physical radios by scheduling the use

of their radio resources to different virtual radios. This scheduling-based virtualisation approach

supports a single common PHY, shared among all virtual radios, only allowing the creation of virtual

radios that use the same RAT as the underlying physical radio [22]. There are two subclasses of

technology-specific radio hypervisors, based on the type of MAC of the targeted RAT [66]: frame-

based and grid-based radio hypervisors, illustrated in Fig. 2.5. The former targets the virtualisation

of RATs that transmit intermittent frames with random contention windows, allocating resources as a

number of consecutive frames, e.g., WiFi and Bluetooth. These radio hypervisors operate scheduling

airtime, frames and/or different contention window durations to different virtual radios, queueing the

frames from all the virtual radios [67]–[69]. Grid-based radio hypervisors target the virtualisation of

RATs that transmit continuously, allocating resources on a well-defined grid of resources blocks,
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e.g., LTE and WiMax. These radio hypervisors operate scheduling Virtual Resource Blocks (VRBs)

to the virtual radios, which are non-overlapping subsets of the underlying PRBs [70]–[72].

(A) Frame-based radio hypervisors schedule the frames of a physical radio, e.g., WiFi or
Bluetooth, to realise the different virtual radios.

Physical Radio

(B) Grid-based radio hypervisors schedule the PRBs of a physical radio, e.g., LTE or
WiMax, to realise the different virtual radios.

FIGURE 2.5: Different types of technology-specific radio hypervisors and their
virtualisation mechanisms. This class of radio hypervisors operates at the MAC layer,

scheduling the available real radio resources to the virtual radios.

2.2.2 General-purpose Radio Hypervisors

There are few examples of radio hypervisors that employ technology-agnostic radio virtualisation

mechanisms and support virtual radios with different RATs. This class of radio hypervisors operates

at the PHY layer, virtualising the physical radios by multiplexing the use of their RF front-ends.

This multiplexing-based virtualisation approach enables each virtual radio to have its own RAT,

with independent PHY and MAC. However, general-purpose radio hypervisors require full control

over the processing of IQ samples on the physical radio, and hence, can only operate on top of

SDR platforms. There are two subclasses of general-purpose radio hypervisors, based on their

multiplexing mechanism: FFT-based [21] [73] and filterbank-based [74] radio hypervisors. In

both cases, the radio hypervisor partitions the real RF front-end in the frequency domain, creating

virtual RF front-ends using non-overlapping spectrum bands, illustrated in Fig. 2.6. Then, the radio

hypervisor provides each virtual radio its own virtual RF front-end, which the virtual radios can

use to realise their own RAT. However, the ability of being technology agnostic comes at the price

of reduced resource efficiency in comparison to technology-specific radio hypervisors, as guard
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bands and/or intervals are often necessary to ensure isolation between the virtual radios and avoid

interference from the Out-of-band Emission (OOBE) of different RATs or numerologies [22].

FIGURE 2.6: General-purpose radio hypervisors operate at the PHY layer, multi-
plexing the RF front-end of an SDR to realise virtual radios with different RATs or

numerologies, including the required additional guard band (dark grey).

Existing proof-of-concept radio hypervisors tend to focus on developing radio virtualisation mecha-

nisms, improving the efficiency of the scheduling and multiplexing operations, as well as the isolation

between virtual radios. However, these radio hypervisors do not explore broker mechanisms for

interacting with third parties, implement the features required for creating virtual radios at runtime,

nor examine additional requirements for supporting services such as RANaaS [23] [14]. These issues

motivated us to develop a software layer that wraps around existing radio hypervisors and provides

them with the missing resource management functionality for RANaaS, discussed in Chapter 3. It is

also worth mentioning that one of the main limitations of technology-agnostic radio virtualisation

has been the limited availability and potentially prohibitive costs of SDRs with ultra-wide bandwidth

(equal or greater than 500 MHz), for allowing the radio hypervisor to support RATs that are very far

apart in frequency, or accommodating multiple instances of 5G virtual radios (each of which can

occupy up to 100 MHz), all on the top of a shared RF front-end. Such bandwidth limitation can

potentially constrain the applicability of this type of radio hypervisor to RATs operating in spectrum

bands closer to each other, and reduce the number of virtual radios support simultaneously. However,

we do not believe that the current limitations of existing radio hardware diminish the benefits in radio

resource management brought by the unique flexibility of technology-agnostic radio hypervisors.

2.3 End-to-End Network Orchestration

In the literature, there are a number of open-source initiatives that provide one-size-fits-all solutions

for managing E2E networks. However, their orchestration approaches may differ regarding: (i) the

degree of centralisation of their control and decision functionality, i.e., centralised or distributed;
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(ii) the level of disaggregation of their orchestration logic, i.e., implemented by the orchestrator

itself or by external applications; and (iii) their support for different administrative domains, network

segments and technologies. In the remainder of this section, we review some notable examples

of one-size-fits-all orchestrators and compare their different approaches to network orchestration.

Finally, by analysing these solutions, we identify the missing gaps in the state-of-the-art on E2E

network orchestration.

The CORD orchestrator [30] aims at transforming the functionality of central offices, from traditional

facilities that provide legacy services using dedicated hardware, into agile DCNs following the

Everything as a Service (XaaS) paradigm [30]. CORD is particularly popular among ISPs and

MNOs, supporting the instantiation of enterprise Content Delivery Networks (CDNs) and Virtual

Private Networks (VPNs), as well as Baseband Units (BBUs) and Evolved Packet Cores (EPCs).

CORD realises communication services as chains of functions, using Network Function Virtualisation

(NFV) to achieve fast and flexible deployment, and SDN to interconnect Physical Network Functions

(PNFs), e.g., physical servers and switches; and Virtual Network Functions (VNFs), e.g., load

balancers and firewalls [30]. However, CORD possesses limited capabilities regarding wireless

network segments, only supporting Centralised-RAN (C-RAN) LTE deployments.

Similar projects, e.g., 5G-EmPOWER [31], Kista orchestrator [75] and ONAP [76], also leverage

NFV and SDN to realise communication services as chains of functions on shared Commercial-Off-

The-Shelf (COTS) computing hardware. The former, 5G-EmPOWER, focuses on orchestrating E2E

networks with multiple RATs. It is compatible with a wider variety of wireless network segments,

supporting Distributed-RAN (D-RAN) deployments of LTE and Wi-Fi RATs, realised on SDRs

and embedded Linux devices, respectively [31]. In contrast, the Kista orchestrator focuses on

orchestrating E2E networks using C-RAN and different types of TN segments. It supports optical-

based TNs for the fronthaul between BBUs and RRHs, and packet-based TNs for the backhaul

between BBUs and data centres [75]. While the latter, ONAP, is a comprehensive orchestration

platform backed by The Linux Foundation [77], focusing on the orchestration of carrier-grade data

centres and mobile networks. It supports the deployment of E2E NSs across different administrative

domains, using a combination of the local cloud and edge resources. These three orchestrators

disaggregate the orchestration logic from their platforms, not implementing any resource management

directives, i.e., the intelligence behind the resource allocation and function placement. Instead, these
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solutions expect network applications, i.e., custom-made or third-party plugins, to manage the

entire E2E network infrastructure. This approach facilitates MNOs to programmatically define the

behaviour of their networks, at the cost of requiring further development before initial usage.

The previous one-size-fits-all orchestrators interface with the underlying physical network infrastruc-

ture of a single administrative domain through distributed controllers. Each controller is responsible

for carrying out resource allocation and function placement tasks on a specific type of network

segment, simplifying the interaction between the orchestrator with heterogeneous hardware plat-

forms [25]. However, these orchestrators take the opposite stance regarding their decision functional-

ity, i.e., the intelligence behind the resource negotiation and management for the entire E2E network,

centralising it in a single monolithic entity. This approach leads to complex and tightly integrated

implementations, which makes including new functionality and supporting new types of network

segments cumbersome and non-trivial [32]. Based on these issues, the conceptual work of [32]

proposed a hierarchical orchestration architecture for coordinating NFV-based DCNs across multiple

administrative domains. This paradigm was later standardised by ETSI [78], which proposed a

higher-level NFV orchestrator, the NFVO Composite (NFVO-C), for decomposing service require-

ments and coordinating distributed lower-level entities, multiple instances of the NFVO Nested

(NFVO-N), responsible for the resource management in their own data centres. However, these

solutions only focus on orchestrating DCNs, not supporting managing the resources or slicing any

type of wireless network segments. Table 2.1 summarises the results of our investigation, considering

different orchestrator approaches, supported technologies, and slicing of network segments.

Mobile networks are evolving and incorporating new types of wireless network segments for serving

current and future use cases, e.g., the addition of mmWave links, and the inclusion of satellite links

for ubiquitous connectivity beyond 5G. MNOs will need to integrate these new segments with their

existing network deployments, efficiently orchestrating heterogeneous resources across their extended

E2E infrastructure. However, we observe that existing one-size-fits-all orchestrators are not suitable

for such scenarios, due to their ossified centralised E2E network management, and limited support for

wireless network segments, with a coarse-grained placement of radio functionality that may lead to

suboptimal E2E performance [79]. These issues motivated us to develop a hierarchical orchestration

scheme detailed in Chapter 5, for enabling the independent management of each network segment

by specialised orchestrators, coordinated through a higher-level entity, the hyperstrator.
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2.4 Conclusions

In this chapter, we have presented the concepts of softwarisation, virtualisation and orchestration, as

well as detailed the purpose of hypervisors, orchestrators, and controllers in the context of mobile

networks. Then, we provided a literature review on the current state of radio virtualisation and

E2E network orchestration. Although current radio hypervisors can use a single physical radio to

deploy heterogeneous RAN slices with different RATs and numerologies, these radio hypervisors

lack certain resource management functionality for deploying virtual radios on-demand, preventing

their use to support RANaaS. Moreover, we observe that existing one-size-fits-all orchestrators can

coordinate different network segments and types of resources for deploying communication services.

However, these orchestrators possess limited capabilities regarding their support for wireless network

segments, essential for deploying E2E NSs in mobile networks. This issue is aggravated by the

monolithic and tightly integrated implementation of such orchestrators, restricting the inclusion of

new functionality and support for new network segments.
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Leveraging Radio Hypervisors to Enable

RANaaS

“ Just because something works,

doesn’t mean that it cannot be improved.

”
Shuri, Black Panther, 2018

I
N this chapter, we address the challenges associated with the resource management functionality

for enabling RANaaS through a radio virtualisation solution. We start by providing a

qualitative evaluation of the required features radio hypervisors to support RANaaS. Then, we

introduce the eXtensible Virtualisation Layer (XVL), a software layer that wraps around radio

hypervisors and provides them with the missing resource management functionality to be suitable

for RANaaS. Next, we formalise and address the isolation of virtual radios at the radio processing

level. The combination of our software layer with a radio hypervisor results in a prototype RANaaS

platform, as illustrated in Figure 3.1. To the best of our knowledge, our RANaaS platform is the first

to enable the provisioning of heterogeneous virtual radios as a service, isolated both at radio resource

and radio processing levels, including a monitoring interface for tenants to query the performance of

their RAN slices. Finally, we confirm the low computational footprint for running our software layer

alongside a radio hypervisor, enabling their utilisation on top of COTS computing hardware.

The technical work presented in this chapter is based on our papers “Towards Enabling RAN as

a Service - The Extensible Virtualisation Layer” presented at IEEE International Conference on

Communications (ICC) 2019 [80], and “Virtual Radios, Real Services: Enabling RANaaS Through

Radio Virtualisation” published in IEEE Transactions on Network and Service Management [81].
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The remainder of this chapter is organised as follows. In Section 3.1, we identify the resource

management requirements for using radio hypervisors to support RANaaS, evaluate how existing

radio hypervisors meet these requirements, and position our work with respect to them. In Section 3.2,

we introduce a software layer that implements the missing resource management functionality and

can be added on top of existing radio hypervisors, allowing them to provision virtual radios as a

service. In Section 3.3, we formalise and address the challenge of isolating virtual radios at the

radio processing level. In Section 3.4, we describe the integration of our software layer with a radio

hypervisor, evaluate its performance in different scenarios, and validate its capability to serve as an

enabler for RANaaS. Finally, in Section 3.5, we conclude this chapter and pose our final remarks.

