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Thesis Summary 
Substance dependence is a leading global health concern. Alcohol use is the primary risk-factor 

for deaths and disability-adjusted life years among those between the ages of 15-49 (Griswold 

et al., 2018). Opioid dependence accounts for the majority of drug use disorders worldwide 

(James et al., 2018), while tobacco-use alone results in over one in ten deaths per year (Reitsma 

et al., 2017). The chronically relapsing nature of substance-dependence renders challenges for 

successful abstinence, with some studies reporting more than two thirds of individuals relapse 

within months of treatment initiation (Moeller & Paulus, 2018; Sinha, 2011). A key characteristic 

of substance-dependence is the persistent and continued use of substances despite their 

negative consequences. Therefore, understanding the psychological and neurobiological 

mechanisms that give rise to such maladaptive decision-making is a key goal for the field of 

addiction science. Converging evidence suggests that aberrant value-based decision-making 

(e.g., reward processing) characterises substance-dependent individuals from healthy controls, 

and may predict future use. However, it remains unclear whether different substance types, 

misuse patterns, and treatment interventions differentially affect decision-making impairments.  

This thesis investigated value-based decision-making in various substance-dependence 

phenotypes. Specifically, computational models of decision-making (reinforcement learning and 

drift-diffusion models; RLDDMs) were fit to choice and reaction time data from a popular reward 

learning task known to index fluctuations dopaminergic functioning and show sensitivity to 

various clinical disorders (Frank et al., 2004). Machine learning (ML) methods were leveraged to 

investigate if parameters derived from the computational models could successfully predict 

substance-dependence. Four ML models were compared: (i) a Summary model with mean 

choice accuracy from the reward learning task, (ii) a Computational model with parameter 

estimates from RLDDMs, (iii) a Personality model with self-reported impulsivity, and (iv) a 

Combined model with features from (ii) and (iii). Additionally, each individual model was 

compared with a ‘null’ model including demographic features. 
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The literature on value-based decision-making and substance dependence was 

reviewed in Chapter 1. Chapter 2 described the general methods. Chapter 3 sought to predict 

hazardous alcohol-use risk (N=115). Chapter 4 sought to predict length of abstinence in a sample 

formerly dependent on heroin currently in methadone maintenance treatment (N=81). Chapter 

5 sought to classify individuals based on their smoking group category (non-smokers, current 

smokers, ex-smokers, and vapers; N = 173). Chapter 6 aimed to assess behavioural and 

electrophysiological longitudinal changes in value-based decision-making during a smoking quit 

attempt (N = 112).  

The results revealed reductions in response caution (indexed by the boundary 

separation parameter in drift-diffusion models) significantly predicted higher alcohol misuse 

risk, shorter lengths of opioid abstinence, and smoker versus non-smoker group membership. 

These findings suggest that response caution may be a task-general marker of substance-

dependence that is sensitive to length of methadone treatment. Efficiency of evidence 

accumulation (i.e., the process of accumulating evidence for one option relative to another; 

drift-rate) was also a significant predictor across studies, however did not show a clear 

directional relationship with substance dependence, and was influenced by conflict in reward 

probabilities. For example, ex-smokers were classified by reduced evidence accumulation for 

high conflict trials with stimuli associated with negative feedback, and increased evidence 

accumulation for high conflict trials with stimuli associated with positive feedback.  

Computational models performed similarly with Personality and Summary models, and 

outperformed demographic models overall. This indicates that self-reported impulsivity and 

mean choices in the decision-making task were as predictive compared with computational 

models fit to trial-by-trial choice and RT data.  Overall, these findings highlight the utility of 

RLDDMs to investigate clinically relevant features of instrumental learning and decision-making, 

and identify features of value-based decision-making (i.e. evidence accumulation and decision 

threshold) that are predictive of substance-dependence.  
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Substance dependence can be framed as a maladaptive decision-making process, in 

which substances are persistently sought out by an individual despite negative repercussions. 

The ability to update reward and punishment contingencies is a fundamental aspect of effective 

decision-making, requiring the ability to successfully adapt to the changing demands of one’s 

environment. In this programme of research, four experimental studies investigating value-

based decision-making in substance misuse and dependence are presented. Study 1 aims to 

identify individual differences in decision-making between low and high-risk alcohol-misuse 

groups, Study 2 focuses on a sample of former opioid-users currently in methadone 

maintenance therapy, Study 3 is a cross-sectional study comparing current and former nicotine 

dependent groups, and Study 4 extends this by testing if computational, behavioural, and 

electrophysiological features of value-based decision-making longitudinally predict likelihood of 

abstinence versus relapse following a smoking quit attempt.  

This chapter will provide an introduction to substance dependence and its impact 

societally, followed by an overview of its neurobiological basis and advances in current 

theoretical understanding. Next, decision-making research applied to the field of substance 

dependence will be discussed, with a focus on computational models applied to value-based 

decision tasks. Machine learning methods and their applications to the field of cognitive 

neuroscience and substance dependence will also be outlined. Finally, the aims of the current 

research thesis will be stated.   

1. 1. Perspectives on substance dependence 
Substance abuse refers to the harmful use of psychoactive substances, including alcohol, 

nicotine, caffeine, and drugs that affect cognition (e.g., perception, memory, and attention) 

when consumed. In the European Union, approximately 29% of adults are reported to have tried 

illicit drugs in their lifetime (European Monitoring Centre for Drugs and Addiction, 2019). 

Globally, one in every eighteen people have used drugs at least once in the previous year 

(corresponding to 5.5% of the global population aged 15-65), and 43% of the population have 
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consumed alcohol in this time (United Nations Office on Drugs and Crime, 2019; World Health 

Organisation, 2018).  

Alcohol use alone is associated with approximately three million deaths each year, with 

drug-use attributable to 452,000 deaths (World Drug Report, 2018). Tobacco smoking leads to 

approximately eight million deaths each year, with 1.2 million of these attributable to second-

hand or passive smoke exposure (World Health Organisation, 2018). In 2015, more than one in 

ten deaths were caused by smoking, in addition to 148.6 million disability-adjusted life years 

(GBD Tobacco Collaborators, 2017). Drug use is associated with chronic and acute health effects, 

such as drug-related infectious diseases (e.g., HIV, Hepatitis C contracted through injected drug-

use), overdose, and dependence. These may be divided into to harm towards others (e.g., social 

harms such as crime, family adversity, economic costs), or to the drug-user themselves (e.g., 

physical drug-related and specific mortality and damage, social harms such as loss of 

relationships and property, in addition to psychological harm such as drug-related impairment 

of mental functioning and dependence) (Nutt et al., 2010). Alcohol has been reported as the 

most overall harmful drug in the U.K, with its negative effects on other users surpassing those 

of opioids (Nutt, King, & Phillips, 2010). Mental and substance use disorders are reported as the 

leading cause of years lost to disability worldwide, with drug and alcohol use disorders 

accounting for approx. 21% of disability-adjusted life years – the second highest, following 

depressive disorders (Whiteford et al., 2013).  

While substance-use disorders make a significant contribution to global disease burden 

(Vos et al., 2017), only a subset of those who use drugs and alcohol become dependent. Thirteen 

percent of those reported to have used drugs at least once in the previous year suffer from a 

drug-use disorder, corresponding to a prevalence rate of 0.71 globally (UNODC, 2019). In 

Ireland, the prevalence rate of alcohol dependence is 3.8% and alcohol use disorders is 8.5%, 

however the prevalence of heavy episodic drinking in the population is much higher at 37.8% 

(WHO, 2018). Nicotine addiction is more likely to develop among those who initiate use early in 
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life; with approximately 50% of those who begin smoking in adolescence continuing to smoke 

regularly for the next 15-20 years (WHO, 2010). It has been reported that almost 70% of those 

who use nicotine will eventually transition to dependence in their lifetime, a rate that is much 

higher compared to other substances of abuse such as alcohol (22.7% cumulative probability 

estimate), cocaine (20.9%), and cannabis (8.9%; Lopez-Quintero et al., 2011).  

Broadly, drug addiction may be defined as ‘a chronically relapsing disorder, 

characterised by compulsion to seek and take the drug, loss of control in limiting intake, and 

emergence of a negative emotional state (e.g., dysphoria, anxiety, irritability) when access to 

the drug is prevented.’ (Koob & Volkow, 2010, p. 760). Moderate to severe substance 

dependence is often considered as ‘addiction’ (see Rosenthal & Faris (2019) for an etymological 

discussion on this term), and this is determined by sets of criteria outlined in the ICD-11 and 

DSM-V.   

The ICD-11 (WHO, 2020) and Diagnostic and Statistical Manual of Mental Disorders 

(DSM–5; American Psychiatric Association, 2013) diagnostic guidelines for Substance 

Dependence include items relating to physiological withdrawal from and lack of control 

regarding substance-use, tolerance, and continued use despite recurrent interpersonal, social, 

physical or psychological problems exacerbated by the effects of the substance.   
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A definite diagnosis of dependence should usually be made only if three or more of the 
following have been present together at some time during the previous year: 

(a) A strong desire or sense of compulsion to take the substance; 

(b) Difficulties in controlling substance-taking behaviour in terms of its onset, termination, 
or levels of use; 

(c) A physiological withdrawal state (see F1x.3 and F1x.4) when substance use has ceased or 
been reduced, as evidenced by: the characteristic withdrawal syndrome for the substance; 
or use of the same (or a closely related) substance with the intention of relieving or avoiding 
withdrawal symptoms; 

(d) Evidence of tolerance, such that increased doses of the psychoactive substances are 
required in order to achieve effects originally produced by lower doses (clear examples of 
this are found in alcohol- and opiate-dependent individuals who may take daily doses 
sufficient to incapacitate or kill nontolerant users); 

(e) Progressive neglect of alternative pleasures or interests because of psychoactive 
substance use, increased amount of time necessary to obtain or take the substance or to 
recover from its effects; 

(f) Persisting with substance use despite clear evidence of overtly harmful consequences, 
such as harm to the liver through excessive drinking, depressive mood states consequent to 
periods of heavy substance use, or drug-related impairment of cognitive functioning; efforts 
should be made to determine that the user was actually, or could be expected to be, aware 
of the nature and extent of the harm. 

The severity of substance use disorder ranges from mild substance abuse to severe 

substance dependence, assessed by the number of criteria that are endorsed. In both of these 

diagnostic guidelines, many of the criteria may be considered as directly or indirectly related to 

abnormalities in decision-making (e.g., persistent drug-use in spite of negative outcomes may 

be considered as a disorder of value and choice, and ‘a strong desire or sense of compulsion to 

take the substance’ may refer to failures of cognitive control). The NIH Research Domain Criteria 

(RDoC) offers a dimensional approach to understanding mental health and illness that 

emphasises the need to objectively measure changes in neurobehavioral processes at multiple 

levels of analysis rather than symptom clusters (Insel et al., 2010). A motivation for this 

approach is that neurobiological processes do not map directly onto diagnostic criteria of 

psychiatric disorders, and often show overlap. The RDoC is well suited to examining continuums 

of symptom dimensions, such as craving and cognitive control, and accounts for comorbidity 

observed in mental disorders.  
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There is strong comorbidity between alcohol and tobacco dependence, and early 

initiation of smoking is considered a risk factor for alcohol and substance use disorders in 

adulthood. In a U.S sample of alcohol dependent individuals, Le Strat, Ramoz, and Gorwood 

(2010) found that 48% also reported nicotine dependence. In a U.K population survey, Smith et 

al. (2011) showed that tobacco use and hazardous drinking were associated with poly-drug use 

involving a wide-range of illicit substances. These studies suggest that the use of multiple 

substances does not offer a substitutive function whereby increased use in one substance leads 

to reductions in the other/s, rather it is associated with increased use across multiple 

substances. Substance dependence also shows high comorbidity with psychiatric conditions 

(Dani & Harris, 2005); Cahill et al., 2013). Torrens et al., (2011) found that depression was the 

most common comorbidity with prevalence rates ranging from 12-80% among substance use 

disorder patients. The co-occurrence of disorders has been shown to affect clinical severity and 

is associated with poorer treatment response, poorer prognosis, and increased likelihood of 

attempted suicide compared to those presenting with one disorder (Hasin & Grant, 2004; 

European Monitoring Centre for Drugs and Drug Addiction, 2019). Adolescents and young adults 

who use multiple substances in addition to illicit drugs show higher levels of depression and 

anxiety and increased psychological distress than those with little or no substance use (Jason et 

al., 2014). 

There are many biological and environmental risk-factors leading to addiction, such as 

genetic (Hartz & Bierut, 2010; Merikangas et al., 1998), gender, personality (high impulsivity), 

and education (poor educational achievement) factors, this reflects the multi-causal nature of 

the condition, which is likely to occur at multiple levels (e.g., biological, computational, 

behaviour) defying simplistic mechanistic explanations (Kendler et al., 2005; 2008). For example, 

initiation and early substance use may be more strongly associated with social/environmental 

factors, with later use linked more with genetic factors (Kendler et al., 2008). The addictive 

properties of the substance itself also contributes to this risk, with nicotine showing the highest 
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cumulative probability of transition to dependence in the years following its first use, compared 

to alcohol, cannabis, and cocaine (Lopez-Quintero et al., 2011). 

The chronically relapsing nature of substance dependence presents a challenge for 

successful treatment. Pharmacological therapies for smoking cessation aim to mitigate craving 

and withdrawal states and act to block the effects of nicotine on relevant pharmacological 

pathways, such therapies include nicotine replacement therapy (NRT; e.g., nicotine patches, 

sprays, tablets), bupropion, and varenicline. Varencline has been shown to outperform NRT and 

bupropion, more than doubling the likelihood of smoking cessation compared with placebo 

(Cahill et al., 2013). Other interventions for smoking cessation include group behaviour therapy 

programmes, financial incentive schemes, and mobile-phone based supports (Notley et al., 

2019; Stead et al., 2017; Whittaker et al., 2019). Opioid-agonist treatment (or substitution 

therapy, typically with methadone or buprenorphine) has shown efficacy in reducing heroin and 

cocaine-use, reducing co-morbid diseases, and generally increasing the quality of life among 

patients (Mattick, Breen, Kimber & Davoli, 2009). Methadone has been shown to ‘block’ the 

euphoric effects of heroin, with long-acting pharmacological effects that allow for rehabilitation 

and engagement with normative daily activities. Despite the availability of these treatments, 

relapse rates among opioid-users can be as high as 91% following treatment (Smyth et al., 2010), 

highlighting the need to identify relevant mechanisms for treatment and the development of 

precise interventions (Ginsburg & Phillips, 2018).  

1. 2. Neurobiology of Substance Dependence 
Koob and Volkow (2010) propose a conceptual framework for addiction consisting of a three-

stage cycle that can be studied experimentally in humans and animals. The cycle includes 

binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation stages, each 

with differential neurocircuitry and implications for different functional domains. 

Neuroadaptions at each stage consist of increased incentive salience, decreased brain reward 

and increased stress, and compromised executive function. These changes are mediated by 
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three major neurocircuits; the basal ganglia, extended amygdala, and prefrontal cortex, 

respectively (Uhl, Koob, & Cable, 2019). In the initial stages of the cycle, drug-use behaviour is 

positively reinforced by positive social rewards and mood states, and this shifts towards a 

motivation to avoid negative affect and reduce stress in later stages of the cycle. As a result, the 

value of non-drug rewards becomes blunted in substance dependence 

Structural differences have been observed in many studies comparing the brains of 

those who misuse substances or are diagnosed with an SUD and healthy controls (see Mackey 

et al., 2019) for mega-analysis of studies on grey matter volume). Reduced grey matter volume 

in the medial PFC was found in stimulant drug-users (Ersche, Williams, Robbins, & Bullmore, 

2013), reduced medial orbitofrontal cortex thickness in smokers (Kühn, Schubert, & Gallinat, 

2010), and structural asymmetry in the nucleus accumbens in alcohol and nicotine-dependent 

participants compared with non-dependent individuals (Cao et al., 2021).  Risk of developing 

stimulant dependence has been associated with reduced functional connectivity in a ventral 

medial pre-frontal cortex/orbitofrontal cortex, and ventromedial caudate network, indicating 

possible functional and cognitive decline in areas relevant for goal-directed learning (Ersche et 

al., 2020). Sweitzer et al., (2016) found increased connectivity in a range of networks prior to a 

smoking quit attempt among those who successfully abstained for three weeks compared to 

those who relapsed.  

1. 3. Substance dependence and decision-making 
As stated previously, substance dependence can be framed as a maladaptive decision-

making process, in which substances are persistently sought out by an individual despite their 

negative repercussions, and in some cases despite an explicitly stated desire to make alternative 

choices (Redish et al., 2008). A range of behavioural, electrophysiological, and fMRI studies have 

highlighted aberrations in how individuals with substance dependence make decisions, and 

these findings seem to corroborate with theoretical accounts of substance dependence such as 

incentive salience (Robinson & Berridge, 1993), impulsivity (W. K. Bickel & Marsch, 2001), and 
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dual-process theories (Robbins & Everitt, 1999). In particular, value-based decisions (i.e., those 

involving the updating of competing choices via valenced feedback) appear to be altered in 

substance dependence (Redish, Jensen & Johnson, 2008; (Redish, 2004). Following a review of 

major theories, Redish et al. (2008) proposed a unified framework of addiction involving ten 

vulnerabilities or ‘failure modes’ in decision-making processes. These vulnerabilities are 

proposed to be differentially affected by substance type (e.g., a relationship between the 

euphoric effects of opioid use and overvaluation of the expected value of a predicted outcome 

is proposed, whereas the dysphoric effects of initial nicotine use is unlikely to show a 

relationship with this vulnerability), and their susceptibility interacts with genetic, 

developmental, and social contexts. In doing so, Redish et al. (2008) sought to account for the 

myriad individual experiences of addiction through the emergence and co-existence of these 

decision-making vulnerabilities throughout different stages of the addiction cycle (however see 

Ahmed, 2008 and Goudie et al., 2008 for further recommendations incorporating social and 

psychological factors).    

Everitt et al. (2001; 2005; 2018) make the distinction between drug-taking and drug-

seeking, two distinct and competing psychological processes that reflect stimulus-response and 

action-outcome learning. The former behaviour is controlled by the reinforcing properties of 

the drug, and the latter by drug-associated cues which become incentivised across time – to the 

extent that cues may eventually become more reinforcing that the drug itself. Drug-seeking may 

occur over longer periods of time, reflecting a preoccupation with obtaining substances that is 

noted in diagnostic criteria, and involves aspects of planning and deliberation to meet these 

goals. Drug-taking on the hand is described by habitual and compulsive behaviour reflected in 

repeated and seemingly ‘out of control’ choices to gain substances. These dual systems have 

been used to describe the transition from goal-directed to habitual behaviour observed in the 

addiction cycle; from an intentional motivation to increase future value to one that is governed 

by past actions.    
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Impaired reward processing distinguishes those with current addictions from controls, 

pertaining to alcohol use disorder (Wrase et al., 2007), opiate dependence (Gradin et al., 2014; 

Huhn et al., 2016), pathological gambling (Romanczuk-Seiferth et al., 2015), and nicotine 

addiction (Bühler et al., 2010; Peechatka et al., 2015). Relatedly, growing evidence suggests that 

substance dependence involves alterations to value judgements that influence drug-related 

choices and decisions (Loganathan & Ho, 2021). For example, diminished ventral striatal 

response to monetary rewards in the monetary incentive delay task was shown as the best 

predictor of subsequent drug-use in a large sample of adolescents (Büchel et al., 2017). In the 

following sections, research concerning decision-making impairments in alcohol, opioid, and 

nicotine dependence are discussed.  

1. 3. 1. Alcohol 
Altered reward-related brain activity during decision-making has been observed in alcohol 

dependence, particularly in the stage of outcome anticipation (Galandra, Basso, Capp, & 

Canessa, 2018). For example, abnormal signal propagation between the ventral striatum and 

dorsolateral prefrontal cortex (PFC) in response to rewards was observed in alcohol-dependent 

patients compared with healthy controls, and showed a relationship with levels of craving. 

Beylergil et al., 2017) found that alcohol dependent patients (ADPs) showed lower punishment 

sensitivity in a probabilistic reversal task compared to healthy controls, and that more severely 

affected ADPs showed greater reward sensitivity than patients with less severe dependence. 

Alterations in decision-making also appear to extend to non-dependent, but harmful, alcohol-

users (Lannoy, Billieux, Dormal, & Maurage, 2019). In a study by Rossiter et al., (2012), those 

who consumed harmful levels of alcohol showed reduced sensitivity to monetary punishment 

on a monetary incentive Go/No-Go task compared with non-hazardous alcohol users.  

1. 3. 2. Opioids 
A number of studies have shown that opioid dependence is associated with higher risk-taking 

and altered reward processing in gambling and decision-making tasks (Brand et al., 2008).  In a 
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non-drug reward task, Gradin et al., (2014) found that patients on methadone maintenance 

treatment (MMT) showed reductions in insula activation in the anticipation of loss events, and 

did not encode the successful avoidance of losses as a reward signal in the ventral striatum 

compared with healthy controls. In a three-month follow-up study of a treatment-seeking MMT 

sample, relapsers showed increased heroin-cue-induced craving compared with healthy 

controls and successful abstainers, with changes in craving showing a relationship with nucleus 

accumbens activation that may be a predictor of future relapse (Q. Li et al., 2015). However, in 

a review of research investigating brain-related changes in recovery from opioid and 

methamphetamine dependence, Stewart, May, and Paulus (2019) highlighted limitations 

regarding the lack of standard outcome measures for recovery, small sample sizes, and lack of 

follow-up assessments.  A small number of studies have shown behavioural decision-making 

differences between opioid-dependent patients in varying levels of abstinence. Kriegler et al., 

(2019) found that patients in maintenance therapy performed better on the Iowa Gambling 

Task, showed less risky decision-making, and reduced craving in response to drug-related cues 

compared with those who had recently completed detoxification treatment. Passetti et al., 

(2011) reported that impaired risky decision-making predicted abstinence status at three-

month follow-up among treatment-seeking opiate-dependent patients in a community sample, 

but not in a residential treatment setting. These results suggest that maintenance therapy may 

improve decision-making, and interact with types of treatment.  

1. 3. 3. Nicotine 
Nicotine has also been shown to modulate reward-based learning in both human and 

rodent studies (e.g., Brody et al., 2004). In never-smokers, a single dose of nicotine increased 

responsiveness to reward cues, lasting for up to one-week following administration (Barr, 

Pizzagalli, Culhane, Goff, & Evins, 2008). Nicotine-satiated individuals with depression had 

increased preference for reward stimuli compared with depressed non-smokers, using a reward 

learning task that tested a preference for a richer reinforcement schedule (Liverant et al., 2014).   
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Baker et al. (2011; 2013) employed the probabilistic selection task in a substance 

dependent sample, including those with a range of substance misuse (e.g., alcohol, cannabis, 

and nicotine use) and reported that these individuals demonstrated attenuated reward 

positivity compared to non-dependent groups. More specifically, Baker et al. (2011; 2013) 

showed that their non-dependent group were significantly better at both learning from rewards 

and from punishers, compared with their substance-dependent sample. 

The findings of Baker et al. (2011; 2013) support models of addiction positing that the 

desensitization of reward circuits over time is associated with addiction (e.g., Rose et al., 2012; 

Volkow et al., 2016). Whereas acute nicotine administration amplifies reward learning with 

respect to non-drug cues, chronic nicotine addicts may have a desensitization of the dopamine 

(DA) system and concomitant blunted reward sensitivity. Indeed, Fehr et al. (2008) have 

demonstrated that reduced availability of striatal D2/D3 dopamine receptors is associated with 

nicotine dependence, similar to many other types of addiction. However, as Nestor et al. (2018a) 

note, this is in contrast to the striatal hyperactivity to non-drug rewards observed in some 

addiction populations. For example, the reward-focused and impulsive behaviour of selecting 

smaller immediate monetary rewards over larger delayed rewards is well-established in these 

populations (e.g., Mitchell, 1999). 

Garavan, Brennan, Hester and Whelan (2013) proposed that successful abstinence is 

characterised both by the restoration of brain function once the neurotoxic effects of the drug 

abuse diminish, and also by the continued process of abstaining from the drug. Briggs, O’Connor, 

Jollans, O’Halloran, Dymond and Whelan (2015) found that former- and never-smokers, when 

compared to current smokers, showed greater cognitive flexibility on the contingency shifting 

Iowa Gambling Task, indicative of an ability to effectively update shifting reward and 

punishment contingencies in the task. In a reversal task with reward-punishment contingencies, 

Butler et al. (2017) investigated performance monitoring in current, ex- and non-smokers, 

showing that the current smoker group had significantly more reversal errors than either of the 
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other two groups. These studies support the notion that ex-smokers display similar decision-

making processes to non-smokers rather than smokers. However, Nestor et al. (2018b) have 

shown that ex-smokers demonstrate amplified negative valence monitoring compared with 

smokers and non-smokers, thought to contribute to their successful abstinence.  

In recent years there has been an exponential growth in the availability and use of e-

cigarette and vaping products (Soneji et al., 2017), which have become popular in part due to a 

perceived lack of harm compared with traditional methods of nicotine consumption (Kale, 

Pickeringm & Cooper, 2020) and as a means to reduce cigarette consumption (Barbeau, Burda, 

& Siegal, 2013). The rise in prevalence of e-cigarette and vaping products warrants 

investigations into the correlates and predictors of their use, and how this compares within the 

context of other substance-use (e.g., heavy drinking, cigarette consumption). However, due to 

its recent emergence, there have been few studies examining cognitive and decision-making 

correlates of vaping. A small number of studies have investigated trait (i.e., self-reported) 

impulsivity and e-cigarette use (e.g., Doran & Tully, 2018), with some showing a relationship 

with lack of perseveration as measured by the UPPS (Chivers et al., 2016; Spindle et al., 2017). 

In a young adult sample, Lanza et al., 2020) found that increased self-reported lack of 

premeditation and lower social anxiety predicted e-cigarette use, however Kale et al. (2020) 

found no significant differences in self-reported impulsivity between e-cigarette users and non-

smokers, but showed lower lack of perseverance compared with current smokers. Additionally, 

Grant et al., (2019) found higher self-reported impulsivity among e-cigarette users compared 

with non-users on all sub-scales of the BIS.  

In contrast to studies on trait impulsivity, there has been a paucity of research exploring 

task-based measures of impulsivity and decision-making among e-cigarette/vapers. Two studies 

have studied delayed discounting and e-cigarette use- Stein et al., (2018) showed that e-

cigarette users discounted future rewards more than never-smokers, but reported a small effect 

size with minimal differences observed with former smokers, and Białaszek et al., (2017) found 
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steeper discounting of delays between e-cigarette users and never-smokers, but did not observe 

differences with current smokers.  

In sum, a large number of studies have investigated changes in decision-making 

associated with alcohol, opioid, and nicotine dependence. Although impairments in reward 

processing, tolerance of risk and certainty, and discounting have been observed in the presence 

of substance dependence, it is not immediately clear how these are affected by treatment and 

recovery.   

1. 4. Electrophysiology 
Electroencephalography (EEG) is a method of recording synchronous cortical activity from 

electrodes typically placed on the scalp. Scalp-recorded electrical activity is generated by post-

synaptic potentials from pyramidal neurons located in the cerebral cortex close to the electrode 

site, and offers high temporal resolution for investigating neural correlates of rapid cognitive 

processes. Although the content of the EEG signal is not fully understood (i.e., the underlying 

microcircuit configurations; Cohen, 2017), decades of research has characterised EEG features 

associated with decision-making.  

A substantial literature using reward-related decision-making tasks (e.g., reversal 

learning, gambling) and others (e.g., oddball, passive viewing tasks) has shown attenuated 

electrophysiological signals in response to non-drug related rewards, and neural prioritization 

toward drug-related cues (Stewart & May, 2016). The use of ERPs such as the P300 have been 

examined as a biomarker of treatment outcomes (Houston & Schlienz, 2018), with a growing 

literature supporting the use of frequency domain EEG data to examine addiction mechanisms 

(Harper, Malone, & Iacono, 2018a) and elicit clinically relevant behaviour change (see Pfabigan 

et al., 2011; Wu & Zhou, 2009; Luijges et al., 2018). 

The most commonly studied ERPs in the context of substance dependence include 

error-related and feedback-related negativity occurring post outcome/feedback presentation, 

the N200 indexing the monitoring of need to inhibit versus activate a response, the P300 as a 
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measure of the degree of attentional allocation and processing to task stimuli, and the late 

positive potential as an index of extended attentional capture (Stewart & May, 2016). These 

feedback related components are also sensitive to magnitude and valence of outcomes, such as 

monetary gains and losses in decision-making tasks (Pfabigan et al., 2011; Wu & Zhou, 2009).  

Differences in the utilisation of feedback reflected in FRN and P3 components have been 

observed between substance dependent and control samples. In gambling tasks, alcohol 

dependent samples have shown reductions in FRN and P3 amplitudes, with increased activation 

in sensory and motor areas. These FRN findings appear to extend to binge drinkers, however no 

group differences in P3 amplitudes have been observed (Na et al., 2019; Wahlstrom, 2013). In 

contrast, comparing abstinent heroin users to healthy controls, Zhao et al., (2017) found 

increased FRN among the heroin-user group, which the authors suggest may be due to higher 

motivation for high-risk options or unpredicted positive outcomes among this group. In a study 

comparing cocaine users with longer versus shorter abstinence, and controls, no difference in 

FRN amplitudes for wins versus losses in a gambling task were observed in the longer abstinent 

group (Parvaz et al., 2015). Both cocaine-use groups showed an absence of FRN modulation for 

unpredicted losses compared with controls, suggesting a possible reduction in learning from 

negative RPE and environmental outcomes (Parvaz et al., 2015). Potts et al. (2014) found 

differences in medial frontal negativity in a reward expectation task between current and non-

smokers, however no group differences in error-related negativity on a flanker task were 

observed, although ERN was sensitive to reward and punishment. In a study by Muñoz, Anllo-

Vento, Fernandez, Montoya, and Vila, (2012), outcome-related amplitudes were sensitive to 

abstinence and satiation among current smokers, with increased amplitudes for tobacco-related 

stimuli during abstinence. However, Seow et al., (2019) found no significant association 

between ERN and alcohol addiction (and other indicators of psychopathology; N=196), 

suggesting that positive associations reported elsewhere in the literature may be due to small 

effect sizes. 
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Resting-state and task-related brain oscillatory activity has also shown associations with 

substance dependence. A genome-wise association study by Smit et al. (2018) identified novel 

genetic variants associated with resting-state oscillatory activity and found that hippocampal 

expression of GABRA2 was associated with both beta power oscillations and alcohol 

dependence. This confirms previous research demonstrating a relationship between GABRA2, 

alcohol and illicit drug-use (Mallard et al., 2018), and reward processing (Villafuerte et al., 2012). 

Resting state beta-band activity was shown to predict subsequent relapse over a six-month 

period in a substance dependent sample, and greater oscillations in the fast beta range (19.5 – 

39.8 Hz) were observed at baseline in relapsers compared with abstainers (Bauer, 2001). 

Additionally, resting state theta and slow alpha-band activity were significantly reduced in 

smoking satiation versus deprivation states (Evans et al., 2015; Sutton et al., 2016). Therefore, 

oscillatory activity may serve as an intermediary step between genes and behaviours relevant 

to substance dependence.  

Frontal midline theta has been proposed as a biophysical mechanism for cognitive 

control, reflected in spectral activation across the medial pre-frontal cortex, sharing similarities 

with a range of EEG components (e.g., ERN, FRN, N2) associated with aspects of control such as 

minimisation of error, novelty, and stimulus conflict (Cavanagh & Frank, 2014). Theta activation 

in this area may generate a surprise signal that leads to task-relevant adjustments in behaviour 

such as learning rates that influence prediction errors. Increases in theta activation have been 

observed in task conditions with high working memory load, and reflect levels of interference 

between choices in decision-making tasks such as the Stroop, Flanker, and Go/No-Go tasks 

(Hsieh & Ranganath, 2014; Nigbur, Ivanova, & Sturmer, 2011; Sauseng et al., 2010). Variances 

in frontal midline theta have been associated with psychiatric dimensions such as anxiety (see 

Cavanagh & Shackman (2015) for meta-analysis of this effect). Among those with anxiety, a 

greater influence of negative prediction errors on learning in a probabilistic selection task 

coupled with increases in theta generated from dorsal midline premotor structures was shown 
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to result in increased learning from punishment relative to reward (Cavanagh et al., 2011, 2019). 

Depression symptoms were better explained by changes to delta-band activation arising from 

orbitofrontal and ventromedial processes in response to reward. 

In the context of substance dependence, among a small sample of heroin users (N=15), 

Li and Xu (2019) found reduced mean theta activation at the Fz electrode between Go and No-

go conditions compared with healthy controls (p=.04). Accuracy did not differ significantly 

between groups, however slower reaction times were observed for Go trials in the opioid group. 

These results present a first hint that opioid use is associated with attenuations in theta activity.  

In a prospective study of 824 twins, Harper et al. (2018b) examined the association between 

frontal theta activation during an Erikson flanker task and alcohol-use disorder during the 

lifetime (303/824 participants had been diagnosed with an AUD by age 29). Reductions in 

midline frontal theta during response conflict in the task were significantly associated with AUD, 

and biometric modelling suggested a genetic contribution to this effect. Differences in the onset 

and duration of AUD from adolescence to adulthood did not show a significant relationship with 

theta activation. In a Go/No-Go task with unequal probabilities (80/20%; i.e., requiring 

increased inhibitory control), Holcomb et al. (2019) observed significantly lower theta activation 

in frontal, central, and parietal regions on No-Go trials among binge drinkers compared to light 

drinkers in addition to transient increases in beta power among light drinkers associated with 

preparation to respond in the task. In a gambling task, Kamarajan et al. (2015) showed 

reductions in monetary outcome event-related theta across gain and loss conditions for a male 

sample with alcohol dependence compared with controls, differences that also appear between 

groups at high versus low familial risk for alcohol dependence (Kamarajan et al., 2015). 

Reductions in frontal midline theta during decision-making tasks with response conflict also 

occur as a result of acute alcohol consumption (Beaton et al., 2018).  

Variations in task-related/functional alpha activity have been observed in a number of 

clinical domains, including OCD (Perera, Bailey, Herring, & Fitzgerald, 2019) and compulsivity 
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(Seow, O'Connell, & Gillan, 2020). Pandey et al., (2016) observed group differences in EEG 

oscillations across all frequency bands between a male sample with alcohol dependence (N=20) 

and matched controls. During a Go/No-Go task, the alcohol group showed significantly lower 

‘slow’ (8-9.5 Hz) alpha activation in central and parietal regions on Go trials, and significantly 

lower ‘fast’ (10-12.5 Hz) activation in parietal, occipital, and temporal regions on No-Go trials. 

Additionally, the alcohol dependent group showed significantly lower theta activation in frontal, 

central, and parietal regions, and reduced delta band activity across all regions during the task 

(Pandey et al., 2016).   

1. 5. Probabilistic Selection Task 
The probabilistic selection task (PST; Frank et al., 2004) belongs to a class of decision-

making paradigms that measure reinforcement learning through 1) a training phase in which 

reinforcement contingencies are learned, and 2) a test phase in which participants choose 

between stimuli. As the PST uses probabilistic, rather than deterministic learning, the reward 

and punishment contingencies cannot be determined based on the outcome of one trial. 

Instead, reinforcement history must be integrated over several trials in order to learn the 

reward/punishment contingencies of the task. 
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Figure 1. 1. Probabilistic Selection Task (PST) training phase stimulus pairs, with reward 

contingencies in parentheses, and characterisation of Test phase outcome variables ‘Approach 

A’, and ‘Avoid B’.  

During the training phase, participants learn the reward and punishment probabilities 

of six stimuli. During the test phase these contingencies are used to guide decision-making. 

More specifically, during training, three stimulus pairs (denoted AB, CD, EF) are randomly 

presented with predetermined reward probabilities (A:80%, B:20%, C:70%, D:30%, E:60%, 

F:40%). Participants are required to pick the most rewarded stimulus in each pair through trial-

and-error learning using correct and incorrect feedback. In the Test phase, novel stimulus 

combinations of the six stimuli are presented without feedback (i.e., a total of 15 novel stimulus 

pair combinations are possible). Test phase performance is most often quantified by selection 

frequency of the A stimulus versus the B stimulus in novel pairs. For example, the A stimulus 

should be preferable to all other stimuli following positive feedback learning, whereas B should 

always be avoided following negative feedback learning.  



 

20 
 

The PST may be sensitive to dopaminergic function. In a sample of patients with Parkinson’s 

Disease, Frank et al. (2004) showed that patients on dopaminergic agonist medication (i.e., with 

sufficient levels of dopamine) learned more effectively from reinforcers than from punishers. 

The reverse pattern was observed in patients abstaining from medication. Further, in an 

experiment with healthy older adults (Frank & O’Reilly, 2006), the administration of haloperidol 

(a DA receptor antagonist) versus cabergoline (a DA receptor agonist) medication affected PST 

performance, with increased learning from positive feedback observed in the former, and 

increased learning from negative feedback in the latter. These effects are thought to arise from 

the selective modulation of striatal D1 and D2 receptors, based on the basal ganglia neural 

network model of dopaminergic signalling in the striatum proposed by Frank et al. (2004). A 

number of studies have also shown links between probabilistic reinforcement learning and 

variations in single-nucleotide polymorphisms in dopamine-related genes, such that expression 

of DARRP-32 and DRD2 shows a bidirectional relationship with Approach A versus Avoid B 

selections in the PST test phase (Frank, Moustafa, Haughey, Curran, & Hutchinson, 2007; Frank 

& Hutchinson, 2009; Sojitra, Lerner, Petok, & Gluck, 2018).  

However, it must be noted that a recent study by Grogan et al. (2017) failed to replicate the 

findings of Frank et al. (2004) in comparing Parkinson’s patients on and off medication with 

healthy controls. Additionally, Maril, Hassin-Baer, Cohen, and Tomer (2013) found that left 

versus right hemispheric pathology in Parkinson’s disease differentially affected reward and 

punishment learning. This discrepancy in findings may be due to variations in the type of PST 

used between studies, such as using monetary vs. non-monetary feedback, the discriminability 

of stimuli used, and the level of accuracy required to pass the training phase (Schutte, Slatger, 

Collins, Frank, Kennemans, 2017). Overall, these studies highlight that while dopaminergic 

signalling and the PD hypothesis plays a role in probabilistic reinforcement learning, other 

factors including working memory, attention, and motivation may also play a large role. For 

example, Collins, Brown, Gold, Waltz, and Frank (2014) have shown that deficits in working 
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memory capacity may drive reinforcement learning impairments supposedly due to abnormal 

striatal dopamine in patients with schizophrenia. 

Nonetheless, the PST has been used to examine reinforcement learning in a variety of 

clinical domains, including schizophrenia (Cicero, Martin, Becker, & Kerns, 2014; Doll et al., 

2014; Dowd, Frank, Collins, Gold, & Barch, 2017), depression (Kunisato et al., 2012; Whitmer, 

Frank, & Gotlib, 2012), attention deficit hyperactive disorder (Frank, Santamaria, O’Reilly, & 

Willcutt, 2007) obsessive-compulsive disorder (Endrass, Kloft, Klaufmann, & Kathmann, 2011), 

bipolar disorders (Urošević, Halverson, Youngstrom, & Luciana, 2018), and autism spectrum 

disorder (Solomon, Frank, & Ragland, 2015). PST performance has shown sensitivity to stimulant 

medication in ADHD, such that medication improves training phase accuracy, and selectively 

increases learning from positive feedback in the test phase (Frank et al., 2007). Dowd et al. 

(2017) reported reduced learning from positive feedback among patients with schizophrenia 

relative to controls, while Cicero et al. (2014) reported reduced learning from both positive and 

negative feedback among patients. Conversely, in a comparison of healthy controls and alcohol-

dependent patients, Rustemeier et al. (2012) found no group differences in the PST training 

phase and test phase accuracy, although a near-significant negative relationship between 

learning from positive feedback and self-reported harm avoidance was observed.  

An increasing number of studies have utilised reinforcement modelling in PST research. 

Cavanagh, Bismark, Frank, and Allen (2019) identified unique dimensions of EEG-related reward 

and punishment learning during the PST associated with depression and anxiety. Fitting RL 

models to the training phase, Cavanagh et al. (2019) found that coupling between trial by trial 

PEs in response to negative feedback and FRN correlated with anxiety, whereas depression was 

associated with reward-related deficits. Chase et al. (2010) compared learning rates in patients 

with major depressive disorder versus controls, and showed a ‘blunting’ effect in patients. That 

is, reduced learning rates for both positive and negative feedback that correlated with level of 
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anhedonia. Recently, Baker, Zeighami, Dagher, and Holroyd (2018) showed that reinforcement 

learning signals were modulated by smoking state in current smokers. More specifically, 

learning from positive prediction errors increased following cigarette consumption and 

decreased following abstinence, whereas the reverse pattern was observed for learning from 

negative prediction errors.  

