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Thermoreflectance Imaging of Semiconductor Lasers
With a Numerical Thermal Model
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Abstract—High resolution surface temperature maps of a slotted
surface grating laser operating at approx. 1550 nm are obtained by
means of CCD-thermoreflectance imaging. The resolution is such
that the temperature of the 2 µm wide ridge can be determined.
Experimental temperature profiles along the ridge and in the lat-
eral direction are provided. A 2D numerical model is developed to
simulate the steady state thermal distributions in the laser. There
is good agreement between the experiment and simulation. This
technique allows for high-resolution imaging and will be useful
where hot spots occur on laser devices.

Index Terms—Semiconductor lasers, thermoreflectance
imaging.

I. INTRODUCTION

S EMICONDUCTOR lasers play an important role in a di-
verse range of applications including optical communica-

tions, gas sensing, and light detection and ranging (LIDAR),
and are subject to stringent performance requirements. The
temperature distributions present in the laser during operation
are of great interest to device designers as large temperature
excursions and hot spots can lead to poor device performance
and reduced lifespan. In addition, the dependence of both the
material bandgap and the refractive index on temperature leads
to a strong temperature dependence of the emission wavelength.
Thermal modelling is an important step in device design, and
numerous models have led to detailed analysis of temperature
distributions in simulated devices [1]–[3]. High resolution ex-
perimental investigation of thermal effects in semiconductor
lasers have been done with a number of techniques including
IR-SNOM [4], [5] and CCD thermoreflectance imaging (CCD-
TR). CCD-TR is a well-established technique to measure the
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Fig. 1. (a) Optical microscope image. (b) Lasing spectrum of the laser diode
at 150 mA bias current and 20 °C heatsink temperature. (c) 3D representation
of laser showing slots formed on the ridge. The slots forming the grating can be
seen in the centre part of the image in (a).

surface temperature of electronic and optoelectronic devices and
has been used for the thermal characterization of high power
lasers [6], VCSELs [6]–[9], quantum dot lasers and quantum
cascade lasers (QCLs) [10]–[12]. In this work we use CCD-TR
imaging to image the surface temperature of a single frequency
single-mode slotted semiconductor laser operating at approxi-
mately 1550 nm. Preliminary measurements of the single and
multi-section laser by our group are found in [13]. In addition,
we show the results from a 2D model of the thermal behavior of
the laser. The resolution of the imaging system is such that the
temperature of the 2 µm wide laser ridge can be determined.

II. DEVICE STRUCTURE

An image of the laser investigated in this work is shown in
Fig. 1. The laser consists of a 2 µm wide, 1.85 µm tall ridge that
runs along the length of the device. The laser cavity is formed
by the reflections provided by the rear facet and the high-order
grating in the center of the device. The remainder of the ridge
waveguide from the grating to the front facet is external to the
laser cavity and provides optical amplification.

The ridge waveguide is curved at 7 ° to the front facet to reduce
reflections from the front facet and to prevent the formation
of another cavity. The ridge is composed of p-doped InP and
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sits above an active region comprised of 5 AlGaInAs com-
pressively strained quantum wells which provide optical gain.
The high-order grating is formed by etching rectangular slots 1
µm in width into the ridge and provides wavelength selective
reflection. The use of a high-order surface grating was chosen
rather than a buried grating because it simplifies the fabrication
by avoiding the need for material regrowth and allows the use
of photolithography, although in the case of the devices studied
here electron beam lithography was used due to the lack of a
stepper at the foundry. A 280 nm layer of Au covers the ridge,
to allow current injection. The laser is bonded to an aluminum
nitride subcarrier with is positioned on a copper heatsink that is
temperature controlled with a thermoelectric module. Thermal
compound with a thermal conductivity of 0.65 Wm−1K−1 is
applied between the underside of the subcarrier and heatsink
to ensure a good thermal contact. An optical spectrum of the
device operating at 150 mA injection current with the heatsink
temperature maintained at 20 °C is shown in Fig. 1, showing
good single mode performance with the side mode suppression
ratio (SMSR) of 51 dB. Modelling and characterization of slotted
laser diodes can be found in [14]–[17].

