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Scanning transmission electron microscopy (STEM), where a converged electron probe is scanned
over a sample’s surface and an imaging, diffraction, or spectroscopic signal is measured as a function
of probe position, is an extremely powerful tool for materials characterization. The widespread
adoption of hardware aberration correction, direct electron detectors, and computational imaging
methods have made STEM one of the most important tools for atomic-resolution materials science.
Many of these imaging methods rely on accurate imaging and diffraction simulations in order
to interpret experimental results. However, STEM simulations have traditionally required large
calculation times, as modeling the electron scattering requires a separate simulation for each of
the typically millions of probe positions. We have created the Prismatic simulation code for fast
simulation of STEM experiments with support for multi-CPU and multi-GPU (graphics processing
unit) systems, using both the conventional multislice and our recently-introduced PRISM method.
In this paper, we introduce Prismatic version 2.0, which adds many new algorithmic improvements,
an updated graphical user interface (GUI), post-processing of simulation data, and additional
operating modes such as plane-wave TEM. We review various aspects of the simulation methods
and codes in detail and provide various simulation examples. Prismatic 2.0 is freely available both
as an open-source package that can be run using a C++ or Python command line interface, or GUI,
as well within a Docker container environment.

1 Introduction

Transmission electron microscopy (TEM) is heavily
used in both materials science and biological studies
of materials on the nanoscale, due to its high spatial
resolution and the flexibility of operating modes (Egerton
et al. 2005). TEM experiments can be performed
using plane wave illumination, where users can either
record the far field intensity as a diffraction pattern
(Williams and Carter 2009) or by forming an image of the
electron wave after it has been transmitted through the
sample, often referred to as high-resolution transmission
electron microscopy (HRTEM) (Buseck et al. 1989).
Alternatively, the electron beam can be focused into
a small spot and scanned over the sample surface,
which is referred to as scanning transmission electron
microscopy (STEM) (Pennycook and Nellist 2011). The
introduction of spherical aberration correctors in the past
few decades enable the formation of a finer probe in
STEM (Batson et al. 2002) and point-spread function
in HRTEM (Haider et al. 1998). Aberration-corrected

TEM and STEM have greatly facilitated many atomic
resolution experiments, including imaging single-layer
graphene sheets (Gass et al. 2008, Robertson and
Warner 2013), elemental mapping (Kothleitner et al.
2014), atomic electron tomography (Yang et al. 2017),
vibrational spectroscopy (Venkatraman et al. 2019),
observation of polar skyrmions (Das et al. 2019), and
many others.

With the widespread adoption of charge-coupled device
cameras (Krivanek and Mooney 1993), and later direct
electron detectors (MacLaren et al. 2020), both STEM
and TEM are now fully digital sciences. Augmenting
STEM and TEM experiments with modern data
science methods holds enormous promise for future
experimentation (Spurgeon et al. 2020). One of the
most data-intensive families of STEM experiments is the
use of fast direct electron detectors to collect thousands
or even millions of 2D images of the diffracted probes
over a 2D grid of probe positions, often referred to as
a four dimensional-STEM (4D-STEM) dataset (Ophus
2019). One of the key ingredients for developing and
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FIG. 1. Updated Prismatic 2.0 GUI. Previews of interactive tabs are shown in center panel.

implementing new computational methods is the ability
to perform forward simulations of the various STEM and
TEM experimental methods (LeBeau et al. 2008, Zhang
et al. 2020). HRTEM simulations and STEM simulations
for the 2D, 3D, or 4D experiments described above
are typically performed using the multislice method
(Cowley and Moodie 1957, Ishizuka and Uyeda 1977).
However, these simulations have traditionally required
very long compute times, due to the fact that a separate
multislice simulation must be performed for each new
probe position (Kirkland 2020).

In a previous study, Ophus (2017) introduced a
new algorithm, named plane-wave reciprocal-space
interpolated scattering matrix (PRISM) for simulation
of STEM experiments. The PRISM algorithm involves
calculating and storing a compact scattering matrix
operator which can be rapidly applied to each of the
probe wavefunctions to model their propagation through
the sample. This algorithm can potentially increase the
speed of STEM image simulations by multiple orders of
magnitude. The PRISM algorithm was first implemented
into the original Prismatic simulation code by Pryor
et al. (2017). Since then, PRISM has been adapted
for double-channeling STEM-EELS simulation by Brown
et al. (2019); it has been separately implemented for
image simulation by Brown et al. (2020) and Madsen
and Susi (2021).

Prismatic is intended for use as a fully-featured
TEM/STEM simulation software for electron
microscopy, for diverse use cases such as experimental
validation, database generation, or teaching. It
also serves as the reference implementation for the
aforementioned PRISM algorithm. Prismatic is an
open-source and cross-platform software package that

can be easily installed, easily used, and that comes with
a GUI. The software is primarily written in C++ with
CUDA modules for GPU acceleration to take advantage
of available computing and HPC resources and is readily
integrated into other scientific open-source software for
microscopy applications such as py4DSTEM (Savitzky
et al. 2021).

In this paper, we present Prismatic version 2.0,
a software package for image and diffraction space
simulations of electron scattering for both STEM and
HRTEM. Prismatic v2.0 has many new basic features,
such as performing HRTEM simulations, increased
support for arbitrary aberrations, support for arbitrary
STEM scan patterns, focal series simulations, and
enhanced support for generalized input and output.
We have also added several improvements to enhance
the accuracy and speed of simulations, including
a new approach for the correct sub-slicing of 3D
atomic potentials with sub-pixel shifting, a refocusing
approach to the scattering matrix calculation for PRISM
simulations that increases accuracy for thicker samples
and delocalized probes, and various post-processing
methods for coherence or shot-noise limitations. We
have added many upgrades to the code, including
new pipelines for compiling, a unit-testing suite, an
overhauled GUI system (previewed in Fig. 1), and pre-
compiled Docker containers for ready-to-use installations
of the command-line and pyprismatic interfaces. In
this paper, we explain these methods and additions in
detail, as well as demonstrate several new applications
for Prismatic and some uses of the Python bindings in
pyprismatic.
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2 Theory

2.1. The Multislice Method

We describe the electron beam using a complex
wavefunction ψ(x, y, z), where 〈x, y, z〉 are the real space
coordinate system. When considering only forward
scattering, we can reduce the problem to the evolution of
a 2D wavefunction ψ(r) along the optical axis z, where
r = 〈x, y〉. This evolution is described by the paraxial
Schrödinger equation for fast electrons (Van Dyck 1985)

∂ψ(r)

∂z
=
iλ

4π
∇2ψ(r) + iσV (r)ψ(r) , (1)

where i is the imaginary constant and V (r) is the
electrostatic potential, usually corresponding to the
sample. The relativistically-corrected electron-matter
interaction constant σ is given by

σ =
2πγmeqeλ

h2
, (2)

where γ, me, qe, λ, and h are the relativistic correction
factor, the electron mass, the electron charge, the
relativistically corrected electron wavelength, and the
Planck constant respectively.