FIGURE 3.1: Functional example of a RANaaS platform leveraging a radio hyper-
visor and supporting the creation of RAN slices on-demand. The radio hypervisor
slices the real RF front-end and creates isolated virtual radios. Each RAN slice has a
virtual radio and a source/destination for streams of IQ samples, e.g., produced by

software radios, BBUs, or waveform traces.

3.1 Enabling RAN as a Service Through Radio Virtualisation

Inspired by the initial concepts in Virtual Radio [24] and further works on the virtualisation of

wireless networks [22] [54] [66] [82], we now examine the use of radio virtualisation for enabling the

RANaaS paradigm. In this section, we devise a comprehensive list of required resource management

features for a RANaaS platform leveraging radio virtualisation. Then, we assess how well the radio

hypervisors listed in Section 2.2 meet these requirements, and position our solution, the XVL, in

relation to them.
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3.1.1 Requirements for Supporting RANaaS

The MNOs providing RANaaS may charge tenants for using their radio resources according to the

spectrum band, service duration, or Service Level Agreement (SLA), based on auctions or other

business models [83]. In addition, the type and availability of radio resources may vary across

different geographical locations. Therefore, the tenants must be able to discover the available radio

resources and negotiate their use [24]. This interaction between radio hypervisors and tenants

requires a radio resource broker with an interface for responding to remote requests. Such an

interface must have a well-defined syntax for the communication with tenants, and a clear model for

the description of the available radio resources, location and cost [14]. Upon successfully leasing the

radio resources, the radio hypervisor must be able to instantiate virtual radios on-demand, as the

tenants may start or halt the operation of their RAN slices at will.

The offer of RANaaS should support different virtual wireless networks, not limiting itself to a

single technology or protocol [74]. Therefore, the underlying radio hypervisor must employ a

technology-agnostic radio virtualisation mechanism to support the creation of virtual radios with

different RATs or numerologies. In addition, the virtual radios on a RANaaS platform send/receive

IQ samples to/from tenants over network connections, which are subject to variations in latency, jitter

and reliability. These variations may affect the timing for producing/consuming IQ samples to/from

the radio hypervisor, delaying or interrupting the series of multiplexing operations (detailed further

in Section 3.2). Therefore, aside from ensuring isolation in terms of radio resources, preventing

interference between virtual radios, the radio hypervisor must also ensure isolation in terms of their

radio processing, preventing delays in the processing any IQ streams to affect other virtual radios.

Realising a communication service through a RAN slice on a RANaaS platform introduces a new

layer of complexity and another point of failure in the service stack. The radio resources previously

dedicated to realising a single service and its RAT, now constitute a pool of resources shared

amongst a number of virtual radios. Hence, the tenants must be able to assess the performance

of their virtual radios for ensuring the proper operation of their RAN deployment and established

SLAs [82]. For instance, tenants should be able to query Key Performance Indicators (KPIs) of

their virtual radios, e.g., buffer sizes, processing delay, and SINR degradation. Furthermore, the

prototype implementation of the RANaaS platforms should ideally be made available to tenants, for

transparency and security [54]; and to the research community, for further research and development.
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Based on the aforementioned requirements, below we summarise the necessary features for a

RANaaS platform leveraging radio virtualisation:

• Resource Negotiation: to possess an interface for querying and requesting RAN slices, de-

scribing both the radio resources, e.g., in terms of centre-frequency and bandwidth; and the

virtual radios, e.g., owner, transmitter and/or receiver capabilities.

• Dynamic Allocation: to allow the creation and destruction of virtual radios on demand, without

interrupting the operation of the radio hypervisor or other virtual radios.

• Technology Agnostic: to employ radio virtualisation mechanisms that support different RATs,

and do not limit the choice of the PHY and MAC layers of the RAN slices.

• Radio Resource Isolation: to allocate non-overlapping radio resources to different virtual

radios, and prevent interference between virtual radios, e.g., through filtering, guard bands

and/or intervals.

• Radio Processing Isolation: to ensure that virtual radio instances cannot affect the operation

and performance of each other, even in case of a malfunctioning or misbehaving virtual radio.

• Service Monitoring: to collect and provide information about the performance of individual

virtual radios, e.g., in terms of buffer sizes, the introduced delay, and SINR degradation.

The radio hypervisors that meet these resource management requirements can act as RANaaS plat-

forms, enabling MNOs to decrease their deployment costs and introduce new sources of revenue [80].

However, despite the capabilities of existing radio hypervisors for enabling multiple heterogeneous

virtual radios to share the same underlying physical radio hardware, not all types of radio hypervisors

are suitable or possess the complete set of required features for supporting RANaaS, as discussed in

the next section.

3.1.2 State-of-the-Art on Radio Virtualisation for RANaaS

We have evaluated the notable examples of radio hypervisors mentioned in Section 3.1.1 regarding

the requirements for supporting RANaaS, and Table 3.1 summarises the results of our analysis. In

general, the majority of research efforts on RAN slicing and radio virtualisation either only focus on

particular RATs, or do not make their implementation available as open-source [66].
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One of the few works that is technology agnostic and provides an actual open-source implementation

is HyDRA [21], a radio hypervisor for SDRs developed on top of GNU Radio [84], a Software

Development Kit (SDK) that provides signal processing blocks for the realisation of RATs and

signal-processing systems (detailed further in Section 3.4.1). HyDRA is an FFT-based general-

purpose radio hypervisor, where each virtual radio can realise any RAT using its own virtual RF

front-end. This radio hypervisor allows multiple RAN slices with heterogeneous RATs to share the

same underlying physical radio hardware. However, its virtual radios are not isolated in terms of

radio processing, given that if any of the virtual radio delays transmitting/receiving or crashes, it

will halt the operation of the radio hypervisor and all other virtual radios. Moreover, the number of

virtual radios and their resource allocation, i.e., the amount of spectrum for each virtual RF front-end,

must be set up before the operation of the radio hypervisor, as it is not possible to (de)allocate virtual

radios without interrupting their operation. As shown in Table 3.1, both HyDRA and the majority

of other existing radio hypervisors are still missing essential features for supporting the RANaaS

paradigm. Nonetheless, given its capabilities, reliability, and open-source nature, in this chapter we

adopt HyDRA as the starting point in the development of a prototype RANaaS platform.

3.2 Extensible Virtualisation Layer

We developed XVL, a cross-platform software layer that sits on top of existing radio hypervisors.

It works as a wrapper, leveraging the radio slicing capabilities of an underlying radio hypervisor,

and providing it with the missing resource management functionality for supporting RANaaS. This

modular design allows the radio hypervisor to focus on the radio virtualisation, offloading to XVL the

majority of other tasks, e.g., communication interface, resource allocation, and service monitoring.

In the following subsections, we detail how XVL addresses the limitations and missing features

identified in Section 3.1.1. Namely, we discuss how XVL: (i) provides a communication interface

for resource negotiation and allocation; (ii) supports the creation and destruction of virtual radios

on-demand, (iii) ensures radio processing isolation; and (iv) monitors the performance of virtual

radios.
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FIGURE 3.2: The steps involved for negotiating the use of radio resources and
allocating new virtual radios. XVL (blue) stands as a wrapper around the radio

hypervisor (grey).

3.2.1 Resource Negotiation and Dynamic Allocation

XVL operates on a client-server paradigm, with a single server, i.e., one instance of XVL on top of a

radio hypervisor, serving multiple clients, i.e., the different tenants. The clients can send messages

to the server for querying information about the use of radio resources or requesting radio resources

at any time. Fig. 3.2 depicts the process of negotiating and using radio resources through XVL.

The clients can request the allocation of separate virtual radio receivers and transmitters, each of

which can have different bandwidths and can operate in different centre frequencies. Currently,

XVL only ensures that the requested virtual radio resources fall within the underlying physical radio

hardware’s operating bandwidth, and do not overlap with the resources already allocated to other

virtual radios. However, MNOs are free to set limits on the radio resource allocation per tenant, or

attribute a cost to it. Upon successful negotiation and reservation of radio resources, XVL interfaces

with the underlying radio hypervisor for creating or destroying the virtual radios. XVL has callbacks

for informing the radio hypervisor about changes in the resource mapping or allocation of virtual

radios, so the radio hypervisor can instantiate a new virtual RF front-end. Once the radio hypervisor

completes the creation of the virtual RF front-end, XVL performs additional configurations in the

virtual radio (to be further discussed in Section 3.2.2). Finally, XVL informs the client of the proper

ways to reach its virtual radio, e.g., through CPRI, OBSAI, or a UDP socket, from which the clients

can start transmitting/receiving streams of IQ samples.

In Appendix A, we detail XVL’s interfaces for managing virtual radios, including both its northbound
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interface for tenants to negotiate and query the status of their virtual radio resource allocation, and its

southbound interface for communicating with a technology-agnostic radio hypervisor, e,g., HyDRA.

At present, XVL supports radio virtualisation in the frequency domain. However, XVL separates the

resource management from the internal processes employed by the radio hypervisor, which allows

the resource manager to be extended and modified with ease. Thus, XVL can easily be extended for

supporting time or space instead of frequency resources, or even incorporating time and space as

new degrees of freedom in the radio resource definition. Ultimately, it only depends on the radio

virtualisation mechanisms of the underlying radio hypervisor. Moreover, the radio resources are

currently defined in terms of a centre frequency, a bandwidth, a client ID, and an UDP port.

3.2.2 Independence between Virtual Radios

Every virtual radio has its own independent virtual RF front-end, which the virtual radio employs for

transmission and/or reception. Each virtual RF front-end uses a fraction of the total radio resources of

the real RF front-end. The radio resources can be defined in terms of bandwidth, timeslot, or antennas,

depending on the radio hypervisor’s approach for virtualising the real RF front-end. Regardless of

the type of radio resource, each virtual radio must send an appropriate number of IQ samples to the

radio hypervisor at precise timing (to be detailed in Section 3.3). The radio hypervisor consumes the

IQ samples of all virtual radios at once, multiplexing them into a single stream of IQ samples. The

number of necessary IQ samples per virtual radio varies according to the amount of radio resources

per virtual RF front-end. In the case of an FFT-based hypervisor, e.g., HyDRA, the bandwidth of

each virtual RF front-end is mapped onto a number of FFT bins, and the virtual radios must generate

a number of samples equal to the number of FFT bins to create an FFT window. Then, the radio

hypervisor multiplexes the windows of the virtual RF front-ends together using an IFFT [21].

XVL employs timed buffers to ensure that the radio hypervisor receives the appropriate number

of IQ samples at the right moment. Based on the sampling rates of the virtual radio and the radio

hypervisor, the timed buffers output IQ samples at the precise moment for the radio hypervisor’s

consumption (we will present more details about this procedure in Section 3.3). Fig. 3.3 illustrates the

operation of timed buffers inside a virtual radio, where UDP sockets are used for receiving/sending

IQ samples from/to tenants. In the case of overflows, XVL’s internal timed buffer will start filling,

until reaching a cap. After that, incoming samples are dropped to prevent the virtual radio process
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FIGURE 3.3: Timed buffers consume the received IQ samples and generate the
windows that the radio hypervisor requires. The reverse process occurs in the

opposite communication direction.

from overflowing memory. In the case of underflows, XVL pads the streams of IQ samples of empty

windows, i.e., fills them with zeroes, while waiting for the missing samples. In this way, the radio

hypervisor and the remainder of the system will not halt waiting for the delayed or missing IQ

samples of a given virtual radio.

The virtual radios can either operate as transmitters, receivers, or transceivers. However, the virtual

radios may not be symmetrical in both communication directions, i.e., they may employ different

RATs, numerologies, or require different amounts of radio resources. For that reason, every virtual

radio in XVL possesses completely independent transmitter and receiver chains. Fig. 3.3 shows

an example of a virtual radio with both types of chains: the transmit chain (top) receives samples

from a software radio, and the receive chain (bottom) sends samples towards a software radio. The

radio hypervisor may realise each type of chain in different manners, i.e., different virtualisation

approaches, or use different physical radio hardware transmission and reception.

3.2.3 Architecture and Monitoring Capabilities

Fig. 3.4 illustrates the overall architecture of the XVL implementation. The clients can interface with

the server for resource discovery and negotiation through ZMQ messages [85]. The server queries

the resource manager and tries to fulfil requests. The resource manager has a list of virtual radios

and can interact with the radio hypervisor for creating or destroying virtual RF front-ends. Each

virtual radio has an Input/Output (I/O) interface, timed buffers and a virtual RF front-end, which is

tied to the radio hypervisor. Aside from the functionality for supporting the instantiation of virtual

radios on-demand, XVL also has a monitor utility for inspecting the KPIs of the virtual radios.
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FIGURE 3.4: Block diagram showing the architecture of XVL, the elements that
compose it (blue), and the elements it must interface with (grey).