III. 2D THERMAL MODEL

The flow of heat through a solid is governed by the heat
conduction equation, given by

K∇2T +Q = ρC
∂T

dt
(1)

where T is the temperature, K is the thermal conductivity, ρ
is the density, C is the specific heat capacity, and Q is the heat
generation in the solid. In steady state the time derivative is zero,
yielding,

K∇2T = −Q (2)

We assume that heat generation in the laser is due only to the
Joule heating due to carrier flow, such that the heating per unit
volume of a region of the laser structure is given by,

Q = j2 ρ (3)

where j is the current density and ρ is the resistivity of the
material, and to optical absorption in the active region, for which
take the approach used by Wang and Yu [18], wherein the heating
is given by

Q =
Vj (1− nspfsp)

da
(jth + (j − jth) (1− ni)) (4)

where Vj is the active region junction voltage, nsp is the quan-
tum efficiency of spontaneous emission, fsp is the fraction of
spontaneous emission absorbed by the cladding layers, da is the
active region thickness, ni is the internal quantum efficiency
of stimulated emission and jth is the threshold current density.
Equations (3) and (4) are sufficient to account for the heat
generation within the laser structure, however another term
must be included to take account of the heat generated from
the injection of holes from the metal into semiconductor at the
upper contact. In our device, the upper 200 nm of the ridge is
composed of a highly doped p+ InGaAs region to achieve ohmic

contacts and minimize contact resistance. However, by scanning
the voltage along the laser facet Kuntze et al. have shown that
while minimizing metal-semiconductor contact resistance this
approach generates a large voltage drop and thus heat generation
at the p+ - p interface [19]. This can be characterized by another
contact resistance, which they found to be 6x10−9 Ωm2. Here
we model this heat source with a 400 nm tall region at the upper
part of the ridge with the heat generation per unit volume given
by

Q = j2
ρc
dc

(5)

where ρc is the contact resistance and dc is the thickness of the
contact region.

In order to determine the spatially resolved heat generation,
the model must determine the current flow through the device
structure. The current density is calculated by

j = σE + je (6)

where σ is the electrical conductivity of the material, E is the
electric field and je are externally generated current densities.
The electric field is given by

E = −∇φ (7)

where φ is the electric potential. The electrical conductivities
are given by

neμe (8)

for the substrate region, and

peμh (9)

where n and p are the electron and hole densities, e is the
charge on an electron, and μe and μh are the electron and hole
mobilities respectively. The substrate doping level is 3× 1018

cm−3. The electron mobility of InP at this carrier concentration
level was found by Sotoodeh et al. to be 2000 cm2 V−1 s−1 at
room temperature leading to a substrate electrical conductivity
of 1.1× 105 S m−1. The cladding consists of a number or layers
of various doping levels and the resulting cladding doping level is
found by taking a weighted average of these layers, coming out to
1× 1018 cm−3. The hole mobility of InP at room temperature at
this doping level was found by Sotoodeh et al. to be 70 cm2 V−1

s−1 leading to a cladding electrical conductivity of 1.4× 103 S
m−1 [20].

To reduce the computational requirements of the simulation a
2D model of the laser cross section was chosen. This model relies
on the assumption that the temperature profile is reasonably
constant along the length of the laser cavity. Thermoreflectance
images of the surface shown in Section V indicate that this
assumption is reasonably valid. The 2D geometry is shown in
Fig. 2. The epitaxial structure of the laser is simplified into three
sections, the substrate, active region, and cladding. The substrate
is n-type InP, the cladding is p-type InP, and the active region
consists of the quantum wells. Above the cladding lies a 300 nm
oxide layer and a 280 nm gold layer. The substrate sits on 20 µm
of solder and a 0.5 mm thick aluminum nitride sub mount. The
model parameters are listed in Table I. The material constants
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Fig. 2. Geometry of the numerical model.

Fig. 3. Experimental setup to measure the CCD-TR images.

TABLE I
MODEL PARAMETERS

are listed in Table II. The simulation is implemented with a
finite element method (FEM) on the COMSOL Multiphysics
software.

IV. CCD-THERMOREFLECTANCE

CCD-Thermoreflectance imaging is a technique that allows
high resolution thermal imaging of heated microelectronic and

photonic devices. It has been used extensively to measure tem-
perature distributions in integrated circuits and optoelectronic
devices [3], [6]–[12], [21]–[26]. It makes use of the temperature
dependence of the reflectance of the sample to measure changes
in temperature. As the wavelengths utilized are in the visible
region, the spatial resolution of the technique is much improved
compared to IR thermography, which is limited to wavelengths
in the 3-10 µm region [27]. As such, sub-micron resolution can
be achieved. The temperature change can be determined from
the reflectance change by

ΔT =
1

κ

ΔR

R
(10)

where ΔR is the change in reflectance and κ is the thermore-
flectance coefficient, which is dependent on the sample material,
illumination wavelength and the numerical aperture of the imag-
ing system. In this work, Au is chosen as the thermoreflectance
material as it coats the upper surface of the laser. An illumi-
nation wavelength of 514.5 nm and a 20x objective lens with
a numerical aperture of 0.4 are chosen. The thermoreflectance
coefficient can vary by over two orders of magnitude and so
must be calibrated. This is done by comparing the reflectance
change of a thin Au stripe, which is heated by current injec-
tion, to the change in resistivity of the stripe. Although the
resistivity of a metal is dependent on sample geometry, the
temperature dependence of the resistivity is not. As such it
can be used as a temperature probe. By this method we found
κ = −1.4 x 10−4 K−1