1. 6. Computational Psychiatry 
The field of computational psychiatry is based on the assertion that perturbations in 

how the brain performs computations can lead to psychiatric symptomatology, and aims to 

translate findings from computational neuroscience into clinical practice (Friston, Stephan, 

Montague, & Dolan, 2014; Huys, Browning, Paulus, & Frank 2020; Montague, Dolan, Friston, & 

Dayan, 2012). Research in computational psychiatry has grown rapidly in recent years, with 

several advances in the prediction of treatment responses (Harlé et al., 2015; Konova et al., 

2020), the identification of computational biomarkers relevant to diagnosis (Frässle et al., 2020; 

Wiecki et al., 2016), and the understanding of mechanisms underlying disorders such as 

schizophrenia (Collins, Albrecht, Waltz, Gold, & Frank, 2017), autism (Lawson, Mathys, & Rees, 

2017), and depression (Cavanagh et al., 2019). For example, Wiecki et al. (2016) used machine 

learning classification to show that Huntington’s Disease state could be predicted in pre-

symptomatic individuals (Group A were closer to HD progression as measured by CAG repeat 

length and age, Group B further were away from disease progression) using a computationally 

derived parameter of executive function from an anti-saccade conflict task.  

In many cases, computational features are more predictive and useful than summary 

statistics of behavioural task measurements alone. One reason for this is that model parameters 

reflect an internal process that is made explicit by its function in the model (Huys et al., 2016). 

Additionally, modelling can capture trial-by-trial variability and decision-making processes that 

fluctuate within an experimental task by holistically analysing the full range of data– these are 

often not readily observable by analysing particular aspects of the data (e.g., mean accuracy and 
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reaction times for conditions of an experimental task). Identifying key latent decision-making 

parameters that map onto psychological constructs via computational models allows for direct 

comparisons between tasks and studies- which is not always possible due to methodological 

variations between tasks. For example, Wiecki (2015) applied a drift-diffusion model to three 

experimental tasks (numerosity-discrimination task, lexical decision-making task, and memory-

recognition task; Ratcliff, Thapar, & McKoon, 2010), and used the estimated parameters from 

all tasks to create five latent factors predictive of age using a classification technique. The 

modelling approach also allows for model comparison to formally assess the strengths of 

competing hypotheses in explaining a given dataset (see Robinson & Chase (2017) for an 

application of this approach to anhedonia). Finally, the identification of a neurobiological basis 

for cognitive processes indexed by model parameters may lead to alternative methods of 

investigation where the use of imaging is not possible due to economic restrictions.  

With the steady increase of research into computational psychiatry, efforts have been 

made to ensure good practices in the use of modelling in cognitive science. This includes 

developing standards to improve reproducibility, such as making model code and data openly 

available for other researchers to investigate (Lee, 2018; Lee, Bang, & Kim, 2016; Poldrack et al., 

2019), guidelines on how to report modelling results and avoid making incorrect inferences or 

conclusions from these (Wilson & Collins, 2019) and a framework for the development, 

validation and deployment of computational assays to improve its ability to address real-world 

clinical problems (Browning et al., 2020). Lee et al. (2019) suggest (i) pre-registering model 

predictions and evaluation methods, (ii) post-registering model development and making the 

models openly available, (iii) conducting detailed evaluation of models to understand their 

relative strengths and weaknesses (e.g., by bookending models, to include models that are more 

parsimonious and more complicated than those of primary interest), and (iv) registering model 

reports. There are multiple levels at which reproducibility must be considered, Benureau and 

Rougier (2018) suggest that code should be re-runnable (i.e., the execution environment, 
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software, libraries and dependencies can be recreated), repeatable (e.g., run multiple times by 

the same researcher with the same results), reproducible (the same results can be obtained 

independently by another researcher), and reusable (it can be openly used, modified, and 

improved upon in light of previous research). Taking these steps may limit the effects of 

flexibility in model analysis on scientific conclusions. Variability in choice of models, methods of 

estimation, and procedures of inference have been demonstrated to affect conclusions in a 

blinded multi-team analysis of reaction time data (Dutilh et al. (2019), and elsewhere in 

cognitive neuroscience (e.g., Botvinik-Nezer et al., (2020) have shown that variability in fMRI 

analysis workflows resulted in sizable variation of hypothesis results between 70 research 

teams- no two teams chose the same analysis plan).  

1. 6. 1. Reinforcement Learning 
The field of reinforcement learning (RL) has been developed from empirical and 

theoretical advances in many overlapping disciplines (Figure 1. 2), including operant and 

classical conditioning experiments from psychology (e.g., Hull, 1943; Skinner, 1938), machine 

learning and reward system research from neuroscience/computer science (Niv, 2009), and 

optimal control theory from mathematics (Williams, 2009). RL is concerned with how humans, 

animals and/or artificial agents learn to optimise their behaviour through predicting the 

perceived consequences of their actions, leading them from one environmental state to the 

next (Sutton & Barto, 1998).  
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Figure 1. 2. Diagram of disciplines relevant to reinforcement learning. 

Through a process of trial and error learning, state values are updated to increase the 

probability that more highly rewarded states will be selected in the future to maximise the 

accumulated reward (Fig. 1. 3). To formalise this, at time-point ‘t’ the agent observes a state ‘s’, 

takes an action ‘a’, and receives a reward ‘r’ as a result of this action. This process is repeated 

at St+1 and continues along a trajectory of states, actions, and rewards until the termination of 

agent-environment interaction (e.g., when a game of chess ends). A key feature of RL is the 

minimisation of error, which is quantified by the prediction error.  
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Figure 1. 3. Depiction of the agent-environment interface. 

The reward prediction error (RPE) signal is proposed to reflect the difference between 

observed and expected outcomes, and is used to update the value of action-value associations 

to guide future behaviour (Schultz, 1998); Rescorla & Wagner, 1972). The PE signal reflects 

expectancies regarding the outcomes of particular choices, and is updated on a trial-by-trial 

basis in reinforcement learning tasks based on feedback. If a stimulus is consistently paired with 

a particular outcome, the PE signal is reduced. The PE has gained interest in cognitive 

neuroscience due to the finding that it is signalled by midbrain dopaminergic neurons (Schultz, 

Dayan, & Montague, 1997).  

There is robust evidence that the functional role of the midbrain dopamine system is to 

detect and predict future rewards, sending reinforcement learning signals to brain areas 

involved in decision-making (Schultz, 2002). It has been shown that the updating of stimulus-

response values is based on phasic bursts and dips in striatal dopamine which corresponds to 

reward prediction errors. A seminal study by Schultz et al. (1997) using electroencephalography 

(EEG) in primates demonstrated that presentation of a conditioned stimulus elicited phasic 

increases in dopamine cell activity. In contrast, omission of an expected reward led to a dip in 

dopamine activity during the time window in which the reward was expected (see Figure 1. 4.). 
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Figure 1. 4. From Schultz et al. (1995). Plots the number of action potentials produced by 

monitored dopamine neurons within small time intervals during three stages of an experiment. 

The response of dopamine neurons shifts from initial responses to primary reward (top row) to 

earlier predictive stimuli (bottom row). 

There are a number of algorithms that aim to learn optimal action values in 

reinforcement learning problems, such as Q-learning, SARSA, and Monte Carlo. These can be 

dichotomised into model-free and model-based types of learning. Q-learning is an example of 

model-free learning, which learns action values through trial and error, which has been widely 

used in the study of trial-by-trial learning in experimental decision-making tasks.  

In model-free learning, state-action values are cached based on previous rewards 

without making representations of future states, an example of this is learning from experience 

or trial-and-error learning. Actions are selected based on the accumulated average experience 

of outcomes in the past. This may be considered a form of retrospective learning, whereby 

future states and actions are expected to behave just as they did in the past. This can lead to 
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inflexibility in decision-making, as observed in habitual behaviour (Decker, Otto, Daw, & Hartley, 

2016). However, this form of learning is computationally inexpensive.  

In model-based learning, actions are computed via planning (i.e., an internal 

representation of future states and actions).  According to Dayan and Berridge (2014), a model 

is an internal representation of stimuli, states, and environmental circumstances that allow 

prospection. Here, actions are computed based on an internal model of the environment to 

maximise utility. This allows for flexible updating of reward contingencies in light of future 

expectations, however comes at the cost of increased computation spent on simulating 

potential future scenarios. Model-based learning is often related to goal-directed learning 

(Decker et al., 2016).  

1. 6. 2. Computational Psychiatry & Addiction 
In this section, a selective review of studies on the computational neuroscience of substance 

dependence are discussed.  

Model-based vs. model-free reinforcement learning 

The distinction between model-based versus model-free styles of learning has been proposed 

to underlie the transition from goal-directed to habitual control observed in addiction. This is 

typically studied using instrumental ‘two-step’ tasks, or devaluation paradigms translated from 

the animal literature, such as Pavlovian to instrumental transfer (PIT) or ‘slips of action’ task. 

The ‘two-step’ task is a sequential decision-making task with probabilistic transitions between 

two states in each trial that ultimately lead to reward (Daw et al., 2011), and can be modelled 

computationally to provide a weighting parameter indexing the balance between model-based 

and model-free learning. Gillan, Kosinski, Whelan, Phelps, and Daw (2016) demonstrated an 

overarching relationship between reductions in goal-directed learning (indexed by performance 

in a two-step task) and the symptom dimension of compulsive behaviour and intrusive thoughts, 

as measured using online questionnaires. 
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Economic Decisions 

Economic choices refer to decisions involving discounting (e.g., delay of smaller immediate 

rewards relative to larger future rewards) and risks (e.g., loss aversion in gambling tasks and 

tolerance of uncertainty and ambiguity). Prominent computational models in these types of 

decisions include hyperbolic discounting, prospect valence learning, and expected utility theory 

models (Huettel et al., 2006; Steingroever, Wetzels, & Wagenmakers, 2013; von Neumann and 

Morgenstern, 1944). The IGT (Bechara et al., 1994) is a decision-making task that requires 

learning from gains and losses to select the most optimal of four card decks. This requires the 

management of uncertainty and risk to increase reward. A key finding from the task is that 

clinical groups tend to persist in selecting disadvantageous card decks throughout the task, 

whereas non-clinical groups learn to adapt to changes in payoffs by selecting the advantageous 

decks. 

Alcohol 

The evidence for a shift from goal-directed to habitual decision-making in alcohol dependence 

is mixed. Using the two-step task, Nebe et al., (2018) found no association between alcohol use 

and model-based versus model-free learning in a sample of young male social drinkers. Further, 

no relationship between alcohol consumption and neural correlates of these relative learning 

models in the ventral striatum and ventromedial prefrontal cortex was found. In a clinical 

context, Sebold et al., (2017) compared performance on the two-step task between alcohol-

dependent patients and healthy controls. The authors found that alcohol expectancies 

interacted with model-based control to significantly predict group membership (control, 

abstainer, and relapse), however model-based control alone did not predict alcohol group 

status. Relapse was associated with low model-based control and high alcohol expectancies at 

baseline, rather than low model-based control alone. In an abstinent alcohol dependent sample, 

Voon et al. (2005) found no significant difference in the two-step task computational model-
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free vs. model-based parameter (w) compared with healthy controls. However, significant group 

differences in learning emerged between binge eating disorder, obsessive compulsive disorder, 

methamphetamine-dependent samples, and healthy controls.  

In a large male sample of alcohol drinkers, Garbusow et al. (2019) found enhanced PIT 

in high versus low drinkers, and PIT-related amygdala activation which was linked with polygenic 

risk score for alcohol consumption. In a smaller sample, a similar finding was observed in 

detoxified alcohol dependent patients, who showed an enhanced PIT effect compared with 

controls, which was also predictive of alcohol relapse over a three month period (Garbusow et 

al., 2016).  

Opioids 

In a series of studies by Ahn and colleagues, computational models were fit to IGT 

(conceptualised statistically as a four-armed bandit problem) data and fitted parameters were 

compared between clinical and substance dependent groups. Across three variations of 

computational models, heroin users showed reduced loss aversion compared with pure 

amphetamine users and healthy controls, however no overt behavioural IGT differences were 

observed between the drug-user groups (Ahn et al., 2014).  

In a longitudinal study of opiate use disorders in a community treatment setting, Konova 

et al. (2020) found that a computationally-derived ambiguity tolerance parameter predicted 

prospective opiate use. Across seven months and 15 experimental sessions, participants 

completed a lottery task involving choices between guaranteed versus lottery sums of money. 

The task is designed to measure known-risk versus ambiguity tolerance, and a computational 

power utility model was fit to paramaterise these. At baseline, subjects showed similar 

performance, however this trajectory changed over time, showing higher ambiguity tolerance 

associated with relapse. Risk tolerance was not found to predict relapse. 

Nicotine 
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Luijten et al., (2020) found no group differences between smokers and non-smokers in goal-

directed versus habitual control, although increased habitual learning was associated with more 

severely nicotine dependent individuals following appetitive instrumental learning (no 

association was found following avoidance instrumental learning).  

 These studies suggest that computational measures may be sensitive to substance-

dependence and abstinence. The PST shares similarities with the learning and decision-making 

tasks highlighted above in terms of the learning mechanisms it seeks to measure. It may be 

considered a measure of model-free learning, i.e., utilising probabilistic trial-by-trial feedback 

to increase reward, however its task design (i.e., the lack of a sequential decision-making stage) 

does not allow for a direct comparison with model-based learning. Importantly, the application 

of computational models to the PST allows for direct comparisons of latent factors such as 

learning rates, exploration, and perseverance, which can be applied to a wide range of 

experimental tasks and may represent task-general markers of substance-dependence.  

1. 7. Drift-diffusion Model 
Unlike reinforcement learning models, which focus solely on choice behaviour, diffusion 

models seek to explain the distribution of reaction times that lead to particular choices. The drift 

diffusion model (DDM) is a form of sequential sampling model that has been extensively used 

in the analysis of two-alternative forced choice decision-making tasks (Ratcliff & McKoon, 2008). 

This model posits that decisions involve the gradual accumulation of noisy evidence until a 

critical decision-threshold is reached and a response is executed. There are four main 

parameters in the standard DDM (see Figure 1. 5); drift-rate (v), threshold (also referred to as 

boundary-separation; a), non-decision time (t), and bias (also referred to as starting-point; z). 

The drift-rate refers to the speed with which evidence accumulation favours one boundary over 

the other. Boundary-separation provides an index of response caution and the speed/accuracy 

trade-off. For example, wider boundaries indicate that more evidence is considered before a 

decision is reached, whereas smaller boundaries indicate faster responding with more noise, 
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and likely more impulsive decision-making. The non-decision time parameter refers to the time 

taken to visually encode the stimuli and prepare a motor response. The bias parameter takes 

into account any pre-existing bias for one stimulus over the other that may influence the 

decision process. For example, if the starting point is closer one stimulus then less evidence 

accumulation is required to choose that response. The DDM allows for the comparison of a 

psychologically meaningful set of parameters between conditions and studies and is sensitive 

to subtle differences in reaction times between trials. As Moustafa et al. (2015) note, slower 

reaction times may be due to poor accuracy (measured with drift-rate), slower motor responses 

(non-decision time), or increased caution (higher boundary separation). These subtleties may 

be lost in traditional analyses of RT and choice data. 

The upper and lower boundaries in Figure 1. 5 refer to each choice on a given trial. In 

the case of the PST, these could refer to stimulus A versus B in the test phase, with the ‘accurate’ 

choice being the stimulus with the highest reward probability from the learning phase (i.e., 

stimulus A). Wiecki et al. (2013) used a DDM (estimated using a hierarchical Bayesian method) 

to show that drift-rates in the test phase of the PST varied according to the level of conflict in 

the stimulus pairs. Lower drift rates were observed for high conflict pairs, which include two 

stimuli with similar reward probabilities (e.g., A: 80% and C: 70%), compared with low conflict 

pairs, which included a stimulus with high and low reward probabilities (e.g., A: 80% and D: 

30%). In a study using pupillometry, Cavanagh, Wiecki, Kochar and Frank (2014) found that 

greater pupil dilation predicted increased decision threshold only in high-conflict decisions in 

the PST. 
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Figure 1. 5. Diagram of the drift diffusion model, from Wiecki, Sofer, and Frank (2013).  

1. 7. 1. Application of DDM 
Differences in DDM parameters have been used to distinguish clinical groups from 

controls. For example, the starting-point parameter has been shown to drive premature 

responses and impaired response inhibition in patients with schizophrenia compared with 

controls (Limongi, Bohaterewicz, Nowicka, Plewka, & Friston, 2018). Individuals with high trait 

anxiety were also shown to increase boundary separation following errors, unlike those with 

low trait anxiety (White, Ratcliff, Vasey, & McKoon, 2010). Participants diagnosed with autism 

spectrum disorder were also shown to have wider boundary separation and larger non-decision 

times compared with controls while performing an orientation discrimination task (Pirrone, 

Dickinson, Gomez, Stafford, & Milne, 2017).  

There is a small but growing literature on the role of DDM decision processes in 

substance dependence. Two recent studies have shown that acute alcohol intoxication 

influences particular DDM processes in perceptual decision-making. In a within-subjects design, 

Stock, Hoffmann, and Beste (2016) showed that alcohol state (sober, intoxicated, or hangover) 

modulated drift-rate and non-decision rate parameters, while boundary separation was 
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unaffected. van Ravenzwaaij, Dutilh, and Wagenmakers (2012) showed that alcohol intoxication 

resulted in increased non-decision times and decreased drift-rates compared with baseline 

performance in a moving dots task. 

1. 7. 2. Combined RL and DDM models 
Owing to their development in separate theoretical traditions, DDM and RL models are typically 

studied independently in the field of value-based decision-making. A number of recent 

theoretical and empirical studies have highlighted the merits of combining RL with DDMs 

(Fontanesi et al., 2019; Frank et al., 2015; Militec, Boag, & Forstmann, 2020; Pederson et al., 

2017). The main motivation for the integration of these models is to understand how evidence 

accumulation/drift processes change as learning progresses. For example, evidence 

accumulation rate towards a response boundary is likely affected by the perceived value 

associated with a given response. In a probabilistic learning paradigm, the value of responses 

will change across trials of an experiment. If a given response is consistently rewarded 

throughout the course of the task, then this will likely result in faster evidence accumulation 

rates or smaller response boundaries as the task progresses. Therefore RLDDMs may be able to 

capture the influence of these learning processes on evidence accumulation, response 

boundaries and starting point biases. Pedersen et al. (2017) have used RLDDMs to analyse the 

complex effects of medication and clinical status in ADHD, however the application of these 

models to the field of addiction remains untested.   

1. 8. Bridging behavioural and neural data  
While computational modelling of behavioural data alone can provide unique insights 

into the mechanisms underlying reward and punishment learning, further insights may be 

gained through bridging behavioural and neural data using computational methods. Linking 

brain and behaviour via cognitive models may improve predictions from otherwise disparate 

levels of analysis, and a number of methods have been proposed (Turner, Rodriguez, Norcia, 

McClure & Steyvers, 2016; Turner, Palestro, Miletic, & Forstmann, 2019).  Bridwell et al., (2018) 
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advocate for the use of machine learning to extract single-trial estimates of EEG data that can 

be linked with behavioural data. For example, Frank et al. (2015) examined the neural 

mechanisms of reinforcement learning using fMRI and EEG alongside drift-diffusion modelling. 

The authors found that co-activity between the dorsomedial pre-frontal cortex and subthalamic 

nucleus was related to fluctuations in the decision-threshold parameter of the DDM according 

to the level of conflict between response probabilities of stimuli in each pair. Furthermore, 

Cavanagh et al. (2011) found that increases in trial-by-trial medial pre-frontal cortex EEG theta 

activity predicted increases in the decision-threshold parameter in high-conflict PST trials. This 

pattern was reversed with the manipulation of deep brain stimulation of the sub-thalamic 

nucleus, which resulted in a reduction of decision-threshold and faster reaction times.      

1. 9. Machine Learning 
As an agnostic, data-driven method, ML is useful in complementing theory- and hypothesis-

driven models, and is particularly suited to ‘wide’ datasets where the number of 

independent/predictor variables exceeds the number of study participants (e.g., time-series 

EEG and fMRI data; Obermeyer & Emanuel, 2016). Unsupervised ML models are blind to 

outcome and dependent variables, therefore the model attempts to cluster feature data into 

meaningful groups without prior knowledge. Supervised ML models seek to predict a known 

outcome, such as disease category or relapse status, and often include generalisation tests such 

as out of sample validation and random label permutation tests to determine their success; if 

the model can accurately predict the outcome of unseen data, then it is considered successful 

(Bzdok & Meyer-Lindenberg, 2018). Traditional regression models are subject to ‘overfitting’, 

whereby model estimates are optimised for the predictor data that the model is fit to, leading 

to overoptimistic results that may not generalise to new sample data (Whelan & Garavan, 2014).   

The ML approach aims to circumvent such overfitting through the application of 

resampling/cross-validation and regularisation. Applying a trained model to an external 

validation dataset that is held separate from the data it was trained on is an ideal method to 
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ensure generalisability to novel observations. However an efficient cost-effective alternative is 

the use of cross-validation methods, which involve resampling the data into training and test 

datasets which are used to generate and apply the model respectively. Resampling procedures 

include bootstrapping (where random subsets of a dataset are extracted with replacement), 

leave-one-out cross-validation (where the test dataset contains one datapoint), and k-fold 

cross-validation (where the dataset is split into k partitions, and the model is generated based 

on k-1, and applied to the final k partition). For example, the model is first split into a training 

set (90% of the dataset) and a test set (10%), next the model is fit to the training set, and then 

the model is evaluated on the remaining test set. In nested cross-validation, a further CV step is 

implemented within the training set to tune hyper-parameters (such as the regularisation 

parameters λ and α outlined below). In this case, 81% of the dataset is used to train the model 

using an array of hyper-parameters and the optimal parameters are evaluated on the remaining 

9%. The use of separate datasets to train and evaluate hyper-parameters prevents information 

‘leaking’ into the model and causing overfitting.  

Common ML classification algorithms include support vector machines, random forests, 

and regularised regression. The latter penalises regression weights using regularisation 

techniques (e.g., LASSO/L1, ridge/L2, Elastic Net) to avoid overfitting caused by overly complex 

or flexible models. Ridge and LASSO (least absolute shrinkage and selection operator) 

techniques differ in the type of penalty term they use; ridge adds the squared magnitude of the 

coefficient as a penalty, and LASSO adds the absolute value of the magnitude of the coefficient. 

The L1 penalty encourages the exclusion of unimportant predictors in the model by shrinking 

less important coefficients to 0. This may be useful in identifying significant features in models 

with numerous predictors. The L2 penalty shrinks predictors to smaller values rather than 0, 

hence allowing all variables to remain in the final model.  The Elastic Net (Zou & Hastie, 2005) is 

a hybrid technique using a combination of both L1 and L2, with the advantage of allowing 
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important and correlated predictors to remain in the model. The weight of L1 versus L2 

regularisation is controlled by the λ and α parameters.  

Therefore, in combining regularisation with cross-validation methods, the 

generalisability of ML models is improved. One method of assessing ML model performance is 

to compare it with a baseline classifier using random label permutation. That is, comparing the 

true model performance with a null model fit to data with randomly assigned outcome labels. 

This provides an indication of the threshold of significance, and allows for significance testing of 

ML metrics such as cross-validated r between true and ‘null’ models.   

Machine learning methods are increasingly being harnessed to make individual 

predictions regarding psychiatric status and clinical outcomes (Dwyer, Falkai, & Koutsouleris, 

2018). A systematic review by (Mak, Lee, & Park, 2019) identified 17 studies applying ML 

methods to addiction research. In the context of alcohol misuse, Whelan et al. (2014) compared 

the predictive value of various domains (brain (fMRI), personality, cognition, genetics, life 

history) in predicting binge drinking in an adolescent sample (n = 692). 66% of binge drinkers at 

age 16 were correctly classified using the combined baseline measurements at age 14, 

personality and life history domains were the most predictive (i.e., highest AUC) individual 

domains. In a cross-sectional design, Lee et al. (2019) identified 10 features (out of a total 179) 

that predicted alcohol use disorder treatment-seeking status (n=778) with 86% accuracy, and 

78% accuracy in an external validation set (n=236). In this study, a traditional logistic regression 

model performed with similar accuracy, however the logistic model required twice as many 

measurements compared with the ML model. Ahn and Vassileva (2016) also utilised a ML model 

to classify cocaine-dependent individuals and healthy controls using various task-based 

measures of impulsivity, with an AUC value ~0.90.  These approaches have also been 

investigated as a tool to guide clinical care and predict patient outcomes (Acion et al., 2017; 

Connor et al., 2007; Paulus, Tapert, & Schuckit, 2005). Recently, Coughlan, Tegge, Sheffer, and 

Bickel (2018) used decision trees to identify significant executive function and impulsivity 
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features to predict smoking cessation treatment outcome. In the field of computational 

psychiatry, data-driven ML methods may complement theory-driven predictions to investigate 

latent factors derived from various models and psychopathologies (Gillan et al., 2016; Eisenberg 

et al., 2019; Wiecki et al., 2015).  

1. 10. Unresolved Issues & Current Research 
The current chapter has provided an overview of decision-making research relevant to 

substance dependence, highlighting the role of impaired reward processing in alcohol, opioid, 

and nicotine dependence. There is a rich literature investigating aberrant decision-making in 

substance-dependence, however it remains unclear how these are manifested across different 

substance types and misuse patterns (Ekhtiari, Victor, & Paulus, 2017). As with other branches 

of psychiatric research, efforts to study the effects of substance misuse on decision-making are 

sometimes confounded by a strong comorbidity between alcohol, nicotine, and other types of 

substance-use, which has increased research attention towards trans-diagnostic factors (Eaton, 

Rodriguez-Seijas, Carragher, & Krueger, 2015). Substance-use is often measured by composite 

poly-substance outcome variables, and indeed there exist many similarities in the cognitive 

mechanisms involved across various substance types (e.g., it has been proposed that greater 

decreases in the valuation of future rewards as measured in delay discounting paradigms is a 

general marker for substance dependence (Bechara et al., 2019; Bickel et al., 2018), however 

many others have observed substance-specific effects on decision-making (e.g., Ahn et al., 2014; 

Peechatka & Janes, 2017). Therefore, the distinct neurobiological and functional aspects of 

various substances warrant formal comparisons of their effects on decision-making. For 

example, expectancies regarding opioid-use (immediate euphoria) are likely distinct from 

cigarette consumption, implicating varying levels of impulsivity and valuation.  

Computational models of decision-making provide a quantitative alternative to 

semantic/verbal outcome variables and summary choice and RT statistics, leading to more direct 

inferences regarding cognitive components underlying decision-making. An advantage of this 
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approach is that the influence of various latent variables (e.g., tolerance of uncertainty versus 

risk, processing speed, learning rate) can be investigated in experimental tasks- this has 

uncovered subtleties of decision-making and differences between groups that are sometimes 

not apparent in mean choice and reaction times (Myers et al., 2016). The DDM is a model of 

decision-making that has been widely applied in the field of cognitive psychology to provide 

additional insights into decision-making between clinical and normative groups. Concomitantly, 

RL models have been instrumental in identifying the role of phasic dopamine in signalling RPEs 

to influence learning and choice behaviour. Recently, DDM and RL models have been combined, 

allowing for changes in the reward value of task stimuli as they are updated across trials. 

However, there are a limited number of empirical investigations into value-based decision-

making in substance dependence using the DDM of decision-making.   

Further, while much research has focused on decision-making differences between 

groups, less has focused on changes in decision-making across time, and whether successful 

abstinence remediates impairments observed in former dependence. Some studies have shown 

that decision-making impairments persist in protracted abstinence, and vary according to 

substance class (Ahn et al., 2014; Vassileva et al., 2014). While one may expect differences in 

decision-making between active substance-use, versus short and long-term abstinence, it is not 

clear how neurobiological mechanisms involved in treatment differentially affect reward 

processing.   

 To address these gaps in the literature, I sought to investigate value-based decision-

making in substance-dependence and successful abstinence by fitting combined RL DDMs to the 

PST across four studies. Utilising a machine learning approach with penalised regression models, 

I compared three sets of features: (i) mean choice accuracy on the PST, (ii) computational 

parameter estimates, and (iii) self-reported impulsivity as predictors of various substance-use 

groups.  
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 RLHDDMs were fit to the training phase of the PST, and DDMs to the test phase in each 

empirical study. Substance-use outcomes were predicted by four models: (i) PST Summary, (ii) 

Computational, (iii) Personality, and (iv) a Combined feature model, compared with 

demographic models (i.e., age and gender). In Chapter 3, I sought to predict alcohol misuse risk 

in a community sample of 115 participants. To investigate the role of abstinence in value-based 

decision-making, Chapter 4 predicted length of abstinence from heroin among a sample of ex-

opioid users (N = 81) receiving methadone maintenance therapy. In Chapter 5, I tested the 

hypothesis that impairments in value-based decision-making among current smokers would 

differ from groups of ex-smokers, vapers, and non-smokers (N = 173). Finally, in Chapter 6, 

changes in value-based decision-making were investigated as predictors of time to nicotine 

relapse in a longitudinal study tracking individuals (N = 112) through a smoking cessation 

attempt.  
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Chapter 2: Methodology 
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This chapter will provide an overview of the methodology employed across the empirical 

Chapters 3, 4, 5, and 6.   

  

2. 1. Experimental Task 
 

The PST (Frank et al., 2004) is a two forced choice alternative instrumental learning task 

designed to test if an individual is more likely to learn from positive relative to negative 

feedback. The PST comprises a training and test phase. In the training phase, two arbitrary 

stimuli are presented on each trial and probabilistic positive or negative feedback follows when 

one of the stimuli are selected. The reward probabilities of the six possible stimuli (i.e., three 

pairs) are pre-determined (Pair 1: A=80%, B=20%, Pair 2: C=70%,D=30%, Pair 3: E=60%, F=40%). 

Across 120 trials, the participant learns through trial-and-error to select the stimulus that is most 

likely correct in a given pair. In the test phase of the PST, each of the six stimuli from the training 

phase are presented in novel pair combinations without feedback. The participant is required 

to select what they consider the correct shape in each stimulus pair. The intuition for this phase 

is that if an individual is more likely to learn from positive feedback, they will consistently select 

the most rewarded stimuli (i.e., A) in any pair combination. If a person is more likely to learn 

from negative feedback, they will consistently avoid the most punished stimulus (i.e., B) from 

the training phase. Here, adopting the method of Cox et al. (2015), positive feedback learning 

was assessed by calculating the percentage selection of A and C stimuli (A > CDEF + C > EF), and 

negative feedback by the percentage of B and D selections (B < CDEF + D < EF). The rationale for 

this approach is that it is a more sensitive measure than only utilizing Approach A vs. Avoid B 

outcome variables. The Cox et al. method incorporates more trials, and is likely to avoid ceiling 

effects where a participant approaches A and avoids B with 100% accuracy. 

Two versions of the Probabilistic Selection Task (PST) were employed in this thesis; 

Version 1 (programmed in Presentation Neurobehavioral Systems, Inc., Berkeley, CA, 

www.neurobs.com) and Version 2 (programmed by Inquisit, https://www.millisecond.com) 
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were identical in task structure with varying arbitrary stimuli. Version 1 used images from the 

Stargate science fiction series, whereas Version 2 used Hirigana characters. The use of such 

arbitrary shapes resulted in a low likelihood that research participants would have a history 

associated with the task stimuli. Financial incentives for study participation were independent 

of PST performance across both versions of the task. 

 

Figure 2. 1. Depiction of how the PST Test phase outcome variables are calculated. The ‘Approach 

A’ and ‘Avoid B’ percentages are calculated from the frequency of A versus. B selections in novel 

stimulus pair combinations, divided by the sum of total trials in which the A or B stimuli 

appeared.  
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2. 1. 1. Probabilistic Selection Task (Presentation) 
Presentation (version 20.1) was used to present the PST in Chapters 3, 5, and 6. The stimuli from 

this version of the task are presented in Chapter 1, Figure 1. 1. In the training phase, participants 

were instructed as follows: 

“You will be presented with two different shapes on the screen. 

Pick one. To indicate that you picked the shape on the left, 

PRESS THE LEFT BUTTON. To indicate that you picked the shape 

on the right, PRESS THE RIGHT BUTTON. 

 

In the practice round you will receive feedback whether your 

choice was correct or not. 

 

You may not always receive the same feedback for picking the 

same shape, this is part of the task. Just pick whichever shape 

you think is correct for each trial. 

 

Please wait for the experimenter to start the task.” 

 
Three pairs of characters from the Stargate series (see Chapter 1, Figure 1.2) were presented 

randomly on the left and right-hand side of the screen until a response was selected. Feedback 

in the form of a green ‘✓’  or red ‘X’ was presented for 750 ms, followed by a black fixation cross 

in the centre of the screen for a duration of 500ms. In the Test phase, participants were verbally 

instructed to select the shape that they considered correct in each stimulus pair that was 

presented. Novel pair combinations of the stimuli from the Training phase were presented, the 

stimuli remained on-screen until a response was selected. A black fixation cross was presented 

for 500 ms in between trials. A bug in the code resulted in the number of Test phase trials varying 

between subjects from 96 – 136 trials in Chapter 2, from 90 – 120 trials in Chapter 5, and from 

60 to 120 trials in Chapter 6.    

 

2. 1. 2. Probabilistic Selection Task (Inquisit) 
The PST in Chapter 4 was presented in Inquisit 4 (https://www.millisecond.com). In the training 

phase three pairs of Hirigana characters (Figure 2.2) were presented randomly on the left and 

https://www.millisecond.com/
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right-hand side of the screen. Each trial began with an inter-trial interval (250 ms), and ended 

when a response was selected or 4,000 ms had passed (i.e., non-response trial). Each training 

phase block consisted of 60 trials, with 20 presentations of each pair. The training phase finished 

once a participant reached the pre-defined accuracy criteria within a block (>= 65% accuracy in 

AB pairs, >=60% accuracy on CD pairs, and >= 50 in EF pairs), or once the participant had 

completed a maximum of 13 blocks (780 trials). The test phase comprised of novel pair 

combinations of all six stimuli from the training phase. Participants were required to select the 

correct stimulus in each pair, however were not provided with feedback.  

 

Figure 2.2. Probabilistic Selection Task (PST) presented in Inquisit, training phase stimulus pairs 

with arrows denoting the probability of reward associated with each stimulus, and 

characterisation of Test phase outcome variables ‘Approach A’, and ‘Avoid B’. 

2. 2 Barratt Impulsivity Questionnaire 
Impulsivity is a multidimensional construct that is implicated in substance dependence, and is 

often measured by self-report questionnaires.  

The Barratt Impulsiveness Scale 11th version (BIS-11; Patton & Stanford, 1995) is a 30-item 

questionnaire designed to measure the personality/behavioural construct of impulsiveness. The 
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scale is scored with three second-order factors: attentional impulsivity refers to difficulties in 

maintaining focus on completing a task, motor impulsivity refers to an inability to inhibit 

responses and tendency to act on the spur of the moment, and non-planning impulsivity refers 

to present-moment focus with disregard for future consequences. The BIS has shown strong 

internal consistency and reliability (Stanford et al., 2009), and has been used in clinical and 

research settings.  

2. 3. Fagerstrom Test for Nicotine Dependence 
The Fagerstrom Test for Nicotine Dependence (FTND; Heatherton, Kozlowski, Frecker, & 

Fagerstrom, 1991) was used to measure nicotine dependence in the smoker groups in Chapter 

5 and 6. The questionnaire consists of six questions designed to assess physical dependence to 

nicotine, e.g., ‘How soon after you wake up do you smoke a cigarette?’. Classification of 

dependence ranges from Very Low, Low, Moderate, High, and Very High.  

2. 4. Computational Modelling of PST 

2. 4. 1. Hierarchical Drift Diffusion Model 
The HDDM package (Versions 0.7.5 and 0.8.0) (Wiecki et al., 2013; Pederson & Frank, 2020) was 

used to fit drift-diffusion models to trial-by-trial response and reaction time data from both 

phases of the PST. HDDM utilises hierarchical Bayesian methods with Markov Chain Monte Carlo 

(MCMC) Slice sampling (Neal, 2003; implemented in PyMC; Patil et al., 2010) to estimate joint 

posterior parameter distributions, with informed priors from established PST findings in the 

literature. The HDDM and reinforcement learning HDDM (RLHDDM) used the Wiener first time 

passage probability distribution (wfpt) (Equation 1) to return the probability of choosing o, given 

response time rt. Typically, the DDM comprises of starting-point (z), non-decision time (t), drift-

rate (v), and boundary separation (a) parameters (Ratcliff & Tuerlinckx, 2002). Starting point is 

an index of bias towards one response relative to another. Non-decision-time is the time 

attributed to processing task stimuli and executing a motor response before the decision 

process itself is executed. Drift-rate is an index of the speed and strength of evidence 
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accumulation until a response boundary is reached. Boundary separation reflects the distance 

between the two response boundaries, wider boundaries require more evidence to be sampled 

until a response boundary is reached and a decision is executed. Here, a is the boundary 

separation, t  is the non-decision time, z is the starting point, and v is the drift-rate: 

rto, I ~ wfpt(a, t, z, vi)     (Eq. 1) 

In the RLHDDM, the softmax choice rule from traditional reinforcement learning models is 

replaced with the DDM, with the assumption that the rate of evidence accumulation (i.e., drift-

rate) may be described as the scaled difference between the expected value of reinforced 

options (Pederson & Frank, 2020). 

vi = (Qupper, I  -- Qlower, i) * vi   (2) 

In Equation 2, upper and lower Q refer to expected value of the choice options at the 

upper/lower the bounds of the decision threshold, and v is a free parameter describing 

exploration/exploitation. Therefore, in the RLHDDM models, drift-rate (vi) refers to the product 

of the scaling parameter (v) and the difference between upper and lower Qs on each trial (i).  

Individual subject parameters were constrained by a group distribution in HDDMs. The 

training phase of the PST was fit with a reinforcement learning HDDM (RLHDDM), estimating 

parameters for drift-rate (v), boundary separation (a), non-decision time (t)) and learning rate 

(with the option of dual positive and negative learning rates, or a singular learning rate). The 

test phase of the PST was fit with the regular HDDM (estimating drift-rate, boundary separation, 

and non-decision time). Separate drift-rates were estimated for Win-Win, Win-Loss, and Win-

Win stimulus conditions in the test phase of the PST. The stimulus type referred to the difficulty 

of determining the correct choice in the novel pair combinations. For example, pairs with two 

shapes that were more likely to be rewarded in the training phase (e.g., AC, AE, CE) were labelled 

‘WW’, pairs with two stimuli that were more likely to be punished (e.g., BD, BF, DF) were labelled 
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‘LL’, and pairs with a combination of highly rewarded and highly punished stimuli (e.g., BC, BE, 

DB) were labelled ‘WL’. The latter stimulus types were considered easier to determine the 

correct choice compared to ‘WW’ and ‘LL’ stimulus types, due to the lower conflict in probability 

of rewarding/punishing feedback during the training phase. Outliers were handled via HDDM 

using the ‘p_outlier’ argument, which found the best-fitting DDM parameters when roughly 5% 

of data trials could be expected as outliers.  Convergence was assessed by running each model 

three times and comparing variability between chains, generally Gelman-Rubin rhat values <1.2 

indicate good convergence. The model trace and autocorrelation plots were also manually 

inspected to check for convergence of MCMC chains.  

Posterior predictive checks were conducted to validate the best-fitting RLHDDM and 

HDDM models and to identify any systematic inconsistencies between real and simulated data 

(Gelman et al., 2004). Task data was simulated from the posterior of the fitted RLHDDM model 

and was compared to the observed data. A random sample from model trace was used to 

generate accuracy and RT data for each of the training phase stimulus pairs (AB, CD, EF), this 

step was repeated 50 times to better capture variability in the posterior distribution. These were 

then compared with the observed data.  

Model fit was also assessed using the Deviance Information Criterion (DIC), which 

measures model complexity by estimating the effective number of parameters, and measures 

goodness of fit via deviance (Spiegelhalter et al., 2002). Models with lower DICs are considered 

better supported by the data. The number of samples in each model MCMC chain are reported 

in the individual chapters, along with DIC comparisons of model fit.  

2. 4. 2. Statistical Approach 
In each empirical chapter, mean parameter estimates from HDDM and RLHDDM models were 

used as features in penalised regression models to predict substance-use outcomes. The ‘two-

step approach’ is a key consideration in studies utilising hierarchical computational models of 

decision-making to explore individual differences. This refers to the process of fitting Bayesian 
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hierarchical models to groups of subjects separately, and then subjecting individual subject 

mean parameter estimates to between-groups statistical tests (e.g., ANOVA, t-test). This can 

cause inflation of effect sizes, as individual-subject estimates shrink towards the group mean in 

hierarchical models, hence reducing within group variance and increasing the likelihood of a 

biased statistical finding between groups (Boehm et al., 2018a; 2018b; Moutoussis et al., 2018; 

Evans & Wagenmakers, 2019). To avoid such biases in the current analysis, HDDM models were 

fit to all subjects as one group (rather than estimating separate models for high versus low 

substance-use groups individually). Additionally, identical models were fit to subjects 

individually to facilitate comparisons with group models, and correlations between parameters 

estimated from both models are presented in Appendices A, B, and C. Due to convergence 

issues, the RLHDDMs in Chapter 6 were fit to subjects individually.   

