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Abstract

This thesis will explore the way in which plasmonic metasurfaces, hosting nano-scale metallic

resonator elements, can be used as beam-steering devices. We will propose our own devices that will

demonstrate anomalous reflection (at a pre-determined reflection angle), despite being illuminated

by normal incident light. The performance of these devices will be investigated in the near-infrared

region of the spectrum, though their working principle is not limited to such a narrow wavelength

range. Through the incorporation of a phase-change-material, our devices will be able to support

dynamic control over the reflected radiation post-fabrication. Different methods of achieving this

control over the propagation path of scattered radiation are explored and compared. I.e. anomalous

reflection is shown to be realised by varying the geometry of the resonator element along the

device surface, varying the local environment surrounding each resonator element, or both of these

variations in unison.

All metasurface devices presented in this work will employ a metal-insulator-metal structure.

Therefore, our first objective was to optimise the performance of such a device by conducting

a comparative study between three difference Drude-like metals (gold, silver, and aluminium).

Through this study, the ideal material (and material properties) of the top metallic resonator

element and bottom back-reflector could be determined. The ideal resonator element material was

found to be gold and silver, while the ideal back-reflector material was found to be aluminium. The

performance of a device which employed this combination of materials was presented, exhibiting

a maximum anomalous reflection angle of ∼ 40◦ at an incident wavelength of 1550 nm. This

device used variations in the geometry of the resonator elements in order to achieve the impressive

anomalous reflection.

The performance of an alternative device is also reported. This device utilises variations in

the local environment surrounding each resonator element, and is capable of achieving the largest

dynamic angle sweep of ∼ 54◦ at an incident wavelength of 1000 nm. A device which employes

both of these methods to achieve anomalous reflection is also proposed. Such a device is shown to

be able to achieve an anomalous reflection angle of ∼ 33◦ also at an incident wavelength of 1000

nm.

The advantages, disadvantages, and extent to which each device can achieve dynamic control

over the reflected radiation post-fabrication is discussed.
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Chapter 1

1 Introduction

1.1 Motivation

The objective of this work is to design and optimise nano-scale devices capable of controlling

the direction of scattered radiation. Traditionally the manipulation of electromagnetic radiation

has been realised through bulky optical components. These components are capable of gradually

modulating the phase of incident radiation, thus allowing for control of the propagation path of

the reflected and transmitted light [1]. Inconveniently, achieving a specific phase shift demands

the propagation length to be commensurate with the operation wavelength. In order to avoid such

bulky structures and manipulate light in a sub-wavelength scale, one must employ a metamaterial.

The transition of these optical devices into the nano-scale has expedited its passage into a wide

range of scientific disciplines.

A metamaterial is a structure that typically (though not strictly) contains periodically arranged

resonators on a dielectric substrate. The elaborate construction of these resonators allows the

effective medium to possess certain bulk properties which are not found in conventional materials,

but are not forbidden by Maxwell’s equations. A metasurface is analogous to a metamaterial,

though can be regarded as the two-dimensional equivalent. Throughout the years, metasurfaces

have been fabricated in various ways to create a large range of optical devices. These optical

devices have the ability to enable control of the phase [2, 3, 4], amplitude [5], and polarisation

[6, 7] of impinging electromagnetic radiation. Such devices include dynamic holographic displays

[8, 9], on-chip optical devices [10, 11], beam-steering [3, 12], radar scanning systems, LiDAR [13],

flat lenses [14, 15], extraordinary optical transmission (EOT) [16], invisibility cloaking [17], imaging

applications [18], and much more. One can develop a beam-steering device by creating a metasurface

that can successfully govern the angle of reflection or transmittance of scattered radiation. One can

go a step further by introducing an active component within the metasurface, allowing for dynamic

control of the reflected/transmitted angle.

Though the operation of metasurfaces is comparable to that of conventional optical compo-

nents, the working principle does not reply on propagation effects. Rather, metasurfaces alter the
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direction of propagation of incident light by introducing local phase shifts through sub-wavelength

optical resonators [19]. The spacing between these resonators must also be on the sub-wavelength

scale, as governed by Huygen’s principle [20]. Previous works have reported on the operations of

metasurfaces using different types of optical elements, such as dielectric [21], plasmonic [2, 22],

and various shaped apertures in metallic films [3, 12]. These devices differ in the way in which

their resonator elements alter the phase of the impinging radiation. We will primarily focus on the

phase modulation achieved by plasmonic metasurfaces, where a metallic nano-particle will behave

as the resonator element. These metallic elements host surface plasmons which can have a strong

interaction with impinging radiation in such a way as to detune the element from its resonant fre-

quency (discussed in greater detail in Section 2.1) [23]. Through careful design, one can fabricate a

structure in which each consecutive element is further detuned from the resonant frequency. This

will generate a spatially varying phase, which can be used to engineer the scattered wavefronts in

such a way as to give the desired angle of reflection or transmittance. The relationship between

the phase modulation and the scattered angles is described by Snell’s Generalised law (see Section

2.2.1) [24].

One can achieve this spatially varying phase shift by either spatially varying the geometry (i.e.

width, height, etc.) of the resonator element, or varying the local environment of each element.

Adjusting either of these factors leads to the detuning of the elements from the resonant frequency.

Alternatively, one can also fabricate a metasurface where the phase response is achieved at the

boundary between optically thin, lossy materials. This phase shift can vary between 0 and π

[25, 26]. However, if we want full control of the scattered wavefront, we require our metasurface to

realise the maximum phase coverage possible, i.e. from 0 to 2π, therefore, this paper will investigate

the effects of employing the former two methods.

One drawback of metasurfaces or reflectarrays is that the final emitted wavefront configura-

tion is fixed. A way to overcome this disadvantage is by incorporating a phase-changing material

(PCM) into the metasurface structure. PCMs have the ability to change optical (refractive index

and extinction coefficient) and electrical (resistivity) properties when heated beyond a transition

temperature (TMIT ). This will be discussed in greater detail in Section 2.3. Previous studies by

Carlota Ruiz et al. have reported on the use of Ge2Sb2Te5 (GST ) as the PCM in their metasur-

face structure [22, 27]. They took advantage of the phase changing properties of GST to realise
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a dynamic beam-steering device. When the GST layer was in its amorphous state (below TMIT ),

the metasurface was fashioned to reflect light at a predetermined angle under normal incidence

conditions. However, when the GST transitioned to its crystalline state, the underlying reso-

nant behaviour of each resonator was cancelled, and ordinary specular reflection was reestablished.

Therefore, introducing this PCM enabled the fabrication of a device no longer comprising of ex-

clusively passive components which limits the reflected radiation to a fixed direction. Perhaps a

superior PCM is the transition-metal oxide known as vanadium dioxide (V O2). Similar to GST ,

V O2 allows for reversible and ultra-fast phase changes. However, V O2 exhibits an abrupt change

from an insulator (monoclinic phase) to a metal (rutile phase) at a lower temperature (68 °C) [28]

relative to GST (between 100°C and 150°C) [29]. This makes V O2 a more energy-efficient PCM.

PCMs may also be used to modify the local environment of each optical element. For example,

if the PCM exhibits a continuous phase change when exposed to a thermal stimulus, one could

establish a device which enables control over the temperature of each element, and therefore the

optical properties of the PCM. Previous works have reported on the large, continuous phase shifts

this approach can achieve when utilising V O2 within the metasurface [2, 3]. Contrary to the work

of Carlota Ruiz et al., these thermal-gradient based metasurfaces can achieve continuous control

over the angle of reflection or transmittance, as opposed to discretely switching between specular

and anomalous reflection.

1.2 Thesis Outline

The work presented in this thesis is simulation based. However, the devices were designed in such

a way as to try and ensure the feasibility of experimental realisation. The performance of the

proposed devices was investigated when subject to normal incident radiation in the near-infrared

(NIR) region of the spectrum, though the working principle behind these metasurfaces is not limited

to such a narrow wavelength range. The design of metasurface devices optimised to the NIR has

a large range of applications, including those mentioned in Section 1.1. The potential integration

of these metasurface devices operating in the NIR is particularly important for medical diagnostic

applications [30, 31]. This is as radiation in the NIR has an acute penetration depth in tissue and

cells at the molecular level [32]. The structure of the thesis is outlines below:

3



• Chapter 2 provides background information necessary for understanding the working princi-

ple behind the proposed metasurface beam-steering devices. Since the devices will host metal

resonator elements/wires, it is vital to introduce the concept of surface plasmons (Sections

2.1.1-2.1.4) and explore how their presence affects the local phase response for each resonator

(Sections 2.1.5-2.1.7). The relationship between these local phase responses and the direction

of scattered radiation is also discussed (Section 2.2). Finally, the phase changing properties of

V O2 is explored, which will be useful in understanding how post-fabrication, dynamic control

over the reflected radiation can be realised by our metasurface devices (Section 2.3).

• Chapter 3 gives a simple account of the way in which our simulation programme, Finite-

Difference Time Domain (FDTD), works to predict how the proposed metasurface devices

will interact with electromagnetic radiation.

• Chapter 4 will describe an investigation of the optimisation of the design for a metal-

insulator-metal (MIM) metasurface beam-steering device. This was done by exploring the

optical response of three different Drude-like metals in order to determine which materials

were most suitable as the various metallic components of the metasurface. This device will

employ spatially varied resonator elements in order to establish local phase control across the

device surface. A metasurface beam-steerer is then proposed and investigated, which utilises

the metals found to best enhance the device performance.

• Chapter 5 will present the design and analysis of the performance of an alternative MIM

metasurface beam-steering device. This device will employ a thermal gradient across the

device surface in order to change the local environment of each resonator element, while

maintaining a constant resonator geometry. An analogous device, which utilises both a ther-

mal gradient and spatially varied resonator geometries, is also proposed and investigated.

The performance of such a device is compared to those which only employ just one of these

phase-modulating effects.

• Chapter 6 will present an overview of the results and discuss the advantages and set-backs of

the proposed structures. The limitations of plasmonic nanoscale metasurfaces are discussed,

as well as the potential to overcome these impediments.
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Chapter 2

2 Background & Theory

2.1 Surface Plasmons

As mentioned before, our primary focus is on plasmonic metasurfaces, consisting of metallic res-

onator elements. In order to understand the optical response of these elements when subject to

electromagnetic radiation, one needs to consider the behaviour of the freely conducting electrons

within the metal.

The free electron gas within these metallic nanoparticles can support surface and volume charge

density oscillations when exposed to optical frequencies [23]. A restoring force is established due

to the displacement of the electrons with respect to the positively charged lattice. This results in

a certain plasmon resonance that has a dependence on the geometry of the nanoparticle.

Though this phenomena occurs within metallic nanostructures at optical frequencies (10 nm-

103µm), one cannot re-create this effect with larger metallic structures at longer wavelengths,

despite the scale invariance of Maxwell’s equations. This is as the metal properties are vastly

different at different frequencies.

2.1.1 Drude Model

Let us consider the Drude model as a first approximation to describe the behaviour of metals when

subject to optical frequency radiation. The Drude model is similar to the Lorenz model, which

treats charges in a material as harmonic oscillators [23, 33, 34]. An electric field interacts with the

atoms in the metal as described by the following expression;

m~ael = FE,Local + FDamping + FSpring (1)

This interaction is illustrated in Figure 1, and can be re-expressed as follows;

m
d2~r

dt2
+mγ

d~r

dt
+ α~r = −e ~Eoe−iωt (2)

γ is the damping constant,

α is the spring constant,
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ω is the frequency of the applied field,

Eo is the amplitude of the applied field.

Figure 1: Lorentz (harmonic oscillator) model

The Drude model sets α=0, implying a system of free electrons (not bound to any nucleus).

The mass in Equation 2 is now the effective mass of the free electrons.

me
d~v

dt
+meγ~v = −e ~E (3)

The current density is defined as ~J = −Ne~v, where N is the number of electrons per unit volume.

Subbing this into Equation 3 yields;

d ~J

dt
+ γ ~J =

Ne2

me

~E (4)

Assuming that the conduction current density and the applied electric field can be expressed in the

form ~J = ~Joe
−iωt and ~E = ~Eoe

−iωt, respectively, than the following equation can be written;

~J(−iω + γ) =
Ne2

me

~E (5)

In the case of an applied oscillating field, where the static conductivity (σ) is defined as (Ne2)/(meγ),

the current density can be expressed as follows;

~J =

[
σ

1− ( iωγ )

]
~E = σω ~E (6)

where σω is the dynamic conductivity.

The above equation implies that for low frequencies (large λ), where ω/γ << 1, the dynamic

conductivity is real and the electrons are in phase with the applied field. However, if the frequency
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of the applied field increases (lower λ), then the dynamic conductivity becomes complex. The

electrons lag behind the applied electric field as a result of their inertia.

Further investigating the optical properties of metals, we can consider the wave equation from

Maxwell’s relations. Here, the permittivity of free space is εo, and the polarisation is assumed to

be zero (~P = 0).

∆2 ~E =
1

c2

∂2 ~E

∂t2
+

1

εoc2

∂ ~J

∂t
(7)

Substituting in the expression for ~J yields;

∆2 ~E =
1

c2

∂2 ~E

∂t2
+

1

εoc2

[
σ

1− ( iωγ )

]
∂ ~E

∂t
(8)

Using the Ansatz ~E = ~Eoe
i(~k·~r−ωt), as well as the relation c2 = 1/εoµo giving the following expression

for the wavenumber;

k2 =
ω2

c2
+ i

[
σωµo

1− ( iωγ )

]
(9)

where µo is the permeability of free space.

From Equation 9, the dielectric function (refractive index squared) of the metallic medium can

be obtained, since n2 = (c2/ω2)k2, which can, in turn, give rise to the plasma frequency, ωp.

