
Thermodynamics of interacting

many-body quantum systems

Marlon E. Brenes Navarro

School of Physics

A thesis submitted in partial fulfilment of the requirements towards the degree of

Doctor of Philosophy in Physics

Hilary Term 2022





i

Declaration

I declare that this thesis has not been submitted as an exercise for a degree at this or
any other university and it is entirely my own work.

I agree to deposit this thesis in the University’s open access institutional repository
or allow the library to do so on my behalf, subject to Irish Copyright Legislation and
Trinity College Library conditions of use and acknowledgement.

Signed: Date:





iii

Thermodynamics of interacting many-body quantum systems

Marlon Brenes
Hilary Term 2022

Abstract

Technological and scientific advances have given rise to an era in which coherent
quantum-mechanical phenomena can be probed and experimentally-realised over un-
precedented timescales in condensed matter physics. In turn, scientific interest in
non-equilibrium dynamics and irreversibility signatures of thermodynamics, such as
transport, has taken place in recent decades, particularly in relation to cold-atom
platforms and thermoelectric devices. Furthermore, the role of non-linear interactions
in quantum thermal machines, whether a hindrance or a resource, has yet to be fully
understood particularly in the finite-temperature regime. Diverse numerical and an-
alytical approaches have come to fruition recently, designed to target these problems
in certain regimes regulated by microscopic parameters.
This thesis is divided in two parts. Part I is devoted to the study of spin/particle
transport in strongly correlated systems in the regime of linear response and to the
topic of thermalisation. We begin by addressing the role of integrability and its conse-
quences related to transport, which we then use in the context of the single impurity
model, where an integrable model on a one-dimensional lattice is perturbed by an
impurity around the centre of the chain. Exhibiting the signatures of quantum chaos,
we motivate our work by questioning the nature of transport in this model. We find
that despite its chaotic signatures, transport remains ballistic as in the unperturbed
model. This result brings us to the question of thermalisation, a topic which is el-
egantly explained in the context of the eigenstate thermalisation hypothesis (ETH).
The ETH postulates that an energy eigenstate encodes the equilibrium ensemble prop-
erties in sufficiently complex systems and that local observables in systems initially
kept away from equilibrium will eventually thermalise under unitary evolution. Using
this framework we find that thermalisation in the single impurity model is anoma-
lous, and the statistical properties of the unperturbed model end up embedded in
the perturbed model. We then proceed to investigate the consequences of eigenstate
thermalisation in the multipartite entanglement structure of the eigenstates in chaotic
Hamiltonians through the quantum Fisher information. We find that the quantum
Fisher information can be used to discriminate a pure eigenstate ensemble from a
true thermal state. Finally, we address the statistical correlations between matrix ele-
ments of local observables in the energy eigenbasis, and provide a connection between
these correlations and the timescales of late-time chaos from the out-of-time-order
correlators.
In Part II we delve into the theory of open quantum systems, particularly in config-
urations whereby an interacting quantum system is kept out of equilibrium by the
action of thermal reservoirs. We begin studying boundary-driven systems, in which a
many-body quantum system is driven out of equilibrium be inducing and removing
excitations from the boundaries. This treatment allows us to solidify our results in
Part I. We criticise boundary-driven configurations from the thermodynamic perspec-
tive and argue that such a procedure can only be used to evaluate infinite-temperature
properties. Motivated by this fact, we then propose a novel methodology to tractably
address finite-temperature transport and thermodynamics in many-body quantum
systems, in the context of autonomous thermal machines, overcoming the limitations
of boundary-driven configurations.
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I.6.3 Response function SÔ(ω) computed directly from ETH and in the canonical

ensemble for L = 16 (inset) and L = 20 (main) for T = 5α. . . . . . . . . 117
I.6.4 The quantum Fisher information and the corresponding density for different

system sizes as a function of temperature in both the canonical ensemble
and corresponding ETH prediction . . . . . . . . . . . . . . . . . . . . . 118

I.6.5 Diagonal matrix elements of B̂HB and B̂IS as a function of the energy density
εn ..= (En − Emin)/(Emax − Emin) and of the system size L . . . . . . . . . 122

I.6.6 Dynamics of the two-point correlation function evaluated in the canoni-
cal ensemble at temperature T and in the ETH with a compatible energy
density for sums of local operators . . . . . . . . . . . . . . . . . . . . . 123

I.6.7 Probability distributions of off-diagonal matrix elements in a small fre-
quency range ω . 0.05 for B̂HB and in (b) for B̂IS . . . . . . . . . . . . . 124
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Part I

Isolated quantum systems
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Chapter I.1

Introduction

Recent progress has opened up an era in which quantum phenomena can be exper-

imentally observed and controlled on a mesoscopic scale [1–4]. These developments

have stimulated interest in the thermodynamics of quantum systems [5–8]. Signif-

icantly, these studies provide the understanding of the effect of noise on quantum

devices, as it could suppress or enact desirable quantum behaviour. Even though the

emergence of large-scale thermodynamics has been placed on a firm theoretical and

experimental footing, many open questions remain. Further research is needed to

determine how the interplay between interactions, external noise and disorder gives

rise to observable signatures of irreversibility, e.g., transport. Such questions are not

only fundamental for our understanding of many-body physics, but also have appli-

cations in the design of tailored quantum matter that could enhance the functionality

of future computers and energy-conversion devices [6]. Among the latter, thermo-

electric devices which convert heat into electrical energy highlight the importance to

study systems in which this conversion may be favourable [6]. Furthermore, recent ad-

vances in noisy intermediate-scale quantum devices [9], whose backbone constituents

are entangled and interacting many-particle systems, call for the need of theoretical

understanding of the role of interactions at the fundamental level.

Isolated quantum systems initially brought away from equilibrium will relax under the

underlying microscopic dynamics, in general, through the transport of the conserved

quantities dictated by the conservation laws [10, 11]. These conservation laws allow

one to make a clear distinction between two different classes of quantum systems in

3
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isolated environments. The first class are the ones for which only macroscopic and

extensive quantities are conserved, such as energy and number of particles. These

quantum systems are usually dubbed generic, chaotic and/or non-integrable. Some

quantum systems, however, present an extensive set of microscopic non-trivial local

conserved quantities which strongly affect how equilibrium is attained. This second

class of quantum systems is known as integrable. Macroscopic irreversibility is mani-

fest by the mechanism under which a quantum system reaches equilibration, through

the spread of quantum correlations and transport of conserved quantities. Most in-

terestingly, the degree of control now achievable over devices and experiments at the

quantum level allow the exploration of quantum systems that are tuned between the

integrable and non-integrable regimes, by controlling microscopic parameters within

the system [12, 3].

Understanding out-of-equilibration phenomena brings us to the question of transport

in quantum systems, which, in spite of theoretical and experimental advances [1], still

presents challenges particularly in the finite-temperature regime. One-dimensional

quantum systems are typically used as prototypes to unravel and to understand these

phenomena, which are usually modelled by either spin chains or particles hopping on

a lattice. Within these models, spin (particle) currents are the quantities of interest

and define regimes of conductivity such as insulators, regular conductors or super-

conductors [13, 14]. Non-interacting systems typically allow for simple solutions and

within the regime of linear response [15] transport of conserved quantities, such as

particle number and energy, is ballistic, a regime also known as coherent, which entails

currents that do not decay as the size of the system is increased. A well-known ex-

ception happens when disorder is modelled in lattice systems, leading to an insulating

regime known as Anderson localisation [16].

The introduction of strong interactions into these models gives rise to a rich spectrum

in the transport properties. Strong interactions usually lead to complex behaviour

and transport is dictated by the pivotal role of integrability [11]. The archetypical

model is the anisotropic Heisenberg (XXZ) model, in which the competition between

coherent and incoherent effects lead to the aforementioned richness at the level of

transport. Even though the model rose as a simple way to describe ferromagnetism

in simple materials [17], advances in ultracold atoms [3] and magnetic materials [18]

now allow to directly simulate the microscopic Hamiltonian of the Heisenberg model
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with an impressive degree of tunability. Transport of conserved quantities and ther-

modynamics are intricately-related concepts in linear response, through the Onsager

relations [15].

Integrability in quantum systems is known to be susceptible to perturbations. Given

that integrability plays a role in the nature of transport and hence, on the thermody-

namics, we are motivated by the following question:

• Is the nature of integrability-breaking perturbations relevant to transport?

This simple question is the driving force of Part I and from which all of our results

and developments follow.

The role of integrability with respect to linear response transport is clear. While

integrable systems display rich transport properties which may result from different

microscopic parameters and initial conditions, non-integrable systems contain a high

degree of complexity which typically leads to normal diffusion of conserved quantities,

described by, for example, Fick’s law for particle transport. This universal behaviour

is expected to hold as a long as integrability is broken for a given system.

From this perspective, one may question if the nature of the integrability-breaking

perturbation plays a role. For instance, the anisotropic Heisenberg model perturbed

by a single magnetic impurity located around the centre of the spin chain is known to

lead to non-integrable signatures [19–21]. We are motivated to answer if indeed, the

breaking of integrability induced by such a simple perturbation is enough to render a

perfect conductor (ballistic) to a normal conductor (diffusive).

We start by describing integrability, chaos and transport in Chapter I.2. We then

proceed to introduce the microscopic models in Chapter I.3, with emphasis on global

symmetries, continuity equations, expressions for spin currents and a brief survey

about experimental realisations. We then proceed to tackle the question of spin trans-

port in the single impurity model in Chapter I.4, in the regime of linear response. We

find that a non-trivial treatment of the conductivity at finite frequencies needs to be

carried out to address transport in this system and that, although the model dis-

plays the signatures associated to non-integrability, the single magnetic perturbation

is insufficient to render a normal diffusive conductor from an unperturbed ballistic

model.

This result leads us to the question of thermalisation.
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The topic of how macroscopic irreversible behaviour comes into place from the re-

versible dynamics of the microscopic constituents has been a topic of debate since the

inception of statistical mechanics [22]. Motivated by advances in experimental reali-

sations, however, a renovated interest in fundamental questions about thermalisation

has taken place in recent decades [2, 23–25]. An ubiquitous phenomenon with a high

degree of universality in sufficiently-complex many-body systems is their tendency to

reach thermal equilibrium, in which, symmetries and conservation laws play a pivotal

role. Local observables in generic quantum systems which are initially engineered

to be away from equilibrium typically equilibrate in the limit of long-times. More-

over, the equilibration value attained at long times coincides with the expectation

value evaluated in the ensembles of statistical mechanics, a phenomenon known as

thermalisation which is nowadays understood from the perspective of the eigenstate

thermalisation hypothesis (ETH). The hallmark of this process is that the equilibrium

and thermal values do not depend on the initial conditions as long as the energy dis-

tribution of the initial state has a well-defined average with a variance that decays

as the number of degrees of freedom is increased [25]. Oblivious to the memory of

initial conditions, the dynamics that satisfy the above conditions yield true ergodic

behaviour. Integrable systems on the other hand, do not follow this prescription, their

extensive set of non-trivial local conserved quantities preventing them from thermalise

in the sense described before. Instead, if equilibration is attained, it is the generalised

Gibbs ensemble which describes such equilibration [26]. A known exception to the

thermalisation process for generic systems is the one dictated by the dynamics of

an interacting system which is perturbed by sufficiently strong disorder. Such sys-

tems display a so-called many-body localisation transition, over which ergodicity gets

broken [27].

Thermalisation in quantum mechanics is typically associated to systems with a cer-

tain degree of complexity, in which hydrodynamic behaviour is expected to prevail. In

this context, hydrodynamic behaviour refers to transport phenomena that can be de-

scribed using diffusion equations. Bringing our attention back to the single impurity

model, we are interested to investigate if thermalisation is achieved in the sense de-

scribed above. In Chapter I.5 we introduce the fundamental aspects of the eigenstate

thermalisation hypothesis, to then evaluate the peculiar occurrence of thermalisation

for the single impurity model. We find that the eigenstate thermalisation hypothesis is
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fully consistent and, moreover, local observables away from the impurity perturbation

thermalise to the statistical predictions of the unperturbed XXZ model. Remarkably,

even the total spin current is consistent with this anomalous thermalisation and the

model displays both the signatures of ergodicity and coherent transport.

Establishing these results from the perspective of eigenstate thermalisation brings us

to question further details about the fundamental aspects of thermalising systems.

In Chapter I.6 we introduce advanced topics related to eigenstate thermalisation,

a collection of results that we dubbed fine structure of eigenstate thermalisation.

We begin by questioning the entanglement structure of the eigenstates of ergodic

systems that satisfy eigenstate thermalisation, to then move to higher order correlation

functions and the role of matrix-element correlations in their dynamics.

The ETH poses that local expectation values and two-point correlation functions, the

latter of which are most relevant to noise and response functions in linear response,

are indistinguishable from their finite-temperature counterparts. The entanglement

structure, however, from true thermal ensembles and the corresponding eigenstates to

which local measurements thermalise, is in stark contrast. In particular, in Sec. I.6.1,

we show that that the multipartite entanglement structure in the ETH can be con-

nected to response functions in linear response through the quantum Fisher infor-

mation [28]. This observation will allow us to create a hierarchy of the multipartite

entanglement structure among different ensembles, including the aforementioned en-

sembles described by single eigenstates in the context of eigenstate thermalisation.

Finally, our last topic in Part I is presented in Sec. I.6.2. Out-of-time-order correla-

tors (OTOCs) have been introduced to provide perspective about chaotic behaviour

from the point of view of information scrambling [29]. OTOCs present a nested time

structure, which detects quantum chaos and correlations beyond thermal ones. The

ETH imposes a condition on the matrix elements of local observables in the eigenba-

sis of the Hamiltonian. Crucially, the off-diagonal matrix elements contain a random

component. The statistical correlations of the probability distributions of these ran-

dom variables has been the topic of interest in recent works [30, 31]. In particular,

it has been shown that there exists an energy scale that divides a regime in which

statistical correlations are very low, giving rise to random-matrix behaviour from an-

other in which statistical correlations are prevalent [32]. In Sec. I.6.2 we provide a

thorough study of these statistical correlations, and expose how they are connected to
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the timescales of late-time chaos from the perspective of the dynamics of high order

correlation functions.



Chapter I.2

Integrability and chaos: Transport

An interesting and recurring question in the theory of statistical mechanics is: How

does hydrodynamic behaviour emerge from the microscopic dynamics and the under-

lying quantum-mechanical laws? Hydrodynamic behaviour, in this context, refers to

transport phenomena that can be described using diffusion equations.

Both in classical physics and in the quantum domain, there are systems for which

Hamiltonian dynamics do not lead hydrodynamic behaviour. Such is the case when

conservation laws are at play [33, 11, 34]. In classical physics, hydrodynamic behaviour

emerges naturally from complexity.

Over the past two decades, interest in the dynamics and transport within isolated

quantum systems has received a renovated interest. Experimental advances in many-

body quantum systems have now led to the observation of quantum-mechanical effects

up to unprecedented timescales, long before any decoherent effects from the environ-

ment become important. Strides in ultra-cold atom experiments [35–39], in which

unitary dynamics dictate quantum effects, have paved the way to new lines of re-

search at the level of thermalisation and transport [40–42, 2, 5, 24, 43, 25].

The present chapter introduces the notion of hydrodynamics in classical systems in

Sec. I.2.1, followed by a brief overview of its quantum-mechanical counterpart in

Sec. I.2.2 and the consequences of integrability. Sec. I.2.3 then discusses thermody-

namics at the level of linear response, attaching the concepts of Sec. I.2.1 and Sec. I.2.2

into a more complete overview.

9
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I.2.1 Emergence of hydrodynamics in classical sys-

tems

The theory of random walks provides an approach to understand the emergence of

diffusion in classical systems [33].

Consider the probability density ρ(x, t), which we will use to describe the probability

of a particle to be located in a given point in space and time1. For simplicity, we

consider the one-dimensional problem.

The starting point is to consider a particle as it moves along a trajectory described

by an ensemble of uncorrelated random walks. At each time step ∆t, the particle

changes its position x(t) by a single step l in either direction,

x(t+ ∆t) = x(t) + l(t), (I.2.1)

Since the motion of the particle is described by an ensemble of random walks, we need

to introduce a probability distribution ψ(l) that describes the random variable l(t).

ψ(l) is a continuous probability distribution, for which we will fix its mean to be zero,

∫
dzψ(z) · z = 0, (I.2.2)

and its variance to be

∫
dzψ(z) · z2 = a2. (I.2.3)

The question we would like to answer now is: can we obtain a solution for the prob-

ability density ρ(x, t + ∆t), given ρ(x′, t)? The particle moves from x′ at time t to x

at time t+ ∆t, so the step l(t) = x− x′ occurs with a probability ψ(x− x′) times the

probability density ρ(x′, t). If we integrate over all initial positions x′, we find

ρ(x, t+ ∆t) =

∫ +∞

−∞
dx′ρ(x′, t)ψ(x− x′) =

∫ +∞

−∞
dzρ(x− z, t)ψ(z). (I.2.4)

For small step sizes in the length-scales of ρ, we may express ρ(x − z, t) as a Taylor

1For this introductory derivation, we consider non-interacting particles. In such case, the proba-
bility distribution of one particle can be used to describe an entire ensemble of particles.
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expansion around x for small values of z, to obtain

ρ(x, t+ ∆t) ≈
∫

dz

[
ρ(x, t)− z∂ρ(x, t)

∂x
+
z2

2

∂2ρ(x, t)

∂x2

]
ψ(z) (I.2.5)

= ρ(x, t) +
a2

2

∂2ρ(x, t)

∂x2
. (I.2.6)

We now assume that ρ(x, t) changes slowly during the time-step, so that we could

approximate ρ(x, t+ ∆t)− ρ(x, t) ≈ (∂ρ(x, t)/∂t)∆t to obtain

∂ρ(x, t)

∂t
=

a2

2∆t

∂2ρ(x, t)

∂x2
, (I.2.7)

which corresponds to the diffusion equation with D = a2/(2∆t). In such a way,

hydrodynamic behaviour naturally emerges from this stochastic process2.

It is now interesting to think about particle currents. Since the particles are conserved

through a section in space, we can use a continuity equation to describe the current

flowing through an element ∆x, which can be written down as

∂ρ(x, t)

∂t
= −∂J1

∂x
(I.2.8)

=⇒ J1 = −D∂ρ(x, t)

∂x
. (I.2.9)

The last equation corresponds to the linear response regime, in which the current is

directly proportional to a gradient of the density.

It is remarkable that such a simple stochastic treatment allows one to understand the

emergence of hydrodynamic behaviour in classical systems.

One could question the validity of the model employed here. After all, the dynamics of

particles in classical systems are governed by equations of motion with deterministic

variables, depending only on initial conditions. However, one can argue that these

stochastic processes simulate systems with a certain degree of complexity. Alterna-

tively, one could think that the stochastic motion of a single particle is the effective

result from the elastic collisions with other particles in a closed system with a high

degree of complexity.

2For the more general case of interacting particles, one could envisage a correlated random walk,
as opposed to the uncorrelated version we have employed. It would then be natural to assume that
hydrodynamic diffusion, or variations of it, could stem from the nature of these correlations.
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I.2.2 Hydrodynamics in quantum systems

In the quantum regime, understanding how hydrodynamic behaviour emerges is far

more complicated. Particularly, the theory of quantum mechanics is best understood

in terms of operators and states that live in Hilbert space, and not as much in terms of

trajectories (or phase space) due to the undeterministic nature of the wave function.

The consensus is that, for hydrodynamic behaviour to emerge, one needs non-linear

interactions which lead to chaos and, hence, to transport properties that resemble

those found in hydrodynamics. Understanding how this complexity emerges brings

us to the realm of quantum chaos [44–48].

The chaotic behaviour in quantum systems is observed in systems with a certain

degree of complexity and in the presence of non-linear interactions. In the discussion of

quantum chaotic systems, a categorisation that is typically employed divides quantum

systems into two different types: integrable and non-integrable.

The concept of integrability is central in the study of transport [11] and, hence, in the

identification of hydrodynamic behaviour. In the most general sense, an integrable

system is one for which an extensive set of local conserved quantities can be identified

for the system. For a one-dimensional system embedded on a lattice with a discrete

number of sites3, a set of conservation laws can be represented by local operators,

denoted by Q̂n. The conserved quantities Q̂n are of the form

Q̂n =
L∑

i=1

q̂ni , (I.2.10)

where qni are local operators involving n sites around site i, on a lattice of length L.

The Q̂n operators are conserved quantities if





[
Q̂n, Q̂m

]
= 0 ∀n 6= m,

[
Q̂n, Ĥ

]
= 0,

(I.2.11)

where [·, ·] denotes the quantum-mechanical commutator and Ĥ is the total Hamilto-

nian of the system under investigation.

The concept of hydrodynamics in quantum systems can be understood from these

3Composed of a finite or countably infinite number of sites.
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objects. In particular, Mazur’s inequality [49], was proposed to make a connection

between the existence of these conserved quantities and transport in quantum systems.

The inequality states that

lim
τ→∞

1

τ

∫ τ

0

dt〈Ĵ(t)Ĵ(0)〉 ≥
∑

n

〈Ĵ(0)Q̂n〉2
〈Q̂2

n〉
, (I.2.12)

where 〈·〉 denotes a thermodynamic average and the sum is taken over a subset of

conserved quantities Q̂n which are orthogonal to each other, i.e., 〈Q̂nQ̂m〉 = δn,m〈Q̂2
n〉.

Ĵ(t) is the current operator, which may refer to thermal or particle transport and it

is written in the Heisenberg picture: Ĵ(t) = Û †Ĵ Û = eiĤtĴe−iĤt, satisfying 〈Ĵ(t)〉 = 0

and Ĵ† = Ĵ .

If one is interested in the transport regime of a given system, one could investigate

the quantum-mechanical operator of the current Ĵ through Mazur’s inequality. In

this scenario, the behaviour one is interested in relates to the long-time decay-value

of the correlation function 〈Ĵ(t)Ĵ(0)〉.

Evaluating the right-hand side of Eq. (I.2.12) is, in general, a formidable task. Not

only does it involve the construction of the operators representing the conserved quan-

tities Q̂n, but the evaluation of the overlap with a given operator of interest. If

achieved, however, the statements one can guarantee about a system with a given

microscopic Hamiltonian description are indeed very powerful. It suffices to find that

the overlap between Ĵ(0) and one of the Q̂n is non-vanishing, to claim that in the

long-time limit the correlation function 〈Ĵ(t)Ĵ(0)〉 does not decay to zero.

Therein lies the importance of integrability at the level of transport. The hallmark

of integrable systems, which possess an extensive number of conserved quantities Q̂n,

is the observation that correlation functions in time of the form 〈Ĵ(t)Ĵ(0)〉 do not

decay to zero in the limit of infinite time. The quantum-mechanical conservation

laws prevent the dynamics from ever decaying. This translates, according to Mazur’s

inequality, to transport properties associated to the ballistic regime, in which the

expectation value of a given current operator Ĵ does not decay in the thermodynamic

limit; i.e., L→∞.

The consensus is that non-integrable systems behave in the opposite way. Since

non-integrable systems possess no extensive set of conserved quantities, the dynam-

ics of two-point correlation functions in time will, in general, decay to zero in the
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limit of infinite time. This implies that the transport properties associated to such

systems can either behave according to hydrodynamics, i.e., following the diffusion

equation [Eq. (I.2.9) with respect to a given current Ĵ ]; or according to anomalous

diffusion. Anomalous transport could be of different types, such as sub- or super-

diffusion. Anomalous or regular diffusion can be understood from the mean-square

displacement of an initially-localised perturbation as a function of time. As the pertur-

bation propagates within the system, its mean-square displacement can be expressed

as 〈∆x2〉 = 2Dt2α where 0 < α ≤ 1 [50]. Crucially, one can provide a connection

between the mean-square displacement and the decay of the expectation value of the

current operator as a function of the system size, 〈Ĵ〉 ∝ 1/Lν , where α = 1/(1+ν) [50].

From this perspective: Normal diffusion corresponds to ν = 1, sub-diffusion to ν > 1

and super-diffusion to ν < 1. Perfect and non-decaying (ballistic) currents are char-

acterised by ν = 0.

A quantum system that behaves hydrodynamically is one for which the expectation

value of a given current operator Ĵ can be expressed to be directly proportional to

the gradient of a driving field ε [51],

〈Ĵ〉 = −η∇ε. (I.2.13)

On physical grounds, the decay of the correlation function 〈Ĵ(t)Ĵ(0)〉 in the limit of

infinite time for non-integrable systems is expected for systems that display normal

conduction, in which a perturbation propagates through the system and decays in

time due to scattering or non-elastic interactions [51]. Such behaviour is described by

the diffusion equation Eq. (I.2.13)

I.2.2.1 Indicators of integrability

In many-body quantum systems, identifying the presence of conserved quantities

(or lack thereof) that may be responsible for distinct transport regimes, following

Marzur’s inequality, is usually a very complicated task. It is then common to use

diagnostic tools to try to identify if a system is integrable. The following are some of

the most common diagnostics used for this purpose.
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Figure I.2.1: Poisson and Wigner-Dyson level spacing distributions

Level spacing statistics

Spectral properties can be used as a diagnostic for integrability breaking. To inves-

tigate these, the objective is to target the solution of the eigenvalue problem corre-

sponding to the time-independent Schrödinger equation (~ ..= 1)

Ĥ |Ψ〉 = E |Ψ〉 . (I.2.14)

Such a solution is equivalent to finding a rotation matrix U that renders the Hamil-

tonian diagonal, H̃ = Û †ĤÛ . H̃ is a diagonal matrix whose elements correspond to

the D eigenvalues λα, where D is the dimension of the Hilbert space.

The probability distribution P (sα) of spacings sα of neighbouring energy levels shows

different behaviour depending on whether a quantum system is chaotic or integrable [25],

where sα = λα+1 − λα, assuming the λα are sorted in ascending order.

For an integrable system, energy levels are expected to be independent from each

other and crossings are not prohibited from occurring. This follows from the fact that

local conserved quantities would typically translate into degenerate energy levels.

Therefore, the statistics of the levels in this case is Poissonian,

P (s) = e−s. (I.2.15)

On the other hand, a hallmark of quantum chaos is that energy levels repel each

other and become correlated. As obtained from random matrix theory [52], the level

spacings of quantum chaotic systems with time-reversal invariance exhibit a Wigner-
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Dyson distribution given by

P (s) =
πs

2
e−

πs2

4 . (I.2.16)

These distributions are exposed in Fig. I.2.1. In the Poissonian distribution, there exist

a high probability to find neighbouring energy levels with a vanishing spacing between

them, while the opposite is true for the Wigner-Dyson distribution. Asides from the

distributions themselves, it is common to study a quantifier of the distribution. The

distributions can be probed by studying the mean ratio of adjacent level spacings,

defined as

〈r〉 ..=
1

M

∑

α

min{sα, sα+1}
max{sα, sα+1}

, (I.2.17)

where M is the dimension of a subspace of the Hilbert space. It is common to restrict

the Hilbert space to M , in order to avoid possible finite-size effects found close to

the edges of the spectrum. Typically, however, M ≈ D, where D is the dimension

of the Hilbert space. Poissonian distributions posses 〈r〉P ≈ 0.39, while for Wigner-

Dyson distributions 〈r〉WD ≈ 0.53. The mean ratio of adjacent level spacings is useful

to identify cross-over points, for which there might be a transition between the two

distributions as a function of a free parameter of the Hamiltonian.

It is crucial to remark that these quantifiers or the distributions themselves can only be

used as means of a diagnostic, since they only probe the local chaotic properties [53–

56, 20, 57, 58].

Spectral form factor

Level spacing statistics, although widely used as a diagnostic, suffers from several

shortcomings to fully characterise quantum chaos. To be useful in general applica-

tions, requires a procedure known as spectral unfolding and a clear distinction between

symmetry sub-sectors of the model, given that the spectra of different symmetry sec-

tors are uncorrelated [59, 60]. Furthermore, it naturally probes only the local charac-

teristics of chaotic eigenstates.

To address a more complete picture of chaotic eigenstates and chaotic dynamics, the

spectral form factors have been studied as yet a more reliable diagnostic [52], first

introduced in the context of high-energy, black-hole physics and Sachdev-Ye-Kitaev
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models [61, 62]. In the limit of infinite temperature, the spectral form factor is defined

as

|Z(t)|2 =
∣∣∣Tr[e−iĤt]

∣∣∣
2

=
∑

αβ

ei(λα−λβ)t. (I.2.18)

Most commonly, however, |Z(t)|2 is normalised and averaged over different samples

and energy regimes, in the form of 〈|Z(t)|2〉. In this context, 〈·〉 denotes an average

over different samples. For instance, evaluating |Z(t)|2 for random matrices entails

averaging over different samples of random matrices [63]. The sample-averaged spec-

tral form factor as a function of time will display different signatures depending on

the random matrix ensemble considered. In particular, the dynamics of the spectral

form factor will depend on the probability distributions from which the elements of

the random matrices are drawn [63].

The dynamics of 〈|Z(t)|2〉 computed within known ensembles could be used to compare

against the ones obtained for a given physical system, to then conclude whether a

system behaves according to chaotic predictions. Furthermore, the dynamics of the

spectral from factor may serve to provide connection to transport by extracting the

timescales relevant to hydrodynamics, such as the Thouless timescale [25, 64].

Adiabatic gauge potential

Another more recent approach to diagnose quantum chaos was suggested by Pandey et

al. [21], based on the adiabatic eigenstate deformations. In this context, one considers

a parameter-dependent Hamiltonian, Ĥ(κ), to study the adiabatic evolution of its

eigenstates generated by the adiabatic gauge potential

Aκ |λ(κ)〉 = i∂κ |λ(κ)〉 , (I.2.19)

where the |λ(κ)〉 are the κ-dependent eigenstates of Ĥ(κ), i.e., Ĥ(κ) |λ(κ)〉 = λ(κ) |λ(κ)〉.