A second consideration is the use of so-called ‘point estimates’, such as the mean value of 

a parameter across multiple MCMC chains, in inferential statistical tests. Hierarchical model 

point estimates are subject to uncertainty due to shrinkage towards the group mean, and may 

differ substantially from the true parameter value. Ly et al. (2019) note that this uncertainty 

must be acknowledged before inferences can be made, and propose the use of ‘plausible 

values’. These refer to samples drawn from the posterior trace of individual subjects. An effort 

was made to account for uncertainty associated with mean parameter estimates in the current 

thesis by conducting ‘robust’ correlations between samples from the group posterior 

distributions and linear outcome variables (Chapter 3: AUDIT risk-score, Chapter 4: length of 

abstinence). However, it is acknowledged that further work is needed to fully account for 

variability in parameter and physiological measures.  

2. 5. Machine Learning 
Penalised regressions within a machine learning framework were utilised in each empirical 

chapter. This ML procedure is similar to that described in Kiiski et al. (2018), and an adapted 

description is presented here (Figure 2. 3).  
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Predictor variables were first standardised (z-transformed), next the data were split into 

five cross-validation (CV) folds. The entire analysis was performed five times, using 80% of the 

dataset (the training set) to create a regression model that was then tested on the remaining 

20% of data (the test set). Within the training set, an additional nested CV procedure was 

conducted to optimise the Elastic Net parameters (i.e., the complexity and weighting 

parameters, lambda and alpha). Parameters were optimised on 72% of the internal training set, 

and tested on the remaining internal test set (8%). A range of values was explored to establish 

the optimal hyperparameters- 15 linearly spaced values of alpha and lambda from 0.01 to 10, 

and all their possible combinations (i.e., a search grid of 225 parameter-pair values). Results of 

all five CV folds were aggregated to calculate the frequency with which features were selected 

from models in different folds.  

The entire analysis was repeated 100 times to attenuate the idiosyncrasies of any given 

model. Results are the mean values across all iterations of the analysis. For logistic models, the 

outcome metrics were Area Under the Curve and Brier score. For linear models, the outcome 

metrics were r value and Mean Absolute Error. The performance of each model was further 

validated by creating null models, which were generated by random label permutation (i.e., 

shuffled feature data, and fixed covariates). Using the permuted feature data, the entire analysis 

was performed again. Model accuracy was compared between the true and null models by 

ranking the cross-validated outcome metrics from iterations of both true and null models, 

providing an estimate of the level of optimism in the model. 

Throughout the empirical Chapters 3, 4, and 5, four models with different sets of 

features were compared: A PST Summary Model, a Computational Model, a Personality Model, 

and a Combined Model. Each model included demographic features (age and gender) as 

covariates, and the null models (i.e., ‘Demographic’ models) included these as fixed covariates 

with shuffled non-demographic features. In Chapter 6, a penalised Cox regression was 
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introduced, using a similar ML procedure, to predict time to nicotine relapse using categorical 

and continuous time-dependent features. The survival model included censored outcome data 

(i.e., cases where the true time to nicotine relapse event is unknown, where the event was not 

observed within the follow-up periods of a study). The Cox models utilised the same Elastic Net 

procedure, and prediction accuracy was assessed using the Concordance-index (C-index). The 

C-index, a generalization of the area under the receiver operating characteristic (ROC) curve, is 

the probability of concordance between observed and predicted survival based on pairs of 

individuals. Demographic models in Chapter 6 were constructed with age and gender as fixed 

covariates, and time-dependent features with random data. The accuracy of the demographic 

models were compared with the test models by comparing mean C-index values across 

iterations, and were deemed significant where p<.05.  

 

Figure 2.3. Schematic of machine learning method.   
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Chapter 3: Value-based decision-making as a predictor of 

hazardous alcohol-use 
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3. 1. Introduction 
 

Alcohol use is the leading global risk-factor for deaths and disability-adjusted life years 

among those between the ages of 15-49 (Griswold et al., 2018). Despite the health risks, heavy 

episodic drinking remains prevalent (16.5% of European population), particularly among 15-19 

year olds (31% prevalence rate; Inchley et al., 2014). The deleterious effects of this pattern of 

drinking remain present even with low-to-moderate levels of drinking on average during the 

lifetime (World Health Organisation, 2018). 

The ability to flexibly update decisions according to changing reward and punishment 

contingencies in one’s environment is one aspect of decision-making that is altered in addiction 

(Beylergil et al., 2017; de Ruiter et al., 2009), and can be examined by the formal application of 

computational models. Reinforcement learning models of decision-making often purport that 

representations of the value of action-outcome associations are updated based on the 

difference between expected and actual outcomes (i.e., prediction errors: PE) following choices 

(Sutton & Barto, 2015). Midbrain dopamine activity (DA) complies with computational models 

of reinforcement learning, such that increases in DA are associated with (i) unexpected rewards, 

(ii) the transition to reward-related cues, and (iii) dips in DA are associated with the removal of 

reward (Keiflan & Janak, 2015). In other words, the direction and magnitude of dopamine 

neuron firing is modulated by the expectation of rewards (Schultz, 1998).  

Aberrant PEs have been observed in addiction. For example, using probabilistic reversal 

learning paradigms, substance dependence was characterised by impairments in updating 

reward values following contingency reversal, with increased perseveration towards previously 

rewarded responses (de Ruiter et al., 2009; Ersche et al., 2011). Studies utilising reinforcement 

learning models of decision-making have also shown differential sensitivity to rewards versus 

punishments in substance dependence. Alcohol dependent patients had lower punishment 
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sensitivity in a probabilistic reversal task compared to healthy controls, demonstrating a 

reduced association between PEs and BOLD activity in the dorsolateral prefrontal cortex during 

(Beylergil et al., 2017).   

Decision making also involves several higher order cognitive processes, which can be 

examined using formal computational models. The drift-diffusion model (DDM) conceptualises 

decision-making as a process of noisy evidence accumulation via latent psychological processes 

that are reflected in accuracy and response times (Smith & Ratcliff, 2004; see Chapter 2, Section 

2. 4. 1). There is a small but growing application of DDMs to substance-use. Two studies have 

shown that acute alcohol intoxication influences particular DDM processes in perceptual 

decision-making (Stock, Hoffmann & Beste, 2016; vanRavenzwaaij et al., 2012). Reduced 

efficiency of evidence accumulation (derived from drift-rate in a Go/No-Go task) prospectively 

predicted substance use in a longitudinal study by Weigard et al. (2021), and correlated 

positively with a component of error-related activation in salience network structures. 

However, in a study examining the relationship between several experimental task-based 

factors and real-world outcomes, Eisenberg et al. (2019) found no relationship between binge 

and problem-drinking, and factors derived from DDM parameters such as response caution.  

Similarly, Hedge, Powell, Bompas, and Sumner (2020) report no relationship between self-

reported impulsivity and response caution.  

Computational models of decision-making can detect differences in clinically relevant 

reinforcement mechanisms that are not apparent in summary data such as mean accuracy and 

response time (RT) data (Myers et al., 2016; Gueguen, Schweitzer, & Konova, 2021; Huys et al., 

2020). This may be particularly important for those individuals at risk of alcohol misuse (cf. 

substance dependence) with relatively subtle differences. Evidence to date has been mixed. For 

example, in a sample of young male social drinkers, Nebe et al. (2017) found no association 

between habitual versus goal directed decision-making and alcohol-use at both the 
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computational and neural level. However, imbalances in model-based and model-free control 

at baseline predicted drinking trajectories during a three-year follow-up period (Chen et al., 

2021). Cao et al., (2021) also showed aberrations in electrophysiological correlates of reward 

PEs in high versus low alcohol-use groups, which were not apparent in behavioural task 

performance alone.  

Here, I aimed to test if computational parameters derived from a probabilistic decision-

making task (Frank et al., 2004) were associated with alcohol misuse risk. In order to interrogate 

several variables, I employed a machine learning approach with out-of-sample validation. I 

compared results to a ‘baseline’ demographic model, summary PST scores, and with self-report 

assays of impulsivity. I predicted that the high alcohol group would show reduced learning from 

punishment compared with reward. It was also anticipated that the high-risk alcohol group 

would show decreased response caution (indicated by smaller boundary separation in the 

DDM). However, given the mixed results in value-based decision-making differences among 

non-clinical individuals to date (e.g., Nebe et al., 2017), specific predictions regarding the 

direction and significance of particular computational parameters were not made.  

3. 2. Methods 
3. 2. 1. Participants 

Participants were recruited from posters and noticeboards in Trinity College Dublin, and 

subsequently phone screened for eligibility. All participants provided written informed consent 

to participate, and the study was approved by the Trinity College Dublin School of Psychology 

Ethics Committee. Our sample included 82 subjects who were also included in a previous study 

on impulsivity and alcohol intoxication frequency that included the Probabilistic Selection Task 

test phase predictor variables (O’Halloran et al., 2018). Participants were provided with €20 in 

compensation, with up to €10 to reimburse travel costs.   

3. 2. 2. Materials 

Self-reported alcohol use 
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The AUDIT is a ten-item questionnaire used to screen alcohol consumption. Items are 

scored from 0-4 with higher scores indicating higher alcohol use (total possible score of 40). 

Scores >8 denotes harmful or hazardous drinking, with scores >13 in women and >15 in men, 

indicating likely alcohol dependence (Liskola, Haravuori, Lindberg et al., 2018; Saunders et al., 

1993). The cut-off score of 8 has been recommended in previous studies of alcohol use in college 

students. Scores on the Alcohol Use Disorders Identification Test (AUDIT) were used to 

determine low (scores < 8) and high alcohol use (scores >= 8) groups. 51 low alcohol (Median 

AUDIT score 5), and 64 high alcohol (Md = 13) participants were identified.  Note that the 

number of alcohol units consumed in the past month was available for 18 out of the 51 subjects 

in the low alcohol group, and all 64 subjects in the high alcohol consumption group.  

Time-line follow-back (TLFB) 

The TLFB procedure was used to record a quantitative estimate of alcohol use in the month prior 

to the testing session. Participants indicated the number and type of alcoholic drinks they 

consumed on each day of the past month. The TLFB was used to derive (i) the number of 

monthly drinking days, (ii) the number of binge drinking days in the past month, (iii) the number 

of consecutive days abstinent, (iv) the highest number of units in one drinking session, and (v) 

the total number of alcohol units consumed in the past month.  

Alcohol Expectancies Questionnaire (AEQ) 

The AEQ (Brown, Christiansen, & Goldman, 1987) is a 120 item questionnaire designed to assess 

anticipated experiences associated with alcohol-use. Six sub-scales assess the domain of alcohol 

reinforcement: (1) positive global changes in experience, (2) sexual enhancement, (3) social and 

physical pleasure, (4) assertiveness, (5) relaxation/tension reduction, and (6) 

arousal/interpersonal power. Each item consists of a statement regarding the effects of alcohol 

use, and responses are provided on a five-point Likert scale (Disagree Strongly – Agree Strongly).   
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3. 2. 3. Procedure 

Participants completed an online questionnaire via the SurveyCTO 

(https://www.surveycto.com/) platform within the week prior to the testing session. The testing 

session took place in Trinity College Dublin, and lasted approximately two hours. Participants 

completed six computer-based tasks and a Timeline Follow-back (TLFB) questionnaire regarding 

their alcohol use in the past month. Participants provided written informed consent to 

participate in the study, which was approved by the Trinity College Dublin Ethics Committee. 

3. 2. 4. Data Analysis 

Mean choice accuracy on the training and test phase of the PST, and mean reaction times (RTs) 

between correct and incorrect responses were compared using Bayesian Mann Whitney U tests 

using JASP software, where values < 0.3 supported the null hypothesis and values > 3 supported 

the alternative hypothesis (Version 0.11.1; JASP Team 2019). RTs < 0.15 and > 10.0 seconds were 

removed from the data as outliers (69/13,778 trials in the training phase, 120/12,736 trials in 

the test phase). Quantile probability plots were used to demonstrate accuracy and RTs across 

conditions and groups for correct and incorrect responses in the PST (see Ratcliff & Smith, 2011). 

  Single trial data from the PST were fit with drift-diffusion models using HDDM and 

parameters estimated from these models were entered into penalised regression machine 

learning models to predict alcohol-risk, with regularisation using the Elastic Net. Two sets of 

machine learning models were conducted; (i) logistic regression to predict alcohol risk group 

and (ii) linear regression to predict AUDIT total score. In each set, four models with separate 

features were compared; Model 1 (PST Summary) included the mean accuracy variables from 

the PST, Model 2 (Personality) included the 2nd order BIS scales, Model 3 (Computational) 

included the computational parameters derived from drift-diffusion models applied to the PST 

data, and Model 4 (Combined) included both the computational models and the BIS. Age and 
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gender were entered as covariates in each model. Logistic model fit was assessed using the Brier 

and AUC scores, and linear models with the MAE and r scores.  

  A supplementary analysis with residualised features that regress out the confounding 

effects of covariates is presented in Appendix A, however following the recommendations of 

Dinga et al. (2020) the current approach was favoured to reduce potential false-positive findings 

due to information from the residual features leaking into the machine learning model. The 

regression model features were first standardised using z-scores and then Winsorized whereby 

any value >|3| standard deviations away from the mean of a given feature was replaced with 

its maximum value (i.e., +/-3). Next, the dataset was divided into five cross-validation folds. Data 

from each fold was split into training and test sets (80%/20%). Two regression models are 

reported; (i) a logistic model with high versus low alcohol group as the dependent variable, and 

(ii) a linear regression model with AUDIT score as the dependent variable. Each model was 

compared with a baseline ‘Demographic Model’, which included age and gender as fixed 

covariates and shuffled data for the remaining features. Model accuracy for (i) was assessed by 

ranking the cross-validated Brier and AUC scores between demographic and actual model 

iterations, (ii) was assessed in a similar fashion using the cross-validated r and MSE. The entire 

analysis was then repeated 100 times with a different random allocation of participants to folds. 

Partial correlations were conducted to explore the relationship between model 

parameters, and the AUDIT, BIS, and AEQ scores, while controlling for age and gender. 

Parameter values for each subject were sampled from a random chain in the model trace and 

correlated with each of the questionnaire variables using spearman’s r. This step was repeated 

1,000 times and the distribution of rho and p-values for each of the parameters and 

questionnaire variables were plotted across all the iterations. Taking this ‘plausible values’ 

approach, I sought to account for variance in the posterior distribution of participant-level 

parameters (Boehm, Marsman, Matzke, & Wagenmakers, 2018; Ly et al., 2017). 
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3. 3. Results 

 
From a total of 119 participants with matching questionnaire and PST data, four 

participants were removed who scored 0 in the PSTWFB. The following analysis is conducted on 

the remaining 115 participants (Mean age 24.1 (SD = 8.5); 60 Female).Scores on the Alcohol Use 

Disorders Identification Test (AUDIT) were used to determine low (scores < 8) and high alcohol 

use (scores >= 8) groups. 51 low alcohol (Median AUDIT score 5), and 64 high alcohol (Md = 13) 

participants were identified.  Note that the number of alcohol units consumed in the past month 

was available for 18 out of the 51 subjects in the low alcohol group, and all 64 subjects in the 

high alcohol consumption group.  

 

3. 3. 1. Behavioral Results 
The mean choice accuracy from the PST training and test phases are presented in Table 3. 1. 

Reaction times are presented in Table 3. 2. For all group comparisons, Bayesian independent 

samples t-tests (5 chains, 100 samples) were conducted. The low alcohol group had significantly 

longer RTs on correct trials in the PST test phase, however no remaining group differences were 

observed. Mean responses on the self-report alcohol-use and impulsivity questionnaires are 

presented in Table 3. 3. The high alcohol group showed significantly higher risk on all AUDIT sub-

scales, and higher levels of impulsivity on the BIS 1st order motor skills, perseverance, and self-

control scales, and the 2nd order attentional scale. Of the total sample, 29 participants reported 

smoking greater than 40 cigarettes in their lifetime, and 47/98 reported using drugs other than 

those required for medical reasons within the past 12 months.   
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Table 3.1. Mean and SD of behavioural choice PST data split by group, with significance test 

Bayesian independent samples t-tests B10(Mann Whitney U; W) with 1,000 samples and five 

chains.  

 

Variable Low Alcohol (n 

= 51) 

High Alcohol (n 

=64) 

BF10 Mann Whitney 

U (W) 

Approach A 75.2 (22.99) 80.39 (21.71) 0.49  1907.5 

Avoid B 64.04 (22.06) 65.89 (21.34) 0.21  1716.5 

Approach AC 72.67 (19.02) 77.17 (19.23) 0.48  1889.0 

Approach BD 60.28 (21.03) 62.38 (21.58) 0.22  1747.5 

AB Accuracy 79.07 (15.99) 81.11 (14.74) 0.23  1726.5 

CD Accuracy 70.17 (16.12) 77.89 (14.77) 2.93  2094.0 

EF Accuracy 52.19 (16.01) 55.16 (19.39) 0.31  1828.0 
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Table 3.2. Mean and SD of reaction time PST data split by group. 

Variable Low Alcohol (n 

= 51) 

High Alcohol (n 

=64) 

BF10 Mann Whitney 

U (W) 

PST Training 

Phase 

    

All trials 1.12 (0.86) 0.96 (0.79) 0.73 1329.0 

AB 1.03 (0.88) 0.86 (0.70) 1.58 1283.0 

CD 1.09 (0.86) 0.94 (0.78) 0.92 1332.0 

EF 1.12 (0.84) 1.09 (0.86) 0.64 1317.0 

Incorrect Trials 1.19 (0.91) 1.01 (0.77) 1.54 1304.0 

Correct Trials 1.07 (0.82) 0.94 (0.8) 1.54 1304.0 

PST Test Phase     

All trials 1.04 (0.52) 0.83 (0.34) 2.43 1237.0 

WW 0.97 (0.51) 0.77 (0.32) 2.17 1238.0 

WL 0.94 (0.45) 0.74 (0.30) 3.60 1182.0 

LL 1.29 (0.78) 1.06 (0.46) 0.69 1399.0 

Correct 

Response 

1.01 (0.54) 0.78 (0.30) 4.88* 1172.0 

Incorrect 

Response 

1.23 (0.73) 1.05 (0.48) 0.43 1448.0 

Approach AC 8.30 (3.45) 4.02 (0.46) 6766.52* 476.0 

Approach BD 8.62 (3.69) 4.13 (0.58) 12721.93* 522.0 
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Table 3.3. Mean and SD of questionnaire data for the AUDIT, the BIS, and alcohol-related 

questions split by group. Bayesian independent samples t-tests result (with Mann Whitney U) 

are included. 

Variable Low Alcohol 

(n = 51) 

High Alcohol 

(n = 64) 

BF10 Mann 

Whitney U 

(W) 

AUDIT  

Total 4.7 (2.24) 13.41 (4.2) 320417.66 3264.0* 

Dependency 1.25 (0.48) 2.16 (1.5) 15797.17  2820.0* 

Hazardous 

Consumption 

3.37 (1.77) 6.87 (1.44) 95237.42  3064.0* 

Alcohol related 

Harm 

0.86 (1.08) 4.37 (2.89) 21820.5  2935.0* 

Alcohol 

Problems 

1.05 (1.13) 6.53 (3.63) 1203000  3092.0* 

TLFB  

Monthly Units - 83.24 (49.42) -  

Binge Days past 

Month 

- 6.17 (3.32) -  

Drinking Days 

past Month 

- 9.12 (3.77) -  

BIS-11  

2nd Attentional 15.84 (3.62) 17.91 (3.99) 4.46  2100.5* 

2nd Motor 22.41 (3.21) 24.09 (4.24) 1.50  1993.0 

2nd Non-

planning 

22.82 (4.72) 24.5 (5.14) 0.79  1908.0 

 

3. 3. 2. Computational Models 
Drift-diffusion models were fit to single-trial PST data for all participants, both high and low 

alcohol, in one group (i.e., hierarchically constrained by the whole group prior), and the 

parameters estimated from these models were entered into a machine learning model to 

predict alcohol risk. Correlations between parameter estimates and self-reported alcohol use 

were conducted using samples drawn from the posterior trace. HDDM model fit was assessed 

using the deviance information criteria (DIC) and is summarised in Table 1. RLHDDM Model 1 
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was fit with a dual learning rate (positive and negative), whereas model three was fit with a 

singular learning rate. RLHDDM Model 2 was fit with a dual learning rate and all parameters 

were estimated separately for high vs. low alcohol group. In the HDDM models, Model 1 was fit 

with boundary separation (a), drift-rate (v), and non-decision time (t) free to vary, Model 2 

estimated separate drift-rate per stimulus type (Win-Win, Win-Lose, Lose-Lose), and Models 3 

and 4 were the same as 1 and 2 except each parameter was estimated separately by alcohol risk 

group (see Appendix A for between-subjects model analyses). 

Table 3.4. Summary of HDDM model characteristics, the best-fitting model (*) was selected 

based on the deviance information criteria (DIC), with lower scores indicating better fit. Models 

that estimated separate between-subjects parameters are denoted in parenthesis in the 

Parameters column. For example, RLHDDM Model 2 estimated separate parameters for high 

and low risk groups for a (boundary separation), v (drift-rate), and t (non-decision time). 

 

Model DIC Learning 

Rate 

Parameters Samples 

(Burn-in) 

Max. rhat 

PST Training 

(RLHDDM)  

     

Model 1* 27129.09 Dual a, v, t 35,000 (5,000) 

Thin = 3 

1.12 

Model 2 27141.59 Dual (a, v, t) (High-, 

Low-risk) 

15,000 (3,000) 

Thin = 3 

1.03 

Model 3 27405.10 Single a, v, t 15,000 (3,000) 

Thin = 3 

1.06 

PST Test 

(HDDM) 

     

Model 1 21619.02 -- a, v, t 12,000 (2,000) 1.02 

Model 2* 19574.93 -- a, t, v(LL), 

v(WL), v(WW) 

12,000 (2,000) 1.004 

Model 3 21618.02 -- (a, v, t) (High-, 

Low-risk) 

12,000 (2,000) 1.04 

Model 4 19572.36 -- (a, t) (High-, 

Low-risk), 

v(LL), v(WL), 

v(WW) 

12,000 (2,000) 1.004 
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Two types of RLHDDM model were fit to the training phase of the PST; Model 1, with 

five parameters (a, v, t, and dual learning rate for positive and negative feedback) showed better 

model fit (DIC = 27129.09) compared with Model 3, which included a singular learning rate (DIC 

= 27405.10). Comparing three of the same models, the Gelman-Rubin values for all parameters 

in Model 1 were <=1.1 (max. value = 1.12), autocorrelation and trace plots were also inspected 

and showed adequate convergence of chains. 

Two types of HDDM model were also fit to the test phase of the PST. Three MCMCs 

were run for each type of model with 12,000 samples (2,000 burn-in). Model 1, with three 

parameters (a, t, v) free to vary, showed poorer fit (DIC= 21619.02, max. rhat = 1.02) than Model 

2, which estimated separate drift-rate parameters per stimulus conflict (a, t, v(LL), v(WL), 

v(WW)) again free to vary for the whole group (DIC= 19574.93,rhat=1.005). Mean parameters 

from the best-fitting HDDM (Model 2) and RLHDDM models (Model 1) were used in the machine 

learning analysis.  

3. 3. 2. 1. Posterior predictive checks 

Figure 3. 1. shows the observed versus simulated RLHDDM RT (averaged over 50 iterations) data 

for each stimulus type (AB = split_by = 0; CD = split_by = 1; EF = split_by = 2). Error responses 

are negative on the x axis, and correct responses are positive. The simulated data showed similar 

RTs to the observed data. 

Mean choice selections (1=correct, 0=incorrect) were higher in the observed data 

compared with the simulated data for AB and CD conditions, especially in the first number of 

trials. The simulated data predicted higher choice accuracy for some EF pair trials.    

Posterior predictive checks were conducted on the HDDM model (500 datasets x 

stimulus condition difficulty), with summary statistics of the actual data falling within the 95% 

credible interval of the simulated data. Simulated vs. observed RTs are depicted below and 

indicate good model quality.  
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Figure 3.1. Observed vs. simulated reaction times for the RLHDDM (a) and HDDM (c), and 

response choices in the RLHDDM (b). 

 

Mean model estimates from the best-fitting HDDM and RLHDDM are presented in a series of 

violin plots below, and mean group comparisons in Table 3. 5. The high-risk group showed 

significantly higher negative learning rates compared with the low-risk group.  
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Figure 3.2. Violin plots of (a) HDDM model parameters for the whole group, (b) RLHDDM 

parameters for the whole group. Risk-group 0 = low-risk, 1=high-risk. 

 

Table 3.5. Mean (SD) of computational parameters with Bayesian Mann Whitney U 

significance test. 

 Low-risk High-risk BF₁₀  W  

HDDM: Boundary Separation  1.77 (0.50)  1.63 (0.40) 0.504  1410.000  

HDDM Drift-rate Lose-Lose  0.21 (0.60) 0.13 (0.56) 0.247  1528.000  

HDDM Drift-rate Win-Lose  1.06 (1.12) 1.36 (1.15) 0.368  1891.000  

HDDM Drift-rate Win-Win  0.82 (0.96) 1.03 (0.90) 0.315  1860.000  

HDDM Non-decision Time  0.31 (0.14) 0.26 (0.12) 1.530  1220.000  

RLDDM Boundary Separation  1.84 (0.41) 1.74 (0.33) 0.459  1401.000  

RLDDM Drift-rate  3.05 (1.45) 3.12 (1.52) 0.197  1702.000  

RLDDM Non-decision Time  0.30 (0.17) 0.24 (0.12) 0.643  1314.000  

RLDDM Neg. learning rate  0.03 (0.11) 0.11 (0.22) 14.474*  2235.000  

RLDDM Pos. learning rate  0.35 (0.14) 0.33 (0.15) 0.295  1434.000  
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3. 3. 3. Machine Learning 

3. 3. 3. 1. Machine Learning – Alcohol-risk Group Classification 

The PST Summary model included the mean approach A/C and B/D from the test phase of the 

PST as features. The mean model AUC was significantly higher for the original model (0.75; SD 

= .02) compared with the demographic model (0.73; SD = .02) (t(198) = 5.82, p<.001 [.01,.02]) 

and outperformed in 74% of model iterations. The mean Brier score for the test model (0.194, 

SD = .01) was not significantly different from the demographic model (0.196, SD = .01), t(198) = 

-1.68, p = .09). Age, gender, and Approach AC survived the 95th percentile of choice frequencies.  

Table 3. 6. PST Summary Model mean choice frequencies and beta values for each feature in 

the test and demographic model. 

Feature Mean choice frequency 

- Test 

Mean Beta - 

Test 

Mean choice 

frequency - 

Demographic 

Mean Beta - 

Demographic 

Age 5 -1.848 5 -1.789 

intercept 5 -0.050 5 -0.0258 

Gender 4.96 -0.350 4.92 -0.368 

Approach AC 4.81 0.271 3.93 -0.029 

Approach BD 2.86 -0.021 3.83 0.027 

 

The Computational model included the parameters derived from the computational models of 

decision-making (boundary separation, drift-rates, non-decision time, and learning rates) as 

features, with the test model AUC outperforming the demographic model in 85% of iterations. 

The AUC for the test model (0.76, SD = .02) was significantly higher than the demographic model 

(0.70, SD = .03); t(198) = 12.82, p < .001, CI = [0.05, 0.06]. The test model Brier score (0.20; SD = 

.01) was also significantly lower than the demographic model (0.21, SD = .01) (t(198) = -7.96, p 

< .001). Age, gender, and all of the computational parameters were significant features.  
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Table 3. 7. Computational Model mean choice frequencies and beta values for each feature in 

the test and demographic model. 

Feature Mean 

choice 

frequency 

- Test 

Mean 

Beta - 

Test 

Mean choice 

frequency - 

Demographic 

Mean Beta - 

Demographic 

Age 5 -1.638 5 -1.378 

intercept 5 0.060 5 0.081 

RLHDDM: Neg. learning rate 4.92 0.367 2.68 -0.002 

Gender 4.91 -0.460 4.32 -0.257 

HDDM: Boundary Separation 4.7 -0.371 2.63 0.005 

HDDM: Drift-rate Win-Lose 4.69 0.583 2.46 -0.027 

HDDM: Drift-rate Lose-Lose 4.51 -0.556 2.63 0.012 

RLHDDM: Non-decision Time 4.19 -0.176 2.24 -0.006 

RLHDDM: Pos. learning rate 4.18 -0.172 2.67 -0.006 

RLHDDM: Boundary Separation 3.27 -0.076 2.62 0.01 

HDDM: Drift-rate Win-Win 3.09 0.066 2.58 -0.01 

HDDM: Non-decision Time 2.92 -0.041 2.52 0.0009 

RLHDDM: Drift-rate 2.74 -0.014 2.48 -0.005 

 

The Personality model included the mean 2nd order BIS sub-scales as features. The test model 

outperformed the demographic models in 71% of iterations based on the mean AUC, and this 

was significantly higher for the test models (0.75, SD = .01) compared with the demographic 

model (0.72, SD = .02); t(198) = 7.64, p <.001 CI = [.02, .03]. The mean Brier score was 

significantly lower for the test model (0.19, SD = .01) compared with the demographic model 

(0.20, SD = .01); (t(198) = -2.88, p = .004). Age, gender, and the Attentional and Motor BIS scales 

survived the 95th percentile of choice frequencies, however the Attentional subscale was chosen 

in almost all model folds on average (4.96).  
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Table 3. 8. Personality Model mean choice frequencies and beta values for each feature in the 

test and demographic model. 

Feature Mean choice 

frequency - Test 

Mean Beta - Test Mean choice 

frequency - 

Demographic 

Mean Beta - 

Demographic 

Age 5 -1.597 5 -1.738 

intercept 5 0.043 5 -0.012 

BIS: Attentional 4.96 0.320 3.77 0.043 

Gender 4.87 -0.372 4.84 -0.352 

BIS: Motor 4.25 0.128 3.64 -0.022 

BIS: Non-planning 3.75 0.101 3.75 -0.029 

  

In the Combined model, the mean model AUC was significantly higher for the original 

model (0.74; SD = .027) compared with the demographic model (0.695; SD = .03) (t(198)= 11.02, 

p < .001), and outperformed 79% of model iterations.  The test model Brier score was 

significantly lower for the test model (0.20, SD = .01) compared with the demographic model 

(0.21, SD = .01); t(198) = -6.39, p < .001. Table 3. 9. below displays the model results with beta 

weights for each predictor/feature The non-decision time parameter from the HDDM and drift-

rate from the RLHDDM did not survive the 95th percentile threshold for significance. Higher 

negative learning rates in the training phase of the PST therefore is associated with increased 

odds of being in the high risk alcohol group. This is also the case for attentional impulsivity (i.e., 

inability to focus attention or concentrate) as measured by the BIS-attentional scale. Lower age 

was associated with decreased odds of being in the high risk alcohol group.  
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Table 3. 9. Combined Model mean choice frequencies and beta values for each feature in the 

test and demographic model. 

Feature Mean choice 

frequency - 

Test 

Mean 

Beta - 

Test 

Mean choice 

frequency - 

Demographic 

Mean Beta - 

Demographic 

Age 5 -1.30 5 -1.24 

Intercept 5 0.13 5 0.10 

BIS: Attentional 4.9 0.27 2.04 -0.0003 

Gender 4.88 -0.39 4.13 -0.24 

RLHDDM: Neg. learning rate 4.82 0.30 2.2 -0.01 

HDDM: Boundary Separation 4.64 -0.35 2.18 -0.001 

HDDM: Drift-rate Win-Lose 4.43 0.38 1.74 0.009 

RLHDDM: Non-decision Time 4.01 -0.18 1.93 0.002 

HDDM: Drift-rate Lose-Lose 3.77 -0.44 1.64 -0.0005 

BIS: Motor 3.74 0.09 2.02 0.02 

BIS: Non-planning 3.62 0.18 2.18 -0.01 

RLHDDM: Boundary Separation 3.03 -0.13 2.08 0.06 

RLHDDM: Pos. learning rate 2.9 -0.13 2.29 0.005 

HDDM: Drift-rate Win-Win 2.73 0.11 2.02 0.02 

HDDM: Non-decision Time 2.65 -0.02 2.07 -0.04 

RLHDDM: Drift-rate 1.88 -0.04 2.23 0.02 

 

3. 3. 3. 2. Machine Learning - AUDIT Score 

A linear regression was run to predict total AUDIT score. The PST Summary model 

underperformed the demographic model in 53% of iterations based on r score. The mean score 

for the test models (r = 0.41, SD = 0.03) was not significantly higher than the demographic model 

(0.42, SD = .03); t(198) = -1.713, p = .08, CI = [-0.015, 0.0011]. Similarly, the mean absolute error 

(MAE) did not differ significantly between test (4.212, SD = 0.06) and demographic models 

(4.214 , SD = .06) (t(198) = -0.26, p = 0.79). Age was the most significant feature in the model.  
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Table 3. 10. PST Summary Model mean choice frequencies and beta values for each feature in 

the test and demographic model. 

 

Feature Mean choice frequency 

- Test 

Mean Beta - Test Mean choice 

frequency - 

Demographic 

Mean Beta - 

Demographic 

Age 5 -0.204 5 -0.2047 

intercept 5 0.551 5 0.551 

Gender 4.67 -0.042 4.64 -0.046 

Approach AC 4.23 0.034 2.86 0.0069 

Approach BD 1.84 -0.003 3.03 0.0024 

 

The Computational parameter model outperformed the demographic models in 53.9% 

of iterations. The mean original model MSE(0.363, SD = .037) was significantly lower than the 

demographic model (0.359, SD = 0.41), t(1998) = 2.22, p=.03; t(1998)= 2.5, p=.01, CI = [-.001 -- 

.01]. The mean original model r (0.363, SD = 0.037) was significantly higher than the 

demographic model (0.359, SD = 0.041); t(198) = 2.21, p = 0.026. Mean absolute error for the 

original model was 4.28 (0.07), and 4.25 (0.09) for the demographic model, this difference was 

marginally significant (t(198) = 2.105, p - .036). The selection of features are presented below, 

age, intercept, negative learning rate, gender, drift-rate from the RLHDDM, and drift-rate for 

Win-Losses in the HDDM survived the 95th percentile.  
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Table 3. 11. Computational Model mean choice frequencies and beta values for each feature 

in the test and demographic model. 

Feature Mean 

choice 

frequency 

- Test 

Mean Beta - Test Mean choice 

frequency - 

Demographic 

Mean Beta - 

Demographic 

Age 5 -1.913 5 -2.01 

Intercept 5 9.412 5 9.39 

RLHDDM: Neg. learning rate 4.728 0.714 1.79 0.007 

Gender 4.295 -0.449 4.18 -0.42 

HDDM: Drift-rate Win-Lose 4.196 0.323 1.37 -0.002 

RLHDDM: Drift-rate 2.508 0.270 1.53 0.002 

RLHDDM: Boundary 

Separation 

1.75 -0.245 1.46 -0.002 

HDDM: Non-decision Time 0.985 -0.153 1.59 0.004 

HDDM: Boundary Separation 0.722 -0.180 1.57 -0.008 

RLHDDM: Non-decision Time 0.611 -0.123 1.45 0.003 

RLHDDM: Pos. learning rate 0.527 -0.143 1.71 0.001 

HDDM: Drift-rate Win-Win 0.473 0.115 1.52 -0.007 

HDDM: Drift-rate Lose-Lose 0.417 -0.200 1.63 0.003 

 

In the Personality Model, the test model r (0.49, SD = 0.03) outperformed the demographic 

model r (0.39, SD = 0.03) in 95% of iterations, and was significantly higher (t(198) = 24.70, p = < 

.0001, CI = [2.69, 3.15]. The MAE for the test model (4.06, SD = .08) was significantly lower than 

the demographic model (4.21, SD = .07); t(198) = -14.72, p <. 001. All features were selected in 

> 4 model folds on average, however age was the only feature to survive the 95th percentile 

threshold.  
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Table 3. 12. Personality Model mean choice frequencies and beta values for each feature in 

the test and demographic model. 

Feature Mean choice 

frequency - Test 

Mean Beta - 

Test 

Mean choice 

frequency - 

Demographic 

Mean Beta - 

Demographic 

Age 5 -2.050 5 -2.171 

BIS: Non-planning 5 0.962 2.2 -0.032 

intercept 5 9.392 5 9.389 

BIS: Motor 4.97 0.736 2.11 0.0269 

Gender 4.9 -0.591 4.66 -0.487 

BIS: Attentional 4.31 0.327 2.38 -0.0196 

 

In the Combined Model, the original models performed better than the demographic models in 

89.5% of iterations (based on mean square error and Pearson’s r). The mean MSE for the original 

model (-25.19) was significantly higher than the demographic model (-27.68 ) (t(1998) = 55.4, 

p<.001, CI[-2.4 – 2.6). The r value for the original model (0.45, SD=.034) was also significantly 

higher than the demographic model (0.35, SD=.042) t(1998)=55.79,p<.001, CI[-.09 – 0.1]. The 

MAE for the original model (4.12, SD = .07) was significantly lower than the demographic model 

(4.26, SD = 0.08) ; t(198) = -12.36, p <. 001. Beta values for the individual features are presented 

below: age, intercept, BIS sub-scales, negative learning rate, boundary separation, and drift-rate 

from the RLHDDM, and drift-rate for win-loss pairs in the HDDM survived the 95th percentile 

correction.  
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Table 3. 13. Combined Model mean choice frequencies and beta values for each feature in the 

test and demographic model. 

 

Feature Mean 

choice 

frequency 

- Test 

Mean Beta - 

Test 

Mean choice 

frequency - 

Demographic 

Mean Beta - 

Demographic 

Age 5 -1.79 5 -1.97 

Intercept 5 9.41 5 9.39 

BIS Non-planning 4.97 0.83 1.39 -0.005 

BIS Motor 4.90 0.67 1.39 -0.009 

RLHDDM: Neg. Learning Rate 4.64 0.61 1.66 0.008 

Gender 4.57 -0.49 4.04 -0.40 

BIS Attentional 3.8 0.32 1.49 0.002 

HDDM: Drift-rate Win-Lose 3.675 0.243 1.19 -0.002 

RLHDDM: Boundary Separation 2.883 -0.278 1.36 0.002 

RLHDDM: Drift-rate 2.668 0.266 1.48 0.008 

HDDM: Drift-rate Win-Win 1.551 0.167 1.31 -0.019 

HDDM: Boundary Separation 1.115 -0.212 1.52 -0.014 

RLHDDM: Non-decision Time 1.049 -0.133 1.39 -0.0004 

RLHDDM: Pos. learning 0.772 0.121 1.52 0.007 

HDDM: Non-decision Time 0.558 -0.099 1.34 -0.005 

HDDM: Drift-rate Lose-Lose 0.357 0.029 1.38 0.0002 

 

 

Machine learning scores are presented in Figure 3. 3. Overall, age was the most predictive of 

alcohol use risk and AUDIT score, surviving the 95th percentile threshold in all of the ML models. 

Of the logistic models predicting alcohol-risk group, the best-fitting model according to AUC was 

the computational features model (0.76), with the BIS and PST summary models also showing 

similar fit (0.75). Of the linear models, the 2nd order BIS features provided the best fit (r = 0.49). 

Of the computational decision-making features, negative learning rate from the RLHDDM and 
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drift-rate for low conflict stimulus pairs in the HDDM were the most frequently selected features 

across model folds and iterations.  Mann Whitney U tests comparing Brier and MAE metrics 

between the PST Summary, Personality, Computational, and Combined Models showed a 

significant difference in Brier score between the Combined model and the remaining models (all 

p’s <.0001). Not significant differences were found between mean Brier scores for the remaining 

models (all p’s > .24). Mean MAE for the Personality Model was significantly lower than the 

remaining models, and the remaining models differed significantly from each other (all p’s 

<.0001).  
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Figure 3.3. Violin plots of mean Brier and AUC for logistic models, and MAE and mean r for 

linear models. The PST Summary includes features from the PST test phase, the Personality 

Model included the BIS 2nd order sub-scales, the Computational Model included the (RL)HDDM 

model parameters, and the Combined Model included the BIS and (RL)HDDM model 

parameters as features. All models are compared with a Demographic Model, which included 

age and gender as fixed covariates. 
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3. 3. 4. Correlations  
Robust correlations between AUDIT scores and DDM parameters (Figure 3. 4.) suggest that 

negative learning rate correlates positively with AUDIT score (i.e., higher alcohol-risk is 

associated with higher rate of learning from negative outcomes), with the reverse relationship 

observed for the positive learning rate (i.e., higher alcohol-risk is associated with lower rate of 

learning from positive outcomes). However, the distribution of significance thresholds suggest 

that these correlations were not robust. A more robust negative correlation was observed 

between the AUDIT and the non-decision time parameters from the PST training and test phase, 

particularly between the total AUDIT score and the Hazardous Consumption scale. Similarly, a 

negative correlation was found between the boundary separation parameters from the PST 

training and test phases.  The drift-rate parameter for the Win-Loss condition in the PST test 

phase showed a positive correlation with the total AUDIT score, alcohol-related problems, and 

hazardous consumption scales.  