Currently, the monitoring utility is used for assessing the use of computational resources per

virtual radio. It measures the buffer sizes, the sampling rates, and the time each virtual radio

has to fill multiple windows. Based on the buffer sizes, it is possible to determine whether the

software radio is presenting overflows, i.e., buffer sizes increasing steadily, or underflows, i.e.,

buffer sizes frozen at zero. We plan to extend this mechanism to evaluate the introduced SINR

degradation and delay. For further information, the reader can refer to the XVL’s public repository

(https://bitbucket.org/joaofelipesantos/xvl/src/master/).

3.3 Radio Processing Isolation

In this section, we focus on formalising and addressing the radio processing isolation functionality.

We describe the reasoning behind the operation of the timed buffers, and derive the necessary amount

of padding for isolating the processing of the streams of IQ samples of the virtual radios.

The radio virtualisation mechanisms of technology-agnostic radio hypervisors are multiplexing

operations, where each virtual radio has access to a fraction of the overall radio resources of the

physical radio. The existing technology-agnostic radio hypervisors (as shown in Table 3.1) employ

frequency-domain radio virtualisation mechanisms, which partition the bandwidth of a physical

radio’s RF front-end (B) into spectrum chunks, abstracted to the virtual radios in the form of the

virtual bandwidth (bi) of their virtual RF front-end, i = 1, . . . , N . The virtual radios interact with

their virtual RF front-end as they would with a real RF front-end, sending/receiving streams of IQ

samples. The radio virtualisation mechanism ensures isolation between the virtual radios at the
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radio resource level, using non-overlapping radio resources and including the necessary guard bands

and/or intervals.

The multiplexing of the IQ samples generated by multiple virtual radios occurs on a per-window basis,

where the radio hypervisor collects a certain number of IQ samples (M ) from/to the virtual radios

over a time period (τM ) of duration equal to the ratio betweenM and the sampling rate of the physical

radio (fs), i.e., τM = M/fs. Only when in possession of M IQ samples, the radio hypervisor is able

to multiplex/demultiplex the IQ samples from/to multiple virtual radios. For frequency-domain radio

virtualisation mechanisms, each virtual radio is expected to produce/consume a given number of

IQ samples (mi) within τM , corresponding to a fraction of M equal to the ratio between its virtual

bandwidth bi and the total bandwidth B:

mi =

⌈
M · bi

B

⌉
. (3.1)

The ceiling operation (d.e), required to ensure an integer number of mi samples, may introduce a

mismatch between the allocated and requested virtual bandwidth, leading to signal distortions [74].

For simplicity, we restrict the choice of bi such that mi is always an integer, avoiding this mismatch.

On a RANaaS platform, the virtual radios send/receive streams of IQ samples to/from different

tenants. It is likely that the virtual radios will not always produce/consume the exact number of

mi IQ samples during every multiplex window, i.e., generate samples at an expected nominal rate

ri = mi/τM . Instead, during the j-th multiplex window (Wj), the i-th virtual radio will present an

effective rate (reffi,j ), which may vary for each window and can be inferior to the expected nominal

rate (reffi,j ≤ ri). Such an effective rate may be the result of: (i) the multiple access scheme of RATs

which intermittently transmit frames, e.g., WiFi and Bluetooth; (ii) the behaviour of software radios

and BBUs which cannot process IQ samples at the expected nominal rate; or (iii) RAN slices that

stopped operating but were not yet de-allocated from the RANaaS platform.

To prevent individual virtual radios from affecting the processing performance of the entire system,

we must isolate the processing of their streams of IQ samples and ensure that the appropriate number

of M IQ samples is available to the radio hypervisor at every τM . We can achieve such isolation

through dynamic padding of the streams of IQ samples, i.e., with the inclusion of a number of null
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samples (vi,j) to the stream of the i-th virtual radio during Wj whenever reffi,j < ri so as to provide

a total of M samples to fill Wj :

vi,j = mi − breffi,j · τMc = mi −
⌊
mi · reffi,j

ri

⌋
=

⌈
mi ·

ri − reffi,j

ri

⌉
. (3.2)

The dynamic padding limits the effect of a virtual radio presenting a reffi,j < ri to its own RAN

slice, without delaying the production/consumption of multiplex windows, as shown in Fig. 3.5a. If

such padding was not added, then the radio hypervisor would need to wait until a full window of M

IQ samples was available, as shown in Fig. 3.5b. This implies that the radio hypervisor would not be

able to ensure independence between virtual radios in terms of the processing of their streams of IQ

samples, i.e., the virtual radios would not be isolated at the radio processing level.

M
U
X

Real Radio

IQ Streams

(A) With the dynamic padding, the missing IQ samples only affect the performance
of the (i + 1)-th virtual radio, and the radio hypervisor can generate multiplex

windows at every τM .

M
U
X

(B) Without the dynamic padding, the missing IQ samples affect all virtual radios,
as the radio hypervisor cannot generate windows at every τM and has to wait until

it collected M IQ samples.

FIGURE 3.5: Multiplexing of multiple virtual radios with and without the dynamic
padding of IQ samples, when the (i+ 1)-th virtual radio presents an effective rate
inferior to its expected nominal rate. The use of dynamic padding ensures isolation
between virtual radios at the level of processing their IQ samples, preventing any

virtual radio from delaying the production/consumption of multiplex windows.
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The impact of this delay would accumulate over successive windows, deteriorating the performance

experienced by all virtual radios over time. Based on the number of IQ samples collected for

generating Mj during a τM (Cj), the multiplex window index (j), and fs, we can calculate the

experienced accumulated delay (τexp) for producing/consuming the given window:

τexp =

j∑
k=1

k

fs
· (M − Ck) . (3.3)

The τexp expresses the total delay experienced by each tenant during the operation of their RAN

slices if any of the virtual radios present a reffi,j < ri. In Fig. 3.6, we illustrate the impact of τexp. We

show a numerical analysis in which we consider a constant reffi,j for every window. It demonstrates

how τexp mounts over successive windows and would degrade the operation of the RANaaS platform

over time, if no padding were applied.
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FIGURE 3.6: How different effective rates would affect the experienced delay
over time, if dynamic padding were not applied. In this scenario, we have a radio
hypervisor at fs = 200 KHz and M = 1000 samples, with two virtual radios at
ri = 100 KHz and mi = 500 samples, while one of the virtual radios manifests an

effective rate shown as a percentage of the expected nominal rate.

3.4 Experimental Evaluation

In this section, we validate the use of XVL for leveraging radio virtualisation to support RANaaS.

First, we describe the integration between XVL and HyDRA, forming a RANaaS platform capable of

deploying heterogeneous RAN slices as a service. Then, we assess the performance of our RANaaS
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platform regarding the computational overhead, the delay in provisioning virtual radios, the delay

introduced by radio virtualisation, and the signal degradation due to the virtualisation mechanism.

3.4.1 Integration with HyDRA and GNU Radio

We integrated XVL with HyDRA [21] for validating XVL’s operation and showcasing its features.

This integration enables HyDRA to support RANaaS, through the provision of tailored virtual radios

on-demand. In addition, we developed a client-side library for communicating with XVL. This

library allows any C++-based client to interface with XVL for querying, requesting, and using XVL’s

radio resources. We employ ZMQ, a cross-platform networking library, which facilitates porting

our communication library to serve clients implemented in different programming languages, e.g.,

Python, Java, or Ruby.

In order to facilitate the use of our contribution by the research community, we have also integrated

XVL with GNU Radio, a widely known SDK for prototyping and developing on SDR platforms.

GNU Radio realises RATs and signal-processing systems as acyclic directional graphs, known as

flowgraphs, which represent continuous streams of IQ samples between signal processing blocks,

e.g., modulation, coding, and filtering. Each flowgraph possesses one or more source blocks for

inserting IQ samples into the flowgraph, and one or more sink blocks for exporting IQ samples from

the flowgraph. We used the ZMQ library for developing GNU Radio blocks that can seamlessly

replace the regular USRP source and sink blocks in existing GNU Radio flowgraphs. These new

blocks only require the extra information of the IP address and port number of where an XVL

instance is running, as well as a client ID to identify the tenant. The benefits of this setup are twofold:

it allows us to use an existing radio hypervisor and GNU Radio flowgraphs for evaluating XVL, and

it enables current GNU Radio flowgraphs to leverage XVL for instantiating virtual radios.

3.4.2 Computational Overhead

In this analysis, we consider the computational overhead introduced by running XVL alongside

a radio hypervisor to serve an LTE and an NB-IoT virtual radios. XVL and the radio hypervisor

introduce a new layer of complexity between the software radios and the RF front-end. We measured

the CPU utilisation for an XVL and HyDRA instance for different IFFT sizes and normalised it as
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a percentage of one core in an Intel Xeon E52620 v2 processor. Fig. 3.7 shows the results of our

measurements. Independently of the configuration used in the radio hypervisor, the combination

of XVL and HyDRA, the NB-IoT, and the LTE, require roughly 60%, 5% and 30% of the CPU

processing power, respectively. The constant CPU utilisation by the virtual radios is expected, as

their processing is independent of the radio hypervisor. However, we did not capture any increase in

the CPU overhead for the radio hypervisor as reported in [21]. We attribute this to the multithreading

that XVL employs for managing the timed buffers and sockets, decreasing the significance of the

CPU utilisation of the radio hypervisor. These results indicate that XVL can run alongside a radio

hypervisor on COTS computing hardware for deploying multiple virtual radios.
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FIGURE 3.7: CPU utilisation when running XVL alongside HyDRA, in addition to
an LTE and an NB-IoT virtual radios, under different radio hypervisor configurations.

3.4.3 Provisioning Delay

In this analysis, we are interested in the delay for provisioning virtual radios with XVL. The

provisioning delay is crucial for planning and evaluating a RAN deployment using the RANaaS

paradigm, as it dictates the time interval required to provision the virtual radios that realise a RAN

slice. This interval comprehends the time between the client sending a radio resource request, and

XVL returning the resource allocation confirmation (there are several procedures that occur between

these two events, as we have seen in Section 3.2). Fig. 3.8 shows the results of our measurements

for different configurations of the virtual radio and radio hypervisor. The exponential growth in the

semi-log scale denotes a linear behaviour in relation to the number of radio resources allocated per

virtual radio, regardless of the IFFT size of the radio hypervisor. We attribute the linear behaviour to
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the time for allocating memory for XVL’s buffers. The worst case scenario, where a virtual radio

required 8192 FFT bins, took less than 300 ms to be fulfilled, hence, indicating that XVL is capable

of provisioning virtual radios on the fly.
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FIGURE 3.8: The provisioning delay to fulfil a virtual radio request. The time taken
for creating virtual radios is proportional to the number of allocated FFT bins, but

not to the overall IFFT size of the radio hypervisor.

3.4.4 Service Delay

In this analysis, we are interested in the delay that XVL and HyDRA introduce to serve commu-

nication services. The service delay is crucial to analyse the impact of relying on virtualisation

to realise communication services (using virtual instead of real radio resources), and to evaluate

whether it can impair their operation. First, we measured the time spent by XVL for delivering the

IQ samples to the radio hypervisor, i.e., from successful UDP receptions, through the timed buffers,

and the generation of a multiplex window. Fig. 3.9a shows the results of our measurements, with

a median of 343 µs. Then, we measured the time spent by HyDRA to virtualise the RF front-end,

i.e., consume the window, multiplex the IQ samples of all virtual RF front-ends, and forward the IQ

samples to the real RF front-end. Fig. 3.9b shows the results of our measurements, with a median of

334 µs. These results show that XVL introduces a service delay within the same order of magnitude

as the radio hypervisor. The median delay introduced by using both XVL and HyDRA to support

RANaaS remains under 1 ms, but it still can be impactful in the delay budget for C-RAN scenarios

or for the MAC scheme of RATs with stringent timing requirements, and hence, must be taken into

account when planning to realise a communication service using RAN slices. In addition, such

service delay can also prevent the use of our solution in real-world 5G NR deployments, where each
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virtual radio may require up to 100 MHz of bandwidth. However, it is worth mentioning that both

HyDRA and XVL were implemented as proof-of-concept prototypes, focusing on validating their

respective contributions, instead of focusing on delivering the best performance. We believe that

more efficient implementations of both HyDRA and XVL could reduce the service delay to a fraction

of the current value. For example, one could leverage the USRP’s embedded FPGA to implement

part of the complex and resource-intensive DSP operations, e.g., the series of FFTs and IFFTs, which

can reduce the delay introduced by this part of the signal processing pipeline by a factor of 15 [86].
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(A) The service delay introduced by XVL. The service delay increases with the number
of radio resources, due to the longer time required to allocate larger windows in memory.
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(B) The service delay introduced by HyDRA. The service delay increases with the
number of radio resources, due to the increasing complexity of the FFT/IFFT operations.