The adiabatic gauge potential can be used as a diagnostic of integrability, by studying

the scaling as a function of the system size of the L2-norm of Aκ, given by

||Aκ||2 =
1

D
∑

α

∑

α 6=β
| 〈λα|Aκ|λβ〉 |2, (I.2.20)
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where D is the dimension of the Hilbert space and the 〈λα|Aκ|λβ〉 matrix elements

can be shown to be

〈λα|Aκ|λβ〉 = − i

ωαβ
〈λα|∂κĤ(κ)|λβ〉 , (I.2.21)

with ωαβ ..= λα(κ)− λβ(κ).

The L2-norm of Aκ scales exponentially with the system size in non-integrable sys-

tems, ||Aκ||2 ∼ exp[S], where S is the thermodynamic entropy of the system. In

practice, the adiabatic gauge potential is utilised as a diagnostic in its regularised

form (see Refs. [21, 65, 66] for further details). Leaving the latter technicality aside,

the power of using the adiabatic gauge potential as diagnostic of integrability is that

it is extremely sensible to infinitesimal integrability-breaking perturbations, making it

a very promising approach to detect integrability in a wide range of physical systems.

I.2.3 Thermodynamics in linear response

The discussion pertaining to integrability above, as we shall see here, has significant

consequences for the thermodynamics of quantum systems in general.

In linear response, thermodynamics in isolated quantum systems can be understood

from the interplay between particle and energy currents, both of which are propor-

tional to external perturbations. We start by considering a quantum system coupled

to two thermal reservoirs, say, on the left and on the right sides of the system. The left

(right) reservoir is characterised by a temperature TL (TR) and a chemical potential

µL (µR). In the steady state, i.e., the state approached as time reaches the infinite

limit, a constant flow of particles and energy is induced. Linear response concerns

the physics of such a system-environment configuration, when the temperature differ-

ence ∆T ..= TL − TR and the chemical potential difference ∆µ ..= µL − µR are small

compared to, say, their average values.

The expectation values of induced particle current Ĵ1 and thermal current Ĵ2 depend

on the temperature gradient ∇T and the chemical potential gradient ∇µ by the

following relation (we set the electric chage e ..= 1)


〈Ĵ1〉
〈Ĵ2〉


 =


L11 L12

L21 L22




 ∇µ
−∇T


 , (I.2.22)
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where the Lij (i, j = 1, 2) are the transport coefficients. While the diagonal elements

represent transport of either Ĵ1 or Ĵ2 from direct perturbations, the off-diagonal ele-

ments refer to induction of either a particle or a thermal current indirectly. Namely,

L12 refers to a contribution to the particle current from a temperature gradient; while

L21 refers to a contribution to the thermal current from a chemical potential gradi-

ent [67, 57].

The second law of thermodynamics may be written in terms of the entropy production

from the current operators and their corresponding gradients Xi,

∂S

∂t
=
∑

i

〈Ĵi〉Xi. (I.2.23)

One then requires that the elements of the Onsager matrix need to satisfy

L11 ≥ 0 and L22 ≥
(L12 + L21)2

L11

≥ 0, (I.2.24)

which can be shown by enforcing positivity of the entropy production rate [Eq. (I.2.23)]

subject to physical constraints [68]. The Onsager relation

L21 = TL12 (I.2.25)

is satisfied in linear response. As can be expected from physical grounds, particle and

thermal currents are not independent, but intertwined physical quantities.

More familiar transport properties, such as conductivity, can be expressed in terms

of the transport coefficients. For instance, the electric conductivity, measured in the

condition ∇T = 0 is

σ =

(
〈Ĵ1〉
∇µ

)

∇T=0

= L11, (I.2.26)

while the thermal conductivity, defined with the condition of zero particle flow 〈Ĵ1〉 =

0 and typically written down as 〈Ĵ2〉 = −κ∇T , is given by

κ =

(
〈Ĵ2〉
∇T

)

〈Ĵ1〉=0

= L22 −
1

T

L21L12

L11

. (I.2.27)

Another important quantity is the thermopower R = L12/L11, defined under the con-
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ĤTL, μL TR, μR
ΔT ≪ 1,Δμ ≪ 1

Ĥ0 + δD̂⟷ Ĥ0 + δ(t) ̂AĤ0 + a(t)D̂Ĥ0 + a(t)B̂
Figure I.2.2: In linear response, the induced currents Ĵ1 and Ĵ2 can be studied from the
steady-properties of a sample Hamiltonian Ĥ connected to two thermal reservoirs, or from
the dynamics generated by a perturbation into the isolated sample.

dition 〈Ĵ1〉 = 0. The phenomenon is known as the Seebeck effect, in which a chemical

potential gradient arises from a temperature gradient. In the reversed problem, under

the condition ∇T = 0, a particle current drives a thermal current where 〈Ĵ2〉 = Π〈Ĵ1〉,
with Π = L21/L11.

Several thermodynamic relations can be obtained from the expressions above [68].

Regardless, a sobering fact can be deduced: all the thermodynamic properties of

the configuration (as described in Fig. I.2.2) can be computed from the Onsager

matrix in Eq. (I.2.22). By extension, it suffices to understand the electric and thermal

conductance of a given system to understand its thermodynamic properties.

So far, our discussion has referred to a system coupled to thermal reservoirs. Such

type of configurations are best understood in the framework of open systems theory

and are discussed in Part II of this thesis. However, the electric and thermal con-

ductance can also be understood from the perspective of isolated systems. Moreover,

both approaches are equivalent to each other under minimal assumptions as shown in

Ref. [69].

In the isolated-system language, one considers an equilibrium Hamiltonian Ĥ0 per-

turbed in the following way:

Ĥ(t) = Ĥ0 + a(t)B̂. (I.2.28)

B̂ is some Hermitian operator and a(t) is a weakly-perturbing field. Placing our

attention now to a physical operator Â, we want to determine the response of Â to

the weakly-perturbing field from its equilibrium value, i.e.,

δ〈Â(t)〉 = 〈Â(t)〉 − 〈Â〉eq, (I.2.29)

where the 〈Â〉eq represents the equilibrium average in a statistical mechanics ensemble.

It is common to consider the canonical ensemble, in which 〈·〉eq = Tr[ρ̂·]. In this
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particular case, ρ̂ is the density operator of the canonical ensemble, expressed as

ρ̂ = e−βĤ/Z, where kB ..= 1, β ..= 1/T is the inverse temperature and Z = Tr[e−βĤ ]

is the partition function. In the linear range, the response to the weakly-perturbing

field is of the form [15, 70]

δ〈Â(t)〉 =

∫ +∞

−∞
dt′χAB(t, t′)a(t′). (I.2.30)

The linear response function, χAB(t, t′) depends only on the properties of the unper-

turbed system and can be shown to be directly connected to the matrix elements

Lij of the Onsager matrix in Eq. (I.2.22). Due to time-translational invariance [15],

χAB(t, t′) depends not on the two arguments t and t′, but on the difference t− t′. For

simplicity in the notation, we henceforth write it as χAB(t). The response function

can be written as (~ ..= 1) [71]

χAB(t) ..= −iθ(t)〈[Â(t), B̂]〉eq, (I.2.31)

where [·, ·] represents the quantum-mechanical commutator and θ(t) is the Heaviside

step function. It is simple to see that χAB(t) is real if Â and B̂ are Hermitian4. More

generally, χAB(t) relates to the imaginary part of the correlation function

CAB(t) ..= 〈A(t)B〉, (I.2.32)

while the real part of CAB(t) is related to the so-called symmetrised noise S(t) ..=

〈{Â(t), B̂}〉, where we use the notation {·, ·} for the quantum anti-commutator. These

correlation functions are studied in greater detail within the context of eigenstate

thermalisation in Chapter I.5.

At the level of transport, CAB(t) connects to the Kubo correlation function [1, 71]

KAB =
1

β

∫ β

0

dλ〈B̂Â(t+ iλ)〉. (I.2.33)

Furthermore, within linear response theory, the coefficients of the Onsager matrix Lij

4〈Â(t)B̂〉 = Tr[ρ̂Â(t)B̂] = Tr[ρ̂Û†ÂÛB̂]. Since Â and B̂ are Hermitian, 〈Â(t)B̂〉 =
Tr[B̂Û†ÂÛ ρ̂]∗ = 〈B̂Â(t)〉∗. Therefore, if 〈Â(t)B̂〉 ..= a+ ib, then 〈[Â(t), B̂]〉 = 2ib.
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in frequency space are directly related to the Kubo correlation function [67]

Lij(ω) = βr lim
t→∞

lim
L→∞

1

L

∫ t

0

dτeiωτKĴiĴj
(τ), (I.2.34)

where r = 1 for j = 1 and r = 2 for j = 2. The order of the limits is crucial, since

taking the limit t→∞ first would reflect finite-size effects as opposed to the physical

properties of the bulk of the sample5.

I.2.3.1 Relevance of integrability in connection to transport

In linear response, as gathered from the discussion above, the transport properties

of a given system depend on the time-dependent correlation functions of the relevant

current operators. In the frequency domain, it is common to split the real part of

Lij(ω) into the zero-frequency and finite frequency contributions:

Re[Lij(ω)] = 2πDijδ(ω) + Lreg
ij (ω), (I.2.35)

where Dij is the so-called Drude weight and refers to the zero-frequency contribution

to Lij(ω) via the delta function δ(ω), while Lreg
ij (ω) refers to the finite-frequency

contribution and it is known as the regular part of Lij(ω).

A closed-form expression can be obtained for Dij from Eq. (I.2.35) in terms of the

matrix elements of Ĵi, by expressing symmetrised noise 〈{Ĵi(t), Ĵj}〉 in the eigenbasis

of Ĥ and taking the Fourier transform. Such expressions will be most relevant and

studied in Chapter I.4. For the sake of the present discussion, it suffices to realise

that since the Drude weight refers to the zero-frequency contribution of Lij(ω), then,

such quantity is relevant to the long-time value of the correlation function 〈Ĵi(t)Ĵj〉.
In particular [1, 11, 67],

Dij =
βr

2L
lim
t→∞
〈Ĵi(t)Ĵj〉. (I.2.36)

Let us now focus on the two cases i = j, i.e., direct particle and thermal transport.

5Most interestingly, in the open systems language discussed at the beginning of this section, the
order of the limits needs to be reversed to obtain agreement. See Ref. [69] for a discussion.
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We can first decompose the correlation function

〈Ĵi(t)Ĵi〉 = CĴiĴi + C(t), (I.2.37)

i.e., into a sum of time-independent factor with its corresponding time dependence6.

If, and only if, 〈Ĵi(t)Ĵi〉 possesses non-singular low-frequency behaviour, then

lim
τ→∞

1

τ

∫ τ

0

dtC(t) = 0 (I.2.38)

and

CĴiĴi = lim
t→∞
〈Ĵi(t)Ĵi〉. (I.2.39)

This object is precisely the physical quantity bounded by Mazur’s inequality in Eq. (I.2.12),

and so, from Eq. (I.2.36)

Dii ≥
βr

2L

∑

n

〈ĴiQ̂n〉2
〈Q̂2

n〉
, (I.2.40)

where the Q̂n are the conserved quantities discussed in Sec. I.2.2.

It is then, from this analysis and our previous discussion in Sec. I.2.2, that we conclude

the pivotal role of integrability in the thermodynamics of quantum systems. The

decomposition written down in Eq. (I.2.37) will be absolutely crucial, as we explore

the notion of integrability and transport for physical systems in Chapter I.4. In

particular, the concept of translational invariance plays a central role in the analysis

of transport from the perspective of the Drude weight. In general, however, the

overlaps between a current operator and the conserved quantities of a given system

provide a lower bound for the Drude weight.

Physically, a finite Drude weight implies that the current correlation function does not

decay in the limit of infinite time and transport is ballistic, as discussed in Sec. I.2.2,

while a vanishing Drude weight is associated to hydrodynamical or anomalous be-

haviour [1]. These regimes, in linear response, regulate the entire thermodynamic

behaviour of a given physical system.

Even though several authors (see, for instance, Refs. [11, 34, 20, 72]) have argued

6This, again, follows from the expressions of the symmetrised noise in the eigenbasis of the
Hamiltonian, which will be further analysed in Chapter I.4 and Chapter I.5.
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about transport properties from the perspective of integrability, we would like to note

that doing so is particularly challenging for systems that are not solvable by the Bethe

ansatz [1]. For many particular systems of interest, this leaves one with the choice of

estimating the correlation functions themselves in the time/frequency domain. The

latter approach, does not come without its own challenges, for which one must face

problems whose dimension increases exponentially with the system size, probing long-

time dynamics at the same time. A detailed discussion of these issues and how to

overcome them is one of the topics of interest in this thesis.



Chapter I.3

The 1D anisotropic Heisenberg model

The Heisenberg model is one of the simplest models devised to understand ferro-

magnetic behaviour. In its most simple form, the model describes the interplay be-

tween coherent effects, physically described by quantum-mechanical transitions be-

tween quantum states, and incoherent effects, which are the understood as the result

of scattering processes or non-elastic interactions. The model is visualised as a collec-

tion of interacting spins embedded on a lattice. The spin-1/2 version of the Heisenberg

model was the first physical system treated with the Bethe ansatz [73–76]. It has been

the subject of fervent research throughout the past century and, even now, some ques-

tions remain despite impressive progress, particularly relating to finite-temperature

transport [1]. In many ways, the model is the perfect testbed for studies in statistical

mechanics and the effect of interactions. We introduce the model in Sec. I.3.1 and

discuss the global symmetries pertaining to it, which relates to the rich transport

properties of the model. Continuity equations and expressions for current operators

are introduced in Sec. I.3.2. A mathematically-equivalent form using spinless fermions

via the Jordan-Wigner transformation is discussed in Sec. I.3.3. Integrability breaking

in terms of local and global perturbations is discussed in Sec I.3.4. We finalise our

discussion by providing a short overview of experimental realisations in Sec I.3.5.

25
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I.3.1 The model

For the specific case of spin-1/2 systems in one dimension, the Hamiltonian of the

anisotropic Heisenberg model is expressed as

ĤXXZ =
∑

i

[
α
(
σ̂xi σ̂

x
i+1 + σ̂yi σ̂

y
i+1

)
+ ∆ σ̂zi σ̂

z
i+1

]
, (I.3.1)

where σ̂νi , ν = x, y, z, correspond to Pauli matrices in the ν direction at site i in a

one-dimensional lattice with L sites. The Pauli matrices satisfy

[σ̂µi , σ̂
ν
j ] = 2iεµνγσ̂

γ
i δij, (I.3.2)

where εµνγ represents the Levi-Civita tensor, δij = 1 ∀i = j and δij = 0 ∀i 6= j.

The model can be studied under different boundary conditions. Boundary conditions

are specified as open if the sum in Eq. (I.3.1) includes all the sites but the last one

(L − 1) and periodic if it includes all the sites (L), with L + 1 → 1. ∆ is known as

the anisotropy parameter. For the particular case ∆ = α, the Hamiltonian (I.3.1) is

the Hamiltonian of the spin-1/2 Heisenberg chain. The model is also known as the

spin-1/2 XXZ chain, it is integrable and exactly solvable via Bethe ansatz [75, 76].

The Hamiltonian is only composed of local interactions and couplings, in the sense

that it is the sum of terms of the form

ĥXXZ
i,i+1 = α

(
σ̂xi σ̂

x
i+1 + σ̂yi σ̂

y
i+1

)
+ ∆ σ̂zi σ̂

z
i+1, (I.3.3)

where ĤXXZ =
∑

i ĥ
XXZ
i . Locality has significant consequences in the properties of

the model.

I.3.1.1 Global symmetries

Being an integrable system, the Hamiltonian ĤXXZ possesses an extensive set of non-

trivial local and quasi-local conserved quantities that affect transport in the model [1].

These conserved quantities can be exploited to solve the model, to obtain solutions to

the eigenvalue problem and even correlation functions. In this section, however, we

refer to the known global symmetries of the model which are most relevant to numerical

approaches. These symmetries have been pedagogically described in the works of L.
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Santos et al. The following is a brief survey of the relevant global symmetries. We

refer the reader to Refs. [77, 78] for further details.

A didactic way to understand the global symmetries of the anisotropic Heisenberg

model is to consider the basis states corresponding to the eigenstates of
⊗L

i=1 σ̂
z
i ,

i.e., the D = 2L set of up/down spins which constitute a complete basis in the

Hilbert space. It is common to represent each of these states with up/down arrows

|↑1↑2 · · · ↑L〉, where there are D independent states corresponding to all the possible

2L combinations. Naturally, the Hamiltonian (I.3.1) is not diagonal in this basis, but

allows for a simple description to express ĤXXZ as a matrix operator in Hilbert space

in that basis. It is common to refer to this basis as the computational basis.

To understand the effect of ĤXXZ onto the computational basis states, it is useful to

introduce Pauli spin raising and lowering operators, defined as

σ̂+
i

..=
1

2
(σ̂xi + iσ̂yi ) , σ̂−i

..=
1

2
(σ̂xi − iσ̂yi ) . (I.3.4)

Using these operators, ĤXXZ can be re-written as

ĤXXZ =
∑

i

[
2α
(
σ̂+
i σ̂
−
i+1 + σ̂−i σ̂

+
i+1

)
+ ∆ σ̂zi σ̂

z
i+1

]
. (I.3.5)

From this expression one can observe that the effect of the first term on up/down

states is to move neighbouring excitations through the chain, in the form

2α
(
σ̂+
i σ̂
−
i+1 + σ̂−i σ̂

+
i+1

)
|· · · ↑i↓i+1 · · ·〉 = 2α |· · · ↓i↑i+1 · · ·〉 , (I.3.6)

while the second term introduces an attraction term if the z-alignment of neighbouring

states are anti-aligned, as

∆ σ̂zi σ̂
z
i+1 |· · · ↑i↓i+1 · · ·〉 = −∆ |· · · ↑i↓i+1 · · ·〉 , (I.3.7)

similarly for |· · · ↓i↑i+1 · · ·〉. A repulsive term is introduced if neighbouring states are

aligned

∆ σ̂zi σ̂
z
i+1 |· · · ↑i↑i+1 · · ·〉 = +∆ |· · · ↑i↑i+1 · · ·〉 , (I.3.8)

equivalently for |· · · ↓i↓i+1 · · ·〉. In this language, ĤXXZ represents the interplay be-
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tween neighbouring excitation hopping, modulated by α, and neighbouring interac-

tions modulated by ∆. Most notably, ĤXXZ only moves excitations through the chain

and does not create nor destroy them. This observation has significant consequences

that manifest as global symmetries in the model.

Conservation of total z-magnetisation

One of the most relevant symmetries concerning transport in the anisotropic Heisen-

berg model is conservation of total magnetisation in the z direction. As noted above,

the Hamiltonian generates the swapping of excitations through the chain, without

creating or destroying them. This is an indication of a global symmetry. In fact, if

one defines the total magnetisation in the z direction as

Ŝz ..=
∑

i

σ̂zi , (I.3.9)

it is straightforward to show that

[ĤXXZ, Ŝ
z] = 0, (I.3.10)

which implies that Ŝz is conserved1. It is quite important to remark since the number

of excitations are conserved, the Hamiltonian and other operators in Hilbert space

such as the generator of the dynamics Û(t) = exp(−iĤt) do not admix different

excitation sectors. In common linear algebra terms, conservation of Ŝz implies that

ĤXXZ can be represented as a block diagonal matrix operator, each block pertaining

to a magnetisation sector (Fig. I.3.1). This symmetry is known as U(1) symmetry.

The dimension of each magnetisation sector depends on the number of excitations

and it is given by the all possible spin up/down combinations that preserve 〈Ŝz〉 = N .

Each block has dimension

D〈Ŝz〉=N =


L
N


 =

L!

N !(L−N)!
. (I.3.11)

The largest sub-sector is the one for which the number of excitations N = L/2 for even

1The isotropic model, ∆ = α, conserves total spin Ŝ2 =
(∑L

i=1 ~σi

)2
, i.e, [ĤXXZ, Ŝ

2] = 0. This

symmetry is known as SU(2) symmetry.



I.3.1. THE MODEL 29

⟨ ̂Sz⟩ = − L

⟨ ̂Sz⟩ = − L + 1

⟨ ̂Sz⟩ = 0

⟨ ̂Sz⟩ = L − 1

⟨ ̂Sz⟩ = + L

Figure I.3.1: Block diagonal structure of the Hamiltonian matrix operator ĤXXZ. Note that
only even L contains a 〈Ŝz〉 = 0 sub-sector.

L. In this configuration, the number of spins up and spins down are the same and so,

the configurational space is the largest possible. For odd L, the sub-sectors 〈Ŝz〉 = +1

and 〈Ŝz〉 = −1 are of the same size and correspond to the largest magnetisation sub-

sectors in that case. Conservation of total magnetisation, as we shall describe, has

significant consequences for transport. Furthermore, this symmetry may co-exist with

others depending on the configuration of the Heisenberg chain and the parameters of

the Hamiltonian.

Translation invariance

The specific case of periodic boundary conditions, where the sum in Eq. (I.3.1) runs

up to L, results in another global symmetry known as translational invariance. The

corresponding conservation law associated to this symmetry is conservation of mo-

mentum.

Translational symmetry can be understood by first considering the 〈Ŝz〉 = −L mag-

netisation sub-sector, which contains only one state and may be written in the com-

putational basis as

|0〉 ..= |↓ · · · ↓〉 . (I.3.12)

The states for the subsequent sub-sector 〈Ŝz〉 = −L + 1 may be generated by the
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spin-excitation operator

|l〉 ..= σ̂+
l |0〉 , l = 1, · · · , L. (I.3.13)

These states are not eigenstates of the Hamiltonian, but translational-symmetric

eigenstates can be constructed from a linear combination as

|ψk〉 =
1√
L

L∑

l=1

eikl |l〉 , (I.3.14)

where k = 2πm/L (m = 0, · · · , L−1) is the wave number. These states are eigenstates

of the translation operator T̂ , which moves forward an excitation in space, such that2

T̂ |ψk〉 = e−ik |ψk〉 . (I.3.15)

For a translation-invariant Hamiltonian, |ψk〉 are both eigenstates of the translation

operator and of the Hamiltonian. We observe, then, that translational invariance

divides the Hamiltonian into k-momentum sub-sectors. The generalisation to sub-

sectors with a higher number of excitations follows from the above approach. In

such case, translational invariance divides the Hamiltonian magnetisation sub-sectors

into additional L sub-sectors which share the same k parameter, dubbed k-quasi-

momentum sectors.

Conservation of parity

An additional global symmetry in ĤXXZ is conservation of parity, which can be un-

derstood by considering a mirror located at one of the edges of the chain for a system

with open boundary conditions. The parity operator is defined as [78]

Π̂ =




P̂1,LP̂2,L−1 · · · P̂L

2
,L+2

2
∀ even L

P̂1,LP̂2,L−1 · · · P̂L−1
2
,L+3

2
∀ odd L,

(I.3.16)

where P̂i,j = (σ̂xi σ̂
x
j +σ̂yi σ̂

y
j +σ̂zi σ̂

z
j+1)/2 permutes the i-th and j-th spins. Conservation

of parity implies [ĤXXZ, Π̂] = 0. Since ĤXXZ conserves parity, its eigenstates may have

2This can be shown by noticing that T̂ |ψk〉 =
∑L
l=1 e

iklT̂ |l〉 =
∑L−1
l=1 eikl |l + 1〉 + eikL |1〉, then∑L

l=1 e
iklT̂ |l〉 =

∑L
l=1 e

ik(l−1) |l〉.
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even or odd parity

Π̂ |ψj〉 = + |ψj〉 even parity, (I.3.17)

Π̂ |ψj〉 = − |ψj〉 odd parity, (I.3.18)

it follows that the amplitudes ci in the expansion of a given eigenstate in the com-

putational basis |ψj〉 =
∑

i ci |i〉 will be equal for the |i〉 that are equivalent under a

parity permutation (up to a factor of −1 for odd parity). Just as before, this sym-

metry can be used to reduce the effective Hilbert space dimension by constructing

superposition states from computational basis states that are equivalent under a par-

ity permutation. Moreover, some numerical treatments require this symmetry to be

resolved, given that different symmetry sub-sectors are independent and therefore un-

correlated. Such is the case, for instance, when computing spectral level distributions

as discussed in Chapter I.2.

Reflection symmetry

The last global symmetry of the model relates to the symmetry under a global π

rotation in the x direction. For ĤXXZ, this symmetry is only present in the zero

magnetisation sub-sector, i.e., 〈Ŝz〉 = 0. This operation can be written as

R̂x
π =

L∏

i=1

σ̂xi , (I.3.19)

naturally, the symmetry is implied from the fact that [ĤXXZ, R̂
x
π] = 0. This symmetry

is also knows as spin inversion, or Z2 symmetry.

I.3.2 Continuity equations and transport

In a similar fashion to how a particle current was defined in classical hydrodynamics

in Sec. I.2.1, conservation laws yield continuity equations and definitions of current

operators in the quantum realm. Akin to the local conservation of particles through

a section in space described in Sec. I.2.1, if a quantum operator is a sum of local

operators, the local density of this quantity moves through a section in space from

one side to another and continuity is satisfied. On the other hand, even if there
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exists a conservation law for a given operator which is not composed of a sum of

local operators, a continuity equation for the transport of such quantity is somewhat

meaningless. Following our discussion of global symmetries before, it is meaningful to

discuss transport of spin excitations, while meaningless to try to describe a continuity

equation for the conservation of parity [79]. In this section we define continuity

equations for spin excitations in the z direction and energy, which lead to forms of

current operators in terms of Pauli matrices.

The total magnetisation operator Ŝz is a conserved quantity. We can then write down

a continuity equation for the local site magnetisation in the z direction as follows

d〈σ̂zi 〉
dt

= i〈[Ĥ, σ̂zi ]〉. (I.3.20)

Using Eq. (I.3.2), it is straightforward to show

i〈[Ĥ, σ̂zi ]〉 = 〈ĵP
i−1〉 − 〈ĵP

i 〉, (I.3.21)

where the expectation value is assumed to be taken over one of the ensembles of

statistical mechanics and

ĵP
i

..= 2α
(
σ̂xi σ̂

y
i+1 − σ̂yi σ̂xi+1

)
. (I.3.22)

In the language introduced in Chapter I.2,

Ĵ1 =
∑

i

ĵP
i . (I.3.23)

Note that these definitions apply only to the bulk of the sample, currents on the

boundaries for an open Heisenberg chain are ill-defined, although in the thermody-

namic limit L→∞, boundary effects are negligible. Eq. (I.3.22) is an explicit form of

the current operator in the z direction. It should be noted that in the non-interacting

Hamiltonian, for which ∆ = 0, Ĵ1 is a conserved quantity itself. This implies that

the magnetisation gradient in the z direction for the non-interacting system is zero,

and the current never decays. Following our discussion from Chapter I.2, transport

of spin excitations in the z direction is ballistic for the non-interacting case ∆ = 0.

For the interacting Hamiltonian, ∆ 6= 0, transport is far more complicated and a
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great amount of effort has been devoted to characterise it. Away from the zero-

magnetisation sector, a finite lower bound for the spin Drude weight exists for any

value of ∆ at infinite- and finite-temperature [11], which entails that spin transport

is ballistic. Furthermore, for the zero-magnetisation section in the so-called weakly-

interacting regime 0 < ∆ < 1 (assuming α = 1) the presence of quasi-local conserved

quantities has been identified and established [80–82]. A finite lower bound on the

spin Drude weight exists in that particular case at infinite temperature, indicating

ballistic transport as well. Although its full temperature dependence has yet to be

fully characterised, there exists evidence that suggests the Drude weight vanishes at

finite temperature [1].

In the strongly-interacting regime ∆ > 1 (again, assuming α = 1), though a for-

mal proof is lacking [1], overwhelming numerical evidence suggests a vanishing spin

Drude weight and diffusive transport from the perspective of dynamical typicality

approaches [83], open quantum systems [84] and generalised hydrodynamics [85].

There exists strong numerical evidence to suggest that spin transport in the isotropic

model, ∆ = α, is super-diffusive with a known transport exponent [84, 1] at infinite-

temperature, although a formal proof is lacking and its temperature dependence re-

mains an open question. An in-depth analysis of spin transport in the anisotropic

Heisenberg model is provided in Ref. [1].

As spin transport, thermal transport follows from a conservation law and a continuity

equation. Since the system is isolated, total energy is conserved and the local nature

of the Hamiltonian allows one to write the following continuity equation:

d〈ĥXXZ
i,i+1〉
dt

= i〈[Ĥ, ĥXXZ
i,i+1]〉

= 〈[ĥXXZ
i−1,i, ĥ

XXZ
i,i+1]〉+ 〈[ĥXXZ

i+1,i+2, ĥ
XXZ
i,i+1]〉. (I.3.24)

It is straightforward, albeit a bit cumbersome, to show

d〈ĥXXZ
i,i+1〉
dt

= 〈ĵE
i 〉 − 〈ĵE

i+1〉, (I.3.25)
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where

ĵE
i = 2α2

(
σ̂yi−1σ̂

z
i σ̂

x
i+1 − σ̂xi−1σ̂

z
i σ̂

y
i+1

)

+ 2α∆
(
σ̂xi−1σ̂

y
i σ̂

z
i+1 − σ̂zi−1σ̂

y
i σ̂

x
i+1

)

+ 2α∆
(
σ̂zi−1σ̂

x
i σ̂

y
i+1 − σ̂yi−1σ̂

x
i σ̂

z
i+1

)
. (I.3.26)

The total thermal current can be defined from these local objects as

Ĵ2 =
∑

i

ĵE
i . (I.3.27)

Most interestingly, Ĵ2 is a non-trivial conserved quantity of the Hamiltonian ĤXXZ,

commonly referred to as Q̂3, i.e., [ĤXXZ, Ĵ2] = 0 [11]. It is then clear that, as opposed

to spin transport, thermal transport is rather simple. The vanishing commutator

implies that correlation functions of the form 〈Ĵ2(t)Ĵ2(0)〉 are independent of time,

which leads to a diverging thermal conductivity, i.e., ballistic thermal transport.