εDrude(ω) = n2 = 1 + i

[
σc2µo

ω(1− iω
γ )

]
= 1− γσc2µo

ω2 + iωγ
= 1−

ω2
p

ω2 + iωγ
(10)

Here the plasma frequency squared can be expressed as ω2
p = γσc2µo = Ne2/meεo. This is the

frequency at which the disrupted electrons oscillate around the equilibrium position. This oscillation

is a result of the electrons displacement, from the uniform distribution of positive background ions,

when subject to electromagnetic radiation. Though electric fields build up to restore the neutrality

of the plasma, the inertia of the electrons cause them to overshoot their initial positions, leading

to an oscillation with the characteristic plasma frequency. Intuitively, it is of no surprise that the

plasma frequency is correlated to the carrier density.

For high frequencies, we can neglect the damping constant in Equation 10, resulting in n2 =

1 − ω2
p

ω2 . Evidently, when the metal is exposed to radiation with a frequency less than the plasma

frequency (ω < ωp), n is complex. In this case, the radiation is attenuated, which results in the high

reflectivity of metallic surfaces. This phenomenon is seen in noble metals at optical frequencies.

In contrast, incident frequencies that are greater than the plasma frequency (ω > ωp) lead to real

values of n, and therefore, transparent media.
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2.1.2 Interband Transitions

Though the Drude model provides a good approximation for the dielectric constant of metals at

higher optical wavelengths (i.e. in the infrared regime), is fails to support experimental values

at lower wavelengths. This is as a metal is not exclusively composed of free electrons. Indeed,

bound electrons exist in low-lying shells of the metallic atom [23, 33]. These bound electrons can

be excited to the conduction band through absorption of high energy photons. The equation of

motion of bound electrons is analogous to that of the Drude model, but takes the spring constant

into account (i.e. the Lorenz model given in Equation 2). In this case, however, α is now the

spring constant of the potential that keeps the bound electrons in place, and hereby denoted αb.

Similarly, me,b and γb are the effective mass and damping constant of bound electrons, respectively.

This damping constant primarily accounts for radiative damping.

me,b
d2~r

dt2
+me,bγb

d~r

dt
+ αb~r = −e ~Eoe−iωt (11)

Following the same procedure as before, we can compute the dielectric function due to the interband

transition of bound electrons.

εInterband(ω) = 1 +
ω̃2
p

(ω2
o − ω2) + iωγ

(12)

In this case, the plasma frequency squared is ω̃2
p = Ñe2/me,bεo, where Ñ is the density of bound

electrons. This however, does not have the same physical meaning as ωp, derived from the Drude

model. The term ωo, which is given by
√
αb/me,b , arises from the additional term in Equation 11,

which accounts for the ’spring force’.

The most accurate way to model the dielectric function of metals is by considering both the

free-electron model (for high wavelengths), and interband transitions (for low wavelengths). For

example, the Drude model can effectively approximate the optical properties of gold above 650

nm wavelength [35]. However, below 650 nm, where the photons are more energetic, and therefore

more interband transitions occur, the Drude model deviates from experimental observations.

2.1.3 Skin Depth

Another important thing to consider when utilising metallic optical resonators is the skin depth of

the material. Going back to Equation 9, we can state that for small enough frequencies, such that
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k2 ∼= iσωµo, the real and imaginary components of the wavenumber will be equal;

kR = kI =
√
σωµo/2 (13)

Since the skin depth is given by δe = 1/kI [36], the following expression can be deduced;

δe =

√
2

σωµo
=

√
2εoc2

σω
(14)

δe can be considered as double the penetration depth, i.e. δe = 2δp. Ohmic losses occur within this

penetration depth, which is the primary disadvantage when working with metallic materials. For

obvious reasons, it is desirable to minimise these Ohmic losses, which can be done by reducing the

penetration depth. It is evident from Equation 14 that the skin depth, and thus the penetration

depth, is a function of the material conductivity (σ). In turn, the conductivity is related to the

dielectric function, see Equation 10. By selecting a material with a large, negative, real part of

ε(ω), one can reduce the losses in metal nanoparticles.

Due to the intrinsic losses within metallic materials, many works have opted to use dielectric

elements as the resonator component of their metasurface device [21, 37]. Dielectric optical res-

onators which support mode volumes can establish local electric and displacement field confinement,

analogous to that of plasmonic resonators, with less intrinsic losses [37].

2.1.4 Metal-Insulator Interface

Consider a single interface between a metallic (conductor) and insulator (or dielectric) half-space,

as shown in Figure 2. This is one of the most simple geometries in which surface plasmon polari-

tons (SPPs) arise. These SPPs are electromagnetic excitations which propagate at the interface

between a dielectric and conductor. These excitations are evanescently confined in the perpendic-

ular direction. These result from coupling between the electromagnetic fields and the oscillations

of the electron plasma within the conductor material [38]. Let us investigate the propagating wave

solutions confined to the interface [35, 39]. Since these are evanescent waves, they are exponentially

decreasing in each material region.

Therefore, the component of the radiation propagating along the z-direction will have an addi-

tion factor of eikzz in the familiar equations for a monochromatic plane wave, describing the electric

( ~E) and magnetic ( ~H) field vectors;

~E(~r, t) = ~Eei
~k·~r−iωt and ~H(~r, t) = ~Hei

~k·~r−iωt (15)

9



Figure 2: Metal-Insulator Interface

Since these SPP waves decay when propagating along the z-direction, the following constraint can

be imposed; |eikzz| = e−Im(kz)z → 0 as z → ±∞. In order for this to be satisfied, the following

must apply;

Im(kz) =

 > 0 for z > 0

< 0 for z < 0
(16)

This means that the insulator material has positive real dielectric constant (εI), while the metallic

region is described by a dielectric function (εM (ω)) where the real component is less than zero, i.e.

Re[εM ]< 0.

Let us now consider the structure under p-polarisation illumination, i.e. transverse magnetic

(TM) polarisation, where the magnetic field vector is parallel to the interface. In this situation,

the plane of incidence may be the xz plane, resulting in ~E to be parallel to the xz plane, and ~H

to be parallel to the y plane. The Maxwell equations below can be simplified to provide Equations

17-19, since Ey = 0, Hx = 0, and Hz = 0.

∆ x ~E(~r, t) = −∂
~B(~r, t)

∂t
→ ∂zEx(~r)− ∂xEz(~r) = iωµoHy(~r) (17)

∆ x ~H(~r, t) = −∂
~D(~r, t)

∂t
→ −∂zHy(~r) = −iωεoε(ω)Ex(~r) (18)

∆ · ~D(~r, t) = 0 → ε(ω){∂xEx(~r) + ∂zEz(~r)} = 0 (19)

Keeping in mind the exponential decay in the z-direction at the metal-insulator interface, the

solutions of Equations 17-19 can be expressed as;

F (~r) = F (x)eikzz (20)
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where F = Ei or F = Hj .

Using Equations 19 and 20, we can evaluate an expression for Ez as a function of Ex.

Ez(x) = −∂xEx(x)

ikz
(21)

Similarly, we can use Equations 18 and 20 to explicitly illustrate the relationship between Hy and

Ex.

Hy(x) =
iωεoε(ω)

ikz
Ex(x) (22)

We can use these two expressions to deduce a new equations, which is only in terms of Ex. This

can be done by subbing in Equations 21 and 22 into 17.

ikzEx(x) +
∂2
xEx(x)

ikz
= −ω

2εoµoε(ω)

ikz
(23)

Using the relation 1/c2 = εoµo, Equation 23 can be re-expressed to give;

∂2
xEx(x) = −

{(
ω

c

)2

ε(ω)−K2
z

}
Ex(x) (24)

where

Kx =

√(
ω

c

)2

ε(ω)− k2
z (25)

which can be considered as the wave-vector of the x component. The general solution of Equation

24 can be expressed as;

Ex(x) = Ae+iKxx +Be−iKxx (26)

where A and B are constants.

The signs indicate the propagation direction along the x-axis. Similarly, the x-component of

the electric field in the insulator region (z > 0) and the metallic region (z < 0) can be expressed as,

EIx(x, y, z) = EIx(x)eik
I
zz and EMx (x, y, z) = EMx (x)eik

M
z z, respectively. Keeping in mind Maxwell’s

boundary condition, which states HI
y (x) = HM

y (x) at z = 0, and Equation 22, the following

expression can be deduced;

iωεoεI
ikIz

EIx(x)|z=0 =
iωεoεM
ikMz

EMx (x)|z=0 (27)

This can be simplified further when considering the other boundary condition, EIx(x)|z=0 = EMx (x)|z=0,

which yields;
εI
kIz

=
εM
kMz

(28)
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By also recognising the boundary condition KI
x = KM

x at z = 0, we can re-express the above equa-

tion in terms of Kx, giving the desired dispersion equation (DE) at the metal-insulator interface;

εI√
(ωc )2 −K2

x

=
εM

−
√

(ωc )2 −K2
x

(29)

Note that the convention of the sign in the above equation is due to the constraints imposed by 16,

reminding us that surface waves are only induces at the boundary between materials with opposite

signs in their real dielectric permittivities, i.e. the boundary between a conductor and an insulator

(or any non-absorbing material).

To better illustrate the relationship between Kx and ω (and ω-dependent terms), we can easily

modify Equation 29 to yield;

Kx =
ω

c

√
εM (ω)εI
εM (ω) + εI

(30)

The above expression is valid for metallic materials with and without attenuation, where εM con-

tains real and complex components.

Before we use Equation 30 to investigate the realistic behaviour of SPPs at the Ag-air interface,

let us first consider the idealised scenario, where the conductor permittivity is equated to the

real-valued Drude permittivity;

εM = 1−
(
ωp
ω

)2

(31)

Approximating εI = 1, (i.e. for air), Equation 30 can be re-arranged to solve for ω;

ω =

√√√√ω2
p + 2(Kxc)2

2
±

√
ω4
p + 4(Kxc)4

2
(32)

Plotting ~ω against Kx~c (Figure 3), the SPP dispersion with negligible interband damping can

be visualised.
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Figure 3: SPP dispersion diagram assuming a pure Drude-metal (Ag)-air interface

Reprinted with permission from [35]

Evidently, the SPP dispersion forms two branches, where the upper and lower branches for Ag

corresponds to the plus and minus within the square root of Equation 32, respectively. Radiation

into the silver occurs where ω > ωp, where the material becomes transparent. This upper branch

can thus be considered as the radiative mode. This branch is not actually considered a surface

wave, but a transverse wave, since εM here is positive, as well as real. The branch lies outside, and

becomes asymptotically close to the light cone, where ω/c =
√

2Kx, and is excited by far-fields.

In contrast, the lower branch, or bound mode, lies within the light cone, and asymptotically

approaches the surface plasmon frequency, ωsp = ωp/
√

2 as Kx → ∞. In this high wavevector

regime, the group velocity, defined by vg = ∂ω/∂Kx, approaches zero (i.e. vg → 0). Unlike

the radiative mode, this mode can be considered as a surface plasmon, one with electrostatic

properties. This feature is not observed in reality however, as conduction electron oscillations

(interband transitions) cannot be ignored in real systems. In the region where the energy values

are low, and the wavevectors are small, the SPP propagation constant is very close to the light cone,

within the insulator material. This is illustrated over a wide wavelength range, and is known as

Sommerfeld-Zenneck waves [40]. Separating the two modes is an energy gap, where the propagation

of the surface wave is prohibited.
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Though Figure 3 is useful in illustrating various properties of SPP dispersion, we now want

to investigate a more realistic system, where we eliminate the assumption that Im(εM ) = 0, thus

including both interband transitions as well as the free-electron system. Figure 4 uses Equation 30

to depict the behaviour of the dispersion at an Ag-air interface, but does not assume silver to be a

purely Drude-like metal.

Figure 4: SPP dispersion diagram of actual metal (Ag)-air interface

Reprinted with permission from [35]

The above figure is analogous to Figure 3, the SPP dispersion is real, and in close proximity

to the light cone at energy values below 2.0 eV (wavelengths above ≈ 620 nm). However, the

distinction in Figure 4 is depicted above 2.0 eV, where the Im(Kx) emerges and increases as the

energy approaches 3.8 eV, due to the interband transitions. Since the peak of Im(Kx) occurs at

3.8 eV, the oscillation strength of the interband transition is large here. The bound SPPs now

exhibits a finite wavevector at the surface plasmon frequency (ωsp), conveying a lower bound on

the wavelength of the surface plasmon, i.e. λsp = 2π/Re(Kx). It is also interesting to note the

backward surface wave propagation in the −Kx direction from 3.6 eV to 3.8 eV, despite incident

light exhibiting a positive wavenumber (+Kx). Therefore, the group velocity of the interface wave

is negative within that energy range (vg < 0).
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2.1.5 Mass & Spring Model

Now that we have investigated some of the main properties of metals at optical frequencies, as

well as the emergence of SPPs at the boundary between conductors and insulators, let us look

at a model describing the plasmonic resonance within metallic nano-particles. We can apply a

simple mass-and-spring model in order to explore the relationship between the particle resonance

frequency and its geometry [41].

Let us consider an elongated, cylindrical particle, as shown in Figure 5. Here we are assuming

the electron cloud within the particle is displaced by δx. Opposite point charges have accumulated

on either side of the particle, where the charge magnitude is determined by q = NeAδx, i.e. it is a

function of the cross-sectional area (A), and the charge carrier density (N). The Coulomb potential

energy of the accumulated charge is given by;

W (δx) =
1

4πεo

q2

d
=

1

4πεo

(NeA)2

d
(δx)2 (33)

The restoring force can now be obtained. Equation 34 below conveys the linear relationship between

the displacement of the electron cloud, and the restoring force. Our system can therefore be

considered as a harmonic oscillator.

F (δx) =
∂W (δx)

∂(δx)
= − 1

2πεo

(NeA)2

d
δx = −αδx (34)

where α = elastic constant of the restoring force.

Figure 5: Schematic of mass and spring model of single plasmonic particle

Figure reproduced from [33]
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Defining the resonance frequency of the plasmonic structure to be wres =
√
α/m, where m is

the total effective mass of the electron system, we can now use Equation 34 to derive an expression

that relates the resonance frequency to the geometric parameters of the particle.