The two operators on the right-hand side of equation (1)
do not commute so a widely utilized numerical approach
to its solution is a split-step method first derived by
Cowley and Moodie (1957). For small changes in z,
Eq. (1) can be solved in two steps, taking first only the
∇2 term and then the V term into account. First, we
divide up the sample into a series ofN slices, Vn(r), which
are 2D arrays that integrate the electrostatic potential
contained in a given slice of thickness ∆z, given by

Vn(r) =

∫ z+∆z/2

z−∆z/2

V (r)dz . (3)

The solution to Eq. (1) taking into consideration just V
on the right-hand side is

ψ(r) = T (r)ψ0(r) = eiσVn(r)ψ0(r), (4)

where ψ0(r) is the input wavefunction and T (r) is
referred to as the transmission function. This is
equivalent to the so-called “phase object” approximation
which holds for samples thin enough to ignore the effects
of thickness. For the next part of the split-step solution,
where we assume Vn(r) = 0, the operator ∇2 can be
efficiently applied in Fourier space (Ishizuka and Uyeda
1977, Kirkland 2020), giving

ψ(r) = F̂−1
k→r

{
eiλ∆z|k|2F̂r→k

[
ψ0(r)

]}
. (5)

The term eiλ∆z|k|2 , referred to as the propagation
operator, uses the 2D reciprocal space coordinates
k = (kx, ky), and the forward and inverse 2D Fourier

transform operations denoted by F̂r→k and F̂−1
k→r

respectively. Equations (4) and (5) are alternately
applied to calculate the final wavefunction after
interacting with the sample,

ψ(r) =

N∏
n=1

{
F̂−1

k→r

[
eiλ∆z|k|2

{
F̂r→k

[
eiσVn(r)

]}]}
ψ0(r),

(6)
which is typically referred to as the exit wave. This
numerical solution is called the “multislice method”
(Cowley and Moodie 1957). It requires N transmission
operations and N − 1 propagation operations, and is the
most common simulation algorithm for modeling TEM
experiments (Kirkland 2020).

Alternatively the operator-product in Eq. (6) can be
encapsulated as single matrix equation (Sturkey 1962)

ψ(r) = Sr,kψ̂0(k), (7)

where we have opted to start with the probe in reciprocal
space on the right hand side with the exit-surface wave
function on the left hand side being in real space. The
concept of the scattering matrix is common in quantum
mechanics for calculating scattering behavior of electrons
and other charged particles (Weinberg 1995) and is
typically purely in reciprocal space. For our purposes
it will be more convenient to use the reciprocal space
to real space formulation in Eq. (7) since the STEM
probe is compact in reciprocal space and the PRISM
algorithm will involve cropping the exit wave in real
space. The rows or columns of S can be changed from
real to reciprocal space or vice versa with the operation
of the appropriate F̂r→k or F̂−1

k→r applied either to the
left or right side of S.

2.2. Calculation of Projected Potentials

The calculation of the atomic scattering potential Vn(r) is
one of the most crucial aspects of scattering simulations.
The discretization of the scattering potential limits the
accuracy and total amount of information that can
be transmitted and propagated; any artifacts created
in the calculation of Vn(r) can lead to nonphysical
behavior in the elastic scattering calculations. Many
implementations of the scattering potential utilize the
isolated atom approach, where the total potential is the
sum of potentials of independent, isolated atoms such
that

Vn(r) =
∑

Vi(r) (8)
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where i is the index of each atom. The isolated
atom approach, since each atom of a given species is
independent and equivalent, can take advantage of a
precomputed look-up table. Generally, this approach
is computationally cheap and simple to implement, and
correctly accounts for the dominant aspect of nuclear
scattering but inherently does not capture bonding
effects. Analytical scattering potentials do not exist for
elements other than hydrogen; the rest of the atomic
species are typically parameterized based on single
atom scattering factors determined through Hartree-Fock
calculations, like in the parameterization by Kirkland
(2020)

V (r) = 2π2a0qe
∑
i

ai
r

exp(−2πr
√
bi)

+ 2π5/2a0qe
∑
i

cid
−3/2
i exp(−π2r2/di)

(9)

where a0 is the Bohr radius and ai, bi, ci, and di are
fitted parameters. This parameterization can also be
integrated analytically along the beam direction so that
the contribution of an atom to its two-dimensional slice
can be calculated directly

Vz(r) = 4π2a0e
∑
i

aiK0(2πr
√
bi)

+ 2π2a0e
∑
i

ci
di

exp(−π2r2/di)
(10)

where K0 is the modified Bessel function.

However, 2D scattering potential calculations can not
perfectly capture the 3D scattering of real atoms, since
atoms must first be assigned to discrete projected
potential slices before integration—an explicitly 3D
integration of the potential into the different potential
slices can more accurately capture this 3D scattering
(Lobato and Van Dyck 2015). Simple isolated atom
implementations are also often pixel-limited in the planar
directions, such that the atomic center can only exist on
discrete pixels. This can fail to capture the subtlety of
the real positions of atoms, especially when considering
thermal vibration effects. Sub-pixel accuracy, however,
can be costly to implement and hard to achieve. One
possible strategy is to forgo the use of a look-up table
and instead integrate each atom directly on sub-pixel
grids, which can can become prohibitive for especially
large cells. Alternatively, one could apply some sort
of sub-pixel shift in the transverse direction, which
can introduce artifacts into the scattering potential if
implemented poorly. Alternative 3D integration methods
for computing atomic potentials have been given by
Lobato and Van Dyck (2015) and Madsen and Susi

(2021). Atomic potentials can also be directly evaluated
electron densities as calulated using Density Functional
Theory calculations, as by Madsen and Susi (2021).

2.3. The Plane-wave Reciprocal-space Interpolated
Scattering-Matrix (PRISM) Algorithm for
STEM Simulation

In a conventional multislice simulation, each STEM
probe position requires independent evaluation of the
propagation through the potential as described by Eqs.
(5) and (6). Introduced in Ophus et al. (2016a) and
implemented in Brown et al. (2020), Madsen and Susi
(2021), Pryor et al. (2017), the PRISM algorithm is
a STEM simulation technique for which scaling of the
compute time with the number of probe positions is
generally more favorable. In PRISM, instead of directly
forming the incident probe wavefunction and propagating
the wavefunction through the projected potential via the
multislice algorithm, we instead calculate and store the
S-matrix in Eq. (7) for a basis set of incident plane waves.
The S-matrix can be reused for any number of STEM
probes once it has been calculated, and thus, we can
trade the upfront computation of S for the much greater
acceleration in the output calculation stage. Further
speed ups for a modest loss of simulation accuracy
can be achieved through coarsening of the input plane-
wave basis (by only calculating every f th plane wave
from the original simulation grid; f is known as the
the PRISM interpolation factor) and reciprocal-space
interpolation of the output wave function (achieved by
real-space cropping of the output wave to a square region
measuring 1/f of the simulation grid). The reciprocal-
space interpolation grants the user a large amount of
control of the speed and accuracy of the simulation,
which could otherwise only be done in the multislice
algorithm by tuning the resolution of the projected
potential or resampling of the diffraction patterns. For
a more in-depth discussion of the PRISM algorithm,
we refer readers to Ophus et al. (2016a), or the recent
updates to PRISM given by Brown et al. (2019) and Pelz
et al. (2021).

3 Methods

3.1. Numerical Calculation of 3D Potentials

We address the issues sometimes encountered with
projection of the atomic potentials into single 2D slices
by implementing 3D potential integration with sub-
pixel accuracy of the atomic positions by use of a pre-
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FIG. 2. 3D projected potential calculation. (a) Lookup tables Vlookup(r) of the potential for each atom are calculated out
to some radius rmin. The potential at this radius V (rmin) subtracted so as to remove the abrupt step that would otherwise
result at rmin when the potential was placed on the larger array. (b) Representative Fourier transform amplitude of atoms
shown in (f)-(h). A slice of the x-z plane of the 3D projected potentials of a single Au atom (c) shifted one half slice along the
z direction, (d) shifted one half pixel along the z direction, and (e) shifted one half pixel along both x and z directions. Circles
represent position of atom. (f)-(h) Total projected potential of single Au atoms, corresponding to (c)-(e) respectively. (i) Line
trace (top) taken from (b), showing the envelope function B(k) applied in Fourier space to dampen the large scattering angles
and line traces of real space potentials (f)/(g) (red) and (h) (blue).v All images have square root intensity scaling to highlight
the weakly scattering regions.