I.3.3 Representation in spinless fermions

Although not true in general, in one dimension spin-1/2 systems behave like fermions.

The Pauli algebra carries over to the domain of the singly-occupied fermionic level.

The many-body problem, however, involving more than a single spin degree of freedom

is more complicated. This is due to the fact that spin degrees of freedom commute

on different lattices sites according to Eq. (I.3.2), while fermionic degrees of freedom

require anti-commutation for appropriate statistics to be obtained. It was the re-

alisation by Jordan and Wigner [86, 17], that a mapping can be introduced in the

many-body problem by associating a spin degree of freedom with a fermionic degree

of freedom coupled to a phase factor called a string, allowing for the appropriate

fermionic statistics.

Such mapping can be achieved by associating

σ̂+
i → ĉ†ie

iφ̂i , (I.3.28)

σ̂−i → ĉie
−iφ̂i , (I.3.29)

σ̂zi → 2n̂i − 1 = 2ĉ†i ĉi − 1 = 2σ̂+
i σ̂
−
i − 1, (I.3.30)
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where we have identified ĉ†i as the fermionic creation operator, ĉi as the fermionic

annihilation operator, n̂i ..= ĉ†i ĉi as the counting operator and

φ̂i = π
∑

l<i

n̂l = π
∑

l<i

1

2
(1 + σ̂zl ) (I.3.31)

as the phase operator. The string operator we referred to before is eiφ̂i . Note that the

sum for the string only counts the fields on the left side of a given lattice site i. With

the string association to each fermionic field, the creation and annihilation operators

follow the appropriate anti-commutation relations

{ĉ†i , ĉj} = δi,j. (I.3.32)

Eq. (I.3.28) is a transformation that allows us to re-write ĤXXZ in terms of fermionic

fields. After invoking the transformation and reorganising terms, it follows from

Eq. (I.3.5) that

Ĥf
XXZ = 4

∑

i

[
α

2

(
ĉ†i ĉi+1 + ĉ†i+1ĉi

)
+ ∆

(
n̂i −

1

2

)(
n̂i+1 −

1

2

)]
. (I.3.33)

The mapping allows us to identify the first term as a hopping factor in the Hamilto-

nian or a kinetic term, that allows fermions to move through the chain. The second

factor corresponds to a nearest-neighbour interaction, which introduces an energetic

penalty if two fermions are next to each other in the lattice. All the global symme-

tries introduced in Sec. I.3.1.1 follow naturally, although they usually show up under

different names in the literature, such as particle-hole symmetry for reflection sym-

metry, momentum conservation for translational invariance and total particle number

conservation for the conservation of total z-magnetisation. Equivalence between the

spin-1/2 chain and the fermionic model is one of the reasons behind the theoretical

interest in the anisotropic Heisenberg model, as it allows for different experimental

realisations.

Out of the global symmetries described in Sec. I.3.1.1, it is important to remark con-

servation of total z-magnetisation, which translates to conservation of total particle

number in the fermionic language [Ĥf
XXZ,

∑
i n̂i] = 0. This expression leads to a conti-

nuity equation and a local particle transport operator which follows from Eq. (I.3.22).
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In the fermionic language, the particle transport operator can be shown to be3

ĵf1 = 4iα
(
ĉ†i ĉi+1 − ĉ†i+1ĉi

)
, (I.3.34)

which remarks that transport can be studied from the perspective of either physical

system, spin-1/2 chains or spinless fermions hopping in a one-dimensional lattice.

I.3.4 Integrability breaking

The anisotropic Heisenberg model is one of the quintessential integrable models solved

by the Bethe ansatz [75, 76]. This feature, however, can be broken in different ways

by introducing terms into ĤXXZ which destroy the non-trivial conserved quantities

associated with integrability. Following our discussion from Chapter I.2, it is ex-

pected that integrable systems in the presence of a significant integrability-breaking

perturbation will display normal (diffusive) conduction. A known exception is given

by an integrability breaking perturbation induced by weak disorder, which leads to

anomalous diffusive behaviour according to numerical evidence [87–90], although nor-

mal conduction appears to be recovered once the perturbation becomes sufficiently

strong.

In this section we introduce two different models that break the integrability of

anisotropic Heisenberg spin-1/2 chain from the perspective of the level spacing statis-

tics, by either adding a staggered magnetic field or a single magnetic perturbation

near the centre of a chain with open boundary conditions. The addition of staggered

magnetic field constitutes a global form of integrability breaking perturbation, one for

which the perturbation extends over the entire support of the spin chain. On the other

hand, as we shall see, a single magnetic impurity located in the vicinity of the centre of

the chain breaks the integrability of the Heisenberg chain. This form of integrability

breaking is local, in the sense that it does not scale with the size of the system. A di-

agrammatic depiction is shown in Fig. I.3.2. The form of these integrability breaking

perturbations, as we shall see in Chapter I.4, has significant consequences at the level

of spin transport.

3Either from a continuity equation in the fermionic language, or by a Jordan-Wigner transforma-
tion of Eq. (I.3.22).
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Figure I.3.2: Diagrammatic depiction of the single impurity model ĤSI and the staggered
field model ĤSI, both of which break the integrability of the anisotropic Heisenberg model
ĤXXZ.

The staggered field model

A global form of integrability breaking is obtained by adding a staggered magnetic

field in the z direction to the anisotropic Heisenberg model. The staggered field model

is described by the Hamiltonian

ĤSF = ĤXXZ + b
∑

i odd

σ̂zi . (I.3.35)

For the purposes of the analysis to follow, we consider spin chains with even number

of lattice sites L. It is important to remark that a constant magnetic field in the z

direction added over the entire support of the chain, does not break integrability and

merely shifts the eigenenergies following the direction of the field.

With respect to the global symmetries introduced in Sec. I.3.1.1, the addition of the

staggered magnetic field does not break translational invariance or conservation of to-

tal z-magnetisation, the latter manifest in the form of [ĤSF,
∑

i σ̂
z
i ] = 0. Translational

invariance, however, is broken for the open chain. A relevant symmetry related to

parity and reflection remains present in the zero magnetisation sub-sector.

The single-impurity model

On the other hand, a local form of integrability breaking is obtained by the addition

of a single magnetic defect around the centre of the chain

ĤSI = ĤXXZ + h σ̂zL/2 , (I.3.36)

where we have assumed an even number of lattice sites L and the defect is located

in the left-most centre of the chain. This model is known in the literature to lead

to quantum chaos by integrability breaking [54–56, 20]. It is very interesting that a
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single defect located near the edges of the chain does not break integrability [54]. We

refer to ĤSI as the single impurity model.

Some of the underlying global symmetries present in the anisotropic Heisenberg model

are broken by the effect of the impurity. Both parity and reflection symmetries are bro-

ken in any total magnetisation 〈Ŝz〉 sub-sector. Conservation of total z-magnetisation

remains even with the addition of the single defect, i.e., [ĤSI,
∑

i σ̂
z
i ] = 0, which al-

lows the Hamiltonian to be sub-divided in different total magnetisation blocks. Most

interestingly, translational invariance is broken irrespective if the model is defined

with periodic or open boundary conditions. This illuminating fact will become very

important in Chapter I.4, when we analyse transport in the model.

Level spacing statistics

To understand if the models described above break the underlying integrability of

the spin-1/2 Heisenberg model, we now turn to a level spacing statistics analysis

introduced in Sec. I.2.2.1.

A cross-over between an integrable system and a non-integrable system, is signalled

by the statistical distribution of the spacings s between neighbouring energy levels.

Recalling, distributions of level spacings in integrable systems are characterised by

Poisson distributions

P (s) = e−s, (I.3.37)

while the distributions in non-integrable systems follow a Wigner-Dyson distribution

P (s) =
πs

2
e−

πs2

4 . (I.3.38)

In Fig. I.3.3, we show the behaviour of the distribution P (sn) for both the ĤSI model

in Eq. (I.3.36), for different strengths of the impurity, and for the ĤSF model in

Eq. (I.3.35), for different strengths of the staggered field. The calculations were done

in the zero magnetisation sector,
∑N

j=1〈σ̂zj 〉 = 0, whose Hilbert space dimension is

given by

D =
L!

(L/2)!(L/2)!
, (I.3.39)
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Figure I.3.3: Level spacing distribution P (s) for the anisotropic Heisenberg model (top) in
the presence of a single magnetic impurity [see Eq. (I.3.36)], and (bottom) in the presence of a
staggered magnetic field [see Eq. (I.3.35)]. The red line corresponds to a Poisson distribution
[Eq. (I.2.15)], while the blue line depicts a Wigner-Dyson distribution [Eq. (I.2.16)]. The
results shown are for chains with open boundary conditions, L = 16, ∆ = 0.5,

∑N
j=1〈σ̂zj 〉 = 0,

and two values of h and b.

in chains with L = 16 sites and open boundary conditions. These results confirm

that, as previously observed for ĤSI [54–56, 20] and for ĤSF [57, 58], the level spac-

ing distribution becomes Wigner-Dyson as one increases the magnitude of h and b,

respectively, without changing ∆ or L.

For the single impurity model, at fixed ∆ and L, the probability distribution of energy

spacings was shown in Ref. [20] to be of the Wigner-Dyson type for a wide range of

values of h. It was also shown therein that, increasing L at fixed ∆ increases the

range of values of h for which quantum chaotic behaviour occurs. As for systems in

which integrability is broken by means of global perturbations [59, 60], for ∆ 6= 0 in

the thermodynamic limit one expects quantum chaotic behaviour to occur whenever

h 6= 0 and h 6=∞.

In order to obtain the correct level spacing distribution, an unfolding procedure of the

spectrum needs to be used in which one locally rescales the energies λα, so that the

local density of states (LDOS) is normalised to 1. The symmetries of the model have

to be taken into account as well, given that energy levels from different symmetry

sub-sectors (subspaces of the Hilbert space) are independent from each other and
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therefore uncorrelated [59, 60].

For ĤSI, the reflection symmetry of the XXZ model is broken by the impurity, while

for ĤSF there is a related remaining symmetry that needs to be resolved. The key

point to be emphasised is that both integrability breaking perturbations, a local one

in ĤSI and a global one in ĤSF, lead to the same quantum chaotic behaviour of the

level spacing distributions.

Following the discussion from Chapter I.2, it would be interesting to investigate

whether a single magnetic impurity suffices to render the system diffusive, given that

it renders the anisotropic Heisenberg model non-integrable. We will explore this ques-

tion in Chapter I.4 from the perspective of linear response.

I.3.5 Experimental realisations

The discussion of this thesis involves theoretical descriptions of thermodynamics and

transport in integrable and non-integrable one dimensional latices, however, extraor-

dinary experimental advances have driven the field as well. This section attempts to

exemplify these advances by introducing some experimental results in the platforms

of ultra-cold atoms and magnetic materials. For extensive recent reviews, we refer

the reader to Refs. [91, 92] for ultra-cold atom experiments and Ref. [18] for magnetic

material experiments.

I.3.5.1 Ultra-cold atoms in optical lattices

Ultra-cold atoms trapped in optical lattices correspond to one of the most prominent

platforms to realise spin Hamiltonians of the form ĤXXZ [Eq. (I.3.1)]. Consequently,

experiments in these platforms not only allow the degree of tunability and control

required to realise short-range interactions, but provide a promising route to realise

quantum simulators by means of local control gates that can be implemented [93].

Technological advances allow to study the unitary dynamics of a given isolated quan-

tum system over timescales long enough such that decoherence effects of the environ-

ment are unimportant. Such advances have led to the renewed interest in theoretical

investigation of unitary dynamics and transport [40–42, 2, 5, 24, 43, 25].

A particularly relevant example is given by the work of Jepsen et al., in which 7Li

atoms are trapped in optical lattices to realise the anisotropic Heisenberg Hamiltonian,
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Figure I.3.4: Power-law transport exponent α as a function of the anisotropy parameter ∆ in
the anisotropic Heisenberg model realised with ultra-cold atoms. Filled symbols correspond
to transport exponents fitted from experimental results, while open symbols correspond to
theoretical predictions. Reprinted by permission from Springer Nature Customer Service
Centre GmbH: Springer Nature Ref. [3], Copyright Springer Nature (2020).

with a tunable anisotropy parameter ∆ made possible by applied magnetic fields in a

given direction. The lattice depth can be used to dictate the spin-exchange term in

the Hamiltonian [the first term in Eq. (I.3.1)], which is the term responsible for the

transport of spin excitations in the z direction. Remarkably, the authors in Ref. [3]

were able to tune the anisotropy parameter ∆ over a wider range of values than

the works that pre-dated theirs. The initial state is relevant to the dynamics of the

system. In the experiment, a spin helix was engineered. The first step is to realise

such state, each local spin in the lattice pointing in a helicoidal direction in the x

and y directions, after which, unitary dynamics are observed from the propagator

defined from exp(−iĤXXZt). This corresponds to a quench experiment, in which an

eigenstate of a different Hamiltonian is evolved under the dynamics dictated by ĤXXZ.

To study transport, the authors then evaluate the decay timescale τ as a function of

a modulation lengthscale λ, which is a free parameter of the initial state. In practice,

this procedure amounts to studying transport from the perspective of the decay of

an initial state under the unitary dynamics dictated by the Hamiltonian, a procedure

which is often used numerically as well (see Secs. IV and IX in Ref. [1]).

The central results of the experiment can be summarised in Fig. I.3.4, in which the

quench dynamics illustrated before gives rise to an effective infinite-temperature trans-

port regime. The decay timescale τ of the engineered helicoidal state is related to the

modulation lengthscale λ. Ballistic transport is manifest in a linear dependence τ ∝ λ,
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while diffusion scales quadratically τ ∝ λ2. Anomalous behaviour is signalled by a

different exponent τ ∝ λα. In Fig. I.3.4, the transport exponent is shown as a function

of the anisotropy parameter ∆. Specifically, the curves denoted in the I section of

Fig. I.3.4 correspond to: theoretical predictions from quench procedures in the ĤXXZ

model evaluated numerically denoted with blue open symbols, theoretical predictions

on a relevant fermionic model with high particle/lattice occupation (see Sec. I.3.3) and

experimental results with filled symbols. Section II of Fig. I.3.4 denotes the long-time

behaviour of the decay of the initial state, pointing towards diffusion for ∆ < 0 (the

coupling strength, first term in Eq.(I.3.1) is fixed throughout the experiment). The

authors expose that spin transport points towards ballistic regimes for ∆ < 0 at short

times, and diffusion for long times. Furthermore, sub-diffusion is observed for ∆ > 1.

This transport behaviour has not yet been identified numerically or theoretically, ex-

cept in the case of quench dynamics under disordered Hamiltonians [88, 89]. The

authors then argue that this behaviour could be related to the far-from-equilibrium

configuration achieved with the helicoidal initial states.

These exciting results validate some previous theoretical studies and give rise to open

questions at the theoretical level, particularly when far-from-equilibrium dynamics

and finite-temperatures are at play. The discussion of Part II of this thesis is most

relevant to addressing these open questions.

I.3.5.2 Magnetic materials

Several magnetic materials can be modelled according to the Hamiltonian ĤXXZ [18],

although, as opposed to experiments in ultra-cold atomic platforms, the anisotropy

∆ is difficult to tune. Spin chains composed of Sr2CuO3 have been realised exper-

imentally and modelled according to the isotropic Heisenberg chain, i.e., ∆ = α in

Eq. (I.3.1). The crystalline structure associated with antiferromagnetic Sr2CuO3 ma-

terials can be observed to be arranged in interconnected longitudinal chains [94], in

which interactions in the longitudinal direction are favoured with respect to transver-

sal interactions [18]. This structure is associated with quasi-one-dimensional be-

haviour, since interactions along a given direction are suppressed due to electronic

structure. The same behaviour can be observed experimentally in other magnetic

materials modelled by spin-1/2 quasi-one-dimensional chains, such as CaCu2O3 [95].

Experiments in cuprate materials have reported large thermal conductivities [96],
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which support the theoretical integrability picture described in Sec. I.3.2 that en-

ergy transport behaves ballistically and thermal conductivities diverge. Such ballistic

heat transport has been observed in spin chain compounds Sr2CuO3 and SrCuO2

and are considered to be excellent experimental realisations of the spin-1/2 Heisen-

berg model [97]. However, thermal conductivity has also been shown to be extremely

sensible to chemical impurities [18]. Furthermore, in most applications, the effect

of disorder and phononic contributions are typically too strong to be neglected [98],

leading to finite thermal conductivities and, moreover, the actual measurement pro-

cedure of thermal transport makes the introduction of spin-phonon coupling effects

necessary in the models. Therefore, establishing a connection between integrability

and the observed thermal conductivities is more complicated [1]. Understanding this

phenomenology then, requires more complicated theoretical models that account for

phonon interactions.

Spin transport measurement and analysis is more complicated in magnetic material

platforms than their counterpart in ultra-cold atoms. Indirect measurements have

been carried out from nuclear magnetic resonance (NMR) which gives information

about the decay of spin-spin correlation functions [99, 100], leading to diffusive relax-

ation in cuprate materials. Recent experiments using muon spin-resonance techniques

have reported both ballistic and diffusive spin dynamics in aqueous pyrimidine ma-

terials [101, 1], which support the theoretical picture that spin dynamics strongly

depends on the anisotropy parameter ∆ as described in Sec. I.3.2.





Chapter I.4

Spin transport in the single impurity model

In Chapter I.3, we introduced the anisotropic Heisenberg model and discussed two

different forms of perturbations that break integrability. A global form of integrability

breaking given by the staggered field model

ĤSF = ĤXXZ + b
∑

i odd

σ̂zi , (I.4.1)

and a local perturbation in the single impurity model

ĤSI = ĤXXZ + h σ̂zL/2 . (I.4.2)

The statistics of level spacings in both models follow the Wigner-Dyson distributions

found in non-integrable systems, as shown in Sec. I.3.4. Following our discussion from

Chapter I.2, one would be tempted to make the assumption that spin transport has

to be incoherent (normal conduction, i.e., diffusion) in both models. Since both of

them are non-integrable, one can then invoke Mazur’s inequality in Eq. (I.2.12), which

would yield a vanishing lower bound for the spin Drude weight for a system without

non-trivial conserved quantities, pointing towards incoherent transport.

Compelling numerical evidence indicates that the staggered field model displays nor-

mal spin conduction [51, 57] for a sufficiently strong magnetic field b, even in the

regime where α = 1 and |∆| < 1, in which the unperturbed Hamiltonian displays

ballistic transport as discussed in Chapter I.3. We will revisit these results from the

45



I.4.1. LINEAR RESPONSE THEORY AND TRANSLATIONAL INVARIANCE46

perspective of open quantum systems in Part II of this thesis.

Given that both the single impurity model and the staggered field model appear to be

non-integrable from the perspective of level spacing statistics, this chapter is driven

by the following question:

• Is a local perturbation enough to destroy ballistic spin conduction and render

transport incoherent?

This is a natural question to ask, particularly in light of recent results that highlight

the non-integrability of the single impurity model from the perspective of adiabatic de-

formations [21], asides from the Wigner-Dyson distributions of level spacings exposed

in Sec. I.3.4. One could think about tuning between ballistic and an incoherent spin

transport from local operations routinely realised in, for instance, ultra-cold atoms

experiments if a single perturbation were enough to destroy coherence.

In this chapter, we focus on the regime α = 1 and ∆ = 0.5 [Eq. (I.3.1)] in the

zero-magnetisation sub-sector, for which the XXZ model is known to display ballistic

transport. We then introduce a single magnetic impurity h = 0.5 and study spin

transport from the perspective of linear response as exposed in Chapter I.2, in the

high-temperature regime. In Sec. I.4.1 we introduce the importance of considering

the breaking of translational invariance symmetry in the evaluation of the spin con-

ductivity. We then analyse spin conductivity for non-interacting systems in Sec. I.4.2

and for interacting systems in Sec. I.4.3. We finalise with a discussion in Sec. I.4.4.

Our results for the single impurity model will be solidified in Part II of this thesis,

when we revisit the model from the perspective of open quantum systems.

I.4.1 Linear response theory and translational in-

variance

Within linear response theory, the real part of the conductivity can be written as

(~ = 1 and kB = 1) [102, 103, 13, 14]

Re[σL(ω)] = πDLδ(ω) +
π

L

(
1− e−βω

ω

) ∑

εn 6=εm
pn|Jnm|2δ(εm − εn − ω), (I.4.3)
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where DL is the Drude weight or spin stiffness at finite size L, β is the inverse tem-

perature, pn = e−βεn/Z is the Boltzmann weight of eigenstate |n〉 with energy εn, and

Z is the partition function. Jnm ..= 〈n|Ĵ |m〉 are the matrix elements of the total spin

current operator in the energy eigenbasis. In the language of Chapter I.3

Ĵ = Ĵ1 =
∑

i

ĵP
i , (I.4.4)

with the sum adjusted properly depending on whether the system has periodic or open

boundary conditions. Here, ĵP
i is the local spin current operator from Eq. (I.3.22),

ĵP
i

..= 2α
(
σ̂xi σ̂

y
i+1 − σ̂yi σ̂xi+1

)
. (I.4.5)

The Kubo formula in Eq. (I.4.3) follows from the zero- and finite-frequency contri-

butions of the correlation function 〈Ĵ1(t)Ĵ1(0)〉, related to direct spin transport from

linear response in the frequency domain. The expectation value, in this case, is taken

on the canonical ensemble.

The Drude weight can be calculated using the expression

DL =
1

L

[
〈−Γ̂〉 −

∑

εn 6=εm

pn − pm
εm − εn

|Jnm|2
]
, (I.4.6)

where Γ̂ is the so-called stress tensor operator [104], which is identical to the kinetic

energy operator

T̂ =
∑

i

α
(
σ̂xi σ̂

x
i+1 + σ̂yi σ̂

y
i+1

)
, (I.4.7)

in both the ĤXXZ and ĤSI models from Eqs. (I.3.1) and (I.3.1), respectively. In one

dimension and for sufficiently high temperatures (in the absence of superconductivity

[13, 14]), the Drude weight can also be obtained using the expression [105]

D̄L =
β

L

∑

εn=εm

pn|Jnm|2. (I.4.8)

In the thermodynamic limit, Eq. (I.4.3) leads to the decomposition

Re[σ∞(ω)] = πD∞δ(ω) + σreg(ω), (I.4.9)
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where D∞ = limL→∞DL = limL→∞ D̄L and σreg(ω) is the regular part of the con-

ductivity. A non-zero D∞ signals that transport is ballistic, the current-current cor-

relation function does not vanish in the limit of infinite time. This is a property of

integrable systems as highlighted in Chapter I.2. In systems that display diffusive

transport, expected for non-integrable systems, D∞ = 0.

Equations (I.4.3) through (I.4.8) are usually evaluated in systems with translation

invariance. In systems with open boundary conditions, where translational invariance

is not present, obtaining D∞ is subtle. In such systems, the position operator

X̂ ..=
∑

k

k σ̂+
k σ̂
−
k (I.4.10)

is well-defined [104]. The position operator can be used to define the total current

operator as

Ĵ = i[X̂, Ĥ], (I.4.11)

and the stress tensor operator as [14]

Γ̂ = −i[X̂, Ĵ ]. (I.4.12)

If one uses these relations to evaluate the matrix elements of the total current operator,

one finds that

Jnm = i 〈n|X̂Ĥ|m〉 − i 〈n|ĤX̂|m〉 = i(εm − εn) 〈n|X̂|m〉 , (I.4.13)

which implies that D̄L from Eq. (I.4.8) is exactly zero, since the sum only counts terms

for which εn = εm. Furthermore, this also implies that DL in Eq. (I.4.6) is exactly

zero, since both quantities are equivalent in the thermodynamic limit [14].

This implies that in systems with open boundary conditions, lack of translational

invariance implies

lim
L→∞

DL = lim
L→∞

D̄L = 0 (I.4.14)

irrespective of whether the system is integrable or not, in disagreement with what is

known for translationally-invariant systems.
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Such a disagreement may lead one to question whether the Drude weight obtained

from this picture [Eqs. (I.4.3)–(I.4.8)] is a meaningful thermodynamic quantity. The

fact that it is was argued for in Ref. [14].

A central finding of Ref. [14] is that, in order to obtain D∞ 6= 0 in integrable systems

with open boundary conditions in which translational invariance is broken, and concil-

iate the result with the one obtained in translationally-invariant systems with periodic

boundary conditions, one needs to study the behaviour of the finite frequency part of

the Kubo formula [the second term in Eq. (I.4.3)]. In the thermodynamic limit, a peak

develops at zero frequency from the collapse of peaks located at finite (size-dependent)

frequencies in finite-size systems.

The main point of our previous discussion is that the single impurity model, ĤSI,

breaks the translational invariance of the XXZ model ĤXXZ irrespective if one consid-

ers open or periodic boundary conditions. This is due to the fact that the introduction

of the perturbation allows one to physically allocate a position for the perturbation

and appropriately define a position operator. Furthermore, an impurity with a very

strong field (h → ∞) is equivalent to considering open boundary conditions. More-

over, in the non-interacting limit (∆ = 0) for which transport must be ballistic, the

presence of the impurity breaks the k,−k degeneracy in the single-particle spectrum

resulting in DL = D̄L = 0. The latter remains true for ∆ 6= 0.

Numerical procedure

Since DL = D̄L = 0 in systems without translation invariance, one needs to directly

evaluate the behaviour of the finite-frequency contribution of the real part of the spin

conductivity to infer transport regimes.

From the second term in Eq. (I.4.3), it can be observed that this contribution depends

on the matrix elements of the total spin current operator in the energy eigenbasis Jnm

and on the Boltzmann weights of the eigenstates at a given inverse temperature β. A

simple, yet costly, numerical procedure known as exact diagonalisation can be used

to evaluate the finite-frequency term in the conductivity. It suffices to use a compu-

tational basis representation introduced in Chapter I.3 to represent the Hamiltonian

as matrix operator. One then needs to find the transformation Û that renders the
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Hamiltonian diagonal

H̃ = Û †ĤÛ , (I.4.15)

with eigenvalues εn as diagonal matrix elements. This allows one to express pn =

e−βεn/
∑

n(εne
−βεn) and Jnm = 〈n|Û †Ĵ Û |m〉, where Ĵ is the total current operator

from Eq. (I.4.4) written in the computational basis. To evaluate the finite-frequency

contribution of the conductivity, one then proceeds to create a histogram using fre-

quency bins of a given width to yield a finite-frequency signal of the conductivity,

following Eq. (I.4.3). This procedure is very costly since the dimension of the Hilbert

space D increases exponentially with the system size, allowing one to study only

moderate system sizes even in one dimension.

I.4.2 The non-interacting regime: ∆ = 0

We begin our analysis of the spin conductivity for the non-interacting case, i.e., the

case for which ∆ = 0 in the XXZ model in Eq (I.3.1) and the single impurity model in

Eq. (I.4.2). We refer to the non-interacting case of the XXZ model as the XX model,

with Hamiltonian ĤXX = [ĤXXZ]∆=0.

The real part of the conductivity in Eq. (I.4.3) satisfies the following sum rule [15, 14]

∫ ∞

0

Re[σ(ω)]dω =
π〈−T̂ 〉

2L
, (I.4.16)

where T̂ is the kinetic energy operator in Eq. (I.4.7). It is quite useful to consider

the above sum rule for the analysis of the conductivity. Following our previous dis-

cussion, lack of translational invariance implies that, in the thermodynamic limit,

limL→∞DL = limL→∞ D̄L = 0. It follows that the sum rule is fully accounted for in

the finite-frequency regime of the conductivity, i.e., the second term in Eq. (I.4.3). In

translationally-invariant systems, however, the sum rule comes from both the zero-

and finite-frequency contributions in general.

For translational-invariant models in the non-interacting regime, such as the ĤXX

model, the properties of the total current operator Ĵ [Eq. (I.4.4)] can be calculated

analytically. In the free-fermion representation [76], the eigenstates of the single-
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particle Hamiltonian are plane waves

|m〉 =
1√
L

∑

j

eikmjc†j |0〉 , (I.4.17)

where |m〉 is the m-th eigenstate, with energy εm = −4α cos (km), c†j is the fermionic

creation operator on site j, |0〉 is the vacuum state, and km = 2πm/L with m =

−L/2 + 1, · · · , L/2. From this, the matrix elements of the total current operator are

given by

|Jnm|2 = [4α sin (km)]2δnm, (I.4.18)

i.e., the total current operator is diagonal in the energy eigenbasis. This implies that

the second term in Eq. (I.4.6) is zero, and we obtain DL/(〈−T̂ 〉/L) = 1 for any value

of L.

On the other hand, as discussed in Sec. I.4.1, chains with open boundary conditions

have DL = D̄L = 0 irrespective of the presence or absence of interactions [14]. Re-

markably, DL = D̄L = 0 for the single impurity model in the non-interacting limit

even in systems with periodic boundary conditions. This is the case because the im-

purity breaks the degeneracies between the single-particle k and −k eigenkets present

in the translationally invariant case. Since the non-interacting limits of the XXZ and

single impurity models are trivially integrable and must exhibit coherent transport,

it is already apparent in this limit that the finite frequency part of Eq. (I.4.3) needs

to be studied to compute the Drude weight [14].

In Fig. I.4.1(a), we show the finite-frequency part of the conductivity in the non-

interacting limit of the ĤXXZ and ĤSI models with open boundary conditions. In the

non-interacting regime, the numerical procedure described in Sec. I.4.1 can be used

with linear scaling with the system size to evaluate the conductivity for these models,

by using a free-fermion representation following the Jordan-Wigner transformation

from Sec. I.3.3 in the single-particle sub-sector.