The thermoreflectance effect is weak and requires a lock-in
technique. Here we utilize a homodyne technique wherein the
sample is heated by current injection at a frequency f and
the CCD camera is triggered with a synchronized signal at a
frequency 2f, capturing one hot image and one cold image each
heating cycle. In effect, each pixel of the CCD camera acts as a
lock-in detector. Here, we use a camera frequency, f, of 25 Hz and
take a total of 10000 images, yielding a measurement time of 400
seconds. A schematic of the setup is displayed in the Fig. 2. A
530 nm Thorlabs M 530L4 LED with a maximum output power
of approximately 400 mW, a Thorlabs 4070M CCD camera,
a GW Instek AFG-2225 Arbitrary Function Generator, and a
ILX-Lightwave LDC-3220 current source were used.

V. RESULTS

Thermoreflectance images of the laser biased with 100, 150,
200 and 250 mA are shown in Fig. 4. The region from the rear
HR facet to the middle of the grating are shown. The profiles
along the top of the ridge are shown in Fig. 5(top) and the profile
lateral to the direction of the ridge, averaged along the length of
the unslotted region, are shown in Fig. 5(bottom). Care must be
taken when interpreting these results as height steps in the sur-
face topology can cause large reflectance changes that dominate
over temperature induced change, leading to false temperature
excursions. The height steps at the ridge edge and the trench
walls are located in the shaded regions of Fig. 5(bottom). In
addition, the topmost plot in this figure shows the image intensity
of the monotone microscope image, scaled so as to fit on the plot,
allowing easy identification of the ridge. The large undulations
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TABLE II
MATERIAL CONSTANTS

Fig. 4. Thermoreflectance images of the laser under various bias conditions.
The heatsink is maintained at 20 °C.

in temperature seen on the right hand side of Fig. 5(top) result
for the presence of the slots on the ridge and are artifacts of
the measurement system. It is clear that the temperature profile
along the length of the ridge remains approximately constant,
with no discernable temperature gradient along the length of the
laser ridge. On the other hand, in Fig. 5(bottom) there is a strong
temperature gradient decaying away from the ridge, providing
justification for the use of a 2D numerical model with the sim-
ulation plane in the direction perpendicular to the ridge, which
greatly reduces the computational requirement over a 3D model.

Fig. 6 shows the simulated temperature of the laser operating
at 200 mA. The hottest point on the laser is at the top of the ridge
with the temperature decaying both down into the structure and
laterally, although the ridge temperature is reasonably constant
throughout the ridge, at around 35 °C. The temperature decreases
rapidly below the active region. The average ridge temperature
in the unslotted region is plotted against the simulated average
top of ridge temperature in Fig. 7. The use of the contact
resistance measured in Kuntze et al. leads to a somewhat higher
temperature (red curve) than measured by thermoreflectance.
Reduction of the contact resistance to 4 x 10−9 Ωm2 results
an improved agreement between experiment and simulation,

Fig. 5. Thermoreflectance temperature profiles in the direction (a) along the
length of the ridge and (b) lateral to the ridge, for bias currents from 100 mA
to 250 mA .The heatsink is maintained at 20 °C. The uppermost profile in (b)
shows the pixel intensity of the microscope scaled to fit on the graph, to identify
the ridge.

and is used in the remainder of this work. The average ridge
temperature can also be deduced by considering the wavelength
drift, which increases at a rate of 0.1 nm °C−1. The wavelength
data shows slightly higher temperature than obtained through
thermoreflectance.

Optical emission from the laser front facet is collected with
a lensed fiber brought to the edge of the facet. The optical
signal is split with a 90:10 splitter, with 90% sent to an Aglient
86140B optical spectrum analyser and 10% to a photodiode
to aid coupling. Unfortunately, the thermoreflectance setup is
not built with a mechanism to collect optical signal from the
laser output, and as such the sample had to be moved to a new
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Fig. 6. Simulated temperature of the laser biased at 200 mA. The top of the
ridge shows the highest temperature.

Fig. 7. Comparison between the experimental and simulated average temper-
ature along the unslotted portion of the laser ridge. The simulated curves differ in
choice of contact resistance, 6x10−9 (red) and 4x10−9 (blue) Ωm2. Also shown
is the temperature as determined by the lasing wavelength drift.