α =
(Ne)2

2πεo

A2

d
(35)

Therefore,

wres =

√
(Ne)2

2πεo

A2

d

1

m
(36)

Using the plasma frequency defined in Section 2.1.1, and by expressing the total effective mass of

the system in terms of the effective electron mass, m = NmeAd, as well as the cross-sectional area

of the particle as A = πr2, one can depict the resonance frequency as;

wres = wp

√
r2

2d2
(37)

Defining the aspect ratio of the particle to be R = d/2r we can now state;

wres =
wp

2
√

2

1

R
(38)

Equation 38 above illustrates the inverse relationship between the resonance frequency and the

aspect ratio of the metallic particle. Although the above equation is less accurate for shorter and

thicker particles due to the assumption that the charges are point-like, it clearly conveys how the

geometry of the particle is responsible for its resonance frequency, and therefore its phase response

when exposed to electromagnetic radiation. In a metasurface, the phase of the scattered light will

vary around the resonance wavelength of the resonator element, analogous to the way in which

the phase of an oscillator varies with respect to its detuning from resonance (see Figure 8b). By

changing the resonant frequency of the element, i.e. by changing its geometry, one can gain control

of the phase of the reflected or transmitted light from the metasurface.

2.1.6 Two-Wire Resonators

One can describe how the surface charges of two neighbouring metallic resonators interact by

employing a coupled-harmonic oscillator model [33], i.e. by introducing an additional ’spring’

between two end-to-end particles, as seen in Figure 6.
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Figure 6: Schematic of two-wire resonators

Figure reproduced from [42]

Neglecting coupling (κ = 0), particle A and B have eigenfrequencies woA =
√
αA/mA and

woB =
√
αB/mB, respectively. If κ 6= 0, the equations of motion for both particle A and B can be

expressed as;

mAẍA + αAxA + κ(xA − xB) = 0 (39)

mBẍB + αBxB − κ(xA − xB) = 0 (40)

The solution to the above equations can be written in the form xi(t) = xoi e
−iw±t, where w± are the

new in-phase and out-of-phase eigenfrequencies. By defining;

wA =
√

(αA + κ)/mA and wB =
√

(αB + κ)/mB (41)

and

Γ =

√
κ/mA ·

√
κ/mB√

wAwB
(42)

we can use our solution to determine these eigenfrequencies to be;

w2
± =

1

2

[
w2
A + w2

B ±
√

(w2
A − wB

2
)2 + 4Γ2wAwB

]
(43)

We can compare the behaviour of these new eigenfrequencies to our original frequency values,

where the motion of the two particles were independent of each other. Figure 7a below illustrates

the frequencies, when varying the elastic constants, of the two particles in the absence of coupling.

Here we set αA = αo, αB = αo + ∆α, and mA = mB = mo. Whiles it’s obvious the frequency
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of particle A’s oscillation is constant, the graph depicts the increase of woB from 0 to
√

2 · wo,

where wo =
√
αo/mo, as ∆α varies from −αo to +αo. The two curved intersect when ∆α = 0.

This crossing characteristic is lost in the presence of strong coupling between the particles, as seen

in Figure 7b. This frequency splitting can be defined by Γ = [w+ − w−], which increases with

the coupling strength (κ), as dictated by Equation 42. This coupling strength is increased with

decreased distance between the two metallic particles.

This coupling between two wire elements over a narrow gap can result in an enhanced, lo-

calised optical near-field within the gap. This near-field coupling between densely packed resonator

elements may lead to digressions from the expected performance of the metasurface device. Simula-

tions often determine the device performance by looking at the response of each individual element,

which, as highlighted in the above argument, is different to the behaviour of strongly coupled sys-

tems. However, many simulations do take into account near-field coupling between neighbouring

resonator elements before designing an appropriate device, as is the case in this thesis. They often

do so by imposing periodic boundary conditions within the simulation software to replicate the

effects of multiple resonator elements in close proximity.
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(a) Eigenfrequencies of uncoupled wire resonators (b) Eigenfrequencies of coupled wire resonators

Figure 7: Eigenfrequencies of uncoupled and coupled resonator elements

Figure reproduced from [42]

2.1.7 Phase & Amplitude Response of Wire Resonators

As previously mentioned, the oscillations of the electron system within the metallic nano-wire can be

described as a damped-driven harmonic oscillator, see Equation 2. As is the case with all harmonic

oscillators, each nano-wire resonator will have an amplitude response and a phase response. The

phase response is of particular importance when considering a metasurface device which attempts

to utilise a spatially varying phase gradient in order to control the propagation path of reflected or

transmitted radiation.

When attempting to analytically describe the amplitude and phase response of each optical

resonator, the incident field can be considered as the driving force in the traditional damped-driven

harmonic oscillator equation, whereas the mass (m) can be considered the effective electron mass

of the system. The equation below re-iterates Equation 2 in Section 2.1.1;

m
...
r +mγr̈ + αr = −eEoeiωt (44)
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where ω is the frequency of the incident light.

We can try r = Aeiωt as a solution to Equation 44, where A is the amplitude of the oscillation

of the electron system. This yields the following expression;

−mω2A+ iωγA+ αA = −eEo (45)

This can be re-expressed to give an equation for the amplitude of the oscillating electron system.

A =
−eEo

α−mω2 + iωγ
(46)

Dividing each term by m, and again noting the expression for the resonant frequency of the system,

ωres =
√
α/m, Equation 46 becomes;

A =
−eEo/m

(ω2
res − ω2) + i(ωγ/m)

=
Eo/m · [(ω2

res − ω2)− iωγ/m]

(ω2
res − ω2)2 + (ωγ/m)2

(47)

Since we are interested in the real part of Equation 47, it is worth noting the expression x+iy = zeiφ,

where z =
√
x2 + y2 and tan φ = y/x. Applying this mathematical statement, we obtain;

(ω2
res − ω2)− iωγ/m =

√
(ω2
res − ω2)2 + (ωγ/m)2 · eiφ (48)

We can use Equation 48 to replace the equivalent term in Equation 47. The particular solution,

rp, of our damped-driven harmonic oscillator system is;

rp = Re{Aeiωt} = Re

{
−eEo/m

√
(ω2
res − ω2)2 + (ωγ/m)2) · eiφ

(ω2
res − ω2)2 + (ωγ/m)2

· eiωt
}

(49)

∴ rp =
−eEo/m√

(ω2
res − ω2)2 + (ωγ/m)2

· cos (ωt+ φ) (50)

The real part of the amplitude response of the harmonic oscillator is therefore given by the following

expression;

A =
−eEo/m√

(ω2
res − ω2)2 + (ωγ/m)2

(51)

while the phase response is given by;

tan φ =
ωγ

m(ω2
res − ω2)

(52)

Figure 8 below provides a visual representation of the relationship between the phase and amplitude

of a harmonic oscillator and the incident frequency. It is evident from the figure that the phase
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of light will vary around the resonant frequency of the oscillator (or optical element). Since we

have already established that the resonant frequency is dependent on the physical dimensions of

the resonator nano-wire, see Section 2.1.5, the resonant frequency of each element can be adjusted

by changing its geometry.

(a) Amplitude response (b) Phase response

Figure 8: Phase and Amplitude response of damped-driven harmonic oscillator

2.2 Fermat’s Principle

Previously, we have stated that the phase of light varies as a result of detuning the optical elements

from their resonant frequency. This allows for abrupt phase shifts along the optical path, over the

scale of the wavelength. The way in which this phase shift presents control over the propagation

path of scattered light can be understood through Fermat’s principle.

Fermat’s principle, also known as the principle of least time, states that a ray of light will

take the path that can be traversed in the least time when traveling between two points A and

B ;
∫ B
A n(~r)dr, where n(~r) is the local refractive index [24]. However, this statement is slightly

incorrect. A more accurate version of the principle is to state that, if one were to make a slight

adjustment to a travelling ray of light, there will only be a second-order change in the time the

light ray would have taken if no such change was made. Therefore, a light ray would travel along a

path such that there are other paths, infinitesimal near, which take the same amount of time (to a

first-order approximation). A way to visually illustrate the relationship between the probability of
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a photon travelling from a point A to a point B, and Fermat’s principle of least time, was elegantly

presented in one of Richard Feynman’s lectures in optics [43]. Feynman devised a scenario where

a light ray was travelling from a point A towards a point B, where it is already known that the

path of least time is through an intermediate point C, see Figure 9a. The properties of any path

that the ray can take can be described by a complex vector, ρeiθ, where the angle θ describes the

phase of the ray, and is proportional to the time that path requires. Every available path has its

own complex vector, which is added onto each other, as conveyed in Figure 9b below. The overall

probability of the photon travelling from A to B is proportional to the square of the length of the

final vector.

(a) Ray Diagram (b) Vector Diagram

Figure 9: Ray and vector diagrams illustrating Fermat’s principle and the summation of the prob-

ability amplitudes for many neighbouring paths

Reprinted with permission from [43]

Looking at the leftmost spiral end of the diagram, consisting of paths with intermediate points

far from C, it is evident that each consecutive path exhibits very different travel times, since the

angles of the composite vectors are very different. However, as the optical path approaches C, the

vectors become more similar, with almost identical angles (phases). These vectors again change

gradually the further they get from C, forming another spiral of vectors in the far right. The

probability amplitudes of the vectors making up the rightmost spiral are equal to the corresponding

vectors making up the leftmost spiral, with opposing direction however. Therefore, when obtaining

the total probability, the two ends of the vector diagram cancel each other out, leading to virtually

no contribution from paths which exhibit very different travel times from each other. Fermat’s
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principle of least time is satisfied, as the resultant probability occurs only in the region where the

vectors are pointing in the same direction, i..e. have the same angle or phase. Hence, the principle

of least time can also be considered as the principle of stationary phase, i.e. the derivative of

the phase accumulated along the real optical path,
∫ B
A dφ(~r), is zero with respect to infinitesimal

changes of the path.

2.2.1 Snell’s Generalised Law

From the principle of stationary phase defined above, one can deduce the generalised Snell’s law

for reflection and refraction [44]. This law illustrates the relationship between the phase variation

along the surface of a boundary between two media, and the angle of reflection or transmittance

from that boundary. Figure 10 below depicts two light rays traversing a boundary separating two

different media, one with refractive index ni, and the other with refractive index nt.

Figure 10: Schematic to derive the generalised Snell’s law

Figure reproduced from [24]

These light rays are separated by an infinitesimally small distance dx. The ray travelling from

point A to point X displays an abrupt phase shift φ at the point of interception. Similarly, the

second ray, from point A to point C, displays a phase shift of φ+ dφ. Since the separation between

the two rays is infinitesimally small, the principle of stationary phase claims that the phases of the

23



two interceptions are equivalent. Additionally, the time it takes for the two rays to reach point B

should be considered equal, therefore, we can draw a perpendicular line from point D to point X,

and a perpendicular line from point E to point C, to show that the lengths DC (hereby denoted

as α), and XE (hereby denoted as β), are equal.

koniα = kontβ (53)

where the wave number, ko = 2π/λo (λo being the wavelength of free space).

Basic geometry offers two additional relationships, sin(θi) · dx = α and sin(θt) · dx = β, where

θi and θt are clearly presented to be the angles of incidence and refraction, respectively. Keeping

in mind that φ = φ+ dφ, the following relation can be computed;

konisin(θi) · dx+ (φ+ dφ) = kontsin(θt) · dx+ φ (54)

Therefore, the generalised Snell’s law for refraction is,

sin(θt)nt − sin(θi)ni =
λo
2π

dφ

dx
(55)

Similarly, the generalised Snell’s law for reflection is,

sin(θr)− sin(θi) =
λo

2πni

dφ

dx
(56)

where θr is the angle of reflection.

Equation 56 above highlights the nonlinear relationship between θr and θi. It is important to

note that, in theory, all impinging radiation is transferred into anomalous reflection and refraction,

since φ is a continuous function of the position along the boundary. However, actual experiments

see the use of discrete optically thin resonators to realise these phase shifts along the interface

between two media, meaning that radiation can also be reflected and refracted in accordance with

the conventional Snell’s law, i.e. where dφ/dx = 0. Thus, the separation between these resonators

has an implication on the efficiency of the metasurface device.

2.3 Vanadium Dioxide (V O2)

The transition metal oxide known as vanadium dioxide (V O2) is a key component of the metasurface

devices proposed in this thesis, see Sections 4 and 5. The inclusion of V O2, or indeed any phase
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change material (PCM), allows for dynamic tunability of the scattered radiation from the devices,

post-fabrication. This will be demonstrated later on.

In the 1950s, a great interest in the metal-to-insulator transition (MIT) in oxides was instigated,

largely due to a paper published by Morin [45]. This excitement was further encouraged by relevant

discoveries that highlighted the potential of MIT oxides to be utilised in a wide variety of applica-

tions. As Morin mentioned, some MIT oxides show a drastic change in certain material properties

due to heating or cooling across the transition temperature (TMIT ). For example, the electrical

resistance of vanadium oxides (such as vanadium monoxide (V O), dioxide (V O2), and sesquioxide

(V2O3)) can change by several orders of magnitude [28, 45]. In addition, V O2 also demonstrates

a significant change in its optical properties (refractive index and extinction coefficient) when it

transitions from its monoclinic to its rutile state, see Figure 25 in Section 5.2. These impressive

changes in material properties occur at a low transition temperature (≈ 340K in bulk crystals)

relative to other PCMs, as previously mentioned in Section 1.1. The timescale of this transition is

shown to be in the picosecond range by multiple experiments using various measuring techniques,

such as optical pump-probe [46, 47], time-resolved x-ray diffraction [48, 49], and terahertz spec-

troscopy [50, 51]. A transition to the higher resistance state caused by Joule heating could take

longer, of the order of one hundred nanoseconds, in accordance with heat dissipation time [52].

There exist many models to try and describe why these MIT transitions occur. One such model,

known as Mott’s theory [53, 54], states that every one of these materials has a unique critical

carrier density (nc), which is related to the Bohr radius (aH) of the material by the expression

n
1/3
c ·aH ≈ 0.2. A phase transition is said to occur, due to a process known as correlation (electron-

electron interactions), once the charge carrier density is greater than nc. Materials which seem to

follow this type of transition are known as Mott-Hubbard insulators. However, some MIT have

been found to occur as a result of electron-phonon interactions, known as Peierls MIT [55]. In this

situation, materials exhibit a band structural change due to lattice deformations, which alters the

material’s periodic ionic potential and thus results in the band structural change.