In all cases, the conductivity is normalised by the sum rule. Since DL = 0 in both

cases, the sum rule in Eq. (I.4.16) is fully accounted for by the finite-frequency part

of the conductivity. Figure I.4.1(a) shows that, with increasing system size in both

models, the peaks present at finite frequency move toward ω = 0 (their frequency



I.4.2. THE NON-INTERACTING REGIME: ∆ = 0 52

0

5

10

15

20

0 0.2 0.4 0.6

OBCs

(a)

∆ = 0

0

20

40

60

80

100

0.0 0.2 0.4 0.6

PBCs

(b)

∆ = 0

0.0
0.2
0.4

0.0 0.2 0.4

0.7

0.8

0.9

1.0

10−4 10−3 10−2 10−1
0.7

0.8

0.9

1.0

10−4 10−3 10−2 10−1

C
o
n
d
u
c
ti
v
it
y

R
e[

σ
L
(ω

)]
/(

π
〈−

T
〉/

L
)

Frequency ω

L = 70, ĤXX
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Figure I.4.1: Finite frequency part of the conductivity Re[σL(ω)] in non-interacting systems
(∆ = 0). (a) Non-interacting limits of the ĤXXZ and ĤSI models with open boundary
conditions. The inset in (a) shows the weight of the lowest frequency peak as a function
of the system size. (b) Non-interacting limit of the ĤSI model with periodic boundary
conditions. The top inset in (b) shows the weight of the lowest frequency peak as a function
of the system size. The results were obtained at very high temperature β = 0.001.

is ω ∝ 1/L [14]) and become sharper. The weight of the peaks converge to a

non-vanishing and size-independent value with increasing system size. The inset in

Fig. I.4.1(a) shows the weight Ξ as a function of system size. Ξ is defined as the area

limited by the lowest-frequency peak, located at ω ≈ 4π/L. The weight Ξ is two times

the area under the lowest-frequency peak, since

∫ ∞

0

Re[σ(ω)]dω =
π〈−T̂ 〉

2L

=⇒ L

π〈−T̂ 〉

∫ ∞

0

Re[σ(ω)]dω =
1

2
, (I.4.19)

These results show that, in the thermodynamic limit, the systems develop a peak

at ω = 0 stemming from the collapse of peaks present at finite frequencies in finite

systems. The weight of such a zero-frequency peak in systems with open boundary

conditions is exactly the Drude weight predicted in systems with periodic boundary

conditions [14].

Figure I.4.1(b), and its bottom inset, show the finite-frequency part of the conductivity

in the non-interacting limit of the ĤSI model with periodic boundary conditions. The

top inset in Fig. I.4.1(b) shows the scaling of the weight of the lowest frequency

peak as a function of system size. The same conclusions drawn for chains with open

boundary conditions apply for chains with periodic boundary conditions. The lowest
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frequency peak, however, is much closer to ω = 0 and is much sharper in chains with

periodic boundary conditions. Furthermore, the weight of the lowest frequency peak

is higher for periodic boundary conditions [see the top inset in Fig. I.4.1(b) vs the

inset in Fig. I.4.1(a)]. In the thermodynamic limit, the lowest frequency peak almost

accounts for the Drude weight in chains with periodic boundary conditions.

The results for non-interacting systems discussed here, given the trivial nature of their

coherent transport, highlight the subtleties discussed in Sec. I.4.1 when dealing with

Kubo’s linear response theory in systems without translational invariance. One needs

to study the finite-frequency response in such systems in order to be able to determine

whether transport is coherent or incoherent.

I.4.3 The interacting regime ∆ 6= 0

We now turn to the evaluation of the spin conductivity in the interacting regime.

For these calculations we focus on the parameters α = 1, ∆ = 0.5 and h = 0.5. In

this parameter range, as exposed in Chapter I.3, the XXZ model displays ballistic

transport. We then address the linear response conductivity in the presence of a

single impurity, to understand if the local perturbation is enough to render transport

incoherent in the high-temperature regime.

We compute the finite-frequency part of Eq. (I.4.3) within the grand-canonical en-

semble (at zero chemical potential), for which finite-size effects are expected to be the

smallest in the presence of translational invariance [106]. We only study chains with

an even number of lattice sites given the known presence of strong even-odd effects at

high temperature [107]. Since we are interested in the high temperature regime (we

take β = 0.001 in all our calculations), the calculation requires the evaluation of all

the eigen-energies and eigen-vectors of the Hamiltonian. This is achieved using full

exact diagonalisation, for which the accessible system sizes with our computational

resources are L . 18.

In Fig. I.4.2(a) and its inset, we show the finite-frequency part of the conductivity

for XXZ chains with open and periodic boundary conditions, respectively. A binning

procedure was used in order to obtain smooth curves. The size of the frequency bins

is selected to be large enough so that the bins contain a large enough number of the

discrete frequencies of the system, but small enough so that the results are robust
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ĤXXZ ∆ = 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4

OBCs

(b)
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Figure I.4.2: Finite-frequency part of the spin conductivity [the second term in Eq. (I.4.3)].
(a) Integrable ĤXXZ model at ∆ = 0.5, in chains with (main panel) open boundary condi-
tions and (inset) periodic boundary conditions. (b) Single impurity model ĤSI, for ∆ = 0.5
and h = 0.5, in chains with (main panel) open boundary conditions and (inset) periodic
boundary conditions (linear-log scale). The results were obtained at very high tempera-
ture β = 0.001. The straight lines in the main panels and in the inset in (b), shown only
for L = 18, are approximate delimiters for the bottom of the large low-frequency peak as
suggested by the smooth curves in the inset in (a).

against changes of the bin size. In our simulations, we used bin sizes of 0.001-0.1

depending on the dimension of the Hilbert space for each magnetisation sub-sector.

The curves are normalised to satisfy the sum rule Eq. (I.4.16), so that the area under

the curves is 1/2.

The main panel and the inset in Fig. I.4.2(a) show that there is a stark contrast

between the finite-frequency part of Re[σL(ω)] in the integrable XXZ model depending

of whether the chains have open or periodic boundary conditions (see also Fig. 1 in

Ref. [14]). For periodic boundary conditions, the finite-frequency part exhibits a

smooth behaviour that is nearly size-independent. The Drude weight in that case,

shown in Fig I.4.3(a), extrapolates to a non-zero value in the thermodynamic limit.

For open boundary conditions, a large sharp peak can be seen at low frequencies

(smaller sharp peaks occur at higher frequencies) on top of an otherwise smooth part

that resembles that of the system with periodic boundary conditions. This sharp

peak moves toward smaller frequencies with increasing system size (ωpeak ∝ 1/L, so

one expects it to be at zero frequency in the thermodynamic limit. The area under

this peak, and above the smooth curve seen in the system with periodic boundary

conditions, extrapolates to a finite value in the thermodynamic limit. The latter
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is shown in Fig I.4.3(b), where Ξ is two times the area under the peak and above

of the straight line in Fig. I.4.2(a). The extrapolated value obtained for Ξ in the

thermodynamic limit is smaller than the one obtained for D∞ in systems with periodic

boundary conditions in Fig I.4.3(a). The expectation for systems with open boundary

conditions is that other peaks at higher frequencies, which are also proportional to

1/L, will collapse to ω = 0 in the thermodynamic limit, and their added weight

will be identical to the Drude weight obtained in systems with periodic boundary

conditions (see Ref. [14]). This is how a non-vanishing Drude weight appears in

systems with open boundary conditions, for which DL = D̄L = 0 for any L.

In the main panel of Fig I.4.2(b), we show the finite-frequency part of Re[σL(ω)] in

the single-impurity model for chains with open boundary conditions. The curves are

very similar to those obtained for the integrable XXZ model in Fig I.4.2(a). Also,

the extrapolation shown in Fig I.4.3(b) suggests that the area under the large low-

frequency peak is finite in the thermodynamic limit as for the integrable XXZ model.

The inset in Fig I.4.2(b) shows the results for the finite-frequency part of Re[σL(ω)]

in the ĤSI model for chains with periodic boundary conditions. They are in stark

contrast to those for the XXZ chain in systems with periodic boundary conditions,

and have features present in the results for chains with open boundary conditions. A

smooth, nearly system-size independent, part is seen at frequencies ω > 0.5, and a
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sharp peak is seen about ω = 0. The width of the sharp peak decreases with increasing

system size, while its area extrapolates to a finite value in the thermodynamic limit. In

Fig. I.4.3(a) we show the extrapolation of Ξ, which gives a result in the thermodynamic

limit that is very close to the Drude weight obtained in systems with periodic boundary

conditions in the absence of the impurity. This suggests that, in the thermodynamic

limit, the low-frequency peak collapses to ω = 0 resulting in a non-zero Drude weight.

Our results for the ĤSI model, both in systems with open and periodic boundary

conditions, indicate that transport in the ĤSI model is coherent, as in the unperturbed

model ĤXXZ.

It should be remarked that there exists an earlier study of the finite-frequency part

of Re[σL(ω)] in the ĤSI model for chains with periodic boundary conditions [20]. The

results reported in that work are similar to those reported in the inset in Fig I.4.2(b).

However, the low-frequency peak whose width vanishes with increasing system size

was interpreted as indicating incoherent transport with a relaxation time τ ∝ L.

Similar results and conclusions to those in Ref. [20] were reported in Refs. [108, 109]

for energy transport in the presence of an impurity.

I.4.4 Discussion and outlook

Integrability is known to be fragile against perturbations. It is still remarkable that a

single impurity can break integrability in an L→∞ chain [54–56, 20, 21]. This can be

understood in view of the fact that an O(1) local integrability-breaking perturbation

can mix exponentially many extended eigenstates of an integrable model and produce

a Wigner-Dyson level spacing distribution typical of quantum chaotic models. Since

the quantum chaotic models studied to date exhibit incoherent transport, a Wigner-

Dyson level spacing distribution is usually assumed to mean incoherent transport.

In this chapter we have studied a model, the first one known to us, for which this

intuition does not apply. We showed that, while a single impurity in the XXZ model

changes the level spacing distribution from Poisson to Wigner-Dyson in Chapter I.3,

it does not change the nature of spin transport in the chain from coherent (for 0 <

∆ < 1) to incoherent. We argued that this has to be the case from the perspective of

linear response theory in the high-temperature regime and our argument applies to

chains with open and periodic boundary conditions.
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It is not surprising that a single magnetic perturbation is not enough to render trans-

port incoherent. On physical grounds, transmission of spin excitations (or, equiva-

lently, spinless fermions) from one end of the chain to the other should be unaffected as

the system size increases in a Hamiltonian which is composed of local terms. More sur-

prising, however, is the fact that the conventional picture of random matrices predicts

the emergence of hydrodynamics at certain lengthscales, as discussed in Chapter I.2.

This seemingly-contradicting fact can be conciliated if one understands that repul-

sion in level spacings is exponentially small in the system size. The same observation

holds for the chaotic-behaviour prediction from adiabatic deformations of the single

impurity model (see Ref. [21]), since the chaotic properties probed by such analysis

refers to timescales which increase exponentially with the system size. The relevant

timescales for transport, however, are the ones dictated by the dynamics at timescales

which increase polynomially in system size.

In Sec. I.2.3.1, we provided a connection between transport linear response theory and

Mazur’s inequality. For the non-integrable single impurity model, Mazur’s inequality

would predict a vanishing Drude weight, pointing towards incoherent transport. The

main point of this chapter is to stress the fact that the vanishing Drude weight could

not necessarily stem from true hydrodynamic behaviour, but from the structure of

the global symmetries presented here. In other words, Mazur’s inequality prediction

of a vanishing Drude weight for the single impurity model is not inconsistent, being

that the model does exhibit a vanishing Drude weight. Our point is that a vanishing

Drude weight does not necessarily imply incoherent transport and it may, for instance,

stem from lack of translational invariance even in a system that displays coherent

transport. Furthermore, this indicates that the order of limits in the evaluation of

the conductivity, the thermodynamic limit (L → ∞) first and the long-time limit

(t→∞) second, is crucial and not interchangeable to obtain correct predictions.

The results presented in this chapter open new questions about hydrodynamics and

its emergence from quantum dynamics.

It is interesting to consider the onset of diffusion for systems in which integrability

is broken not by a single impurity but by an increasing number of impurities that,

e.g., interpolate between the single impurity model and the staggered field model.

The latter can be shown to exhibit the expected incoherent transport for a quantum

chaotic model (see Part II of this thesis). This question has already been addressed
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in Ref. [110] following some of our non-trivial observations. In such a scenario, the

density of the number of staggering impurities gives rise to anomalous scaling of the

diffusion constant at small densities and, most interestingly, there exists a regime for

which adding impurities could give rise to enhanced transport.

Another interesting question is related to equilibration and thermalisation, which will

drive the rest of Part I of this thesis. Our results hint that the equilibration properties

of the single impurity model should be anomalous. The fact that models with single

impurities can display anomalies in their approach to equilibrium is a topic that has

started to be explored recently [111, 112].



Chapter I.5

Eigenstate thermalisation

Thermalisation is a phenomenon in many-body physics that occurs with a high degree

of universality [113]. The question of how and why thermalisation emerges from

unitary quantum time evolution was posed even in the inception of quantum theory

by some of its founding fathers [114–116]. Nature shows us that the evolution of

a pure, thermally isolated system typically results in an asymptotic state that is

indistinguishable from a finite temperature Gibbs ensemble by either local or linear

response measurements. However, a complete understanding of this indistinguishably

is still very much an active research question [2].

One predictive framework for understanding thermalisation from quantum dynamics

is the Eigenstate Thermalisation Hypothesis (ETH). It synthesises the conditions to

be satisfied by the matrix elements of an operator Ô in the energy eigenbasis, to have

expectation values and correlation functions indistinguishable from their correspond-

ing finite-temperature counterparts.

Inspired by early works by Berry [117, 118], later formulated by Deutsch [119], ETH

was fully established by Srednicki as a condition on matrix elements of generic op-

erators Ô in the energy eigenbasis [120–122]. Subsequently, ETH has motivated a

considerable body of numerical work over the past decade [123, 41, 25]. Far from

being an academic issue, thermalisation in closed quantum systems is now regularly

scrutinised in laboratories worldwide where advances in the field of ultra-cold atom

physics have allowed for probing quantum dynamics on unprecedented timescales in

condensed matter physics [36, 41, 124–126]. In particular, seminal experiments have
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demonstrated that integrability inhibits thermalisation [36], and that integrability-

breaking perturbations can be used to controllably bring a system to thermal equi-

librium [127]. The latter experimental results are consistent with the expectation

that generic isolated quantum systems thermalise to a microcanonical distribution

consistent with their energy density. The accepted mechanism for this is given by the

ETH.

For a local observable Ô, the ETH for the matrix elements Onm
..= 〈n|Ô|m〉 in the

energy eigenbasis (Ĥ|m〉 = Em|m〉) is formulated by the relation

Onm = O(Ē)δnm + e−S(Ē)/2fÔ(Ē, ω)Rnm, (I.5.1)

where Ē ..= (En + Em)/2 and ω ..= Em − En. S(Ē) is the thermodynamic entropy

at energy Ē, Rnm is a random variable with zero mean and unit variance (R2
nm = 1),

and O(Ē) and fÔ(Ē, ω) are smooth functions. The value O(Ē) corresponds to the

expectation value of Ô in the microcanonical ensemble at energy Ē. Rnm could be a

complex random variable, in which case the only assumption about it remains to be

its zero mean and unit variance (|Rnm|2 = 1). The first term in Eq. (I.5.1) advances

that the diagonal matrix elements of observables are smooth functions of the energy

En, which can be inferred from the fact that the eigenstate to eigenstate fluctuations

are exponentially small in the size of the system [128–134]. From the second term,

it can be observed that the off-diagonal matrix elements are exponentially small in

the system size (because of e−S(Ē)/2) and that, up to random fluctuations, they are

characterised by smooth functions fÔ(Ē, ω) [25, 133–137]. Those functions carry

important information on fluctuation dissipation relations [122, 135, 25] and, hence,

on thermodynamics.

Integrable systems, which possess extensive sets of non-trivial local conserved quanti-

ties, do not follow the ETH. The diagonal matrix elements of observables exhibit eigen-

state to eigenstate fluctuations that do not vanish in the thermodynamic limit [123,

138, 139, 60, 128, 130, 26, 134], while their variance vanishes as a power law in the

system size [140–142, 134]. Because of this, in general, integrable systems do not

thermalise [143]. They do equilibrate and, after equilibration, they are described by

generalised Gibbs ensembles (GGEs) [26, 144–146]. The physical consequences with

respect to equilibration in systems that are described by the GGE, is that the equi-
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librium state will carry some information pertaining to the initial state of the system,

unlike ergodic systems, for which the equilibrium state depends only on macroscopic

quantities. For the off-diagonal matrix elements of observables in interacting inte-

grable systems, it was recently shown that their variance is a well-defined (exponen-

tially small in the system size) function of the average energy and the energy difference

of the eigenstates involved [147, 134], like in systems that satisfy the ETH.

Integrability leads to the breaking of ergodicity and thermalisation. As in interact-

ing integrable systems, the presence of strong disordered perturbations is known to

lead to the breaking of ergodicity in systems that display a many-body localisation

transition [27, 148]. Disordered-interacting systems display a transition between an

ergodic phase at low disorder and a non-ergodic phase for sufficiently strong disorder

in interacting systems. This physical scenario is considered to be the generalisation

for interacting systems of the metallic-insulating transition known as Anderson local-

isation [16]. In the strongly-disordered regime, the emergence of an extensive set of

quasi-local conserved quantities is considered to give rise to the breaking of ergodic-

ity, akin to the mechanism for ergodicity breaking in integrable systems [149]. Even

though the presence of said transition has been the topic of recent debate [150], many-

body localisation effects have been observed experimentally [151–153]. The presence

of quantum many-body scars gives rise to non-thermal behaviour as well [154].

From Chapter I.4, we concluded that integrability is unstable to local perturbations.

Remarkably, from linear response theory (and open-system dynamics in Part II) we

learnt that even though a single magnetic impurity suffices to induce level repulsion

and random matrix statistics in the spectrum [54–56, 155, 20, 108], it does not induce

the incoherent spin transport associated to non-integrable models. Our motivation for

this chapter is to understand the properties related to thermalisation in non-integrable

systems in general, to then study thermalisation in the single impurity model. This

simple problem will then lead us to introduce entanglement structure and high-order

correlation functions in Chapter I.6, when we dig deeper into the consequences of the

ETH.

In Sec. I.5.1 we review the main concepts related to thermalisation within the ETH,

while Sec. I.5.2 describes two-point correlation functions at thermal equilibrium and

statistical measures of off-diagonal elements for systems that satisfy the ETH, as

well as the fluctuation-dissipation relation. In Sec. I.5.3 we introduce a numerical
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experiment that illustrates thermalisation from the ETH. Finally, in Sec. I.5.4 we

visit the problem of thermalisation in the single impurity model.

I.5.1 Equilibration and thermalisation

Thermalisation in interacting, isolated quantum systems can be very easily mistaken

for equilibration. Equilibration is a property of certain quantum systems isolated from

their environment and refers to the long-time behaviour of the expectation value of

observables. Most naturally, within a certain quantum system, the expectation values

of a certain local observable Ô may relax and converge to a given long-time value.

Whether or not a quantum system reaches equilibration depends on the fine details of

the setting, such as the initial state and the properties of the microscopic Hamiltonian

describing the system.

We are interested in isolated systems with L � 1 degrees of freedom, whose mi-

croscopic Hamiltonian Ĥ description does not allow for the presence of non-trivial

local conserved quantities, i.e., the system is non-integrable. There may be some

global symmetries associated to the Hamiltonian description, however, as discussed

in Chapter I.3. The effect of these symmetries is to reduce the Hilbert space into in-

dependent sectors which cannot be connected coherently thought unitary dynamics.

If there exists some global symmetries associated to the specific system, our analysis

will carry independently for each sub-sector defined by the symmetry. The system is

initially prepared in the initial state |ψ0〉 at time t = 0 and we will assume such initial

state to be pure and not an eigenstate of the Hamiltonian Ĥ.

The non-stationary initial state will then undergo unitary dynamical evolution. We

then consider the time evolution the operator Ô in the Schrödinger picture, which can

be done since the system is isolated from its environment, through the time-evolving

wave function

|ψ(t)〉 =
∑

m

cme
−iEmt |m〉 , (I.5.2)

where cm = 〈m|ψ0〉. We then may write the time evolution of Ô in the eigenbasis of
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the Hamiltonian Ĥ as

〈Ô(t)〉 = 〈ψ(t)|Ô|ψ(t)〉 =
∑

n

|cn|2Onn +
∑

n,m 6=n
c∗ncme

i(En−Em)tOnm, (I.5.3)

where Onm
..= 〈n|Ô|m〉. If the system equilibrates, we may study the long-time

average of the expectation value of Ô in the form

O ..= lim
τ→∞

1

τ

∫ τ

0

dt〈Ô(t)〉. (I.5.4)

An illuminating fact can be observed in the long-time average from Eq. (I.5.3). If

we assume that there are no degeneracies in the spectrum or, alternatively, if that

there is no extensive amount of degeneracies present, the second term in Eq. (I.5.3)

averages to zero in the equilibration value O, i.e.,

O =
∑

n

|cn|2Onn = Tr[Ôρ̂DE] ..= 〈Ô〉DE (I.5.5)

where

ρ̂DE =
∑

n

|cn|2 |n〉 〈n| (I.5.6)

is the density matrix of the diagonal ensemble that contains the information about

the initial state in the eigenbasis of the Hamiltonian. A non-degenerate spectrum is

not a strong assumption about a generic chaotic Hamiltonian, once any trivial global

symmetries have been categorised in different symmetry sub-sectors.

The above statements have no implications about thermalisation, only about equili-

bration which translates into a well-defined asymptotic value of 〈Ô(t)〉. Thermalisa-

tion in statistical mechanics implies that the asymptotic value can be obtained from

an ensemble average of the quantity of interest, which means

O → OMC(E) = Tr[Ôρ̂MC], (I.5.7)

where OMC is the equilibrium expectation value of the operator Ô in the microcanon-



I.5.1. EQUILIBRATION AND THERMALISATION 64

ical ensemble, a paramater-dependent quantity given by

OMC(E) =
1

Ω(E)

∑

n

Onnδ(E − En), (I.5.8)

where Ω(E) =
∑

n δ(E − En) is the density of states. Note that this ensemble is

characterised by a single parameter which can be associated to the microcanonical

temperature β(E) = dS/dE, through Boltzmann’s relation S(E) = lnW (E), where

W (E) = Ω(E)dE corresponds to the number of microstates in a small energy interval

dE. Generic systems, however, typically satisfy ensemble equivalence, in which case

any ensemble in statistical mechanics can be used to describe the thermal expectation

value. We note, however, that a known instance in which the equivalence of ensembles

does not hold is found whenever long-range interactions are at play [156, 157].

Crucially, the ETH states that the first term in Eq. (I.5.1) is directly related to O

from Eq. (I.5.5), i.e.,

O =
∑

n

|cn|2Onn =
∑

n

|cn|2
[
O(En) + e−S(Ē)/2fÔ(Ē, 0)Rnn

]

≈
∑

n

|cn|2O(En), (I.5.9)

where the second term is suppressed exponentially due to e−S(Ē)/2. We now see that,

if the ETH in Eq. (I.5.1) is satisfied by the matrix elements of the operator Ô in the

eigenbasis of the Hamiltonian, we have that

O = OMC(〈E〉) = O(〈E〉). (I.5.10)

If a system fulfils the above condition, we state that observable Ô thermalises. We

further require |cn|2 to be narrowly-peaked around 〈E〉 = 〈ψ0|Ĥ|ψ0〉 for the above

condition to be satisfied1. This last requirement, is a necessary, but not sufficient,

condition for thermalisation [25]. For the physical configuration to thermalise in the

sense above, we have to assume that the microcanonical expectation value is well

defined. Since such quantity is an averaged value over a statistical ensemble, the

averaged quantity is only physically relevant if the fluctuations around the average

are small and decay as the number of degrees of freedom is increased, as it is usually

1Interestingly, even though energy distributions after quenches are expected to be smooth, this
is not a necessary requirement for thermalisation according to the ETH [25].
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argued in classical statistical physics [33]. As expected from statistical mechanics,

then, thermalisation is satisfied for a system with L degrees of freedom if Eq. (I.5.10)

holds, while

〈E〉 = 〈ψ0|Ĥ|ψ0〉 ∝ L,
(δE)2

〈E〉2 ∝
1

L
, (I.5.11)

where (δE)2 = 〈ψ0|Ĥ2|ψ0〉 − 〈ψ0|Ĥ|ψ0〉
2

are the ensemble energy fluctuations. Such

conditions are expected to hold in generic systems with short-range interactions. It

can be shown that Eq. (I.5.11) ensures that fluctuations around the microcanonical

expectation value OMC(〈E〉) are sub-extensive as the size of the system grows [25].

This follows from from the fact that δE is finite.

In fact, one can quantify the difference between the microcanonical expectation value

and the long-time averaged value of equilibration. If we expand the smooth function

O(Ē) from Eq. (I.5.1) around the mean energy 〈E〉 in a Taylor series, we find

Onn ≈ O(〈E〉) + (En − 〈E〉))
[

dO(Ē)

dĒ

]

〈E〉
+

1

2
(En − 〈E〉))2

[
d2O(Ē)

dĒ2

]

〈E〉
, (I.5.12)

which, upon substitution in Eq. (I.5.5), yields [25]

O ≈ O(〈E〉) +
1

2
(δE)2

[
d2O(Ē)

dĒ2

]

〈E〉

≈ OMC(〈E〉) +
1

2
[(δE)2 − (δEMC)2]

[
d2O(Ē)

dĒ2

]

〈E〉
, (I.5.13)

where δEMC are the sub-extensive energy fluctuations in the microcanonical ensemble.

We then see that thermalisation in the sense of ETH, yields thermal expectation values

which agree with long-time averaged values up to a sub-extensive correction.

Moreover, the ETH allows one to describe the temporal fluctuations of the long-time

average throughout the dynamics of 〈Ô(t)〉. We have [25]

σ2
Ô

..= lim
τ→∞

∫ τ

0

dt[〈Ô(t)〉]2 −O2

=
∑

n,m 6=n
|cn|2|cm|2|Onm|2

≤ max[|Onm|2] ∝ e−S(E), (I.5.14)
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which then implies that the time fluctuations of the expectation value 〈Ô(t)〉 are

exponentially small in the size of the system L, given that the entropy is extensive.

In practical applications, it is usual to consider the eigenstate-to-eigenstate fluctua-

tions of Onn, i.e., the diagonal part of the ETH, as a necessary condition for ther-

malisation. Given that a requirement to be met for thermalisation is that the mi-

crocanonical expectation value is a well-defined smooth function of the energy, the

eigenstate-to-eigenstate fluctuations

|δOnn| ..= |Onn −On+1n+1|, (I.5.15)

must decay as the number of degrees of freedom is increased and, moreover, they

should decay exponentially with the system size as first suggested by Kim et al. in

Ref. [129]. This follows from the fact that adjacent eigenstates in non-integrable

systems should display an energy difference that decays exponentially with the size

of the system. In Eq. (I.5.15) we have assumed that the eigenstates |n〉 have been

sorted in ascending order according to their eigenvalue En. Further studies have

confirmed that this is indeed the case for non-integrable systems that thermalise

according to the ETH through compelling numerical evidence using different physical

models [131, 133, 134].

Connection between temperature and average energy

An illuminating fact can be inferred from the fact that the expectation value of Ô

from statistical mechanics in non-integrable systems becomes a smooth function of

the energy in the thermodynamic limit, related to O(Ē) in Eq. (I.5.1).

Consider the canonical thermal average of Ô

〈Ô〉β =
Tr[Ôe−βĤ ]

Tr[e−βĤ ]
, (I.5.16)

where β is the canonical inverse temperature. We can estimate this expectation value

from eigenstate thermalisation by expanding the calculation in the energy eigenbasis

in the continuum limit [122]

∑

n

→
∫

dĒeS(Ē), (I.5.17)



I.5.1. EQUILIBRATION AND THERMALISATION 67

where
∑

n denotes the summation over energy eigenstates and S(Ē) is the thermo-

dynamic entropy. Invoking Eq. (I.5.1), we note

〈Ô〉β =

∫
dĒeS(Ē)−βĒO(Ē)∫

dĒeS(Ē)−βĒ +O(e−S/2). (I.5.18)

This expression can be approximated by noting that the thermodynamic entropy in

statistical mechanics is extensive for when L � 1. One can then apply a steepest-

descent procedure to obtain [122]

〈Ô〉β = O(Ē) +O(L−1) +O(e−S/2), (I.5.19)

where the last two terms are sub-extensive and, therefore, sub-leading as L→∞. In

particular, the last term comes from the second part of the expression in Eq. (I.5.1),

and it is exponentially suppressed in the system size through the thermodynamic

entropy. In finite-size systems, such contributions are typically non-negligible, though

they decay fast as the number of degrees of freedom is increased. Crucially, Ē is now

fixed in terms of β by the steepest-descent condition ∂S/∂Ē = β.

The above also implies that the total energy in the isolated quantum system

〈E〉 = Tr[Ĥρ̂], (I.5.20)

where ρ̂ is a canonical state ρ̂ ..= e−βĤ/Z, β the canonical inverse temperature and

Z = Tr[e−βĤ ], can be estimated on a single eigenstate in the thermodynamic limit,

since the calculation only involves the diagonal part Onn in Eq. (I.5.1). Explicitly so,

〈E〉 = Tr[Ĥρ̂]

= Ē = En. (I.5.21)

This implies that a single energy eigenstate in non-integrable chaotic systems deter-

mines the thermal properties of an entire statistical ensemble in the thermodynamic

limit at temperature β, by associating the canonical temperature β to an energy

eigenstate |n〉.
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I.5.1.1 Thermalisation and diagonal elements of local observ-

ables in chaotic models

The occurrence of eigenstate thermalisation has been established in different non-

integrable models numerically. The usual analyses found in the literature [25] involve

the study of the diagonal matrix elements of a given local operator Ô in the energy

eigenbasis, i.e., Onn in Eq. (I.5.1). Evidence for eigenstate thermalisation has been

observed for interacting spin chains in one dimension [60, 128, 129, 136, 138, 158–

160], two-dimensional Ising model with transversed fields [131] and interacting hard-

core bosons in two-dimensional lattices [123]. In all cases, eigenstate thermalisation

appears to be ubiquitous as long as the physical systems are located in non-integrable

regimes regulated, usually, by the spatial configuration or the Hamiltonian parameters.