calculated look-up table, which is sampled more finely
than the multislice slice sampling in the propagation
direction, alongside sub-pixel accuracy Fourier shifting of
the potentials in the plane perpendicular to propagation.
Our implementation is designed to improve upon
simple 2D integration in a manner that is robust in
various simulation conditions, is easy to understand and
tune, and does not sacrifice a significant amount of
computation. We first calculate the atomic potential
for each unique species in the system on a local pixel
grid R = (xr, yr, zr), using the three-dimensional
parameterization described in Eq. (9), where xr, yr are

coordinates in the plane perpendicular to propagation
and at the same resolution as the final potential field,
and zr is the coordinate along the propagation axis at
some integer subsampling Nz of the final slice thickness
t. Equation (9) is evaluated out to maximum radius
rmax, which along with the real space potential samplings
rx, ry, and t/Nz determine the dimensions of the grid
R. The minimal coordinate of the atomic potential is
R = (rx, ry, 0) which avoids the discontinuity otherwise
present at R = 0. To prevent sharp steps in the potential
at the extremities of rmax, we subtract the value of V (r)
at the smallest extent of the atom in any of xr, yr, and
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zr and then clamp any negative values to zero such that

Vlookup(r) = max[V (r)− V (rmin), 0.0], (11)

where

rmin = min[max(xr),max(yr),max(zr)], (12)

.

This procedure is sketched in Fig. 2(a). The potential
for each unique species is then stored in a look-up table
after a 2D Fourier transform in x and y such that

Vlookup(k, z) = F̂r→k{Vlookup(r)} (13)

since the subpixel shifts will be applied in Fourier space.

To achieve sub-pixel positioning of the ith atom, to
position (xi, yi), in the plane perpendicular to the
beam propagation direction we apply a Fourier shift
to the transformed potential V (k, z) based on the
difference between the rounded pixel position of the atom
round(xi/xy) and its ideal fractional xi/rx position

Vi,shifted(k, z) = V (k, z) ·B(k) · exp(−2πik · rshift) (14)

where

rshift = [xi/rx − round(xi/rx), yi/ry − round(yi/ry)],

B(k) is a soft bandwidth limit given by

B(k) = sin2

{
π

2
min

[
max

(
0.95− 2|k|/kmax

0.95− 0.75
, 0.0

)
, 1.0

]}
applied to the potential in reciprocal space, and kmax

is the maximum reciprocal space coordinate of the grid
on which the lookup tables is constructed. Application
of the bandwidth limit B(k) limits oscillations in real
space. This applied shift moves the atom to the correct
place in real space without creating significant artifacts
in the potential in Fourier space (where the propagation
calculation occurs) below the Nyquist limit. We note
that a coarse real space sampling (i.e., large values for
rx and ry) can inject oscillations into the tails of the
potential. This can result in unphysical negative values
of the scattering potential in real space. Vshifted(k, z) is
then Fourier transformed back to real space upon which
it is again bandlimited such that

Vi(r) = Fq→r{Vi,shifted(k, z)} · rband (15)

where

rband =

{
1.0, ( xr

max(xr) )2 + ( yr
max(yr) )2 ≤ 1.0

0.0, otherwise
. (16)

This final potential is then added into the final cell array.
Along the propagation direction, the superresolution z
values of V(r) are simply binned to their closest rounding
slice. We found that interpolation of the potential along
the propagation direction caused little to no increase in
accuracy at the expense of artifact introduction, and
thus, was not implemented.

3.2. STEM Probe Formation

The most common probe configuration for STEM
experiments is given by a circular aperture in the
condenser plane. The use of fast Fourier transforms
(FFTs) to implement the multislice solution to Eq. (1)
and to set up STEM probes enforces periodic boundary
conditions which results in interference artifacts as the
tails of the STEM probe approaches the edges of the
simulation grid. We find that implementing these STEM
probes in Prismatic by using a soft aperture minimizes
these artifacts. Fig. 3 shows a comparison between
STEM probes defined using hard and soft aperture edges.
A hard aperture probe is defined by the function

Ψ0(k) =

{
1 if |k| ≤ kprobe

0 if |k| > kprobe,
(17)

where kprobe defines the maximum scattering vector
included in the STEM probe, and is proportional to
the maximum scattering angle αprobe by the expression
αprobe = λ kprobe. The soft aperture probe used in
Prismatic is defined by

Ψ0(k) = min

[
max

(
kprobe|k| − |k|2

||k�∆k||2
+

1

2
, 0

)
, 1

]
,

Ψ0(0) = 1, (18)

where ∆k are the 2D pixel sizes in Fourier space, �
is the Hadamard (element-wise) product, and || · ||2 is
the 2-norm. The term in the denominator of Eq. (18)
is equal to the Fourier space pixel size ∆k multiplied
by the Fourier space coordinate k, which depends on
the local orientation of k if the two pixel sizes are not
equal. If these two pixel sizes are equal (typical of square
simulation cells), Eq. (18) reduces to

Ψ0(k) = min

[
max

(
kprobe − |k|

∆k
+

1

2
, 0

)
, 1

]
.

Fig. 3(a) and (b) show an example using hard and soft
apertures respectively for a multislice simulation, or a
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multislice

Fourier space Ψ(q) Real space |ψ(r)|1/3

hard
aperture

a

PRISM
fx = fy = 1

multislice

soft
aperture

b

PRISM
fx = fy = 1

hard
aperture

c

PRISM
fx = fy = 3

soft
aperture

d

PRISM
fx = fy = 3

y

x

qx

qy

FIG. 3. Comparison of hard-aperture and soft-
aperture STEM probes. Initial STEM probe defined
with (a) a hard aperture edge, and (b) a soft aperture edge.
Initial STEM probes for PRISM with fx = fy = 3, for
(c) a hard aperture edge, and (d) a soft aperture edge.
The soft edge minimizes artifacts resulting from the periodic
boundary conditions inherent in all STEM simuations,
PRISM simulations are colored inside the cropping box in
real space.

full size PRISM simulation. These cases are fairly similar,
though the rings corresponding to the probe tails become
inaccurate after the third ring due to interference with
probe tails on the opposite side of the grid resulting from
the inherent periodic boundary conditions.

In most cases this refinement will make only a minor
improvement to simulation accuracy, but for smaller
simulation cells in multislice, or smaller cropping boxes in
PRISM simulations, using the correct aperture becomes
more important. Fig. 3c and d show hard and soft
apertures respectively for a PRISM f = 3 simulation.
In the real space image of the STEM probe, the regions
outside of the cropping box are shown in a grey color
scale. The soft aperture produces two accurate probe

tail rings, while the hard aperture is inaccurate for
all probe tails. The hard aperture in Fig. 3c even
produces an asymmetric center lobe of the STEM probe.
These examples are at a deliberately lower resolution
and smaller grid real-space size than for a typical STEM
simulation to more clearly demonstrate the importance
of using an accurate soft aperture function for defining
the initial STEM probes. To our knowledge, this is a
novel feature in Prismatic.

3.3. Anti-Aliasing of the Transmission and
Propagation Operators

As both the multislice and PRISM algorithms rely
on propagation through the calculation of successive
discrete FFTs, we must prepare arrays and calculations
in a way that prevents aliasing artifacts. Aliasing
artifacts arise when signals of different frequencies
become indistinguishable from each other due to the
discrete sampling of the signals. To prevent aliasing of
the propagation wave function Ψ, we multiply the array
with a binary anti-aliasing mask which removes pixels
above the Nyquist limit (1/2 the extent of the array) from
the calculation at each propagation and transmission
step. This method causes an intensity loss of the parts
of the wave-function that are scattered to high angles
due to the anti-aliasing aperture, and may cause some
inaccuracies in electrons that might multiply-scatter back
into low angles. Applying an anti-aliasing filter at
the Nyquist limit completely prevents highly scattered
electrons from ”wrapping around” the wavefunction and
scattering through the periodic boundary. An alternative
approach for anti-aliasing is to apply anti-aliasing filters
to both the propagated wave function and the projected
potential slices at 2/3rds the extent of the arrays
(Kirkland 2020, Lobato and Van Dyck 2015). We note
for clarity that in our implementation, the projected
potential is not band-limited. One should set the real
space sampling of the simulation such that the error
converges in the scattered regions of interest such that the
application of the anti-aliasing aperture does not affect
the interpretation of the simulation results.