FIGURE 3.9: Delay measurements for different virtual radio configurations. All the
measurements were made using a real bandwidth of 2 MHz and an overall IFFT size

of 8192 bins, which corresponds to the worst case scenario in Section 3.4.3.
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3.4.5 Signal Degradation

In this analysis, we consider how the resource allocation granularity of the radio hypervisor affects

on the performance of virtual radios. FFT-based radio hypervisors, e.g., HyDRA, employ IFFTs to

partition the bandwidth of a physical radio (B) into a number of FFT bins equal to the IFFT size

(n), each with a bin width ∆f = B/n. The i-th virtual radio is provided with an integer number of

FFT bins (ni) of total bandwidth (b̃i) that approximates its requested bandwidth (bi), according to

ni = dbi/∆fe. Therefore, for a fixed B, the IFFT size dictates the resource allocation granularity

of the radio hypervisor, i.e., the minimum amount of radio resources which the radio hypervisor

can allocate to a virtual radio, as shown in Fig. 3.10. The value of n not only affects the efficiency

of the resource allocation of the radio hypervisor, i.e., influencing the overprovisioning of real

radio resources used to create virtual radios, but it also affects the quality of the radio virtualisation

mechanism. A mismatch between bi and b̃i leads to a decoupling of the sampling rates expected by

the software radio and produced/consumed by the virtual RF front-end, causing signal distortions

that degrade the waveform of the virtual radios proportional to the bandwidth mismatch [74] [87].

We measured how different IFFT sizes, and consequently, resource allocation granularities, affect

the performance of the virtual radios in terms of the Mean Square Error (MSE), and Table 3.2 shows

the result of our evaluation. These results show how the performance impact of radio virtualisation

on different RATs varies with the resource allocation granularity of the radio hypervisor. Moreover,

at an IFFT size of 8192, we were able to achieve a performance comparable to RATs running on

bare metal, i.e., without radio virtualisation.

3.5 Conclusions

In this chapter, we addressed the resource management functionality for enabling RANaaS through

radio virtualisation. We compiled a comprehensive list of features that radio hypervisors must

incorporate for supporting RANaaS. We then evaluated the state-of-the-art on radio virtualisation

with respect to these requirements and identified what we consider the most suitable radio hypervisor

for developing a prototype RANaaS platform. Next, we investigated the challenges for ensuring

isolation between virtual radios at the radio processing level, and proposed dynamic padding to

maintain multiplex synchronicity. We presented XVL, a software layer that can be added on top
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of existing hypervisors and provide them with the missing capabilities for supporting the RANaaS

paradigm, namely: (i) a radio resource broker for negotiating radios resources; (ii) timed buffers

for dynamically padding the streams of IQ samples; and (iii) a monitoring interface for tenants to

query the performance of their RAN slices. We evaluated XVL regarding its computational overhead,

provisioning delay, and service delay. Our results show that XVL introduces a delay comparable to a

radio hypervisor, can run on COTS computing hardware, and provision virtual radios in real-time.

Currently, the main limitations of our solution are: (i) the present service delay, which we believe

can be severely decreased with more efficient implementation and the use of hardware acceleration;

and (ii) the limited availability and potentially prohibitive cost of SDRs with ultra-wide bandwidth,

which should become more accessible as the demand for broader bandwidth RF front-end increases

due to economy of scale. Nonetheless, our findings confirm that the combination of XVL with a

technology-agnostic radio hypervisor such as HyDRA can act as a RANaaS platform capable of

deploying heterogeneous RAN slices as a service, enabling infrastructure sharing and potential cost

reductions for MNOs serving special-purpose RATs or operating in CBRS and U-NII bands.
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Embedding Heterogeneous RAN Slices

on RANaaS Platforms

“ Your focus determines your reality.

”
Qui-Gon Jinn, Star Wars: Episode I – The Phantom Menace, 1999

I
N this chapter, we address the embedding of heterogeneous RAN slices for technology-agnostic

RANaaS. We propose a novel formulation using a Travelling Salesman Problem (TSP)-based

approach for mapping real radio resources to realise virtual radios that is: (i) technology-agnostic,

leveraging radio slicing in the frequency domain to support RAN slices with different RATs and

numerologies; (ii) extensible, supporting new types of RATs based only on their requirements for

isolation in the frequency domain; and (iii) secure, separating RAN slices down to the PHY layer.

To the best of our knowledge, these are the first model and formulation developed for embedding

heterogeneous RAN slices, leveraging technology-agnostic radio hypervisors. In addition, we

introduce a resource management optimisation problem to be solved by the MNOs, to determine the

optimal arrangement of RAN slices for minimising the total isolation overhead on their RANaaS

platforms. Due to this problem’s Mixed-Integer Linear Programming (MILP) nature, we also present

two heuristic algorithms and compare their performance for solving the problem against the optimal

solution found using a linear programming solver.

The technical work presented in this chapter is based on our work “Optimal Embedding of Heteroge-

neous RAN Slices for Technology-agnostic RANaaS” submitted to IEEE Wireless Communication

Letters [88].
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The remainder of this chapter is organised as follows. In Section 4.1, we briefly review the state-of-

the-art on models and solutions for embedding virtual wireless networks. In Section 4.2, we introduce

our novel TSP-based formulation for embedding heterogeneous RAN slices; propose a resource

management optimisation problem for minimising the total isolation overhead; and present two

heuristic algorithms as alternatives for solving this problem using a lower computational footprint.

In Section 4.3, we numerically evaluate the performance and computational footprint for running the

different solutions. Finally, in Section 4.4, we conclude this chapter and pose our final remarks.

4.1 Current Approaches for Embedding RAN Slices

As discussed in Section 2.2, most experimental research efforts on RAN slicing adopt technology-

specific radio hypervisors, leveraging the resource allocation capabilities of certain RATs for creating

RAN slices [22]. In particular, the vast majority of existing radio hypervisors employ grid-based

radio virtualisation mechanisms for slicing LTE or WiMax deployments. Due to their popularity,

the current literature on the embedding of RAN slices focuses on proposing optimal resource

management solutions for grid-based radio hypervisors. These works model the embedding of RAN

slices as variations of the bin packing problem, placing virtual radios in a regular radio resource

grid as illustrated in Fig. 4.1, and propose different methods to solve these resource management

problems, e.g., using auctions [83] [89], Karnaugh maps [90] [91], or machine learning [92] [93].

The modelling approach mentioned above and the associated solutions assume that the underlying

physical radio platform and every RAN slice possess the same type and granularity of radio resources,

which does not hold true for the virtual radios with different RATs or numerologies in technology-

agnostic RANaaS platforms. In addition, any viable solution for embedding heterogeneous RAN

slices must factor in the resource allocation overhead for including guard bands between virtual

radios to avoid interference from OOBE [94]. The amount of overhead can range from one subcarrier

to a few Megahertz depending on the RAN slices’ waveforms, subcarrier spacings, tolerance to

Signal-to-Interference Ratio (SIR), among other parameters [95] [96]. However, any extensions to

current Knapsack-based formulations for considering conditional guard bands between each pair

of RAN slices would greatly increase the problem’s complexity [97], and consequently, the time

required for solving it (to be discussed in the next section). Therefore, we observe that the current

models and solutions are not suitable for embedding heterogeneous RAN slices.
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FIGURE 4.1: An example of a RANaaS platform fulfilling a new RAN slice request
(left). The radio hypervisor must determine the most efficient mapping of radio
resources from the underlying physical radio hardware to realise the virtual radios

with different requirements (right).

4.2 Embedding Heterogeneous RAN slices

In this section, we start by demonstrating how current Knapsack-based virtual wireless network

embedding approaches be cannot efficiently extended to consider the additional overhead required to

ensure isolation between heterogeneous RAN slices. Then, we introduce a novel model and solution

for embedding heterogeneous RAN slices, leveraging their characteristics and isolation requirements

by design. We propose a graph representation for modelling RAN slices on RANaaS platforms.

Next, we introduce a Freely Open-loop TSP (FOTSP) resource management optimisation problem

that finds the optimal embedding of RAN slices for minimising the total isolation overhead, i.e.,

the total amount of radio resources consumed with guard bands. Finally, we detail two heuristic

algorithms for solving the embedding problem in using a lower computational footprint.

4.2.1 Extending Knapsack Formulations to Support Heterogeneous RAN Slices

Let us consider the Knapsack-based modelling detailed in [98]. The formulation presented in this

work can be readily employed in the context of virtual wireless network embedding, being generic

enough to consider any number of dimensions of the radio resources, e.g., time, frequency, and
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space. Without loss of generality, here we focus on the one-dimensional case for demonstrating the

extension of Knapsack-based models to support heterogeneous RAN slices, which is relative to a

regular radio resource grid of frequency resources and can be seen as a particular case of grid-based

radio hypervisors. Akin to the vast majority of works in virtual wireless network embedding using a

Knapsack-based modelling [90], [91], [99]–[102], the main goal of the problem presented in [98] is

to maximise the total revenue given by embedding a subset of the existing n RAN slices using the

available radio resources. This formulation assumes a constant profit value pi relative to embedding

the i-th RAN slice, and uses a binary indicator variable xi, equal to 1 if RAN slice i is embedded in

the RANaaS platform, and 0 otherwise. For the one-dimensional case, the frequency coordinate of

RAN slice i is fi, meaning that the lowest frequency of the RAN slice’s virtual bandwidth (bi) will

be located at this frequency value. If a RAN slice is not embedded within the RANaaS platform, we

can assume that fi = 0. As the total bandwidth occupied by the RAN slices has to fit within the real

bandwidth of the RF front-end (B), we have that:

0 ≤ fi ≤ B − bi. (4.1)

We specifically chose the formulation in [98] for demonstrating the complexity of extending

Knapsack-based models to consider the isolation overhead between heterogeneous RAN slices

because it captures the sense of adjacency, i.e., the relative placement of RAN slices embedded next

to each other, which we will need for determining the minimum required guard bands between each

pair of RAN slices. It does so by introducing binary decision variables, lij, (left) and ri,j (right), to

indicate the relative position of RAN slices i, j where i < j. To ensure that no two RAN slices i, j

overlap, it requires that:

li,j + ri,j = 1, (4.2)

whenever RAN slices i and j are both embedded, i.e., si = sj = 1. Depending on the relative

position of two RAN slices, their frequency coordinates must satisfy the following inequalities:

li,j = 1⇒ fi + bi ≤ fj

ri,j = 1⇒ fj + bj ≤ fi.
(4.3)
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The one-dimensional Knapsack problem for embedding RAN slices can be formulated as follows:

P1 : max
xi

n∑
i=1

pi · xi (4.4a)

s.t. li,j + ri,j = xi + xj − 1, (4.4b)

fi − fj +B · li,j ≤ B − bi, (4.4c)

fj − fi +B · ri,j ≤ B − bj , (4.4d)

0 ≤ fi ≤ B − fi, (4.4e)

li,j , ri,j ∈ {0, 1}, (4.4f)

xi ∈ {0, 1}, (4.4g)

fi ≥ 0 (4.4h)

where Eq. (4.4a) defines the objective function that maximises the total profit gained for allocating

a subset of the n existing RAN slices onto the RANaaS platform; Eq. (4.4b) ensures that if RAN

slices i and j are embedded, they must be located either left or right of each other, as stated in (4.2);

Eqs. (4.4c) and (4.4d) are linear versions of constraints (4.3); and Eq. (4.4e) corresponds to constraint

(4.1). The solution to P1 yields the optimal embedding of the subset of RAN slices that maximises

the profit gained by MNOs using the available real radio resources.