Let us reconsider the non-integrable model introduced in Chapter I.3, the anisotropic

Heisenberg model in the presence of a staggered magnetic field on a one-dimensional

lattice of length L with open boundary conditions, with Hamiltonian

ĤSF = ĤXXZ + b
∑

i odd

σ̂zi , (I.5.22)

where ĤXXZ is the Hamiltonian of the XXZ model in Eq. (I.3.1) and b is the strength

of the staggered magnetic field. Placing our attention in the parameter regime given

by ∆ = 0.55α and b = α, we proceed to numerically find the unitary transformation

Û that renders the Hamiltonian ĤSF diagonal. We focus on the zero-magnetisation

sector of the XXZ Hamiltonian, and introduce a small magnetic perturbation on the

first site of the chain δσ̂z1 with δ = 0.1 to avoid parity or reflection symmetries present

in the model. Observables that exhibit the occurrence of eigenstate thermalisation

can either be local such as

ÂSF = σ̂zL
2
σ̂zL

2
+1
, (I.5.23)

or sums of local operators such as the total staggered magnetisation

B̂SF =
1

L

∑

i

(−1)iσ̂zi . (I.5.24)

The diagonal matrix elements of these observables in the eigenbasis of the Hamiltonian
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Figure I.5.1: Diagonal matrix elements of ÂSF (a) and B̂SF (b) as a function of the energy
density εn ..= (En−Emin)/(Emax−Emin) and of the system size L. The black lines depict an
approximation of the smooth function O(Ē) obtained from a coarse-grained average of the
data for the largest system size. The insets show the eigenstate-to-eigenstate fluctuations
for different systems sizes, obtained from the eigenvalues in the central region. The dashed
lines on the insets show the (a) D−1/2 and (b) (LD)−1/2 scalings. The parameters of the
Hamiltonian ĤSF were selected as ∆ = 0.55α and b = α.

are given by Onn = [Û †ÔÛ ]nn.

A strong indication of eigenstate thermalisation is the behaviour of diagonal matrix

elements of observables in the eigenbasis of the Hamiltonian [25, 134]. In Fig. I.5.1

we show the diagonal matrix elements of ÂSF [panel (a)] and of B̂SF [panel (b)] for

the non-integrable staggered field model. We defined the energy density εn ..= (En −
Emin)/(Emax − Emin) and computed all the matrix elements in the eigenbasis of the

Hamiltonian by full diagonalisation. It can be observed that, as the system size L is

increased, the support over which the matrix elements exist shrink. This observation

strongly suggests that in the thermodynamic limit, the diagonal matrix elements

can be described by a smooth function O(Ē) corresponding to the microcanonical

prediction (note that the second term in Eq. (I.5.1) is exponentially suppressed in

Hilbert space dimension D). The black lines in Fig. I.5.1 depict an approximation of

the smooth function O(Ē), obtained from a coarse-grained average of the data for the

largest system size L = 20.

The insets in Fig. I.5.1 highlight the trend of the absolute value of the eigenstate-

to-eigenstate fluctuations, computed for 20% of the total eigenvalues in the centre of
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the spectrum. The dashed lines on the insets in Fig. I.5.1 correspond to the scaling

D−1/2 [panel (a)] and LD−1/2 [panel (b)], expected in the high-temperature regime

(corresponding to the states around the centre of the spectrum) of non-integrable

models. We remark that the eigenstate-to-eigenstate fluctuations for sums of local

observables scales like LD−1/2, as opposed to the more common D−1/2 scaling observed

for local observables. This behaviour can be attributed to the 1/
√
L scaling of the

Schmidt norm for this class of observables [161, 162, 134].

The results shown in Fig. I.5.1 indicate that the ETH is obeyed at the level of thermal-

isation, i.e., diagonal matrix elements for the staggered field model, the observables

considered and the Hamiltonian parameters selected. Non-generic features can be ap-

preciated at the extrema of the spectrum, which is often the case in physical systems

near low temperatures [25].

The physical implications of this observation have been described in Sec. I.5.1: the

long-time behaviour of the expectation value 〈Ô(t)〉 = 〈ψ(t)|Ô|ψ(t)〉, will relax to an

asymptotic value O, which will coincide with O(Ē) = O(En) from the ETH, where

En is the eigenvalue of the energy state |n〉 whose total energy coincides with the

initial energy of the system from its statistical expectation value 〈E〉β. Indeed, the

correspondence between the thermal expectation values of local observables and those

computed at the level of single eigenstates can be observed in physical systems with

a Hamiltonian description.

Consider now the expectation value of the local magnetisation at the centre of the

chain, Ô = σ̂zL/2 in the staggered field model. Our starting point is to evaluate the

expectation value of Ô in the canonical ensemble

〈σ̂zL/2〉 = Tr[ρ̂σ̂zL/2], (I.5.25)

where ρ̂ ..= e−βĤSF/Z is the canonical state, Z = Tr[e−βĤSF ]. This expectation value

can be computed at temperature T = 1/β from the full diagonalisation of ĤSF, by

representing both ρ̂ and Ô = σ̂zL/2 in the energy eigenbasis. We can then compare

this expectation value with the ETH prediction. In the thermodynamic limit, a single

energy eigenstate comprises the entire statistical ensemble, in which the total energy

〈E〉 = Tr[ρ̂ĤSF] gives rise to the average energy Ē = En corresponding to a single

eigenstate |n〉 in Eq. (I.5.1). Our analysis, however, has to be carried out in systems
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Figure I.5.2: Expectation value of the local magnetisation in the centre of the chain as a
function of temperature in both the canonical ensemble and the corresponding ETH predic-
tion for and L = 16 (left panel) L = 20 (right panel) in the staggered field model.

with a finite size L, for which eigenstate-to-eigenstate fluctuations are present and

non-negligible. Instead, one can then consider the expectation value from the average

between the matrix elements Onn within a certain energy window centred at En, to

average these fluctuations.

The results are shown in Fig. I.5.2. The expectation value in the ETH framework

is computed from the average of a small window of energies centred around 〈E〉β ≈
Ē = En of width 0.1ε, where ε = Emax − Emin is the bandwidth of the Hamiltonian

for a given system size L. Note that the total energy, which depends on β, has been

associated to a given energy eigenstate through Ē = En. 〈E〉β is an average energy

resulting from the expectation value of energy in the canonical ensemble with inverse

temperature β, i.e, E = Tr(Ĥ e−βĤ)/Z, where Ĥ is the Hamiltonian of the staggered

field model.

Fig. I.5.2 shows 〈Ô〉β as a function of temperature for two different system sizes,

including L = 20, the largest system we have access to from exact diagonalisation

(Hilbert space dimension D = L!/[(L/2)!(L/2)!] = 184 756). The results exhibit the

expected behaviour predicted from ETH for finite-size systems: the thermal expecta-

tion value is well approximated away from the edges of the spectrum (low temperature,

section highlighted in grey on Fig. I.5.2), and, moreover, the canonical expectation

value is better approximated as the system size increases, which can be observed from

the smaller fluctuations of the predicted expectation value at a given temperature.
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I.5.2 Temporal correlation functions and linear re-

sponse

The ETH in Eq. (I.5.1) provides the form of the off-diagonal matrix elements required

to predict the dynamics of two-point correlation functions at thermal equilibrium. We

are interested in correlation functions of the form

F2(t) ..= 〈Ô(t)Ô(0)〉c ..= 〈Ô(t)Ô(0)〉 − 〈Ô(t)〉〈Ô(0)〉, (I.5.26)

where the expectation values are evaluated in one of the ensembles of statistical me-

chanics. One could, for instance, consider the canonical ensemble. For an operator Ô

in such case, we have that 〈Ô〉 = Tr[ρ̂Ô], where ρ̂ = e−βĤ/Z is the density matrix op-

erator for a system with Hamiltonian Ĥ, partition function Z = Tr[e−βĤ ] and inverse

temperature β = 1/T . In Eq. (I.5.26), the operators are written in the Heisenberg

picture Ô(t) = eiĤtÔ(0)e−iĤt.

On the other hand, eigenstate thermalisation suggests that such expectation values

could be evaluated for a single eigenstate |n〉 where, as described before, the eigenstate

with energy En is chosen to be compatible with the total energy 〈E〉β. In this case

F2(En, t) ..= 〈n|Ô(t)Ô(0)|n〉 − 〈n|Ô(t)|n〉 〈n|Ô(0)|n〉 . (I.5.27)

Note that we differentiate between F2(t), the two-point temporal correlation func-

tion computed in the statistical mechanics ensembles, and F2(En, t), as the one com-

puted on a single eigenstate. We want to evaluate this expression using the ETH in

Eq. (I.5.1).

We start by decomposing the Ô(t)Ô(0) in the eigenbasis of the Hamiltonian, which

yields

[Ô(t)Ô(0)]jl ..= 〈j|Ô(t)Ô(0)|l〉 =
∑

k

ei(Ej−Ek)tOjkOkl, (I.5.28)

which implies

〈n|Ô(t)Ô(0)|n〉 =
∑

k

ei(En−Ek)t|Onk|2. (I.5.29)
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ETH provides the general form of the Onk elements. Using Eq. (I.5.1) and noting

〈n|Ô(t)|n〉 〈n|Ô(0)|n〉 = |Onn|2, we find that

F2(En, t)
ETH
=
∑

k 6=n
e−iωte−S(En+ω

2
)|fO(En +

ω

2
, ω)|2|Rnk|2, (I.5.30)

where Ē = En + ω
2

and ω = Ek − En. Since ETH requires fÔ(En, ω) to be a smooth

function of its arguments, the fluctuations |Rλk|2 average to unity in the sum, and the

summation over states k can be replaced by integration over ω as

∑

k

→
∫
dωΩ(En + ω) =

∫
dωeS(En+ω), (I.5.31)

where Ω(En + ω) is the density of states. We may then write

F2(En, t) =

∫ ∞

−∞
dωe−iωteS(En+ω)−S(En+ω

2
)|fÔ(En +

ω

2
, ω)|2. (I.5.32)

We can Taylor expand the entropy term around ω = 02 as

S (En + ω)− S
(
En +

ω

2

)
=
βω

2
+

3ω2

8

∂β

∂En
+ · · · , (I.5.33)

and the smooth function fÔ as well

|fÔ(En +
ω

2
, ω)|2 = |fÔ(En, ω)|2 +

ω

2

[
∂|fÔ(Ē, ω)|2

∂Ē

]

En

+ · · · . (I.5.34)

Keeping terms up to linear order in ω yields

F2(En, t) ≈
∫ ∞

−∞
dωe

βω
2
−iωt

{
|fÔ(En, ω)|2 +

ω

2

[
∂|fO(Ē, ω)|2

∂Ē

]

En

}
. (I.5.35)

We can then take the Fourier transform of F2(En, t), defined as

F2(En, ω) =

∫ ∞

−∞
dteiωtF2(En, t) (I.5.36)

2This expansion is typically justifiable on the grounds of numerical observations of the behaviour
of the two-point correlation function in physical systems with short-range interactions. The ap-
proximation is typically not severe, since |fÔ(En, ω)|2 normally decays exponentially away from the
features observed near ω → 0. See, for instance, Ref. [137].
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to obtain

F2(En, ω) = 2πe
βω
2

{
|fÔ(En, ω)|2 +

ω

2

[
∂|fO(Ē, ω)|2

∂Ē

]

En

}
. (I.5.37)

Eq. (I.5.37) is the two-point correlation function in frequency domain of the operator

Ô obtained from ETH at the level of a single eigenstate |n〉 of the Hamiltonian. We

can then see that the dynamics of two-point correlation functions are dictated by the

function fÔ(En, ω).

Finite-size effects

The temporal correlation function evaluated on a thermal state F2(t) [Eq. (I.5.26)]

differs from the one computed on a single eigenstate F2(En, t) by a sub-leading term

that vanishes in the thermodynamic limit [25].

The expectation value computed in the canonical ensemble is defined, in the eigenbasis

of the Hamiltonian, as

〈·〉 ..= Tr[ρ̂ ·] =
∑

n

pn 〈n| · |n〉 , (I.5.38)

where in the case of a canonical density matrix one has pn = e−βEn/Z. In general,

other ensembles can be considered, provided that the distribution of the pn is suffi-

ciently peaked around some average energy 〈E〉 = Tr[ρ̂Ĥ] with a well-defined variance

(δE)2 = 〈Ĥ2〉 − 〈Ĥ〉2, such that (δE)2/〈E〉2 ∼ 1/L. Defining Onm
..= 〈n| Ô |m〉, the

two-point function in the eigenbasis of the Hamiltonian can be expressed as

F2(t) =
∑

nm

pne
−i(Em−En)tOnmOmn −

(∑

n

pnOnn

)2

=
∑

n6=m
pne

−i(Em−En)tOnmOmn + 〈Ô2〉 − 〈Ô〉2

=
∑

n

pn 〈n| Ô(t)Ô |n〉c + (δÔ)2 , (I.5.39)

where in the second line we have identified 〈Ô2〉 =
∑

n pn[Onn]2, 〈Ô〉 =
∑

n pnOnn

and defined (δÔ)2 ..= 〈Ô2〉 − 〈Ô〉2. The first term in Eq. (I.5.39) coincides with the

two-point function evaluated on a single eigenstate F2(En, t), while the second one is
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a time-independent quantity that can be shown to be sub-leading, i.e.,

F2(t) ∼ F2(En, t) +O(1/L) for L� 1 .

Using the ETH in Eq. (I.5.1) and the fact that pn is peaked around energy 〈E〉, we

may proceed to write down a Taylor expansion of the microcanonical function O(Ē)

around 〈E〉. For the diagonal elements Onn = O(En), we have that

O(En) = O(〈E〉) + (En − 〈E〉)
∂O

∂En

∣∣∣∣
〈E〉

+
(En − 〈E〉)2

2

∂2O

∂E2
n

∣∣∣∣
〈E〉

+ . . . (I.5.40)

This expansion can be used to express (δÔ)2 with respect to its leading order. We

have

(δO)2 =

(
∂O

∂En

)2

(δE)2. (I.5.41)

The fact that O(En) is required to be a smooth function of the energy, implies that

fluctuations must decay for the microcanonical average to be well-defined. As we

detailed before, this implies (δE)2/〈E〉2 ∼ 1/L, then (δO)2 is sub-leading. For finite-

size systems, however, this term is expected to be present and amounts to a difference

between the ensemble and the ETH predictions. Such difference, as noted above,

should decrease as the system size and the number of degrees of freedom in the sample

is increased.

Estimation of fÔ(En, ω) in chaotic systems

The function fÔ(En, ω) in the ETH plays a pivotal role in the dynamics of the system.

It encodes the information required to predict the behaviour of two-point correlation

functions as noted above.

In this section, we study the off-diagonal elements of local observables in the energy

eigenbasis as a function of ω = Em − En, where Ek labels the k-th energy eigenvalue

of the Hamiltonian. The appropriate analysis of these elements leads to the smooth

function e−S(Ē)/2fÔ(Ē, ω), from which the non-equal correlation functions in time can

be estimated in the ETH predicition.

According to the ETH, the off-diagonal matrix elements of observables in the energy
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Figure I.5.3: Absolute value of the off-diagonal elements in the energy eigenbasis of the local
magnetisation in the middle of the chain (left) and the total staggered magnetisation (right)
as a function of ω for T = 5α and L = 18 for the staggered field model with ∆ = 0.5α and
b = α in Eq. (I.5.22). The black lines correspond to binned averages.

eigenbasis are described according to

Onm = e−S(Ē)/2fÔ(Ē, ω)Rnm ∀n 6= m. (I.5.42)

We shall study the matrix elements of local observables obtained numerically in the

staggered field model to understand their behaviour.

Our starting point is to select a target energy 〈E〉, such that 〈E〉 = 〈n|Ĥ|n〉 =

Tr(Ĥ e−βĤ)/Z, where Ĥ is the Hamiltonian of the staggered field model. In the ther-

modynamic limit, a single eigenstate |n〉 and its corresponding off-diagonal overlaps

with Ô suffice to compute fÔ(En, ω) and, hence, the correlation functions according to

the ETH prediction. For finite-size systems, however, we focus on a small window of

energies centred around the target energy 〈E〉 of width 0.1ε, where ε = Emax−Emin cor-

responds to the bandwidth of the Hamiltonian at a given system size. Presumably, all

the eigenstates in this energy window contain approximately the same average energy.

This procedure is carried out to average eigenstate-to-eigenstate fluctuations [137].

To extract e−S(Ē)/2fÔ(Ē, ω), we compute the binned average of the off-diagonal matrix

elements Onm within the energy window mentioned above. The binned average is

computed using, in turn, small frequency windows δω. The size of these windows

is selected such that a smooth curve is obtained from the average and the resulting

function is not sensitive to the particular choice of δω. This window of frequencies

typically changes depending on the dimension of the magnetisation sub-sector studied



I.5.2. TEMPORAL CORRELATION FUNCTIONS AND LINEAR RESPONSE 77

in our spin model [137].

In Fig. I.5.3 we present the absolute value of the off-diagonal elements of both the

local magnetisation operator in the middle of the chain and the total staggered mag-

netisation. These matrix elements were computed for T = 5α, L = 18 and an energy

window of width 0.1ε. The temperature sets the average energy 〈E〉 that locates

the eigenstate |n〉, around which the off-diagonal matrix elements are computed. The

smooth black lines shown are binned averages for each corresponding observable. This

average corresponds to e−S(Ē)/2fÔ(Ē, ω). Note that this procedure yields fÔ(Ē, ω) up

to a factor that does not depend on ω. This factor can be estimated from the density

of states or from additional properties of the correlation functions, as we shall see in

Sec. I.5.2.1. Irrespective of how this term is estimated, the described treatment allows

us to focus on the ω dependence of fÔ(Ē, ω).

The binned average of the local observables from Fig. I.5.3 exhibits an interesting

exponential decay behaviour at high frequencies, which has been observed in other

chaotic models [137, 25, 136] and has been argued to be related to the universal ex-

ponential decay of two-point correlation functions in time for chaotic systems with

a bounded spectrum [163, 164]. On the opposite side of the spectrum, at low fre-

quencies, fÔ(Ē, ω) contains important features relevant to the long-time behaviour

of correlation functions. These frequencies are the most relevant for the response

functions associated with linear response.

Statistical distribution of off-diagonal matrix elements in chaotic systems

We have understood how the structure of the off-diagonal matrix elements in the

energy eigenbasis in chaotic gives rise to a smooth function fÔ(Ē, ω) in the ETH. In

the procedure described above, averaging was employed to obtain the smooth function

from a set of off-diagonal matrix elements within a given energy window. As predicted

by the ETH, however, the off-diagonal matrix elements are described by the smooth

function fÔ(Ē, ω) in conjunction with a statistical random matrix Rnm with a well-

defined mean and variance, which render the off-diagonal matrix elements effectively

random around the smooth function fÔ(Ē, ω). This can already be observed for local

observables in the staggered field model from Fig. I.5.3.

We are now interested in investigating the probability distribution associated to the

random matrix Rnm. The first step towards a statistical characterisation of Ô is to
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Figure I.5.4: Probability distributions of off-diagonal matrix elements in a small frequency
range ω . 0.05 for the staggered field model with ∆ = 0.5α and b = α in Eq. (I.5.22). The
average energy Ē selected is consistent with a finite canonical temperature T = 5α. The
distributions are shown in (a) for ÂSF and in (b) for B̂SF. Results obtained for finite-sized
systems of L = 20. Dashed lines depict a Gaussian distribution with the same mean and
variance.

understand the distribution of its individual matrix elements.

Since the number of matrix elements is very large even at small system sizes, we

begin by studying the distribution of off-diagonal matrix elements Onm = 〈n|Ô|m〉 in

a small frequency-resolved window ω . 0.05 and a finite temperature T = β−1 = 5α

(kB ..= 1). As before, the temperature is calculated by associating the average energy

Ē with a canonical density matrix ρ̂ = e−βĤ/Z as Ē = Tr[ρ̂Ĥ], with Z = Tr[e−βĤ ].

The probability distribution can then be inferred by creating a histogram of all the

matrix elements that satisfy Ē = Tr[ρ̂Ĥ] and ω < 0.05.

In Fig. I.5.4 we show the probability distributions obtained by this procedure. The

matrix elements are Gaussian-distributed for both the local and sums of local op-

erators in the staggered field model, as has previously been found for other models

and observables in the infinite temperature regime [165, 134, 166, 167, 19]. Most

interestingly, Gaussianity of the off-diagonal matrix elements has now started to be

considered an identifier of quantum chaos [32, 134, 167, 19].

Our previous analysis reveals the probability distribution of off-diagonal matrix ele-

ments of local observables in the ω ∼ 0 regime. In order to understand if this property

pertains to the entire spectrum away from zero frequency and if the same distributions

are observed at all temperatures where the ETH is expected to hold, we proceed to
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Figure I.5.5: ΓÔ(ω), from Eq. (I.5.43), for operators ÂSF [(a) and (b)] and B̂SF [(c) and

(d)] in the eigenbasis of ĤSF with ∆ = 0.5α and b = α in Eq. (I.5.22). Two different finite
temperatures were chosen, T = 5α [(a) and (c)] and T = 10α [(b) and (d)]. The black
horizontal line shows the value ΓÔ(ω) = π/2. The matrix elements were computed in a
small energy window 0.05ε where ε ..= Emax − Emin, and a frequency window δω = 0.05.

evaluate the frequency-dependent ratio [134]

ΓÔ(ω) ..= |Onm|2/|Onm|
2
, (I.5.43)

where the averages are performed over a small frequency window δω = 0.05. Should

the individual matrix elements be Gaussian-distributed with zero mean at a given

value of ω, then ΓÔ(ω) = π/2. For this particular analysis, we consider ω = Em−En
over the entire spectrum, while the average energy Ē = (En + Em)/2 is chosen to be

compatible with a corresponding canonical temperature. The quantity is computed

over small bins in ω of a given size and within a small energy window of width 0.05ε,

where ε ..= Emax − Emin is the bandwidth of the Hamiltonian. The average over the

small energy window is carried out to account for finite-size eigenstate-to-eigenstate

fluctuations.

In Fig. I.5.5 we show the ΓÔ(ω) ratio as a function of ω and of the system size L
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for ĤSF evaluated for the local observable ÂSF [panels (a) and (b)] and the staggered

magnetisation B̂SF [panels (c) and (d)] and for two different temperatures T = 5α

and T = 10α. We have chosen to display our results for values of temperature away

from the infinite-temperature regime. Gaussian statistics emerge at all frequencies,

i.e. ΓÔ ≈ π/2 for increasing values of ω as the system size increases. These findings,

together with recent results that have highlighted normality in the distributions of

off-diagonal matrix elements in the high-temperature limit [134, 167, 32], strongly

suggest that Gaussianity is ubiquitous in non-integrable models for which the ETH is

expected to hold, even at finite temperature.

It is important to remark that even though the off-diagonal matrix elements of local

observables in the energy eigenbasis are Gaussian-distributed, this does not imply

that they are uncorrelated. In other words, distributions observed are normal, but

these does not guarantee that Rnm is a statistical matrix composed of identical- and

independently-distributed random variables. Correlations and its consequences for

dynamical quantities will be studied in Chapter I.6.

I.5.2.1 The fluctuation-dissipation relation

The quantum analog of the celebrated fluctuation-dissipation theorem [33] can be

derived from eigenstate thermalisation.

The evaluation involves the symmetric and anti-symmetric response functions which

yield, respectively, the real and imaginary parts of F2(t). Written in such fashion we

have

S+

Ô
(En, t) ..= 〈n|{Ô(t), Ô(0)}|n〉c = 2 Re[F2(En, t)]

S−
Ô

(En, t) ..= 〈n| [Ô(t), Ô(0) ]|n〉c = 2i Im[F2(En, t)], (I.5.44)

where {·, ·} and [·, ·] stand for the anti-commutator and commutator, respectively. In

this notation, F2(t) is the one considered in the canonical ensemble, while F2(En, t)

is the one evaluated for a single energy eigenstate.

The symmetric and anti-symmetric response functions follow from the temporal cor-
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relation function in the frequency domain F2(En, ω),

S+

Ô
(En, ω) = F2(En, ω) + F2(En,−ω),

S−
Ô

(En, ω) = F2(En, ω)− F2(En,−ω). (I.5.45)

From Eq. (I.5.37), where we derived F2(En, ω) from the ETH up to linear order in ω,

we can express

S+

Ô
(En, ω) = 4π

{
cosh

(
βω

2

)
|fÔ(En, ω)|2 +

ω

2
sinh

(
βω

2

)[
∂|fÔ(Ē, ω)|2

∂Ē

]

En

}
,

S−
Ô

(En, ω) = 4π

{
sinh

(
βω

2

)
|fÔ(En, ω)|2 +

ω

2
cosh

(
βω

2

)[
∂|fÔ(Ē, ω)|2

∂Ē

]

En

}
.

(I.5.46)

The linear term in ω is sub-leading for both local and sums of local operators.

This follows from the fact that |fÔ(En, ω)|2 is sub-extensive for local operators, i.e.,

O(1), while the energy Ē is extensive and of order O(L). It then follows that

∂|fÔ(Ē, ω)|2/∂Ē ∼ 1/L. For sums of local operators, |fÔ(En, ω)|2 ∼ L and, still,

Ē ∼ L, which then implies that even in this case ∂|fÔ(Ē, ω)|2/∂Ē is a sub-leading

term in the expression.

Given that both the symmetric and anti-symmetric response functions are connected

via |fÔ(En, ω)|2, we have that

S−
Ô

(En, ω) = tanh

(
βω

2

)
S+

Ô
(En, ω), (I.5.47)

which is valid for correlation functions evaluated in the ensembles of statistical me-

chanics and for individual eigenstates in systems that satisfy L� 1. This fluctuation-

dissipation relation provides a connection between noise and dissipative response at

the level of a single eigenstate. Most importantly, the anti-symmetric correlation

function is directly connected to Kubo’s linear response susceptibility, defined in the

frequency domain as

χÔ(ω) = i

∫ ∞

0

dteiωt〈[Ô(t), Ô(0)]〉. (I.5.48)

Using a similar procedure to the one we used before, one can show [25] that the imag-

inary part of χÔ(ω) is connected to the anti-symmetric correlation function through
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fÔ(Ē, ω) for a single eigenstate,

Im[χÔ(En, ω)] =
1

2
S−
Ô

(En, ω). (I.5.49)

It then follows, that Kubo’s linear response theory, in turn, is also directly encoded

in fÔ(Ē, ω).

Response functions in chaotic systems

Dynamical quantities such as response functions, temporal auto-correlation functions

and Kubo’s linear susceptibility are all encoded within the function fÔ(Ē, ω). Having

established a framework to extract this function from the off-diagonal matrix elements

of observables in the energy eigenbasis in Sec. I.5.2, we can proceed to numerically

evaluate these dynamical quantities in the framework of the ETH. For such an eval-

uation, we return to our non-integrable staggered field model.

Following our derivation above [See Refs. [122, 25, 168] for further details] from the

ETH, one obtains the correlation functions in frequency domain in the thermodynamic

limit to leading order

S+

Ô
(En, ω) ≈ 4π cosh(βω/2)|fÔ(En, ω)|2,

S−
Ô

(En, ω) ≈ 4π sinh(βω/2)|fÔ(En, ω)|2. (I.5.50)

Given that these relations are symmetric and anti-symmetric, respectively, their Fourier

transforms to yield the correlation functions in the time domain are simplified to

Re[F2(En, t)] =

∫ ∞

0

dω cos(ωt)S+

Ô
(En, ω),

Im[F2(En, t)] =

∫ ∞

0

dω sin(ωt)S−
Ô

(En, ω). (I.5.51)

At this point is important to make two observations with respect to Eq. (I.5.51).

First, in the thermodynamic limit we expect F2(En, t) = F2(t). This immediately

follows from the association of the energy En to a corresponding canonical inverse

temperature β by assigning En = 〈E〉 = Tr[Ĥe−βĤ ]/Z. Second, in Eq. (I.5.50), there

is no dependency of the random variable Rnm. This follows from the fact that this

term enters the dynamical correlations in the form of the average of |Rnm|2, which
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Figure I.5.6: Dynamics of the two-point correlation function (real and imaginary parts)
evaluated in the canonical ensemble at temperature T and in the ETH with a compatible
energy density for [(a)-(d)] local operators and [(e)-(h)] sums of local operators for the
staggered field model with ∆ = 0.55α and b = α. Main panels display the correlation
functions for L = 20, while insets show L = 16. Finite temperatures T = 5α are shown in
top panels and bottom panels display very high temperature dynamics T = 1000α.

is unity by assumption [122, 25]. Indeed, it suffices that this random variable has

a well-defined variance for the |Rnm|2 term to vanish from the final expressions [see

Eq. (I.5.30)].