3.4. HRTEM Simulations

TEM simulation can be performed using the exact same
methods as STEM multislice by replacing the incident
wave function with a plane wave, i.e,

Ψ0(k) =

{
1 if k = ktilt

0 otherwise
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where ktilt is the tilt of the beam. Since the S-
matrix calculation in the PRISM method forms the
transmitted STEM probe using a scattered plane-wave
basis set, the implementation can be readily used
for HRTEM simulations. In Prismatic, HRTEM
simulations are now implemented through utilization of
the S-matrix infrastructure, with added functionality
for more granular control of the beam selection for
propagating sets of plane waves simultaneously with
the multislice algorithm. Specific tilt ranges and
selections can be controlled both through radial and
rectangular mask generation, and through use of the
PRISM interpolation factor (which coarsens the grid of
tilts available), for example, to test different beam tilts
or to model angular coherence. HRTEM simulations
in Prismatic are focused to the middle of the sample
cell instead of the entrance surface as implicitly done for
STEM simulations. In simulation, this is accomplished
through application of a defocus propagator to each beam
in the S-matrix after its standard calculation. The final
output is formally the 3D complex=valued S-matrix,
with unique plane wave tilts along the beam direction,
which can be saved either as the complex wavefunction
or as integrated intensities.

3.5. Aberrations

Coherent aberrations of the probe-forming lens in STEM
and the image-forming lens in HRTEM simulations can
be modeled through the inclusion of an aberration
function χ when calculating the wave function in Fourier
space such that

Ψ(kx, ky) = Ψ0(kx, ky) exp[−iχ(kx, ky)] (19)

where Ψ0 is the unaberrated wavefunction. χ can be
expressed through a variety of appropriate basis sets
(Krivanek 1994, Thust et al. 1996, Uhlemann and Haider
1998); in Prismatic, which now includes functionality
to apply arbitrary sets of aberrations, we employ a
unitless basis set similar to the one described in Ophus
et al. (2016b). For aberrations with radial order m and

azimuthal order n, the aberration function χ(~k) can be
fully described for coherent aberrations as

χ(kx, ky) =
∑
m

∑
n

(λ · |k|)m · Cmag
m,n

·{cos[n · Cang
m,n] · cos[n · atan2(kx, ky)]

+ sin[n · Cang
m,n] · sin[n · atan2(kx, ky)]},

(20)

where λ is the electron wavelength, Cmag
m,n and Cang

m,n

are dimensionless coefficients describing the aberration
magnitude in rads and azimuthal phase of an aberration,

and atan2 is the 2-argument arctangent function which
returns the polar angle of (kx, ky) in the correct quadrant.
The dimensionless aberration coefficients are related to
the convention in Ref. (Kirkland 2011) which have units
of length by Cmag

m,n = 2πĈmag
m,n/(mλ). With this basis

set, it is relatively simple to describe aberrations and
provide input data in the form of delimited text files. In
Figure 4, we showcase aberration phase plates at 300kV
up to 2 inverse angstroms, for spherical aberration, 3-fold
astigmatism, axial coma, and an arbitrary mixture of the
above with defocus (C2,0) and 4-fold astigmatism (C4,4).

FIG. 4. Example aberration phase plates. From top-
left to bottom-right, spherical aberration, 3-fold astigmatism,
axial coma, and an arbitrary mixture of aberrations at 300kV.
Borders represent a cutoff of 2 inverse angstroms.

3.6. Refocusing of the Scattering Matrix

An inherent limitation of the PRISM algorithm lies
within the interaction of the propagated probe and the
cropping box applied to the scattering matrix. As the
reciprocal-space sampling of the plane-wave basis set
coarsens (by increasing the interpolation factor f), the
cropping box applied to the propagated plane-waves
becomes smaller. At high interpolation factors, much of
the information carried by the propagated wavefunction
can become destroyed or otherwise compromised as the
beam spreads beyond the edges of the cropping box.

Jo
ur

na
l P

re
-p

ro
of

https://prism-em.com/
https://prism-em.com/
https://prism-em.com/


9

FIG. 5. Simulations demonstrating refocusing of the S-matrix. (a) STEM probe focused at the entrance surface (top)
of the sample, and (b) probe focused at the exit surface (bottom). The row cases considered in each row are (1) an empty cell,
(2) small sample near top of cell, (3) small sample in middle of cell, (4) small sample at bottom of cell, and (5) sample running
through entire cell. After S-matrix is propagated through the full cell, it can be refocused to any plane before intensity is
calculated. STEM probe intensity column shows the radius containing different fractions of the probe as a function of defocus.
Phase of all complex waves is shown using a cyclic color scale, similarly to Fig. 4. We note that these simulations are chosen
with an arbitrary sample size and beam energy, and this schematic is intended to generally depict the behavior of a propagated
scattering matrix undergoing refocusing.

The strong interaction of the beam at high interpolation
factors thus severely limits the accuracy of the PRISM
method. This becomes a more prominent effect when
simulating thick samples, due to the natural broadening
of the converged beam as it propagates through the
sample, or when simulating STEM probes with large
defocus values which are already large in extent. To
overcome this limitation of the PRISM method while
still retaining the computational speed-up achieved with
large interpolation factors, we propose scattering matrix
refocusing, an algorithmic technique which can be used to
boost the accuracy of PRISM simulations with significant

beam spread.

The scattering matrix S, when calculated by the PRISM
algorithm, represents a basis of propagated plane waves
which are inherently in focus at the entrance surface of
the sample. To reduce the severity of the converged
probe interaction with the cropping box once the probe
is calculated from S, we apply a free-space propagator
to each beam within S to propagate the exit wave to a
plane where the intensity distribution is generally known
a-priori to be more compact,

Srefocused = S ⊗ P (21)
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where

P (∆z) = Fk→r{exp (−iπλ∆z|k|2)} (22)

and is applied in Fourier space by application of the
convolution theorem. Srefocused can then be used to
calculate the exit wavefunction without any further
alterations to the image formation algorithm. Since the
propagator in Eq. (22) imparts only a phase shift to
each beam, the intensity of the exit wavefunction in the
diffraction pattern, where STEM intensity measurements
are recorded, is unaffected.

One way to interpret the mechanism of matrix of
refocusing is as shifting of the optical plane at which
the cropping box is applied. In the original PRISM
algorithm, the cropping box is applied at the exit
surface of the sample. With refocusing, the cropping
box can instead be thought to be applied at the
point along the optic axis where the propagated probe
is most converged—therefore, the probe has minimal
opportunity to interact with the cropping box and errors
that may have otherwise been incurred by application of
the cropping box itself are reduced.