Now, to extend P1 to support the embedding of heterogeneous RAN slices, we need to modify the

problem formulation to ensure isolation between RAN slices in the frequency domain. Let us assume

that each pair of RAN slices requires a minimum guard band (gi,j) between each other, an added

overhead in frequency that ensures they do not interfere with one another in case they are embedded

adjacent to each other. We can incorporate the conditional gi,j in P1 by modifying Eqs. (4.4c) and

(4.4d) to include gi,j if and only if two RAN slices i, j are adjacent to one another as follows:

fi − fj +B · li,j ≤ B − (bi + gi,j · li,j)

∴

fi − fj + li,j · (B + gi,j)· ≤ B − bi.

(4.5)
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Finally, we can leverage the reasoning behind Eq. (4.5) to extend P1, modifying Eqs. (4.4c) and

(4.4d) accordingly, and proposing a novel Knapsack-based formulation that supports heterogeneous

RAN slices and their different requirements for isolation in the frequency domain, detailed as follows:

P2 : max
xi

n∑
i=1

pi · xi (4.6a)

s.t. li,j + ri,j = xi + xj − 1, (4.6b)

fi − fj + li,j · (B + gi,j) ≤ B − bi, (4.6c)

fj − fi + ri,j · (B + gj,i) ≤ B − bj , (4.6d)

0 ≤ fi ≤ B − bi, (4.6e)

li,j , ri,j ∈ {0, 1}, (4.6f)

xi ∈ {0, 1}, (4.6g)

fi ≥ 0. (4.6h)

The problem P2 is very similar to P1, as its solution also yields the optimal embedding of the

subset of RAN slices that maximises the profit gained by MNOs using the available real radio

resources, but P2 is more general and can support the embedding of heterogeneous RAN slices that

require different amounts of isolation in the frequency domain. However, we observe that P2 has

non-linear constraints, i.e., Eqs (4.6c) and (4.6d), that result from the combination of the binary

decisions variable li,j and ri,j , and the conditional guard band gi,j between RAN slices i, j. These

constraints are necessary to make a conditional inclusion of guard bands between RAN slices, at the

cost of turning P2 into a non-linear optimisation problem that is very hard to obtain a direct solution.

Therefore, even though one can extend a Knapsack-based model to support heterogeneous RAN

slices, it becomes orders of magnitude more complex than the traditional MILP formulation. This

issue makes us believe that a Knapsack-based formulation (or any of its variations) is not the ideal

approach to model this class of problems, which led us to investigate a new approach for modelling

the embedding of heterogeneous RAN slices, detailed in the next section.
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FIGURE 4.2: Distinct RATs and numerologies entail different waveforms and band-
widths (wi), which display a varied OOBE and resilience to interference. Conse-
quently, each pair of RAN slices requires a different separation in the frequency

domain, a guard band (gi,j), to ensure isolation from one another.

4.2.2 Graph-based Modelling of Heterogeneous RAN Slices

Let us take a new approach and consider a set of heterogeneous RAN slices on a RANaaS platform,

leveraging a technology-agnostic radio hypervisor. Each RAN slice belongs to a different tenant,

and is tailored with a particular RAT or numerology to serve a specific use case or application.

Due to their distinct characteristics, each pair of RAN slices possesses a minimum required guard

band to ensure isolation and prevent interference from the OOBEs of one another [95] [96] [103],

as shown in Fig. 4.2. In this way, we can combine these pairwise relationships to represent the

different heterogeneous RAN slices and their requirements for isolation in the frequency domain as a

complete weighted graph G = (V,E) that contains no self-edges or repeated edges. The set of nodes

V = {v1, · · · , vn} represent the RAN slices; and gi,j , the weight of edge (i, j) ∈ E, represents the

minimum required guard band between vi and vj , as shown in Fig. 4.3. We assume that gi,j = gj,i,

i.e., that the minimum required guard band between vi and vj is the same independent of their order

of adjacency, as most RATs require the same separation in the frequency domain on the lower and

upper portions of their occupied bandwidth.
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FIGURE 4.3: An illustration of the graph representation of heterogeneous RAN
slices (nodes) and the required guard bands from one another (edges), forming a

complete weighted graph, G.

4.2.3 Embedding RAN Slices with Minimal Isolation Overhead

Based on the complete weighted graph representation of RAN slices, we can derive the optimal

solution for embedding heterogeneous RAN slices on a RANaaS platform with minimum total

isolation overhead. We can achieve this by finding the path between nodes in G that has the smallest

total weight, i.e., the optimal sequence of RAN slices with the smallest amount of total radio

resources consumed with guard bands, as shown in Fig. 4.4. We can formulate this problem as a

FOTSP, a variation of the widely known TSP problem, which for a given list of nodes and weights

between each pair of nodes, searches for the path of the smallest weight that visits each node exactly

once. The TSP is a combinatorial optimisation problem, important in theoretical computer science

and operations research fields [104] [105].

The FOTSP variation better represents the embedding of RAN slices on the finite and linear band-

width of a physical radio, as the allocation of RAN slices is open-loop, i.e., there are no edges

(or guard bands) between the first and the last nodes (or RAN slices), nor are these two known a

priori [106] [107]. The formulation of the FOTSP is as follows:
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FIGURE 4.4: An example of the graph representation of RAN slices and the mini-
mum guard band between each other (left). Based on their guard bands, we can select
a path between all RAN slices that minimises the total isolation overhead (right).

P3 : min
xi,j

n∑
i=1

n∑
j=1

gi,j · xi,j (4.7a)

s.t.
n∑

i=1

xi,j ≤ 1, (4.7b)

n∑
j=1

xi,j ≤ 1, (4.7c)

n∑
i=1

n∑
j=1

xi,j = |V | − 1, (4.7d)

∑
i∈S

∑
j∈S

xi,j ≤ |S| − 1, S ⊂ V : S 6= ∅, (4.7e)

xi,j ∈ {0, 1} (4.7f)

where xi,j is a binary indicator variable which is equal to 1 if RAN slice i is allocated adjacent

to RAN slice j, and 0 otherwise. Eq. (4.7a) defines the objective function that minimises the

total amount of radio resources consumed with guard bands; Eqs. (4.7b) and (4.7c) are the degree

constraints, ensuring that each node is connected to at most one other node, forming a path between

consecutive RAN slices and preventing the formation of branches; Eq. (4.7d) is the cardinality

constraint, limiting the number of edges connecting all nodes to form an open loop, i.e., an acyclic

path representing the continuous bandwidth occupied by consecutive RAN slices and their guard

bands; and Eqs. (4.7e) are known as the set of subtour elimination constraints [104], lazy constraints

generated and added to the problem while we are solving it, that serve to prevent solutions comprised
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FIGURE 4.5: An example result of the FOTSP resource management optimisation
problem given by solving P3, showing the sequence of RAN slices with minimal

total isolation overhead.

of multiple disconnected paths between RAN slices (known as subtours) and ensure that the final

solution is a single continuous path, i.e., a single sequence of all RAN slices and their respective

required guard bands. The solution to P3 yields the optimal embedding of RAN slices that minimises

the amount of resources consumed with guard bands, as shown in Fig. 4.5.

The advantages of modelling heterogeneous RAN slices and their requirements for isolation in the

frequency domain as a complete weighted graph and embedding the RAN slices on a RANaaS

platform as a FOTSP are threefold: (i) transparency to the type and granularity of resources from

the individual RATs; (ii) possibility to consider the required additional guard bands between RAN

slices by design; and (iii) extensibility to embed new types of RATs and numerologies only based

on their required guard bands. However, similar to other TSPs, the inclusion of a new node (or

RAN slice) requires re-running the FOTSP, an NP-complete Mixed-Integer Linear Programming

problem of complexity O(n!), for which it is difficult to obtain the solution in reasonable time for a

large number of nodes [106]. In the next subsections, we detail two heuristic algorithms for finding

feasible solutions using a lower computational footprint.

4.2.4 Greedy Algorithm

The Greedy Algorithm (GA) is a simple heuristic method for solving TSPs, which can be easily im-

plemented and serves as an initial solution to a number of improvement heuristics [108]. Nonetheless,

the GA can still lead to good results when the number of nodes is small, and it is computationally

cheap in comparison to more complex approaches that entail the exchange of nodes or edges to find

better solutions [109]. Starting from the complete undirected weighted graph G = (V,E), we sort

all the edges (i, j) ∈ E by weight in ascending order and select the one with the smallest weight.
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Algorithm 1: Greedy Algorithm
input :A complete weighted graph G = (V,E)
output :A list of edges connecting all nodes in V

1 F ← { };
2 while |F | < |V | − 1 or E 6= {∅} do
3 k, l← arg min({gi,j : i, j ∈ V, i 6= j});
4 if adding (k, l) to F does not form a loop or branch then
5 F

+← (k, l);
6 end
7 E \ {(k, l)};
8 end
9 return F

If adding this edge to the solution set F will not create a loop or branch, then we include it in the

solution set. Then, we remove the selected edge from E. We repeat this process of complexity

O(n2 · log(n)) until we have no more edges in E, or we have |V | − 1 edges in the solution set,

which will contain all the nodes in V , as detailed in Algorithm 1.

4.2.5 Nearest Neighbour Algorithm Improved with 2-Opt

The Nearest Neighbour Algorithm (NNA) is a type of constructive heuristic method for solving TSPs.

Starting from a random node i ∈ V , we search for the adjacent node of smallest weight. Then, we

include the edge between them in F , and use the adjacent node as the next starting node. We remove

the visited nodes from V and repeat this process of complexity O(n2) until we have no more nodes

left in V , as detailed in Algorithm 2. The NNA is computationally inexpensive, but it can often

miss routes with smaller weights due to its naive and greedy nature. We can further improve the

solution found with the NNA using the 2-Opt local search algorithm. It develops an initial solution

and iteratively searches for improvements in the neighbourhood of that solution [105]. Starting from

the initial solution from the NNA, we take two edges from the route, exchange these edges with each

other, and calculate the new total weight [109]. If this exchange leads to a lower total weight, then

the current route is updated. We repeat this process of additional O(n2) complexity until no more

improvements are found or until a predetermined number of iterations is completed [108] [110]. We

refer to [109] for further information about the 2-Opt algorithm and its implementation.
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Algorithm 2: Nearest Neighbour Algorithm
input :A complete weighted graph G = (V,E)
output :A list of edges connecting all nodes in V

1 F ← { };
2 k ← random node i ∈ V ;
3 do
4 V \ {k};
5 l← arg min({gk,j : j ∈ V, k 6= j});

6 F
+← (k, l);

7 k ← l;
8 while V 6= {∅};
9 return F

4.3 Numerical Evaluation

In this section, we present numerical results generated by simulating the embedding of heterogeneous

RAN slices using the formulation and heuristics algorithms detailed in Sec. 4.2. First, we describe

the simulation setup used in our evaluation. Then, we compare the performance of the optimal

solution and the two heuristic algorithms, and benchmark their computational footprint regarding

optimisation time and memory consumption. For simplicity, we denote the optimal solution to P3

found using the Gurobi optimiser [111] by OSF.

4.3.1 Simulation Setup

We consider the scenario where an MNO wants to allocate sets ranging from 15 to 150 heterogeneous

RAN slices with minimal total isolation overhead, targeting the deployment of RAN slices in a semi-

persistent fashion to cover factories or sports events, and hence, only requiring the reconfiguration of

the network deployment in the granularity of hours or days. Without loss of generality, we focus on

RAN slices that resemble the 5G frame structure, consisting of a block of 12 OFDM subcarriers. We

have run 100 iterations of the simulation, where each RAN slice can have a random combination of

(i) numerology, a tailored subcarrier spacing for serving different types of users, e.g., stationary or on

high-speed trains, in the set {15, 30, 60, 120} kHz; and (ii) SIR tolerance, resilience to interference

according to the type of service, e.g., best effort or mission-critical, in the set {20, 25, 30, 35, 40, 45}

dB [95] [96]. It is worth mentioning that the calculation of the guard band values to ensure isolation
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between each pair of RAN slices is outside the scope of this letter; instead, we rely on the optimal

guard band values for different numerologies presented in [95].