The equivalency between the dynamics of two-point correlation functions in statistical

mechanics and the corresponding dynamics of the same object predicted by the ETH

can be observed in generic systems. Following Eqs. (I.5.50) and (I.5.51), the dynamics

of the correlation functions depend solely on the function of fÔ(En, ω); which is, in

general, system- and observable-dependent. A commonly-used procedure [137, 135,

161] to isolate this function in generic systems involves a frequency-resolved analysis

of the matrix elements of a given observable in the energy eigenbasis. As described

before, one focuses on a small window of energies and extracts the off-diagonal matrix

elements of an operator Ô in the eigenbasis of the Hamiltonian. For finite-size systems,

the fluctuations present are accounted for by considering not a single eigenstate, but

a collection of eigenstates around a given energy En. A coarse-grained average then

leads to a smooth function e−S(En)/2fÔ(En, ω). The entropy term, e−S(En)/2, is not a

function of ω and in principle needs to be evaluated.
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Instead of evaluating this term directly, we first compute the symmetric correlation

function S+

Ô
(En, ω) and normalise it by the following sum rule

∫ ∞

−∞
dωS+

Ô
(En, ω) = 4π

[
〈En|Ô2|En〉 − 〈En|Ô|En〉

2
]
, (I.5.52)

while the anti-symmetric correlation function S−
Ô

(En, ω) follows from Eq. (I.5.50),

which is the manifestation of the fluctuation-dissipation theorem. In this sense, the

physical properties if the symmetric correlation function are exploited to isolate the

ω dependence of fÔ(En, ω). Alternatively, one can estimate the density of states at

a given temperature and from there, estimate e−S(Ē)/2. In the infinite temperature

regime, this term is nothing but D−1/2, where D is the dimension of the Hilbert space

of the sub-sector under evaluation. In our calculations, however, we rely on the sum

rule Eq. (I.5.52) to normalise the correlation functions and avoid the estimation of

e−S(Ē)/2.

In Fig. I.5.6, we show the dynamics of both the real and imaginary parts of the

two-time correlation function in Eq. (I.5.26) on the staggered field model, for a local

observable [panels (a)-(d)] σ̂zL/2σ̂
z
L/2+1 and for the staggered magnetisation [panels (e)-

(h)], the latter being a sum of local observables at different temperatures. Correlation

functions at finite temperature T = 5α are shown in the top panels, while infinite

temperature dynamics are shown in the bottom panels. The dynamics of the two-point

correlation function in the canonical ensemble were evaluated by direct diagonalisation

of the propagator e−iĤSFt acting on the density operator ρ̂, while the dynamics from

the ETH were evaluated using the procedure described above. For the latter, we

computed e−S(En)/2fÔ(En, ω) by considering a target energy Ē = Tr[ρ̂Ĥ] consistent

with the canonical temperature T and averaging all the off-diagonal matrix elements

within an energy window of width 0.075ε, where ε ..= Emax−Emin [see Refs. [135, 137]

for further details on the extraction of fÔ(En, ω)].

For finite-size systems, the connected symmetric correlation function contains a time-

independent term that is not present if one evaluates the same object on a single

eigenstate. This term is expected to vanish in the thermodynamic limit as we de-

scribed in Eq. (I.5.39). The difference stems from the fluctuations in the canonical

ensemble, a term which is already small for ÂSF [Eq. (I.5.23)] in Fig. I.5.4[(a)-(d)],

but not as much for B̂SF [Eq. (I.5.24)] in Fig. I.5.6[(e),(g)]. Note that the finite-size
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difference is only present in the real part of F2(En, ω), since the operators are Hermi-

tian then the fluctuations in Eq. (I.5.39) are real-valued. The difference, however, as

highlighted in Fig. I.5.6[(e),(g)], becomes smaller as the system size is increased. The

dynamics observed strongly suggest that such seemingly-constant discrepancy can be

attributed to finite-size corrections.

Though the fine details and the actual form of the decay of F2(t) depend on the observ-

able and temperature considered, it can be observed from Fig. I.5.6 that F2(En, t) ≈
F2(t), an approximation that becomes more accurate as the thermodynamic limit is

approached. It is important to remark that such prediction is accurate not only at

high temperature (bottom panels in Fig. I.5.6), but at finite temperature (top panels

in Fig. I.5.6) as well.

I.5.3 A heating-relaxation numerical experiment

Having established the main concepts of eigenstate thermalisation, we are prepared

to described an experimentally-relevant scenario where an isolated quantum system

is allowed to relax under unitary dynamics after an initial state preparation. This

in silico experiment will allow us to illustrate, to a certain extent, the degree of

predictability of the eigenstate thermalisation hypothesis by studying the physical

quantities we have described in this section.

Consider a quantum system which is initially prepared in a pure state |ψ0〉 of the

Hamiltonian Ĥ. At time t = 0, the system is coupled locally to a periodic driving

field which performs work onto the system. After some preparation time t = tprep,

the system is decoupled from the driving field. Following this procedure, the system

is allowed to relax under the unitary dynamics governed by the unitary propagator

exp(−iĤ(t − tprep)). The resulting state at time t = tprep is not an eigenstate of

Ĥ, therefore, non-stationary. We then observe the relaxation dynamics of a local

observable to understand if it follows the predictions of eigenstate thermalisation.

Let us illustrate this physical configuration from the perspective of our archetypal

staggered field model. We consider ĤSF with parameters ∆ = 0.55α and b = α from

Eq. (I.5.22) with periodic boundary conditions in the zero-magnetisation sector, with

N = L/2 excitations. To avoid the effect of global symmetries, we introduce a small

perturbation δσ̂z1 to the Hamiltonian, with δ = 0.1α. We assume that at time t = 0,
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Figure I.5.7: Unitary heating of a quantum spin-1
2 periodic chain in the half-filling (N =

L/2) sector, the non-integrable staggered field model with ∆ = 0.55α and b = α from
Eq. (I.5.22). Results are for L = 26 sites unless otherwise indicated. (a) Mean energy
Ē = 〈ψ(tprep)|Ĥ|ψ(tprep)〉 of the chain as a function of the preparation time tprep under
local periodic driving, Ĥ(t) = Ĥ + a sin(ω0t)σ̂

z
j0

, with amplitude a = 2α and frequency

ω0 = 8α applied to middle site, j0 = L/2. The inset shows the energy fluctuations, (∆E)2 =
〈ψ(tprep)|(Ĥ − Ē)2|ψ(tprep)〉, relative to Ē∗ = Ē − E0 with E0 the ground-state energy,
as a function of system size at fixed microcanonical temperature T = 10α. (b) Energy
distribution of the prepared state, |ψ(E)|2 =

∑
n | 〈En|ψ(tprep)〉 |2δ(E − En), where |En〉 is

an eigenstate of Ĥ with energy En. (c) Equilibration of the local magnetisation on site j0
after the drive is switched off. Dashed lines show the corresponding microcanonical average.
(d) Time-averaged local magnetisation after equilibration (black dots, obtained by averaging
over a time interval δt ≥ 20α−1) compared with the microcanonical average (blue line).
(e) Auto-correlation function of the local operator Â =

∑
j uj σ̂

z
j , where uj ∝ e−(j−j0)2 is a

Gaussian profile (
∑

j uj = 1). Lines show the result for t− tprep = 100α−1, after the system

has relaxed to equilibrium, while squares indicate near-identical values for t−tprep = 110α−1.
(f) Inverse temperature estimated by fitting the low-frequency noise and response functions
to the FDT χ̃′′(ω)/S̃(ω) = tanh(βω/2) (black dots) and the corresponding microcanonical
prediction (blue line).

the system is prepared in the ground state of ĤSF, |ψ0〉, with energy E0. We then

couple the system to a periodic driving field on site j0, at which point we have the

total time-dependent Hamiltonian

Ĥ(t) = ĤSF + a sin(ω0t)σ̂
z
j0
, (I.5.53)

where we are free to choose the amplitude a = 2α, the driving frequency ω0 = 8α and

j0 = L/2 for chains with even number of sites. The driving field pumps energy into

the system steadily at a rate that depends on the frequency of the periodic field. At

time t = tprep, the system is in a state with a total energy that depends on tprep, at
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which point the driving field is switched off. Fig. I.5.7(a) show how, as a function of

tprep, the energy

Ē(tprep) = 〈ψ(tprep)|Ĥ|ψ(tprep)〉 (I.5.54)

of the chain changes as a function of the preparation time. The average energy Ē(tprep)

can be tuned by selecting a preparation time. The energetic distribution of the class

of states generated by this procedure is defined as

|ψ(E)|2 =
∑

n

| 〈n|ψ(tprep)〉 |2δ(E − En), (I.5.55)

where |n〉 is an eigenstate of Ĥ with energy En. It can be observed from Fig. I.5.7(b)

that the states generated by periodic driving present an energy-peaked distribution

separated by the driving frequency of the driving field. Most importantly, the energy

fluctuations for the class of states generated by the driving field

∆E

Ē − E0

..=
∆E

Ē∗
(I.5.56)

decay as the system size increases. The inset in Fig. I.5.7(a) shows the energy fluc-

tuations, where (∆E)2 = 〈ψ(tprep)|(Ĥ − Ē)2|ψ(tprep)〉, relative to the ground state

energy Ē∗ = Ē − E0 as a function of the system size at a fixed microcanonical tem-

perature T = 10α. We recall how this is a necessary condition for thermalisation

as exposed in Sec. I.5.1. The microcanonical temperature β(E) = dS/dE can be

extracted from the density of states via the Boltzmann’s relation S(E) = lnW (E),

where W (E) = Ω(E)dE corresponds to the number of microstates in small energy

interval dE from the density of states Ω(E) =
∑

n δ(E − En). This procedure can

be evaluated with exact diagonalisation for systems with moderate values of L. How-

ever, the kernel polynomial method allows one to attain larger system sizes by an

appropriate approximation using Chebyshev polynomials [169] .

Autonomous, unitary evolution is carried out by the out-of-equilibrium configuration

obtained after the driving. Eigenstate thermalisation concerns the dynamics of a

generic observable as long as it is local. After the periodic driving has been decoupled,

the dynamics of the magnetisation in the z direction of the central site as a function of

time are shown in Fig. I.5.7(c). The time-dependent state |ψ(t)〉 can be obtained from
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the numerical integration of the Schroödinger equation i∂t |ψ(t)〉 = Ĥ |ψ(t)〉 through

the standard fourth-order Runge-Kutta algorithm [107], from which the dynamics

of the observable can be computed. It can be observed that 〈σ̂zj0(t)〉 relaxes to an

asymptotic value in the limit of long times. The saturation point depends on the

average energy of the prepared initial state, as seen in Fig. I.5.7(c).

As expected from eigenstate thermalisation, the saturation point of 〈σ̂zj0(t)〉 coincides

with the microcanonical prediction at energy Ē, i.e.,

O(E) =
1

Ω(E)

∑

n

Onnδ(E − En) ≈ lim
t→∞
〈Ô(t)〉 = O, (I.5.57)

as can be observed from Fig. I.5.7(d). The expectation value in the microcanonical

ensemble can be obtained from exact diagonalisation or the kernel polynomial method

described above (see Ref. [169] for further details). This is the essence of eigenstate

thermalisation as described in Sec. I.5.1.

At the level of correlation functions at thermal equilibrium, thermalisation is manifest

in the fluctuation-dissipation relation. Let us consider the local operator

Â =
∑

j

ujσ̂
z
j , (I.5.58)

where uj ∝ e−(j−j0)2 is a normalised Gaussian profile such that
∑

j uj = 1. Correlation

functions of the form

C(t′, t) = 〈Â(t′)Â(t)〉 − 〈Â(t′)〉〈Â(t)〉, (I.5.59)

become approximately stationary at long times in non-integrable systems, C(t+τ, t) ≈
C(τ), as can be observed from the numerical evaluation of C(t+ τ, t) in Fig. I.5.7(e).

One can express C(τ) in terms of the symmetrised noise S(τ) = Re[C(τ)] and the dis-

sipative response function χ′′(τ) = iIm[C(τ)]. Their Fourier transforms yield the

frequency-dependent signals of the correlation function, which are related by the

fluctuation-dissipation theorem at thermal equilibrium

S(ω) = coth(βω/2)χ′′(ω). (I.5.60)

Fig. I.5.7(f) exposes how this behaviour is manifest numerically in the staggered field
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model for the relaxation of the observable Â. We show the microcanonical temperature

β, evaluated from the β(E) = dS/dE and the microcanonical entropy from the density

of states at average energy Ē. From eigenstate thermalisation, the same temperature

parameter can be evaluated from the dynamical correlation functions in the frequency

domain after relaxation. In the frequency domain, this amounts to the near-zero

frequency ω ≈ 0 behaviour of the symmetrised noise and the dissipative response

function. Note that these two signals can be approximated from the ETH through

fÔ(Ē, ω), from

S(ω) = 2π cosh(βω/2)|fÔ(Ē, ω)|2, (I.5.61)

χ′′(ω) = 2π sinh(βω/2)|fÔ(Ē, ω)|2, (I.5.62)

where the numerical estimation of fÔ(Ē, ω) follows from the described procedure in

Sec. I.5.2 through the off-diagonal matrix elements. In practice, however, to avoid full

diagonalisation, one can evaluate the correlation functions from the time-evolved pure

states obtained through the Runge-Kutta algorithm described before. Fig. I.5.7(f)

shows the estimation of the microcanonical temperature through

χ̃′′(ω)/S̃(ω) = tanh(βω/2). (I.5.63)

It can be observed that both predictions are very close to each other for the shown

values of the average energy Ē, except for low-temperature values in which non-generic

features are often found in non-integrable models.

Crucially, the experiment we have just described illustrates how thermal behaviour

is manifest from a single parameter: the average energy Ē which then allows one to

describe equilibrium quantities through a single-eigenstate thermal ensemble.

I.5.4 Eigenstate thermalisation in the single impu-

rity model

Integrability is believed to be unstable to perturbations [25]. Surprisingly, it has been

shown that even a single magnetic impurity perturbation around the centre of the

integrable spin-1/2 XXZ chain is enough to induce level repulsion and random matrix
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statistics in the spectrum [54–56, 155, 20, 108], as we have highlighted in Chapter I.3.

However, in Chapter I.4 we provided a study of how this model displays ballistic

spin transport in linear response. This result will be solidified in Part II, when we

revisit the problem from the perspective of open quantum systems. These results

challenge our expectation that quantum chaotic systems (those exhibiting random

matrix statistics in the spectrum) should exhibit diffusive transport.

Our intuition is that thermalisation in the model must somehow be anomalous, given

that the model presents the qualities of a non-integrable model and ballistic transport

at the same time. At theoretical level, non-integrability is not inconsistent with coher-

ent transport. From Mazur’s inequality in Chapter I.2, we can predict a vanishing spin

Drude weight for any given non-integrable model. Our main point from Chapter I.4,

however, is that a vanishing spin Drude weight does not necessarily imply incoherent

transport. As we demonstrated, for the single impurity model, the vanishing Drude

weight stems from lack of translation invariance. This fact prompted us to look at

the finite-frequency domain in Kubo’s linear response theory, which lead us to the

conclusion that spin transport in the single impurity model is coherent. Hence, in

this sense, non-integrability and coherent transport are not mutually exclusive. The

single impurity model is the perfect example of this fact.

Having established the fundamental aspects of eigenstate thermalisation, we are now

ready to investigate thermalisation in the single impurity model. As we shall see,

very interesting behaviour is observed in which the properties of the integrable XXZ

model end up embedded in the non-integrable, perturbed model. We shall study

the properties of the eigenstates of the unperturbed XXZ model, along with those

of eigenstates of the non-integrable model obtained by perturbing it with a magnetic

impurity about the centre of the chain. Let us recall the single-impurity Hamiltonian

ĤSI = ĤXXZ + h σ̂zL/2, (I.5.64)

where h is the strength of the magnetic impurity. The interaction parameter in the

XXZ model [Eq. (I.3.1)] will be considered to be ∆ = 0.55, for which spin transport

is ballistic, but we will also show results for ∆ = 1.1, for which spin transport is

diffusive [1] with α = 1 in both cases. We henceforth set h = 1 so that all energy

scales in our perturbed Hamiltonian are O(1). We focus on the zero magnetisation
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sector,
∑

i 〈σ̂zi 〉 = 0, which is the largest sector [see Sec. I.3.1.1]. Reflection symmetry

is present in ĤXXZ. We explicitly break it by adding a very weak magnetic field

at site i = 1, h1 = 10−1 (like open boundary conditions, this perturbation does

not break integrability [54]). We remark that individual sub-sectors stemming from

the presence of a global symmetry of the Hamiltonian are independent, and cannot

be coupled coherently by Hamiltonian dynamics. It is then important to consider

each sub-sector individually, or, as we proceed in our analysis, explicitly remove the

symmetry by a small perturbation that is expected not to change our conclusions

significantly. We will use full exact diagonalisation to study matrix elements and

eigenstates, and study chains with up to L = 20 sites, for which the Hilbert space

dimension D = L!/[(L/2)!]2 = 184 756.

I.5.4.1 Diagonal ETH

Let us first study the diagonal matrix elements of two related local observables. We

choose the local kinetic energy at site i = L/4 (far away from the boundary and the

impurity),

K̂ ..= K̂L
4
,L
4

+1 =
(
σ̂xL

4
σ̂xL

4
+1

+ σ̂yL
4

σ̂yL
4

+1

)
, (I.5.65)

and the total kinetic energy per site, the average local kinetic energy, defined as

T̂ ..=
1

L

L−1∑

i=1

(
σ̂xi σ̂

x
i+1 + σ̂yi σ̂

y
i+1

)
. (I.5.66)

The contrast between the two shows the effect of averaging in non-translationally

invariant systems. We shall also consider the local magnetisation in the z direction

at the position the impurity is located, i.e., σ̂zL/4.

In Fig. I.5.8, we show the diagonal matrix elements of K̂ and T̂ in the eigenstates

of the Hamiltonians in Eqs. (I.3.1) and (I.5.64). The results are plotted as functions

of the energy density defined as εn ..= En − Emin/Emax − Emin, where En is the nth

energy eigenvalue, and Emin (Emax) is the lowest (highest) energy eigenvalue. Despite

the quantitative differences in the behaviour of the two observables in each model

(at each energy, the spread of Tnn is smaller than that of Knn), they both exhibit a

qualitatively similar behaviour depending on whether the model is integrable (ĤXXZ)

or non-integrable (ĤSI). In the integrable model, the spread of Tnn and Knn at each
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Figure I.5.8: Diagonal matrix elements of T̂ [(a), (b)] and K̂ [(c), (d)] in the eigenstates
of ĤXXZ [(a), (c)] and ĤSI [(b), (d)] (∆ = 0.55). The black lines show microcanonical
averages (within windows with δεn = 0.008) in ĤXXZ for the largest chain (L = 20). The
insets in (a) and (c) show the equivalence of the microcanonical predictions in both models
for each observable, while the insets in (b) and (d) show the (LD)−1/2 and D−1/2 scalings,
respectively, of |δOnn| ..= |Onn −On+1n+1| (the dashed lines are ∝ x−1/2), where we average
over the central 20% of the eigenstates in chains with L = 10, 12, . . . , 20.

energy does not change with changing system size as the system does not satisfy the

ETH, while in the non-integrable model it decreases exponentially fast with increasing

L, away from the edges of the spectrum, as can be seen in the insets of Figs. I.5.8(b)

and I.5.8(d) for a variance indicator |δOnn|. These results strongly suggest that Tnn

and Knn satisfy the ETH [56, 155].

Since the single impurity is a sub-extensive local perturbation to the XXZ chain, it

does not affect the microcanonical predictions away from the edges of the spectrum

for local observables away from the impurity in sufficiently large system sizes. This is

confirmed in the insets in Figs. I.5.8(a) and I.5.8(c). Hence, a remarkable consequence

of the single impurity producing eigenstate thermalisation (something that is achieved

via mixing nearby unperturbed energy eigenstates) is that the smooth functions Tnn

and Knn are nothing but the microcanonical ensemble predictions for the integrable

model. Another interesting consequence of it is that if one evolves highly excited

eigenstates of ĤSI under the integrable dynamics generated by ĤXXZ, thermalisation
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Figure I.5.9: Diagonal matrix elements of (a) and (b) σ̂zN/2 in the eigenstates (a) of the

(integrable) XXZ and (b) the non-integrable single-impurity model for ∆ = 0.55 (main
panels) and ∆ = 1.1 (insets) for different chain sizes L. The black lines correspond to the
microcanonical averages (within windows with δεn = 0.008) for the largest chain (L = 20).
We plot the matrix elements vs the energy density εn, defined as εn ..= En − Emin/Emax −
Emin, where En is the nth energy eigenvalue and Emin (Emax) is the ground-state (highest)
energy eigenvalue.

will occur at long times, as in the limit of vanishingly small but extensive integrability

breaking perturbations [143, 170].

Note that, as remarked in Sec. I.5.1 and Sec. I.5.1.1, the eigenstate-to-eigenstate

fluctuations in observables composed of sums of local operators decays as (LD)−1/2

due to the 1/
√
L scaling of the operator Schmidt norm [161, 162, 134]. This analysis

was only carried out over the central eigenstates of the spectrum, related to the

thermodynamical infinite-temperature regime.

In Fig. I.5.9, we plot the diagonal matrix elements of σ̂zL/2 [Figs. I.5.9(a) and I.5.9(b)]

in the eigenstates of ĤXXZ [Figs. I.5.9(a)] and ĤSI [Figs. I.5.9(b)] for ∆ = 0.55 (main

panels) and ∆ = 1.1 (insets). Fig. I.5.9(a) shows that there is no diagonal eigenstate

thermalisation for the local magnetisation in the z direction in the XXZ chain, as

the support of the eigenstate to eigenstate fluctuations, at any given energy, does not

decrease with increasing system size. This is in contrast to the results for the single-

impurity model in which the support of the eigenstate-to-eigenstate fluctuations of

both observables, at any given energy away from the edges of the spectrum, decreases

with increasing system size. This suggests that diagonal eigenstate thermalisation

occurs for σ̂zL/2 in the single-impurity model.

The results for [σ̂zL/2]nn are in qualitative agreement with the results for T̂ and K̂,

suggesting that diagonal eigenstate thermalisation occurs for local operators in the

single-impurity model but not in the integrable XXZ chain. A difference to be high-
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lighted between the diagonal ETH for T̂ and K̂ versus σ̂zL/2 in the single-impurity

model, is that for T̂ and K̂, the smooth functions T (Ē) and K(Ē) from the ETH,

respectively, are the microcanonical predictions for the integrable model. This could

be attributed to the fact that T̂ is an average over the entire chain and the magnetic

impurity is a sub-extensive perturbation, while for K̂ the observable considered is

located away from the impurity site. On the other hand, this is clearly not the case

for the smooth function σzL/2(Ē) of σ̂zL/2 in Fig. I.5.9(b). The latter is expected since

σ̂zL/2 is the operator used to perturb the XXZ chain. The microcanonical predictions

for such an observable, then, are expected to be different at any energy density away

from the infinite-temperature regime.

I.5.4.2 Off-diagonal ETH

From the diagonal elements of local observables in the energy eigenbasis, we have found

that as long as these observables are averaged over the entire system or away from the

position of the impurity, the microcanonical expectation values of the unperturbed

integrable model get embedded into the perturbed single impurity model. We can

then ask the question if this is the case for the off-diagonal matrix elements, from

which correlation functions and thus, transport regimes, can be identified.

To answer this question, we then study the off-diagonal matrix elements of the total

kinetic energy per site T̂ [Eq. (I.5.66)], and of the spin current operator per site Ĵ ,

Ĵ ..=
1

L

L−1∑

i=1

(
σ̂xi σ̂

y
i+1 − σ̂yi σ̂xi+1

)
. (I.5.67)

Since T̂ and Ĵ have Hilbert-Schmidt norms that scale as 1/
√
L, the off-diagonal part

of the ETH needs to be modified to read [134, 162]

Onm =
e−S(Ē)/2

√
L

fO(Ē, ω)Rnm. (I.5.68)

We focus on the infinite-temperature regime, in which Ē ≈ 0 and S(Ē) ≈ lnD.

In Figs. I.5.10(a) and I.5.10(b), we show the off-diagonal matrix elements |Tnm|2 in the

XXZ and single-impurity models, respectively. As expected, their overall dispersion

is larger in the integrable model than non-integrable one.

Most interestingly, even in integrable models, the variance of the off-diagonal matrix
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Figure I.5.10: [(a), (b)] Off-diagonal matrix elements of T̂ , and the corresponding coarse-
grained average [continuous (black) line], plotted vs ω for chains with L = 18. [(c), (d)]
Coarse-grained averages of Tnm, including the ones reported in (a) and (b), for different
chain sizes. [(e), (f)] Coarse-grained averages of Jnm for different chain sizes (the insets
show results at low ω). The left panels [(a), (c), and (e)] show results for ĤXXZ, while the
right ones [(b), (d), and (f)] show results for ĤSI (∆ = 0.55). The matrix elements were
computed within a small window of energy around Ē ≈ 0 (centre of the spectrum) of width
0.05ε (0.075ε for the insets), where ε ..= Emax − Emin. The coarse-grained averages were
computed using a window δω = 0.1 [δω = 0.075 and δω = 0.01 for the insets in (e) and (f),
respectively].

elements of local observables decays as they do in non-integrable models. This decay

is given by

|Onm|2 ∝ (LD)−1 ∀n 6= m, (I.5.69)

which, for the case of observables that satisfy Onm ≈ 0, then |Onm|2 is approximately

the variance of the off-diagonal matrix elements. It was first conjectured that such

behaviour would be present in interacting integrable and non-integrable models alike

by Mallayya and Rigol in Ref. [147], and then shown numerically to be the case by

Leblond et al. in Ref. [134] in the infinite-temperature regime. This interesting fact is
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crucial, as it then allows one to define a function |fÔ(Ē, ω)|2 for both integrable and

non-integrable models, even if the integrable models do not satisfy thermalisation

according to the ETH. Remarkably, for integrable systems, this can only be done

for the squared function |fÔ(Ē, ω)|2 and not for fÔ(Ē, ω). The squared function,

however, is the object that enters in the expressions for correlation functions and the

fluctuation-dissipation relation. It then follows that that off-diagonal matrix elements

of observables encodes dynamical properties of interacting systems, irrespective of

whether the system is integrable or not.

For both models, Figs. I.5.10(a) and I.5.10(b) show that the coarse-grained average

|Tnm|2 (which corresponds to the variance of the off-diagonal matrix elements as Tnm =

0) is a smooth function of ω [134]. Figures I.5.10(c) and I.5.10(d) for |Tnm|2, and

Figs. I.5.10(e) and I.5.10(f) for |Jnm|2, show that such a scaling is satisfied by our

observables in the XXZ and single-impurity models.

Figs. I.5.10(c) and I.5.10(d) [Figs. I.5.10(e) and I.5.10(f)] also show that the variances

|Tnm|2 (|Jnm|2) are very similar in the two models and the differences are consistent

within present finite-size effects. For |Jnm|2, see insets in Figs. I.5.10(e) and I.5.10(f),

the similarity extends to features that occur at low frequencies. This opens the ques-

tion of whether there is any difference between the off-diagonal matrix elements of

observables in both models.

We find that the off-diagonal matrix elements of observables are normally distributed

in the single-impurity model (qualitatively similar results have been obtained in other

non-integrable models [136, 137, 134]), while they are close to log-normally distributed

in the XXZ chain [134]. To test the normality of the distribution in the single-impurity

model for different values of ω, and to contrast it to the results for the XXZ chain,

we compute

ΓÔ(ω) ..= |Onm|2/|Onm|
2
. (I.5.70)

ΓÔ = π/2 for normally distributed matrix elements, as described in Sec. I.5.2.

In Fig. I.5.11, we show results for ΓT̂ (ω) [Figs. I.5.11(a) and I.5.11(b)] and ΓĴ(ω)

[Figs. I.5.11(c) and I.5.11(d)] in the XXZ [Figs. I.5.11(a) and I.5.11(c)] and single-

impurity [Figs. I.5.11(b) and I.5.11(d)] models. For all values of ω shown in Figs. I.5.11(b)

and I.5.11(d) for the single-impurity model, ΓT̂ (ω) and ΓĴ(ω), respectively, approach

π/2 as L increases, i.e., Tnm and Jnm are well described by a normal distribution.

On the other hand, in Figs. I.5.11(a) and I.5.11(c) for the XXZ model, ΓT̂ (ω) and
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Figure I.5.11: ΓÔ(ω), see Eq. (I.5.70), for the total kinetic energy per site [(a), (b)] and for the
current operator [(c), (d)], in the XXZ [(a), (c)] and single-impurity [(b), (d)] models (∆ =
0.55). The horizontal line in (b) and (d) marks π/2. The matrix elements were computed
using the same energy window as in Fig. I.5.10, while the coarse-graining parameter is
δω = 0.05.

ΓĴ(ω), respectively, depend on the system size, i.e., Tnm and Jnm are not normally

distributed.

The results discussed so far for the matrix elements of local operators in the single-

impurity model show that they are fully consistent with the ETH. The fact that the

off-diagonal matrix elements are normally distributed (the variance sets all central

moments) means that one can define a meaningful fÔ(Ē, ω), while this is not the

case for the XXZ chain. The question we address next is related to the ballistic spin

transport in the single-impurity model, which is in stark contrast to the usual diffusive

transport found in non-integrable models.

Ballistic transport

We recall that (Chapter. I.4) within linear response, the real part of the conductivity

reads (kB = 1) [102, 103, 13, 14, 1]

Re[σL(ω)] = πDLδ(ω) +
π

L

(
1− e−βω

ω

) ∑

εn 6=εm
pn|Jnm|2δ(εm − εn − ω), (I.5.71)
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Figure I.5.12: Scaled variances of the off-diagonal matrix elements of Ĵ in the eigenstates
of ĤXXZ (a) and ĤSI (b) plotted vs Lω. The main panels (insets) show results for ∆ = 0.55
(∆ = 1.1). The matrix elements were computed within a small window of energies around
Ē ≈ 0 of width 0.075ε. For the binned averages, we used δω = 0.075 in (a) and δω = 0.01
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where DL is the Drude weight, β is the inverse temperature, pn = e−βEn/Z is the

Boltzmann weight of eigenstate |n〉, and Z is the partition function. Jnm are the ma-

trix elements of the spin current operator. In integrable systems with open boundary

conditions (e.g., our XXZ chain), DL can be shown to be identically zero no matter the

nature of the spin transport, as we demonstrated in Chapter I.4 [14]. When transport

is ballistic, a peak (or peaks) appear in Re[σL(ω)] at a non-zero frequency (frequen-

cies) proportional to 1/L. When L → ∞, the peak (peaks) move toward ω → 0

resulting in a peak in Re[σL(ω = 0)] that signals ballistic transport [14]. Exactly the

same was shown to occur in our single impurity model in Chapter I.4. Therefore, in

our integrable and non-integrable models ballistic transport emerges because of the

ω → 0 behaviour of the off-diagonal matrix elements of the current operator.