The mechanism in which V O2 undergoes a MIT has been long under debate. Along with the

drastic changes in material properties discussed above, V O2 undergoes a physical structural change

from a monoclinic (MoO2) insulating phase (M1) to a rutile (tetragonal) metallic phase (R). This

structural change maybe the cause of the MIT that occurs in V O2, making it a Peierls type material.
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However, its possible this structural change just accompanies a charge carrier-induced MIT, in

which case V O2 would be classified as a Mott-Hubbard type material. In the 1970s, band-splitting

alignment analysis performed by Zylbersztejn and Mott [56] lead to the suggestion that V O2 may

not be a simple Mott-Hubbard insulator. The idea that V O2 was not a Mott-Hubbard insulator

was later supported by later works [57] in the 1990s. Local density approximation calculations on

the monoclinic structure of V O2 depicted a very small number of carriers, leading them to believe

V O2 was more likely a band insulator. Contributions from other works [58] led to slightly different

insights, but also concluded that the M1 phase of V O2 is not the Mott-Hubbard type, though the

exact nature of the transition is yet to be completely agreed upon.

Although the application of heat is possibly the most frequently used technique to trigger the

phase transition in V O2, there are numerous other methods which can be exploited. These include

strain [59], magnetic [60], optical [60, 61] and electrical excitations [60, 62].
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Chapter 3

3 Simulation Method

The metasurface devices presented in Sections 4 and 5 were simulated using finite-difference time

domain (FDTD) Lumerical simulations. FDTD is a computational modelling technique which can

be used to solve complex electromagnetic problems involving Maxwell’s equations. This numerical

analysis technique is widely used in various scientific disciplines that involve electrodynamics. It

was first proposed by K.S. Yee [63] in 1966, and was later improved by Taflove in the 1970s [64, 65].

FDTD works by discretising Maxwell’s curl equations using the central difference approximation,

in both the time and spatial domains [66]. This provides an advantage over simulations that

only approximate solutions to systems of differential equations in the frequency domain, as they

are ineffective in modelling transient phenomena. After these curl equations are discretised, a

leapfrog scheme is used to determine the electric and magnetic field distribution at each time

step. This provides visualisations of the interaction between electromagnetic radiation and matter.

FDTD has been used in various past works to compute the phase response, and therefore angle of

reflection/transmission, of metamaterials [2, 3, 12]. In many cases, the obtained theoretical results

are demonstrated to be excellent approximations of the corresponding fabricated devices [2].

When setting 3D simulations, a 3D grid is used. This grid is composed of unit cells, where the

electromagnetic fields are located. The length, width and height of a unit cell are denoted ∆x, ∆y,

and ∆z, which are known as the resolution parameters. In general, the length of the resolution

parameters are very similar to each other, which minimises potential issues during simulations.

The grid is known as a co-located grid when the field components are located at a common point

within the cell, e.g. at the origin. Though this set-up seems intuitive, there are multiple issues

with this method, including the inability to satisfy the boundary condition of Maxwell’s equations.

In addition, co-located grids do not render the divergence equations as zero when trying to resolve

the electric and magnetic field distributions. An alternative, and more effective method is the Yee

grid, which staggers our field components throughout the unit cell. In this type of grid, each field

components is set in a different location around the unit cell, as shown in Figure 12. Each field

component is also offset from the origin by half the unit cell. In contrast to the co-located grid

set-up, the Yee grid can neglect the divergence equations when approximating the curl operation
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with finite differences, i.e. ∆ · (ε ~E) = 0, and ∆ · (µ ~H) = 0.

Maxwell’s curl equations are slightly modified in these operations, due to the presence of a

normalisation factor; ~Hn =
√
µo/εo · ~H. This factor is necessary as the amplitude of the electric

and magnetic field vectors can differ by several orders of magnitude. If this substantial difference

is left unaddressed, the program may incorporate random rounding errors within its calculations,

jeopardising the accuracy of the simulation. The more ’numerically-robust’ curl equations are

expressed as;

∆ x ~E =
−µr
c

∂ ~Hn

∂t
and ∆ x ~Hn =

εr
c

∂ ~E

∂t
(57)

Assuming a diagonal isotropic material (i.e., εij = 0 and µij = 0, where i 6= j), Equations 57 can

be expanded into six partial differential equations that are a function of both time and space. We

will representatively convert the first partial derivative of the electric field equation, and the first

partial derivative of the magnetic field equation, into finite difference form.

The first partial electric field equation (the Hx equation) can be written as;

∂Ez
∂y
− ∂Ey

∂z
=
−µxx
c

∂Hn,x

∂t
(58)

where µxx is the permeability at the same position as Hx in the Yee grid.

The above equation is composed of two spatial partial derivatives (left) and one partial derivative

in time (right). We can first estimate the spatial derivatives in the right using the central finite

difference method. Figure 12a below provides a visual representation of the operation. The left-

hand side of Equation 58 now becomes;

Ei,j+1,k
z |t − Ei,j,kz |t

∆y
− Ei,j,k+1

y |t − Ei,j,ky |t
∆z

=
−µi,j,kxx

c

∂H i,j,k
n,x

∂t
(59)

Note that every term in the above equation is evaluated at the same time-step (t). The first term

depicts the Ez component from the next adjacent unit cell (faint blue arrow in Figure 12a being

subtracted from the Ez component from the original cell (solid blue arrow in Figure 12a, as these

two components surround the Hx component of the magnetic field. This difference is then divided

by the distance between them (∆y). This procedure is repeated in the second term, now focusing

on the other two electric field components surrounding the Hx component of the magnetic field,

i.e. the Ey component from the above unit cell and the Ey component from the original unit cell.
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Now that we have approximate solutions for the spatial derivative terms, let us now focus on

the time derivative on the right hand side of Equation 59. In order to do this, we need to know

how the ~E and ~H fields are defined to be separated by half a time step. We want to compute the

derivative of Hx with respect to time, so as to conserve the time-step in each of the terms in our

equation. To ensure the derivative is defined at Eα|t (where α is either x, y or z), we must get the

difference between Hx at t+ ∆t/2 and Hx at t−∆t/2, as illustrated in the schematic below.

Figure 11: Leapfrog Diagram

Equation 59 can now be re-expressed as;

Ei,j+1,k
z |t − Ei,j,kz |t

∆y
− Ei,j,k+1

y |t − Ei,j,ky |t
∆z

=
−µi,j,kxx

c

H i,j,k
n,x |t+∆t/2 −H

i,j,k
n,x |t−∆t/2

∆t
(60)

The coupled scalar differential equation 58 has now been converted into a finite difference equation

60, by discretising the equation in both space and time. The above equation is much easier to deal

with.

We can discretise the first partial magnetic field equation (the Ex equation) in a similar fashion.

As illustrated by Figure 12b, the two field components that are to be used in the central finite

difference method are Hz and Hy of the original unit cell, Hy of the below unit cell, and Hz of the

previous adjacent unit cell. These are the components of the magnetic field which surround the Ex

component of the electric field. Using the same leapfrog time scheme portrayed by Figure 11, the

finite difference Ex can be computed.

H i,j,k
n,z |t+∆t/2 −H

i,j−1,k
n,z |t+∆t/2

∆y
−
H i,j,k
n,y |t+∆t/2 −H

i,j,k−1
n,y |t+∆t/2

∆z
=
εi,j,kxx

c

Ei,j,kx |t+∆t − Ei,j,kx |t
∆t

(61)

This computation can be repeated for the other four scalar differential equations obtained from

Equations 57. The program can purposefully neglect to simulate electromagnetic propagation in
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certain directions, depending on whether the simulation is in 1D, 2D or 3D space. Selecting a lower

dimension may save considerable simulation time, however, less information is represented.

(a) Diagram to visualise discretising Hx field (b) Diagram to visualise discretising Hx field

Figure 12: Yee grid for Hx and Ex field components

The finite difference equations can then be used to formulate a set of ’update’ equations, which

can be used to simulate electromagnetic radiation traversing through space and time. The FDTD

program initially sets both the electric and magnetic field to zero. A source is introduced in the

program in order to generate a non-zero electric and magnetic field. The ~E and ~H fields are

updated (based on the update equations) from one another, i.e. the ~E field is updated from the

curl of the ~H field, then the ~H is updated from the curl of the ~E field. This process is iterated

through time. This mechanism is the basic requirement for generating a simulated electromagnetic

field propagating through a grid.

The update equations for the Ex component of the electric field is obtained from Equation 61;

Ei,j,kx |t+∆t = Ei,j,kx |t +
∆t · c
εi,j,kxx

(
H i,j,k
n,z |t+∆t/2 −H

i,j−1,k
n,z |t+∆t/2

∆y
−
H i,j,k
n,y |t+∆t/2 −H

i,j,k−1
n,y |t+∆t/2

∆z

)
(62)

while the update equation for the Hx component of the magnetic field is obtained from Equation

60;

H i,j,k
n,x |t+∆t/2 = H i,j,k

n,x |t−∆t/2 −
∆t · c
µi,j,kxx

(
Ei,j+1,k
z |t − Ei,j,kz |t

∆y
− Ei,j,k+1

y |t − Ei,j,ky |t
∆z

)
(63)
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By inserting various object in the FDTD simulation, one can observe how these materials interact

with electromagnetic radiation. Through this method, one can predict the optical properties of

metasurface devices, such as the reflectance spectra, transmission spectra, phase response for various

wavelengths, far-field plots, and electric and magnetic field distributions, to name a few.

Though the Yee grid is very effective in simulating propagating electromagnetic radiation, there

are some consequences of having the field components located in physically different directions.

One possible issue is that the field components within the same grid cell can reside in different

materials. The program accounts for this by creating unique arrays for εxx, εyy, and εzz, which

must be constructed separately. The grids also cause wave propagation to occur slightly slower

than in real life, a phenomenon known as numerical dispersion. This issue is resolved by decreasing

the values of µr and εr by a factor of γ across the entire grid, i.e. µ
′
r = µr/γ and ε

′
r = εr/γ. Despite

these intrinsic consequences that arise due to the composition of the Yee grid, the program accounts

for these flaws well, and can produce results to great accuracy, as demonstrated by various works

that have compared their FDTD simulated results to their experimental results [2].
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Chapter 4

4 Spatially Varied Resonator Geometries

4.1 Introduction

The aim of this section is to optimise the design for a metal-insulator-metal (MIM) beam-steering

metasurface device where the resonator elements are long wires, such that the length of the wire is

much greater than the width (L>>W). This type of resonator is selected as the optical properties of

such a device can be simulated with 2D simulations, where the length of the wire is ‘infinitely’ large

in comparison to the width. This would require significantly less computational time. A device

is said to have a MIM structure when the sub-wavelength resonator elements sit upon a dielectric

medium, which in turn sits upon a bottom back-reflector. See Figure 14 for the schematic of

the MIM beam-steering metasurface structure. The optical response of three different metals are

investigated in order to determine which metals are most suitable for the different components of

the metasurface. Once the optimum device structure is established, a beam-steering device will be

proposed, which will be capable of anomalous reflection when subject to normal incident radiation.

In order for our metasurface structure to be able to achieve anomalous reflection at any desired

angle, we must design them such that they are able to ’mould’ the reflected wavefronts into arbi-

trary shapes. As depicted by the generalised Snell’s law (Equation 56) in Section 2.2.1, this can

be done by controlling the phase of light at every point along the surface of the device. The res-

onator elements can produce a spatially varied phase response through variations in their geometric

dimensions. Section 2.1.5 highlighted the resonant frequency, and therefore resonant wavelength

(λres), of an optical resonator to be a function of its physical dimensions. This resonant wave-

length is one of the factors which determines the phase of the reflected light, should the optical

resonator element be approximated as a damped-driven harmonic oscillator. This approximation

can be made with confidence for Drude-like metals, where the oscillation of the electron system

within surface plasmons can be described by simple harmonic motion. Using the relationship,

cos(φ) = 1/
√

1 + tan(φ), Equation 52 from Section 2.1.7, which described the phase response of a

single resonator element, can be re-written to express φ in terms of the incident wavelength (λ),

λres, and the damping coefficient (β). The β term is a factor which inhibits electron oscillation and
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accounts for the energy dissipation on the system. We are making the assumption that β/λ << 1,

i.e. the damping factor has a smaller effect on the system compared to the driving force of the

incident radiation.

cos(φ) =
4π2c2(λ2 − λ2

res)

λ2 · λ2
res

√
16π4c4(λ2−λ2res)2

λ4·λ4res
+ 4π2c2β2

λ2

(64)

In order to easily visualise the relationship between the phase response of a single optical

resonator, and its resonant wavelength, we can plot φ vs λres, see Figure 13 below. We can see that

the phase response of the element increases, in a sigmoid-like manner, as the resonant wavelength

increases. The red curve plots the function where all coefficients, constants, and variables are set

to 1. The other curves differ in the value of the damping coefficient, Evidently, increasing the value

of the damping coefficient ’warps’ and ’stretches’ out the function around the point of inflection. It

seems that resonator materials with a greater damping coefficient will exhibit lower overall phase

shifts (phase difference between an element with a low resonant wavelength and that with a high

resonant wavelength).

Figure 13: Phase vs resonant wavelength from Equation (64) for various β values.