4.3.2 Simulation Results

We consider the total isolation overhead relative to the total allocated bandwidth of RAN slices as

the KPI for the embedding of heterogeneous RAN slices. In other words, this KPI represents the

percentage of the total resources consumed with the guard bands between virtual radios. We compare

the performance of the different embedding methods, and Fig. 4.6 shows the results of our evaluation

for different numbers of RAN slices. It shows that both the GA and the NNA improved with the

inclusion of 2-Opt and present performance very close to optimum, only deviating 0.98–3.85%

and 0.23–0.62% from the OSF, respectively. We can also observe that the percentage of the total

resources consumed with guard bands decreases in proportion to the number of RAN slices. This

behaviour is due to the fact that in larger sets of different RAN slices, it is more likely that several

RAN slices will possess similar characteristics in terms of RAT or numerology, which tend to require

a narrower guard band between one another [94] [95].
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FIGURE 4.6: Performance comparison between the different embedding methods, in
terms of the total isolation overhead relative to the total allocated bandwidth of RAN
slices. The heuristic algorithms are considerably close to optimal and also display a

similar trend according to the number of RAN slices.

We benchmarked the optimisation time and memory consumption for running the different embedding

methods, and Fig. 4.7 shows the results of our measurements. Both the GA and the NNA improved

with the inclusion of 2-Opt have considerably low memory usage, consuming 3 times less memory
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than the OSF for 150 RAN slices. The NNA improved with the 2-Opt runs faster than the OSF (16%

less time for 150 RAN slices), but it also grows exponentially with the number of RAN slices, taking

at least 5 seconds for embedding 90 or more RAN slices. For the same number of RAN slices, the

GA can still find solutions near real-time, with its optimality gap falling to 1.56%. Therefore, we can

conclude that in the timespan we consider for the deployment of RAN slices, i.e., in the order of

hours and days, the optical solution should be used. Nonetheless, the NNA improved with the 2-Opt

is a good solution for embedding up to 90 heterogeneous RAN slices using a lower computational

footprint, while for larger numbers of RAN slices, a simpler GA could be used.
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(A) The optimisation time for running the OSF and the NNA grows exponentially to the
number of RAN slices, whereas the GA remains nearly constant.
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(B) The memory consumption for running the different methods grows with the number
of RAN slices, where both heuristics require considerably less memory than the OSF.

FIGURE 4.7: Computational footprint comparison between the different embedding
methods, in terms of the optimisation time (top) and memory consumption (bottom).
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4.4 Conclusions

In this chapter, we addressed the embedding of heterogeneous RAN slices for technology-agnostic

RANaaS. First, we introduced a novel formulation using a graph representation of RAN slices in

RANaaS platforms, which is transparent to the resources of the different RAN slices, considers the

required additional guard band by design, and is extensible to support new RATs or numerologies.

Then, we proposed a FOTSP-based resource management optimisation problem that leverages

the characteristics of the virtual radios and their required isolation for determining the optimal

arrangement of RAN slices that minimises the total isolation overhead, saving radio resources and

increasing the overall efficiency of the RANaaS platform. We compared different methods for

solving the FOTSP, and our simulation results suggest that the optimal solution should be used in

our scenario of interest, with the deployment and reconfiguration of RAN slices in granularity of

hours and days. However, a combination of heuristics algorithms provide a good solution for the

problem using a lower computational footprint. The NNA improved with the 2-Opt is suitable for

embedding a smaller number of RAN slices, with the GA becoming more attractive as the quantity

of RAN slices increases.
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Orchestrating Multiple Network

Segments to Create E2E NSs

“ We are only as strong as we are united,

as weak as we are divided.

”
Albus Dumbledore, Harry Potter and the Goblet of Fire, 2000

I
N this chapter, we present the vision of the Orchestration and Reconfiguration Control Archi-

tecture (ORCA) Horizon 2020 project, and propose a hierarchical orchestration architecture

for E2E networks. Our proposal addresses the oversimplified resource allocation and limited support

for network segments of existing E2E orchestration solutions, by leveraging domain expertise and

enabling the independent management of each segment, using a combination of distributed spe-

cialised orchestrators already deployed to manage the network infrastructure, as shown in Fig. 5.1.

We introduce a higher-level orchestrator, the hyperstrator, to coordinate the distributed orchestrators

and deploy NSs across multiple network segments. To the best of our knowledge, this is the first

solution that decentralises both the control over the physical infrastructure and the decision over the

resource management for E2E networks. These approaches facilitate upgrading or replacing the

existing underlying orchestrators, and including new segments or types of resources unforeseen at

design time. Without loss of generality, in this chapter we focus on NSs comprised of RAN and CN

segments, interconnected by a TN segment, in the administrative domain of an MNO.

The technical work presented in this chapter is based on our works “Orchestrating Next-Generation

Services Through End-to-End Network Slicing” released as a white paper from the Horizon 2020

ORCA project [112], and “Breaking Down Network Slicing: Hierarchical Orchestration of End-to-

End Networks” published in IEEE Communications Magazine [113].
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The remainder of this chapter is organised as follows. In Section 5.1, we introduce our hierarchical

orchestration architecture for E2E networks, leveraging the distributed intelligence of specialised

orchestrators to achieve a fine-grained resource allocation across multiple network networks, while

ensuring coordination through a higher-level orchestrator, the hyperstrator. In Section 5.2, we

detail the challenges and design choices for realising a prototype of our hierarchical orchestration

architecture. In addition, we validate its ability to deploy customised NSs by showing the NS

deployment and the impact of the resource allocation per network segment on the performance of

E2E NSs. Finally, in Section 5.3, we conclude this chapter and pose our final remarks.

E2E Network Infrastructure

Radio Resources Transport Resources Computing Resources

Radio Access Network   Transport Network Core Network External 
Networks

E2E Enhanced Mobile Broadband Slice 

E2E Massive Internet of Things Slice

E2E Ultra Reliable Low Latency Communication Slice

User 
Equipment

Private 
Domains

Hyperstrator

Orchestrator OrchestratorOrchestrator

FIGURE 5.1: Our proposed E2E network design with one specialised orchestrator
per network segment, and a hyperstrator for coordinating the resource allocation

across segments.

5.1 Hierarchical Orchestration of E2E Networks

In this section, we propose a hierarchical orchestration architecture for E2E networks, using a set of

distributed specialised orchestrators for managing different network segments, as shown in Fig. 5.2.

Each existing orchestrator is responsible for the resource management in a particular network

segment, while we coordinate the resource allocation and function placement across orchestrators

and their respective network segments through a higher-level orchestrator, namely, a hyperstrator.

Our hierarchical orchestration architecture enables the decentralisation of the control and decision
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over E2E networks, breaking down the E2E resource management and network slicing problems

into smaller, tractable problems per network segment.

 TN Slice
 Descriptor
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Server
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#N

VRF 
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Available Resources
Local Requirements

 RAN Slice
 Descriptor

 CN Slice
 Descriptor

Network Slice 
Request

 Network Slice
 Descriptor

Function 
Placement

Network 
Slice #1

Network 
Slice #N

CN Orchestrator

Path
Provisioning

Network
Monitoring

NFV
Manager

TN Orchestrator

Coverage
Provisioning

Radio
Monitoring

RFV
Manager

RAN Orchestrator

Hyperstrator

FIGURE 5.2: Our hierarchical orchestration architecture, where each network seg-
ment already has its own specialised orchestrator, and we accomplish cross-network

segment orchestration through a new entity, the hyperstrator.

In the remainder of this section, we introduce the hyperstrator and detail how it leverages multi-

ple specialised orchestrators for managing E2E networks, while ensuring cohesive E2E resource

allocation across network segments.

5.1.1 Coordinating Distributed Network Orchestrators

The creation of NSs imposes both local requirements for specific network segments, e.g., coverage

areas on RAN segments, or points of exchange on TN segments; and global requirements for the entire

E2E network, e.g., throughput, delay, and reliability targets that the combination of network segments

must meet to comply with the QoS of the NSs. Due to the different purposes and independence

between network segments, we can separate the E2E resource management per network segment

as long as we ensure that each network segment delivers the necessary performance for meeting

the global requirements [25] [78]. We leverage this separation to decentralise the orchestration of

E2E networks, delegating the decision over the resource allocation and function placement for each
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network segment to a respective specialised orchestrator. Such compartmentalisation allows each

individual specialised orchestrator to focus on a limited number of well-defined tasks, using models

and paradigms tailored for the particularities of its respective network segment. This approach

facilitates achieving a fine-grained resource allocation in every network segment, while reducing the

resource management complexity, both in terms of design and implementation.

This decentralised orchestration paradigm requires coordination between different orchestrators

for deploying NSs, a process that involves dimensioning, creating, and combining multiple NSSs.

To do so, the distributed specialised orchestrators could interact amongst themselves through east-

westbound interfaces following a Self Organising Network (SON) model. However, this approach

would require each orchestrator to (i) implement new communication interfaces; (ii) be aware of

the existence and capabilities of other orchestrators; and (iii) know how to negotiate the use of

their resources. This would require extensive modifications and further development on the existing

orchestrators, while also introducing considerable communication and negotiation overheads. Rather

than taking this costly approach, we propose the introduction of a new entity above the distributed

specialised orchestrators, the hyperstrator, which is in charge of interacting with the underlying

orchestrators and coordinating the lifecycle of NSs. In this way, not only each specialised orchestrator

becomes oblivious to the existence of other orchestrators and network segments, but this approach

also allows us to potentially integrate existing orchestrators present in real network deployments

under the hyperstrator. We can achieve this by developing simple, bespoke translation layers between

existing northbound configuration interfaces (used by MNOs to configure their networks) and the

hyperstrator.

The combination of the hyperstrator and the distributed specialised orchestrators acts as a single

E2E network orchestrator, responsible for managing the entire E2E network infrastructure in the

administrative domain of an MNO. The hyperstrator itself is the interface for interacting with the E2E

network, the central point for (i) instantiating customised NSs leveraging heterogeneous resources

available across multiple network segments; (ii) monitoring the existing communication services by

gathering KPIs from the distributed orchestrators; and if necessary, (iii) optimising the use of network

resources according to the demands of communication services. Therefore, the hyperstrator serves as

a network automation tool that facilitates the MNO’s network operations, simplifying the deployment

of communication services and supporting the offer of NSaaS, by automatically provisioning NSs to
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serve tenants [10]. In addition, the hyperstrator in charge of one administrative domain could act as a

tenant to lease resources from the hyperstrators responsible for other administrative domains, e.g.,

requesting RAN slices to provide coverage in different geographical locations, or CN slices to offload

computations during peak network demand. In this regard, using a hyperstrator per administrative

domain could facilitate and standardise resource sharing among MNOs.

5.1.2 Translating and Delegating E2E Requirements

The tenants can request NSs to the hyperstrator, specifying them using NS descriptors, manifests

containing high-level E2E requirements [16], e.g., mobile coverage on particular geographical

locations with specific connectivity to certain data centres. The NS descriptors can potentially be

implemented using JSON and YAML formats, adopting YANG or TOSCA modelling languages [32].

In parallel to NFVO-C [78], the hyperstrator is responsible for translating these high-level E2E

requirements into requirements for specific network segments, in the form of NSS descriptors, e.g.,

RAN and CN slice descriptors. However, in contrast to NFVO-C, the NSS descriptors are tailored

to the capabilities of each network segment [32], e.g., containing the required throughput, latency

and reliability, as well as the coverage areas and points of exchange, respectively. The MNOs can

specify or develop different translation mechanisms for their hyperstrators, such as the one detailed

in [16]. After the translation procedure is finished, the hyperstrator forwards the NSS descriptors to

the respective underlying specialised orchestrators, as shown in Fig. 5.2. Each orchestrator is free

to use its own resource management directives to map local requirements into low-level network

configuration for creating suitable NSSs, which involves deciding the appropriate allocation of

resources and placement of functions to fulfil the local requirements [114].

The resulting E2E NSs may comprise multiple NSSs, each of which can possess chains of different

types of functions, e.g., VNFs, implementing network services and upper layers of the commu-

nication stack; and Virtual Radio Functions (VRFs), implementing RATs and lower layers of the

communication stack [34] [79]. Depending on the resources allocated and the functions placed,

each NSS will achieve different performance. The hyperstrator can guarantee consistent QoS for

the E2E NSs by requesting NSSs that deliver the required E2E throughput, while remaining within

the E2E delay and reliability budgets of the E2E NS. However, some NSSs may have resource and

performance limitations, which the hyperstrator can attempt to circumvent by realising a trade-off
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in the E2E resource allocation and requesting NSSs with more resources, and that deliver higher

performance, from other network segments.