 

3. 3. 4. 1. AUDIT Plots 

 



 

78 
 

 

 

 



 

79 
 

 

 

 

 



 

80 
 

 

 

 

 

Figure 3.4. Distribution of rho (top row) p-values (bottom row) for 1,000 correlations between 

HDDM and RLHDDM parameters and questionnaire variables. 
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Each correlation was compared with 1,000 null models of shuffled AUDIT scores. The 

distribution of null model rhos centred on 0 and showed greater variance compared to the 

test correlation. Distributions of rho values for the test and null models were compared by 

examining the proportion of values in the test models that were less than the null model 

values. Correlations with more significant rho values had a greater percentage of difference 

compared with the null models (which centred on 0). These are illustrated for each parameter 

and AUDIT sub-scale below (Figure 3. 5; null models in orange, test models in blue). For 

example, the ‘t’ parameter in the RLHDDM had a larger proportion of rho values less than its 

null model for the AUDIT total score (95.2%), indicating a more robust correlation than that 

observed for the positive learning rate parameter (65.3%). Binomial cumulative distribution 

functions were computed for each correlation difference with the probability of success = 0.5 

(all probabilities  = 1 or 0, indicating that the difference was unlikely to occur by chance).  
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Figure 3.5. True versus null robust correlation distributions for each RLHDDM and DDM 

parameter, with percentage of values greater than the null.  
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3.3.4.2. Correlations between ML features: 

Correlations between mean parameter estimates, PST summary scores, and the BIS are 

presented in Table 3. 14. The BIS sub-scales showed were highly positively correlated with 

each other, as were many of the computational parameters. Boundary separation and non-

decision time from the PST training phase model correlated significantly with the test phase, 

and drift-rates form the test phase showed a significant relationship with the mean Approach 

AC/BD summary scores. Positive learning rate correlated negatively with the attention and 

non-planning sub-scales of the BIS.  
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*p < .05, ** p < .01, *** p < .0001 

Table 3. 14. Partial Spearman’s correlations between machine learning features, with age as a covariate. Significant correlations are highlighted 

between (i) self-report measures (orange), (ii) task-related parameters and variables (blue), (iii) task-related and self-report measures (green).

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1. BIS Attention — 
              

2. BIS Motor 0.519*** — 
             

3. BIS Non-

planning 

0.586*** 0.529*** — 
            

4. RLHDDM: a 0.089 0.023 0.067 — 
           

5. RLHDDM: v -0.011 -0.005 0.041 -0.246** — 
          

6. RLHDDM: t 0.052 -0.038 0.091 0.319** 0.068 — 
         

7. RLHDDM: Neg. 

Learning 

-0.001 0.063 0.116 -0.001 -0.109 0.089 — 
        

8. RLHDDM Pos. 

Learning 

-0.193* -0.122 -0.189* -0.069 0.031 -0.019 -0.110 — 
       

9. HDDM a 0.089 0.102 0.001 0.538*** -0.118 0.290** 0.036 -0.016 — 
      

10. HDDM vWW 0.026 -0.016 -0.053 -0.134 0.440*** -0.019 0.105 0.266** -0.105 — 
     

11. HDDM vLL 0.010 -0.209 -0.062 -0.277** 0.324** -0.179 0.067 0.070 -0.111 0.467*** — 
    

12. HDDM vWL 0.099 0.087 -0.044 -0.055 0.530*** 0.045 0.189* 0.094 0.089 0.598*** 0.553*** — 
   

13. HDDM: t 0.015 -0.064 -0.014 0.325** -0.103 0.709*** 0.053 -0.018 0.273** -0.129 -0.237* -0.028 — 
  

14. Approach AC 0.095 0.026 0.022 0.048 0.410*** 0.136 0.186 0.180 0.144 0.880*** 0.395*** 0.746*** 0.012 — 
 

15. Approach BD 0.095 0.070 0.012 -0.108 0.387*** -0.045 0.165 0.004 0.111 0.434*** 0.805*** 0.830*** -0.109 0.534*** — 
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3. 4. Discussion 
 

This study sought to investigate if computationally derived parameters of value-based 

probabilistic decision-making predict alcohol misuse risk. I fit combined reinforcement learning 

and drift-diffusion models to trial-by-trial PST data and used parameters derived from these to 

predict alcohol risk using penalised logistic and linear regression. Additionally, I compared the 

Computational model to a Personality model including impulsivity features from the BIS, and a 

PST Summary model including mean accuracy in the PST test phase as features. Learning rate 

for negative prediction errors was the most frequently selected feature across the 

Computational machine learning models, followed by drift-rate for the Win-Loss condition in 

the total AUDIT score models, and boundary separation from the RLHDDM in the AUDIT risk-

group classification.  

Higher negative learning rates, higher impulsivity, higher drift-rates, lower boundary 

separation, lower non-decision time, and lower age were all associated with higher alcohol 

misuse risk. Females had significantly reduced odds of being in the high alcohol risk group.  In 

the Combined feature models for AUDIT risk-group classification, all computational parameters 

were significant features except the non-decision time parameter from the HDDM, and the drift-

rate parameter from the RLHDDM. In the Combined feature model for total AUDIT score, 

negative learning rate, boundary separation, and drift-rate from the RLHDDM, and drift-rate 

(WL) from the HDDM were significant features. The impulsivity features were also significant in 

these models. These findings were supported by correlations between the AUDIT and mean 

computational parameters sampled from the posterior, which showed robust negative 

correlations between boundary separation, non-decision-time, and total AUDIT score. Positive 

correlations were observed between the drift-rate for Win-Losses and the AUDIT. 
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We found that increased sensitivity to negative prediction errors (i.e., higher negative 

learning rates) is associated with increased alcohol misuse. However a number of studies have 

shown reduced sensitivity to losses in substance dependence (e.g., Beyergil et al., 2017; Tanabe 

et al., 2013; Vanderschuren, Minnaard, Smeets, & Lesscher, 2017). For example, Rossiter et al. 

(2012) showed that a non-dependent/non-clinical sample with harmful levels of alcohol 

consumption demonstrated reduced sensitivity to punishment in a monetary incentive go/no-

go task. One might expect that the insensitivity to adverse consequences often observed in 

alcohol misuse would be reflected in reduced learning from negative prediction errors in our 

study, and/or increased learning from positive prediction errors. It may be the case that learning 

from punishers is affected by delays in punishment, as punishment in animal models (e.g., 

electric shock) is more immediate than the often delayed punishers in human addiction (e.g., 

loss of health) (Jean-Richard-dit-Bressel, Ma, Bradfield, Kilcross, & McNally,  2019). It is also 

possible that the salience of the punisher may affect learning rates (Corr, 2004). In the current 

study punishment was in the form of negative feedback, and individuals may differ in the extent 

to which this is encoded as aversive. Another factor which may have implications on learning 

rates is the ability of subjects to learn the contingencies in the training phase of the PST. Jean-

Richard-dit-Bressel et al. (2019) report that the inability to learn contingencies impairs 

punishment sensitivity in rats, rather than an aversion to negative consequences. I presented 

subjects with two blocks of the PST training phase, in comparison other studies (Grogan et al., 

2017; Kunisato et al., 2012) have trained subjects to criterion, resulting in stronger learning of 

the reward/punishment contingencies. In our sample, the high alcohol risk group were more 

accurate in learning CD pairs in the PST training phase, however no group differences were 

observed for AC or EF pairs. Future research may also control for mood as a modulator of 

reinforcement learning, as depression has been shown to increase sensitivity to punishments 

(Eshel & Roiser, 2010) and affect PST performance (Cavanagh et al., 2011; 2019). However, 

substance dependence is not always characterised by blunted negative learning rates; a recent 
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study by Kanen et al., (2019) found that SUD patients demonstrated increased punishment 

learning rates and reduced reward learning rates in comparison to healthy controls on a serial 

probabilistic reversal learning task, which were sensitive to dopaminergic treatments. 

Nonetheless, the role of punishment in non-dependence alcohol use warrants further 

exploration in order to elucidate these contrasting findings. 

Repeated correlations between random samples from the computational model trace 

and the AUDIT showed a negative relationship with positive learning rate, and a positive 

relationship with negative learning rate. This suggests a potential bidirectional relationship 

between negative and positive learning rates and alcohol risk (i.e., high risk is associated with 

greater negative learning rate, and lower positive learning rate). However, more robust 

correlations were observed between the AUDIT and boundary separation, drift-rate, and non-

decision time. Lower boundary separation values were associated with higher AUDIT risk scores, 

indicating an emphasis on speed relative to accuracy in high risk alcohol users, with lower 

boundary separation requiring less evidence before a response boundary is reached. Higher 

drift-rates were associated with high alcohol risk, indicating faster and stronger accumulation 

of evidence for low conflict trial-types. A negative relationship was observed between non-

decision time and the AUDIT, indicating that smaller non-decision times are associated with 

increased alcohol misuse risk.  

Although no published studies to date have examined PST performance using drift-

diffusion models to predict alcohol risk, a small number of studies have applied DDMs to value-

based decision-making tasks in substance dependent or gambling disorder samples. Comparing 

gambling disorder patients with controls, Wiehler and Peters (2020) applied RLDDMs to a four 

armed bandit task, and found that patients had lower learning rates (for both dual and singular 

models), smaller non-decision times, and a more rapid reduction in the boundary separation 

parameter across time. Our findings similarly showed a negative relationship between non-
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decision times, boundary separation, and alcohol risk, with smaller non-decision times and 

narrower decision bounds associated with increased alcohol risk. A study by Mandali, 

Weidacker, Kim, and Voon (2019) sought to examine uncertainty and conflict in a drift-diffusion 

model applied to the two-step task, showing that alcohol-dependent participants had slower 

drift-rates relative to healthy controls under conditions of low conflict.  Our study also found 

that slower drift-rates predicted higher alcohol risk, however this was the case for both high 

(Win-Win) and low (Win-Lose) conditions in the PST test phase, whereas faster drift-rates for 

Lose-Lose conditions was associated with low-risk. It has been suggested that efficiency of 

evidence accumulation (i.e., drift-rate) is a trait-like and task-general marker of 

psychopathology (Weigard & Sripada, 2021), including externalising disorders such as substance 

dependence. Weigard et al. (2021) found that reduced evidence accumulation predicted 

substance-use (a combination of alcohol volume, marijuana, and cigarette consumption 

frequency) in a young adult sample, however our study found that increased drift-rates predict 

higher alcohol misuse risk in a cross-sectional sample. These discrepancies in findings may be 

due to task-specific differences (i.e., the Go/No-Go and PST assess difference aspects of 

decision-making: inhibition versus reward learning), or differences in type of substance-use 

measured (reduced evidence accumulation may be more relevant to combined substance use, 

rather than hazardous alcohol use in isolation) that influence estimates of DDM parameters. 

Further research may elucidate substance-specific effects on evidence accumulation as 

measured by a variety of experimental tasks.  

In a study examining the utility of behavioural task outcomes vs. self-report surveys to 

predict ‘real-world’ outcomes involving self-regulation, Eisenberg et al. (2019) found that 

factors derived from task performance were poorer predictors of variation in binge and 

problematic drinking compared with self-report surveys. The task factors reported in this study 

were derived from a range of behavioural and computational indices (incl. DDM parameters 

such as boundary separation) from 37 behavioural tasks (including the PST), and the survey 
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factors included 22 surveys (including the BIS and UPP-S). Similarly, Hedge et al. (2020) have 

reported no relationship between self-reported impulsivity and boundary separation derived 

from the DDM. As Wennerhold and Friese (2020) note in the context of cognitive control and 

inhibition, lack of correspondence between self-report and task-based measures may be due to 

the difference between typical and maximum performance. Typical performance refers to the 

tendency of consistent behavior across time, whereas maximum performance suggests the 

ability of performing maximally at a particular testing session (Wennerhold & Friese, 2020). 

Although Eisenberg et al. (2019) found no relationship between task performance factors and 

real-world outcomes, the current study found that such computational parameters were indeed 

predictive of alcohol misuse. It is possible that the PST places less emphasis on maximum 

performance than other forced-choice experimental tasks with time-constrained responses 

such as flanker and stroop tasks.  

Increased impulsivity was associated with higher alcohol misuse risk. An extensive 

literature has linked alcohol use with impulsivity (Dick et al., 2010; Moreno Padilla et al., 2017), 

suggesting that alcohol consumption leads to impulsive behaviour and also predicts prospective 

AUD diagnosis (Sher, Bartholow, & Wood, 2000). However certain facets of impulsivity seem to 

predict different aspects of alcohol consumption. Caswell, Celio, Morgan, and Duka (2015) 

found that the motor and non-planning subscales of the BIS characterised individuals with high 

weakly alcohol consumption, whereas O’Halloran et al. (2018) found that the attentional and 

non-planning subscales predicted alcohol intoxication frequency, but not consumption 

frequency. Unlike Caswell et al. and O’Halloran et al., who used the AUQ and ESPAD respectively, 

I used the AUDIT to measure alcohol use. This questionnaire measures aspects of intoxication 

and consequences of alcohol use, which is more similar to the composite alcohol score in 

O’Halloran et al. This lends support to the finding that attentional impulsivity is associated with 

intoxication, rather than level of alcohol consumption alone.   
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Gender significantly predicted alcohol misuse risk, female group membership was 

associated with reduced odds of being in the high alcohol group. This is consistent with reports 

that females consume less alcohol on average compared to men, with fewer heavy drinking 

episodes and lower lifetime abstention rates (54.6% versus 34.5%; WHO, 2018). Our finding that 

age increased the odds of alcohol misuse risk is also consistent with reports that adolescence 

and young adulthood is associated with increased heavy episodic drinking (WHO, 2018).  

In summary, this study found evidence of decision-making differences among 

individuals with high alcohol misuse compared to low-risk individuals. Specifically, in a 

probabilistic value-based decision-making task, higher negative learning rate, higher evidence 

accumulation (drift-rate), lower response threshold (boundary separation), and smaller non-

decision times predicted high alcohol-misuse risk. Future studies may consider if these 

differences generalise to other types of value-based decision-making tasks (e.g., probabilistic 

reversal learning) and clinical manifestations of alcohol dependence, in addition to examining 

the pathophysiology of these processes using neural data. 
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Chapter 4: Reward and punishment processing in former opioid 

addiction 
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4.1. Introduction 
The World Health Organisation (2018) estimates than over 70% of drug-related deaths are 

attributable to opioids, and in the United States, opioid-related deaths exceed those caused by 

car accidents (Bickel et al., 2018; Mattson, 2021; Warner et al., 2011). Increases in the 

availability of medically-prescribed opioid analgesics in recent years has led to increased 

accidental overdoses, and increases in the likelihood of transition to illicit opioid dependence 

(Cicero et al., 2014; Seth et al., 2018; Smyth et al., 2010). Opioid-dependence has been noted 

for its difficulty to overcome, with one study reporting that 91% of participants relapse following 

treatment discharge (Smyth et al., 2010).  

A substantial literature has identified decision-making impairments relevant to 

prolonged opioid-use, including greater discounting of delayed rewards, increased risk-

tolerance, and differential learning from rewards versus punishments (Madden et al., 1997; 

Myers et al., 2017; Prosser et al., 2006). For example, risky decision-making in opiate-use is often 

measured using gambling tasks such as the Iowa Gambling Task (IGT), Cambridge Gabling Task 

(CGT), Balloon Analogue Risk Task (BART), or Game of Dice task. These experimental tasks 

manipulate conditions of ambiguity and volatility, so that the outcomes of response selections 

are uncertain and unpredictable. Relative to healthy controls, opiate users show a preference 

for smaller short-term rewards over larger long-term rewards, attentional biases towards drug-

related cues, and attend less to environmental contingencies in decisions that involve risk-taking 

(Biernacki et al., 2016; Garland & Howard, 2014; Saleme et al., 2018). These alterations to risky 

decision-making are also associated with other forms of substance dependence (Chen et al., 

2020), and efforts to parse the relative influence of different drug-types are sometimes 

compounded by evident poly-drug use among research participants. However some studies 

have shown differences in decision-making between these groups.  

Ahn and Vassileva (2016) identified unique features classifying former heroin versus 

amphetamine users – past heroin-use was predicted by older age, lower education and IQ, 
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higher non-planning impulsivity, lower attentional and motor impulsivity (BIS), higher urgency 

and lack of perseverance (UPPS), impaired decision-making on the IGT, and a range of other 

neurocognitive and personality/psychiatric features. Notably, these features were not 

predictive of past amphetamine-use (excluding age), and any common predictors between both 

substance types were in the opposite direction (e.g., younger age classified amphetamine-use).  

A number of studies have highlighted differences in decision-making between opiate-

users and healthy controls using computational models of decision-making (such as 

reinforcement learning and drift-diffusion models). Myers et al. (2016) found no mean 

behavioural differences in a reward and punishment-learning task between groups, however 

actor-critic computational models showed a reduced recency bias among opioid-users – 

indicating reduced likelihood of repeating prior responses. Drug-induced changes to the mu-

opioid receptor system via acute morphine versus naltrexone administration in healthy humans 

have also shown changes in drift-rate and starting-point bias in value-based decision-making 

(Eikemo, Biele, Willoch, Thomsen, & Leknes, 2017). A bidirectional effect was observed, with 

opioid agonists increasing drift-rate compared to baseline, and blockade decreasing it- 

boundary separation was comparably unaffected by drug condition (Eikemo et al., 2017). In a 

computational examination of performance on the IGT between heroin-dependent, 

amphetamine-dependent, and healthy control groups (drug-use groups in protracted 

abstinence), Ahn et al. (2014) demonstrated distinct learning deficits between groups. Relative 

to controls, heroin-users showed reduced loss-aversion, whereas amphetamine-users showed 

increased reward sensitivity (Ahn et al., 2014). These studies confirm the utility of such 

computational models in identifying deviances from healthy decision-making in specific types 

substance dependence (see Gueguen et al., 2021 for recent review).    

The extent to which deficits in decision-making persist following successful abstinence 

is unclear (Biernacki et al., 2016; Koob, 2020). In a review of the literature, Biernacki et al. (2016) 
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found no evidence for improvements in decision-making tasks among ex-opiate users, nor a 

relationship between length of abstinence and magnitude of decision-making deficits. This 

seems to be supported by (Eikemo et al., 2019), who found no evidence for computational or 

behavioural changes in reward sensitivity in a sample formerly addicted to heroin compared 

with healthy controls.  However, in a prospective longitudinal study by Konova et al. (2020), 

computationally-derived ambiguity tolerance predicted prospective opiate use, performing 

similarly with measures of treatment adherence and craving. Of note, Konova et al. (2020) found 

that baseline ambiguity tolerance was similar between opiate use disorder patients and 

controls, however the trajectory of this latent cognitive process differed longitudinally, with 

higher tolerance over time predicting future relapse. This relationship appears to be specific to 

substance dependence, as no relationship was found between ambiguity tolerance 

schizophrenia patients. The computational parameter of risk-tolerance showed no predictive 

relationship with future drug-use (Konova et al., 2020). Therefore, this finding suggests that 

computational models of decision-making may be used to identify high-risk states for opioid 

relapse across treatment trajectories that may not be present at baseline.   

 It has been reported that over 50% of individuals who have completed maintenance 

pharmacotherapy relapse to illicit opioid-use following one-month of treatment (Bentzley et al., 

2015), however there has been limited research investigating neurocognitive changes as a 

consequence of different therapeutic interventions and prolonged opioid abstinence (Stewart 

et al., 2019). Therefore, probing cognitive changes associated with short versus longer term 

abstinence presents an opportunity to identify protective factors relevant to developing 

successful treatment strategies. The present study aimed to examine changes in value-based 

decision-making among a formerly opioid-dependent sample currently in MMT, the key aims 

were: (i) to compare decision-making performance in short- versus long-term abstinent groups, 

and (ii) to identify and compare behavioural, personality, and computational predictors of 

length of abstinence.  
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4. 2. Methods 

4. 2. 1. Sample 
Participants were recruited from a community-based sample receiving methadone 

maintenance therapy treatment for former opiate-dependence. 81 participants completed the 

PST and self-report questionnaires. Participants were not provided with a financial incentive for 

taking part, or reimbursement of travel costs. All participants provided written informed 

consent to participate, and the study was approved by the Trinity College Dublin School of 

Medicine Ethics Committee. 

4. 2. 2. Materials 

4. 2. 2. 1. Probabilistic Selection Task 
As described in Chapter 2.1.2. 

4. 2. 2. 2. Barratt Impulsiveness Scale (BIS) 
As described in Chapter 2. 2. 

4. 2. 2. 3. Short- Impulsive Behavior Scale (UPPS-P) 

The UPPS-P model measures trait impulsivity with five sub-scales: Negative Urgency, Lack of 

Premeditation, Lack of Perseverance, Sensation Seeking, and Positive Urgency. The short 

version of the scale comprises of 20 items across the five subscales scored on a four-point Likert 

scale from (1; Agree Strongly) to (4; Disagree Strongly) (Cyders et al., 2014).   

4. 2. 2. 4. Quality Control 

Trials with RTs <150ms and >4000ms were removed from the single trial analysis (similar to 

Cavanagh et al., 2014). Subjects with over 40 trials removed due to bad RTs were excluded from 

the analysis (i.e., subject 3 in the PSTNFB, and subject 7 in the PSTWFB – note that subject 7 did 

not complete the PSTNFB). One subject (subject 80) was excluded from the PSTWFB analysis as 

they only completed 20 trials of the task. This resulted in a final sample of 81 for the PSTWFB, 

and 48 for the PSTNFB.  

4. 2. 2. 5. Computational Modelling 

As described in Chapter 2, Section 2. 4.  
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4. 2. 2. 6. Machine Learning 
 

As described in Chapter 2, Section 2. 5. Two sets of machine learning models were conducted; 

(i) linear regression to predict length of opioid abstinence and (ii) logistic regression to predict 

short-term versus long-term abstinence.  

Correlations were conducted to explore the relationship between model parameters, 

length of abstinence, and the SUPP-S and BIS scores. Parameter values for each subject were 

sampled from a random chain in the model trace and correlated with each of the questionnaire 

variables using spearman’s r. This step was repeated 1,000 times and the distribution of rho and 

p-values for each of the parameters and questionnaire variables across all the iterations are 

presented below. Taking this ‘plausible values’ approach, I sought to account for variance in the 

posterior distribution of participant-level parameters (Boehm et al., 2018; Ly et al., 2017). 

4. 3. Results 

4. 3. 1. Behavioural Results 
Participants who did not pass the training phase of the PST (n=33) were excluded from 

subsequent analysis. The final sample consisted of 48 participants (25 M, 23 F) with a mean age 

of 36.5 (SD = 7.7). Length of time abstinent from methadone ranged from 3 to 7,920 days, with 

a mean abstinence of 730.15 (1476.77) days. Demographic information and clinical 

characteristics of the study participants are presented in Table 1, and summary decision-making 

task performance in Table 2.  

For the logistic regression, the sample was divided into short-term versus long-term 

abstinent participants based on a cut off of 200 days. This resulted in 23 short-term and 25 long-

term abstinent participants.  

The short-term abstinence group showed significantly higher scores on the AUDIT and 

DUDIT questionnaires, indicating higher levels of alcohol and drug-use compared to the long-

term abstinence group. No group differences were observed on the FTND or impulsivity 
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questionnaires, indicating that short and long-term abstinence groups showed similar levels of 

nicotine dependency and self-reported impulsivity. 

Table 4. 1. Mean (SD) of sample characteristics and personality questionnaires with Bayesian 

Mann Whitney U between short versus long-term abstinence groups.  

 

 Total (M, SD) Short-term 

(n=23) 

Long-term 

(n=25) 

Sig. test 

(Mann 

Whitney U) 

BF10 

Gender (M/F) 25/23     

Age 36.46 (7.65) 33.52 (7.86) 39.16 (6.49) 412.5 3.71 

Age first drug-

use 

12.61 (2.68)     

Length 

abstinent 

(days) 

730.15 

(1476.77) 

94.07 

(60.58) 

1315.32 

(1956.95) 

575.0 1518.16 

Longest time 

drug-free 

(months) 

31.55 (50.05)     

No. lapses in 

past 2-yrs 

(single-use) 

Md = 0, IQR = 

1 

    

No. lapses in 

past 2-yrs 

(daily-use) 

Md = 0, IQR = 

1 

    

AUDIT 9.21 (11.48) 14.87 

(14.18) 

4.0 (3.84) 159.5 4.94 

DUDIT 27.79 (16.25) 38.74 (6.31) 17.72 

(16.12) 

77.0 166.34 

FTND 5.0 (3.25) 5.0 (3.0) 6.0 (3.0) 336.0 0.83 

BIS       

Attention 17.31 (4.24) 18.81 (5.13) 17.16 (4.18) 311.0 0.29 

BIS Motor 25.79 (5.13) 27.47 (5.37) 24.16 (5.16) 393.5 1.25 
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BIS Non-

planning 

27.68 (5.82) 29.56 (5.87) 26.45 (4.95) 331.0 0.38 

SUPP-S      

Negative 

Urgency 

12.17 (2.75) 12.43 (2.33) 11.92 (3.12) 265.5 0.33 

Lack of 

perseverance 

6.81 (2.52) 7.0 (2.26) 6.64 (2.78) 249.5 0.32 

Lack of 

premeditation 

8.19 (2.46) 8.35 (2.35) 8.04 (2.59) 273.5 0.32 

Sensation-

seeking 

11.35 (2.89) 12.35 (2.67) 10.44 (2.83) 178.0 1.81 

Positive Urgency 10.17 (2.93) 10.69 (3.07) 9.68 (2.77) 224.0 0.42 

      

 

 

Table 4. 2. Mean (SD) choice and reaction time summary scores for the PST and DD tasks.  

 

 Total (M, 

SD) 

Short-term 

(n=23) 

Long-term 

(n=25) 

Sig. test 

(Mann 

Whitney U) 

BF10 

PST      

Training: AB 

accuracy 

0.79 (0.10) 0.70 (0.16) 0.81 (0.1) 331.0 0.39 

Training: CD 

accuracy 

0.72 (0.11) 0.70 (0.09) 0.75 (0.12) 351.0 0.47 

Training: EF 

accuracy 

0.65 (0.11) 0.649 (0.10) 0.647 (0.13) 269.0 0.31 

Training: AB 

reaction time 

1.28 (0.5) 1.19 (0.53) 1.37 (0.46) 355.5 0.68 

Training: CD 

reaction time 

1.39 (0.56) 1.26 (0.64) 1.51 (0.47) 396.0 1.79 

Training: EF 

reaction time 

1.42 (0.61) 1.20 (0.53) 1.63 (0.61) 417.0 6.23 

Test: 

Approach AC 

0.58 (0.22) 0.62 (0.17) 0.55 (0.16) 336.0 0.57 
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Test: 

Approach BD 

0.37 (0.13) 0.35 (0.15) 0.38 (0.14) 275.0 0.35 

 

4. 3. 2. Computational Modelling Results 
The model showed good convergence using the Gelman-Rubin method (all values <1.1, highest 

value=1.023). The model DIC was 46890.97.  

 

Table 4. 3. Summary of computational models fit to the training and test phase of the PST.  

Model Type DIC Samples Trials Learning 

Rate 

Parameters Max. 

rhat 

RLHDDM        

Model 1 46890.97 10,000 

(1,000) 

All Dual a, v, t 1.02 

Model 2 62841.65 12,000 

(2,000) 

All Single a, v, t 1.03 

Model 3       

HDDM       

Model 1 16544.36 

 

10,000 

(1,000) 

All -- a, t, v (WW, 

WL, LL) 

1.02 

       

       

 

Mean parameter values for the RLHDDM and HDDM models are presented in the violin plots 

and table below. The groups did not differ significantly, however the long-term abstinence 

group showed higher boundary separation in the RLHDDM compared with the short-term 

group.   
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Figure 4. 1. Violin plots of mean RLHDDM and HDDM parameter estimates for short-term 

versus long-term abstinence groups.  
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Table 4. 4. Mean (SD) of computational model parameters with significance test between 

groups.  

Parameter Whole 

Sample (N 

= 48) 

Short Abs. 

(n = 23) 

Long Abs. 

(n = 25) 

Mann 

Whitney 

U (W) 

BF10  

RLHDDM       

Pos. learning 0.25 (0.22) 0.18 (0.14) 0.32 (0.26) 197.0 1.48  

Neg. learning 0.12 (0.27) 0.05 (0.17) 0.19 (0.32) 230.0 0.55  

Boundary Separation (a) 1.89 (0.29) 1.77 (0.28) 1.98 (0.26) 162.0 4.14  

Non-decision Time (t) 0.44 (0.21) 0.40 (0.24) 0.48 (0.19) 235.0 0.57  

Drift-rate (v) 1.85 (0.66) 1.77 (0.62) 1.93 (0.69) 249.0 0.34  

HDDM       

a 1.74 (0.41) 1.76 (0.45) 1.72 (0.36) 314.0 0.33  

vLL -0.29 

(0.77) 

-0.32 

(0.78) 

-0.27 

(0.77) 

274.0 0.28  

vWL -0.13 

(0.48) 

-0.19 

(0.60) 

-0.06 

(0.32) 

255.0 0.38  

vWW -0.01 

(0.57) 

-0.17 

(0.64) 

0.16 (0.42) 219.0 0.77  

t 0.41 (0.21) 0.42 (0.20) 0.39 (0.22) 329.0 0.39  

 

4. 3. 3. Posterior Predictive Checks 
Posterior predictive checks were conducted by simulating task data from the posterior of the 

fitted RLHDDM model and comparing this to the observed data. A random sample from the 

model trace was used to generate accuracy and RT data for each of the training phase stimulus 

pairs (AB, CD, EF), this step was repeated 50 times to better capture variability in the posterior 

distribution. The mean RTs and choices from the simulated data were then compared with the 

observed data. Figure 4.2 shows the observed versus simulated RT (averaged over 50 iterations) 

data for each stimulus type (AB, CD, EF). The simulated data overpredicted the correct response 

RTs, most prominently in the AB pair, and underpredicted error RTs. However, the simulated 

data fit the pattern of observed data overall, particularly in CD and EF pairs.  
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Figure 4. 2. Shows the simulated and observed choices for a subset of trials in the training 

phase, 1=correct selection, 0=incorrect selection. The simulated data predicted higher correct 

choice selections compared with the observed data, this was most pronounced in the AB 

stimulus pair. 

 

Parameter recovery was conducted by fitting an RLDDM model to data simulated from the mean 

parameters of the fitted model. The mean parameters from the simulated data RLDDM model 

significantly correlated with those estimated from the observed data RLDDM model (a: 

rho=0.95, p<.001; t: rho=0.99, p<.001; v: rho=0.61, p<.001,negative learning rate: rho=0.47, 

p<.001; positive learning rate: rho=0.69, p=.001). Overall, the parameters showed good 

recovery, showing that simulated data generated from our RLDDM model with known 

parameters can be fit to recover these parameters. Scatterplots of the relationship between 

observed and simulated parameters are presented below.  
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Figure 4. 4. Scatterplots of mean parameter values from RLDDM models with observed vs. 

simulated data. 

 

The HDDM model fit to the PST test phase showed good convergence using the Gelman-

Rubin method (all values <1.1, highest value=1.024). Posterior predictive checks were 

conducted by simulating data using the estimated parameters from the HDDM model. 500 

samples were drawn in the simulated data, and the summary statistics showed that the 

observed data fell within the 95% credible interval of the simulated data.   

4. 3. 4. Machine Learning 

4. 3. 4. 1. Predicting Length of Abstinence 

The PST model outperformed the demographic model on 79% of cases based on r score, and 

the mean r for the test model (0.31, SD = 0.09) was significantly higher than the demographic 

model (0.15, SD = 0.11); t(198) = 8.96,  p < 0.001. Mean MAE for the test model (0.49, SD = .02) 

was significantly lower than the demographic model (0.52, SD = .05); t(198) = -5.19, p < .0001. 
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Both Approach A and Approach B, in addition to Age were significant predictors, with selection 

frequencies outside the 95th percentile of demographic model feature selections. 

Table 4. 5. PST Summary Model mean choice frequencies and beta values for each feature in 

the test and demographic model. 

Feature Mean Choice Frequency - 

Test 

Beta Weight - Test Mean Choice 

Frequency - 

Null 

Beta Weight 

- Null 

intercept 5 2.319 5 2.319 

Age 4.77 0.140 4.58 0.126 

Approach AC 4.53 -0.115 1.43 -0.002 

Gender 1.44 -0.013 1.25 -0.013 

Approach BD 0.96 -0.002 1.65 0.005 

 

The Computational Model outperformed the demographic model on 75% of cases, with the 

mean r value for the test model (0.24, SD = 0.06) significantly higher than the null model 

(0.063, SD = 0.12); t(198) = 9.44, p < .001. The mean test model MAE (0.49, SD = .02) was 

significantly lower than the demographic model (0.51, SD = .02); t(198) = -6.83, p < .0001. The 

Drift-rate for Win-Win, Win-Lose, and Lose-Lose conditions, non-decision time, boundary 

separation, and positive learning rate from the RLHDDM, and age were significant features.  
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Table 4. 6. Computational Model mean choice frequencies and beta values for each feature in 

the test and demographic model. 

Feature Mean Choice 

Frequency - 

Test 

Beta Weight - Test Mean Choice 

Frequency - 

Null 

Beta Weight 

- Null 

intercept 5 2.319 5 2.139 

HDDM: Drift-rate Win-Win 4.31 -0.084 0.84 0.0001 

Age 4.18 0.060 4.24 0.091 

RLHDDM: Non-decision 

Time 

3.72 0.055 0.77 0.002 

RLHDDM: Boundary 

Separation 

3.3 0.034 0.76 -0.0002 

RLHDDM: Pos. Learning 

Rate 

2.52 0.024 1.0 -0.003 

HDDM: Drift-rate Win-Lose 1.98 -0.010 0.74 -0.001 

HDDM: Drift-rate Lose-

Lose 

1.75 -0.012 0.81 0.0002 

Gender 0.61 -0.003 0.53 -0.004 

RLHDDM: Drift-rate 0.58 0.001 0.83 0.0003 

HDDM: Non-decision Time 0.39 -0.001 0.72 0.0003 

RLHDDM: Neg. Learning 

Rate 

0.27 0.001 0.77 -0.0007 

HDDM: Boundary 

Separation 

0.22 -0.0004 0.69 0.001 

 

The Personality Model r underperformed the demographic model in 61% of cases, with the test 

model r (0.026, 0.1) significantly lower than the demographic model (0.096, 0.12); t(198) = -

4.21, p < .0001.  The mean MAE for the test model (0.52, SD = .02) was significantly lower for 

the demographic model (0.51, SD = .02) compared with the test model (0.51, SD = .02); t(198) = 

3.99, p < .0001. Age, the SUPP-S sensation-seeking and positive urgency scales, BIS motor 

impulsivity were significant features in the model.  
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Table 4. 7. Personality Model mean choice frequencies and beta values for each feature in the 

test and demographic model. 

Feature Mean Choice 

Frequency - Test 

Beta Weight - 

Test 

Mean Choice 

Frequency - 

Null 

Beta 

Weight - 

Null 

intercept 5 2.319 5 2.319 

Age 3.96 0.073 4.2 0.098 

SUPPS: Sensation-seeking 2.75 -0.033 0.95 0.002 

SUPPS: Pos. Urgency 1.9 -0.014 1.08 0.002 

BIS: Motor 1.12 -0.007 0.84 0.003 

BIS: Attention 0.55 0.005 0.87 -0.002 

SUPPS: Neg. Urgency 0.54 -0.003 0.86 -0.003 

Gender 0.29 -0.0009 0.75 -0.006 

SUPPS: Lack of 

Perseveration 

0.19 -0.0004 0.89 -0.004 

SUPPS: Lack of 

Premeditation 

0.16 0.0005 0.83 0.0003 

BIS: Non-planning 0.15 0.0005 0.71 -0.0006 

  

The Combined Model r (0.15, SD = 0.13) outperformed the demographic model (0.03, SD = 0.14) 

on 69% of iterations, and was significantly higher; t(198) = 5.42, p <. 0001. The mean MAE for 

the test model (0.506, SD = .02) was significantly lower than the demographic model (0.512, SD 

= .02); t(198) = -2.16, p = .032. Drift-rate for Win-Win, Win-Lose, and Lose-Lose conditions, age, 

non-decision time (RLHDDM), boundary separation (RLHDDM), positive learning rate 

(RLHDDM), positive urgency (SUPP-S), sensation-seeking (SUPP-S), and motor impulsivity (BIS) 

were significant features.  
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Table 4. 8. Combined Model mean choice frequencies and beta values for each feature in the 

test and demographic model. 

Feature Mean Choice 

Frequency - Test 

Beta Weight - 

Test 

Mean 

Choice 

Frequency - 

Null 

Beta 

Weight - 

Null 

intercept 5 2.319 5 2.319 

HDDM: Drift-rate Win-Win 3.95 -0.068 0.59 0.0001 

Age 3.65 0.044 3.96 0.077 

RLHDDM: Non-decision Time 3.32 0.044 0.67 -0.001 

RLHDDM: Boundary Separation 2.77 0.025 0.7 0.002 

SUPPS: Sensation-seeking 2.36 -0.021 0.65 0.0005 

RLHDDM: Pos. Learning Rate 1.81 0.013 0.79 -0.0003 

SUPPS: Pos. Urgency 1.53 -0.008 0.63 -0.0006 

HDDM: Drift-rate Win-Loss 1.42 -0.007 0.49 0.001 

HDDM: Drift-rate Loss-Loss 1.12 -0.006 0.67 -0.001 

BIS: Motor 0.87 -0.004 0.52 -0.001 

BIS: Attention 0.45 0.003 0.59 -0.003 

RLHDDM: Drift-rate 0.35 0.001 0.7 0.0003 

Gender 0.32 -0.002 0.39 -0.003 

RLHDDM: Neg. Learning Rate 0.27 0.001 0.73 -0.001 

BIS: Non-planning 0.25 0.001 0.59 -0.001 

HDDM: Non-decision Time 0.19 -0.0008 0.6 0.002 

SUPPS: Neg. Urgency 0.18 -0.0004 0.43 -0.003 

SUPPS: Lack of Perseveration 0.17 0.0004 0.62 -0.00002 

HDDM: Boundary Separation 0.14 0.0002 0.65 -0.002 

SUPPS: Lack of Premeditation 0.07 0.0001 0.41 0.0001 

  

4. 3. 4. 2. Group Classification 

Short-term abstinence was the positive class used in logistic machine learning models, 

therefore the direction of beta weights may differ from the linear analysis presented above. 



 
 

108 
 

The PST Summary Model AUC (0.69, SD = .04) outperformed the demographic model (0.66, SD 

= 0.05) on 66% of iterations, and was significantly higher; t(198) = 5.76, p < .0001. The test model 

mean Brier score (0.227, SD = .01) was significantly lower than the demographic model (0.236, 

SD = .01); t(198) = -4.86, p < .0001. Age, gender, Approach AC, and Approach BD were all 

significant features in the model.  

Table 4. 9. PST Summary Model mean choice frequencies and beta values for each feature in 

the test and demographic model. 

Feature Mean Choice Frequency - 

Test 

Beta Weight - Test Mean Choice 

Frequency - 

Null 

Beta Weight 

- Null 

intercept 5 -0.075 5 -0.083 

Age 4.99 -0.737 4.96 -0.582 

Gender 4.82 0.409 4.38 0.284 

Approach AC 4.75 0.276 3.16 -0.002 

Approach BD 4.17 -0.259 3.2 -0.022 

 

The Computational Model AUC (0.69, SD = 0.04) was significantly higher than the demographic 

model (0.60, SD = 0.06) and outperformed in 78% of cases; t(198) = 10.92, p < .001.  The mean 

test model Brier score (0.22, SD = 0.02) was significantly lower than the demographic model 

(0.25, SD = 0.02); t(198) = -10.13, p < .0001. Age, gender, all of the RLHDDM parameters 

(boundary separation, positive learning rate, negative learning rate, drift-rate, non-decision 

time), drift-rate for the Win-Win condition, and boundary separation from the HDDM were 

significant predictors.  
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Table 4. 10. Computational Model mean choice frequencies and beta values for each feature 

in the test and demographic model. 

Feature Mean 

Choice 

Frequency - 

Test 

Beta Weight - Test Mean Choice 

Frequency - 

Null 

Beta Weight 

- Null 

Intercept 5 -0.131 5 -0.088 

Age 4.97 -0.448 4.65 -0.401 

RLHDDM: Boundary 

Separation 

4.97 -0.505        1.76 0.002 

RLHDDM: Pos. Learning Rate 4.86 -0.387 1.97 0.002 

HDDM: Drift-rate (Win-Win) 4.85 0.346 1.68 0.003 

RLHDDM: Neg. Learning Rate 4.71 -0.265 2.06 -0.019 

Gender 4.45 0.280 3.09 0.151 

HDDM: Boundary Separation 3.22 0.157 1.82 0.001 

RLHDDM: Drift-rate 2.22 -0.035 1.86 -0.002 

RLHDDM: Non-decision Time 2.09 -0.031 1.69 -0.008 

HDDM: Drift-rate (Lose-Lose) 1.7 0.002 1.6 0.003 

HDDM: Non-decision Time 1.62 -0.003 1.9 -0.00003 

HDDM: Drift-rate (Win-Lose) 1.4 0.005 1.67 0.0005 

 

The Personality Model AUC (0.638, SD = .05) did not significantly differ from the demographic 

model (0.632, SD = 0.06), and outperformed in 52% of iterations; t(198) = 10.95, p  = 0.42. The 

Brier score for the test model (0.248, SD = .01) also did not differ significantly from the 

demographic model (0.246, SD = .02); t(198) = 0.72, p = 0.47. Age, gender, sensation-seeking 

(SUPP-S) and motor impulsivity (BIS) were significant features in the model.  
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Table 4. 11. Personality Model mean choice frequencies and beta values for each feature in 

the test and demographic model. 