In Fig. I.5.12(a), we show the scaled variances of the matrix elements of Ĵ in XXZ

chains with L = 16, 18, and 20 as functions of Lω for ∆ = 0.55. A large peak can

be seen at a frequency that scales as 1/L whose area does not change with increasing

L. This is consistent with the behaviour of Re[σL(ω)] [14] signalling coherent trans-
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port [84]. We invite the reader to compare the behaviour of the off-diagonal matrix

elements in the energy eigenbasis shown in Fig. I.5.12 with the real part of the spin

conductivity shown in Fig. I.4.2. The rather similar behaviour is indicative of two

illuminating facts. First, the off-diagonal matrix elements encode dynamical quanti-

ties related to two-point correlation functions, both in interacting integrable systems

and non-integrable systems. Second, in both cases, conductivity is consistent with

ballistic spin transport regimes for ∆ = 0.55. This behaviour is expected to persist

in the parameter range 0 < ∆ < 1, for which the unperturbed XXZ model is known

to display ballistic transport [1].

The position of the smaller (second) peak is nearly L independent [see inset in

Fig. I.5.10(e)], appearing to mark the onset of the L-independent behaviour shown

in Fig. I.5.10. The variances of the matrix elements of Ĵ in the (non-integrable)

single-impurity model, which, remarkably, define a novel L-independent ETH func-

tion |fĴ(Ē ≈ 0, Lω)|2/L [Fig. I.5.12(b)], display the same low-frequency behaviour as

in the (integrable) XXZ chain. In contrast, as shown in the insets in Fig. I.5.12, the

scaled variances of the matrix elements of Ĵ behave completely differently for ∆ = 1.1,

for which spin transport is diffusive. The nature of the spin transport in the absence

and presence of the single magnetic defect, for ∆ in the easy-plane (0 < ∆ < 1) and

easy-axis (∆ > 1) regimes, is something that can readily be probed in ultracold gases

experiments [3].

I.5.4.3 Discussion and outlook

We have demonstrated in Chapter I.4 that spin transport in the easy-plane regime of

the XXZ model perturbed with a single magnetic impurity located around the centre

of the chain is ballistic, just as the unperturbed model. In this section, we have shown

that the matrix elements of observables in such a model are fully consistent with the

ETH. Unique to breaking integrability with local perturbations, we argued that sta-

tistical mechanics and transport properties of the unperturbed integrable model can

end up embedded in properties of the eigenstates of the perturbed (quantum chaotic)

one. Thermalisation, in this sense, is manifest from the ergodic behaviour observed

in the single impurity model, yet the system thermalises to the microcanonical pre-

dictions of the unperturbed model. We have shown this to be the case as long as the

observables considered are either averaged over the entire chain or locally constraint
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in system sites located away from the impurity site.

We showed that the ETH is fully fulfilled when breaking integrability with a local per-

turbation and that, in such setups, it can inherit statistical mechanics and transport

properties of the integrable model. Specifically, we showed that the diagonal matrix

elements of observables in the perturbed energy eigenstates can follow the microcanon-

ical predictions for the integrable model, and that ballistic transport in the integrable

model can result in a novel L-independent ETH function |fĴ(Ē ≈ 0, Lω)|2/L that

characterises the off-diagonal matrix elements of the current operator in the per-

turbed energy eigenstates at low frequencies. It is quite peculiar that a system that

fulfils the ETH is consistent with ballistic transport, since the expectation on phys-

ical grounds related to ergodic systems is that scattering processes and complexity

will lead to incoherent transport. We have shown the single impurity model to be a

counterexample of this intuition.

An open question is connected to the concept of pre-thermalisation [171]. This phe-

nomenon is characterised by a two-step process in which there exists relaxation to a

non-thermal state, that could be described the GGE or another ensemble, followed by

a long-time relaxation to a thermal state. This could be the thermalisation mechanism

for the single impurity model and we leave it to future work to determine whether

this is the case.



Chapter I.6

Fine structure of eigenstate thermalisation

We have introduced thermalisation in Chapter I.5, through the framework of the

eigenstate thermalisation hypothesis. The premise is based on the ansatz that de-

scribes the structure of the matrix elements of local observables in the eigenbasis

of a non-integrable Hamiltonian, such that ergodicity is satisfied, in the sense that

the long-time expectation value of a local observable coincides with the predictions

from statistical mechanics. Most importantly, the dynamics of temporal correlation

functions related to linear response at thermal equilibrium which, in turn, describe

transport, noise and response fall within the range of applicability of the eigenstate

thermalisation hypothesis (ETH). Though no formal proof exists for the ETH, over-

whelming numerical and experimental evidence attest to its predictive power [25]. In

this sense, the ETH synthesises the conditions to be satisfied by the matrix elements

of an operator Ô in the energy eigenbasis

Onm = O(Ē)δnm + e−S(Ē)/2fÔ(Ē, ω)Rnm, (I.6.1)

to have expectation values and correlation functions indistinguishable from their cor-

responding finite-temperature counterparts. Eq. (I.6.1) has been described in Chap-

ter I.5 [see Eq. (I.5.1)].

Whenever the ETH is satisfied, it is difficult to contrast the coherence of a pure state

with that of a statistical mixture by means of standard measurements. Therefore, a

question that naturally comes to mind is: will pure state dynamics possess detectable

101
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features beyond thermal noise? This question, posed recently by Kitaev [172] in

the context of black-hole physics, lead him to suggest the study of a peculiar type

of out-of-time-order correlations (OTOCs), originally introduced by Larkin and Ov-

chinikov [173]. This object, as a result of a nested time structure, detects quantum

chaos and correlations beyond thermal ones. It was recently shown [31, 174] that

OTOCs are controlled by correlations beyond ETH. We must remark, however, that

the interpretation of the connection between the OTOC and the underlying quantum

state dynamics is, in general, complex.

In Sec. I.6.1 we shall show that the task of discriminating a pure state that looks

thermal from a true, thermal Gibbs density matrix might be achieved by a different

physical quantity: the quantum Fisher information (QFI) [175–177] with respect to

the pure state and the thermal state, respectively. The QFI is a quantity of central

importance in metrology [178, 28] and entanglement theory [179, 180]. The first obser-

vation in this chapter is that the QFI computed in the eigenstates of the Hamiltonian

FETH (or in the asymptotic state of a quenched dynamics), and the one computed in

the Gibbs state at the corresponding inverse temperature β, FGibbs [181, 182], sat-

isfy the inequality FETH ≥ FGibbs, where the equality holds at zero temperature. By

computing both terms, we quantify the difference. The corresponding multipartite

entanglement structure, as obtained from the Fisher information densities fQ = F/L
is in stark contrast. For example, in systems possessing finite temperature phase

transitions, we argue that FETH diverges with system size at critical points (implying

extensive multipartiteness of entanglement in the pure state), while it is only finite in

the corresponding Gibbs ensemble [181–183].

The second part of this chapter is intended to provide a connection between the sta-

tistical correlations in the matrix elements of local operators in the energy eigenbasis

[Eq. (I.6.1)] and the OTOCs. In isolated classical systems, thermalisation relies on the

emergence of chaos and ergodicity, which together lead phase-space trajectories start-

ing from the same energy to become indistinguishable when averaged over time [184].

The equivalent notion of indistinguishability in quantum many-body systems is pro-

vided by the ETH [119, 120, 25], which states that nearby energy eigenstates cannot

be distinguished by local observations.

More recently, thermalisation has been explored from a new quantum information

perspective, with emphasis on the notion of scrambling [29]. Information scrambling is
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a more primordial feature of quantum dynamical systems where information, initially

stored locally, gets dynamically distributed in global degrees of freedom [185]. This

process is explained as a consequence of the growth of operator complexity under time

evolution [186]. Although traditional tools can hardly be of any help in studying this

phenomenon, a variety of ideas have emerged recently for this task. Among them, the

OTOCs [173], suggested to characterise synthetic analogues of black-holes [172, 187,

188], has arisen as an important figure of merit for scrambling, ergodicity and quantum

chaos in complex many-body quantum systems. Several experimental studies with a

variety of platforms have demonstrated that OTOCs indeed characterise scrambling

following the operation of a unitary circuit [189–192].

Recently, Foini and Kurchan [193] argued that correlations between the matrix ele-

ments of operators in the energy eigenbasis must exist in the ETH to account for the

positive exponential growth rate of OTOCs in chaotic models [188]. Based on this

result, Murthy and Srednicki [30] were able to derive known bounds on the growth

rate from the ETH. Chan et al. [174] showed that in locally interacting systems the

butterfly effect for OTOCs implies a universal form for these correlations. The exis-

tence of frequency-dependent correlations has recently been confirmed by Richter et

al. [32] and a distinction with a regime in which these correlations vanish was iden-

tified, by a numerical investigation of the statistical distributions of matrix elements

in non-integrable systems.

It remains an open question to establish if these frequency-dependent correlations

can be observed in the dynamics of OTOCs and if the timescales associated with

late-time chaos can be connected to the presence, or lack thereof, of matrix-element

correlations. It is still not clear if temperature plays a role and, furthermore, the

scaling as a function of system size of the frequency scale that divides correlated and

uncorrelated regimes has yet to be estimated.

In the Sec. I.6.2, we carry out a thorough study of the frequency and energy depen-

dence of the statistics of off-diagonal matrix elements and of the OTOCs of extensive

observables in two experimentally relevant models: hardcore bosons with dipolar in-

teractions in a harmonic trap [135] and an Ising chain with longitudinal and transverse

fields [194]. In all instances, the statistical matrix appears to have some common fea-

tures. The matrix elements Rnm at a given energy Ē and frequency ω obey Gaussian

statistics [165, 134, 166, 32, 167, 19], in contrast with non-ergodic systems [195–197].
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We demonstrate that this feature persists well-beyond the infinite-temperature limit.

We also further characterise the statistical correlations between Rnm at well-separated

frequencies. However, these correlations disappear between matrix elements close to

the diagonal, indicating the emergence of random-matrix-like behaviour at small fre-

quencies |En − Em| < ωGOE, where ωGOE is a model- and operator-dependent energy

scale, as first demonstrated for non-extensive observables in Ref. [32]. We show ex-

plicitly that this rich structure is naturally reflected in the dynamics of OTOCs. A

comparison between the OTOCs computed on a thermal ensemble and those com-

puted assuming the ETH with a random uncorrelated Gaussian statistical matrix

shows convergence of the two on time scales that appear to be related to ω−1
GOE. We

use this observation to provide an estimation of the scaling as a function of the system

size of ω−1
GOE in the infinite-temperature regime. This suggests that an experimental

study of OTOCs could be an efficient way to probe the energy scales beyond which

a complex, interacting system displays Gaussian random-matrix behaviour in local

observables.

I.6.1 Multipartite entanglement in the eigenstate

thermalisation hypothesis

In this section, the eigenstate thermalisation hypothesis will be shown to to be inti-

mately related to the notion of multipartite entanglement through the quantum Fisher

information. In Sec. I.6.1.1 we introduce the concept of entanglement and entangle-

ment measures, while Sec. I.6.1.2 briefly introduces mutipartite entanglement and its

connection to the quantum Fisher information. We then provide the main result of

the section in Sec. I.6.1.3, in which we show the multipartite entanglement structure

within the ETH. Sec. I.6.1.4 provides a numerical example using the staggered field

model and we finalise with a short summary in Sec. I.6.1.5.

I.6.1.1 Bipartite entanglement and correlations

Entanglement is at the core of quantum mechanics. The inception of the Einstein,

Podolsky and Rosen paradoxical thought experiment [198], later reformulated by

Bohm [199] in its most commonly-referred form, incited the notion that the so-called
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orthodox view of physical reality1 was not a complete description. It was not until Bell

proposed that quantum mechanics is incompatible with a local hidden variable the-

ory [200], solidified experimentally by the work of Aspect, Dalibard and Roger [201],

that the notion of entanglement as part of the physical reality became widespread.

Today, quantum entanglement is a concept of much interest in many-body quantum

physics [202] and lies at the forefront of developing quantum technologies [9].

There exists a plethora of approaches to the problem of measuring entanglement [202].

Let us first consider the the case of bipartitions. Most generally, in this sense, a system

is divided in two bipartite sections A and B. We then start from the fact that a pure

bipartite quantum state |ψA〉 is not entangled with its counterpart |ψB〉, referred to

as its complement, if, and only if, the quantum state |ψAB〉 pertaining to the system

A+B can be written down as a tensor product of the states of the partitions. If this

is the case, |ψAB〉 = |ψA〉 ⊗ |ψB〉 and we say that the state |ψAB〉 is separable.

For the specific case of bipartitions, the global Hilbert space is a tensor product of

the Hilbert space of the two sub-systems H = HA ⊗ HB and defines the Schmidt

decomposition

|ψAB〉 =
n∑

i=1

√
λi |iA〉 ⊗ |iB〉 , (I.6.2)

where |iA〉 (|iB〉) is an orthonormal basis pertaining to the local Hilbert space HA

(HB) and n ≤ min{dim[HA], dim[HB]}. The λi are the Schmidt coefficients and

satisfy 0 < λi ≤ 1. It follows from 〈ψAB|ψAB〉 = 1 that λi ≥ 0 and
∑n

i=1 λi = 1.

The Schmidt bases coincide with the eigenbases of the corresponding reduced density

operators

ρ̂B/A = TrA/B[|ψAB〉] =
n∑

i=1

λi |ψB/A,i〉 〈ψB/A,i| , (I.6.3)

where TrA[·] (TrB[·]) denotes the partial trace over the basis |iA〉 (|iB〉), yielding a state

which does not depend on the degrees of freedom of its complement. An interesting

point is that the density operators ρ̂A and ρ̂B have a common spectrum and they are

equally mixed. Furthermore, only product states |ψAB〉 = |ψA〉 ⊗ |ψB〉 lead to pure

reduced density matrices, so a measure of their mixedness can be envisaged to quantify

1A view in which pre-existing physical quantities are created rather than revealed at the moment
of measurement
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Figure I.6.1: A depiction of correlations as distance from Ref. [205]. The large ellipse
represents the set of all possible states, while the smaller one contains the set of the separable
states. The squares inside the set of separable states denote the set of classical states
while the dots within constitute the set of product states. The state ρ̂P

AB from Eq. (I.6.6),
for example, is a separable state. E denotes the entanglement, D the discord and Q the
dissonance.

entanglement. In particular, from the Schmidt decomposition, the state |ψAB〉 is only

separable using the bipartition that defines the regions A and B if there exists only

one non-zero λi [202]. As it turns out, the only measure of entanglement that satisfies

invariance under unitary operations, continuity and additivity, is the von Neumann

entropy of reduced density matrices, defined as

S(ρ̂A) = S(ρ̂B) = −Tr(ρ̂A log ρ̂A) = −Tr(ρ̂B log ρ̂B). (I.6.4)

Note that S(ρ̂A) = S(ρ̂B) since its corresponding density operators share the same

spectrum. It then follows that the entanglement entropy is a property of the bipar-

tition and it vanishes for separable states. This object has been the subject of much

study, as its finite-size properties allude at information regarding quantum phase

transitions in many-body systems [203, 204, 79, 202].

The generalisation of the classical mutual information for probability densities leads

to the quantum mutual information, defined as

I(A : B) = S(ρ̂A) + S(ρ̂B)− S(ρ̂AB), (I.6.5)

which vanishes for completely uncorrelated separable states and it is maximised for

entangled states. It is important to remark that this quantity can be evaluated on

mixed states as well as pure states, in which case it is a measure of both quantum
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and classical correlations. Certain states can be separable, i.e., unentangled, but still

display classical correlations which I(A : B) quantifies. Consider the following mixed

state written down as a separable state between two different two-level systems

ρ̂P
AB =

1

2
[|0〉 〈0|A ⊗ |0〉 〈0|B + |1〉 〈1|A ⊗ |1〉 〈1|B] ..=

1

2
[|00〉 〈00|+ |11〉 〈11|] . (I.6.6)

It follows that ρ̂P
A = ρ̂P

B = 1
2

[|0〉 〈0|+ |1〉 〈1|] from the partial traces. This state

is diagonal in the {|0〉A/B , |1〉A/B} bases. Since the state is written as a mixture

of product states, by definition it constitutes a separable state. However, for this

particular state, it trivially follows that S(ρ̂A) = S(ρ̂B) = S(ρ̂AB) = log(2), which

then leads to I(A : B) = log(2).

More generally, the nature of total correlations, both quantum and classical, can be

unified from the perspective of the relative entropy as described by Modi et al in

Ref. [205], see Fig. I.6.1.

The relative entropy

S(x̂||ŷ) ..= −Tr[x̂ log ŷ]− Tr[x̂ log x̂] (I.6.7)

is non-negative quantity related to the geometric distance between the states x̂ and ŷ

in Hilbert space. Note that this quantity is not symmetric, so in the technical sense

it does not constitute an appropriate distance measure. The relative entropy provides

a quantifier of all possible state correlations, i.e., the entanglement E, the discord D

and the dissonance Q. As defined in Ref. [205],

E = minσ̂∈SS(ρ̂||σ̂), D = minχ̂∈CS(ρ̂||χ̂), Q = minχ̂∈CS(ρ̂||χ̂), (I.6.8)

where S is the set of separable states and C is the set of classical states. We remark that

this mathematical picture formally presents a complete and unified view of quantum

and classical correlations. However, in general, its actual evaluation could turn out

to be very complicated.
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I.6.1.2 Multipartite entanglement and quantum Fisher infor-

mation

The quantification of many-party entanglement is a difficult task [202]. It is of great

utility, however, to determine whether a state subdivided in L parties is entangled or

not. Certain quantifiers exist to determine the presence, or lack thereof, of entangle-

ment. Such quantifiers could be employed to ascertain whether a state is entangled.

A pure quantum state is separable in a system of L particles or qubits, for instance,

if it can be written as a product state

|ψsep〉 = |ψ(1)〉 ⊗ |ψ(2)〉 ⊗ · · · ⊗ |ψ(L)〉 , (I.6.9)

where |ψ(l)〉 is the state of the lth individual element. On the other hand, a mixed

state is separable if it can be written as a mixture of pure states [28]

ρ̂sep =
∑

q

pq |ψsep,q〉 〈ψsep,q| , (I.6.10)

with pq ≤ 0 and
∑

q pq = 1. For the case where L > 2, multipartite entanglement is

characterised by the number of individual elements in the largest non-separable subset.

We can state that a pure state of L individual elements is k-separable if it can be

written as the product

|ψk−sep〉 = |ψ(L1)〉 ⊗ |ψ(L2)〉 ⊗ · · · ⊗ |ψ(LN )〉 , (I.6.11)

where |ψ(Ll)〉 is a state of Ll ≤ k individual elements and
∑N

l=1 Ll = L. Just as

before, a mixed state is k-separable if it can be written down as a statistical mixture

of k-separable pure states. In particular, a state that is k-separable but not (k −
1)−separable is dubbed k−particle entangled, and it contains at least one state of k

particles that does not factorise. In maximally-multipartite-entangled states, k = L

and each individual element is entangled with all the others [28].

The quantum Fisher information (QFI) F can be used to ascertain the previous

structure in the multipartite entanglement. This quantity was introduced to bound

the precision of the estimation of a parameter φ, conjugated to an observable Ô using

a quantum state ρ̂.
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If one is interested in the estimation of a parameter φ, unknown a-priori, the phase

estimation protocol begins by preparing a probe state ρ̂0 and letting it interact within

the system via a generic transformation [28]

T̂ (φ) : ρ̂0 → ρ̂φ. (I.6.12)

In principle, the transformation can be given by that generated by unitary dynam-

ics from the Hamiltonian in isolated systems, ρ̂φ = eiφĤ ρ̂0e
−iφĤ . The parameter φ

cannot be measured directly and the estimation is done via the results of the mea-

surements performed on identical copies of the output state ρ̂φ. The measurements

can correspond to expectation values, denoted by µ. We define P (µ|φ) as the con-

ditional probability of a result µ given the parameter φ. A sequence of independent

M measurements allows one to factorise the probability of observing the sequence

~µ = µ1, · · · , µM as

P (~µ|φ) =
M∏

i=1

P (µi|φ). (I.6.13)

One then defines an estimator function Φ(~µ) as a generic function that associates

the measurement outcomes ~µ with the estimation of φ. Given that this function is

the result of random outcomes, it constitutes a random variable itself and, therefore,

characterised by a mean

Φ(~µ) =
∑

µ

P (~µ|φ)Φ(~µ) (I.6.14)

and a variance

(∆φ)2 =
∑

µ

P (~µ|φ)
[
Φ(~µ)− Φ(~µ)

]2

. (I.6.15)

At this point we should mention that not all choices of measurement observables

are optimal. The optimal measurements are the ones which maximise the sensitivity

to changes in φ [28]. Furthermore, the estimators themselves could in principle be

different and yield different values when applied to the same outcomes ~µ. It is common

to consider unbiased estimators, for which Φ(~µ) = φ and ∂Φ(~µ)/∂φ = 1 [28, 179].
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The Cramer-Rao bound can then be derived for an unbiased estimator [28]

∆φ ≥ ∆φCR =
1√

MF (φ)
, (I.6.16)

which connects the fundamental limit of precision attainable from the estimation

protocol to the Fisher information

F (φ) =
∑

µ

1

P (µ|φ)

(
∂P (µ|φ)

∂φ

)2

. (I.6.17)

Its quantum version is obtained by maximising over all possible generalised mea-

surements F(ρ̂φ) = maxÊF (φ) and it upper bounds the classical Fisher information

F (φ) ≤ F(ρ̂φ). In this sense, the classical Cramer-Rao relation upper bounds its

quantum counterpart

∆φCR ≥ ∆φQCR =
1√

MF(ρ̂)
. (I.6.18)

It then follows that quantum protocols provide a lower fundamental limit in the

uncertainty in parameter estimation. For a composite system of L individual entities

(particles, spins), there exists a fundamental difference in the scaling of the QFI as a

function of L [179] for separable states

F(ρ̂sep) ≤ L (I.6.19)

and entangled states,

F(ρ̂) ≤ L2. (I.6.20)

It is this fact that allows one to establish a connection between multipartite entan-

glement and the QFI2. In passing, we mention that it is this difference in scaling that

allows one to surpass the classical limit on the uncertainty in phase estimation. We

remark that the scaling bounds above have only been shown to apply to a specific

class of phase-shift generators T̂ (φ) [179].

2In the above expressions we considered the dependance of the QFI as a function of the states ρ̂
as opposed to the parameter φ, assuming that both ρ̂ and φ are connected via the transformation
T̂ (φ) from Eq. (I.6.12).
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Most importantly, the QFI has key mathematical properties [206, 207, 176, 28], such

as convexity, additivity, monotonicity and it can, following our discussion above, be

used to probe the multipartite entanglement structure of a quantum state [179, 180].

If, for a certain Hermitian operator Ô that generates ρ̂φ = eiφÔρ̂0e
−iφÔ, the QFI

density satisfies

fQ(Ô) =
F(Ô)

L
> m, (I.6.21)

then at least (m+1) parties in the system are entangled (with 1 ≤ m ≤ L−1 a divisor

of L). Hence, m represents the size of the biggest entangled block of the quantum

state. In particular, if

L− 1 ≤ fQ(Ô) ≤ L, (I.6.22)

then the state is called genuinely L-partite entangled. In this sense, the quantum

Fisher information density can be used to ascertain the multipartite entanglement

structure.

In general, different operators Ô lead to different bounds and there is no system-

atic method to choose the optimal one without some knowledge on the physical sys-

tem [181, 208]. The operator, however, will typically be an extensive sum of local

operators. An educated guess, however, based on some knowledge of the system al-

lows the detection of multipartite entanglement in physically relevant situations, e.g.,

choosing the order parameter in the proximity of quantum phase transitions [181, 208].

I.6.1.3 Connection between quantum Fisher information, eigen-

state thermalisation and linear response

There exists a connection between the QFI evaluated for a given observable in the

regime of linear response for a generic quantum system and the response functions,

as first noted by Hauke et al. in Ref. [181]. The relation between the QFI and the

response functions will allow us to study the consequences of eigenstate thermalisation

on the QFI and hence, on the multipartite entanglement structure present in systems

that satisfy the ETH.

It was shown by Braunstein and Caves in Ref. [206] that the QFI can be explicitly
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written in terms of the decomposition of a general mixed state in the energy eigenbasis,

i.e., ρ̂ =
∑

n pn |n〉 〈n|, where the |n〉 are the eigenstates of the Hamiltonian. In their

work, Braunstein and Caves showed that the QFI

F(Ô) = 2
∑

n,n′

(pn − pn′)2

pn + pn′
|〈n|Ô|n′〉|2≤ 4 〈∆2Ô〉, (I.6.23)

with 〈∆2Ô〉 = Tr(ρ̂Ô2)− [Tr(ρ̂Ô)]2.

It is crucial that, as shown in Ref. [206], the equality holds in the case of pure states

ρ̂ = |ψ〉 〈ψ|.

Let us now contrast the QFI computed on a thermodynamic ensemble with the one

of a single energy eigenstate for an operator satisfying ETH. When computed on a

canonical Gibbs state with pn = e−βEn/Z, with Z = Tr[e−βĤ ], in Eq. (I.6.23), it was

shown by Hauke et al. in Ref. [181] that

FGibbs(Ô) =
2

π

∫ +∞

−∞
dω tanh

(
βω

2

)
χ′′
Ô

(ω), (I.6.24)

where χ′′
Ô

(ω) = Im[χÔ(ω)] is the susceptibility obtained from the linear response

function

χÔ(t1, t2) = −iθ(t1 − t2) 〈[Ô(t1), Ô(t2)]〉, (I.6.25)

which is connected to the symmetrised noise

SÔ(t1, t2) = 〈{Ô(t1), Ô(t2)}〉 − 2〈Ô(t1)〉 〈Ô(t2)〉 (I.6.26)

via the fluctuation-dissipation relation SÔ(ω) = 2 coth(βω
2

)χ′′
Ô

(ω) in the frequency do-

main. The same result holds in the microcanonical ensemble where ensemble equiva-

lence is expected to hold.

If in contrast one considers a pure eigenstate |n〉 at the same temperature, i.e., one with

energy Ē = En = Tr(Ĥe−βĤ/Z) compatible with the average energy of a canonical
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state in the system, the QFI is

FETH(Ô) = 4 〈n|∆2Ô|n〉 =

∫ +∞

−∞

dω

π
SÔ(En, ω)

=
2

π

∫ +∞

−∞
dω coth

(
βω

2

)
χ′′
Ô

(En, ω) ,

(I.6.27)

where SÔ(En, ω) in the previous equation is determined by the function fÔ(Ē, ω) ap-

pearing in Eq. (I.6.1) as described in Chapter I.5. Since SÔ(En, ω) evaluated explicitly

from ETH is equivalent to its canonical counterpart as presented in Chapter I.5, then

the following result holds

FETH(Ô) ≥ FGibbs(Ô). (I.6.28)

This is one of the main results of this chapter. This analysis has immediate conse-

quences for the QFI and the entanglement structure of asymptotic states in out-of-

equilibrium unitary dynamics.

In this framework, the expectation value of operators Ô(t) = 〈ψ| Ô(t) |ψ〉 (or of the

correlation functions defined above) are taken with respect to an initial pure state

|ψ〉, which is not an eigenstate of the Hamiltonian Ĥ. Provided that the QFI attains

an asymptotic value at long times F∞, taking the long-time, whenever there are no

degeneracies or only a sub-extensive number of them, we have that F(Ô) = F∞(Ô) =

4〈∆2Ô〉DE with 〈 · 〉DE = Tr(ρ̂DE · ) [209, 210], and the diagonal ensemble defined as

ρ̂DE =
∑ |cn|2 |n〉 〈n| with cn = 〈ψ|En〉. We remark that, since the out-of-equilibrium

global state is pure, F∞(Ô) is given by the variance of Ô over the diagonal ensemble

which is different from the QFI computed on the state ρ̂DE using Eq. (I.6.23).

For sufficiently chaotic Hamiltonians, the initial state |ψ〉 considered is usually a

microcanonical superposition around an average energy 〈E〉 = 〈ψ| Ĥ |ψ〉 with variance

(δE)2 = 〈ψ| Ĥ2 |ψ〉 − 〈ψ| Ĥ |ψ〉2, i.e. |cn|2 has a narrow distribution around 〈E〉 with

small fluctuations (δE)2/〈E〉2 ∼ 1/L [25]. It follows, then, that

〈∆2Ô〉DE = 〈n|∆2Ô |n〉+

[
∂O

∂Ē

]2

En

(δE)2, (I.6.29)

where the first term represents fluctuations inside each eigenstate –computed before

in Eq. (I.6.27) – and the second is related to energy fluctuations. This observation,
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together with the bound Eq. (I.6.28), leads to

F∞(Ô) ≥ FETH(Ô) ≥ FGibbs(Ô) , (I.6.30)

where the first equality holds in the thermodynamic limit and the second in the

low temperature limit T → 0. This also implies that 4〈∆2Ô〉Gibbs ≥ FETH(Ô), which

follows from employing the same procedure described before for the diagonal ensemble

on the canonical ensemble.

These expressions set a hierarchy in the entanglement content of thermal states at the

same temperature, yet of different nature (mixed/pure). Furthermore, via Eqs. (I.6.24)-

(I.6.27), one can quantify this difference via

∆F = FETH −FGibbs = 1/π

∫
dωSÔ(ω)/ cosh2(βω/2). (I.6.31)

Multipartite entanglement at thermal criticality

The major difference between the ETH and Gibbs multipartite entanglement can be

appreciated at critical points of thermal phase transitions, where Ô in (I.6.23) is the

order parameter of the theory.