The process is illustrated in Fig. 5 where the refocusing
procedure is applied to beams focused on the entrance,
Fig. 5(a), and exit surfaces, Fig. 5(b), of different
samples. The electrostatic potential V (r) of different
fictitious samples is shown in the leftmost panel of the
figure and includes samples with no atoms, atoms at the
top surface, an atom mid-sample, an atom at the bottom
surface and a single column of atoms. The simulated
complex wavefunction of a STEM probe is plotted for
each of the samples in the next column. For the vacuum
sample the converged probe is seen to spread from its
cross-over point in Fig. 5(a) and condense to its cross-over
point in Fig. 5(b). For the cases where single atoms are
introduced at the top, middle and bottom of the sample
we see electron scattering to high angles emanating from
the positions of these atoms. For the case of a column
of atoms we see beam channeling behavior characteristic
of STEM (Hovden et al. 2012) in Fig. 5(a) where the
beam couples to the column at its cross-over point atop
the sample. This channeling behavior is diminished
for the equivalent panel in Fig. 5(b) since the beam is
not brought to cross over until the exit surface of the
sample. The next 3 columns in the figure show how the
constituent plane waves that form the basis of the S-
matrix interact with the specimen. In simulation we can
“refocus” the exit surface wave function to any arbitrary
plane within the specimen by freespace propagation of
the exit wave as described previously and a depth section
of the exit wave propagated to different planes is plotted
in the second to last column of Fig. 5 for each of the
different cases. The final column plots the radially
integrated intensity of each wavefunction. We aim to
find the plane where the wave-function is most compact

and apply the PRISM cropping box after propagating the
exit wave to this plane. For all but one of the cases in
Fig. 5(a) this plane is close to the entrance surface of the
specimen – i.e. the crossover point of the probe – for the
case of the column of atoms channeling of the beam down
the column means that the exit surface of the specimen is
the plane where the exit wave function is most compact.
In Fig. 5 the beam is always more compact toward the
exit surface of the specimen. These results suggest that
the original crossover point of the incident STEM probe
is generally the plane where the beam is most compact
after propagation even after interaction with the sample
except for the case where strong channeling of the beam
by a column of atoms occurs. This principle can be
used to guide selection of the optimal plane for S-matrix
refocusing and subsequent cropping.

3.7. Post-processing

A crucial aspect of bridging the interpretation gap
between ”perfect” simulated images to those acquired
in experiment is to process the simulated image in ways
that model experimental distortions and noise conditions.
These corrections are becoming increasingly important
given the advent of high-throughput workflows using
machine learning, such as automated analysis (Zhang
et al. 2020) and denoising (Vincent et al. 2021) with deep
neural networks, which require large amounts training
data with latent space distributions similar (or, ideally,
equivalent) to that of the target application data. In
this release of Prismatic, we have implemented a small
series of post-processing routines into the pyprismatic

package to supplement the standard simulation routine
so that coherence effects, dosage effects, and aberration
effects as previously described can be easily applied to
simulated data.

3.8. Coherence Effects

An implicit assumption in image simulation is that
electrons emanate from an ideal, infinitesimal point
source, whereas in reality, imaging electrons are emitted
from a finite area of the surface of the electron emitter
with varying energies and thus some degree of quantum
partial spatial and temporal incoherence. Spatial
coherence effects for modern electron microscopes,
equipped with field emission gun sources such that the
distribution of incident angles is relatively small, can
be accounted for through integration of independently
propagated wave functions by assuming spatial coherence
Allen et al. (2004). The detected wave function can then
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be described as

Ψ(k) =

∫
Ψ0(k) exp[iχ(k + kβ)]p(kβ)dkβ (23)

where k is the wave-vector nominally in the direction
of propagation, p(kβ) is a probability density function
describing the distribution of incident directions, and χ
is the aberration function given by Eq. (20) which models
the aberrations of the post-specimen HRTEM objective
lens. Including the effects of spatial coherence in HRTEM
simulation, then, can be easily achieved by simulating a
set of tilted plane waves up to the spread of incident
directions and performing incoherent averaging of their
intensities once aberrations effects have been included.

For STEM simulatons, we can apply spatial coherence
effects by considering finite source-sizes through a
convolution model. While the precise distribution
describing source-size broadening effects can be quite
complex (as shown when measured through holography
(Verbeeck et al. 2012)), source-size effects on the detected
image can be well approximated by the convolution of the
final image intensity with a blurring kernel such that

Iblurred(r) = I(r)⊗K (24)

where I is the image intensity and K is a blurring kernel.

Prismatic has implemented source-size effects for
postprocessing of STEM images through convolution
with standard kernels; kernel functions for Gaussian
and Cauchy kernels are included, which can adequately
represent the effects of source-size blurring for most
uses (Verbeeck et al. 2012). Convolution is performed
with unit kernel normalization such that the intensity
distribution maintains its physical definition as a
probability density function for detection of scattered
electron. Source-size blurring by means of convolution
can be applied independently and in any order with
any other incoherent averaging procedure, such as the
averaging over frozen phonon configurations.

Chromatic aberration (Cc) is a temporal coherence
effect that occurs as a result of the non-uniform energy
of imaging electrons as emitted by the electron gun.
Lower energy electrons are deflected more strongly by a
magnetic lens than higher energy electrons, resulting in
an energy-dependent focal point of the microscope lenses.
Cc becomes the dominant aberration when Cs corrective
lenses are introduced and becomes more important when
low energy beams are used for imaging, as shown by the
Cc limited resolution

rchr = Cc
∆E

E0
β (25)

where E0 is beam energy, ∆E is energy spread, β is the
angle of collection, and Cc is the chromatic aberration

coefficient. Ignoring any issues in instrument power
supply, the standard deviation of defocus ∆z can be
obtained through the following relationship

∆z = Cc
∆E

E0
(26)

where ∆E is the energy spread in the electron gun
(Williams and Carter 2009). Assuming the spread of
incident beam energies is small, temporal coherence
effects can be analogously included as an integration
over the distribution of focal planes, as done for incident
angles in Eq. 23. Thus, chromatic aberration effects can
be accounted for in simulated results through incoherent
averaging of propagated wavefunctions at a series of focal
planes.

3.9. Shot Noise

Modern STEM experiments are often noise limited by the
maximum dose a sample can tolerate (Egerton 2013). As
a series of discrete electron scattering events, dose-limited
noise profiles are well modeled by Poisson distributions.
Applying Poisson noise to simulated images (which exist
as evaluations of quantum-mechanical probabilities) is
thus one of the most important post-processing steps for
comparing simulated images and experimental images.

Prismatic implements Poisson noise application for
HRTEM images with electron dose measured in counts
per area; for STEM images, dose is applied in counts
per probe. For both, intensities are scaled by the
relevant measure of electron dose and then pixel
counts are sampled from a Poisson distribution using
the scaled intensities as independent variances. To
avoid degradation of the electron distribution statistics,
application of Poisson noise is performed as the final step
of post-processing for any simulated images.

3.10. Unit Tests

An important aspect of sustainable open-source
development is to create development resources that
invite outside contributions. For scientific simulation
and analysis software packages, it is also critical to
ensure that workflows utilizing the package produce
accurate, reliable, consistent, and reproducible outcomes
over the software development lifetime. In the most
recent release of Prismatic, we have implemented a
unit test suite that addresses some of these needs by
testing the performance of modular sections of the code,
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ensuring that the new functions run accurately with
respect to a set of defined behaviors. The unit test suite
offers developers a simple and convenient development
space to test new features and ensure that new features
do not compromise the core functionality of the source
code. For example, a Prismatic unit test testing data
input and output routines might check that data are
stored and read consistently for all arrays regardless of
dimensionality or that the 2D vs 3D potential integration
methods return physically consistent results. A new
feature with a well-written unit test is much more
easily adopted into Prismatic than untested code, and
provides another route to invite community contribution
to our open-source package. Prismatic’s test suite
was implemented with the Boost unit test framework,
a light-weight open-source library for integrating unit
tests. 1.

4 Results and Discussion

The previously described multislice and PRISM
algorithms, as well as HRTEM simulation, S-matrix
refocusing, simulation series, and arbitrary probe
positions, have been implemented in the newest release
of Prismatic, alongside utility features such as data
importing and an updated GUI. Brief discussion of these
implementations will follow, to serve the ongoing need
of documenting open-source scientific software. Relevant
case studies to the microscopy community will be shown
in conjunction with each major feature that is discussed.