5.1.3 Ensuring Consistency Across Multiple Network Segments

The distributed nature of our hierarchical orchestration architecture poses new challenges for design-

ing and implementing this solution, especially for the hyperstrator, which must ensure consistency

between multiple specialised orchestrators and network segments. The system must cope with

issues that may arise during the instantiation of E2E NSs across different segments, e.g., lack of the

necessary resources, failures in the resource allocation or functional placement, as well as unexpected

communication and hardware failures. We can circumvent such failures using a transactional com-

munication protocol between the hyperstrator and the underlying specialised orchestrators, where:

the hyperstrator requests the execution of operations on multiple network segments, and according to

the results of such requests, the hyperstrator either commits the operations, making the orchestrators

carry out the commands, or rolls them back, reverting the instantiation of NSSs. This approach

enables persistent, atomic operations over the management of E2E NSs, while ensuring consistency

across multiple network segments [115]. Furthermore, the E2E NS should possess a unique identifier

across all networks segments, e.g., Universally Unique Identifier (UUID), facilitating any opera-

tion over the NSs and access to their information, as well as the implementation of authorisation

mechanisms for managing the NSs, such as Access Control Lists (ACLs).

Our proposed architecture differs from existing hierarchical orchestration approaches in the literature,

as we do not centralise the intelligence and decision over the E2E network management in a single

monolithic entity, responsible for orchestrating certain types of network segments [30] [31] [75] [78].

In reality, the hyperstrator does not have any role in the resource allocation and function placement on

particular network segments. Instead, the hyperstrator (i) translates global service requirements for

creating NSs into local requirements for specific network segments; (ii) delegates local requirements

to the respective underlying specialised orchestrators, which are free to adopt the state-of-the-art or

proprietary resource management solutions for creating customised NSSs; and most importantly,

(iii) ensures cohesive performance across NSSs to guarantee a consistent QoS for the NSs. In

addition, it is worth mentioning that our solution targets existing network deployments, focusing on

the integration with the orchestrators already deployed to manage the MNO’s network infrastructure,

Joao Felipe Faco Cals Cruz SANTOS PhD Thesis



5.2. Experimental Proof of Concept 81

unlike clean slate solutions like CORD and ONAP that require a complete replacement of the existing

control and orchestration entities. Therefore, our hierarchical orchestration architecture leverages

the capabilities of existing specialised orchestrators and the domain expertise of their established

communities for providing the most effective resource management in every network segment.

5.2 Experimental Proof of Concept

In this section, we detail an example deployment of E2E NSs using our hierarchical orchestration

architecture, with the hyperstrator coordinating separate specialised orchestrators responsible for

different network segments. First, we describe a proof-of-concept implementation of our hierarchical

orchestration architecture used for managing an experimental E2E network infrastructure. Then, we

assess the overhead introduced by the distributed nature of our architecture to provision E2E NSs, as

well as the impact of each NSS on the performance of E2E NSs.

5.2.1 Building the Experimental Setup

To verify the feasibility of our proposed architecture, we have created an experimental E2E network

infrastructure that resembles mobile networks, consisting of RAN, TN and CN segments managed

by a hierarchy of orchestrators, as illustrated in Fig. 5.3. The conjunction of these network segments

connects clients with their UEs to desired microservices in the CN. The prototype hyperstrator

serves as the central point of management for our E2E network infrastructure and the deployment of

E2E NSs. It provides a Create, Read, Update, Delete (CRUD)-based interface, where tenants can

instantiate, query, modify or remove NSs. The tenants must specify the requirements of their NSs in

the form of NS slice descriptors, JSON data structures that contain high-level E2E requirements. In

possession of such information, our experimental proof of concept operates as follows.

• The hyperstrator translates the high-level E2E requirements into requirements specific for each

network segment. In this case, considerations include coverage to UEs in the RAN, computing

to host services in the CN, and paths between both network segments in the TN.

• Then, the hyperstrator requests the instantiation of NSSs with tailored requirements to the

underlying orchestrators. Each orchestrator is free to adopt their own resource management

directives, protocols and internal processes to allocate resources and place functions.
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• Upon successful creation of the necessary NSSs, the NS becomes operational and the UEs can

start communicating with a new microservice. The hyperstrator returns the UUID of the NS to

the tenant, who can use this identifier to operate over the NS.

In Appendix B, we detail the hyperstrator’s interfaces for managing E2E NSs, including both its

northbound interface towards tenants and its southbound interface towards the distributed specialised

orchestrators.

To simplify the development of our initial prototype, we employed the ZMQ messaging library [85]

to implement both the northbound communication with tenants and the southbound interface towards

the underlying orchestrators. In addition, we created homebrewed orchestrators for managing each

network segment, responsible for the basic dimensioning of required resources to meet local service

requirements, as well as the communication with the hyperstrator and the respective underlying

controllers. In the future, we plan to extend ONOS and OSM, adding new capabilities for supporting

our hierarchical orchestration architecture, and use them to replace our homebrewed orchestrators.

In the development of our experimental E2E network infrastructure, we used Linux Containers

(LXC) [116] on servers at the Iris Testbed (http://iristestbed.eu/) for realising the

majority of the elements in our setup, reducing its physical size and overall complexity. Furthermore,

we targeted using a RAT compatible with a broader range of UEs, which motivated us to choose

WiFi for our evaluation. However, WiFi has stringent timing requirements for its MAC scheme

(in the order of nanoseconds), which prevented us for using the combination of XVL and HyDRA

detailed in Chapter 3 (which introduces a service delay in the order of milliseconds, as demonstrated

in Section 3.4.4). Instead, we relied on OpenWiFi [117], a controller for SDRs that implements a

technology-specific radio virtualisation mechanism for slicing WiFi RATs.

We leveraged software-defined hardware platforms as enablers for network slicing [75], and have

set up an SDR-based RAN segment, an SDN-based TN segment, and an LXC-based CN segment,

as shown in Fig. 5.3. The RAN segment is composed of a Zynq SDR running the OpenWiFi SDR

controller, allowing us to create a Hostapd access point with tailored resource allocation for each

UE. We create RAN slices using OpenWiFi’s frame-based radio virtualisation mechanism to allocate

non-overlapping portions of airtime for meeting local requirements. The TN segment is composed

of four Open vSwitch [118] containers forming an emulated ring topology in a virtualisation server.

Two of these switches are also attached to Ethernet ports on the Zynq SDR and the cloud server,
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serving as points of exchange towards the RAN and CN segments, respectively. We create TN slices

using Ryu SDN controller’s features for creating overlay networks with isolated traffic and tailored

queue configurations [119]. The CN segment is composed of a cloud server running LXD [116],

allowing us to host microservices on containers with customised computing specifications. We create

CN slices using PyLXD controller’s features for instantiating customised containers set up with

different Operating System (OS) images and tailored computing resources [120].

To combine our NSSs, we attribute IP addresses to new RAN and CN slices, and then use new TN

slices to interconnect them. In the RAN segment, we programmatically configure a DHCP server

running in the Zynq SDR for assigning valid IP addresses to new UEs and forward their traffic to the

data plane Ethernet port. In the CN segment, for each container hosting a new service, we create a

virtual network interface attached to a bridge network with automatic DHCP, which is connected to

the cloud server’s data plane Ethernet port. Then, we use the IP addresses of the RAN and CN slices

as arguments for creating TN slices, where we calculate and establish the shortest path between all

the routes that support the required throughput between these IPs. In addition, we utilise iptables for

blocking communication between UEs and between containers, ensuring traffic isolation within the

same segment. For further information, the reader can refer to the hyperstrator’s public repository

(https://github.com/orca-project/hoen).

5.2.2 Overhead for Provisioning Network Slices

In this analysis, we are interested in the interaction between the elements of our hierarchical

orchestration architecture and their delay for provisioning E2E NSs across multiple network segments.

The total provisioning delay consists of the time interval required for deploying new E2E NSs to

support communication service, i.e., between tenants sending NS requests until the NSs are fully

available, which includes the translation of high-level E2E requirements, the dimensioning of

NSSs, and the allocation of resources on all network segments. Fig. 5.4 shows the results of our

measurements for deploying customised NSs using our hierarchical orchestration architecture. The

hyperstrator took 2.2 seconds to fulfil the NS request and instantiate a new E2E NS. After receiving

the NS request, the instantiation of RAN, TN and CN slices accounted for 2.99%, 0.84% and

95.85% of the provisioning delay, respectively. The hyperstrator functionality and the sequential

communication with the distributed orchestrators accounted for roughly 2 ms, adding an overhead
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of 0.08%. We could further reduce the total provisioning delay by allocating NSSs concurrently

or pre-allocating containers, which would reduce it to 90 ms and allow the instantiation of up to

11 NSs per second. These results show that the hyperstrator can orchestrate heterogeneous network

resources for provisioning E2E NSs near real-time, and that the distributed nature of our proposed

architecture introduces a negligible overhead regarding the total provisioning delay.

0 6
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FIGURE 5.4: Timing diagrams showing the interactions between the entities of our
experimental setup required for deploying NSs.

5.2.3 Consistent QoS across Network Segments

In this analysis, we assess how the resource allocation in each network segment affects the E2E

performance of the NSs. Due to the independence between different network segments and their

resource management directives, the hyperstrator must coordinate the underlying specialised orches-

trators for deploying NSs with consistent QoS across multiple network segments. Table 5.1 shows

the E2E performance in terms of throughput and round-trip delay for an E2E NS traversing through

the CN, TN, and RAN segments towards a UE. For each network segment, we varied the amount

of allocated resources, i.e., radio airtime in the RAN segment, link capacity in the TN segment,

and CPU cycles in the CN segment, while allocating the maximum resources in the other network

segments; and measured the experienced E2E performance between a UE and its microservice

container. These results illustrate how the resource allocation in each NSS significantly impacts the

E2E performance of NSs, motivating the need for coordination between the distributed specialised

orchestrators in charge of the different network segments to ensure consistent QoS for the E2E NSs.
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RAN TN CN
Radio Airtime Link Capacity CPU Cycles

Throughput
[Mbps]

Delay
[ms]

Throughput
[Mbps]

Delay
[ms]

Throughput
[Mbps]

Delay
[ms]

100% 21.8 1.97 22.3 2.41 24.5 16.982
90% 17.9 2.10 22.2 1.86 23.2 41.67
80% 16.8 3.09 22.0 2.10 20.5 105.10
70% 14.1 4.35 22.7 1.75 18.6 147.59
60% 11.5 6.48 22.7 2.07 16.1 191.16
50% 8.47 8.07 21.5 2.18 13.2 219.32
40% 6.41 19.41 21.3 2.13 11.2 372.04
30% 5.44 35.24 22.2 2.14 8.40 466.51
20% 4.02 43.40 19.8 2.04 6.13 639.77
10% 2.18 61.37 18.7 2.01 3.03 875.99
1% 0.43 124.27 9.88 1.98 1.20 998.40

TABLE 5.1: Example of how the allocation of distinct types of resources in different
network segments affects the E2E performance of the NSs. We can use the hyper-
strator to coordinate the different orchestrators to establish a dedicated 10 Mbps E2E
NS with latency of 50 ms using 60% of the radio resources, 1% of the transport
resources, and 90% of the computing resources (shown in bold), while still leaving

available resources for creating more E2Es NSs tailored to serve other services.

5.3 Conclusions

In this chapter, we addressed the oversimplified resource allocation and limited support for net-

work segments of existing E2E orchestration solutions. We presented a hierarchical orchestration

architecture for E2E networks, breaking down the E2E network management and network slicing

challenges per network segment, while leveraging the capabilities and the established communities

of existing orchestrators to achieve an E2E fine-grained resource allocation. It is a paradigm shift

from traditional E2E network orchestration solutions like ONAP, which operate in a clean slate

manner and centralise the intelligence for managing entire E2E network infrastructures in single

monolithic entity. Our proposal: (i) leverages domain expertise and enables the independent man-

agement of each network segment using the existing distributed specialised orchestrators already

deployed to manage the network infrastructure; (ii) coordinates the resource management across

network segments through a higher-level orchestrator, the hyperstrator; and (iii) is both modular and

extensible, capable of supporting new types of network segments and resources unforeseen at design

time. We developed a proof-of-concept implementation of our hierarchical orchestration architecture

and evaluated its delay for provisioning NSs, as well as the impact of the resource allocation per

network segment on the performance of NSs. Our results show that the distributed nature of our

solution introduces negligible overhead to provision E2E NSs in our experimental E2E network
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infrastructure, confirmed the need for a hyperstrator to coordinate different network segments and

ensure consistent QoS for E2E NSs, and validated that we can streamline the coordination of multiple

specialised orchestrators already deployed in real networks to instantiate E2E NSs.
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Conclusions and Future Directions

“ Don’t adventures ever have an end? I suppose not.