Feature Mean Choice 

Frequency - Test 

Beta Weight - 

Test 

Mean Choice 

Frequency - Null 

Beta 

Weight 

- Null 

intercept 5 -0.086 5 -0.087 

Age 4.76 -0.333 4.79 -0.471 

SUPPS: Sensation-seeking 4.57 0.236 2.34 0.011 

BIS: motor 3.99 0.170 2.15 -0.011 

Gender 3.31 0.114 3.7 0.201 

SUPPS: Lack of 

Premeditation 
1.64 -0.043 1.85 -0.0002 

BIS: Attention 1.58 -0.035 2.14 0.026 

SUPPS: Neg. Urgency 1.49 -0.037 2.31 -0.002 

SUPPS: Pos. Urgency 1.38 0.021 2.17 -0.015 

SUPPS: Lack pf 

Perseveration 
1.29 0.020 2.01 -0.008 

BIS: Non-planning 1.04 0.010 2.01 0.001 

  

The Combined Model AUC (0.68, SD = .05) was significantly higher than the demographic model 

(0.59, SDD = 0.07), and outperformed in 75% of iterations; t(198) = 8.79, p < .0001. The mean 

test model Brier score (0.23, SD = .02) was also significantly lower than the demographic model 

(0.25, SD = .01); t(198) = -7.75, p < .0001. Age, gender, boundary separation from the RLHDDM 

and HDDM, positive and negative learning rates (RLHDDM), drift-rate for the Win-Win condition 

(HDDM), sensation-seeking and lack of premeditation (SUPPS), and motor impulsivity (BIS) were 

significant predictors.  
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Table 4. 12. Combined Model mean choice frequencies and beta values for each feature in the 

test and demographic model. 

Feature Mean Choice 

Frequency - 

Test 

Beta Weight - 

Test 

Mean 

Choice 

Frequency - 

Null 

Beta Weight - 

Null 

intercept 5 -0.108 5 -0.091 

RLHDDM: Boundary 

Separation 

4.89 -0.330 1.6 0.0001 

Age 4.86 -0.275 4.48 -0.342 

SUPPS: Sensation-Seeking 4.82 0.271 1.58 -0.011 

RLHDDM: Neg. Learning Rate 4.77 -0.269 1.84 -0.004 

RLHDDM: Pos. Learning Rate 4.71 -0.251 1.7 -0.004 

HDDM: Drift-rate (Win-Win) 4.7 0.253 1.57 -0.008 

BIS: Motor 4.17 0.201 1.57 -0.016 

Gender 3.73 0.135  

2.77 

0.110 

HDDM: Boundary Separation 2.22 0.065 1.59 -0.012 

SUPPS: Lack of Premeditation 1.99 -0.057 1.25 0.0003 

SUPPS: Neg. Urgency 1.79 -0.059 1.34 -0.003 

SUPPS: Pos. Urgency 1.78 0.031  

1.43 

0.004 

RLHDDM: Non-decision Time 1.74 -0.033 1.51 0.007 

RLHDDM: Drift-rate 1.62 -0.018 1.41 0.001 

SUPPS: Lack of Perseveration 1.58 0.007 1.71 -0.010 

HDDM: Drift-rate (Lose-Lose) 1.37 -0.008 1.6 -0.024 

HDDM: Non-decision Time 1.33 0.013 1.39 0.0145 

HDDM: Drift-rate (Win-Lose) 1.26 0.014 1.74 -0.008 

BIS: Non-planning 1.21 -0.006 1.36 -0.005 

BIS: Attention 1.2 -0.013 1.3 -0.0016 

 

Kruskal Wallis tests comparing mean model accuracy between test models showed that MAE 

and r scores differed significantly between groups (K = 90.42, p < .0001; K = 193.25, p < .0001), 

as did Brier and AUC scores for the logistic models (K = 104.24, p <.0001; K = 82.81, p <.0001). 
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Post-hoc tests showed that the combined models outperformed the individual models (p’s < 

.002). The Computational and PST Summary models outperformed the Personality models (p’s 

<.001), however the Computational and PST Summary models did not differ significantly from 

each other (p’s > 0.15).  

 

Figure 4. 5. Violin plots summarising machine learning model metrics for PST Summary, 

Computational, Personality, and Combined Models.  
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4. 3. 5. Correlations with Length of Abstinence 
No strong correlations were observed between the computational parameters from the 

RLHDDM and length of abstinence, with the positive and negative learning rates, and drift-rate 

correlation distributions overlapping with the null correlations. More robust correlations were 

observed between the computational parameters and personality questionnaires. In particular, 

the boundary separation parameter correlated negatively with the BIS Motor subscale. This 

parameter also correlated negatively with the positive urgency sub-scale of the SUPP-S, and the 

non-decision time parameter showed negative correlations with all of the SUPP-S scales.  

 

Figure 4. 6. Distribution of rho (upper row) and log10(p-values; lower row) for correlations 

between RLHDDM computational model parameters and length of abstinence.  

 

 

Figure 4. 7. Distribution of rho (upper row) and log10(p-values; lower row) for correlations 

between HDDM computational model parameters and length of abstinence.  
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Figure 4. 8. Distribution of test versus null rho values for each RLHDDM parameter correlation 

with length of abstinence.  

 

4. 3. 6. Correlations between ML Features 
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Table 4. 13. Partial Spearman’s correlations between machine learning features, with age as a covariate. Significant correlations are highlighted 

between (i) self-report measures (orange), (ii) task-related parameters and variables (blue), (iii) task-related and self-report measures (green). *p < 

.05, ** p < .01, *** p < .0001

Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1. Neg. Urgency — 
                  

 

2. Lack of 
Persev.. 

0.076 — 
                 

 

 3. Lack of 
Premed. 

0.279 0.466*** — 
                

 

4. Sensation-
Seeking 

0.316* 0.067 0.291* — 
               

 

5. Pos. Urgency 0.421** 0.155 0.413** 0.256 — 
              

 

6. BIS Attention 0.425** 0.309* 0.539*** 0.141 0.495*** — 
             

 

7. BIS Motor 0.336* 0.117 0.434** 0.173 0.376** 0.507*** — 
            

 

8. BIS Non-
planning 

0.258 0.539*** 0.720*** 0.249 0.271 0.443** 0.403** — 
           

 

9. RLHDDM: a 0.019 -0.009 -0.053 0.064 -0.019 0.062 -0299* -0.192 — 
          

 

10. RLHDDM: v 0.031 0.115 0.139 -0.177 0.093 0.300 0.009 0.131 -0.092 — 
         

 

11. RLHDDM: t -0.059 -0.051 -0.097 0.015 -0.123 0.174 -0.015 -0.040 0.316* 0.177 — 
        

 

12. RLHDDM: 
Neg. Learning 

0.139 -0.095 -0.035 0.108 0.048 0.041 0.111 -0.012 0.001 -0.018 0.984 — 
       

 

13. RLHDDM 
Pos. Learning 

0.086 -0.092 0.044 -0.156 -0.098 0.234 -0.025 -0.041 0.033 0.383** 0.110 0.105 — 
      

 

14. HDDM a 0.066 0.159 -0.057 -0.081 -0.051 0.132 -0.119 -0.244 0.453** -0.212 0.496*** -0.009 0.174 — 
     

 

15. HDDM 
vWW 

0.285* 0.261 -0.046 0.086 -0.044 0.122 -0.042 0.173 -0.209 0.223 0.070 0.051 -0.019 -0.067 — 
    

 

16. HDDM vLL 0.023 0.121 0.028 0.279 0.165 0.038 -0.063 -0.111 0.134 -0.277 0.186 0.188 -0.216 0.175 0.113 — 
   

 

17. HDDM vWL 0.222 0.246 0.003 0.111 0.175 0.108 -0.014 -0.047 0.007 -0.036 0.162 0.218 -0.198 0.007 0.586*** 0.621*** — 
  

 

18. HDDM: t 0.222 -0.219 -0.206 -0.116 -0.034 0.226 -0.058 -0.170 0.035 0.127 0.607*** -0.004 0.040 0.317* 0.134 0.181 0.192 — 
 

 

19. Approach 
AC 

0.142 0.306* 0.043 0.084 -0.072 0.103 -0.104 0.214 -0.199 0.219 0.045 -0.058 0.047 -0.064 0.807*** 0.199 0.395** 0.100 —  

20. Approach 
BD 

0.003 0.117 -0.206 0.123 0.288* 0.122 0.051 -0.028 0.156 -0.197 0.043 0.274 -0.290* -0.048 -0.003 0.725*** 0.653*** 0.065 -0.134 — 
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4. 4. Discussion 
 

The current study sought to predict length of abstinence from non-treatment opioid-use (hereafter, 

simply ‘length of abstinence’) in a sample receiving methadone maintenance therapy. Utilising task-

based and self-report features, four models were compared: a PST Summary Model with mean 

accuracy from the PST test phase, a Computational Model with mean DDM model parameters 

derived from the PST training and test phase, a Personality Model with questionnaire measures of 

impulsivity, and a model combining personality and computational model features. In the Combined 

Model, drift-rate for Win-Win conditions in the PST test phase was the strongest feature, showing 

a negative relationship with length of abstinence. Larger non-decision times, wider boundary 

separation, and higher positive learning rates were also associated with increased length of 

abstinence. In the PST Summary Models, lower Approach AC accuracy and higher Approach BC 

accuracy was associated with long-term abstinence.   

Smaller drift-rates across all conflict conditions of the PST test phase predicted longer 

abstinence across the Computational and Combined Models. This suggests that reduced efficiency 

of evidence accumulation, a risk-factor that has been linked with prospective substance use in 

young adults (Weigard et al., 2021), predicts longer lengths of abstinence among individuals in 

MMT. It is somewhat surprising that long-term abstinence, likely conceptually associated with 

increased self-regulation, shows reductions in drift-rate as observed in other externalising disorders 

(e.g., ADHD; Ziegler et al., 2016). Although drift-rates seem to generalise across a range of 

experimental tasks (Schubert et al., 2016), given that this study is the first to examine DDM features 

derived from PST performance in former opioid-users, it is conceivable that task-specific factors 

related to the PST test phase may influence the efficiency of evidence accumulation. Further 
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research, comparing DDM parameters derived from other tasks among former opioid-users may 

elucidate some of these peculiarities.   

More intuitively, larger response boundaries and larger non-decision times- associated with 

slower and more conservative responding in the PST training phase, also predicted longer length of 

abstinence. Shared variance between age and these parameters may explain their significance, as 

age has been shown to robustly affect boundary separation and non-decision time parameters, 

unlike drift-rate (Dully et al., 2018).  However, robust partial correlations with age as a covariate 

showed positive correlations between boundary separation, non-decision time, and length of 

abstinence. This finding shows a positive relationship between these parameters and length of 

opioid abstinence beyond the effect of age, and suggests an increased ability to inhibit responses 

and accumulate sufficient evidence in longer-term abstinence. Increases in boundary separation 

and non-decision time parameters derived from the PST have also been observed in ADHD patients 

receiving stimulant medication (Pederson et al., 2017). This suggests that modulation of 

noradrenergic function associated with task adaptations in ADHD may be similar in opioid long-term 

opioid abstinence. Although positive learning rate was a significant feature in the machine learning 

models, it did not show robust correlations with length of abstinence. Nonetheless, correlations 

between the mean parameter estimates showed consistency between training and test PST phases, 

and showed some relationships with self-report measures (see Supplementary Materials for robust 

correlations between RLHDDM model parameters, the BIS, and the S-UPPS for the whole participant 

sample). Boundary separation showed a negative relationship with motor impulsivity, and drift-rate 

for Win-Wins showed a positive relationship with negative urgency.  

While the current study found evidence of a predictive relationship between DDM 

parameters and length of abstinence, mean group differences in parameter estimates were not 

observed. In a perceptual decision-making task with probabilistic feedback, Eikemo et al. (2019) also 
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found no group differences in drift-diffusion model parameters between former heroin-users in 

opioid maintenance therapy and healthy controls. As the authors suggest, cognitive impairments 

associated with opioid-use may be due to social factors involved in a substance-dependent lifestyle 

that are no longer present in ex-users (e.g., poor health, explore to violence; Darke et al., 2000). 

Therefore, the absence of alterations in task-related decision-making behaviour may be due to lack 

of exposure to these factors in ex-users. Nonetheless, while no association was found in 

computational parameters between groups, it is possible that these are still useful predictors of 

abstinence length (‘association is not prediction’; Bzdok et al., 2020).  

The Personality Models showed relatively poorer predictions compared with the task-

related models, suggesting that self-reported impulsivity does not predict length of abstinence as 

well as the PST and computational features. A number of studies have shown that self-reported 

impulsivity is a predictor of opioid abstinence, with lower impulsivity associated with increased 

likelihood of opioid abstinence ((Su et al., 2015; Zhu et al., 2018a). The influence of impulsivity on 

abstinence appears stronger in younger individuals, and is correlated with comorbid factors such as 

depression and ADHD (Evren et al., 2018; Peters & Soyka, 2019; Zhu et al., 2018b). In a study 

comparing different aspects of task-based impulsivity, Li et al., (2021) found that patients on MMT 

had greater delay discounting and cue-induced craving compared to healthy controls, which 

correlated positively with self-reported urgency. No differences in risk-taking were observed and 

deficits in paired associate learning were accounted for by depression and anxiety symptoms in the 

patient group (Li et al., 2021). It is possible that task-related impulsivity is more predictive of length 

of opioid abstinence than questionnaires (Lane et al., 2003). However, in both of the Combined 

Models, motor impulsivity and sensation-seeking were identified as significant features, showing a 

negative relationship with length of abstinence- this is consistent with the direction of beta values 

in models classifying heroin-disorder patients reported in Ahn et al. (2016).  
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The PST Summary models performed similarly to the Computational Models in the current 

study, indicating that mean choice accuracy is as predictive of abstinence length compared with 

DDM model parameters. Several studies have highlighted differences in PST performance among 

clinical, psychiatric, and substance dependent groups (Baker et al., 2013; Chase et al., 2010; Dowd 

et al., 2016; Rustemeier et al., 2012; Strauss et al., 2015), and this is the first study to find a 

relationship with opioid abstinence. Reduced learning from both positive and negative feedback 

predicted long-term abstinence. Additionally, avoiding punished stimuli from the training phase 

correlated negatively with self-reported positive urgency, and learning more from rewards 

correlated positively with lack of perseverance.   

The current study possesses a number of strengths (namely, the identification of predictors 

of abstinence in a rare substance group, and the use of a rigorous machine learning approach with 

nested cross-validation), nonetheless a number of limitations must also be acknowledged. Firstly, 

the lack of comparison with (i) an age-matched healthy control group, and (ii) a group of ex-opioid 

users who have completed MMT, limits the conclusions that can be made regarding decision-

making impairments due to MMT, versus former opioid-use, versus normative cognitive 

functioning. Second, the use of a larger sample with an external validation test dataset would 

contribute greatly to the generalisability of findings and improve individual MMT patient 

predictions.  

In conclusion, this study provides a first application of DDMs to the PST to predict length of 

opioid abstinence, highlighting a number of relevant features. Increased rates of evidence 

accumulation, larger non-decision times, and increased boundary separation were significant 

predictors, providing unique insights into mechanisms that may be involved in prolonged 

abstinence from opioid-use. This contributes to a growing literature examining the effects of 

successful abstinence on cognition and decision-making in opioid dependence.  
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Chapter 5: Reward and punishment learning predictors of smoking 

status 
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5. 1. Introduction 
The current study examined reward and punishment learning in ex-smokers, current 

smokers, vapers, and non-smokers using the PST. Based on previous studies in substance-

dependent samples (Baker et al., 2011, Baker et al., 2013; Nestor et al., 2018b), and availability of 

research participant data, Study 1 (N = 105) compared PST test phase performance between current 

smokers, ex-smokers, and non-smokers. I hypothesized that the current smokers would show 

impaired reward learning compared with ex-smokers and non-smokers. I also expected that ex-

smokers, relative to current and never smokers, would learn best from punishers. Study 2 extended 

on the behavioral findings of Study 1 with a larger pool of participants (N = 173) by investigating 

latent higher-order cognitive traits via the application of computational models to the PST, and used 

these to predict smoking group status using penalized logistic regression. Study 2 also included an 

additional ‘Vaping’ group that reported regular e-cigarette/vape consumption.  

 

5. 2 Study 1 
 

5. 2. 1. Methods 
5. 2. 1. 1. Participants 

Participants were recruited via posters displayed on the University College Dublin campus, Trinity 

College Dublin campus, and in the local community. Participants were provided with €10 in 

compensation for taking part in the study. 57 current smokers had smoked over 40 lifetime 

cigarettes, with at least weekly smoking in the past 30 days. 40 ex-smokers smoked more than 40 

cigarettes in their lifetime, with fewer than one cigarette per week (4 participants), or no cigarettes 

at all, in the past 30 days. 43 non-smokers smoked on fewer than 40 occasions in their entire lifetime 

with no cigarettes at all in the past 30 days. Exhaled carbon monoxide readings were collected from 

a subset of 60 participants (25 Smokers; 17 ex-smokers; 13 non-smokers). Smokers had readings of 

≥ 6 ppm, and ex-smokers and non-smokers ≤5 ppm (Low, Ong, & Tan, 2004). 
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5. 2. 1. 2. Procedure 

Ethics Committees from University College Dublin and Trinity College Dublin approved the study. 

Current smokers were requested to smoke as normal prior to the experiment, and therefore were 

not in acute abstinence. Participants completed the experimental tasks alone in a sound-attenuated 

booth. Questionnaires were completed during the testing session, or at home via an online survey 

platform. The PST was part of a larger test battery that took approximately 1 h. Participants were 

compensated with €10 (approximately $12) plus maximum travel expenses of €10. 

 

5. 2. 1. 3. Measures 

5. 2. 1. 3. 1. Probabilistic selection task 

As described in Chapter 2.1. 

Statistical analyses were performed in IBM SPSS (Version 23). Non-parametric tests were used when 

appropriate. Alpha was 0.05 unless stated otherwise due to multiple comparison correction. Our 

goal was to predict group membership (see Yarkoni and Westfall, 2017, for a rationale for prediction 

versus explanation) and therefore percent Approach A and Avoid B selections were predictor 

variables in a multinomial logistic regression model. The non-smoker group was the reference 

category and p values were calculated using 1000 bootstrapped samples. 

 

5. 2. 1. 3. 2. Questionnaire measures 

5. 2. 1. 3. 2. 1. Fagerstrom Test for Nicotine Dependence (FTND) 

As described in Chapter 2, Section 2.3. 

5. 2. 1. 3. 2. 2. The European School Survey Project on Alcohol and Other Drugs (ESPAD) 
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The ESPAD questionnaire on substance use (Hibell & Bjarnason, 2008) was used to assess lifetime 

and past 30 days smoking, and past 30 days alcohol use. Participants were asked ‘On how many 

occasions (if any) during your lifetime have you smoked cigarettes?’, ‘On how many occasions (if 

any) during your lifetime have you vaped (i.e., smoked E-cigarettes)?’ (Responses = ‘0’, ‘1-2’, ‘3-5’, 

‘6-9’, ‘10-19’, ‘20-39’, or ‘40+’ occasions), and ‘On how many of the past 30 days did you smoke 

tobacco cigarettes, even one or two puffs?’, ‘On how many of the past 30 days did you smoke E-

cigarettes, even one or two puffs?’ (Responses = ‘0 days’, ‘1-10 days’, ’11-20 days’, ’21-29 days’, or 

‘Daily’).  

Current smokers reported smoking on 40 or more occasions in their lifetime, and daily in 

the past month, with no e-cigarette use in the past month. Ex-smokers reported smoking on 40 or 

more occasions in their lifetime, and not at all in the past month, with no e-cigarette use in the past 

month. Vapers reported smoking between 0-40+ cigarettes in their lifetime, and not at all in the 

past month, with daily e-cigarette use and having smoked 40+ e-cigarettes in their lifetime. Non-

smokers reported smoking fewer than 20 cigarettes in their lifetime, with no tobacco or e-cigarette 

use in the past month.  

The Sensation Seeking Scale (SSS; Zuckerman, 1971) is a 40-item measure with four 

sensation seeking subscales: thrill- and adventure-seeking, disinhibition, experience-seeking and 

susceptibility to boredom (further details in Supplemental Materials). 

 

5. 2. 2. Results 
The final sample consisted of 41 smokers, 29 ex-smokers and 35 non-smokers. Participant 

characteristics are presented in Table 1 (see Supplemental Materials for further information on the 

PST training phase). Specific age was collected for 58 participants (55.2%) of the final sample; 

remaining participants were aged 18–21 years. There was a significant difference between groups 
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based on the 58 participants who reported their exact age (Kruskal Wallis test; χ2(2, 58) = 8.069, 

p = .018). The ex-smoker group (N = 17) were older than the smoker (N = 25) and non-smoker 

(N = 16) groups. The mean FTND for smokers was 2.17 (SD = 2.26), indicating the ‘Low’ dependence 

that is typical for younger smokers (Li et al., 2015). 

Table 5. 1. ESPAD, CO reading, PST performance, reaction times, and personality scores (Barratt 

Impulsiveness Scale and Sensation-Seeking Scale) by group. ‡Median(Inter Quartile Range). 

 

 
Measure Smokers Ex-smokers Non-

smokers  

Significant 

difference 

Gender (M/F) 26/15 18/11 13/22 - 

Age (Years) ‡ 21 (5) 32 (21) 22.5 (3.5) Ex>S & NS 

Lifetime smoking (ESPAD) ‡ 7 (0) 7 (0) 2 (3)  

Past 30 days smoking (ESPAD) ‡ 4 (1) 1 (0) 1 (0)  

Past 30 days Alcohol (ESPAD) ‡ 4 (3) 4 (3) 4 (2) - 

Carbon Monoxide (ppm) ‡ 11 (5.5) 2 (1) 2 (1.5) S>Ex & NS 

FTND Total‡ 2.17 (2.26) - - N/A 

BIS Total ‡ 70 (16) 62 (11) 66.5 (10) S>Ex 

BIS Attentional ‡ 19 (5.5) 16 (4.5) 17.5 (4) - 

BIS Motor ‡ 24 (6) 22 (4) 23 (5.5) - 

BIS Non-planning ‡ 26 (7) 26 (9) 25 (5.75) - 

SSS Total ‡ 26 (11) 20 (11) 21.5 (5)  S>Ex & NS 

SSS Boredom Susceptibility ‡ 3 (3) 3 (2.5) 2 (1.75) - 

SSS Disinhibition ‡ 7 (3) 6 (4) 6 (3) - 

SSS Experience Seeking ‡ 7 (3) 6 (3) 6 (3) S>NS 

SSS Thrill & Adventure ‡ Seeking 8 (5) 6 (7) 8 (3.75) - 

For Approach A trials, non-smokers chose A more often than smokers and non-smokers, 

with a median % choice (interquartile range) of 89(29), 83(32), and 77(38), respectively. For Avoid 

B trials, non-smokers performed similarly to smokers, with a median % choice of 75(26) and 76(21) 
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respectively, while ex-smokers avoided the B stimulus on 72% of trials (IQR = 20). Approach A and 

Avoid B percentages were entered in a multinomial logistic regression. Performance on the learning 

from reward (i.e., Approach A) test trials successfully predicted smoker group (Approach A, 

χ2 = 7.01, df(2) p = .030), while learning from punishment (i.e., Avoid B) test trials was just greater 

than the significance threshold (Avoid B, χ2 = 5.96, df(2), p = .051). Table 2 displays the classification 

accuracy of the multinomial logistic regression. As the tendency to learn from positive outcomes 

increased, the likelihood of being a non-smoker relative to smoker (p = .024; 95% Confidence 

Interval − 0.089 to −0.009) or ex-smoker (p = .04; 95% CI -0.075 to −0.001) increased. In contrast, as 

the tendency to learn from punishment increased, the likelihood of being a smoker relative to non-

smoker increased (p = .034; 95% CI 0.006 to 0.095), but this was not significant for ex-smokers 

compared with non-smokers (p > .05). A separate multinomial regression was conducted to control 

for the inclusion of lighter smokers in our analysis, and produced similar findings (see 

Supplementary Materials). CO readings significantly correlated with the tendency to learn from 

punishment (rho = 0.31, p = .020), but not from reward (rho = 0.01, p = .93). 

BIS-11 scores were compared using Kruskal Wallis tests. Groups differed in total BIS score 

(χ2(2, 105) = 7.03, p = .03) and total SSS scores (χ2(2, 98) = 7.5, p = .02). Questionnaire data for eight 

participants were missing (final sample size: 41 Smokers, 29 Ex-Smokers, 28 Non-smokers). Total 

BIS and SSS scores were entered as predictor variables in a separate multinomial regression model. 

Neither questionnaire significantly predicted smoking group status (p > .05). However, total SSS 

score predicted the likelihood of belonging to the smoker group relative to the non-smoker group 

(p = .046, 95% CI -0.008 to 0.176). Correlations between the PST (Approach A and Avoid B), and 

personality measures (the BIS and SSS) were not significant. 
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Table 5. 2. Classification table for multinomial regression with PST Approach A and Avoid B as 

predictor variables.  

Observed Predicted  

 Smoker Ex-smoker Non-smoker Correct (%) 

Smoker 29 3 9 70.7 

Ex-Smoker 17 5 7 17.2 

Non-Smoker 13 4 18 51.4 

Overall Correct (%) 56.2 11.4 32.4 49.5 

 

5. 2. 3. Study 1 Discussion 
Individual differences in reward learning predicted smoker status with moderate accuracy. Relative 

to non-smokers, smokers and ex-smokers had decreased learning from reward. Our results are 

concordant with those of Baker et al. (2011), in that our non-dependent (i.e., non-smoker) group 

showed higher reward learning in the PST compared with the dependent (i.e., smoker) group. In 

contrast, Potts, Bloom, Evans, and Drobes (2014), in a flanker task, reported that ex-smokers and 

smokers were more sensitive to rewards compared with non-smokers. Unlike Baker et al. (2011), 

our dependent group demonstrated increased learning from punishment relative to the non-

dependent group. Butler et al. (2017), observed poor performance monitoring in smokers and found 

that post-punishment slowing correctly identified current smokers more so than former smokers 

(80% vs 60%). 

Baker et al. (2011) examined PST performance in a sample considered ‘dependent’ due to 

their combined alcohol, tobacco and substance consumption. Our results were concordant with 

those of Baker et al., in that our non-dependent (i.e., never-smoker) group showed higher reward 

learning in the PST compared with the dependent (i.e., smoker) group. In contrast, Potts et al. 

(2014), in a flanker task, reported that ex-smokers and smokers were more sensitive to rewards 
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compared with non-smokers. Our results differ from Baker et al.’s (2011) research on poly-drug use, 

in that our dependent group demonstrated increased learning form punishment compared with the 

non-dependent group. In a study on alcohol dependent patients compared with healthy controls, 

Rustemeier et al. (2012) found no group differences with regard to reward and punishment learning 

on the PST. It is possible that differences between severity and type of substance use may influence 

reward and punishment learning. 

Some of the contrast between the current findings and previous research may be 

attributable to phenotypic and methodological differences among studies. For example, Nestor et 

al. (2018b) included ex-smokers, abstinent for at least 12 months prior to testing. Potts et al. (2014) 

included only smokers who smoked over 10 cigarettes per day for the past year. The current study 

included smokers who were on average low in nicotine dependency, and abstinence was 

operationalized by the participant's self-reported smoking behaviour in the past 30 days. Carballo 

and López (2014) found increased length of abstinence in cocaine-dependent participants improved 

performance in response to negative feedback on a flanker task. Prolonged nicotine abstinence may 

similarly affect punishment sensitivity in the PST. Nestor et al. (2018b) used the Monetary Incentive 

Delay task, which focuses on gain and loss anticipation, while Potts et al. (2014) used a modified 

flanker task without feedback. 

Many researchers (e.g., Baker, Piper, McCarthy, Majeskie, & Fiore, 2004; Blum et al., 2000; 

Koob, 2009) posit a negative affect addiction stage, involving avoidance of negative emotional after-

effects of drug use. Lower levels of dopamine D2 receptor availability have been observed in chronic 

addiction. Lower dopamine levels have also been associated with increased learning from 

punishment (Frank et al., 2004). Martin, Cox, Brooks, and Savage (2014) showed that smokers were 

hyper-responsive to the anticipation of punishment. It is conceivable that our current smokers 

showed increased sensitivity to punishment due to decreased dopaminergic activity, and indeed 
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smoking heaviness (indexed by CO level) correlated with learning from punishment. This may also 

explain why punishment learning did not predict ex-smoker group status, as this group was no 

longer experiencing the negative affect stage of their former addiction. 

In conclusion, these findings provide an insight into the effects of smoking status on reward 

and punishment learning using the PST. The results suggest that the PST has some utility in 

discriminating between smokers, ex-smokers, and non-smokers. These behavioural findings may be 

useful in understanding which smoking-cessation techniques are most effective, based on their use 

of positive and negative reinforcement. 

 

5.3. Study 2 

 

5.3.1. Methods 

5. 3. 1. 1. Participants 
184 participants (97 female, 87 male), with a mean age of 28.38 (13.3), were recruited from Trinity 

College Dublin, and the University College Dublin. Eleven subjects with <55% accuracy on the AB 

pair in the training phase of the PST were removed from analysis, with a final sample of 75 non-

smokers, 43 current smokers, 25 ex-smokers, and 30 vapers. 58 of these participants were included 

in the Chapter 2 study examining alcohol-use risk.    

5. 3. 1. 2. Materials 
Smoking Status – Questionnaire 

As in Study 1.  

Smoking Status – Bioverification 

Smoking group status was assessed objectively using exhaled carbon monoxide (CO) readings, and 

salivary cotinine (NicAlert strip) for a sub-set of participants. Current smokers were required to have 

a CO reading of at least 6 parts per million, and vapers, ex-smokers, and non-smokers were required 
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to have a CO reading less than 6ppm. Ex-smokers and non-smokers were required to have a NicAlert 

saliva reading of less than 2, while vapers were required to have a saliva reading of at least 1.  

5. 3. 1. 2. 1. Machine Learning - Group Classification 
A penalised multinomial logistic regression classifier implemented in sci-kit learn (Pedregosa et al., 

2011) was used to predict smoking status group using the computational model of decision-making 

parameters, BIS, age, and gender. Specifically, mean model parameters from the training phase of 

the PST (a, v, t, alpha-pos, alpha-neg), test phase of the PST (a, t, vLL, vWL, vLL), BIS 2nd order 

subscales (attentional, motor, non-planning impulsivity), age, and gender were entered as model 

features. Features were first standardized/z-scored. A logistic regression model with five-fold cross-

validation and elastic net penalty was fit to the data, the best-fitting model (hyper)parameters (l1 

and C) from this model were then entered into a second logistic regression model and the data were 

re-fit using five-fold cross-validation. This process was repeated 100 times to improve 

precision/reduce variance of model estimates. Mean model accuracy metrics (MAE, MSE) and 

predictions from the re-fit logistic regression classifier were saved across all 100 iterations, and are 

presented below. Using the same pipeline, 100 null models with the same features and shuffled 

group labels were run as a comparison with the test models.  

5. 3. 2. Results 

5. 3. 2. 1. Behavioral Results 
Substance-use characteristics from the ESPAD questionnaire are presented in Table 5. 3, and were 

available for 41/75 participants in the Non-smoker group, 35/43 participants in the Current Smoker 

group, and all participants in the Ex-smoker and Vaper groups. The Non-smoker group showed 

significantly lower alcohol intoxication, drug-use, and cannabis-use frequency compared with the 

Current Smoker group.  



 
 

130 
 

Table 5. 3. Median (IQR) substance-use characteristics for each sample group with between-groups 

significance test.  

 Current 

Smokers (n = 

35) 

Ex-smokers (n 

= 25) 

Vapers (n = 

30) 

Non-smokers 

(n= 41) 

Kruskal Wallis 

(p) 

Alcohol 

Intoxication 

Frequency 

     

In the lifetime  3 (6) 3.25 (6) 2 (6) 3 (6) 12.73 (.01) 

In the past 12 

months 

3 (6) 2 (5) 2 (6) 2 (5) 12.25 (.01) 

In the past 30 

days 

2 (3) 0 (2) 0 (3) 1 (3) 10.01 (.02) 

Cannabis 

Frequency 

     

In the lifetime  4.5 (6) 5 (6) 5 (6) 2 (6) 23.19 (<.001) 

In the past 12 

months 

3 (6) 1 (6) 2 (6) 1 (4) 15.68 (.001) 

In the past 30 

days 

1 (5) 0 (5) 0 (6) 0 (4) 8.17 (.04) 

Drugs 

Frequency 

(amphetamine

s, tranquillizers 

/ sedatives, 

ecstasy, LSD, 

crack, cocaine, 

heroin, magic 

mushrooms” 

GHB, anabolic-

steroids 

     

In the lifetime  3.5 (6) 3 (6) 4 (6) 0 (6) 15.82 (.001) 

In the past 12 

months 

2.5 (6) 1 (5) 0.75 (4) 0 (4) 11.54 (.01) 
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In the past 30 

days 

1 (4) 0 (2) 0 (1) 0 (1) 15.29 (.002) 

 

Behavioral findings from the PST are presented below (Table 5. 3). In the test phase of the 

PST, Approach AC and BD did not differ significantly between groups (p’s>.12).The Vaper group had 

lower choice accuracy for EF pairs in the PST Training Phase compared with Smokers and Non-

smokers. In the Test phase, the Non-smoker group had higher mean choice selection of the highly 

rewarded stimuli (A, C) compared with current and ex-smokers, and the Vaper group had higher 

mean BD stimulus selections. However, these mean group differences did not survive multiple 

comparisons corrections (all p’s > .13). 

Table 5. 4. Mean (SD) accuracy in the PST training and test phase for each group with between-

groups significance test. 

  Current 

Smokers (n = 

43) 

Ex-smokers (n 

= 25) 

Vapers (n = 

30) 

Non-smokers 

(n=75) 

Kruskal Wallis 

(p) 

PST Training 

Phase 

     

A Accuracy 81.16 (13.53) 81.9 (12.02) 80.83 (14.28) 83.17 (11.58) 0.62 (0.89) 

C Accuracy 71.54 (18.64) 71.38 (13.97) 74.0 (16.04) 73.53 (16.21) 0.8 (0.85) 

E Accuracy 58.18 (22.97) 52.05 (23.47) 47.0 (14.97) 54.58 (18.17) 7.64 (0.05) 

PST Test Phase      

Approach AC 70.93 (16.56) 70.28 (17.53) 73.59 (17.28) 76.98 (15.88) 5.87 (0.12) 

Approach BD 66.79 (20.52) 65.53 (19.37) 59.35 (14.38) 63.53 (18.86) 5.59 (0.13) 

  

Trial RTs >4 seconds and <.15 seconds were removed from the group comparisons and are 

presented below. Mean RT during the Training phase different between groups, however corrected 

post-hoc group comparisons were non-significant (p’s > .09). Group differences on CD pair trials 
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showed that ex-smokers had longer RTs compared with current smokers (t = -2.96, p = 0.02). On EF 

pair trials, vapers had longer RTs compared with current smokers (t = -2.8, p = .03). In the test phase, 

no significant group differences in RT were observed.    
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Table 5. 5. Mean (SD) reaction times in the PST training and test phase for each group with between-

groups significance test. 

  

A MANOVA comparing BIS sub-scales between smoking groups showed a significant effect (F = 2.47, 

p = .009)Post-hoc tests showed that the Vaper group had significantly lower attentional impulsivity 

compared with non-smokers (t = 2.98, p(bonf) = .02) and current smokers (t = 3.09, p(bonf) = .01). 

Current smokers had higher motor and non-planning impulsivity compared with ex-smokers and 

vapers, though these did not survive correction for multiple comparisons (p’s > .26).   

 

 

 Current Smokers Ex-smokers Vapers Non-smokers Kruskal Wallis 

(p value) 

PSTWFB – All 

trials 

0.94 (0.34) 1.2 (0.42) 1.18 (0.49) 1.04 (0.42) 8.88 (0.03) 

AB 0.9 (0.36) 1.1 (0.39) 1.09 (0.52) 0.95 (0.43) 6.49 (0.09) 

CD 0.9 (0.35) 1.23 (0.47) 1.13 (0.48) 1.01 (0.45) 9.83 (0.02) 

EF 1.02 (0.37) 1.29 (0.45) 1.32 (0.55) 1.16 (0.45) 9.22 (0.03) 

PSTNFB – All 

trials 

0.91 (0.35) 1.02 (0.38) 1.08 (0.52) 0.9 (0.35) 4.95 (0.18) 

AC Trials 0.78 (0.47) 0.81 (0.68) 0.79 (0.41) 0.79 (0.45) 2.28 (0.51) 

BD Trials 0.82 (0.89) 0.78 (0.27) 0.77 (0.22) 0.79 (0.47) 5..27 (0.15) 

LL 1.12 (0.49) 1.29 (0.56) 1.29 (0.64) 1.1 (0.45) 3.79 (0.29) 

WL 0.84 (0.31) 0.93 (0.37) 1.02 (0.5) 0.84 (0.34) 4.44 (0.22) 

WW 0.86 (0.34) 0.98 (0.36) 1.03 (0.53) 0.85 (0.35) 5.35 (0.15) 
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Table 5. 6. Mean BIS scales scores (SD) for each group with between-groups significance test.  

BIS Current 

Smokers 

Ex-smokers Vapers Non-

smokers 

Kruskal 

Wallis (p 

value) 

 Attentional 17.47 (3.97) 16.24 (3.09) 14.73 (3.51) 17.12 (3.83) 10.04 (0.02) 

Motor 23.84 (4.37) 21.76 (3.52) 21.77 (4.05) 22.77 (4.49) 6.51 (0.09) 

Non-planning 25.77 (5.24) 25.0 (5.57) 23.83 (5.45) 23.76 (4.75) 5.41 (0.14) 

 

5. 3. 2. 2. Modelling of PST Training Phase 
An RLHDDM model was run with 35,000 samples (5,000 discarded, with every 3rd sample retained). 

The five parameters, a, t, v, pos_learn, and neg_learn were free to vary within the whole group. 

Model convergence was assessed with the gelman-rubin r^ statistic and visual inspection of the 

trace and autocorrelation plots (max. r^ = 1.04, 99.66% of individual subject-level rhat values were 

<=1.02, hence indicating adequate convergence). Model fit was assessed using the Deviance 

Information Criteria (DIC); 43908.52.  

Posterior predictive checks were conducted by simulating task data from the posterior of 

the fitted model and comparing this to the observed data. A random sample from model trace was 

used to generate accuracy and RT data for each of the training phase stimulus pairs (AB, CD, EF), 

this step was repeated 100 times to better capture variability in the posterior distribution. These 

were then compared with the observed data. Figure 5.1 shows the observed versus simulated RT 

(averaged over 100 iterations) data for each stimulus types (AB, CD, EF). Error responses are 

negative on the x axis, and correct responses are positive. The simulated data predicted RTs that 

were very similar to those in the observed data. The simulated choice data showed some deviations 

from the observed data, with overpredicted mean choices in the EF pair. 
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Figure 5. 1. Simulated and observed reaction times across stimulus types (upper), and simulated 

and observed mean choices (1=correct, 0=incorrect) across stimulus types (lower).  

 

 

5. 3. 2. 3. Modelling of PST Test Phase 
Two HDDM models were run with 12,000 samples and the first 2,000 discarded. Model 1 estimated 

non-decision time (t), boundary separation (a), and drift-rate (v) free to vary for the whole group. 

Model convergence was assessed with the gelman-rubin r^ statistic and visual inspection of the 

trace and autocorrelation plots (max. r^ = 1.004). Model fit was assessed using the Deviance 

Information Criteria (DIC); 39053.72. Model 2 estimated the same parameters, with drift-rate free 

to vary depending on the level of conflict in stimulus pairs (i.e., vLL, vWL, vWW). LL stimulus pairs 

were those which included two shapes that were consistently punished in the training phase of the 
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PST (e.g., BD, DF), WW were those with two consistently rewarded shapes (e.g., AC, CE), and WL 

were those with a combination of rewarded and punished shapes (e.g., AD, CB). It was hypothesised 

that drift-rates for WL stimulus pairs would be lower, as the larger difference in value between 

shape stimuli would lead to a faster time to reach the correct choice boundary. Model 2 showed 

good convergence (max. rhat = 1.01), and better fit than Model 1 (DIC = 34089.42). The mean 

parameters from Model 2 are presented in Figure 5. 2. and Table 5. 6. 

A MANOVA comparing computational model parameters between smoking status groups 

showed no significant differences between groups (F(3,160) = 1.29, p = .14). Kruskal Wallis tests 

comparing each parameter separately, showed a trend towards significance for the RLHDDM 

boundary separation parameter (p = .03) and the drift-rate for Win-Wins (p = .03). Post-hoc tests 

with bonferroni corrected p-values were conducted to explore these group differences. In the 

Training phase, the Vaper group showed significantly higher boundary separation values compared 

with current smokers (t = -2.86, p = .029). Ex-smokers showed larger non-decision times compared 

with non-smokers, however this did not survive the Bonferroni correction. In the Test phase, non-

smokers showed higher drift-rates for win-win pairs compared with current and ex-smokers, and 

smaller non-decision times compared with vapers, however these comparisons were not 

significantly different (p’s > 0.17).  
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Figure 5. 2. Violin plots depicting mean RLHDDM and HDDM parameter estimates by smoking 

group.  
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Table 5. 7. Mean parameter estimates for each group, with significance test.  