4.1. Running a STEM Imaging Simulation

One of the primary uses of Prismatic is to perform
imaging simulations for STEM experiments. Fig. 6 shows
one such example, simulating the interaction of a STEM
probe with a bilayer of WS2 with a twist angle of 7.34◦.
This simulation was performed using pyprismatic with
these settings:

1 The Boost library is an open-source, platform-independent
C++ library aimed at extending the capabilities of the
standard template library with minimal overhead, see
https://www.boost.org

m = pyprismatic.Metadata()

m.E0 = 200

m.probeStep = 0.2

m.algorithm = "p"

m.interpolationFactor = 2

m.save3DOutput = True

m.saveDPC CoM = True

m.savePotentialSlices = True

m.probeSemiangle = 21

m.potBound = 3.0

m.numFP = 8

Fig. 6a shows the projected potentials for 8 different
frozen phonon configurations, using the 3D integrated
atomic potentials. These arrays can be saved in the
output HDF52 file, for further quantitative analysis.

In this simulation, we have stored the outputs of two
common STEM imaging modalities using additional
“save” parameters. The first output is the expectation
value of the diffracted STEM probe’s momentum, shown
in Fig. 6b for the kx and ky directions. The changes in the
probe’s “center-of-mass” (COM) momentum 〈kCoM(r)〉
as measured in the diffraction plane,

〈kCoM(r)〉 =

∫
|F̂r→kψ(r)|2 k dk∫
|F̂r→kψ(r)|2 dk

(27)

as it is scanned across atomic sites is clearly visible as
an initial rise and then fall for each site. These signals
can be directly measured in a STEM experiment, either
by segmented detectors (Shibata et al. 2010) or from
pixelated detectors (Müller-Caspary et al. 2019, Ophus
2019) as in the simulation here. These measurements are
usually intended for differential phase contrast (DPC)
measurements. There are various ways to reconstruct
the phase shift of the sample from these COM-DPC
signal channels, including the iterative method described
in Savitzky et al. (2021) and shown in Fig. 6c.

The second output is for monolithic annular detectors,
which are commonly used for annular bright field or
dark field imaging. For maximum flexibility, Prismatic
integrates the diffracted probe intensity using virtual
detectors shaped in concentric rings. These rings are
finely sampled (the default bin width is 1 mrad), so that
the user can generate many different annular detector
configurations from a single simulation. For example, in
this simulation a bright field image can be generated by
summing the intensity outputs from 0 to 21 mrads. The
contrast of the different bins are shown as vertical slices
in Fig. 6d.

2 The data storage format known as “heirachical data format”
version 5 (HDF5) is aimed at storing large amounts of
data for which libraries and APIs are freely available see,
https://www.hdfgroup.org/solutions/hdf5/
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FIG. 6. A STEM Imaging Simulation of a WS2 bilayer, with a twist angle of 7.34◦. (a) Projected potentials
of 8 frozen phonon configurations. (b) Output center-of-mass measurements, which were used as inputs for (c) the sample’s
reconstructed phase using the iterative method described in Savitzky et al. (2021). (d) Slices of the output virtual images from
annular detectors, with the intensity of each bin normalized.

4.2. Running a 4D-STEM Simulation

Fig. 7 shows 4D-STEM outputs from a simulation of
the same WS2 sample shown in Fig. 6. The projected
potentials and probe positions are shown in Fig. 7a and b,
while the diffracted probe intensities are shown in Fig. 7c.
These probe positions span 3 atomic sites, and the DPC
signal at these sites manifests as a shift of the average
moment towards these sites. Additionally, when some
portion of the the STEM probe overlaps with these sites,
a significant number of electrons are scattered outside of
the initial probe’s angular range. The simulation settings
of this example are nearly identical to the previous
simulation, except for these changes:

m.probeStep = 0.5

m.save4DOutput = True

m.scanWindowX = (0.0, 0.1)

m.scanWindowY = (0.0, 0.1)

Note that in Fig. 7a, the potentials have been shifted by
half of the total cell dimensions in x and y, in order to
place the probe positions in the center of the figure. No
discontinuity is visible at the cell boundaries, due to the
periodicity of the input cell and the simulation.

4.3. Running an HRTEM Imaging Simulation

Performing HRTEM simulations in pyprismatic is
similarly simple, with notation as follows for a plane
wave simulation with complex valued output (before
integration into intensity):

m.algorithm = "t"

m.saveComplexOutputWave = True

We include example Jupyter notebooks for other imaging
scenarios in the Prismatic repository.

4.4. Comparative Thermal Convergence of
Potential Parameterization Methods

The previous version of Prismatic used 2D lookup
tables for the projected atomic potentials. In this
release, we have implemented 3D lookup tables for
the atomic potentials with subpixel shifting of the
atomic sites as previously described above. The 3D
potential integration scheme with subpixel shifting can
improve the accuracy of a scattering simulation by
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FIG. 7. A 4D-STEM Simulation of a WS2 bilayer,
with a twist angle of 7.34◦. (a) Projected potential, and
(b) enlarged projected potential with probe positions overlaid.
(c) Diffraction space images for the probe positions given in
(b). Note that 2 separate intensity ranges and color maps were
used inside and outside of the initial STEM probe angular
range.

offering a more realistic representation of a sample in
terms of its projected potential. This is accomplished
through more accurate accounting of atomic positions
along the beam direction via 3D integration and
perpendicular to the beam direction through subpixel
shifting. Calculation of the projected potential is thus
much less sensitive to the input simulation parameters
such as slice thickness and projected potential resolution.
In a 2D integration scheme, incorrect setting of these
parameters can introduce artifacts; for example, atoms
can jump unstably across slices and from pixel to pixel
in the transverse direction under thermal perturbations.
Here, we examine further how the two projected
potential integration techniques compare under frozen
phonon convergence tests. Since these schemes generate
fundamentally different projected potentials at a given
level of resolution, we can expect them to display
qualitatively different convergence behavior over a range
of temperature conditions.

To investigate the comparative convergence behavior
of the projected potential integration schemes with
respect to number of frozen phonons, we simulated both
STEM and HRTEM images of twisted bilayer WS2 at
a 7.34 ◦ moiré angle. The convergence of scattering
simulations with respect to the number of frozen phonon
configurations for two-dimensional materials requires
more frozen phonons than for a thicker sample because
fewer unique atomic configurations can be sampled
in the beam direction for any given frozen phonon
configuration. Some results studying the precise thermal
convergence of scattering simulations include those by
Aarholt et al. (2020). The moiré cells were simulated
at 80kV with a real space potential input resolution of
0.075 Å, a 2 Å slice thickness, and a sampling factor of 40
for 3D potential integration. 128 unique frozen phonon
configurations were generated for each simulation, with
increasing Debye-Waller factors from 0.01 to 0.16
in multiplicative steps of 2 representing five distinct
temperatures for the sample; results for each frozen
phonon were saved independently. STEM simulations
utilized the PRISM algorithm at an interpolation factor
of 2 and a probe step size of 25 pm over a 16x reduced
window of the input cell.