Someone else always has to carry on the story.

”
Bilbo Baggins, The Fellowship of The Ring, 1954

T
HE main objective of this PhD thesis was to explore the potential of radio virtualisation in

the context of E2E network slicing. First, to leverage existing radio virtualisation solutions

to provide RANaaS. Then, to model the resource allocation of virtual radios from heterogeneous

RAN slices on RANaaS platforms. Finally, to ensure a consistent QoS for E2E NSs traversing

through multiple networks segments. In the remainder of this chapter, we summarise the key research

contributions of this PhD thesis, and propose research directions inspired by the topics we addressed.

The high-level outline of this thesis is depicted in Fig. 6.1.

6.1 Summary of Contributions

In Chapter 3, we first investigated the functionality and challenges for enabling RANaaS through

radio virtualisation, and identified the key requirements for using radio hypervisors to support

RANaaS. We provided an answer to the RQ1: "What are the requirements for using radio hypervisors

to support RANaaS?", by compiling a comprehensive list of features that radio hypervisors must

incorporate for supporting RANaaS. However, we observed that the majority of radio hypervisors

in the literature lack some of these essential features. Then, we addressed the RQ2: "How can

radio hypervisors provision and instantiate custom virtual radios on demand?", by developing XVL,

a modular software layer that can wrap around existing radio hypervisors and provide them with

the missing resource management functionality for enabling RANaaS. We integrated XVL with a
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FIGURE 6.1: The outline of this PhD thesis.

technology-agnostic radio hypervisor and validated its ability to deploy virtual radios with different

RATs or numerologies on-demand. In addition, to the best of our knowledge, we were also the first

to quantify the delay and signal degradation introduced by radio virtualisation.

In Chapter 4, we identified that current models and solutions for embedding RAN slices are not

suitable for embedding virtual radios with different RATs or numerologies. We provided an answer

to the RQ3: "How to model the embedding of heterogeneous RAN slices on RANaaS platforms?",

by introducing a graph representation of RAN slices that is technology agnostic and considers

the required additional guard band between different virtual radios by design. To the best of our

knowledge, we were also the first to propose and formulate a FOTSP-based resource management

optimisation problem for allocating heterogeneous RAN slices on RANaaS platforms. Our novel

formulation leverages the characteristics of different virtual radios and their required isolation for

determining the optimal arrangement of RAN slices that minimises the total isolation overhead,

saving radio resources and increasing the overall efficiency of the RANaaS platform.
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In Chapter 5, we addressed the oversimplified resource allocation and limited support for network

segments of existing one-size-fits-all orchestrators for E2E networks. We answered the RQ4: "Could

separate specialised orchestrators be used to provide fine-grained resource allocation on E2E

networks?", by proposing a hierarchical orchestration architecture that breaks down the E2E network

management and allows the use of existing separate orchestrators per network segment. However,

this decentralised orchestration paradigm requires coordination between different orchestrators for

deploying E2E NSs across multiple network segments. Then, we addressed the RQ5: "How to

coordinate multiple network segments and orchestrators to guarantee a consistent QoS for E2E

NSs?", by proposing a higher-level orchestrator, the hyperstrator, to coordinate the composition of

E2E NSs and ensure a cohesive resource allocation across multiple network segments. To the best of

our knowledge, we are the first to decentralise both the control over the network infrastructure and

the decision over the resource management for E2E networks. Finally, we also confirmed that our

hierarchical orchestration architecture introduces a negligible overhead for instantiating E2E NSs.

6.2 Future Directions

In this PhD thesis, we made several contributions regarding the utilisation of radio virtualisation to

enable E2E network slicing. In the remainder of this section, we present a number of open challenges

and potential future research directions that stem from the topics we addressed.

6.2.1 Granularity of Virtual Radio Resources

Every radio virtualisation mechanism possesses a certain radio resource granularity, i.e., the minimal

step or quantity of resources that the radio hypervisor can allocate. Virtual radios that require any

given amount of radio resources are provided with an integer multiple of this minimal step. Limited

by physical radio hardware constraints, smaller steps allow more fine-grained control over resource

allocation at the cost of an increased computational cost. The resource allocation granularity in

a RANaaS platform is a crucial parameter, as a mismatch between the amounts of requested and

allocated resources leads to signal distortions, which can degrade or compromise the operation

of the RAN slices [21] [74]. For FFT-based radio hypervisors where the IFFT size dictates the

resource allocation granularity in frequency (∆f ), a larger IFFT reduces the FFT bin width for a
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fixed B, consequently reducing the signal distortions experienced by the virtual radios. However,

the degradations cannot be eliminated unless there is a perfect match between the requested and

allocated bandwidths, as demonstrated in Table 3.2.

A RANaaS platform could potentially adjust the IFFT size of the radio hypervisor and the B of the

physical radio hardware to find a given ∆f that perfectly matches the required bandwidth of a specific

virtual radio. However, it may be infeasible to find a combination of parameters that simultaneously

satisfies multiple virtual radios with different configurations. Alternatively, this mismatch in the

resource allocation can be mitigated using a fractional resampler per virtual radio, coupling the

different sampling rates associated with the requested and allocated bandwidths at the cost of extra

computations [74]. A potential future work can investigate the trade-offs for the granularity of virtual

radio resources, assessing the ideal values for the IFFT size and B to accommodate different RATs

and numerologies, as well as evaluate the benefits and drawbacks for using fractional resamplers.

The outcome of this work would be the optimal strategy to support virtual radios with minimal signal

distortions, using tailored parameters, the adoption of fractional resamplers, or a combination of

both depending on the requirements of the set of virtual radios.

6.2.2 High-level RAT Requirement Translation

As part of the offer of RANaaS, the MNOs must decide how to efficiently allocate communication

services onto RAN slices, which may be impractical on a one-to-one basis due to the wide range

of different service requirements and low-level network configurations for the virtual radios [94].

A possible approach for MNOs to circumvent this limitation would be to group the different com-

munication services into sets of similar performance requirements, and then find an appropriate

low-level network configuration that supports each set of communication services with acceptable

performance [94]. However, the challenge of mapping high-level RAT requirements, e.g., throughput,

moving speed, and the number of users, into the low-level network configuration, e.g., subcarrier

spacing, cyclic prefix duration, frame types [114], for the realisation of RAN slices persists. A

potential future work can examine the problem of selecting a particular virtual radio configuration for

supporting a given group of communication services, assessing the relationship between the degrees

of freedom of flexible 5G numerologies and their effect on the KPIs of the communication services.

The outcome of this work would be a mathematical framework that provides the acceptable ranges of
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values for a low-level network configuration to be able to accommodate a given communication ser-

vice, providing insights into the effective parameters and necessary adjustments for using customised

RAN slices radios to support groups of communication services with similar requirements.

6.2.3 Distributed Modelling of E2E Networks

Large-scale mobile network infrastructures possess thousands of different network equipment,

ranging from base stations to optical switches and computing servers. In order to efficiently use such

assets to serve hundreds of thousands of users, MNOs optimise their resource allocation to minimise

deployment and operational costs [121]. However, accurately modelling and optimising the resource

allocation in a single network segment is already challenging and time-consuming [122] [123], an

issue that is only aggravated in E2E networks comprising many different network segments, each

with their own characteristics, purposes, and paradigms. Hence, a global model and optimisation of

the resource allocation in an entire E2E network, including the interplay between different network

segments, may be intractable or infeasible. A potential future work can investigate the distributed

modelling of the resource allocation for E2E networks, breaking down the global resource allocation

optimisation problem into smaller and tractable ones on a per-network segment basis. It could model

E2E network infrastructure as a system of systems [124], combining the resources and functionality

of the different networks segments to deploy E2E NSs, using the mathematical framework of

heterogeneous network graphs to represent each network segment and the relationship between them

as separate graphs [125]. The outcome of this work would show how variations in the characteristics

and topology of each network segment would directly affect the performance of the global resource

allocation optimisation problem; as well as allow the comparison between global and distributed

resource allocation strategies for E2E networks.
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eXtensible Virtualisation Layer

Interface

In the following, we detail the communication interfaces of the XVL introduced in Chapter 3, includ-

ing both its northbound interface, used for tenants to negotiate, request, and monitor virtual radios,

as well as its southbound interface, used for communicating with and controlling the underlying

technology-agnostic radio hypervisor. Figure A.1 shows the sequence diagram of the exchanged

messages and the interaction between the main entities of our RANaaS platform architecture.
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End-to-End Hyperstrator Interface

In the following, we detail the communication interfaces of the hyperstrator introduced in Chapter 5,

including both its northbound interface, used for tenants to operate over E2E NSs, and its southbound

interface, used to coordinate the resource allocation across the distributed specialised orchestrators.

Figure B.1 shows the sequence diagram of the exchanged messages and the interaction between the

main entities of our hierarchical orchestration architecture for E2E communication networks.
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118 Appendix B. End-to-End Hyperstrator Interface
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Acronyms

3GPP 3rd Generation Partnership Project

ACL Access Control List

ANN Artificial Neural Network

ARM Advanced RISC Machines

ARPU Average Revenue Per User

ASIC Application-Specific Integrated Circuit

B2B Business-to-business

B2B2C Business-to-business-to-consumer

B2C Business-to-consumer

BBU Baseband Unit

C-RAN Centralised-RAN

CAGR Compound Annual Growth Rate

CBRS Citizens Broadband Radio Service

CDN Content Delivery Network

CN Core Network

CNaaS CN as a Service

COTS Commercial-Off-The-Shelf

CP Cloud Provider

CriC Critical Communications

CRUD Create, Read, Update, Delete

D-RAN Distributed-RAN

DCN Data Centre Network

DSP Digital Signal Processor

E2E End-to-End



120 Acronyms

eMBB Enhanced Mobile Broadband

EPC Evolved Packet Core

eV2X Enhanced Vehicular-to-Everything

FOTSP Freely Open-loop TSP

FPGA Field-Programmable Gate Array

GA Greedy Algorithm

GEFI Global Experimentation for Future Internet

GPP General-purpose Processor

I/O Input/Output

IoT Internet of Things

IQ In-phase & Quadrature

ISP Internet Service Provider

KPI Key Performance Indicator

LVM Logical Volume Manager

LXC Linux Containers

MANO Management and Orchestration

MBB Mobile Broadband

MBMS Multimedia Broadcast Multicast Service

MILP Mixed-Integer Linear Programming

MIoT Massive IoT

MNO Mobile Network Operator

MSE Mean Square Error

MVNO Mobile Virtual Network Operator

NB-IoT Narrowband IoT

NFV Network Function Virtualisation

NFVO NFV Orchestrator

NFVO-C NFVO Composite

NFVO-N NFVO Nested

NNA Nearest Neighbour Algorithm

NS Network Slice

NSaaS NS as a Service
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NSS Network Segment Slice

ONOS Open Network Operating System

OOBE Out-of-band Emission

ORCA Orchestration and Reconfiguration Control Architecture

OS Operating System

OSM Open-source MANO

OSS Operation Support System

PNF Physical Network Function

PRB Physical Resource Block

QoS Quality of Service

RAN Radio Access Network

RANaaS RAN as a Service

RAT Radio Access Technology

RF Radio Frequency

RNC Radio Network Controller

RQ Research Question

RRH Remote Radio Head

SDK Software Development Kit

SDN Software-defined Networking

SDR Software-defined Radio

SDS Software-defined Switch

SIR Signal-to-Interference Ratio

SLA Service Level Agreement

SON Self Organising Network

TN Transport Network

TSP Travelling Salesman Problem

U-NII Unlicensed National Information Infrastructure

UE User Equipment

UUID Universally Unique Identifier

V2X Vehicular-to-Everything

VM Virtual Machine
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122 Acronyms

VNF Virtual Network Function

VPN Virtual Private Network

VRB Virtual Resource Block

VRF Virtual Radio Function

XaaS Everything as a Service

XVL eXtensible Virtualisation Layer
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