Classically, the resonance within antenna-like elements is described to occur when the length of
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the element is equal to a multiple of the incident wavelength, i.e. L = const · λ [67, 68]. However,

in the optical frequency regime, this incident wavelength needs to be replaced by a shorter effective

resonant wavelength, which is a function of the antenna’s geometry, optical properties (ε), and

plasma wavelength (λp) [67, 69]. Mie theory, describing the absorption within spherical metallic

nano-particles, shows that the resonance wavelength is also influenced by the dielectric constant of

the material surrounding the resonator element, hereby known as the medium dielectric constant

(εm) [70, 71, 72]. This is also disclosed by the Gans’ equation, which is an extension of the Mie

theory and can be applied for ellipsoidal particles [73]. Indeed, a general expression describing

the absorption profile for a small metallic particle of arbitrary shape is analogous to the Gan’s

equation [74]. Many works have demonstrated the linear relationship between λres and the length

of a thin metallic cylindrical resonator element (L) [67, 71]. F. Neubrech et al. demonstrated that

the resonant behaviour and extinction cross-section of a rectangular nanowire were almost identical

to that of perfectly cylindrical nanowires [69]. The devices presented in this work will employ thin,

long rectangular nanowires. Analogous to [69], the optical properties of the rectangular nanowires

are shown to be similar to that of thin cylindrical elements presented in other works. Note that the

linear relationship between antenna length and resonant wavelength is seen when the polarisation

of light is such that the electric field lies along the long axis of the antenna element. In the case

where the electric field lies along the width of the antenna element, we would expect the resonant

wavelength to now increase linearly with increased wire width.

We will compare the optical performances of three different metals; the noble metals gold (Au)

and silver (Ag), as well as the base metal aluminium (Al). These metals were selected as they

are all well described by the Drude model [35]. Though it is true that Au, Ag, and Al diverge

from a pure Drude-like behaviour at roughly 500 nm, 300 nm, and 800 nm incident wavelength,

respectively, this is beyond our wavelength range of interest. In order to optimise the design for

the MIM metasurface structure, we must explore which combinations of metals achieve the largest

overall phase shift across the surface of the device. By investigating the resonant wavelength of each

wire element we can get a better understanding of the expected phase response of the resonator.

Though the devices presented in this paper will be capable of achieving relatively large angles

of anomalous reflection, it is useful to allow for post-fabrication control of the reflected radiation.

This is done by introducing a thin layer of V O2 in between the two metals of our metasurface. We
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will exploit the phase changing properties of V O2, described in Section 2.3, to be able to switch

from anomalous reflection (when the V O2 is in its monoclinic state) to specular reflection (when

the V O2 is in its rutile state) and vice versa. As mentioned in Section 1.1, such post-fabrication

switching has been demonstrated by previous works utilising alternative PCMs, such as Ge2Sb2Tes

(GST ) [22, 27]. However, since the transition temperate for V O2 is significantly lower than that

for GST (∼ 68◦ as opposed to ∼ 145◦ ), V O2 is a far more energy efficient option. V O2 based

structures have been previously utilised for colour tuning and colour switching applications [75],

phase modulation [2], polarisation control [76], as well as a dynamically controlled phased array

based on a slot nano-antenna design [3].

4.2 Device Design & Simulation Set-up

Figure 14a is a schematic of the cross-sectional area of a single resonator element hoisted by our

proposed metasurface device structure. The device contains a 45 nm thick metallic caps, which

rests upon a 20 nm layer of V O2. The dielectric substrate material is a 20 nm thick layer of SiO2,

which is followed by a 100 nm thick metallic back-reflector. A thin layer of Ti (2 nm thick) is used

as an adhesive agent between each top metallic wire and V O2. The period (∆x) of each resonator

element is 500 nm. As previously mentioned, the length (L) of the resonator element is such that

L >> W . The optical properties of this set-up is explored for the various cap materials, i.e. Au,

Ag, and Al. The material of the back-reflector will also vary between these three selected metals.
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(a) (b)

Figure 14: Schematic of MIM metasurface structure for device with spatially varied resonator

elements

(a) Cross-section of a device containing a single resonator element. The material of the top wire

element and bottom back-reflector will change between Au, Ag, and Al. (b) Cross-section of the

full metasurface structure, containing five resonator elements of different widths.

Figure 14b is a schematic of the cross-sectional area of the full beam-steering device. This device

is analogous to that presented in Figure 14a, but will contain five resonator elements, differing in

wire length. The length of each consecutive wire gradually increases, and since the period of each

resonator remains 500 nm, the separation between each wire decreases. As discussed in Section

2.1.6, the smaller gaps between neighbouring wires will contribute to strong near-field coupling.

When setting our FDTD simulations, a plane wave source is set at normal incidence to the

surface of our device structure. The polarisation of light is such that the electric field is parallel

to the width (W ) of the resonator element (i.e. along the x-direction). When investigating the

optical response of structures which exhibit near-field coupling, periodic boundary conditions are

applied in the x-direction, while perfectly matched layers (PML) are applied in the y-direction.

When investigating the resonant wavelength for a single wire element, PML boundary conditions

are applied in both the x and y-directions.

Note that for this specficic device set-up, it is easier to see how a change in the wire width

effects the resonant wavelength of the device, when the electric field is along the x-direction. If

we were to polarise the light such that the electric field lies along the long axis of the resonator

element (along the z-direction), a change in the wire width would cause little change in the aspect

ratio (L/W ), since L >> W , and thus a less obvious change in the resonant wavelength. Although
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historically, papers have avoided exploiting the transverse plasmonic resonance due to the lower

light intensity it produces [77], this was necessary for a comparative study to explore the suitability

of different metals for the various components of the beam-steering device, especially given the long

wire structure of our resonator element. This wire structure was selected due to the advantage that

it can be investigated using 2D simulations, which is significantly faster than the equivalent 3D

simulation. In addition, the macro-scale length of the resonator element would make it far easier

to fabricate using common laboratory techniques. However, we compromise the device efficiency in

favour for these advantages, which we will discuss in more detail later on.

The material properties for V O2 were obtained from [78]. The properties for Au, Ag, and Al

were obtained from [79], while the properties for Ti were obtained from [80].

4.3 Optical Properties of Different Metals

(a) Real permittivity for Au, Ag, and Al (b) Imaginary permittivity for Au, Ag, and Al

Figure 15: Real and Imaginary permittivity for Au, Ag, and Al

Optical properties obtained from [78]

Figure 15 illustrates the real and imaginary permittivity of the various metals we will be investi-

gating. Evidently, the real permittivity of Al is relatively close to that for Au and Ag at smaller

wavelengths. However, as the incident wavelength becomes larger, the real permittivity value di-

verges further from Au and Ag, with a substantial difference at λ = 1600 nm. The real component
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of the permittivity for Au and Ag is almost the same, with Re(ε) for Au being very slightly higher

for all wavelengths in this range.

This gives a good insight into the expected performance of each material. Gans’ equation for

small ellipsoidal particles, as well as Fuchs’ equation for cubic particles [73, 81] suggest that the

resonant wavelength decreases with larger |Re(ε)| values. Since |Re(ε)| for Al is larger, we would

expect the resonant wavelength for any device hosting an Al top wire to be lower than if the wires

were made from Au or Ag, particularly at larger incident wavelengths. Since |Re(ε)| for Au and

Ag is almost the same across all incident wavelengths, we would expect the resonant wavelength

for devices hosting Au and Ag wires to be almost identical, with that for Au being very slightly

higher.

The imaginary component of the permittivity for all materials can be used to infer which

material is the most lossy. Ohmic absorption is proportional to the material conductivity σ(ω),

which can be related to the permittivity by; Im(ε) = σ(ω)
εo·ω [33, 36]. Therefore, materials with

higher imaginary parts of their permittivity would exhibit higher intrinsic Ohmic losses. Figure

27b depicts Al to be the most lossy material, with Ag as the least lossy (though Im(ε) for Au

and Ag are very similar). This would be particularly useful to consider for the top wire element

of the device. It is less important to consider the loss which occurs in the bottom back-reflector,

as we would expect less penetration of radiation this deep within the structure. Note that Im(ε)

is not just useful to describe Ohmic losses within the resonator material, but it also influenced

the position of its resonant wavelength. However, the effects of Re(ε) on the resonant wavelength

dominates.

4.4 Results & Discussion

4.4.1 Comparison of Various Metallic Cap Material with Au Back-Reflector

We will start our investigation by comparing the optical response of three devices, differing only

in the material for the top resonator element (wire). The back-reflector for all devices will be

Au. Figure 16a-16c presents the reflectance spectra for devices containing a single Au, Ag, and Al

resonator element respectively. This is done for various wire width. Note that since the electric

field lies along the x-direction, we see the resonant wavelength redshift with increased wire width.

If the polarisation of light was such that the electric field was along the length of the resonator
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element (z-direction), we would expect to see a blueshift as the width increases, as this would cause

a decrease in the resonator aspect ratio.

The resonant wavelength can be taken as the lowest point of reflection, where the absorption

is maximum. The insets of of each plot depicts the relationship between the resonant wavelength

and the wire width. As expected, the relationship for all wire materials is linear.

(a) Reflectance spectra for Au wire and Au back-

reflector

(b) Reflectance spectra for Ag wire and Au back-

reflector

(c) Reflectance spectra for Al wire and Au back-

reflector

(d) λres vs L for all wire materials and Au back-

reflector

Figure 16: Reflectance spectra and resonant wavelength for all wire materials and Ag back-reflector

Figure 16d provides a direct comparison of λres vs W for the various metals. As previously

discussed, this will give a good indication as to which wire material will provide the largest phase

shift across the device structure. Clearly, λres for Al is lower than that for Au and Ag. The
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difference between their resonant wavelengths starts off small, with a ∼ 3% difference at 120 nm

wire length, but becomes more substantial as the wire length increases, with a ∼ 5% difference at

240 nm wire length. This results in a lower slope (m) of the linear plot, λres vs W , for Al than

that for Au and Ag.

From Equation 64 and Figure 13, we can see that the phase response of each wire element

increases with a greater resonant wavelength. Since there is a linear relationship between λres

and W , we can relate them using the equation of a line; λres = c + m · W , where c is the y-

intercept. Increasing the value of m would effectively ’stretch’ the plot in Figure 13 about the point

of inflection along the y-direction. This would result in a greater phase shift (difference between φ

at a point of low λres and high λres). Note here that we are not yet considering the impact that

the damping coefficient, β, has upon the shape of the φ vs λres plot. Since the slope of λres vs W

for a device containing an Al wire is significantly lower than that for an Au and Ag wire, we would

also expect the overall phase shift between a wire of small length (small λres) and a wire of large

length (large λres) to be lower than that for Au and Ag.

Since the difference between λres for Au and Ag is essentially negligible across all wire widths,

we would expect the phase shift between Au wires of small and large lengths to be almost identical

to that produced by Ag wires. This is not surprising, given the chemical and optical similarities

between Au and Ag in the NIR [82]. It is interesting to note that this similarity between Au and

Ag is not seen at extremely low wire dimensions, i.e. below 5 nm length [83]. Here, Ag nanowires

were found to exhibit resonant peaks, while Au nanowires of the same dimension didn’t. This is a

result of interband transitions, which are closer to the Fermi energy level in Au than in Ag [84].

Having discussed the impact that λres has upon the overall phase shift across the surface of the

device, we can now look at the influence of β. As discussed in Section 4, and presented in Figure

13, a higher damping coefficient leads to a gentler slope at the point of rapid phase increase, thus

resulting in a lower overall phase shift between points of low λres (small wire width) and high λres

(large wire width). Since Im(ε) is related to the loss of the material, which is represented by β, we

would expect the most lossy of the three metals to exhibit the highest β value. Section 4.3 depicted

Al to have the largest Im(ε) across the NIR, and thus the largest β. This reinforces the expectation

for a device containing Al wires to produce the lowest phase shift. Since Im(ε) for Au and Ag are

very similar, their damping coefficients are expected to be virtually the same.
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Figure 17: Phase vs wire width for all materials with an Au back-reflector

Inset shows close-up comparison of Au and Ag wires

Figure 17 presents the relationship between the phase response and wire width for each resonator

material at a representative incident wavelength of 1550 nm. From these plots, we can see which

element materials result in the largest phase shift between a wire of small width (100 nm) and a

wire of large width (490 nm), see Table 1. These results confirm our expectations for Al wires to

exhibit the lowest phase shift, and Au and Ag wires to exhibit the highest. The phase shift for Au

and Ag wires is indeed almost equal, with a negligible difference.

Table 1: Total Phase Shift for Devices Containing Au Back-Reflector

Material Au Ag Al

∆φ (◦) 313.7 313.4 309.6

These results present Au and Ag to be the most suitable materials as the top resonator elements,

for devices containing anAu back-reflector. Though we suspect changing the material of the metallic

back-reflector to have a major impact on the device performance (since the dielectric constant of

the medium surrounding the resonator element, εm, changes), all devices should consistently depict

Au and Ag as the superior resonator material, regardless of the material of the back-reflector.
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4.4.2 Comparison of Various Metallic Cap Material with Ag Back-Reflector

We will analyse exactly how the phase shift achieved by our devices is affected by changing the

material of the back-reflector from Au to Ag. Since the optical properties of Au and Ag have been

shown to be similar in the wavelength range of interest, we would expect ∆φ for these devices to

also be similar to the results attained when using an Au back-reflector.

Figure 18a-18c illustrate the reflectance spectra for devices containing a single Au, Ag, and Al

resonator element respectively for various wire lengths. Again, the insets of each graph convey the

linear relationship between λres and W for all wire materials. Analogous to Figure 16d, Figure

18d provides a comparison for λres vs W for the various wire materials. Yet again, the slope (m)

for Al is significantly lower than that for Au and Ag. The slope for λres vs W for Au is again

almost identical to that for Ag, depicting both Au and Ag to be the most suitable materials for

the resonator element, and Al as the least suitable.
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(a) Reflectance spectra for Au wire and Ag back-

reflector

(b) Reflectance spectra for Ag wire and Ag back-

reflector

(c) Reflectance spectra for Al wire and Ag back-

reflector

(d) λres vs L for all wire materials and Ag back-

reflector

Figure 18: Reflectance spectra and resonant wavelength for all wire materials and Ag back-reflector

It is important to note that the resonant wavelengths for all three devices containing an Ag back-

reflector are lower than those which contain an Au back-reflector. This difference is attributed to a

change in εm. Since the permittivity of Ag is slightly lower than that of Au, εm slightly decreases

when the material of the back-reflector is changed from Au to Ag. S. Link et al. highlighted

the linear relationship between λres and εm [71]. They demonstrated that the position of the

resonant wavelength increases as εm increased. Since εm slightly decreases when replacing the

Au back-reflector with Ag in the NIR, it is no surprise that λres for all devices containing an

Ag back-reflector is slightly lower than the corresponding devices containing an Au back-reflector.
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This decrease in λres leads to a consequential decrease in φ across all wire lengths. However, it is

important to note that the decrease in φ becomes less and less extreme as the wire width increases.