Convergence results are shown in Figure 8. Convergence
was measured at each of these five represented
temperatures for HAADF STEM at with detector angles
between 60 and 120 mrad; for ABF STEM with detector
angles between 10 and 30 mrad; and for HRTEM with
a single untilted plane wave. To measure convergence,
we used a k-fold cross-validation based scheme. For
each number N of frozen phonons averaged, we generate
64 unique subsets of N configurations from the set of
128 total configurations. We then form the incoherently
averaged image for each subset, measure the pixel-wise
standard deviation of the intensities between the different
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FIG. 8. Thermal convergence series for simulations of twisted bilayer WS2. Results shown for HAADF-STEM (left),
ABF-STEM (middle), and white-atom HRTEM (right). Convergence error is measured through cross-validation of sets of
frozen phonon configurations (see main text for full description of error measurement). Top plots in each column represent
five different temperature simulations with convergence error measured for sets of 2 through 64 frozen phonon configurations;
labels indicate input Debye-Waller factor for RMS displacement of atomic positions. Bottom plots in each column show the
trend in convergence error as a function of inverse temperature for simulations with 64 frozen phonon configurations. Colors in
the top row indicate relative temperature. Solid lines indicate 2D potential integration and dashed lines indicate 3D potential
integration with subpixel shifting.

subsets, and finally measure the mean over the field-of-
view of the standard deviations. At no point are results
from the differing projected potential integration schemes
directly compared.

Here, we note that the convergence rate with respect to
frozen phonons is largely similar across both simulation
modes and temperatures. Overall cross-validation errors
for both schemes drop as temperature drops. This
is expected, as there is less variance in the overall
atomic positions of the sample. At higher temperatures,
the 3D potential with subpixel shifting scheme has
comparatively higher cross-validation error, which drops
below the 2D potential scheme without subpixel shifting
as the temperature decreases and progressively drops
faster. Crossover temperatures for cross-validation error
between the two schemes occur at different points
for HAADF STEM as compared to ABF STEM and
HRTEM. The crossover point ultimately results from
the difference in convergence behavior between the two
schemes and can be understood through a sampling
argument—it is likely primarily a result of the subpixel
shifting. Since the 2D potential scheme must place atoms
on top of discrete pixels, it is essentially sampling a
small finite set of configurations for each atom, while
the 3D potential with subpixel shifting samples the
true continuous distribution. At high temperatures,
it is easy for the 2D potential scheme to saturate a
statistically significant sampling of this finite set, while

at low temperatures, it becomes difficult to perturb the
atom far enough to generate different projected potential
slices. In contrast, the 3D potential with subpixel shifting
scheme can appropriately sample its distribution of
frozen phonon configurations at all temperatures, leading
to improved convergence behavior at low temperatures
and slightly worse convergence at high temperatures.
Again, we note that the representation of the sample
given by the 3D potential with subpixel shifting
integration scheme is fundamentally more physically
realistic and consistent against simulation parameters
than 2D potentials without subpixel shifting. While
the new scheme is more computationally expensive, the
importance of this difference in physicality should guide
the usage of the technique in simulations, especially
since, for large scale simulations, the computation of
the projected potential is still an overall negligible
cost as compared to the computation of wavefunction
propagation.

4.5. Comparison of Soft and Hard Probe
Apertures in STEM Diffraction

The differences in aliasing behavior between soft and
hard STEM probe apertures can be hard to predict
for an actual simulation. It is important to remember
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FIG. 9. STEM diffraction simulation of SrTiO3.
Comparative diffraction simulations for STEM diffraction
of SrTiO3 at 80kV and with a 4mrad probe semiangle for
multislice and PRISM simulations with both soft and hard
probe apertures. Simulation of a 12x12x16 unit cell block of
SrTiO3 with 64 frozen phonons; input probe is placed above
the center of a Sr site. Color scale is set to have equivalent
contrast between multislice and PRISM simulations.

that aliasing effects may not always arise as ringing
artifacts in simulations. In Figure 9, we demonstrate
the differences in simulation behavior between soft and
hard aperture probes for STEM diffraction of a SrTiO3

crystal at 80kV with a 4mrad probe, for both multislice
and PRISM simulations. The PRISM simulations were
run with an interpolation factor of 2. All simulations
were run with 3D potentials, a 0.1Å pixel size, and 64
frozen phonons. For the multislice simulations, there
is no discernible difference in the intensity or contrast
of the diffracted disks between the soft apertures. For
the PRISM simulations, however, there is a significant
difference in the contrast (and apparent shape) of the
disks, and it is seen that the soft aperture PRISM
simulation much more accurately matches that of the
multislice simulation. While not every use case or
simulation may show such drastic differences, the soft
aperture probe will overall improve the accuracy of any
simulation and is more likely to be a crucial component
in improving the quality of inexpensive simulations, with
coarser samplings and smaller input simulation cells.

4.6. Low-dose STEM with Source Size Effects

a

c

b

0.5 nm

FIG. 10. HAADF-STEM image of twisted bilayer
WS2. (a) As-simulated, (b) convolved with Gaussian source-
size of 80pm FWHM, and (c) convolved with Gaussian source-
size of 80pm FWHM and with applied Poisson noise of 5000
counts per probe.

The effect of a finite source-size upon the simulated
STEM images of twisted bilayer WS2 at 100kV are shown
in Figure 10, panels (a) and (b) for the as-simulated
HAADF image and the HAADF image convolved with
a Gaussian kernel with a FWHM of 80pm, respectively.
The effect of Poisson noise is demonstrated in Figure 10
panel (c) for a dose rate of 5000 counts per probe.

4.7. Limited Coherence Effects in STEM
Simulations

In Prismatic, it is now easy to account for coherence
effects caused by chromatic aberration by performing
defocus series simulations. As a case study, we present
convergence results for chromatic aberration effects
against the number of defocus planes simulated. STEM
simulations of twisted bilayer WS2 at a 7.34 ◦ moiré angle
were performed at 20kV and 100kV over a defocus range
of ±150Å and ±30Å, respectively, with 65 focal planes
each, a potential resolution 0.1Å and a probe step size
of 20pm. We note for clarity that each defocus series
was performed with a single execution of the simulation
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FIG. 11. Convergence series of chromatically-
aberrated STEM simulations. Results for BF (red) and
HAADF (blue) STEM for twisted bilayer WS2 at 20kV (solid)
and 100kV (dashed) with defocus spreads of 50 Å and 10
Å, respectively. Error is measured as the root-mean square
error of total probe intensity against the fully averaged STEM
image.

code, and that Prismatic provides new output formats
that allow for easy data access for such simulation series.

The PRISM method was used with an interpolation
factor of 2; we note that PRISM is a doubly advantageous
technique for defocus series simulations even at an
interpolation factor of 1 as the scattering matrix can be
reused for each defocus value, whereas in multislice, each
probe for each defocus must be simulated independently.
For convergence, we measure the pixelwise root-mean-
square error of a series of images averaged against
differing numbers of defocus planes. In computing the
defocus spread ∆z, we used a fixed energy spread for
both operating voltages; the defocus spreads we used
were 50 Å and 10 Å for beam energies of 20kV and 100kV,
respectively. Results for these two simulations are shown
in Figure 11. As expected, the fraction of probe error at
100kV in both bright field and HAADF detectors is very
low in all cases; at 20kV, where the energy spread is more
substantial, the error is more significant when including
less than four additional defocus planes (five planes in
total).