 

Parameter Current 

Smokers 

Ex-

smokers 

Vapers Non-

smokers 

Kruskal 

Wallis (p 

value) 

RLHDDM      

Boundary 

Separation 

1.67 (0.39) 1.98 (0.53) 2.01 (0.64) 1.88 (0.47) 9.75 (0.02) 

Drift-rate 3.34 (1.79) 2.91 (1.3) 3.16 (1.7) 3.23 (1.35) 1.61 (0.66) 

Non-decision Time 0.31 (0.13) 0.34 (0.13) 0.31 (0.16) 0.28 (0.14) 5.89 (0.12) 

Neg. learning rate 0.08 (0.18) 0.08 (0.23)  0.06 (0.17) 0.06 (0.17) 2.0 (.57) 

Pos. learning rate 0.33 (0.17) 0.34 (0.15) 0.37 (0.15) 0.34 (0.17) 0.79 (0.85) 

HDDM      

Boundary 

Separation 

1.68 (0.42) 1.8 (0.56) 1.83 (0.56) 1.7 (0.45) 2.02 (0.56) 

Drift-rate (Loss-

Loss) 

0.23 (0.65) 0.241 

(0.44) 

0.21 (0.48) 0.24 (0.45) 0.15 (0.98) 

Drift-rate (Win-

Loss) 

1.27 (1.06) 1.02 (1.0) 0.97 (0.73) 1.19 (0.97) 2.03 (0.57) 

Drift-rate (Win-

Win) 

0.62 (0.76) 0.52 (0.76) 0.76 (0.8) 0.92 (0.76) 8.59 (0.035) 

Non-decision Time 0.31 (0.14) 0.32 (0.13) 0.35 (0.19) 0.28 (0.13) 4.44 (0.23) 

 

5. 3. 2. 4. Group Classification: Current Smokers vs. Non-smokers 
The PST Summary Model mean Brier score (0.22, SD = .006) was significantly lower than the baseline 

model (0.23, .005); t(198) = -7.69, p <. 001. The model AUC (0.61, .03) outperformed the baseline 

model (0.56, .04) in 81% of iterations; t(198) = 11.01, p<.001, and the F1 score (0.28, .009) 

outperformed the baseline (0.27, .008) in 79% of iterations; t(198) = 10.21, p <.001. All features in 

the model were significant predictors of smoking group.  
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Table 5. 8. PST Summary Model mean choice frequencies and beta values for each feature in the 

test and demographic model. 

Feature Mean choice frequency - 

Test 

Mean Beta - Test Mean choice 

frequency - 

Demographic 

Mean Beta - 

Demographic 

intercept 5 -0.585 5 0.56 

Age 4.93 0.308 4.35 0.21 

Approach AC 4.86 -0.305 2.11 -0.002 

Approach BD 4.12 0.142 2.23 0.006 

Gender 4.05 -0.129 2.64 -0.06 

 

The Computational Model mean Brier score (0.227, .009) was significantly lower than the baseline 

model (0.235, .006); t(198) = -7.28, p <.001. The model AUC (0.61, .04) outperformed the baseline 

model (0.52, .05) in 82% of iterations; t(198) = 12.9, p <.001, and the F1 score for the test model 

(0.28, .008) outperformed the baseline model (0.27, .006) in 78% of iterations; t(198) = 9.26, p 

<.001. Age, gender, boundary separation from the RLHDDM, drift-rate for win-loss and win-win 

conditions, non-decision time from the HDDM, and positive learning rate were significant 

predictors.  
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Table 5. 9. Computational Model mean choice frequencies and beta values for each feature in the 

test and demographic model. 

Feature Mean choice 

frequency - 

Test 

Mean Beta - 

Test 

Mean choice 

frequency - 

Null 

Mean Beta - 

Null 

intercept 5 -0.596 5 -0.57 

RLHDDM: Boundary Separation 4.54 -0.332 1.14 -0.002 

Age 4.47 0.264 3.58 0.14 

HDDM: Drift-rate Win-Win 4.28 -0.197 1.29 0.005 

RLHDDM: Non-decision Time 3.78 0.186 1.29 0.002 

Gender 2.43 -0.067 1.56 -0.03 

HDDM: Non-decisoin Time 1.68 0.011 1.29 -0.003 

HDDM: Drift-rate Win-Lose 1.56 0.039 1.37 -0.009 

RLHDDM: Pos. Learning Rate 1.48 -0.015 1.34 0.003 

HDDM: Drift-rate Lose-Lose 1.19 -0.009 1.31 0.002 

RLHDDM: Neg. Learning Rate 1.07 -0.009 1.35 -0.006 

HDDM: Boundary Separation 1.06 0.033 1.33 0.004 

RLHDDM: Drift Rate 0.99 -0.019 1.29 -0.009 

 

The Personality Model mean Brier score (0.229, SD = .004) was significantly lower than the baseline 

model (0.231, .005); t(198) = -4.62, p < .001). The model AUC (0.58, .03) outperformed the baseline 

model (0.55, .04) in 71% of iterations; t(198) = 6.51, p<.001, and the model F1 score (0.279, .009) 

outperformed the baseline (0.273, .007) in 68% of iterations; t(198) = 5.16, p<.001. Age, gender, 

and non-planning impulsivity were significant features.  
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Table 5. 10. Personality Model mean choice frequencies and beta values for each feature in the 

test and demographic model. 

Feature Mean choice frequency - 

Test 

Mean Beta - Test Mean choice 

frequency - 

Null 

Mean Beta - 

Null 

intercept 5 -0.569 5 -0.57 

Age 4.47 0.196 4.2 0.21 

BIS Non-planning 4.18 0.151 1.95 0.001 

Gender 2.62 -0.049 2.46 -0.05 

BIS Motor 1.84 0.021 1.98 0.003 

BIS Attentional 0.81 -0.007 2.05 0.005 

 

The Combined Model Brier score (0.229, SD = .008) was also significantly lower than the baseline 

model (0.232, .006); t(198) = -2.89, p = .004. The mean model AUC (0.59, .04) outperformed the 

baseline model (0.53, .05) in 73% of iterations; t(198) = 8.65, p <.001, and the model F1 score (0.279, 

.009) outperformed the baseline (0.273, .009) in 72% of iterations; t(198) = 4.86, p<.001. In the 

Combined Model, age, gender, non-planning impulsivity, boundary separation (RLHDDM), drift-rate 

for win-win conditions, non-decision time (RLHDDM & HDDM), and positive learning rate were 

significant features.  
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Table 5. 11. Combined Model mean choice frequencies and beta values for each feature in the test 

and demographic model. 

Feature Mean choice 

frequency - 

Test 

Mean Beta - 

Test 

Mean choice 

frequency - 

Null 

Mean Beta - 

Null 

intercept 5 -0.595 5 -0.57 

Age 4.31 0.219 3.28 0.12 

RLHDDM: Boundary Separation 4.3 -0.286 1 0.001 

BIS: Non-planning 3.96 0.148 1.1 -0.002 

HDDM: Drift-rate Win-Win 3.9 -0.159 1.03 -0.003 

RLHDDM: Non-decision Time 3.28 0.138 0.85 0.003 

Gender 1.99 -0.057 1.13 -0.018 

HDDM: Non-decision Time 1.26 0.007 1.02 -0.0009 

RLHDDM: Pos. Learning Rate 1.22 -0.007 1.11 -0.0004 

BIS: Motor 1.1 0.011 0.85 0.006 

HDDM: Drift-rate Win-Lose 1.02 0.024 1.03 -0.005 

RLHDDM: Neg. Learning Rate 0.9 -0.016 1.07 -0.01 

HDDM: Boundary Separation 0.86 0.033 1.1 -0.002 

HDDM: Drift-rate Lose-Lose 0.8 0.005 1.21 -0.007 

RLHDDM: Drift-rate 0.73 -0.017 1.04 -0.003 

BIS: Attentional 0.61 -0.009 0.87 -0.008 

 

Machine learning metrics (Brier & AUC scores) for the binary logistic regression with smoking group 

(non-smoker vs. current smoker) as the dependent variable are presented below. The four models 

showed similar fit. 
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Figure 5. 3. Violin plot of machine learning scores for binary classification. 

 

5. 3. 2. 5. Multinomial Group Classification – Current Smokers, Vapers, Ex-smokers, Non-

smokers 
 

The PST Model mean balanced accuracy score (0.36, .02) was significantly higher than the baseline 

model (0.27, .03); t(198) = -29.88, p <.001. The test model Cohen’s Kappa score (0.18, .04) was also 

significantly higher than the baseline model score (.03, .04); t(198) = -29.73, p<.001, and the 

Matthew’s correlation coefficient (test model = 0.18 (.04), baseline model = .04 (.04); t(198) = -30.0, 

p<.001). All features in the test model were significant, with mean feature selections > 95th 

percentile of demographic model feature selections. 
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Table 5. 12. Mean selection of features across five folds, demographic model selections are in 

parentheses. 

Feature Non-

smoker 

Current 

Smoker 

Ex-smoker Vaper 

Approach AC 4.34 (1.05) 4.25 (1.08) 4.33 (1.16)  4.12 (1.07) 

Approach BD 4.34 (1.08)  4.29 (1.08) 4.4 (1.17) 4.08 (1.12) 

Age 4.36 (1.08) 4.32 (1.08)  4.4 (1.2) 4.16 (1.12) 

Gender 4.3 (1.06) 4.26 (1.05) 4.32 (1.19) 4.1 (1.11) 

 

Table 5. 13. Mean beta values for each feature by smoking group for the test model, demographic 

model betas are in parentheses. 

Feature Non-smoker Current 

Smoker 

Ex-smoker Vaper 

Approach AC 0.433 (0.046) -0.392 (-0.081) -0.432 (0.226) 0.078 (-0.145) 

Approach BD -0.214 (0.099) 0.239 (0.245) 0.308 (-0.187) -0.267 (-0.457) 

Age -0.497 (-0.553) -0.831 (-0.825) 0.439 (0.346) 0.775 (0.962) 

Gender -0.419 (-0.458) 0.326 (0.387) -0.073 (0.015) 0.431 (0.428) 

 

 

Table 5. 14. Classification table for the PST Summary model, with percentage of correct group 

classifications. 

 

Observed   Predicted   

 Non-

smoker 

Current 

Smoker 

Ex-smoker Vaper Correct (%) 

Non-smoker 37.16 22.41 6.93 8.5 49.55 

Current 

Smoker 

13.63 19.05 4.99 5.33 44.30 

Ex-smoker 5.37 10.11 2.33 7.19 9.32 

Vaper 6.37 7.11 3.72 12.8 42.67 

Overall (%) 36.14 33.91 10.39 19.55 41.24 
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The Computational parameter model mean balanced accuracy score (0.36, SD = .03) 

outperformed the demographic model (0.32, SD = .02); t(198) = -11.35, p <.001. This was also the 

case for the Cohen’s Kappa score (test model = 0.18 (.03), baseline model = 0.11 (.03)); t(198) = -

13.02, p <.001., and for Matthews correlation coefficient (test model = 0.18 (0.3), baseline model = 

0.11 (.03)); t(198) = -13.09, p <.001. Age was a significant feature for all groups, gender was 

significant for all groups except the ex-smoker group, non-decision time (RLHDDM) was significant 

features for the non-smoker, current smoker, and ex-smoker groups, boundary separation 

(RLHDDM) was significant for the non-smoker and smoker groups. Drift-rate for the Loss-Loss 

condition (HDDM) was significant for the non-smoker group, and drift-rate for the Win-Win 

condition (HDDM) and non-decision time (HDDM) were significant for the Vaper group.  
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Table 5. 15. Mean feature selection across test model folds for each group in the Computational 

test model with Demographic model selections in parentheses.  

Feature Non-smoker Current 

Smoker 

Ex-smoker Vaper 

HDDM     

Boundary Separation 4.26 (4.15) 4.44 (3.94) 4.21 (4.11) 4.32 (4.27) 

Drift-rate (Loss-Loss) 4.45 (4.38) 4.24 (4.39) 4.69 (4.17) 4.47 (4.12) 

Drift-rate (Win-Loss) 4.2 (4.03) 4.37 (3.58) 4.3 (3.85) 4.63 (3.96) 

Drift-rate (Win-Win) 4.78 (4.28) 4.75 (4.39) 4.75 (4.11) 4.23 (4.0) 

Non-decision Time 4.14 (3.79) 4.07 (4.13) 4.56 (4.14) 4.72 (3.56) 

RLHDDM     

Boundary Separation 4.78 (4.39) 4.78 (4.29) 4.22 (4.35) 4.35 (4.11) 

Drift-rate 4.15 (4.33) 4.37 (4.02) 4.35 (4.22) 4.44 (3.9) 

Non-decision Time 4.77 (3.61) 4.78 (3.75) 4.78 (3.74) 4.19 (4.08) 

Pos. Learning Rate 4.09 (4.13) 4.24 (4.32) 4.18 (4.34) 4.48 (4.02) 

Neg. Learning Rate 4.09 (4.06) 4.36 (4.07) 4.31 (3.99) 4.25 (3.83) 

Demographic     

Age 4.78 (4.39) 4.78 (4.39) 4.78 (4.37) 4.78 (4.39) 

Gender 4.78 (4.39) 4.78 (4.39) 4.57 (4.01) 4.78 (4.39) 
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Table 5. 16 Mean betas for each feature and group in the Computational test model, with 

demographic model betas in parentheses. 

 

 

 

Feature Non-smoker Current Smoker Ex-smoker Vaper 

HDDM     

Boundary Separation -0.165 (-0.306) 0.253 (0.277) 0.037 (-0.228) -0.124 (0.335) 

Drift-rate (Loss-Loss) -0.088 (0.249) -0.071 (-0.333) 0.241 (-0.179) 0.151 (0.194) 

Drift-rate (Win-Loss) -0.137 (-0.144) 0.139 (0.043) -0.049 (0.133) -0.302 (-0.128) 

Drift-rate (Win-Win) 0.431 (-0.207) -0.229 (0.366) -0.527 (-0.186) 0.106 (0.044) 

Non-decision Time -4.79E-06 (0.085) -0.070 (-0.159) -0.276 (0.218) 0.296 (-0.059) 

RLHDDM     

Boundary Separation 0.431 (0.535) -0.912 (-0.304) 0.0361 (-0.378) 0.204 (-0.280) 

Drift-rate 0.086 (0.259) -0.075 (-0.178) -0.063 (-0.234) 0.124 (-0.065) 

Non-decision Time -0.360 (-0.011) 0.382 (0.001) 0.482 (-0.039) -0.121 (-0.108) 

Pos. Learning Rate 0.059 (-0.128) 0.031 (0.163) 0.092 (-0.260) -0.147 (0.102) 

Neg. Learning Rate 0.046 (-0.148) -0.033 (0.119) 0.065 (0.127) -0.095 (0.146) 

Demographic     

Age -0.536 (-0.414) -0.737 (-0.831) 0.491 (0.406) 0.756 (0.848) 

Gender -0.463 (-0.379) 0.397 (0.333) 0.002 (-0.115) 0.387 (0.395) 
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Table 5. 17. Classification table of Computational Model results, with mean classification and 

percentages across 100 model iterations.  

 

Observed   Predicted   

 Non-

smoker 

Current 

Smoker 

Ex-smoker Vaper Correct (%) 

Non-smoker 39.28 19.94 9.63 6.15 52.37% 

Current 

Smoker 

12.96 20.37 5.4 4.27 47.37% 

Ex-smoker 6.76 8.53 3.07 6.64 12.28% 

Vaper 6.75 5.25 8.49 9.51 31.7% 

 
The mean Personality Model balanced accuracy score was higher for the test model (0.41, 

.02) compared with the null model (0.31, .02); t(198) = -25.39, p <.0001. The Matthew’s correlation 

coefficient score was significantly higher for the test model (0.23, .03) compared with the null model 

(.08, .03); t(198) = -26.26, p<.0001, as was the Cohen Kappa score (test model = 0.23 (.03), null 

model = 0.08 (.03); t = -26.35, p <.0001). All features in the test model were chosen > 95th of 

selections in the demographic model. 
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Table 5. 18. Mean feature selections for the Personality Model, with demographic model 

selections in parentheses. 

 

Feature Non-smoker Current Smoker Ex-smoker Vaper 

BIS: Attentional 4.84 (2.6) 4.55 (2.59) 4.6 (2.61) 4.84 (2.76) 

BIS: Motor 4.47 (2.79) 4.64 (2.67) 4.83 (2.7) 4.68 (2.83) 

BIS: Non-planning 4.84 (2.71) 4.82 (2.61) 4.8 (2.6) 4.7 (2.83) 

Age 4.84 (2.83) 4.84 (2.83) 4.84 (2.83) 4.84 (2.83)  

Gender 4.84 (2.83) 4.84 (2.83) 4.7 (2.72) 4.84 (2.83) 

 

Table 5. 19. Mean beta values for each feature in the Personality Model, with demographic model 

betas in parentheses. 

  

Feature Non-smoker Current 

Smoker 

Ex-smoker Vaper 

BIS: Attentional 0.353 (0.049) 0.066 (-0.070) -0.144 (-0.048) -0.669 (0.223) 

BIS: Motor 0.120 (-0.261) 0.114 (0.088) -0.457 (0.021) -0.181 (0.363) 

BIS: Non-planning -0.495 (0.140) 0.238 (0.056) 0.387 (0.032) 0.261 (-0.447) 

Age -0.409 (-0.481) -0.815 (-0.836) 0.269 (0.350) 0.782 (0.862) 

Gender -0.421 (-0.415) 0.362 (0.356) 0.032 (-0.022) 0.419 (0.371) 
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Table 5. 20. Classification table for the Personality model, with percentage of correct group 

classifications. 

Observed   Predicted   

 Non-

smoker 

Current 

Smoker 

Ex-smoker Vaper Correct (%) 

Non-smoker 38.8 20.41 8.57 7.22 51.73 

Current 

Smoker 

15.31 19.51 3.44 4.74 45.37 

Ex-smoker 6.99 7.03 2.97 8.01 11.88 

Vaper 2.45 6.46 4.37 16.72 55.73 

Overall (%) 37.73 30.87 11.19 21.21 45.09 

      

 

The Combined Model mean balanced accuracy score was 0.379 (.02), and did not differ 

significantly from the demographic model (0.376, SD = .03); t(198) = -0.769, p = 0.44. The overall 

accuracy score, not adjusted for group sizes, was significantly higher for the test model (0.43, SD = 

.02) than the demographic model (0.41, SD = .03); t(198) = -4.61, p <.0001. The Cohen’s Kappa score 

was significantly higher for the test model (0.19, SD = .03) compared with the demographic model 

(0.18, SD = .04); t(198) = 4.25, p < .0001. The Matthew’s correlation coefficient was also higher for 

the test model (0.21, SD = .03) compared with the demographic model (0.18, SD = .04); t(198) = -

4.182, p < .0001.  
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Figure 5. 21. Mean selections of features across five cross-validation folds, demographic model 

selections are in parentheses. 

Feature  Non-smoker Current 

Smoker 

Ex-smoker Vaper 

HDDM     

Boundary Separation 4.77 (2.73) 4.64 (4.81) 4.29 (3.33) 4.39 (4.9) 

Drift-rate (Loss-Loss) 4.62 (3.14) 4.42 (4.9) 4.96 (4.88) 4.76 (3.3) 

Drift-rate (Win-Loss) 4.35 (3.13) 4.26 (4.73) 4.45 (3.35) 4.88 (4.9) 

Drift-rate (Win-Win) 4.97 (3.24) 4.86 (4.9) 4.97 (4.7) 4.36 (3.82) 

Non-decision Time 4.23 (4.11) 4.21 (3.1) 4.57 (4.0) 4.91 (4.08) 

RLHDDM     

Boundary Separation 4.97 (4.39) 4.97 (4.7) 4.33 (4.79) 4.12 (3.3) 

Drift-rate 4.38 (4.24) 4.42 (4.9) 4.52 (4.71) 4.45 (2.97) 

Non-decision Time 4.94 (4.78) 4.96 (4.9) 4.97 (4.9) 4.42 (4.48) 

Pos. Learning Rate 4.32 (3.94) 4.38 (3.3) 4.63 (3.89) 4.15 (3.58) 

Neg. Learning Rate 4.35 (4.9) 4.62 (4.82) 4.48 (4.77) 4.39 (4.8) 

Personality     

BIS: Attentional 4.97 (3.87) 4.42 (3.1) 4.71 (3.79) 4.97 (3.91) 

BIS: Motor 4.55 (3.87) 4.55 (4.58) 4.95 (4.8) 4.41 (4.9) 

BIS: Non-planning 4.97 (4.76) 4.86 (3.94) 4.93 (4.75) 4.85 (3.65) 

Demographic     

Age 4.97 (4.9) 4.97 (4.9) 4.97 (4.88) 4.97 (4.9) 

Gender 4.97 (4.9) 4.97 (4.9) 4.65 (3.98) 4.97 (4.9) 
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Figure 5. 22. Mean beta for each feature, demographic model selections are in parentheses. 

 

 

 

 

  

Feature  Non-smoker Current Smoker Ex-smoker Vaper 

HDDM     

Boundary Separation -0.244 (-0.060) 0.298 (-0.270) 0.009 (-0.003) -0.069 (0.478) 

Drift-rate (Loss-Loss) -0.130 (-0.050) -0.029 (0.317) 0.315 (-0.323) 0.206 (-0.055) 

Drift-rate (Win-Loss) -0.112 (0.034) 0.091 (0.240) -0.067 (0.080) -0.347 (-0.402) 

Drift-rate (Win-Win) 0.502 (-0.029) -0.204 (0.263) -0.568 (-0.277)  -0.051 (0.033) 

Non-decision Time -0.012 (-0.092) -0.059 (-0.038) -0.248 (0.161) 0.314 (-0.155) 

RLHDDM     

Boundary Separation 0.452 (0.177) -0.914 (-0.245) 0.066 (0.252) 0.096 (-0.202) 

Drift-rate 0.125 (0.151) -0.098 (-0.388) -0.061 (0.232) 0.054 (0.011) 

Non-decision Time -0.358 (-0.212) 0.355 (0.437) 0.477 (-0.402) -0.139 (0.194) 

Pos. Learning Rate 0.074 (0.111) -0.057 (-0.060) 0.116 (-0.129) 0.005 (0.054) 

Neg. Learning Rate 0.065 (-0.383) -0.021 (0.226) 0.052 (0.239) -0.071 (0.248) 

Personality     

BIS: Attentional 0.493 (0.093) 0.083 (0.035) -0.164 (-0.109) -0.776 (-0.106) 

BIS: Motor 0.126 (0.095) 0.106 (-0.176) -0.490 (-0.339) -0.141 (0.429) 

BIS: Non-planning -0.573 (-0.190) 0.232 (-0.096) 0.467 (0.325) 0.302 (-0.019) 

Demographic     

Age -0.465 (-0.367) -0.743 (-0.745) 0.426 (0.381) 0.757 (0.690) 

Gender -0.478 (-0.388) 0.425 (0.290) 0.065 (-0.044) 0.391 (0.434) 
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Table 5. 23. Classification table of Combined Model results, with mean classification and 

percentages across 100 model iterations.  

Observed   Predicted   

 Non-

smoker 

Current 

Smoker 

Ex-smoker Vaper Correct (%) 

Non-smoker 39.4 18.31 9.25 8.04 52.53 

Current 

Smoker 

13.68 18.7 5.7 4.92 43.49 

Ex-smoker 4.69 7.68 4.38 8.25 17.52 

Vaper 5.16 4.99 8.34 11.51 38.37 

Overall (%) 37.38 28.72 15.99 18.91 42.77 

      

 

 

Correlation matrices depicting percentage of correct group classifications for the PST Summary, 

Computational, Personality, and Combined Models with corresponding demographic models are 

presented in Figure 5. 4.   
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Figure 5. 4. Confusion matrix heatmaps for each test and demographic model, with classification 

accuracy expressed as the percentage of true group classifications.  
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5. 3. 2. 6. Correlations between ML Features 
 

Correlations between self-reported impulsivity, PST test phase performance, and computational 

parameter estimates showed consistent relationships between training and test phase DDMs, and 

relationships between self-report and task measures (highlighted in Table 5. 23.). Boundary 

separation and non-decision time parameters from the RLHDDM and HDDM showed a significant 

positive relationship, and a significant negative relationship was found between positive and 

negative learning rates. Significant correlations were also observed between drift-rates in the 

HDDM and behavioural test phase PST performance. Motor impulsivity showed a significant 

negative relationship with boundary separation from the RLHDDM, and a positive relationship with 

drift-rate from the RLHDDM. Drift-rate for Win-Losses in the HDDM showed a positive correlation 

with non-planning impulsivity.  
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Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1. BIS Attention — 
             

2. BIS Motor 0.423*** — 
            

3. BIS Non-

planning 

0.452*** 0.606*** — 
           

4. RLHDDM: a 0.028 -0.209* -0.164 — 
          

5. RLHDDM: v -0.089 0.185* 0.179 -0.256** — 
         

6. RLHDDM: t 0.092 0.013 0.033 0.286** 0.039 — 
        

7. RLHDDM: Neg. 

Learning 

0.148 -0.036 -0.019 0.309** -0.409*** 0.088 — 
       

8. RLHDDM Pos. 

Learning 

-0.083 -0.074 -0.123 0.056 0.034 -0.059 -0.265** — 
      

9. HDDM a 0.105 -0.163 -0.169 0.739*** -0.169 0.309** 0.294** 0.021 — 
     

10. HDDM vWW -0.160 0.036 0.118 0.003 0.282** -0.101 -0.187 0.254** -0.182 — 
    

11. HDDM vLL -0.012 -0.026 -0.047 -0.066 0.097 -0.089 -0.053 0.079 -0.072 0.115 — 
   

12. HDDM vWL -0.041 0.144 0.199* -0.001 0.515*** 0.072 -0.087 0.012 -0.019 0.449*** 0.375*** — 
  

13. HDDM: t 0.031 -0.057 -0.039 0.215 -0.139 0.610*** 0.161 -0.124 0.223* -0.221* -0.091 -0.059 — 
 

14. Approach AC -0.080 0.018 0.118 0.233* 0.322** 0.093 -0.052 0.151 0.139 0.798*** 0.150 0.718*** -0.058 — 

15. Approach BD 0.061 0.037 0.035 0.125 -0.269** 0.112 0.066 0.023 0.182 0.048 0.709*** 0.692*** -0.040 0.316*** 

 

 

*p < .05, ** p < .01, *** p < .0001 

Table 5. 24. Partial Spearman’s correlations between machine learning features, with age as a covariate. Significant correlations are highlighted 

between (i) self-report measures (orange), (ii) task-related parameters and variables (blue), (iii) task-related and self-report measures (green).
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5.3.3. Study 2 - Discussion 
The findings of Study 1 were extended by applying DDMs to the PST and comparing the relative 

fit of four penalized regression models with varying behavioural, computational, and personality 

features to predict smoking group status in a larger sample. Given the rise in electronic 

cigarette/vaping use (Hammond et al., 2019), a group of Vapers was included in the current 

analysis.  

The binary models predicting smoker vs. non-smoker status outperformed demographic 

models. In the Combined Model predicting smoker versus non-smoker group status, increases 

in age, non-planning impulsivity, non-decision times, and reductions in boundary separation, 

positive learning rate, and drift-rate for Win-Wins significantly predicted smoking group 

membership. In the PST Summary model, reduced learning from positive and negative feedback 

predicted smoker group membership.  

The multinomial models predicted group membership beyond chance levels (25%), and 

all models outperformed demographic models with the exception of the balanced accuracy 

score of the Combined Model. Ex-smokers were the most typically misclassified. Significant 

features varied according to group and conformed overall to the previous binary analysis for 

smoker and non-smoker groups. Age and non-decision time were the most frequently selected 

in the combined and computational multinomial models. The ex-smoker group was predicted 

by increased drift-rates for Loss-Loss condition in the PST test phase, and decreased drift-rate 

in the Win-Win condition. Increased non-decision times and motor impulsivity, and decreased 

non-planning impulsivity also predicted ex-smoker group status. Vaper group status was 

predicted by increased age and non-decision times, as well as decreased attentional impulsivity. 

Gender was also a significant predictor, with males increasing the odds of current and vaper 

group status, and reducing the odds of non-smoker group status.  
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The finding that smaller drift-rates predicted smoking group status supports the 

hypothesis that reductions in evidence accumulation are a transdiagnostic risk-factor relevant 

to substance-use (Sripada & Weigard, 2021; Weigard & Sripada, 2021). Weigard et al. (2021) 

found that reductions in drift-rate during a Go/No-Go task predicted prospective substance 

dependence, which included frequency of cigarette consumption. The results presented in the 

current study also show a relationship between reduced drift-rates and smoking status. 

Reduced drift-rate for Win-Wins was a significant predictor of ex-smoker group status, however 

increases in drift-rate for the Loss-Loss condition was also a significant predictor. It is not 

immediately apparent why divergent drift-rates were observed for the two high conflict 

conditions in the PST test phase. One possibility is that the contingencies of the most-rewarded 

stimuli were learned more accurately than the most-punished stimuli in the PST training phase, 

leading to faster accumulation of evidence for pairs containing these stimuli in the test phase. 

As drift-rate for Win-Wins predicted both smoker and ex-smoker group status, this suggests that 

impairments in evidence accumulation may persist following nicotine abstinence.  

The PST Summary models suggested a pattern of results similar to Baker et al. (2011; 

2013), who found that substance-dependent individuals showed less accuracy overall on the 

PST test phase. This was reflected in our group classifications; current smoker status was 

predicted by lower approach AC, and higher approach BD- indicating low utilization of the 

stimulus reward/punishment contingencies learned during the training phase. The ex-smoker 

group were also classified by low approach AC/BD accuracy, whereas the non-smoker and Vaper 

groups were classified by the reverse pattern.  

Higher self-reported non-planning impulsivity, unlike attentional and motor impulsivity, 

predicted smoker group status relative to non-smoker. A number of studies have investigated 

multidimensional aspects of impulsivity in smokers, however there is no strong consensus on 

what aspects of trait impulsivity are most predictive of smoking status. Chase and Hogarth 
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(2011) found low to moderate relationships between impulsivity (as measured by the BIS) and 

smoking dependency and consumption. Of the three sub-scales, non-planning showed the 

strongest correlation with cigarette dependency. Ryan et al. (2013) found that attentional and 

non-planning impulsivity correlated with dependency, but not consumption, and Round et al. 

(2010) reported correlations between motor and non-planning impulsivity and cigarette 

dependence and frequency of consumption.  

A limitation of the current study is its cross-sectional design, which does not allow for 

the investigation of changes associated with nicotine abstinence across time. Further, the length 

of abstinence among ex-smokers was not controlled for in the current study. A general limitation 

of the current analysis is that co-occurrence of non-nicotine substance-use was not controlled 

for. Young adult e-cigarette users have been found to engage in greater co-substance use 

compared with binge drinkers or cannabis users (Lanza et al., 2020), which may influence the 

extent of decision-making impairments observed. While the current study examined various 

smoking states, it did not control for alcohol or poly-drug use. Heavy drinking and smoking 

together produced an additive effect on delayed reward discounting in comparison with heavy 

drinking-only or smoking-only groups in a study by Moallem and Ray (2012), and it is possible 

that high-risk alcohol users in the current sample would show differential performance on the 

PST compared with non-risk users. Future research may seek to isolate various groups of high 

versus low risk users across a range of substances, or indeed apply clustering methods to 

identify sub-types of task-related behavioral and computational parameters related to 

substance-use.  

5. 4. General Conclusion 
This study demonstrates the utility of task-based summary and computational indices of value-

based decision-making as predictors of nicotine-related substance-use. Study 1 demonstrated 

that the PST classified current smokers, ex-smokers, and non-smokers with moderate accuracy, 

with non-smokers showing increased learning from rewards in the PST test phase. Study 2 
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extended this with a larger sample, and the application of computational models of decision-

making to the PST. This provided greater explanatory clarity regarding the higher-order 

cognitive processes involved in nicotine-dependence. Smokers and ex-smoker group 

membership was predicted similarly by reductions in drift-rate, which may be attributable to a 

general impairment in evidence accumulation observed in other externalizing disorders and 

psychopathologies. While the task-based features provided insight into relevant factors of 

decision-making, they did not outperform self-reported impulsivity in classifying smoker groups.  
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Chapter 6: Longitudinal changes in value-based decision-making 

as predictors of nicotine relapse 
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6. 1. Introduction 
 

Although a large proportion of current smokers report a motivation to quit, only 3-5% of 

individuals remain successfully abstinent at 6-12 months following a quit attempt (Hughes et 

al., 2004). Considering various methods of estimating the frequency of smoking quit attempts, 

Chaiton et al. (2016) concluded that current smokers make an average of 30 quit attempts 

before successfully abstaining for at least one year.   

A number of socio-economic and psychological factors have been identified in 

predicting successful nicotine abstinence. Lower socio-economic status groups show higher 

rates of nicotine use, lower treatment adherence, and in a study by Kotz and West (2009) the 

most deprived socio-economic group was half as likely to be successful in a quit attempt 

compared to the least deprived group (Hiscock et al., 2011; Reid et al., 2010). Additionally, level 

of nicotine dependence, number of cigarettes consumed daily, age of initial/first cigarette use, 

and the use of e-cigarettes or nicotine replacement therapy can also predict the success of quit 

attempts (Hajek et al., 2019; Hays et al., 2010). In a randomised controlled trial, Hajek et al. 

(2019) found that e-cigarettes were more effective than nicotine replacement therapy when 

combined with behavioural support (1-year abstinence rate of 18% versus 9.9%).  

Changes in reward processing have been observed under conditions of nicotine 

abstinence versus satiation. Decreases in reward sensitivity have been observed in prolonged 

nicotine abstinence during a quit attempt (Hughes et al., 2017), however some studies report 

no change in reward sensitivity, an inconsistency that may be due to differences in experimental 

tasks and methods of analyses between studies.  Some studies show electrophysiological 

changes associated with nicotine abstinence – for example, ex-smokers showed similar P300 

ERPs to non-smokers compared with current smokers in a cue reactivity task. However, both 

former and current smokers showed diminished P300 on an auditory oddball task (Neuhaus et 

al., 2006). A recent study by Bu et al. (2019) found that EEG theta coherence in frontal-parietal 
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regions was predictive of cigaratte craving, while others have shown that conflict-related theta 

may be associated with other forms of substance dependence (Harper et al., 2018a). Increases 

in medial-frontal theta power have been associated with increased conflict and uncertainty in 

decision-making tasks, and trial-to-trial increases in theta show a linear relationship with 

boundary separation in the DDM during high-conflict conditions in the test phase of the PST 

(Cavanagh et al., 2014). Despite this relationship, relatively few studies have investigated 

changes in electrophysiological markers of conflict-related cognitive control during nicotine 

abstinence.    

In a within-sample study manipulating smoking status, Baker et al. (2018) showed that 

smoking status modulated learning rates during the probabilistic selection task, such that 

positive learning rates were enhanced following cigarette consumption, and reduced following 

abstinence. The reverse pattern was observed for negative learning rates, highlighting the utility 

of reinforcement learning models in characterising addiction states. In an application of an 

evidence accumulation model to a flanker task, Weigard et al. (2018) reported increased drift-

rate variability (indicative of mind-wandering), and reductions in boundary separation among 

current smokers under conditions of abstinence. However, the majority of studies examining 

computational differences in decision-making among addiction groups are cross-sectional in 

design (Gueguen et al., 2020), and therefore it is unclear if such computational markers of 

decision-making can predict likelihood of abstinence versus relapse.  

The current study sought to examine changes in value-based decision-making as 

predictors of time to nicotine relapse. In a longitudinal study design with biochemically verified 

nicotine abstinence, participants completed task-based and self-report measures during a 

baseline (T0) testing session immediately prior to a smoking quit attempt, and completed 

follow-up assessments at 1-week (T1) and 4-weeks (T2) post quit attempt if they remained 

abstinent. Feedback-related ERPs were compared at T0, T1, and T2. There were two aims: first, 
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an exploratory machine learning analysis with Cox proportional hazards models was used to 

predict time to nicotine relapse, testing the relative predictions of models with behavioural, 

computational, and EEG features. Second, the ERPs of those who remained abstinent were 

analysed: it was hypothesised that feedback-related ERPs would become attenuated during 

abstinence.  

6. 2. Methods 

6. 2. 1. Participants 
Participants were recruited via community advertising (e.g., posters on campus, health centers, 

pharmacies), and via advertisements placed on social media focused upon the greater Dublin 

region (e.g., using Facebook). Participants received up to €10 in receipted travel expenses for 

each attendance as part of the study. The final sample consisted of 112 participants (71 female, 

41 male; mean age 46.78, SD=11.66). CO and salivary cotinine levels were used to validate 

smoking abstinence versus relapse. The study was approved by the University College Dublin, 

and Trinity College Dublin, School of Psychology Ethics Committees.   

6. 2. 2. Materials 

6. 2. 2. 1. Probabilistic Selection Task 

As described in Chapter 2, Section 2. 1. 1. The reward and punishment probabilities for stimuli 

in the PST training phase were randomised between study sessions at T0, T1, and T2.  

6. 2. 2. 2. Barratt Impulsivity Scale 

As described in Chapter 2, Section 2.2. 

6. 2. 2. 3. Fagerstrom Test for Nicotine Dependence (FTND) 

As described in Chapter 2, Section 2.3. 
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6. 2. 2. 4. Hooked on Nicotine Checklist (HONC) 

The Hooked on Nicotine Checklist (Wellman, 2005) assesses lost autonomy over use of 

tobacco.  

6. 2. 2. 5. Short Form Smoking Consequences Questionnaire (S-SCQ) 
Smoking outcome expectancies were evaluated with the Short Form Smoking Consequences 

Questionnaire (S-SCQ; Myers, MacPherson, McCarthy, & Brown, 2003), with four subscales 

(negative consequences, positive reinforcement, negative reinforcement and appetite/weight 

controls). 

6. 2. 2. 6. EEG 
EEG data were recorded using the ActiveTwo Biosemi™ system in a soundproofed, darkened 

room from 70 electrodes (64 scalp electrodes) organised according to the 10–5 system 

(Oostenveld and Praamstra, 2001). Participants were seated in front of a cathode ray computer 

monitor with a screen resolution of 1024x768, and pixel refresh rate of 75 Hz. Participants were 

instructed to maintain their focus on the stimuli presented on the screen during the experiment. 

Activity related to eye movement was recorded bilaterally from approximately 2 cm below the 

eye and from the outer canthi. EEG data pre-processing was carried out using the EEGLAB 

toolbox (Delorme & Makeig, 2004; http://sccn.ucsd.edu/eeglab) in conjunction with the FASTER 

plug-in (Fully Automated Statistical Thresholding for EEG artefact Rejection; Nolan, Whelan, & 

Reilly, 2010, http://sourceforg e.net/projects/faster). The data were bandpass filtered between 

0.1 and 95 Hz, notch filtered at 50 Hz and average referenced across all scalp electrodes. A low-

pass filter was applied at 30Hz. Data were subsequently epoched from 700 ms pre-feedback 

stimulus to 1000 ms post-stimulus. Artefactual (i.e., non-neural) independent components were 

identified and removed from the EEG data automatically using FASTER, as were epochs 

containing large artefacts (e.g., muscle twitches). Channels with poor signal quality were 

interpolated. The EEG data were then visually inspected to ensure good quality and that any 
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remaining noisy data were removed. The data were subsequently re-referenced to the average 

mastoids. Event-related potential data were baseline adjusted (-200 to 0 ms). 

A spatial filter was applied to the data using the spherical spline algorithm to compute 

current source density/surface Laplacian estimates for surface potentials using the CSD toolbox 

in Matlab (Kayser & Tenke, 2006; 

https://psychophysiology.cpmc.columbia.edu/software/csdtoolbox/). ERP and time-frequency 

analyses were conducted on the transformed CSD data. Power spectral density estimates were 

calculated using Welch’s method (pwelch function in MATLAB), expressed as relative band 

power, and theta band activity was averaged between 4-8 Hz from 150-500 ms post-feedback 

stimulus. Time-frequency and ERP regions of interest were expected to be at the FCz electrode 

(in line with Cavanagh et al., 2014; 2019). Analyses were conducted on the FCz channel, chosen 

in line with previous research examining the FRN and P3a, and studies examining EEG correlates 

during the PST (Cavanagh et al., 2011; 2019; West et al., 2018). Peak ERP amplitudes were 

extracted for each subject by identifying the peak amplitude Topoplots at each study time-point 

are presented in Appendix D (Section D. 1).   

6. 2. 3. Procedure 
Individuals interested in participating were initially contacted via a brief phone call to assess 

eligibility (e.g., participants were required to smoke at least 5-10 cigarettes per day; Appendix 

E). Eligible participants who provided informed consent were scheduled for three laboratory 

testing sessions; a baseline session 24 prior to their agreed smoking quit date (T0), 1-week (+- 1 

day) post quit date (T1), and 4-weeks (+- 4 days) post quit date (T2). Participants also provided 

their contact details for random breath and saliva spot checks, which were performed once 

between the T0 session and T1 session, and twice between the T1 and T2 testing sessions. Self-

report questionnaires and PST task-related EEG were recorded at each laboratory testing 

session, and were part of a larger battery of tasks (for further study details, see Lespine et al. 