Fig. 8. Comparison between the experimental and simulated lateral tempera-
ture profiles at biased at 200 mA.

setup for wavelength measurement. Discrepancy between the
thermal contact between the submount and heatsink for the two
setups may account for this difference. A comparison of the
lateral thermoreflectance temperature profile and the simulation
temperature along the upper surface of the Au layer biased at
200 mA is shown in Fig. 8. There is considerable disagreement
within±15 µm of the ridge, however this is likely due to artefacts
of the thermoreflectance technique in the vicinity of the ridge.
Agreement picks up again from 15 µm, however the simulation
shows a 1 °C higher temperature than the experiment though the
fall-off in both graphs is similar.

VI. CONCLUSION

In this work we demonstrate the use of thermoreflectance
imaging as a key tool in determining the thermal profile of
laser diodes and as complementary experimental feedback for
the numerical thermal modelling of semiconductor lasers. We
developed a numerical 2D thermal model which calculates the
temperature rise in the laser due to self-heating. The temperature
rise on the laser ridge as calculated by the model agrees rea-
sonably well with that found from experimental imaging. Also,
the temperature decay in the direction lateral to the ridge also
shows similar agreement, however image noise makes accurate
temperature determination difficult in the regions immediately
surrounding the ridge. These findings justify the use of s 2D
model over more computationally expensive 3D models.

We found that the region of highest temperature to be the
area around the metal-semiconductor junction and that the high
temperature region is largely confined to the p-type ridge. The
agreement between experiment and modelling of the lateral ther-
mal decay is important for the efficient placement of additional
devices for the case of laser arrays.

In the coming decade, the requirement for much improved
energy efficiency in photonic devices will be apparent, even
down to the device level. The present pandemic has shown the
need for optical communications. This need will grow strongly
in the coming decade. The CCD-TR imaging technique and the
associated thermal modelling will be essential to build the next
generation of lasers with such improved efficiency.

REFERENCES

[1] X. Li and W-P. Huang, “Simulation of DFB semiconductor lasers incor-
porating thermal effects,” IEEE J. Quantum Electron., vol. 31, no. 10,
pp. 1848–1855, Oct. 1995.

[2] S. Bozorgui, A. Destrez, and Z. Toffano, “An analysis of thermal effects
and its influence on the laser dynamics in three-electrode DBR lasers,” in
Proc. EDMO, 1996, pp. 108–113, doi: 10.1109/EDMO.1996.575811.

[3] P. Kozodoy et al., “Thermal effects in monolithically integrated tunable
laser transmitters,” IEEE Trans. Compon. Packag. Technol., vol. 28, no. 4,
pp. 651–657, Dec. 2005.

[4] B. - J. Pandey et al., “IR-SNOM on a fork: Infrared scanning near-field
optical microscopy for thermal profiling of quantum cascade lasers,” in
Quantum Sensing and Nano Electronics and Photonics XVII, Jan. 2020,
vol. 11288, p. 112881Q, doi: 10.1117/12.2543849.

[5] T. B. Daunis et al., “Infrared scanning near-field optical microscopy
(IR-SNOM) for thermal profiling of quantum cascade lasers,” in Optical
Fibers and Sensors for Medical Diagnostics, Treatment and Environmental
Applications XXI, Bellingham, WA, USA: SPIE, Mar. 2021.

https://dx.doi.org/10.1109/EDMO.1996.575811
https://dx.doi.org/10.1117/12.2543849


1501306 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 28, NO. 1, JANUARY/FEBRUARY 2022

[6] M. Brunner, K. Gulden, R. Hövel, M. Moser, and M. Ilegems, “Ther-
mal lensing effects in small oxide confined vertical-cavity surface-
emitting lasers,” Appl. Phys. Lett., vol. 76, no. 1, pp. 7–9, Jan. 2000,
doi: 10.1063/1.125638.

[7] M. Dabbicco, V. Spagnolo, M. Ferrara, and G. Scamarcio, “Experimen-
tal determination of the temperature distribution in trench-confined ox-
ide vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron.,
vol. 39, no. 6, pp. 701–707, Jun. 2003.

[8] M. Farzaneh et al., “Temperature profiling of VCSELs by thermore-
flectance microscopy,” IEEE Photon. Technol. Lett., vol. 19, no. 8,
pp. 601–603, Apr. 2007.

[9] K. J. Greenberg, J. A. Summers, M. Farzaneh, and J. A. Hudgings,
“Spatially-resolved thermal coupling in VCSEL arrays using thermore-
flectance microscopy,” in Proc. Conf. Lasers Electro-Opt., San Jose, CA,
USA, 2008, pp. 1–2, doi: 10.1109/CLEO.2008.4551187.
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