4.8. Limited Coherence Effects in HRTEM
Simulations

With the reuse of the S-matrix infrastructure, in
Prismatic, we have easy access to tilt-series HRTEM
simulations. Tilt series can be used to model coherence

effects, for example, or experimental procedures like
precession electron diffraction. Here, we will showcase
simulation results taking advantage of this infrastructure
to model spatial coherence effects that can arise in
HRTEM experiments. We continue with WS2 as a model
material. This time, to ease the image interpretation,
we simulate a monolayer WS2 cell that is approximately
317Å by 183Å in size. Simulations were performed at
300kV with an input real-space resolution of 0.075 Å in
each direction; eight total simulations were run, each
with four values of defocus—2.6 nm, 9.8 nm, 31.4 nm,
and 56.9 nm relative to the middle of the monolayer—
to represent different contrast mechanisms and over two
ranges of output tilts, ± 3mrad and ±15 mrad. For each
set of simulated tilts, we perform incoherent averaging
of the plane-waves with Gaussian weights up to ±3σ to
emulate spatial coherence effects, where σ is the standard
deviation of the beam tilt. We similarly include temporal
coherence effects by incoherently averaging each tilt
series over a range focal planes with Gaussian weights
for a focal spread with 10Å standard deviation for each
simulation. Results are shown in Figure 12 for coherence
levels σ of 0.0, 0.3, 1.0, and the unrealistically poor 5.0
mrad. As shown, emulating spatial coherence effects in
this manner captures well the loss of contrast at high
defocus. For small σ a large input cell is needed to achieve
proper sampling of tilts as the resolution in Fourier space
is inversely proportional to the sample size. Therefore,
modeling these effects is more computationally intensive,
particularly with regards to memory, than a typical
HRTEM simulation; on a workstation with a 16 core
Intel Xeon Gold 6130 processor, 250 GB system RAM
and a Nvidia Quadro P5000 GPU (16 GB RAM), these
simulations took approximately 1 minute to perform for
each frozen phonon, as compared to the sub-10 second
simulation time for single plane-wave imaging.

4.9. Matrix Refocusing of STEM Simulations with
Large Defocus

Focal series experiments are common in studies that
involve 3D reconstruction, as they provide varying sets
of information with respect to the sample phase. In
order to validate these methods, such as through-focal
tomography (Hovden et al. 2014), we often need to
simulate large samples over wide-ranging defocus values.
Matrix refocusing gives us an opportunity to utilize
the computational advantages of the PRISM algorithm
to model such large systems under extreme defocus
conditions without incurring significant error that
otherwise arises in the PRISM algorithm at large defocus.
To demonstrate the utility of S-matrix refocusing, we
present three CBED diffraction simulations of a 5 nm
diameter Au nanoparticle in vacuum, tilted to an
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FIG. 12. Simulated HRTEM images of monolayer WS2 at 300kV with limited coherence. Results shown at different
contrast maxima (increasing defocus left to right) and different levels of coherence (increasing tilt spread top to bottom). Images
at a given tilt spread are incoherently averaged with Gaussian weights over tilted plane waves ±3σ from the untilted beam.
All results are similarly incoherently averaged over a focal spread of 10Å.

arbitrary off-zone axis. We compare the multislice
algorithm, the PRISM algorithm with an interpolation
factor of 2, and the PRISM algorithm with the same
interpolation and with refocusing. The simulation was
performed at 200 kV with a semi-convergence angle of
21 mrad and a real-space atomic potential resolution of
0.1 Å.

Results comparing the accuracy of PRISM with and
without refocusing to the results of the multislice
algorithm are shown in Figure 13 for two STEM probes
propagated through the center and through the edge
of the nanoparticle over a defocus range of ± 250 nm
(measured relative to the center of the nanoparticle).
Starting from the center of the nanoparticle, the PRISM
algorithm without refocusing begins to accumulate
significant amount of error, particularly within the
center disk, as the applied defocus reaches large values
(in this simulation, around ± 100 nm). In contrast,
PRISM with refocusing shows much more stable behavior
through this defocus range within the center disk and
accumulates only a small amount of error outside the
beam convergence angle. At the side of the nanoparticle,
both simulations show relatively consistent behavior
when measuring error in binned virtual detector. There
is a notable error in both methods at the the edge of
the center disk, which can be mostly attributed to bin
assignment and precision artifacts when integrating the
full pattern to the virtual detector in the simulation.
When comparing against the actual 2D CBED pattern
before integration onto the virtual detector, we can
clearly see a great discrepancy between results using
PRISM with and without refocusing. Visual comparison
of the features within the center disk shows that,
at large defoci, information and structure are almost
completely lost without refocusing, whereas applying
refocusing to the scattering matrix maintains much more
of the information at high defocus values. This may

be important, for example, in generating CBED images
for use in applications such as machine learning, where
visual similarity may be more important than integrated
measures of intensity. Finally, in spite of the results
presented here, we note that application of the refocusing
technique is highly specific to certain imaging conditions
and samples of interest and is not a broadly applicable
technique to PRISM simulations overall, and that the
use of refocusing may be guided by investigating its
performance on the metrics of interest for one’s own
application.

5 Conclusions

In this manuscript, we have presented version 2.0 of our
Prismatic code for simulation of transmission electron
microscopy experiments. This version has added various
features, including 3D potential integration, HRTEM
plane wave simulations, refocusing of the S-matrix for
STEM simulations with large probe defocus values, more
accurately sampled STEM probes, and unit tests for
more reliable updates of the code. In addition we have
also added several post-processing methods, including
simulation of coherence limits generated by source size
and energy spread effects, and shot noise calculations
using Poisson random distributions of electron counts.
With these additions, Prismatic is more useful to
researchers who are performing STEM and TEM
simulations.
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FIG. 13. Matrix refocusing results for highly defocused STEM of Au nanoparticle. Comparison of error for STEM
simulations using the PRISM algorithm with and without matrix refocusing at an interpolation factor of 2, as measured against
the equivalent multislice simulation. (a) Projected potential for a spherical Au nanoparticle with 5 nm diameter, tilted off-axis
with center-probe and side-probe positions marked (blue and green, respectively). (b) CBED patterns for multislice (left),
PRISM (middle), and PRISM with refocusing (right); panels are split between in-focus (left side) and 250nm overfocused (right
side). (c) Heatmaps of absolute error of PRISM (left) and PRISM with refocusing (right) as measured against multislice over a
range of ±250nm of defocus and over scattering angles from 0-60mrad. Top panels in (b) and (c) represent probes propagated
through the center of the nanoparticle, while bottom panels represent probes propagated along the side of the nanoparticle.
We note the horizontal error lines visible in (c) are largely a result of coordinate artifacts that arise when comparing PRISM
and multislice results; error results presently shown in (c) include slight blurring by a Gaussian kernel for purposes of visual
clarity.

6 Code Availability

The source code for Prismatic is available at our Github
repository. For other downloads, walkthroughs, and
information, please visit prism-em.com. Simulations ran

using pyprismatic to produce figures in the manuscript
can be found in the source code repositories. Other
scripts and data used can be made available upon
request. For purposes of manuscript review, the most
current development version of the source repository can
be found at the author’s development repository. A full
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updated software release is planned to be timed with
publication of this manuscript.
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E Arenholz, et al. Observation of room-temperature polar
skyrmions. Nature, 568(7752):368–372, 2019.

Ray F Egerton et al. Physical principles of electron
microscopy, volume 56. Springer, 2005.

R.F. Egerton. Control of radiation damage in the tem.
Ultramicroscopy, 127:100–108, 2013. ISSN 0304-3991.
doi:https://doi.org/10.1016/j.ultramic.2012.07.006.
URL https://www.sciencedirect.com/science/

article/pii/S0304399112001763. Frontiers of Electron
Microscopy in Materials Science.

Mhairi H Gass, Ursel Bangert, Andrew L Bleloch, Peng Wang,
Rahul R Nair, and AK Geim. Free-standing graphene at
atomic resolution. Nature nanotechnology, 3(11):676–681,
2008.

Maximilian Haider, Stephan Uhlemann, Eugen Schwan,
Harald Rose, Bernd Kabius, and Knut Urban. Electron
microscopy image enhanced. Nature, 392(6678):768–769,
1998.

Robert Hovden, Huolin L Xin, and David A Muller.
Channeling of a subangstrom electron beam in a crystal
mapped to two-dimensional molecular orbitals. Physical
Review B, 86(19):195415, 2012.

Robert Hovden, Peter Ercius, Yi Jiang, Deli Wang,
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