As a result, the overall phase response should be lower for small wire widths, but roughly the same

as that for devices containing an Au back-reflector for large wire widths.

(a) Phase vs wire length for all materials with an Ag

back-reflector. Inset shows close-up comparison of

Au and Ag wires

(b) Comparing phase vs wire length for Au wire with an

Au and Ag back-reflector.

Figure 19: (a) Phase response vs wire length for all materials with an Ag back-reflector. (b)

Comparison of phase vs wire length for device containing Au wire with Au and Ag back-reflector

Figure 19a illustrates the phase response for all resonator materials across the various wire

widths for devices containing an Ag back-reflector. The overall phase shifts between a wire of small

width (100 nm) and a wire of large width (490 nm) for the various resonator materials is presented

in Table 2. Again, ∆φ for Au and Ag wires are roughly the same, and considerably higher than

that for devices containing Al wires. The results also depict ∆φ for the devices containing an Ag

back-reflector to be higher than those which contain an Au back-reflector. This is as the phase

response for devices containing an Ag back-reflector is significantly lower at small wire widths, but

roughly the same as those which contain an Au back-reflector at large wire widths, leading to an

overall larger phase shift, as can be seen in Figure 19b. The bottom graph compares the phase

response of a device containing Au wires and an Au back-reflector to that which contains Au wires

and an Ag back-reflector, at the small wire width scale. The difference between φ for the two plots

is ∼ 0.2% at a wire width of 100 nm. The top graph compares the phase response of the two devices

44



in the large wire wdith scale, which highlights the difference in φ at a wire width of 490 nm to only

be ∼ 0.02%, ten times lower than seen at smaller wire widths.

Table 2: Total Phase Shift for Devices Containing Ag Back-Reflector

Material Au Ag Al

∆φ (◦) 313.9 313.7 309.8

4.4.3 Comparison of Various Metallic Cap Material with Al Back-Reflector

Finally, we will perform the same comparative study, but this time looking at devices which contain

an Al back-reflector. Figure 20a-20c show the reflectance spectra for devices hoisting a single Au,

Ag, and Al resonator element. The insets again depict the linear relationship between the wire

width and transverse resonant wavelength. Yet again, λres for a device containing an Au wire is

almost identical to that containing an Ag wire, and considerably higher than that containing an

Al wire, across all wire widths, as seen in Figure 20d.
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(a) Reflectance spectra for Au wire and Al back-

reflector

(b) Reflectance spectra for Ag wire and Al back-

reflector

(c) Reflectance spectra for Al wire and Al back-

reflector

(d) λres vs L for all wire materials and Al back-

reflector

Figure 20: Reflectance spectra and resonant wavelength for all wire materials and Al back-reflector

Due to this resonant behaviour, Au and Ag can be considered as the most suitable reflect

array metals, while Al is found to be the least suitable. Figure 21a and Table 3, which depicts the

overall phase shift between a wire width of 100 nm and a wire width of 490 nm, for the three devices

containing an Al back-reflector, supports these findings. This table also conveys that ∆φ for devices

containing an Al back-reflector is higher than those which contain an Au or Ag back-reflector (see

Table 1 and 2).
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(a) Phase vs wire length for all materials with an Al

back-reflector. Inset shows close-up comparison of

Au and Ag wires

(b) Comparing phase vs wire length for Au wire with an

Au, Ag, and Al back-reflector.

Figure 21: (a) Phase response vs wire length for all materials with an Al back-reflector. (b)

Comparison of phase vs wire length for device containing Au wire with Au, Ag, and Al back-

reflector

The significantly lower permittivity of Al compared to that of Au and Ag suggests that εm for

devices containing an Al back-reflector would be significantly lower than that of an analogous device

containing an Au or Ag back-reflector. However, the difference this εm has upon the phase response

at high wire widths is minuscule, especially when compared to the difference εm makes at lower

wire widths. This is illustrated in Figure 21b, which depicts the phase response of three devices.

All devices contain an Au resonator elements, but differ in the material of the back-reflector. The

lower graph shows the difference in the phase response at smaller wire widths, while the upper

graph shows the difference in the phase response at larger wire widths. At a wire width of 100 nm,

there is a ∼ 3% difference in φ between a device containing an Au wire and Al back-reflector to

that which contains an Au wire and Au back-reflector (see lower graph of Figure 21b). This phase

discrepancy is roughly ten times higher than seen at wire widths of 490 nm, where the difference

in φ between a device containing an Au wire and Al back-reflector to that which contains an Au

wire and Au back-reflector is ∼ 0.3% (see upper graph of Figure 21b).

Due to its substantially lower permittivity, Al can be regarded as the most suitable back-reflector

of our MIM beam-steering device. This is as the lower permittivity of Al leads to lower εm, which
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Table 3: Total Phase Shift for Devices Containing Al Back-Reflector

Material Au Ag Al

∆φ (◦) 317.5 317.3 313.4

has a considerable influence on φ at small wire widths, but little effect at large wire widths.

4.5 Proposed Beam-Steering Device

Now that we have established the most suitable materials as the top resonator element and bottom

back-reflector, we can proceed to designing a MIM metasurface beam-steering device. This device

will be capable of switching between anomalous reflection and specular reflection due to the phase

changing properties of V O2. Though our findings suggest both Au and Ag to be equally as suitable

as the resonator element, we will utilise Au due to its higher melting temperature [85]. The back-

reflector material will be Al. Figure 14b illustrates the transverse cross-section of this device set-up.

Figure 22a illustrated the phase response for our device at each wire width, when the V O2 is

in its monoclinic and rutile phase. The device is subject to normal incident radiation, where λ =

1550 nm. The overall phase shift when the V O2 component is in its monoclinic state is ∼ 317.5◦.

In contrast, the phase response is roughly constant when the V O2 is in its rutile state.

We will choose our device to host five resonator elements, differing only in wire width. We need

to carefully elaborate over the width of each wire so that our device will exhibit a constant phase

shift between each consecutive wire. This will establish a linear phase profile across the device

surface, as shown by the black plot in Figure 22b. Each point on the plot represents the position

of the centre of each resonator element. The red plot in Figure 22b depicts the near constant

phase response across the device surface when the V O2 is in its rutile state. The wire width and

corresponding phase response for each resonator is presented in Table 4.
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(a) Phase vs wire length for monoclinic and rutile V O2 (b) Phase vs surface position for monoclinic and rutile V O2

Figure 22: Phase vs wire width and surface position for purposed MIM metasurface beam-steering

device.

Table 4: Wire Widths and Corresponding Phase Response for Full Device

Wire Width (nm) 100 233.5 247 260 490

φ (◦) -146.7 -68.2 11.9 90.6 170.8

The generalised Snell’s law, given by Equation 56, allows us to theoretically predict the angle

of anomalous reflection that our device can realise when the V O2 is in its monoclinic state. The

calculation suggests an anomalous reflection angle of ∼ 40◦. Since the phase profile across the

surface of the device is roughly constant when V O2 is in its rutile state, ∆φ in Equation 56 is ∼ 0,

and specular mirror-like reflection is achieved. Therefore, by heating the V O2 component of the

metasurface, one can switch between anomalous and specular reflection. As discussed in Section 2.3,

this switching occurs once the transition temperature is reached. The switching is also reversible

upon cooling. Works such as [2] have demonstrated the phase switching within sub-wavelength

V O2 wires, of similar dimensions, experimentally using resistive heating.
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Figure 23: Normalised far-field plots for purposed metasurface device for monoclinic and rutile

V O2

Figure 23 shows the far-field plots of our device set-up to be in good agreement with our

theoretical predictions of θr for both monoclinic and rutile phases of V O2.

In order to visualise the penetration depth of radiation within our device, Figure 24 depicts

the transverse cross-section of the magnetic field distribution within the metasurface for both

monoclinic and rutile phases of V O2. Both the left and right panels depict the field to be primarily

confined within the wire element of the device, with little radiation present within the Al back-

reflector. This implies that the back-reflector should have little impact on the efficiency of the

proposed device, despite the higher intrinsic Ohmic losses of Al. The figure presents the material

of the top reflect-array wire to have a bigger affect on the efficiency of the beam-steering device.
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Figure 24: Transverse cross-section of magnetic field-distribution within device containing mono-

clinic and rutile V O2

As previously mentioned, since we utilise the transverse surface plasmons of our resonator

element, the reflectance of light is relatively low. Evidently, the reflectance continues to decrease

as the width of the resonator element increases, regardless of the metallic material used. This will

greatly affect the efficiency of our device. We found the deflection efficiency to be ∼ 10%. This is

defined as the ratio of the intensity of the main lobe (the light present at our maximum anomalous

reflection angle) and the sum off all the background intensities [86, 87]. The diffraction efficiency

was found to be ∼ 0.1%, which is defined as the ratio of of the intensity of the main lope and

the total input intensity. This is 10× lower than works such as [88], and 100× lower than that of

recent, state-of-the art, geometric plasmonic metasurfacs operating in the visible and NIR regions

of the spectra [89].

Although our proposed MIM metasurface beam-steering device can achieve a large, tunable

anomalous reflection angle, it is necessary to explore ways in which to improve the deflection and

diffraction efficiencies in order for these devices to be useful in practical applications. Works such as

[90, 91] have highlighted various ways in which to improve the diffraction efficiency of such devices.

4.6 Conclusion

We have conducted a comparative study on three different Drude-like metals (Au, Ag, and Al), in

order to establish which metals are most suitable as the different components of a MIM metasurface

beam-steering device which utilises reflect-array elements such that L >> W . Our findings depicted
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both Au and Ag to be the most suitable reflect-array materials, and Al to be the most suitable

back-reflector material. This is assuming the electric field lies along the width of the resonator

element.

The investigation highlighted that the relationship between λres and W for each metallic ma-

terial provides insight as to which material would lead to the higher overall phase shift across the

surface of the beam-steering device. This is connected to the real component of the material’s

permittivity, Re(ε). We also discussed how the intrinsic damping coefficient, β, of the device influ-

ences the overall phase shift, which is connected to the imaginary part of the material’s permittivity,

Im(ε). In conclusion, for Drude-like metals, the material of the top reflect-array wire should exhibit

a high Re(ε) at the wavelength range of interest (to ensure a high slope in the λres vs W plot),

and a low Im(ε) (to ensure a low β coefficient). While the electric field lies along the width of

the resonator elements, these properties would lead to the optimum conditions when attempting

to realise a large phase shift between resonators of small wire widths and resonators of large wire

widths. Our study also disclosed the impact that the permittivity of the material surrounding the

resonator element (εm) has upon the performance of the device. The effective dielectric medium

was varied by changing the material of the bottom metallic back-reflector. A lower effective εm has

been shown to lead to larger phase shifts across the device surface. Therefore, for Drude-like metal,

a material with low permittivity is most suitable as the bottom back-reflector of the beam-steering

device.

Note that in this study we only attempted to optimise the performance of the device by investi-

gating which metals are most suitable as the top reflect-array elements and bottom back-reflector,

but did not look at which material would be most suitable as the dielectric or insulator component

of the MIM structure. Using the same argument that we used for the bottom back-reflector, we

would expect that a dielectric or insulator material with a lower dielectric constant would lead to

better device performance. Note that in this context, better device performance implies a larger

overall phase shift across the device surface. We did not focus on optimising device efficiency.

A MIM metasurface beam-steering device was also proposed, using the metals we found to be

most suitable as the top resonator element and bottom back-reflector. The PCM V O2 was used

to allow for post-fabrication anomalous-to-specular reflection switching. Our device was able to

achieve an anomalous reflection angle of ∼ 40◦ when the V O2 was in its monoclinic state, and
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specular reflection (∼ 0◦) when the V O2 was in its rutile state.

The results of this section have demonstrated how a large phase shift, thus a large angle of

anomalous reflection, can be achieved by varying the geometry (i.e. width) of the optical resonator

elements. The following section will explore alternative ways to realise metasurface beam-steering.

The first method will involve adjusting the local medium dielectric constant, εm, surrounding each

resonator element, while maintaining a constant element geometry. The second and final method

will present a device hosting resonator elements which exhibit variations in both their geometric

dimensions, as well as their local surrounding environment. The advantages and disadvantages of

each type of device are discussed.

53



Chapter 5

5 Thermally Graded Metasurface

5.1 Introduction

As we have seen, a metasurface can achieve a desired reflection angle through their compositional

design and positioning of the optical resonator elements. Snell’s generalised law (Equation 56)

depicts how this reflection angle is related to the phase shift across the surface of the device. We

have demonstrated the relationship between the length of an individual resonator element and its

phase response (Section 2.1.5), and proposed a device which exhibits a spatially varying phase due

to the spatial variation in wire length. We have also shown that the geometry of the resonator

element is not the only factor which influences the behaviour of the surface plasmons within metallic

nanowires. The surface plasmon resonance, spectral bandwidth, radiation profile, and efficiency of

a resonator element is also determined by the dielectric environment surrounding each element, i.e.

the medium dielectric constant introduced in Section 4 (εm).

The ability to adjust the dielectric environment post-fabrication enables the tuning of the res-

onant frequency and phase response of each resonator element. Such capability can be exploited

to increase the functionality of typical beam-steering devices. Our previous device, and works such

as [22, 27], have demonstrated post-fabrication switching between two discrete points; a predeter-

mined anomalous reflection angle and a specular reflection angle. However, by allowing governance

over the dielectric environment of each resonator element, with the ability to continuously tune

the optical properties of the dielectric environment, one can create a beam-steering device where

the angle of reflection can be continuously tuned in between the anomalous and specular reflection

angles. In order to enable the tuning of the optical properties of the dielectric environment, one

would need to include an active component within the device (consisting of otherwise passive com-

ponents). Since V O2 can offer a considerably large tuning capability at a relatively low transition

temperature, we will again use this PCM as the active component within our metasurface beam-

steering device. However, it is important to note that such active components can include any

material which is susceptible to elastomeric stretching, free carrier effects, and non-linear effects.