2020; Lespine et al., Under Review).  

https://psychophysiology.cpmc.columbia.edu/software/csdtoolbox/
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Behavioural data analysis 

Trials with RTs >10 or <0.1 s were removed from the data (65 trials were removed, 0.04% of all 

trials). 

Drift-diffusion Models 

As described in Chapter 2, Section 2.3. 

6. 3. Results 
Of the initial sample (N=109), 35 participants were abstinent one week post nicotine quit 

attempt, and 21 participants were abstinent at T2. Follow-up questionnaires showed that 15 

participants remained abstinent at 6 months post quit attempt.   

6. 3. 1. Behavioural analysis 
Mean (SD) values of the behavioural variables in the PST with-feedback and no-feedback phases 

at each time-point are presented in Table 6. 1.  

Table 6. 1. Mean (SD) questionnaire and bioverification scores at each study time-point (T0 = 

baseline, T1 = Week-1, T2 = Week=4). CO reading = Carbon Monoxide reading, DASS = 

Depression, Anxiety, Stress Scale, BIS = Barratt Impulsiveness Scale, S-SCQ = Short Smoking 

Consequences Questionnaire, HONC = Hooked on Nicotine Checklist, FTND = Fagerstrom Test 

for Nicotine Dependence.  

 T0 T1 T2 

CO Reading 19.7 (10.5) 2.2 (1.3) 2.3 (1.0) 

Cotinine 4.0 (0.6) 0.9 (1.1) 0.7 (0.9) 

DASS Stress 15.6 (11.1) 13.3 (10.9) 11.3 (9.8) 

DASS Anxiety 10.1 (9.6) 4.9 (6.1) 4.4 (5.96) 

DASS Depression  11.8 (10.9) 6.1 (6.2) 10.1 (11.7) 

BIS Attentional 16.8 (3.7)   

BIS Motor 23.7 (2.3)   

BIS Non-planning 26.5 (5.5)   

S-SCQ Neg. consequences 34.1 (4.4)   

S-SCQ Pos. reinforcement 22.1 (12.4)   
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S-SCQ Neg. reinforcement 39.2 (14.1)   

S-SCQ Appetite/Weight 

Control 

22.1 (11.6)   

AUDIT Total 8.05 (6.2)   

AUDIT: Dependency 1.14 (1.9)   

AUDIT: Hazardous 

Consumption 

4.69 (2.6)   

AUDIT: Alcohol related Harm 2.22 (3.11)   

AUDIT: Alcohol Problems 3.35 (4.46)   

DAST Total 2.57 (2.8)   

Age Start Smoking 16.9 (5.7)   

HONC Total 8.3 (1.6)   

FTND Total 2.4 (1.6)   

 

6. 3. 1. 1. PST Behavioural summary 

PST Test phase performance was correlated between study time-points: mean Approach AC 

correlated between baseline and one-week (r=0.47, p = .006), and one-month (r = .58, p = .005; 

see Table D.1, Appendix D). This was also the case between Approach BD at baseline and one-

week (r = 0.5, p = .003), and one-month (r=.56, p = .008).  Bayesian paired-samples t-tests 

showed significant differences in RTs between baseline (T0) and week-one (T1) for total RT in 

the PST training phase (Mean T0 = 1.17, SD = 0.44), AB trials (T0 = 0.99, SD = 0.34), and CD trials 

(T0 = 1.16, SD = 0.5), with faster RTs at T1. Faster RTs were also observed at T1 for the Lose-Lose 

condition in the PST test phase (T0 = 1.41, SD = 0.51). 
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Table 6. 2. Mean performance (percentage choice accuracy) and reaction times (RT) in the 

Probabilistic Selection Task training and test phases.   

Phase T0 (n=109) T1 (n=31) T1 (n=21) BF10 (T0 vs. 

T1)  

Training      

Accuracy (% Choice)     

AB  82.49 (16.28) 80.65 (22.41) 83.52 (19.57) 0.28 

CD  79.19 (15.93) 78.38 (20.3) 76.12 (18.29) 0.18 

EF  54.16 (19.13) 50.29 (18.09) 50.68 (17.20) 0.19 

RT (s)     

Total  1.25 (0.94) 0.98 (0.48) 1.10 (1.01) 21.81 

AB  1.10 (0.8) 0.82 (0.66) 0.91 (0.71) 195.08 

CD  1.25 (0.99) 0.96 (0.8) 1.09 (1.04) 13.62 

EF  1.41 (0.99) 1.15 (1.04) 1.28 (1.16) 3.55 

Test      

Accuracy (% Choice)     

Approach AC 70.02 (16.58) 73.44 (20.86) 76.64 (19.68) 0.26 

Approach BD 52.04 (16.13) 64.25 (19.19) 63.12 (15.49) 7.513 

Total RT 1.14 (0.49) 1.0 (0.5) 0.90 (0.59) 3.27 

Win-Win RT 1.03 (0.46) 0.94 (0.45) 0.83 (0.52) 0.39 

Win-Lose RT 1.01 (0.46) 0.91 (0.48) 0.82 (0.58) 0.64 

Lose-Lose RT 1.42 (0.65) 1.22 (0.59) 1.11 (0.73) 10.14 

 

 

6. 3. 2. ERP analysis 
EEG Data Quality 

Four datasets were removed due to poor EEG data quality (labelled as missing data in Cox 

regression), and data from three subjects were removed due to missing follow-up information 

regarding nicotine relapse. The final sample consisted of 109 subjects at baseline, 29 subjects at 

T1, and 22 subjects at T2.  
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Following pre-processing, the mean number of positive RPE trials was 60.86 (SD=15.77) and 

mean number of negative RPE trials was 40.91 (SD=9.15). ERPs were compared at the FCz 

electrode.  

Whole Group 

ERPs 

 

 

 

Figure 6. 1. Whole group ERPs for positive (RPE+) and negative (RPE -) feedback trials, locked to 

the feedback stimulus onset (0).  

 

ERP Group Comparisons 
Two group comparisons were made: (i) Baseline (T0) ERPs for those who relapsed within the 

first week of their quit attempt (n = 74), versus those who were successfully abstinent at one-

week (n = 35; Fig 1), and (ii) Baseline (T0) versus T1 ERPs for abstinent participants (N = 33; Fig 

2).  

T0 Comparisons 

There were no significant differences in the number of positive and negative RPE trials analysed 

for T0 participants who successfully abstained versus those who relapsed at T1 (p’s > .45). Mean 
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baseline ERPs for positive (RPE +) and negative (RPE -) feedback trials between those who 

remained abstinent at T1 versus those who relapsed within the first week of their quit attempt 

are presented in Figure 6. 2.  
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  Figure 6. 2. Group comparisons of feedback-locked ERPs at T0 between those who relapsed 

within T1 and those who were abstinent at T1.  
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T0 vs. T1 Comparisons 

There were no significant differences in the number of positive and negative RPE trials for the 

successfully abstinent participants between T0 and T1 (p’s > .22). ERPs between T0 and T1 are 

presented in Figure 6. 3.  
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Figure 6. 3. Group comparisons of feedback-locked ERPs at T0 versus T1.  

Feedback-related ERPs for successful abstainers (n=19) across the three study time-points are 

presented in Figure 6. 4.  
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Figure 6. 4. Feedback-locked ERPs for positive (RPE +) and negative (RPE -)  feedback trials at 

T0, T1, and T2.  
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PST Test Phase ERPs 
 Group differences in the PST test phase were explored by comparing ERPs between conflict 

conditions (Lose-Lose, Win-Lose, Win-Win; Figure 6. 5) and between ERPs locked to responses 

(Figure 6. 6).  

   

Figure 6. 5. Comparison between Win-Win, Win-Loss, and Loss-Loss conditions for the whole 

sample. 
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Figure 6. 6. Comparison of mean ERPs time-locked to the response trigger between abstinent 

participants at T0 versus T1.  

 

6. 3. 3. Computational Modelling Results  

 

6. 3. 3. 1. Behavioural vs. Neural data RLHDDM Models 
 

Feedback-locked EEG theta-band power (4-8 Hz) from the FCz electrode was extracted 

during the PST training phase as an index of mPFC activity.  To examine the relationship between 

theta and reaction time, a single-trial multiple regression was conducted for each subject, the 

mean standardised beta was 0.015 (.05). A comparison of single-trial betas from a regression 

between feedback type and RT on the following trial showed a significant difference between 

error/punishment trials (0.024, SD = 0.12) and reward/positive feedback trials (-0.005, SD = 

0.08), W = 11534.0, p = 0.0031. This was the case for the baseline (T0) participants (n = 112) and 

T0 vs. T1 Abstainers 
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a similar trend was observed at T1 (n = 33) (W’s = 5178.0, 428.0 and p’s = 0.007, 0.068 

respectively). 

6. 3. 3. 2. Drift-diffusion Computational Models of PST 
A number of HDDM and RLHDDMs were compared (see Appendix D). An RLHDDM model with 

theta as a trial-by-trial regressor on the boundary separation parameter, and feedback type as 

an interaction term was entered into the ML analysis. The HDDM was applied to behavioural 

data, and was the same as that applied in previous chapters.  

No significant paired group differences in mean model parameters between T0 and T1 

were observed, and boundary separation regression parameters did not differ between positive 

and negative feedback at any time-point (p’s > 0.32).  
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Table 6. 3. Comparison of mean RLHDDM and HDDM parameter estimates between time-

points, with Bayesian paired sample t-test between T0 and T1 (BF10).  

Parameter T0 (n=109) T1 (n=31) T2 (n=21) Sig. Test (BF10) 

RLHDDM     

Boundary Separation: 

Intercept 

1.76 (0.4) 1.58 (0.48) 1.6 (0.53) 0.36 

Boundary Separation: 

theta, pos. feedback  

0.04 (.05)  0.023 (.05) 0.04 (.05) 0.34 

Boundary Separation: 

theta, neg. feedback 

0.03 (.05) 0.02 (.05) 0.02 (.05) 0.31 

Learning Rate 0.97 (0.4) 0.79 (0.39) 0.85 (0.35) 0.19 

Drift-rate 2.14 (0.69) 2.09 (1.54) 2.07 (0.97) 0.72 

Non-decision Time 0.32 (0.15) 0.25 (0.11) 0.25 (0.11) 0.22 

HDDM     

Boundary Separation 1.89 (0.47) 1.76 (0.52) 1.65 (0.56) 3.29 

Drift-rate (Loss-Loss) 0.11 (0.45) 0.25 (0.51) 0.14 (0.37) 0.19 

Drift-rate (Win-Loss) 1.26 (0.98) 1.12 (1.11) 1.26 (0.96) 0.27 

Drift-rate (Win-Win) 0.89 (0.88) 0.80 (1.10) 0.92 (0.81) 0.23 

Non-decision Time 0.35 (0.15) 0.32 (0.14) 0.28 (0.12) 0.22 

 

6. 3. 4. Cox Regression 
 

The PST Summary Model mean concordance index was 0.495 (.03) with a LL of 46.31 (0.2), and 

was significantly lower than the demographic model was 0.515 (.03) with a LL of 46.26; t(198) = 

4.89, p <.001. The demographic model outperformed the PST Summary model in 66% of 

iterations. 
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Table 6. 4. Mean choice frequency and beta values from the PST Summary model. 

Feature Mean choice 

frequency - 

Test 

Mean Beta - Test Mean 

choice 

frequency - 

Null 

Mean Beta - 

Null 

Age 4.11 0.040 4.19 0.048 

Gender 2 -0.011 2.66 -0.025 

Approach BD 1.55 -0.006 2.21 0.016 

Approach AC 1.43 -0.013 3.64 -0.034 

Approach AC (T0) 1.37 0.012 3.59 -0.033 

Approach BD (T0) 0.95 -0.001 1.54 0.008 

 

The Computational Model mean concordance index was 0.54 (.03) and LL = 46.29 (0.4), and was 

significantly higher than the demographic model C-index was 0.52 (.02) and LL = 46.27 (0.3); 

t(198) = 6.13, p < .001. Baseline boundary separation from the PST test phase, baseline non-

decision time from both PST phases, and changes in non-decision times during the PST training 

phase were significant predictors.   

Table 6. 5. Mean choice frequency and beta values from the Computational model. 

Feature Mean 

choice 

frequenc

y - Test 

Mean Beta - 

Test 
Mean choice 

frequency - 

Null 

Mean Beta - 

Null 

HDDM: Boundary Separation – T0 4.43 -0.131 4.57 0.0713 

HDDM: Non-decision Time – T0 4.29 0.082 0.46 0.002 

RLHDDM: Non-decision Time – T0 4.26 0.067 0.42 0.0004 

RLHDDM: Non-decision Time 3.57 0.042 0.15 0.0004 

RLHDDM: Drift-rate 3.1 -0.036 1.79 -0.016 

Age 2.49 0.021 2.3 0.022 

HDDM: Drift-rate (Win-Lose) – T0 2.19 0.036 0.22 0.0001 
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HDDM: Drift-rate (Lose-Lose) 2.17 -0.016 1.29 0.011 

HDDM: Drift-rate (Lose-Lose) – T0 1.54 -0.016 0.42 -0.003 

Gender 1.51 -0.014 0.8 -0.006 

HDDM: Non-decision Time 1.47 0.005  

0.31 

-0.001 

RLHDDM: Boundary Separation (Pos. 

feedback) – T0 

1.2 0.011 0.25 0.0009 

RLHDDM: Boundary Separation 

(Intercept) 

1.19 0.014 0.43 0.001 

HDDM: Drift-rate (Win-Lose) 0.79 0.002 0.42 -0.002 

HDDM: Drift-rate (Win-Win) 0.74 -0.006 0.26 -0.0005 

RLHDDM: Learning rate – T0 0.66 0.006 0.15 0.0006 

HDDM: Drift-rate (Win-Win) – T0 0.61 -0.006 3.25 -0.045 

RLHDDM: Boundary Separation (Pos. 

feedback) 

0.57 0.002 0.9 -0.007 

HDDM: Boundary Separation 0.52 0.007 2.84 0.023 

RLHDDM: Learning Rate 0.52 -0.002 0.44 0.003 

RLHDDM: Drift-rate – T0 0.49 0.001 0.81 -0.003 

RLHDDM: Boundary Separation (Neg. 

feedback) 

0.48 0.0001 1.72 -0.0127 

RLHDDM: Boundary Separation (Neg. 

feedback) – T0 

0.47 0.001 1.64  -0.013  

RLHDDM: Boundary Separation 

(Intercept) – T0 

0.38 0.0001 0.26 0.001 

 

The C-index for the model with mean computational parameters and peak ERP amplitudes 

(Mean C-index = 0.53, SD = .03; LL = 46.36, SD = 0.4) outperformed the demographic model 

(with age and gender as fixed covariates, and random data; C-index = 0.51 (LL= 46.41); t(198) = 

6.77, p <.001. Significant features were the same as the Computational Model (i.e., boundary 

separation and non-decision times), however the ERP features were not frequently selected.  

Table 6. 7. Mean choice frequency and beta values from the Computational and EEG model. 
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Feature Mean 

choice 

frequency - 

test 

Mean 

beta - 

test 

Mean choice 

frequency - 

Demographic 

Mean beta - 

Demographic 

HDDM: Boundary Separation – 

T0 

4.17 -0.123 0.85 -0.004 

HDDM: Non-Decision Time –T0 4.15 0.074 0.52 -0.002 

RLHDDM: Non-Decision Time –

T0 

4.1 0.065 0.23 0.001 

RLHDDM: Non-Decision Time 3.5 0.039 1.57 -0.011 

RLHDDM: Drift-Rate 2.87 -0.036 1.11 -0.007 

Age 2.28 0.020 2.38 0.019 

PSWFB: ERPS (Pos. feedback) – 

T0 

2.2 -0.026 0.39 0.002 

HDDM: Drift-Rate (Win-Lose) – 

T0 

1.99 0.030 1.57 0.009 

HDDM: Drift-Rate (Lose-Lose) 1.88 -0.012 1.01 0.006 

HDDM: Drift-Rate (Lose-Lose) 

– T0 

1.39 -0.014 1.69 0.015 

Gender 1.33 -0.013 0.71 -0.005 

HDDM: Non-Decision Time 1.2 0.005 1.69 0.013 

RLHDDM: Boundary 

Separation (Intercept) 

1.06 0.015 0.55 0.002 

RLHDDM: Boundary 

Separation (Pos. Feedback) – 

T0 

1.05 0.011 0.99 0.010 

PSTNFB: ERP - Baseline 0.86 -0.010 1.45 -0.009 

RLHDDM: Learning Rate – T0 0.81 0.007 0.31 0.0004 

HDDM: Drift-Rate (Win-Win) 0.69 -0.004 0.65 0.004 

PSWFB: ERPS (Neg. feedback)  0.58 -0.001 0.91 -0.005 

HDDM: Drift-Rate (Win-Lose) 0.56 0.0001 0.59 -0.003 

RLHDDM: Learning Rate 0.54 -0.002 2.6 0.030 

HDDM: Boundary Separation 0.52 0.003 0.41 -0.0006 

PSWFB: ERPS (Neg. feedback) 

– T0 

0.51 0.004 1.98 -0.016 
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HDDM: Drift-Rate (Win-Win) – 

T0 

0.48 -0.006 0.84 -0.007 

RLHDDM: Boundary 

Separation (Pos. Feedback) 

0.46 0.002 1.61 0.012 

RLHDDM: Boundary 

Separation (Neg. Feedback) 

0.44 -0.0007 4.64 0.093 

PSWFB: ERPS (Pos. feedback) 0.42 0.005 3.27 -0.041 

RLHDDM: Boundary 

Separation (Neg. Feedback) – 

T0 

0.41 -0.0007 0.29 -0.0001 

PSTNFB: ERP 0.36 0.0003 0.41 0.002 

RLHDDM: Drift-Rate – T0 0.35 1.75679E-

05 

0.41 -0.0009 

RLHDDM: Boundary 

Separation (Intercept) – T0 

0.32 -0.00 2.02 0.020 

 

 

6. 3. 5. Correlations between ML features 
Correlations between ML features (Table 6. 8) at T0 showed significant relationships within the 

self-report measure, and correlations between computational model parameters. Correlations 

between computational parameters at each study time-point are presented in Appendix D.  
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Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1. BIS Attention — 
              

   

2. BIS Motor 0.421*** —                 

3. BIS Non-planning 0.565*** 0.525**

* 

—                

4. RLHDDM: a 

Intercept 

0.145 -0.066 -0.098 —               

5. RLHDDM: a (RPE+) -0.055 -0.029 -0.081 -

0.304** 

—              

6. RLHDDM: a (RPE -) -0.141 -0.136 -0.161 -0.259* 0.861*** —             

7. RLHDDM: Learning 

Rate 

-0.134 -0.153 -0.087 -0.130 -0.015 0.032 —            

8. RLHDDM: t -0.005 -0.024 0.007 0.069 -0.142 -0.072 0.261* —           

9. RLHDDM: v -0.089 -0.008 -0.011 -0.197 -0.097 -0.021 0.307** 0.133 —          

10. HDDM a -0.174 -0.216 -0.019 0.413** 0.123 0.173 0.235 0.209 0.074 —         

11. HDDM vLL -0.008 0.003 0.078 -0.186 -0.048 -0.083 0.183 0.021 0.209 -

0.006 

—        

12. HDDM vWL -0.033 -0.014 0.020 -0.053 -0.166 -0.097 0.291* 0.224 0.159 0.056 0.432**

* 

—       

13. HDDM vWW -0.064 -0.021 -0.068 -0.138 -0.221 -0.147 0.335** 0.235 0.349

* 

-

0.108 

0.376**

* 

0.376**

* 

—      

14. HDDM: t -0.0195 0.033 0.057 0.105 0.157 0.089 0.100 0.288* -0.047 0.400 -0.244 -0.224 -0.268* —     

15. ERP (RPE +) 0.223 0.065 0.139 0.176 0.045 -0.004 -0.061 -0.069 -0.204 0.059 -0.251* -0.251 -0.211 0.001 —    

16. ERP (RPE-) 0.116 -0.024 0.073 0.189 0.085 0.049 0.118 0.0001 -0.103 0.154 -0.215 -0.215 -0.129 0.138 0.674**

* 

—   

17. ERP (Test phase 

response) 

-0.128 -0.051 0.139 -0.075 -0.055 -0.105 -0.005 -0.014 -0.062 -

0.143 

0.054 0.054 0.036 -0.031 -0.098 -0.161 —  



 
 

188 
 

18. Approach AC -0.059 -0.056 -0.066 -0.056 -0.215 -0.104 0.363** 0.276* 0.321

* 

0.044 0.291* 0.291* 0.889**

* 

-0.172 -0.223 -0.087 -0.047  

19. Approach BD -0.009 -0.019 0.047 -0.037 0.032 0.014 0.265* 0.097 0.068 0.184 0.727**

* 

0.727**

* 

0.239 -0.112 -0.107 0.026 -0.033 0.336* 

*p < .05, ** p < .01, *** p < .0001 

Figure 6. 8. Partial Spearman’s correlations between machine learning features at baseline, with age as a covariate. Significant correlations are 

highlighted between (i) self-report measures (orange), (ii) task-related parameters and variables (blue), (iii) task-related and self-report measures 

(green)
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6. 4. Discussion 
The present study sought to examine EEG-informed computational parameters of decision-

making as predictors of time to nicotine relapse in a longitudinal smoking cessation study. 

Behaviourally, participants at T1 (i.e., Week-1) of successful abstinence showed reduced 

learning from negative feedback in the PST test phase (i.e., higher ‘Approach BD’) compared 

with baseline. Attenuated ERPs were observed across study time-points in response to positive 

and negative feedback in the training phase.  

 Cue-related P3 amplitudes have been associated with violations of expectation, such 

that higher amplitudes are elicited from unexpected relative to expected reward and 

punishment feedback (Donaldson et al., 2016). Attenuated FRN amplitudes have been related 

to increases in dopamine activity (Holroyd & Coles, 2002). Although a number of studies have 

investigated acute effects of nicotine abstinence on EEG correlates of performance monitoring, 

few have examined the effects of longer term abstinence during smoking cessation attempt. 

Schlienz, Hawk, and Rosch (2013) showed reduced error-related negativity on a Flanker task 

during acute nicotine abstinence, however no effect on N200 and P300 components. Acute 

nicotine abstinence (12 hours) was also shown to reduce P3b amplitudes during an oddball task, 

and selectively reduce P3a amplitudes among current smokers reporting lower cognitive control 

(Evans et al., 2013). The ERP results presented here suggest that P3 amplitudes maybe 

attenuated in longer-term (i.e., 1 week) abstinence during smoking cessation, whereas FRN 

amplitudes during negative feedback trials in the PST are more pronounced at Week 1 

compared with baseline..    

Increased FRN in response to negative feedback on the PST was found among patients 

with major depressive disorder compared to controls (Cavanagh et al., 2011), and was 

associated with increased learning from negative feedback in the test phase. Here, no significant 

correlation was observed between Approach BD and mean ERP (RPE-) during the training phase, 
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this indicates that neural processing of feedback in the training phase did not correspond with 

value-based decision-making during the test phase. It remains possible that other methods of 

indexing feedback processing (e.g., by taking the difference between the P2/P3 and FRN in the 

training phase) may show a relationship with behavioural performance in the PST test phase. 

However, there was a trend towards a negative relationship between mean feedback-related 

amplitudes in the training phase and drift-rates in the test phase. This suggests that smaller 

drift-rates (i.e., faster accumulation of evidence) may be associated with increased feedback-

related ERP amplitudes during the training phase.   

 RLHDDMs with mid-frontal theta as a single-trial regressor were fit to the PST training 

phase, and a HDDM was fit to the behavioural data of the test phase. No group differences in 

computational parameter estimates were observed between baseline and week-one, however 

the boundary separation parameter from the test phase showed reductions across study time-

points that were close to significance. The influence of feedback-related trial-by-trial theta on 

boundary separation in the PST training phase was modelled as a regressor in the RLHDDM, this 

tested the hypothesis that trial-by-trial theta shows a linear relationship with boundary 

separation during the training phase that interacts with feedback type. However, no significant 

difference in the boundary separation parameter between positive and negative feedback 

conditions was observed.  

Penalised cox regression models with Computational model parameter estimates, and 

mean ERP amplitudes as features outperformed demographic models with age and gender at 

predicting time to nicotine relapse. On the other hand, the PST Summary model did out 

outperform demographic models in predicting time to nicotine relapse. The Computational 

models showed that smaller baseline boundary separation, and larger non-decision times were 

the strongest features predicting longer time to relapse. These features were followed by 
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changes in non-decision times and drift-rates from the PST training phase across study time-

points, age, and peak ERP amplitudes in response to positive feedback.  

Correlations between the ML features at T0 showed significant relationships between 

the computational parameter and PST summary scores. Positive relationships were found 

between mean boundary separation regression parameters for positive and negative feedback, 

and mean ERP amplitudes for positive and negative feedback also positively correlated. These 

results suggest that feedback type did not bidirectionally affect these predictors.  

A limitation of the current chapter is the high relapse rate at T1 and T2, which limits the 

inferences that can be made regarding group differences in self-report, task-based, and EEG 

measures. Of the initial sample, 67% had relapsed within the first week – future research may 

consider more dense experimental assessments within the early stage of smoking cessation to 

identify predictors of early relapse in this group. Furthermore, it is possible that changes in PST 

performance across study time-points may have resulted from familiarity with the experimental 

task. However, this was partially mitigated by randomising the stimuli reward probabilities in 

the PST between study sessions, and similar repeated designs have been reported elsewhere in 

the literature (e.g., Baker et al., 2018).  

In summary, these findings suggest subtle behavioural and electrophysiological reward-

related changes during smoking cessation that may be predictive of time to relapse. This 

highlights the utility of repeated measures of decision-making during the early abstinence 

period in smoking cessation. The use of cognitive models such as the DDM may provide more 

precise information regarding the latent psychological processes involved in successful 

abstinence, such as changes in boundary separation and non-decision times.      
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Chapter 7: General Discussion 

  



 
 

193 
 

This chapter will provide synthesis of the main thesis findings, novel contributions, and future 

directions for research. The current programme of research aimed to provide a comprehensive 

investigation of value-based decision-making in substance dependence by comparing 

behavioural, computational, and electrophysiological features to predict various substance 

misuse and dependence phenotypes.  

Chapter 1 provided an overview of decision-making research in the field of substance-

dependence, recent advances in computational psychiatry, and clinical applications of machine 

learning. This highlighted that although substance-dependence is associated with reward-

related decision-making impairments, methodological heterogeneity regarding the types of 

experimental tasks and populations studied has led to inconsistencies in the literature. For 

example, it is not clear how successful abstinence affects decision-making, and whether this 

differs according to type of substance use and treatment (Stewart et al., 2019). Computational 

psychiatry, and data-driven machine learning methods are well-suited to addressing these 

issues, by identifying task-general latent factors that may predict psychopathology trans-

diagnostically, and may offer a means to more precise treatment interventions (Gillan & 

Whelan, 2017; Yarkoni & Westfall, 2017). The drift-diffusion model is a prominent decision-

making model that incorporates latent features (e.g., evidence accumulation, response caution) 

thought to underlie neurocognitive deficits in psychopathology (Sripada & Weigard, 2021). In 

this thesis, I fit combined reinforcement learning and drift-diffusion models to a reward learning 

task that has been extensively described in the literature, and which is thought to index 

fluctuations in dopaminergic functioning and show sensitivity to various clinical disorders (Frank 

et al., 2004). 

In Chapter 2, the experimental task, questionnaire measure, computational modelling, 

and penalised regression approach were introduced. Chapter 2 described how, in the empirical 

chapters, RL(HDDM)s were fit to trial-by-trial PST data, and the parameters estimated from 

these were entered into penalised linear and logistic regression models with out-of-sample 
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predictions of various substance phenotypes. Chapter 3 sought to predict hazardous alcohol-

use risk. Chapter 4 sought to predict length of abstinence in a sample formerly dependent on 

heroin. Chapter 5 sought to classify individuals based on their smoking group category (non-

smokers, current smokers, ex-smokers, and vapers). Chapter 6 aimed to assess longitudinal 

changes in features among a sample of individuals undergoing a smoking cessation attempt. 

Sample-general alterations in latent cognitive constructs were revealed, and the relative 

predictive utility of self-report versus task-based features was compared.  

7. 1. Summary of Results 
 The direction of significant relationships between computational parameter features 

and outcome variables from each empirical chapter are outlined in Table 7. 1. In a sample of 

adults with varying levels of alcohol consumption, the results from Chapter 3 showed that high 

alcohol misuse risk was predicted by increased negative learning rate, smaller boundary 

separation, larger drift-rates, smaller non-decision times, and higher impulsivity on all of the BIS 

2nd order sub-scales. Robust partial correlations accounting for variability in computational 

model parameter estimates and controlling for the effect of age showed similar relationships 

with the total AUDIT score and its sub-scales.  

Chapter 4 found that smaller drift-rates in the PST test phase, wider response 

boundaries, larger non-decision times, and greater learning rates in the PST training phase 

predicted longer length of abstinence from opioids. Higher self-reported sensation-seeking and 

motor impulsivity were also significant predictors. These findings were supported by robust 

negative correlations between drift-rates and length of abstinence, and positive correlations 

between boundary separation and length of abstinence. The variance in correlations with 

positive and negative learning rate parameter estimates suggested a less robust relationship 

with length of abstinence.  

In Chapter 5, current smoker, ex-smoker, vaper, and non-smoker group membership 

was predicted by varying features. Relative to non-smokers, the current smoker group was 
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classified by smaller boundary separation and reduced positive learning rates in the PST training 

phase, larger non-decision times (both PST phases), smaller drift-rates for the high conflict Win-

Win condition in the PST test phase, and higher self-reported non-planning impulsivity. Reduced 

drift-rates for the Loss-Loss condition, and increased drift-rates for Win-Win in the PST test 

phase, in addition to larger non-decision times, increased motor impulsivity, and decreased non-

planning impulsivity were predictive of ex-smoker group membership. Of the computational 

parameters, the vaper group was classified by larger non-decision times. 

Longitudinal changes in value-based decision-making during smoking cessation were 

investigated in Chapter 6, with self-report and task-based measurements recorded immediately 

prior to a smoking cessation attempt (T0), and at one-week (T1) and four-weeks (T2) following 

successful nicotine abstinence. Behaviourally, reduced learning from negative feedback during 

the PST test phase was observed at T1 compared with T0, indicating that abstinence resulted in 

an insensitivity to learning from punishers. Faster reaction times were also observed on a 

number of PST conditions at T1. Group differences in positive and negative feedback-related 

ERPs were observed, with attenuated activity observed at T1 and T2 compared with T0. 

However, differences in task performance across study time-points may be influenced by 

participants’ familiarity with the task. Mean peak ERP amplitudes and computational model 

parameters were entered as time-dependent features into a penalised survival regression 

model to predict time to nicotine relapse, and outperformed demographic models. Baseline 

boundary separation and non-decision time were the most frequently selected features. These 

were followed by changes in non-decision time, drift-rate from the training phase, age, and 

mean baseline ERP amplitudes during reward trials in the PST training phase.   

Correlations between machine learning model features in each empirical chapter 

revealed relationships between task-based features, between self-reported impulsivity, and 

between task-based and self-report features. Across all studies, the boundary separation 

parameter from the PST training phase showed a significant positive relationship with boundary 
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separation from the test phase, this was also observed for the non-decision time parameter. 

This finding indicates that individual differences in DDM parameters are stable across the 

training and test phase of the PST. In all studies, at least one of the drift-rate parameters 

correlated with PST test phase summary scores. Larger drift-rates were generally associated 

with greater Approach AC and Approach BD choice selections in the test phase, suggesting that 

speed of evidence accumulation is related to behavioural performance on the PST for both 

accurate (i.e., Approach AC) and inaccurate (i.e., Approach BD) choices. Correlations between 

task and self-report measures varied between studies- however boundary separation correlated 

significantly with motor impulsivity in Chapters 4 and 5.  
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Table 7. 1. Summary of thesis results from Combined Models with computational parameters. Arrows indicate direction of relationship between 

parameters and outcome variables from each empirical chapter. RLHDDM = Reinforcement learning hierarchical drift-diffusion model. HDDM = Hierarchical 

drift-diffusion model. 
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7. 2. Relationship with existing literature 
Boundary Separation 

Across all studies, the boundary separation parameter was a significant predictor of 

substance-use. This parameter indexes level of caution in decision-making, whereby wider 

bounds require more evidence accumulation before a response is reached. An individual with 

an emphasis on speed relative to accuracy is hypothesised to set narrow decision bounds, 

requiring less evidence to make choices, which has been termed ‘impulsive information 

processing’ (Metin et al., 2013). In the current set of studies, lower boundary separation 

significantly predicted (i) higher alcohol misuse risk, (ii) shorter abstinence from opioids, (iii) 

smoker versus non-smoker group membership, and (iv) a trend towards longer time to nicotine 

relapse.  

These findings suggest that reduced boundary separation may present a general risk-

factor for substance-use and severity, which seems to correspond conceptually with dual-

process accounts of decision-making and substance dependence. That is, reduced boundary 

separation may reflect automatic, immediate, and impulsive behaviour relative to goal-directed 

and planned behaviour. Empirically, substance-dependent groups and university students with 

substance misuse behaviour tend to show dysregulation of inhibitory control on Go/No-Go and 

Stop-Signal tasks (Byrne & Worthy, 2019; Smith, Mattick, Jamadar, & Iredale, 2014). Groups with 

externalising disorders, such as ADHD, also demonstrate difficulties inhibiting responses and 

regulating speed-accuracy trade-offs in decision-making. Pederson et al. (2017) found that this 

resulted in reduced boundary separation during instrumental learning on the PST. I extend this 

finding to suggest that reductions in boundary separation also show a general relationship with 

substance-dependence that is sensitive to length of MMT treatment in opioid dependence. 

Interestingly, Lawlor et al. (2019) found increased boundary separation in a probabilistic reward 

task among patients diagnosed with depression compared with controls, therefore it is possible 
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that dissociable relationships with boundary separation exist across symptom dimensions. For 

example, externalising psychopathologies and disorders of compulsivity may be associated with 

reduced response caution, whereas disorders with symptoms of rumination and depressed 

mood may be associated with increased response caution.  

Although individual differences in response boundary have been shown to discriminate 

between various clinical groups (e.g., Powell et al., 2019), Hedge et al., (2020) reported low 

correlations between boundary separation and self-reported impulsivity on the UPP-S 

questionnaire. In a meta-analysis of 19 studies, Spearman’s rhos ranged from -0.04 to -0.02, 

indicating no relationship despite theoretical and conceptual similarities between boundary 

separation and self-reported impulsivity. I also report small/non-significant correlations 

between boundary separation and the SUPPS among former opioid users in the Supplementary 

Analysis (Appendix B) of Chapter 4. However, elsewhere in Chapter 4 (and Chapter 5) mean 

boundary separation estimates correlated negatively with the motor sub-scale of the BIS- 

consistent with the idea that smaller decision bounds are associated with increased impulsive 

information processing. This was further confirmed in robust correlations between the BIS 

motor sub-scale and samples of boundary separation estimates (Appendix B). On the other 

hand, no relationship between motor impulsivity and boundary separation was observed in 

Chapter 3, or in correlations between ML features at baseline in Chapter 6. The discrepancies 

between these results may be due to differences in sample characteristics, for example higher 

mean age in Chapters 4 and 6 compared to Chapters 3 and 5 may have influenced DDM 

parameters. Therefore, although reduced boundary separation was a significant predictor of 

alcohol misuse, it did not show a relationship with self-reported impulsivity in all studies.  

Drift-rate 

Drift-rate, or evidence accumulation, was also a significant predictor across studies. It 

has been suggested that evidence accumulation efficiency is an individual difference dimension 



 
 

200 
 

that may explain deficits of neuro-cognition in a host of clinical disorders (Weigard & Sripada, 

2020). To explore the role of conflict in drift-rates during the PST test phase, separate 

parameters were estimated for trials that included ‘Lose-Lose’ (high conflict), ‘Win-Lose’ (low 

conflict), or ‘Win-Win’ (high conflict) stimulus pairs. Value differences have been shown to 

directly influence drift-rates during the PST (Cavanagh et al., 2014). Longer reaction times are 

typically observed on trials with two stimuli with similar reinforcement probabilities in the PST 

test phase, and shorter RTs on trials with divergent probabilities. Here, the drift-rate conflict 

conditions differentially predicted substance use – in Chapters 3 and 4, slower drift-rates across 

all conditions predicted higher alcohol use risk and longer length of opioid abstinence, 

respectively. In Chapter 5, smokers were classified by smaller Win-Win drift rates, while ex-

smokers were classified by larger Win-Win drift-rates and smaller Lose-Lose drift-rates. In 

Chapter 6, RTs for Lose-Lose trials were significantly lower at T1 of nicotine abstinence 

compared with T0 – however drift-rate parameters did not significantly predict time to nicotine 

relapse.  

Although the relative value between Lose-Lose and Win-Win conditions are identical, 

aversive versus appetitive conflict has been shown to differentially affect task performance. 

Cavanagh et al. (2014) postulated that slower RTs are observed on Lose-Lose conditions due to 

the compounding effect of two aversively conditioned stimuli, which produces slowing via the 

corticostriatal indirect pathway and amplifications of the STN response to conflict. Ratcliff and 

Frank (2012) found that the Lose-Lose condition was better fit by a DDM with delays in 

processing time (i.e., non-decision time) and collapsing decision boundaries, highlighting the 

unique effect of aversive conflict compared with other PST conditions. Consistent with these 

findings, the studies presented here also observed slower RTs on Lose-Lose trials during the PST 

test phase. However, the influence of stimulus conflict on the need to increase boundary 

separation was not directly tested. Despite this, these findings suggest that response to conflict 

in the PST test phase may show a relationship with substance-dependence. Weigard and Sripada 
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(2020) posited that lower trait evidence accumulation is a risk-factor for psychopathology, the 

current findings provide mixed support for this with regard to substance dependence (i.e., lower 

evidence accumulation characterises smokers, but higher rates characterise alcohol misuse and 

increased opioid abstinence), and suggests that relationships with drift-rate may interact with 

value conflict (i.e., ex-smokers are characterised by smaller drift-rates for aversive conflict, and 

larger drift-rates for appetitive conflict).  

The relationship between conflict, boundary separation, and drift-rate has also been 

explored using EEG. Trial-by-trial mPFC theta during the PST test phase correlated with 

boundary separation in high-conflict trials in a study by Cavanagh et al. (2011), and is proposed 

to depend on the dorsomedial frontal cortex and STN (Frank et al., 2007). In Chapter 6, a trial-

by-trial relationship was observed between theta and RT during the PST training phase, however 

the task design did not permit a comparison of theta effects in the test phase (i.e., the inter-trial 

interval between stimulus presentation and response selection was not long enough). A 

regression model was fit to the training phase of the PST; however separate estimates of the 

effect of theta on boundary separation for positive versus negative feedback did not show group 

differences. Further, changes in regression model parameters and EEG features across study 

time-points did not significantly predict time to relapse. 

In Chapter 6, attenuations in FRN and fb-P3 ERPs during the training phase were 

observed between study time-points. The high relapse rates in Chapter 6 limited the inferences 

that could be made regarding this analysis (72% of participants at baseline relapsed within the 

first week of their smoking cessation attempt). Despite this, baseline boundary separation (from 

the PST test phase), baseline non-decision times (from the training and test phase), and changes 

in non-decision times from the training phase were selected as the most significant predictors 

of time to relapse in ML models. Further longitudinal research with more testing sessions 

scheduled within the first week of nicotine abstinence may provide insight into state-related 

factors predicting relapse during this critical time-period. Taken together, the results of 
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Chapters 5 and 6 suggest that drift-rates during the PST test phase can classify smokers, ex-

smokers and non-smokers with moderate accuracy, whereas baseline boundary separation and 

changes in non-decision times may be related to shorter-term nicotine abstinence.   

Non-decision Time 

The non-decision time parameter indexes the time taken to encode stimuli and motor 

processes, and shows age-related slowing resulting from delays in motor execution and sensory 

encoding (Ratcliff et al., 2003, 2004). Smaller non-decision times have been observed during 

alcohol intoxication relative to sober and hangover conditions (Stock et al., 2017), in gamblers 

relative to controls (Wiehler & Peters, 2020), and among those on ADHD medication versus off 

medication compared with controls (Pederson et al., 2017). Smaller non-decision time predicted 

higher alcohol misuse in Chapter 3 and shorter length of opioid abstinence in Chapter 4. Larger 

non-decision time predicted smoker and ex-smoker group membership in Chapter 5. Non-

decision times during the PST training phase were more predictive than the test phase, and 

showed a relationship with RTs in some cases. The high-risk alcohol group showed faster mean 

RTs, and the long-term opioid abstinent showed slower RTs in the PST training phase, although 

these did not differ significantly between groups (with the exception of the RT for EF pairs in the 

opioid study).  