Other materials besides PCMs, which exhibit intrinsic structural-changing properties in response
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to an external stimulus can also be employed, such as liquid crystals [92]. Previously, we have

exploited the ultra-fast transition of V O2 from a monoclinic (low-temperature) to a rutile (high-

temperature) structure, but will now take advantage of the intermediate optical properties of V O2

found in between these two extremities.

The device presented in Section 4.5, which employs spatially varied resonator elements, has

disadvantages other than lacking intermediate angle control between the predetermined anomalous

reflection and specular reflection angles. One such disadvantage is that the predetermined anoma-

lous reflection angle is only possible in one direction, since the shape of the reflected wavefronts

determined by the geometric variation of the resonator elements cannot be easily altered once fabri-

cated. The total attainable angle sweep is thus greatly limited. Furthermore, these type of devices

also require increasingly smaller separations between resonators, since the length of the resonator

element increases while the period of each wire remains fixed. This can enhance localised near-field

coupling within the separation gap between each resonator, as discussed by Section 2.1.6 [33]. This

near-field coupling between densely packed resonator elements may lead to digressions from the

expected performance of the metasurface device [93], as the phase response of each wire elements

is sensitive to the near-field coupling, as well as the resonator geometry and εm. In addition, very

narrow separation gaps between adjacent resonator elements would lead to greater difficulty during

the fabrication process.

The issues that we have stated above, i.e. the unaccounted enhanced near-field coupling and

difficulty during device fabrication, are overcome by designing a metasurface structure (labelled as

Structure A) which maintains a constant resonator length, while the environment of each individual

element is gradually altered in such a way as to achieve a constant optical phase gradient along the

device surface. This is accomplished by progressively adjusting the phase of V O2 underneath each

resonator element. Since the wire length doesn’t change, the separation between each adjacent

element is kept relatively large. Continuously tuning the phase of V O2 between its monoclinic

and rutile states has been demonstrated by [2], where the temperature of wire elements of similar

dimensions were controlled via electrical heating. Their work, carried out both theoretically and

experimentally, highlights the feasibility of the metasurface designs proposed here. Since we will

establish phase control of each individual resonator element, the anomalous reflection angle in

Structure A can be continuously modulated in either the + or - direction by reversing the direction
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in which the thermal gradient is applied.

Finally, we will also report on a device that utilises both spatially varying resonator elements

and variations in the local environment of each wire (labelled as Structure B). A larger phase shift

across the device surface is expected by employing both phase modulating mechanisms. Similar

to Structure A, a large separation between adjacent resonator elements is maintained to minimise

the unpredictable effects of near-field coupling and for ease of fabrication. We will compare the

performance of the two proposed devices.

Again, the NIR region of the spectrum is the wavelength range of interest, due to the wide

variety of metasurface application in this region of the spectrum (discussed in Section 1.2). We will

report on the performance of our devices at an incident wavelength of 1000 nm.

5.2 Lorentz-Lorenz Model

In Section 2.3, we discussed the way in which a single V O2 crystal undergoes an abrupt transition

from a monoclinic (low temperature), to a rutile (high temperature) phase, when the transition

temperature or critical strain is reached. The transition was described to be abrupt [94], which is

not desirable if we are to utilise V O2 to try and achieve a continuous change in refractive index

across the surface of our devices. A way in which we can get around this issue is by using thin

films of V O2, which consist of numerous nano crystal grains. These nano grains can undergo

transitions at different temperatures, effectively resulting in intermediate phases of V O2, between

purely monoclinic and purely rutile states. This was demonstrated by [95]. These finding depict

thin-film V O2 layers as suitable ways in which to gradually alter the optical properties of successive

array elements.

In order to simulate data conveying the relationship between the intermediate V O2 states and

the optical properties of the resonator element (including the phase response), one must employ

a model which can deduce the permittivity of the monoclinic/rutile mixture. We can apply a

Lorentz-Lorenz model to determine the refractive index and extinction coefficient of a material

with an arbitrary volume fraction of monoclinic V O2. This model has been adapted from the

effective medium theory for isotropic linear dielectrics [96]. Though V O2 is not classified as an

isotropic material, the model can be safely applied as long as a single polarisation is excited. The

application of models, which assume an isotropic media, on V O2 has been implemented in other
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works which also try and exploit the intermediate properties of an insulator-metal mixture to create

a significant phase modulation [3, 97].

The formula below can be used to describe the polarisation density (Pmix) of composite mate-

rials, specifically for an amalgam of two linear dielectrics. In our case, we are looking to get the

polarisation density of a mixture of monoclinic (cold) and rutile (hot) V O2.

Pmix = Ω · Pcold + (1− Ω) · Phot (65)

Pcold is the polarisation density of monoclinic V O2,

Phot is the polarisation density of rutile V O2,

Ω is the volume fraction of monoclinic V O2.

It is more useful to define the dielectric constant of the mixture. We can relate the polarisation

density to the relative permittivity by employing the Clausius-Mossotti relation [98].

εmix − 1

εmix + 2
= Ω · εcold − 1

εcold + 2
+ (1− Ω) · εhot − 1

εhot + 2
(66)

By noting that ε = Re(ε) + i · Im(ε), and re-expressing the permittivity values for monoclinic and

rutile V O2 in terms of their refractive indices and extinction coefficients, i.e. Re(ε) = n2 − k2, and

Im(ε) = 2nk, Equation 66 can be written as;

εmix =
2α+ 2β + 1

1− α− β
(67)

where,

α = Ω ·
(
n2
cold − k2

cold + i · 2 · ncold · kcold − 1

n2
cold − k2

cold + i · 2 · ncold · kcold + 2

)
(68)

and,

β = (1− Ω) ·
(
n2
hot − k2

hot + i · 2 · nhot · khot − 1

n2
hot − k2

hot + i · 2 · nhot · khot + 2

)
(69)

The graph below depicts the refractive index and extinction coefficient for the insulator-metal

mixture with various volume fractions of monoclinic V O2. As expected, these values lie between

those for the extreme phases of V O2, i.e. volume fractions of 0.0 and 1.0. Evidently, the refractive

index increases with increased volume fraction of monoclinic V O2, with an approximate 60.76%

increase between purely rutile (0.0) and purely monoclinic (1.0) V O2 at a wavelength of 1000 nm.

Conversely, the extinction coefficient decreases with increased volume fraction of monoclinic V O2,
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with an approximate 33.97% decrease between monoclinic and rutile V O2 phases. This trend is in

good agreement with works such as [3, 97].

(a) n vs λ for various monoclinic phase fractions (b) k vs λ for various monoclinic phase fractions

Figure 25: Refractive index and extinction coefficient for various volume fractions of monoclinic

V O2

One can easily relate the changes in n and k values for various volume fractions of V O2 to

its temperature. Works such as [99] have explored the relationship between temperature and the

volume fraction of rutile V O2, which can easily be converted to depict the relationship between

temperature and monoclinic phase content. In their case the V O2 film was 80 nm thick, deposited

over an alumina substrate. The graph conveys a roughly linear relationship between temperature

and monoclinic phase fraction between ≈ 336 K and 342 K, see Figure 26a. By combining the

information from Figure 25 and that from Figure 26a, we can see that there is a relatively large

change in optical properties over a small temperature difference, see Figure 26b. Using this in-

formation, it is possible to experimentally fabricate a metasurface device which requires resistive

heating to alter the refractive index and extinction coefficient of consecutive array elements. Fig-

ure 26 highlights the potential to achieve relatively large changes in optical properties over a small

temperature gradient.
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(a) Volume fraction of monoclinic V O2 vs Temperature (K)

Figure adapted from [99]

(b) n and k vs Temperature (k) at λ=1000 nm

Figure 26: Temperature dependence on monoclinic phase fraction, and refractive index and extinc-

tion coefficient at λ=1000 nm

5.3 Device Design & Simulation Set-up

Figure 27a depicts a schematic of the transverse cross-section of a unit cell of Structure A. The

diagram conveys a 100 nm thick Au back-reflector, a 20 nm thick planar layer of SiO2, followed by

a 65 nm thick V O2 wire with a 45 nm thick Ag metal cap. The V O2 and Ag cap have a length of

200 nm. The period of the unit cell is 400 nm, giving a wire separation of 200 nm.

The transverse cross-section of Structure B is presented in Figure 27b. The device is analogous

to that of Structure A, but with variations in the length and separation of the array elements. The

lengths of these resonator elements are 100 nm, 140 nm, 170 nm, and 200 nm. By limiting the wire

length to 200 nm, the separation between adjacent elements remains large, i.e. above 200 nm.
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(a) (b)

Figure 27: Transverse cross-section of Structure A and Structure B

Similar to the beam-steering device proposed in Section 4.5, both Structure A and B are

simulated using FDTD. Periodic boundary conditions are applied in the x-direction, while perfectly

matched layers (PML) boundary conditions are applied in the y-direction. The device is illuminated

by a plane wave source at normal incidence to the device surface. The polarisation of light was

such that the electric field was parallel to the length of each resonator element.

Again, the optical properties of V O2 were obtained from [78]. The dielectric permittivity of

intermediate phases of V O2 were interpolated using a Lorentz-Lorenz model, given by Equation

66. The optical properties of Au, Ag, and SiO2 were obtained from [79], while the properties of Ti

were obtained from [80].

Though the devices proposed our theoretical, similar devices have been fabricated using well

established fabrication techniques, as demonstrated by [2]. The major differences between the

proposed device in Figure 27 and the device fabricated in [2] is that the material of the top metallic

cap is Ag rather than Au, the material of the substrate underneath the V O2 wire is SiO2 rather

than Al2O3, the width of the array elements are 200 nm rather than 210 nm, and the thickness of

the Ag and V O2 array elements are 45 nm and 65 nm respectively, rather than 40 nm each.
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5.4 Results & Discussion

5.4.1 Thermal Gradient: Structure A

(a) Reflectance spectra of purely monoclinic

and rutile V O2

(b) Magnitude of magnetic field distribution within device

(c) Phase vs volume fraction of monoclinic V O2 (d) Phase vs position along device surface, volume

fraction of V O2 of each element presented in Table

(5)

Figure 28: Performance and analysis of Structure A

Figure 28a illustrates a large difference in reflectance between the monoclinic and rutile states of

V O2. The difference in reflectance between monoclinic and rutile V O2 remains high across a wide

wavelength range, and at λ = 1000 nm, is as high as 33%. This substantial drop in reflectance is
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a consequence of the deeper penetration depth in rutile V O2, since it behaves as a metal, where

the radiation is subject to higher Ohmic losses [23]. Figure 28b is a transverse cross-section of the

magnetic field distribution within the device. The left panel of Figure 28b depicts the magnetic

field to be primarily confined within the V O2 element when it is in the monoclinic state. Since the

V O2 behaves as an insulator in this state, the effective dielectric thickness (due to the V O2 and

SiO2) is increased. However, once the V O2 transitions to its rutile state, the SiO2 becomes the

only contributor for the dielectric thickness, and the magnetic field is confined lower within the

resonator element, see the right panel of Figure 28b. Figure 28a and Figure 28b clearly shows the

considerable impact changing the phase of V O2 has upon device performance. This is due to the

substantial difference in optical properties between monoclinic and rutile V O2, as shown by Figure

25.

Figure 28c illustrates the phase response of our device at each volume fraction of monoclinic

V O2. We can see a maximum phase shift of ∼ 201◦ at λ = 1000 nm, between elements consisting

of purely monoclinic (volume fraction of 1.0) and rutile (volume fraction of 0.0) phases of V O2.

This continuous phase modulation enables control over the shape of the reflected wavefronts, and

therefore the angle of reflection. We can choose our device to host four resonator elements, where

the volume fraction of monoclinic V O2 within each element is such that a constant phase gradient

is established along the surface of the device, see Figure 28d. The selected volume fractions of

monoclinic V O2 for each resonator element is presented in Table 5. Using the generalised Snell’s

law, we expect this set-up to be able to achieve an anomalous reflection angle of ±27◦.

Table 5: Properties of Optical Elements in Structure A

Element 1 2 3 4

Volume Fraction 0.0 0.07 0.08 1.0

φ (◦) -104.6 -37.6 29.5 96.6

The results are in good agreement with our far-field plots, depicted by Figure 29. Configuration

1 describes the device performance where the leftmost resonator element contains purely rutile

V O2, while the rightmost element contains purely monoclinic V O2. The volume fractions of the

intermediate elements are presented in Table 5. The angle of reflection supports the theoretical

calculations provided by the generalised Snell’s law. Configuration 2 presents the angle of reflection
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where the opposite thermal gradient is applied, which can be easily done by reversing the direction

the heat is applied. Both device configurations depict the overall angle sweep to be ∼ 54◦.

Figure 29: Far-field angular plot of reflected radiation for Structure A

Though the device is capable of a very impressive angle sweep, it is evident from Table 5 that

Structure A requires very specific conditions to realise the predetermined anomalous reflection angle

of 27◦. For example, the phase of V O2 within the second array element is analogous to that of

the third. From Figure 26a, we can see their phase difference requires a temperature difference of

∼ 0.03%. This would be particularly difficult to do experimentally, especially considering the sub-

wavelength dimensions of the resonator elements. These complications arise from the very steep

increase in phase as the volume fraction of monoclinic V O2 increases from 0.0 to roughly 0.5, see

Figure 28c. It is possible for our device to avoid operating in this region in Figure 28c, however,

this would greatly diminish the maximum anomalous reflection angle. We will show however, that

Structure B does not require such hyper-specific, and impractical conditions.

Another disadvantage of such a device is again the deflection and diffraction efficiencies. In

particular, the diffraction efficiency is expected to be extremely low given that most of the V O2

wire elements are close to the rutile phase. Figure 28a highlights that the reflectance of V O2 in the
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rutile phase is extremely low, particularly at an incident wavelength of 1000 nm (where R(%) ∼ 0).

Analogous to the device proposed in Section 4.5, the deflection efficiency of Structure A is ∼ 10%.

However, the diffraction efficiency is significantly lower at ∼ 0.003%.

5.4.2 Spatially Varying Resonator Elements &Thermal Gradient: Structure B

Now we will combine the effects of spatially varying the element geometry to that of the phase

gradient. Figure 30a and Figure 30b convey the relationship between the width of each wire

element, the volume fraction of monoclinic V O2 within each element, and the phase of reflected

light. Evidently, the phase of the reflected light increases with increased wire width due to the

higher resonant wavelength present in these wider resonator elements (discussed in Section 4). We

can also see that as the V O2 approaches a pure monoclinic state, the phase shift between small and

large wire widths becomes more extreme, before eventually tapering off. The phase shift between

a wire width of 100 nm and 200 nm where all elements contain purely monoclinic V O2 (volume

fraction of 1.0) is ∼ 226◦. In contrast, the phase is relatively constant between wires of small and

large widths when each element contains purely rutile V O2 (volume fraction 0.0). The maximum

phase shift of 226◦, achieved using spatial variations in resonator widths, can be improved by adding

a thermal gradient. A phase shift of 239◦ can be realised by employing a thermal gradient such

that the element of width 100 nm contains purely rutile V O2 and the element of width 200 nm

contains purely monoclinic V O2.
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(a) Phase vs volume fraction of monoclinic V O2 and res-

onator width

(b) Phase vs resonator width for various volume fractions

of monoclinic V O2

Figure 30: Performance and analysis of Structure B

The characteristic thermal hysteresis loop associated with V O2 as it transitions between its

monoclinic and rutile phases is highlighted clearly by Figure 30b. Evidently, the width of the

hysteresis loop increases as the volume fraction of monoclinic V O2 approaches 0.0, due to the more

extreme permutation in lattice structure as the V O2 approaches its transition temperature.

Again, the device will contain four resonator elements, with the length and volume fraction of

monoclinic V O2 within each element elaborately chosen such that the phase gradient across the

device surface is constant, see Figure 31. Table 6 below illustrates the necessary properties of each

resonator element. Since the phase shift between each neighbouring resonator element is ∼ 79.8◦,

the total angle of anomalous reflection is expected to be ∼ 33◦ from the generalised Snell’s law.

This means that by combing the effects of spatially varied array geometries and spatial variations

in the environment surrounding the resonator element, our device can realise a larger anomalous

reflection angle in one direction compared to that which only utilises a thermal gradient, and no

variations in resonator geometry. However, since this maximum anomalous reflection angle is only

achievable in one direction, the total angle sweep is lower than that of Structure A.
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Figure 31: Phase vs position along device surface for Structure B

Volume fraction of V O2 and wire width presented in Table 6

Table 6: Properties of Optical Elements in Structure B

Element 1 2 3 4

Volume Fraction 0.0 0.9 0.7 1.0

Width (nm) 100 140 170 200

φ (◦) -142.7 -63.2 17.0 96.6

Again, our far-field plots support our calculations for the expected angle of anomalous reflection,

see Figure 32. Here, configuration 1 presents the performance of the device where each element

contains purely rutile V O2. Since the phase response is roughly constant across all wire widths,

the angle of reflection is ∼ 0◦ (specular reflection). It is important to note that this angle is not

exactly zero, since the phase response is not exactly constant. In configuration 2, each resonator

element contains varying volume fractions of monoclinic V O2 so as to achieve the constant phase

gradient depicted in Figure 31.
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Figure 32: Far-field angular plot of reflected radiation for Structure B

Although we have established in Section 4, and through Figure 30 that a relatively large anoma-

lous reflection angle can be achieved when only utilising spatially varied resonator elements, partic-

ularly when each element incorporates purely monoclinic V O2, the inclusion of the thermal gradient

allows for better control over the shape of the reflected wavefronts. By establishing control over

the temperature of each resonator element, the reflected light can be directed at an angle between

∼ 0◦ (specular reflection) and ∼ 33◦ (anomalous reflection). This intermediate angle control is not

possible when only utilising resonator elements of varied geometries.

Although the maximum angle sweep achieved by Structure B is lower than that of Structure

A, it is important to note that the device does not require such fine temperature control for each

resonator element, see Table 6.

Similar to Structure A, the deflection efficiency was found to be∼ 10%. The diffraction efficiency

was found to be ∼ 0.02%, which is higher than that of Structure A, but still significantly lower

than that of the device proposed in Section 4.5, and the state-of-the art.
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5.5 Conclusion

In summary, two different metasurface beam-steering devices were proposed, each employing a

phase change material (V O2) to allow for continuous tuning of the angle of reflection post-fabrication.

The first device, Structure A, which only utilises a thermal phase gradient, can achieve an anoma-

lous reflection angle of ±27◦ at a wavelength of 1000 nm at normal incidence. Intermediate angle

control can be realised due to the fine tuning of the optical properties of V O2, resulting in an overall

angle sweep of ∼ 54◦. As this device does not rely on spatially varying the width of each resonator

element to achieve a large phase shift, the separation between each element can be relatively large.

This helps thermally isolate individual resonator elements from the neighbouring elements, and

allows for ease of fabrication. However, Structure A does require very specific conditions to operate

that may be difficult to realise in practice. An alternative, hybrid device is thus proposed (Struc-

ture B) which incorporates some of the advantages of Structure A, while overcoming its practical

limitations.

Structure B employs both spatially varying resonator geometries, as well as a thermal gradient.

This type of device exhibits many advantages to devices which only make use of just one of these

phase-modulating effects. A device like StructureB can produce a larger anomalous reflection angle,

while still maintaining a large separation gap between adjacent resonator elements, compared to

that of a device which only employs spatially varying resonator geometries. It also allows for

continuous dynamic control over the reflected radiation. A device which does not use a thermal

gradient will only exhibit a fixed anomalous reflection angle, or at best, switch discretely between

anomalous and specular reflection, as shown by Section 4 and works such as [22, 27]. Although

a device like Structure B can also achieve an anomalous reflection angle greater than that which

only employs a thermal gradient, such as Structure A, the overall angle sweep is lower since the

maximum anomalous reflection angle can only be realised in one direction.

Both Structure A and B highlight the potential for dynamic manipulation of incident radiation

using V O2 based metasurfaces in the NIR.
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Chapter 6

6 Conclusions

6.1 Summary of Results

In Section 4 we demonstrated the way in which metasurfaces hosting resonator elements, with

spatially varied array geometries, can be used to control the phase of scattered radiation at every

point along the device surface. This local phase control was shown to govern the angle of reflected

radiation, in accordance with Snell’s generalised law. The inclusion of the PCM V O2 enabled

dynamic control over the reflected radiation post-fabrication, i.e. the device proposed in Section 4.5

is theoretically capable of switching between a pre-determined anomalous reflection angle (∼ 40◦)

and a specular reflection angle (∼ 0◦) at an incident wavelength of 1550 nm. Our metasurface thus

behaved as a beam-steering device, capable of a near maximum phase modulation. The metasurface

employed a MIM structure. Through an investigative study between three popular Drude-like

metals (Au, Ag, and Al), the superior material of the top resonator element was determined to be

either Au or Ag (though are device utilised Au), while the superior material of the back-reflector

was found to be Al. This specific combination of metals was found to realise the largest overall

phase shift across the device surface. Though our resonator elements were rectangular, with the

width much smaller than the length, the general conclusions of this section is expected to apply

for other resonator geometries, such as elongated ellipsoidal elements, as long as the appropriate

polarisation of light is applied.

Though the device proposed in Section 4.5 demonstrated an impressive phase shift, and thus

a large anomalous reflection angle, the overall angle sweep was limited as the anomalous refec-

tion could only be achieved in one direction. Section 5 presented alternative approaches to local

phase control along the device surface. The device described by Section 5.4.1 does not exploit

the effects of varying the geometry of the resonator elements, but rather varies the local environ-

ment surrounding each element. This can be achieved by controlling the temperature of the V O2

component underneath each metallic resonator, which provides control over the refractive index

and extinction coefficient of the V O2. By enabling governance over the local medium dielectric

constant (εm) surrounding each resonator element, the local phase response of each element can
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be modified post-fabrication, allowing for the device to be able to achieve anomalous reflection in

either direction. The advantages and disadvantages of such a device are discussed. To the best of

our knowledge, the device proposed in Section 5.4.1 was therefore capable of achieving one of the

largest angle sweeps to date (∼ 54◦) at an incident wavelength of 1000 nm, by only employing a

thermal phase gradient.

A device which employed both changes in the local environment surrounding each resonator

element and variations in the element geometry was also proposed in Section 5.4.2. This device

had advantages over that described in Section 4.5, such as intermediate angle control between

the anomalous reflection angle (∼ 33◦) and specular reflection angle (∼ 0◦) also at an incident

wavelength of 1000 nm, as opposed to just anomalous-to-specular reflection switching. This device

also has the potential to overcome some of the practical issues associated with the device proposed

in Section 5.4.1. However, the overall angle sweep was still much lower compared to that achieved

by such a device which only employs a thermal gradient due to the inability to realise the maximum

anomalous reflection angle in both directions. However, since the operation of this device is more

feasible compared to that of Structure A, we believe such a device to have the greatest potential

as a plasmonic metasurface beam-steering device.

6.2 Future of Plasmonic Metasurfaces

Though plasmonic metasurfaces can be used to realise impressive phase modulation, and there-

fore large anomalous reflection angles, they do not make for perfect beam-steering devices. This

is due to the intrinsic Ohmic losses associated with metals. These Ohmic losses would decrease

the fraction of radiation reflected from the device, lowering the efficiency. This efficiency degra-

dation becomes more extreme at lower incident wavelengths, making these type of beam-steering

devices less useful at optical frequencies [100]. Indeed, until recently, the efficiency of plasmonic

metasurfaces operating in the visible and NIR regions of the spectra never exceeded that of 10%.

Works such as [21] have employed low-loss, high-permittivity dielectric materials as the optical

resonator element for a beam-steering device which enables control over the propagation path of

transmitted light. The device they presented was also capable of realising a near perfect phase

modulation when subject to normal incident light at 633 nm, while exhibiting little loss. Since the

fraction of transmitted radiation remained high across the device surface, the device efficiency was
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∼ 80%. Their work suggested that the use of low-loss dielectrics is the future for beam-steering

metasurfaces hosting sub-wavelength optical resonators.

Though the efficiency of plasmonic metasurfaces remains lower than that recorded for devices

which utilise low-loss dielectric resonator elements, there have been considerable advancements in

recent years which highlight the potential for the efficiency of plasmonic metasurfaces to rival that

of dielectric metasurfaces. Works such as [89] have come up with innovative ways in which to

improve the transmission efficiency of plasmonic metasurfaces in the visible wavelength region to

42.3%, an over 400% increase from that previously recorded. Amongst other things, they employed

simple techniques to improve device efficiency, such as introducing an air gap between the metallic

resonator element and the surrounding media, which worked to prevent metallic absorption.

As previously discussed, the devices presented in Section 4 and 5 exhibit even lower efficiencies

than typical plasmonic reflect-array metasurfaces. This is due to the fact that the devices here

exploit the transverse surface plasmon resonance of the array element (electric field is parallel to

the width of the resonator element), which leads to a lower light intensity. However, works such as

[77] have highlighted the potential for the efficiency of these type of devices to compete with that

of devices which make use of the longitudinal surface plasmon resonance (electric field is parallel

to the length of the resonator element).

In conclusion, the refinement and enhancement of metasurfaces hosting nano-scale resonator

elements is a worthwhile investment due to the potential for these type of devices to be applied

to a wide range of fields, such as beam-steering, phase modulation, amplitude control, polarisation

manipulation, nanoscale-resolution imaging, optical communication networks, sensing, and much

more. Although the intrinsic losses displayed by plasmonic metasurfaces presents complications for

such applications, there is great capacity to improve the performance of such devices, making this

field of research fruitful and invaluable.
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[50] C. Kübler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Haglund, A. Leitenstorfer,

Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-

metal phase transition in VO2, Physical Review Letters (2007). doi:10.1103/PhysRevLett.

99.116401.

[51] M. Nakajima, N. Takubo, Z. Hiroi, Y. Ueda, T. Suemoto, Photoinduced metallic state in

v O2 proved by the terahertz pump-probe spectroscopy, Applied Physics Letters (2008).

doi:10.1063/1.2830664.

[52] I. P. Radu, B. Govoreanu, S. Mertens, X. Shi, M. Cantoro, M. Schaekers, M. Jurczak, S. De

Gendt, A. Stesmans, J. A. Kittl, M. Heyns, K. Martens, Switching mechanism in two-terminal

vanadium dioxide devices, Nanotechnology (2015). doi:10.1088/0957-4484/26/16/165202.

[53] N. F. Mott, Metal-insulator transition (1968). doi:10.1103/RevModPhys.40.677.

[54] N. F. Mott, The basis of the electron theory of metals, with special reference to the transition

metals, Proceedings of the Physical Society. Section A (1949). doi:10.1088/0370-1298/62/

7/303.
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[73] R. Gans, Über die Form ultramikroskopischer Silberteilchen, Annalen der Physik (1915).

doi:10.1002/andp.19153521006.

[74] R. Fuchs, S. H. Liu, Sum rule for the polarizability of small particles (1976). doi:10.1103/

PhysRevB.14.5521.

[75] K. Wilson, C. A. Marocico, A. L. Bradley, Dynamic structural colour using vanadium dioxide

thin films, Journal of Physics D: Applied Physics (2018). doi:10.1088/1361-6463/aac47c.

[76] P. Cormier, T. V. Son, J. Thibodeau, A. Doucet, V. V. Truong, A. Haché, Vanadium dioxide
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