Age has been shown to affect boundary separation and non-decision time parameter 

estimates, with older adults displaying increased response caution and larger non-decision 

times compared to younger adults. Notably, age was one of the most significant predictors in 

ML models across all studies. However, after controlling for the effect of age, significant positive 

correlations were observed between boundary separation and non-decision time, therefore it 

is possible that shared variance between these two parameters resulted in more frequent 

feature selections in the ML models. The robust correlations (i.e., controlling for age) between 

non-decision times and length of abstinence in Chapter 4 showed a small positive correlation 
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distribution that was not as robust as the boundary separation parameter. In Chapter 3, the 

correlations between non-decision time and AUDIT score differed significantly from the null 

correlation distribution, showing a more robust negative relationship. It is not clear by what 

mechanisms non-decision times are influenced by substance-dependence/behavioural 

addictions, however these results, along with Wiehlers and Peters (2020), suggest a relationship 

with smaller non-decision times estimated from RLHDDMs.  

Learning Rate 

The learning rate parameters were also significant predictors in Chapters 3, 4, and 5. 

Learning rates represent the degree to which recent PEs affect the updating of expected 

rewards (i.e., the extent to which more recent or past feedback is utilised). Learning rates are 

sensitive to DA modulation such that higher positive learning rates have been observed in 

Parkinson’s disease patients on versus off medication (Rutledge et al., 2009). Baker et al. (2018) 

found that smoking state similarly modulates learning rates during cigarette consumption 

versus abstinence. Nicotine abstinence has been associated with low striatal DA activity, and 

this was reflected in significantly lower positive learning rates and higher negative learning rates 

in the PST training phase (Baker et al., 2018). In Chapter 5, current smokers were classified by 

reductions in positive learning rate, relative to non-smokers. These differences are somewhat 

contradictory, and may be due to variations in the estimation of parameters (hierarchical 

combined RL and DDMs, versus Q-learning), the number of trials that models were fit to (all 

trials, vs. first 60 trials), and study design (cross-sectional vs. within-subjects with repeated 

measures).  

Reduced striatal DA has also been observed in opioid-dependent individuals on 

methadone maintenance therapy, and mu-opioid receptor modulation has been shown to 

affect value-based decision-making (Eikemo et al., 2017; Liang et al., 2014). However a previous 

study by Myers et al. (2016) found no difference in learning rates between opioid-dependent 
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and healthy control groups on a reward learning task, although the former showed higher 

learning rates for reward that were not statistically significant. Increases in positive learning rate 

predicted longer length of opioid abstinence in Chapter 4. This suggests that longer length of 

MMT may result in functional adaptations to decision-making that improve learning from 

reward, however further research with a normative sample as a comparison may confirm this 

role of reward processing in opioid dependence.  

In Chapter 3, increased negative learning rates predicted higher alcohol misuse risk. 

Conversely, a number of studies have shown that alcohol dependence and misuse is associated 

with blunted learning from negative feedback (e.g., Rossiter et al., 2012). A possible reason for 

inconsistencies regarding learning rate parameter predictions in the current studies is the 

increased variability observed for correlations between positive and negative learning and 

outcome variables. Repeated correlations between learning rate parameter estimates showed 

significantly more variability compared with the other DDM parameters (e.g., Figure 3.5), and in 

Chapter 3 the correlations between observed and simulated learning rates were lower than the 

other DDM parameters (differences between simulated and estimated parameters were also 

observed for higher and lower learning rates in Pedersen et al., 2017). Refining the RLHDDM to 

account for this increased variability may produce more reliable parameter estimates to 

examine individual differences in behaviour.  

Self-reported Impulsivity 

Impulsivity is a multidimensional construct encompassing aspects of reward seeking and 

disinhibition that may be considered an endophenotype for substance dependence. Self-

reported impulsivity as measured by the BIS has been shown to differentiate smokers from non-

smokers, with smokers showing higher attentional (Reynolds et al., 2007) and non-planning 

impulsivity (Flory & Manuck, 2009; Mitchell, 1999), and total BIS scores correlate positively with 

frequency of cigarette consumption (Skinner, Aubin, & Berlin, 2004). Here, higher non-planning 
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impulsivity also classified smokers relative to non-smokers, while the attentional and motor 

scales were non-significant predictors in Personality and Combined Models. The relationship 

between self-reported impulsivity among ex-smokers has not been well-characterised in the 

literature and studies often include small sample sizes. One study (n = 21) found lower 

impulsivity among ex-smokers compared with smokers, but no significant differences compared 

with non-smokers (Bickel, Odum, & Madden, 1999), another (n = 35) found decreased 

impulsivity on all BIS sub-scales compared with current smokers, however these were non-

significant after controlling for age and gender, though the non-planning scale was near 

significant (Skinner et al., 2004).  Here, ex-smokers (n = 25) were classified by decreased non-

planning and increased motor impulsivity. Collectively, these findings suggest that non-planning 

impulsivity (i.e., the tendency to focus on the present moment with disregard for future 

consequences) may be relevant to successful nicotine abstinence. However, larger samples of 

ex-smokers are required to confirm this effect.  

 In Chapter 3, higher impulsivity on all BIS scales predicted higher AUDIT scores. 

MacKillop et al. (2016) similarly found that sub-scales of the BIS could predict low level of alcohol 

use risk among a large sample of young adults. A previous study with overlapping research 

participants from those studied in Chapter 3 has shown that non-planning and attentional 

impulsivity predicted alcohol intoxication frequency (O’Halloran et al., 2018). In Chapter 4, the 

personality models underperformed the demographic models, however lower motor 

impulsivity and Sensation-seeking significantly predicted longer length of abstinence in the 

Combined Model.  

PST Summary Scores 

The PST has been utilised to measure individual differences in reward versus 

punishment learning in a variety of clinical domains over the past 17 years. A line of research by 

Baker et al. (2011) observed an interaction between positive versus negative feedback learning 
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in the PST and substance dependence, however a replication study (Baker et al., 2013) showed 

that non-dependent individuals performed better overall on the PST, and no interaction effects 

of substance group and feedback type. In the PST Summary Models presented here, the 

tendency to learn from positive relative to negative feedback was indexed with Approach AC/BD 

variables. Here, increases in Approach AC (i.e., learning more from positive feedback in the 

training phase), and decreases in Approach BD (i.e., learning more from negative feedback in 

the training phase) predicted higher alcohol use risk and longer length of opioid dependence. In 

Chapters 3 and 4, increased learning from positive feedback classified high-risk alcohol users 

relative to low-risk, and predicted shorter length of opioid abstinence. In Chapter 5, Study 1 

showed that increased learning from negative feedback classified smokers relative to non-

smokers, and decreased learning from positive feedback classified smokers and ex-smokers. In 

Study 2, these results were consistent with the inclusion of a larger sample, and the vaper group 

were classified both by increased learning from positive and negative feedback. Despite the 

non-significant findings in Baker et al. (2013), the results from Chapter 5 show a relationship 

between substance dependence and positive vs. negative learning in the PST. It is worth noting 

however that few group differences in Approach AC/BD choices were observed between groups 

in the studies reported here, and that methods of analysing the PST test phase differ between 

studies (i.e., in Baker et al. 2011, participants were grouped into positive versus negative 

learning groups, which may differentially affect inferences). The computational model analyses 

reported here and in Baker et al. (2018) may be more useful for comparing PST-related 

performance across studies.  

It is also worth noting that Baker et al. (2013) highlighted a lack of test-retest reliability 

for approach and avoidance accuracy in the PST test phase. Correlations between outcome 

variables measured between 7-8 weeks apart were low (r’s = .09, -.08). In Chapter 6 (Appendix 

D, Table D. 1), correlations between Approach AC and Approach BD at T0, T1, and T2 were 

considerably higher (all r’s > .4), indicating more adequate test-retest reliability within a four 
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week timeframe. To the best of knowledge, these are the first reported tests of test-retest 

reliability for the PST.  

Relative utility of Computational, PST Summary, and Personality Models for predicting substance 

use  

Across the empirical chapters, the Computational, PST Summary, and Personality 

Models showed a similar model fit overall. Although the test models outperformed the 

demographic models on average, computational features of decision-making did not predict 

substance group membership greater than the PST Summary or Personality model features 

(with the exception of Chapter 3, where the Personality models underperformed demographic 

models). Superior model fit was achieved by combining the computational and personality 

features. This is not uncommon in the literature; for example Gowin, Ball, Wittman, Tapert, and 

Paulus (2015) found that a personality model (including sensation-seeking, and impulsivity 

features) predicted methamphetamine relapse similarly to a neuroimaging model with fMRI 

activity recorded during a reward task. Our findings may not be surprising given a recent study 

by Eisenberg et al. (2019). In a data-driven approach comparing self-report and task-based 

factors as predictors of ‘real-world’ outcomes such as binge drinking, problem drinking, daily 

smoking, lifetime smoking, and drug-use, task-based factors were substantially worse predictors 

compared to self-report factors (Eisenberg et al., 2019). The task-based factors included 

behavioural and computational features derived from 37 experimental tasks, including the PST 

and DDMs. The authors suggest two possible reasons for lack of correlations between task-

based dependent variables and self-regulatory behaviors: 1. these may be due to the analysis 

of task-based features probing cognitive functions that are irrelevant to the behavioural 

outcome of interest (e.g.,  the discounting and caution factors were the strongest task-based 

predictors of daily and lifetime smoking, however the ‘strategic information processing’ factor- 

including spatial span and n-back task performance DVs, did not contribute to the prediction) 

or 2. Discrepancies between tasks and outcomes may be as a result of theoretical overfitting; 
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the highly controlled nature of experimental tasks may not be ecologically valid measures of 

human behaviour in the real world. Of course, self-report measures are also subject to 

limitations regarding the individuals’ knowledge about their own behaviour- alcohol and 

cigarette consumption frequency are estimated based on memory, and may not reflect true 

consumption levels. The findings of Eisenberg (2019) and others (Enkavi et al., 2019) point to 

the notion that latent factors derived from experimental tasks are more reliable measures of 

individual differences than individual dependent variables (e.g., Approach AC in the PST). 

Although the current study found no differences in the predictive utility of computational versus 

PST summary models, further research comparing the PST with a range of experimental tasks 

indexing temporal discounting and speeded RTs may highlight other relevant factors.  

The lack of correlation between task-based (incl. computational parameters) and self-

report questionnaires is relevant to research seeking to bridge various levels of analysis, as is 

recommended by the Research Domain Criteria (Morris & Cuthbert, 2012). A core aim of the 

RDoC is to link units of analysis (i.e., genes, molecules, cells, circuits, physiology, behaviour, and 

self-report) by researching specified constructs (e.g., reward learning) in order to better 

understand and treat mental illness. However, it has been shown that multiple ways of 

measuring the same psychological construct often do not correlate with each other, even within 

the same experimental task (Hedge, Bompas, & Sumner, 2020). A possible reason for lack of 

concordance between task-based and self-report measures is that self-report measures assess 

typical performance (i.e., the tendency to perform consistently across contexts), whereas task-

based measures assess maximum performance (i.e., the ability to perform at a high level in one 

context, Wennerhold & Friese, 2020). This may apply to forced choice decision-making tasks 

such as the PST that require accurate responses often within a time limit, contrasting with time-

unlimited endorsement of items in questionnaires (e.g., endorsing ‘I make up my mind quickly’ 

on a Likert scale in the BIS motor impulsivity questionnaire, is likely different to the 

computational parameter ‘impulsive information processing’ indexed by RT speed in the DDM). 
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Computational models of task data may lead to improved reliability compared with traditional 

task outcomes (e.g., mean choice and RTs; Hedge et al., 2020), however beyond theoretical 

considerations, statistical and methodological factors have been shown to influence reliability 

(Brown, Chen, Gillan, & Price, 2020). For example, Dutilh et al., (2019) showed that methods of 

modelling reaction time data vary greatly between researchers, and that simpler models often 

lead to robust and accurate conclusions compared with more complex ones. Several joint 

computational modelling approaches to link neural and behavioural data have recently been 

proposed alongside methodological advances (Palestro et al., 2018), these provide useful 

avenues for future research linking neural covariates with decision-making behaviour.  

7. 3. Methodological Strengths & Limitations 
The studies described here possess a number of methodological strengths and limitations. 

Firstly, two versions of the PST were used in this thesis; one with a fixed number of training 

phase trials (Chapters 3, 5, 6), and one with training to criterion (Chapter 4). An advantage of 

the latter approach is that participants learn the reward/punishment contingencies to a 

predetermined level of accuracy, therefore improving inferences regarding response selections 

in the test phase (i.e., it is unlikely that stimulus selections with be random). However a 

challenge for research participants with cognitive impairments is that they may show 

consistently poor accuracy in the training phase (e.g., this has been observed among alcohol-

dependent patients in Rustemeier et al., 2012). In Chapter 3, approximately half of the total 

former opioid dependent sample did not pass the PST training phase, which limits the 

generalisability of findings. An advantage of using a fixed number of trials is that participants 

viewed each stimulus a fixed number of times. Therefore, familiarity of stimuli is unlikely to 

affect selections in the test phase. Relatedly, working memory capacity and general intelligence 

may have affected our findings. The process of learning from stimuli and events in one’s 

environment involves memory, as state-action values are held and updated across time. Collins 

and Frank (2012) suggest that working memory and reinforcement learning are two 
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complementary systems, with the former being constrained by capacity and sensitive to 

forgetting. It has been shown that RL impairments in clinical groups such as schizophrenia 

patients may arise due to reductions in working memory capacity rather than instrumental 

learning (Collins & Frank, 2014; 2017).  

 Secondly, state-dependent factors were not controlled for in the analysis. Emotion and 

mood have been demonstrated to affect learning (Eldar & Niv, 2015), while individual 

differences in PST performance have been observed in university samples with varying levels of 

self-reported anxiety and depression (Cavanagh et al., 2019), and trait anxiety has been shown 

to affect boundary separation in the DDM (White et al., 2010). It is conceivable that these factors 

may have affected participants’ responding in the current studies. Craving and withdrawal may 

also have affected decision-making, particularly in the opioid-dependent and smoking samples. 

For example, Lighthall et al. (2013) found that stress modulated PST performance, such that 

increased stress led to diminished learning from recent feedback in the training phase and 

greater learning from positive feedback in the test phase. Future research may address state-

dependent factors through the use of smartphone-based ecological momentary assessments, 

virtual reality, and wearable devices to provide relevant real-world data (Gillan & Rutledge, 

2021; Johnson & Picard, 2020).  

A third consideration is the difference in sample sizes between empirical chapters. Some 

substance-dependent samples may be challenging to recruit for laboratory-based studies (e.g., 

vapers and ex-smokers). Online recruitment methods may be particularly useful in targeting 

these samples, and have shown reliability and validity in the context of self-report measures 

among alcohol populations (Kim & Hodgins, 2017). Strickland and Stoops (2019) note that 

platforms such as Mechanical Turk can be used to complement lab-based studies in addiction 

science and may be suitable for longitudinal designs. Although limitations regarding random 



 
 

211 
 

sampling and clinical recruitment are apparent in crowdsourced studies (Mellis & Bickel, 2020), 

it provides an alternative to traditional methods of study recruitment.  

 A strength of the current analysis was the use of cross-validation procedures with out-

of-sample prediction. Model performance was validated based on the prediction accuracy when 

applied to unseen data, which improves the generalisability of findings, and aligns with the goals 

of precision medicine. The use of in-sample predictions, combined with small sample sizes, 

presents a challenge for interpreting effect sizes in psychological research. Although internal 

cross-validation improves the generalisability of findings presented here, an external validation 

dataset would be beneficial. A second strength of the analysis was the use of an open-source 

code to fit HDDMs. The HDDM package (Wiecki et al., 2013) was developed with priors informed 

by the PST literature and has been validated in several papers to date. This contributes towards 

reproducibility of findings in computational modelling by allowing independent researchers to 

implement the same model in different environments (Poldrack et al., 2019).  

7. 4. Conclusion 
In conclusion, this thesis provides evidence that features of value-based decision-making are 

predictive of substance misuse and dependence. Across four studies, combined RL and DDMs 

were fit to choice and RT data from a probabilistic reward learning task, and these were used to 

predict various substance-dependence phenotypes. Across four studies, I sought to predict 

alcohol misuse risk, length of opioid abstinence, smoking group membership (i.e., current 

smoker, ex-smoker, vaper, non-smoker), and time to nicotine relapse during a smoking quit 

attempt. Four models were compared: a PST Summary model with mean choice accuracy, a 

Computational Model with mean parameter estimates from DDMs applied to the training and 

test phase, a Personality Model with self-report impulsivity, and a Combined model. The 

Combined Models outperformed the remaining models overall, however task-based models 

performed similarly to self-report models with the exception of Chapter 4. Reduced boundary 

separation characterised higher-risk alcohol misuse, current-smokers from non-smokers, and 
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shorter length of opioid abstinence, highlighting the role of response caution in predictions 

regarding substance dependence. Drift-rate was also a significant predictor, and differentially 

classified ex-smokers depending on stimulus conflict in the PST test phase. These findings 

highlight the utility of RLDDMs in investigating clinically relevant features of instrumental 

learning and decision-making, and identify features of decision-making (i.e., evidence 

accumulation and decision-threshold) that are relevant to substance-dependence and 

abstinence.    
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Appendix A: Chapter 3 Supplemental Results 

 

A. 1. Correlations 
Correlations between computational model parameters and the BIS and AEQ are presented 

below.  

BIS 

In the correlations between computational model parameters and the BIS, positive learning 

rate correlated negatively with the three 2nd order sub-scales – the remaining distributions 

centred on or close to 0, indicating low rho values. 
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The set of correlations between the AEQ and drift-diffusion model parameters (high-risk 

sample N = 64) showed a positive relationship between boundary separation in the PST 

training phase and the arousal/power, assertiveness, positive global changes, sexual 

enhancement, and social/physical pleasure sub-scale. The boundary separation parameter 

from the test phase also showed a positive correlation with the social/physical pleasure and 

assertiveness sub-scales. Collectively, these suggest that increased response caution in the PST 

(i.e., increased boundaries or threshold to execute a decision response) is associated with 

increased expectancies regarding the reinforcing value of alcohol consumption among those in 

the high-risk alcohol group. Non-decision time in the training phase showed a positive 

relationship with social/physical pleasure, and drift-rate showed a positive relationship with 

relaxation/tension reduction. Similarly, drift-rate for high-conflict loss stimuli (LL) in the test 

phase showed a positive correlation with social/physical pleasure.   
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A. 2. Non-hierarchical models 
To investigate the potential effect of shrinkage towards the group posterior mean in RLHDDM 

parameter estimates, separate RL(H)DDM models were also fit to each subject individually. 

The mean parameter estimates from these models were correlated with models hierarchically 

constrained by the whole group (i.e., hierarchical models were used in the subsequent 

machine learning models). All mean parameters from the individually estimated RLHDDM 

models correlated significantly (p’s<.05) with the group model (a: rho = 0.99, p<.001; alpha 

neg.: rho = 0.68, p < .001; alpha pos.: rho = 0.77, p<.001; v: rho = 0.89, p<.001; t: rho = 0.99, 

p<.001). All mean parameters from the individually estimated HDDM models correlated 

significantly (all p’s < .0001) with the group model estimates (a: rho = 0.99, t: rho = 0.99, vLL: 

rho = 0.99, vWL: rho = 0.99, vWW: rho = 0.99).  

 

A. 3. Between-groups computational models 

RL-HDDM 
An RLHDDM model (with 15,000 samples, 3,000 burn-in, and thinning to retain every 3rd 

sample) was fit with separate parameters estimated for low versus high risk alcohol groups. 

This model showed good convergence using the same Gelman-Rubin method (all values <1.1; 

highest value = 1.03). The group model produced a DIC of 27141.59.  
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Group posteriors 

Posteriors for each of the RL-HDDM parameters were compared for overlap between the high 

and low alcohol groups. The negative learning rate parameter for the high alcohol group was 

significantly higher than the low alcohol group (q=<0.001). The remaining group posteriors did 

not differ significantly between groups.  
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Figure 1. Posterior probability plots of parameters in the RL-HDDM compared by group, 1=low 

alcohol, 2=high alcohol.  

 

Between-groups HDDM 
Two types of group HDDM model were fit, three MCMCs were run for each type of model with 

12,000 samples (2,000 burn-in). Model convergence was assessed using the Gelman Rubin 

statistic, with values <1.1 indicating convergence. In Model 1 separate parameters (a, v, t) 

were estimated for the low and high alcohol groups, Gelman-Rubin values for all parameters 

were <1.1 (max. value was 1.04), signifying adequate convergence of chains. Model fit was 

assessed using DIC, 21618.02. In Model 2, separate parameters were estimated for alcohol 

groups (a, t), and separate drift-rate parameters were additionally estimated based on the 

level of conflict in stimulus pairs (i.e., vLL, vWL, vWW). LL stimulus pairs were those which 

included two shapes that were consistently punished in the training phase of the PST (e.g., BD, 

DF), WW were those pairs with two consistently rewarded shapes (e.g., AC, CE), and WL were 

those pairs with a combination of rewarded and punished shapes (e.g., AD, CB). Model 2 
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showed good convergence (max. rhat = 1.004), and better fit (DIC= 19572.36) compared with 

Model 1. Therefore, the group posteriors from Model 2 are presented below.    

Group Posteriors 

Posteriors for each of the RL-HDDM parameters were compared for overlap between the high 

and low alcohol groups. The parameters did not differ significantly between low (1) and high 

(2) alcohol groups (q > .05), however non-decision time, drift-rate for WL, and drift-rate for 

WW trended towards significance ( q = .067, .056, .072) .  
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A. 4. Machine Learning Models with Residual Features 
In order to control for the effects of age and gender in the machine learning model, the 

features were adjusted using unstandardized residuals. Model 1 included the computational 

parameters from the RLHDDM and HDDM, and Model 2 included these parameters with the 

addition of the BIS scales. These were conducted with AUDIT score as the linear dependent 

variable (Tables 1-2). 

For Model 1, the test model outperformed the demographic model in 72% of cases based on r 

score, and 51% of cases based on mean squared error. Mean r score for the test model (0.12 

(SD=0.07)) was significantly higher for the test model compared with the demographic model 
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(-0.09 (0.13)), w=6.44, p<001. MSE for the test model (-32.84 (1.12)) was not significantly 

higher than the demographic model (-32.67 (0.97)), p=.78.  

 

Table 1. 

Feature 
Mean Choice 
Frequency - Test Mean Beta - Test 

Mean Choice 
Frequency - 

demographic 

Mean Beta - 

demographic 

intercept 5 9.44348053 5 9.443 

alpha_neg 4.87 0.726129206 1.57 0.0294 

hddm_vWL 3.88 0.282781622 1.01 0.00257 

hddm_t 3 -0.169196583 1.44 -0.0222 

rlddm_a 2.34 -0.124910722 1.48 0.0203 

rlddm_t 2.33 -0.119317554 1.15 0.0286 

rlddm_v 1.22 0.052244757 1.48 0.0651 

hddm_vWW 0.8 0.023446716 1.2 0.045 

hddm_a 0.75 -0.018751271 1.2 0.05519 

alpha_pos 0.69 -0.017244107 1.42 0.0380 

hddm_vLL 0.66 -0.037786541 1.52 0.0686 

 

For Model 2, with the addition of the remaining features, the test model outperformed the 

demographic model in 95% of cases based on r score, and 91% of cases based on mean 

squared error. Mean r score for the test model (0.18 (SD=0.05)) was significantly higher for the 

test model compared with the demographic model (-0.12 (0.12)), w=11.76, p<001. MSE for the 

test model (-30.85 (0.92)) was significantly higher than the demographic model (-33.25 (1.08)), 

p<.001. Mean absolute error was significantly lower for the test model (4.65 (0.06)) compared 

with the demographic model (4.76 (0.08)),p<.001.  

Table 2. 

Feature 

Mean 
Choice 
Frequency - 
Test Mean Beta - Test 

Mean Choice 
Frequency - 

demographic 

Mean Beta - 

demographic 

intercept 5 9.452769047 5 9.443 

BIS_2_non-
planning 4.98 0.833449388 

1.1 0.0219 

BIS_2_motor 4.73 0.493075544 1.01 0.0089 

alpha_neg 4.08 0.40046887 1.52 -0.0149 

BIS_2_attentional 3.1 0.185382097 1.04 -0.0165 

hddm_vWL 2.56 0.101877693 1.21 0.0013 

rlddm_v 2.01 0.098001306 1.24 0.013 

rlddm_a 1.96 -0.097653576 1.3 -0.0065 

hddm_a 1.38 -0.059565772 1.09 0.011 

hddm_vWW 1 0.032883376 1.31 0.0341 

alpha_pos 0.32 0.003256638 1.29 0.0174 

hddm_vLL 0.28 0.00562343 1.53 0.022 
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rlddm_t 0.26 -0.0060759 1.17 0.0034 

hddm_t 0.15 -0.00163395 1.13 0.0174 
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Appendix B: Chapter 4 Supplemental Results 
 

B. 1. Correlations 
Correlations between the RLHDDM parameters and the BIS showed a negative relationship 

between boundary separation and the Motor and Non-planning scales, and a negative 

relationship between non-decision time and the Motor scale.  

Figure B. 1. Distribution of rho (upper row) and log10(p-values; lower row) for correlations 

between RLHDDM computational model parameters and the BIS.  
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Correlations between the RLHDDM parameters and the SUPP-S showed a negative 

relationship between the boundary separation parameter and positive urgency, and a negative 

relationship between the non-decision time parameter and all SUPP-S scales. These indicate 

that smaller non-decision times were associated with higher positive and negative urgency, 

higher lack of perseverance and premeditation, and higher sensation-seeking. Narrower 

response thresholds (i.e., reduced caution) were associated with higher positive urgency.  

 

Figure B. 2. Distribution of rho (upper row) and log10(p-values; lower row) for correlations 

between RLHDDM computational model parameters and the SUPP-S.  
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B. 2. Comparison of HDDM Drift-rate Conditions 
 

The proportion of posterior differences between the WW and LL conditions for the drift-rate 

parameter was significant (q = .022), however the differences between the remaining 

conditions were not considered significant (q’s > .12). Figure B. 3. shows that drift-rates for the 

WW stimulus type were higher than LL and WL stimulus types. 

 

Figure B. 3. Posterior of drift-rate conflict conditions (Win-Win-, Lose-Lose, and Win-Lose) 

from drift-diffusion model applied to the Probabilistic Selection Task test phase. 

B. 3. Non-hierarchical RLDDM 
To compare the effects of potential shrinkage towards the mean in hierarchical model 

parameter estimates, the same analysis was conducted using RLDDM models fit to subjects 
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individually (i.e., non-hierarchical models). The mean parameter estimates from the 

hierarchical model correlated significantly with those from the non-hierarchical models (a: 

rho=0.99,p<.001; t: rho=0.99, p<.001; v: rho= 0.95,p<.001; negative learning rate: rho=0.63, 

p<.001; positive learning rate: rho=0.66,p<.001). Scatter plots of hierarchical vs. non-

hierarchical are presented below. 
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Appendix C: Chapter 5 Supplementary Results 

 

C. 1. Non-hierarchical models 
These models were fit to each subject individually, to test for potential differences in 

estimates between hierarchical models, which are constrained by the whole group, and non-

hierarchical models. 

Parameter estimates from the hierarchical RLDDM and HDDM models were compared with 

models fit to subjects individually (i.e., non-hierarchical). Mean parameters from both types of 

model correlated significantly in all cases (all p’s<.001). In the RLDDM for smokers vs. non-

smokers, a rho=0.98, v rho=0.62, t rho=0.99, pos. learning rate rho=0.41, and negative learning 

rate rho=0.58. In the RLDDM model with four groups (smokers, ex-smokers, vapers, non-

smokers), a rho=0.98, v rho=0.72, t rho=0.99, pos. learning rate rho=0.44, neg. learning rate 

rho = 0.61. In the HDDM model with four groups, a rho=0.63, vLL rho = 0.64, vWL rho = 0.73, 

vWW rho = 0.67, and t rho = 0.62.  

  



 
 

235 
 

 

Appendix D: Chapter 6 Supplementary Analysis 

D. 1. Topoplots of EEG data 
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Figure D. 1. Topoplots of EEG activity post-feedback onset in the Probabilistic Selection Task 

training phase at T0, T1, and T2 follow-up sessions.   
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Figure D. 2. Topoplots of EEG activity post positive feedback onset in the Probabilistic Selection 

Task training phase at T0, T1, and T2 follow-up sessions.   

 



 
 

239 
 

 



 
 

240 
 

 

Figure D. 3. Topoplots of EEG activity post negative feedback onset in the Probabilistic 

Selection Task training phase at T0, T1, and T2 follow-up sessions.   

 

D. 1. Comparison of Computational Models 
Table D. 1. 1. Summary of RLHDDMs fit to the training phase of the PST. 

RLHDDM MODEL DIC MAX. RHAT SAMPLES 

(BURN-IN) 

GROUP/INDIVIDUAL 

a ~ theta_next trial 

(Fcz, 200-400 ms 

post-feedback) 

Mean: 

264.87 

 12,000 

(2,000) 

Individual 

All params free to 

vary (a, v, t, alpha) 

Mean: 

219.45 

1.006 12,000 

(2,000) 

Individual 

a ~ 

theta:C(feedback, 

Treatment(0))' 

Mean: 

265.28 

 10,000 

(2,000) 

Individual 

 

Table D. 1. 2. Summary of HDDMs fir the test phase of the PST. 

HDDM MODEL DIC MAX. RHAT SAMPLES 

(BURN-IN) 

GROUP/INDIVIDUAL 

All params free to 

vary (a, v, t) 

68382.89 1.003 12,000 (2,000) Group 
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A,v,t depend on = 

study timepoint 

68829.72 1.007 12,000 (2,000) Group 

v depends on 

stimulus conflict 

46689.15 1.003 12,000 (2,000) Group 

Regressor: A ~ 

study timepoint, v 

depends on 

stimulus conflict 

49643.72 1.02 5,000 (500) Group 

  

D. 2. Within-subjects of abstinence on boundary separation 
 

The between-subjects models on the test phase of the PST suggested that there may be 

differences in boundary-separation and non-decision time between study time-points. To test 

for within-subjects effects of study time-point (i.e., abstinence) on drift-diffusion model 

parameters during the PST test phase, boundary-separation was assumed to vary according to 

the linear model: ‘a ~ C(time-point, Treatment(T0))’, with baseline (T0) as the reference 

category.  

 

 

Relative to the intercept/baseline, the regression coefficients for T1 and T2 were negative and 

did not overlap with zero (see below). This suggests that abstinence reduced boundary-

separation on the test phase of the PST, corresponding to a reduced threshold for evidence 

accumulation with increased abstinence.  
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Figure D. 4. Within-subjects effects of changes in boundary separation across study time 

points. Intercept = Baseline, T1 = Week=1, T2 = Week-4. 

 

 

 

D. 1. Supplementary Analysis of Event-related Potential-Reward Prediction Error 

Modulation 

D. 1. 2. Reinforcement Learning 
Reinforcement learning models were fit to choice data from the training phase of the PST, as 

described in previous research (Cavanagh et al., 2019). Based on previous findings in the 

literature, it was expected that an RL model with separate learning rates for positive and 

negative feedback would best fit the data. An RL model with a singular learning rate was formally 

compared with the dual learning rate model. In these models, state-action values were 

estimated for each stimulus type (i.e., A, B, C, D, E, F), and a softmax choice rule was used to 

predict the most likely action on each trial. As demonstrated in equation 1: State-action values 
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(Q) were updated in line with the delta learning rule with a learning rate (α) scaling the 

prediction error (δ).  

Qt = Qt−1 + α(δ)     (1) 

Action selection probability was predicted using the softmax logistic function. Both models 

included a free gain adjustment parameter (β) that indicates the probability that an agent will 

select the most rewarding stimulus on a given trial. Lower β values indicate random choice 

selections, or more exploratory selections that don’t conform to selections on previous trials, 

whereas higher values imply a greedy policy whereby the most-rewarded stimuli are 

consistently chosen in the task. The best-fitting model was chosen based on a combination of 

procedures outlined in Cavanagh et al. (2019), including Pseudo-R2  , Akaike Information 

Criterion, and the likelihood ratio test to compare the relative model performance. Prediction 

errors from the best-fitting model were used as single trial regressors in the EEG analysis. 

Prediction errors were calculated as the difference between reinforcements (R) and Q-values 

on each trial (Q-values were initialised at 0.5 for equiprobable initial selection): PE = R – Q.  

6. 3. 1. 2. RL Behavioral Summary 

No significant group differences in mean RL computational parameters were observed between 

T0 and T1 (N = 31; Table 6. 2; all p’s > 0.2), or between baseline parameters for those who 

eventually relapsed versus those who remained abstinent (Table 6. 3; all p’s > .05). 

Table 6. 2. Mean reinforcement larning parameters at each sudy time-point.  

 T0 T1 T2 

POSITIVE LEARNING 

RATE 

0.31 (0.31) 0.35 (0.31) 0.34 (0.35) 

NEGATIVE 

LEARNING RATE 

0.12 (0.23) 0.14 (0.29) 0.18 (0.29) 

BETA 154.27 (429.18) 48.77 (245.39) 72.21 (306.83) 
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Table 6. 3. Mean reinforcement larning parameters at (i) T0 for those who eventully abstained 

at T1 and (ii) T0 for those who eventully relapsed at T1.  

 T0_ABSTAIN T0_RELAPSE 

POSITIVE LEARNING 

RATE 

0.32 (0.31) 0.30 (0.32) 

NEGATIVE LEARNING 

RATE 

0.09 (1.9) 0.12 (0.24) 

BETA 166.42 (440.8) 149.19 (426.99) 

 

D. 1. 3. Single trial analysis 
The single trial analysis was conducted to determine if reward prediction errors significantly 

modulated ERPs in the time-window 0-600 ms post-feedback in the PST training phase (i.e., 308 

time-points, given a sampling rate of 512Hz), similar to previously dexcribed methods (Huaser 

et al., 2014, Cao et al., 2021). Linear regression models identified when the RPE value predicted 

the ERP amplitude, and the beta weights from these models for each study participant were 

then subjected to a one-sample t-test. The significance threshold of the one-sample t-test was 

assessed by comparing t-values to null models that were constructed by performing the same 

analysis 1,000 times with random label permutation (i.e., shuffled RPE values within each 

participant). To test for group differences in RPE-ERP modulation between groups (i.e., between 

T0 and T1, and between baseline participants who eventually relapsed versus those who 

remained abstinent), t-tests with beta weights from the linear regression models were 

compared at each time-point (i.e 0-600ms). The significance of these t-tests were determined 

by constructing 1,000 null models with shuffled group labels. At each time-point, if the t-value 

from the true model exceeded the bottom 2.5 or top 97.5 percentile of the null models, it was 

deemed statistically significant.  

The ERP data were transformed into current source density for the single trial analysis. 

Positive and negative RPE trials at the FCz electrode were entered into a multiple regression 

with the computationally derived trial-by-trial prediction error. The upper and lower 
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significance thresholds were determined using random label permutation with 1000 shuffled 

beta scores.  

Whole Group 
In the whole T0 sample, RPEs significantly modulated two ERP components (from 230 to 302ms, 

37 consecutive time-points from 117 to 155; and from 324 to 466ms, 73 consecutive time-points 

from 166 to 239; Fig 1).  At T1, two ERP components were significant, from 226 to 279ms (27 

consecutive time-points from 116 to 143), and from 332 to 452ms (62 consecutive timepoints 

from 170 to 232; Fig 2). At T2, RPE significantly modulated ERPs from 236 to 359ms (28 

consecutive time-points from 184 to 212) and from 246 to 265ms (10 consecutive time-points 

from 126 to 136; Fig 3).  

 

Fig 1. 
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Fig 2. 

 

Fig. 3 
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Single-trial Modulation Group Comparisons 
To further explore ERP/PE modulation effects, two group comparisons were made: (i) Baseline 

(T0) modulation for those who relapsed within the first week of their quit attempt (n = 79), 

versus those who were successfully abstinent at one-week (n = 33; Fig 1 & 2), and (ii) Baseline 

(T0) versus T1 modulation effects for abstinent participants (N = 33; Fig 3 & 4). Independent and 

paired samples t-tests were conducted to compare the beta values between groups, with 1000 

shuffled group label permutations indicating the threshold of significance. To strengthen the 

interpretability of the effects, Bayes Factors are presented for all group comparisons (Figs. 3 & 

4). No significant group differences in modulation effects were observed for both (i) and (ii).  

(i) 

 

Fig. 1.  
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Fig. 2. 

(ii) 
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Fig. 3. 

 

Fig. 4.  

 

Fig. 6 
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D. 3. 3. Single-trial Cox Regression 
A survival analysis using Cox regression was run to predict time to relapse. Age, Gender, Marital 

Status, Education and Monthly Income were included as co-variates in all models. The base/null 

model consisted of three time-dependent variables from the MSPSS scale; Family, Friends, and 

Significant Other (mean C index = 0.572). A model with the time-dependent Q learning 

computational parameters (Positive and negative learning rates, and beta temperature) and 

base model variables did not outperform the base model (mean C index = 0.558). A model with 

the beta weights from each of the 308 timepoints of the single trial analysis did not produce a 

higher C index score (mean = 0.521) than the base model.  A model with variables from the 

PSTNFB (Approach A, Approach B, Cox AC, Cox BD) performed similarly to the base model (mean 

C index =0.571). This suggests that these variables did not predict time to relapse beyond the 

questionnaire measures.  

 

D. 2. Correlation between PST at Study Time-points 
Table D. 2. 1. Correlations between Approach AC and Approach BD at each study time-point. 0 

= Baseline, 7 = Week-1, 28 = Week-4. 

   
Approach 

_AC_0  

Approach 

_BD_0  

Approach 

_AC_7  

Approach 

_BD_7  

Approach 

_AC_28  

Approach 

_BD_28  

Approach_AC_0   —                       

Approach_BD_0   0.337  ***  —                   

Approach _AC_7   0.471  **  0.173   —               

Approach _BD_7   0.374  *  0.500  **  0.506  **  —           

Approach _AC_28   0.580  **  0.628  **  0.913  ***  0.549  *  —       

Approach _BD_28   0.387   0.554  **  0.582  *  0.760  ***  0.503  *  —   

* p < .05, ** p < .01, *** p < .001  
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Appendix E: Chapter 6 – Smoking Cessation Study Eligibility Criteria 

 

Suitability Checklist 
 

Participant ID: ___________________  

 

  

PLEASE CIRCLE 

Do you usually smoke at least 5-10 cigarettes per day? YES NO 

Are you willing to quit smoking on the day after your first visit to take 
part in our study, and to do so for as long as possible without using any 
nicotine replacement products? 

YES NO 

Have you ever attempted to quit smoking with professional help (not 
including nicotine replacement therapy)? 

YES NO 

Do you own an iPhone or an Android smartphone? YES NO 

Are you right-handed? YES NO 

Have you ever been in an accident during which you suffered blunt 
force trauma to the head? 

YES NO 

Have you ever been hospitalized for traumatic brain injury (this does 
not include concusions)? 

YES NO 

Do you have Receptive Language difficulties? YES NO 

Do you ingest/smoke cannabis regularly (twice a month)? YES NO 

Do you currently or have you previously had an alcohol problem? YES NO 

Do you currently or have you previously had a drug problem? YES NO 

Do you have a learning disability? (e.g., dyslexia) YES NO 

Have you ever been diagnosed with any general and/or specific 
intellectual disability?  

YES NO 

Have you ever been diagnosed with a mental illness? (e.g., major 
depressive disorder or personality disorder) 

YES NO 

Do you have a physical disability, which you feel might negatively 
affect your performance in this study? (e.g., motor impairment, or the 
effects of a stroke)  

YES NO 

Inclusion criteria 
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• Current daily smoker: self-reported as having smoked at least 100 cigarettes in their 

lifetime, and currently smoking at least 5 cigarettes a day for at least the last 12 months 

(without any quit attempts during the past week) 

• Baseline Carbon Monoxide (CO) ≥ 5 parts per million (ppm) and a cotinine score ≥ 1 

(NicAlert reading) 

• Between 18 and 70 years old 

• English fluency (native speakers or a score > 16 on an online test: 

https://www.cambridgeenglish.org/test-your-english/general-english/) 

• Willing to come into Trinity College Dublin to take part in three laboratory sessions 

• Normal or corrected to normal vision (self-reported) 

• Normal or corrected to normal hearing (self-reported) 

• Willing to quit smoking in the next 30 days 

• An iPhone (iOS8 or above) or an Android (4.0.3 or above) smartphone and have mobile 

internet access 

 

Exclusion criteria 

• For women, (self-reported) currently pregnant or lactating 

• Consuming any recreational drugs besides tobacco/alcohol and cannabis (less than twice a 

week): self-reported 

• Currently or have previously had problems controlling alcohol/drug consumption: self-

reported 

• Currently taking prescription drugs other than SSRI’s: self-reported 

• Learning or language disabilities (e.g., dyslexia or receptive language difficulties): self-

reported 

• Physical disability (e.g., motor impairment, or the effects of a stroke) 

• Any previous experience of traumatic head injury and/ or loss of consciousness: self-

reported 

• Self-reported history of neurological (e.g., MS, Parkinson’s or previous stroke) or 

psychological diagnosis 

 

  

https://www.cambridgeenglish.org/test-your-english/general-english/
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