While it is well known that the QFI does not ascertain divergence of multipartiteness

at thermal criticality, i.e. FGibbs/L ∼ const. [181, 182], on the other hand, the ETH

result obeys the following critical scaling with the system size L

fETH
Q ∼ FETH

L
∼ Lγ/(ν d) , (I.6.32)

where γ and ν are the critical exponents of susceptibility and correlation length of

the thermal phase transition, respectively, and d is the dimensionality of the system

[211].

I.6.1.4 Evaluation

We now turn to the evaluation of Eq. (I.6.28) in the context of a physical system with

a microscopic Hamiltonian description. For this evaluation we return to our staggered
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field model

ĤSF = ĤXXZ + b
∑

i even

σ̂zi , (I.6.33)

where

ĤXXZ =
L−1∑

i=1

[(
σ̂xi σ̂

x
i+1 + σ̂yi σ̂

y
i+1

)
+ ∆ σ̂zi σ̂

z
i+1

]
, (I.6.34)

as we have defined throughout this thesis. Note that for this particular case, we are

considering the open-boundary chain with L sites. This model is quantum chaotic with

Wigner-Dyson level spacing statistics and diffusive transport as described in previous

chapter, it then constitutes yet once more a valuable testbed for ergodic properties

in an experimentally-relevant model. Recall that these models commute with the

total magnetisation operator in the z direction, [ĤXXZ,
∑

i σ̂
z
i ] = [ĤSF,

∑
i σ̂

z
i ] = 0 and

are, therefore, U(1)-symmetric. Even with OBCs, parity symmetry is present in the

system. We break this symmetry by adding a small perturbation δσ̂z1 on the first site,

with δ = 0.1α. For our calculations, we set ∆ = 0.5α and b = α, while all energy

variables are given in terms of α. The operator we will consider for our evaluation

will be the total staggered magnetisation

Ô =
∑

i

(−1)iσ̂zi . (I.6.35)

Note that this observable differs from B̂SF in Eq. (I.5.24) considered in our previous

analyses by a factor of 1/L. The extensive observable Ô is more relevant for this

particular study of multipartite entanglement.

To evaluate our results in the canonical ensemble and in the context of ETH, we

proceed with the full diagonalisation of ĤSF in the largest U(1) sector, in which
∑

i〈σ̂zi 〉 = 0, and compute all the matrix elements of Ô in the eigenbasis of the

Hamiltonian ĤSF.

Our starting point is to evaluate the expectation value of Ô in the canonical ensem-

ble and compare it with the ETH prediction. In the thermodynamic limit, a single

eigenstate |n〉 with energy En suffices to obtain the canonical prediction: 〈Ô〉 =

〈n| Ô |n〉=Tr(Ô e−βĤ)/Z, with an inverse temperature β that yields an average en-

ergy 〈E〉 = En. For finite-size systems, we instead focus on a small energy window
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Figure I.6.2: Expectation value of the staggered magnetisation as a function of temperature
in both the canonical ensemble and the corresponding ETH prediction for and L = 16 (left)
L = 20 (right). Grey area highlights the low temperature regime, close to the edges of the
spectrum where the ETH prediction gives the largest fluctuations.

centred around En of width 0.1ε in order to average eigenstate fluctuations, where ε

is the bandwidth of the Hamiltonian for a given L. Fig. I.6.2 shows 〈Ô〉 as a function

of temperature for two different system sizes, including L = 20, the largest system

we have access to (Hilbert space dimension D = L!/[(L/2)!(L/2)!] = 184 756). The

results exhibit the expected behaviour predicted from ETH for finite-size systems:

the thermal expectation value is well approximated away from the edges of the spec-

trum (low temperature, section highlighted in grey on Fig. I.6.2), and, moreover, the

canonical expectation value is better approximated as the system size increases. These

results are strongly suggestive that the ETH is fulfilled for the staggered field model

and the operator considered. We recall that the same observation holds for the local

magnetisation near the centre of the chain in Fig. I.5.2 and eigenstate-to-eigenstate

fluctuations decay as expected for a system and observables that satisfy the ETH in

Fig. I.5.1.

We now turn to the evaluation of FETH and FGibbs. The task requires to either

compute SÔ(En, ω) or χ′′
Ô

(En, ω) in each respective framework. For the former, in

the context of ETH, we can employ Eq. (I.5.61) which depends only on fÔ(En, ω).

As before, we focus on a small window of energies and extract all the relevant off-

diagonal elements of Ô in the eigenbasis of ĤSF. Fluctuations are then accounted for

by computing a bin average over small windows δω, chosen such that the resulting

average produces a smooth curve that is not sensitive to the particular choice of δω,

such value, changes depending on dimension D of the sector studied [137, 135], as
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Figure I.6.3: Response function SÔ(ω) computed directly from ETH and in the canonical
ensemble for L = 16 (inset) and L = 20 (main) for T = 5α.

described in Chapter I.5.

The procedure leads to a smooth function e−S(En)/2fÔ(En, ω), in which the first factor

is a constant value with respect to ω. The entropy factor can be left undetermined

in our calculations if we normalise the curve by the sum rule shown in Eq. (I.6.27),

computed in this case from the ETH prediction of the expectation value of 〈∆2Ô〉. In

the context of the canonical ensemble, SÔ(ω) can be explicitly evaluated by computing

the thermal expectation value of the non-equal correlation function in the frequency

domain given by

SÔ(ω) = 2π coth

(
βω

2

)∑

n,n′

(pn − pn′)| 〈n|Ô|n′〉 |δ(ω + En − En′). (I.6.36)

In Fig. I.6.3 we show SÔ(ω) for both the canonical ensemble for T = 5α and the cor-

responding ETH prediction normalised by the sum rule mentioned before. The sum

rule is evaluated from the expectation values computed within both the canonical

ensemble and ETH, correspondingly. It can be observed that the main features of the

response function can be well approximated from the corresponding ETH calculation.

For this particular case, however, the approximation is only marginally improved by

increasing the system size. This behaviour is expected given that overall fluctua-

tions for extensive observables carry an extensive energy fluctuation contribution, as

mentioned before [25].

The previous analysis unravels the agreement between the thermal expectation values

of non-equal correlation functions in time and those predicted by ETH. From these
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results, as SÔ(ω) (and, consequently, χ′′
Ô

(ω) from the fluctuation-dissipation relation)

is well approximated by means of ETH, the inequality in Eq. (I.6.28) is satisfied.

Finally, we compute the QFI for Ô in our model within both contexts: FETH and

FGibbs. The results are shown in Fig. I.6.4. The fluctuations in the ETH calculation

of FETH are inherited from the fluctuations of the predicted expectation value of

〈∆2Ô〉, which, as expected for finite-size systems, decrease away from the edges of

the spectrum. Both predictions for the QFI, canonical and ETH, are equivalent at

vanishing temperatures. Remarkably, the QFI predicted from ETH is finite at infinite

temperature, while the QFI from the canonical ensemble in this regime vanishes.

We emphasise that although the QFI can be used in order to infer the structure

of multipartite entanglement i.e. the number of sub-systems entangled, it is not

a measure of these correlations in the mathematical sense of the formal theory of

entanglement [212].
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I.6.1.5 Summary

We have shown that the QFI detects the difference between a pure state satisfying

ETH and the Gibbs ensemble at the corresponding temperature. We note that it is

possible to extend these results to integrable systems, by considering the quantum

Fisher information in the context of the generalised Gibbs ensemble. This topic is left

for future work.

Even though it can be anticipated that the expectation values of global observables

might be sensitive to the ensemble in which they are evaluated, i.e., the difference

between the evaluation over pure states and over the canonical Gibbs ensemble [213],

several operators including sum of local ones and the non-local entanglement entropy

appear to coincide at the leading order with the thermodynamic values when ETH is

considered [213, 23, 214–216].

In this section, the difference between ETH/Gibbs multipartite entanglement, which

can be macroscopic in the proximity of a thermal phase transition, is observed numer-

ically in a XXZ chain with integrability breaking term, when the temperature grows

toward infinity. The consequences of this could be observed in ion trap and cold-

atom experiments via phase estimation protocols on pure state preparations evolved

beyond the coherence time. Our result suggests that although at a local level all

thermal states look the same, a quantum information perspective indicates that there

are many ways to be thermal.

I.6.2 High-order correlation functions in time

In many-body quantum systems, particularly from the perspective of condensed-

matter theory, it is common to evaluate the dynamics of entanglement spreading

to characterise a given system from the perspective of unitary evolution. Such an

evaluation can lead to interesting insights with respect to how a quantum system

behaves, e.g., close to a phase transition [202]. On the other hand, operator scram-

bling relates to the growth of operator complexity through unitary evolution of an

operator Ô in the Heisenberg picture Ô(t) = eiĤtÔ(0)e−iĤt. The out-of-time order

correlators mentioned in the introduction to this section have recently been suggested

to characterise quantum chaos [61, 217] and even studied in random unitary circuit

platforms [218].
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Due to its nested structure, the square commutator

c(t) ..= −
(
〈[Ô(t), Ô]2〉 − 〈[Ô(t), Ô]〉2

)
, (I.6.37)

where the expectation value is considered over an ensemble of statistical mechanics,

has been introduced as an object to study operator complexity growth [173, 186].

It is of particular interest to consider this object in quantum systems with a well-

defined semi-classical limit, in which some connections can be established between

operator complexity growth and the classical Lyapunov exponents, which characterise

the exponential departure of nearby trajectories in the classical domain.

As we stated in the introduction to this section, it has been argued that the OTOC

dynamics in chaotic systems attests to the fact that there exist probabilistic corre-

lations in the matrix elements of the observables in the energy eigenbasis of chaotic

Hamiltonians [31]. The presence of these correlations has been studied numerically

for local observables in experimentally-relevant physical systems [32].

In this section, we will further characterise the nature of these correlations numerically

for a more general class of observables in two different physical models in Secs. I.6.2.1,

I.6.2.2 and I.6.2.3, following our analysis of the probability distributions introduced

in Chapter I.5 and the approach taken in Ref. [32] for the numerical evaluation of

the probabilistic correlations. We shall then evaluate the dynamics of the OTOC in

Sec. I.6.2.4, which will establish a connection between matrix-element correlations and

the dynamics of the OTOC. We then use this connection to provide an estimation of

the scaling with respect to the system size frequency parameter that characterises the

onset of matrix-element correlations in Sec. I.6.2.5. We finalise with a short summary

in Sec. I.6.2.6.

I.6.2.1 Models and observables

To address the generic behaviour of thermalising systems that is independent of mi-

croscopic details, we consider two different non-integrable models: the first describing

hard-core bosons with dipolar interactions in a harmonic trap [135], while the sec-

ond is a quantum Ising chain with both transverse and longitudinal fields [194]. The
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Hamiltonian of the first model is (~ ..= 1)

ĤHB = −J
L−1∑

i=1

(
b̂†i b̂i+1 + H.c.

)
+
∑

i<l

V n̂in̂l
|i− l|3 +

∑

i

gx2
i n̂i (I.6.38)

for a one-dimensional chain with L sites where b̂†i and b̂i are hard-core bosonic creation

and annihilation operators, respectively, at site i, n̂i = b̂†i b̂i and xi = |i − L/2|.
Hereafter, all energies are given in units of the hopping amplitude J and we set

the strength of the dipolar interaction and confining potential to be V = 2J and

g = 16J/(L − 1)2, respectively (parameters selected from Ref. [135]). The system

conserves the total number of bosons, which is guaranteed from [ĤHB,
∑

i n̂i] = 0.

This symmetry is resolved throughout this work. We focus on the half-filled sub-

sector, in which the Hilbert space dimension is D = L!/[(L/2)!(L/2)!]. To avoid

parity (spatial inversion) or reflection (spin inversion) symmetries, we add a small

perturbation δn̂1 to the Hamiltonian (δ = 0.1J).

The second model has the following Hamiltonian:

ĤIS =
L∑

i=1

wσ̂xi +
L∑

i=1

hσ̂zi +
L−1∑

i=1

Jσ̂zi σ̂
z
i+1 . (I.6.39)

We measure energies in units J and set w = J
√

5/2, h = J(
√

5+5)/8 (see Ref. [194]).

The only known symmetry associated to this model is parity. We consider the even

parity sub-sector for chains with an even number of sites, with a corresponding Hilbert

space dimension D = 2L − [(2L − 2L/2)/2].

We consider extensive observables, composed of sums of local operators spanning the

entire system

B̂HB =
1

L

∑

i

[1 + (−1)i]n̂i , B̂IS =
1

L

∑

i

σ̂zi . (I.6.40)

These observables satisfy the ETH from the perspective of the diagonal matrix ele-

ments in the energy eigenbasis of each corresponding Hamiltonian. As introduced in

Chapter I.5, we show in Fig. I.6.5 the diagonal matrix elements of of B̂HB [panel (a)]

and of B̂IS [panel (b)] in the eigenbasis of their corresponding Hamiltonian. The sup-

port over which the matrix elements exist shrink suggesting that the behaviour can

be described by a smooth function O(Ē) corresponding to the microcanonical pre-
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Figure I.6.5: Diagonal matrix elements of B̂HB (a) and B̂IS (b) as a function of the energy
density εn ..= (En−Emin)/(Emax−Emin) and of the system size L. The black lines depict an
approximation of the smooth function O(Ē) obtained from a coarse-grained average of the
data for the largest system size. The insets show the eigenstate-to-eigenstate fluctuations
for different systems sizes, obtained from the eigenvalues in the central region. The dashed
lines on the insets show the (LD)−1/2 scaling.

diction and, furthermore, the eigenstate-to-eigenstate fluctuations [see Eq. (I.5.15)]

decay exponentially for the 20% of the total eigenvalues in the centre of the spectrum,

as shown in the insets in Fig. I.6.5. We remark that for this class of observables, the

eigenstate-to-eigenstate fluctuations decay as LD−1/2, which can be traced back to

the 1/
√
L scaling of the Schmidt norm [161, 162, 134]. The results shown in Fig. I.6.5

indicate that the ETH is obeyed by the models and observables considered in the

main text for the parameters selected, away from non-generic features observed at the

edges of the spectrum.

It is crucial to recognise that, within the ETH, the one- and two-point correlation

functions in time do not depend on the details of the matrix elements of the statis-

tical matrix Rnm. In particular, two-point correlators are determined by the smooth

function fÔ(Ē, ω) entering Eq. (I.6.1), which itself depends on the variance of matrix

elements Onm near a given energy Ē and frequency ω [135, 165, 137, 167].

This fact can be observed numerically in the physical models considered in this section.

Just as we proceeded in Chapter I.5 for the staggered field model, the connected
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Ĥ
H

B
:

R
e[

F
2
(J

t)
]
×

10
2

Time Jt

Ĥ
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Ô = B̂IS

T = 5J

L = 18

≈ 0.004

(e)

−0.02

−0.01

0

0.01

T = 5J

L = 18

(f)
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Figure I.6.6: Dynamics of the two-point correlation function evaluated in the canonical
ensemble at temperature T and in the ETH with a compatible energy density for sums of
local operators. In [(a)-(d)] we show the results for ĤHB and in [(e)-(h)] the corresponding
results for ĤIS at different temperatures for different system sizes as highlighted in the figure.

symmetric and anti-symmetric two-point correlation functions (see Sec. I.5.2)

S+

Ô
(t) ..= 〈{Ô(t), Ô(0)}〉c = 2 Re[F2(t)]

S−
Ô

(t) ..= 〈 [Ô(t), Ô(0) ]〉c = 2i Im[F2(t)], (I.6.41)

evaluated in the ensembles of statistical mechanics are equivalent to the same objects

evaluated for a single eigenstate as the thermodynamic limit is approached in ergodic

systems. As noted in Sec. I.5.2, correlations that may be present in the Rnm are

not relevant for two-point functions. We recall that, within the ETH, the two-point

correlation functions depend solely on the features of fÔ(En, ω), given that

S+

Ô
(En, ω) ≈ 4π cosh(βω/2)|fÔ(En, ω)|2,

S−
Ô

(En, ω) ≈ 4π sinh(βω/2)|fÔ(En, ω)|2. (I.6.42)

Using the procedure described in Sec. I.5.2, we proceed to extract fÔ(En, ω) for B̂HB

and B̂IS from the off-diagonal elements in the eigenbasis of their corresponding Hamil-

tonian. The results are shown in Fig. I.6.6, where we observe excellent agreement

between the dynamics of two-point functions computed with respect to a single eigen-
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Figure I.6.7: Probability distributions of off-diagonal matrix elements in a small frequency
range ω . 0.05. The average energy Ē selected is consistent with a finite canonical tem-
perature T = 5J . The distributions are shown in (a) for B̂HB and in (b) for B̂IS. Results
obtained for finite-sized systems of L = 20 for ĤHB and L = 18 for ĤIS. Dashed lines depict
a Gaussian distribution with the same mean and variance.

state and the canonical ensemble at the same average energy, without any particular

considerations about the statistical matrix Rnm, other than its mean and variance.

We recall that there exists a finite-size term in the symmetric correlation function that

decreases as the system size is increased, as observed in Fig I.6.6[(e),(g)]. This term

is much smaller for B̂HB in Fig I.6.6[(a),(c)] due to distribution of diagonal matrix

elements as can be seen in Fig. I.6.5(a).

The precise distribution of these elements, as well as correlations between matrix el-

ements at different frequencies, thus encode the fine structure of the ETH beyond

linear-response theory [193]. In the following, we investigate how this structure influ-

ences the dynamics of higher-order correlators such as the OTOC.

I.6.2.2 Gaussian statistics

As we first noted in Chapter I.5, the probability distribution of off-diagonal ma-

trix elements of local observables in the energy eigenbasis of chaotic Hamiltonians is

Gaussian, while their distribution might be very different in integrable systems as we

observed in Sec. I.5.4. Let us present the probability distributions for the models and

observables considered in this section.

The number of matrix elements is very large even at small system sizes, so we shall

start by considering the off-diagonal matrix elements near the zero-frequency regime

first, to evaluate their distribution. We then consider Onm = 〈En|Ô|Em〉 in a small

frequency-resolved window ω . 0.05 and a finite temperature T = β−1 = 5J (kB ..= 1).
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We recall that the temperature can be estimated by associating the average energy Ē

with a canonical density matrix ρ̂ = e−βĤ/Z as Ē = Tr[ρ̂Ĥ], with Z = Tr[e−βĤ ]. The

probability distribution can then be studied from the histogram of all the possible

off-diagonal matrix elements satisfying these conditions. As observed in Fig. I.6.7,

the matrix elements are Gaussian-distributed for the extensive operators in both of

the models we have studied, even away from the infinite-temperature regime.

We can proceed to evaluate the frequency-dependent ratio [134]

ΓÔ(ω) ..= |Onm|2/|Onm|
2
, (I.6.43)

to understand if these probability distributions can be seen over small portions of

the entire spectrum away from zero frequency at all temperatures where the ETH is

expected to hold. We perform the averages over small frequency windows δω = 0.05,

as described in Sec. I.5.2. We recall that ΓÔ(ω) = π/2 for normally-distributed

probability distributions. In this analysis, we consider ω = Em − En over the entire

spectrum, while the average energy Ē = (En + Em)/2 is chosen to be compatible

with a corresponding canonical temperature. To account for finite-size eigenstate-to-

eigenstate fluctuations, the quantity is computed within a small energy window 0.05ε,

where ε ..= Emax − Emin is the bandwidth of the Hamiltonian.

In Fig. I.6.8 we show the ΓÔ(ω) ratio as a function of ω and of the system size L

for both ĤHB [panels (a) and (b)] and ĤIS [panels (c) and (d)], evaluated for the

operators B̂HB and B̂IS from Eq. (I.6.40) and for two different temperatures T = 5J

and T = 10J . We have chosen to display our results for values of temperature away

from the infinite-temperature regime. Gaussian statistics emerge at all frequencies,

i.e. ΓÔ ≈ π/2 for increasing values of ω as the system size increases.

I.6.2.3 Correlations between matrix elements

We have shown how Gaussian statistics emerge in the probability distributions of

off-diagonal matrix elements of local observables in chaotic non-integrable models,

this does not imply that these matrix elements can be considered independently- and

identically-distributed random variables. In this section we address the presence of

correlations between matrix elements.

Let us now examine the overall structure of the statistical matrix Rnm as a function
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Figure I.6.8: ΓÔ(ω), from Eq. (I.6.43), for operators B̂HB [(a) and (b)] and B̂IS [(c) and

(d)] in the eigenbasis of ĤHB and ĤIS, respectively. Two different finite temperatures were
chosen, T = 5J [(a) and (c)] and T = 10J [(b) and (d)]. The black horizontal line shows the
value ΓÔ(ω) = π/2. The matrix elements were computed in a small energy window 0.05ε
where ε ..= Emax − Emin, and a frequency window δω = 0.05.

of the mean energy Ē and frequency ω. In particular, we are interested in correlations

between matrix elements at different frequencies, which are encoded in the eigenvalue

distribution of the matrix Onm. In the absence of correlations, the eigenvalue distri-

bution should coincide with that of the Gaussian orthogonal ensemble (GOE), where

each matrix element is an independent, identically distributed random variable [52].

Therefore, any deviation from the GOE prediction heralds the presence of correlations

between matrix elements.

In order to investigate the temperature- and frequency-dependence of such corre-

lations, we consider sub-matrices of Ô restricted to a finite frequency window and

construct the corresponding eigenvalue distributions, following Ref. [32]. To fix the

temperature, we first extract a D′ ×D′ sub-matrix from Ô, centred around the diag-

onal matrix element Onn such that En = Tr[ρ̂Ĥ]. The size D′ of this sub-matrix is

selected to encompass an energy range of width 0.125ε, where ε ..= Emax−Emin is the
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bandwidth. We then further restrict our attention to frequencies |ω| < ωc by setting

Oωc
nm

..=




Onm, if |Em − En| < ωc

0, otherwise.

(I.6.44)

To test for correlations between these matrix elements, we follow the procedure intro-

duced in Ref. [32]: we generate a sign-randomised matrix from the original sub-matrix

Õωc
nm

..=




Oωc
nm, probability = 1/2,

−Oωc
nm, probability = 1/2,

(I.6.45)

where we apply the sign randomisation on the elements n 6= m to retain the mean and

support of the original sub-matrix. The random sign destroys correlations between

matrix elements, leading to the semi-elliptical eigenvalue distribution that is charac-

teristic of the GOE [52, 219]. Comparing the eigenvalue distributions of Oωc
nm and Õωc

nm

thus probes correlations between the matrix elements of Ô within a frequency range

controlled by the cutoff ωc.

The distribution of all the D′ eigenvalues λωcα of Ôωc is expressed as

Pωc(λ) =
1

D′
D′∑

α=1

δ (λ− λωcα ) , (I.6.46)

where all the individual δ(·) peaks are collected in small bins to describe a given

probability distribution. The function Pωc(λ) can be studied as a function of ωc and

yields a semi-circular distribution if the eigenvalues are uncorrelated. If correlations

are to arise, deviations from a semi-circle distribution are observed.

The eigenvalues {λ} of the sub-matrices in Eq. (I.6.44) and Eq. (I.6.45) are evaluated

numerically and the corresponding distributions, Pωc(λ), are shown in Fig. I.6.9 for

extensive operators. The eigenvalues of the entire sub-matrix within the chosen energy

window show a departure from the semi-elliptical distribution (Fig. I.6.9[(a),(b)] for

B̂HB and Fig. I.6.9[(c),(d)] for B̂IS), signalling substantial correlations between matrix

elements at significantly different frequencies. These correlations are seen for high

(T = 1000J) [Fig. I.6.9(b,d)] and low (T = 5J) [Fig. I.6.9(a,c)] temperatures alike.

For smaller values of the cutoff ωc, however, the eigenvalue distributions begin to

resemble the GOE prediction (Fig. I.6.9[(a),(b)] insets for B̂HB and Fig. I.6.9[(c),(d)]
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Figure I.6.9: Probability distributions Pωc(λ) of the eigenvalues of the full and randomised
sub-matrices [Eqs. (I.6.44) and (I.6.45)] in an energy window 0.125ε for B̂HB [(a), (b)] and
B̂IS [(c), (d)]. In the insets of [(a), (b)] and [(c), (d)] we show Pωc(λ) for the banded operators
B̂HB and B̂IS, respectively, with the smallest cutoff frequency ωc such that the eigenvalue
distribution follows the GOE (see section below on localisation effects). All the panels on
the left correspond to T = 5J , while T = 1000J for the panels on the right. We show the
results for L = 18 in ĤHB and L = 16 in ĤIS.

insets for B̂IS). Our data are therefore consistent with a crossover to Gaussian random-

matrix-like behaviour at low frequencies [32]. The frequency scale of the crossover

can be estimated from the value of ωc at which the distributions appear to coincide

with the GOE prediction, ωc = ωGOE. Note that, for even smaller values of ωc,

the eigenvalue statistics eventually become Poissonian due to well-known localisation

effects [25]. The insets in Fig. I.6.9 display the eigenvalue distributions for smallest

frequency values which are still above the localised regime. This indicates that ωGOE

refers to a different frequency scale, as first denoted in Ref. [32].

Localisation effects

We have considered banded sub-matrices to determine the degree of correlations

within the statistical matrix Rnm. From Eq. (I.6.44), ωc determines the frequency

value associated to a given banded sub-matrix. We considered ωc only above a given

threshold, due to the fact that below this threshold the eigenvalues of Ôωc become
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Ô = B̂HB

L = 18
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ĤIS

ωmin
c ≈ 0.15

〈r
ω

c
〉

ωc

T = 5J
T = 1000J

ωc

T = 5J
T = 1000J

Figure I.6.10: Mean ratio of adjacent level spacings 〈rωc〉 as a function of the cutoff frequency
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uncorrelated because of localisation effects [32]. In this frequency regime, the adjacent

eigenvalue level spacings of Ôωc are Poisson-distributed.

The relevant frequency regime in our work is the one dictated by the largest ωc

where the eigenvalues λωcα are still uncorrelated. This implies that there are resonant

timescales t ∼ 2π/ωc for which the dynamics are dictated by uncorrelated energy

modes. In Ref. [32], it was shown that the eigenvalues of Ôωc are uncorrelated even in

the regime where the distribution of level spacings follows the GOE. For these reasons,

it is important to restrict ourselves to values of ωc for which the eigenvalues of Ôωc

are uncorrelated and the level spacings follow the GOE. These regimes can be probed

by studying the mean ratio of adjacent level spacings, defined as

〈rωc〉 ..=
1

M

∑

α

min{∆α,∆α+1}
max{∆α,∆α+1}

, (I.6.47)

where ∆α = |λωcα+1 − λωcα |. We performed the average over all adjacent level spacings,

i.e., M ≈ D′. We have that 〈rωc〉 ≈ 0.53 for a distribution following the GOE and

〈rωc〉 ≈ 0.39 for Poisson-distributed random variables.

In Fig. I.6.10(a) we show the mean ratio of adjacent level spacings for the ĤHB model as

a function of ωc. It can be observed that the value of ωc for which the onset of the GOE

is observed is rather similar between the values of temperature T = 5J and T = 1000J

chosen. We do not expect this behaviour to be generic. On the contrary, the onset

of the GOE is typically observed at different values of ωc for different system sizes L
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and observables. To avoid the aforementioned localisation effects, we restricted our

analyses to the values of ωc above the ωmin
c denoted in Fig. I.6.10. For all ωc > ωmin

c ,

the associated sub-matrices exhibit a value of 〈rωc〉 ≈ 0.53. This, however, does

not imply that the matrix elements display correlations or lack thereof. As we have

shown, there exist a regime for which correlations build up as ωc is increased above

ωmin
c . Similar results are observed for the ĤIS model in Fig. I.6.10(b), with the only

difference noticed at the specific ωmin
c values for which the onset of the GOE mean

ratio of level spacings is obtained.

I.6.2.4 Dynamics of the OTOC

We now study the implications of the nature of correlations in the off-diagonal ma-

trix elements for the observable dynamics. As discussed above, two-point correlation

functions are independent of the statistical correlations between matrix elements. It is

thus crucial to examine higher-order correlators and the OTOC is a natural example.

We focus in particular on the squared commutator

c(t) ..= −
(
〈[Ô(t), Ô]2〉 − 〈[Ô(t), Ô]〉2

)
. (I.6.48)

To detect the dynamical effect of matrix-element correlations, we compute c(t) in

two different ways: : i) by a thermal average in the canonical ensemble at tempera-

ture T , and ii) using a single eigenstate |En〉 and assuming independent, identically

distributed (IID) Gaussian statistics for Rnm in the ETH Eq. (I.5.1) [220, 193, 30].

To evaluate the square commutator within the ETH assuming IID statistics, let us

consider the following four point connected correlator

Fc(t1, t2, t3, t4) ..= 〈Ô(t1) Ô(t2) Ô(t3) Ô(t4)〉 − 〈Ô(t1) Ô(t2)〉 〈Ô(t3) Ô(t4)〉 (I.6.49)

where all operators are written in the Heisenberg representation, Ô(t) = eiĤtÔe−iĤt.

All time-ordered and out-of-time-ordered correlation functions can be constructed

from Fc(t1, t2, t3, t4) with a suitable choice of arguments. In particular, we focus on

the standard OTOC

FOTO(t) ..= 〈Ô(t)ÔÔ(t)Ô〉 − 〈Ô(t)Ô〉2 = Fc(t, 0, t, 0), (I.6.50)
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and the square commutator

c(t) ..= −
(
〈[Ô(t), Ô]2〉 − 〈[Ô(t), Ô]〉2

)
= Fc(t, 0, 0, t) + Fc(0, t, t, 0)− 2ReFc(t, 0, t, 0).

(I.6.51)

We now restrict our analysis assuming that the matrix elements in the ETH are

uncorrelated Gaussian variables, i.e.

Rαβ Rγδ = δαδ δβγ (I.6.52)

and

Rαβ Rβγ Rγδ Rδα = Rαβ Rβγ Rγδ Rδα +Rαβ Rγδ Rβγ Rδα +Rαβ Rδα Rβγ Rγδ.

(I.6.53)

This allows us to re-write the four point function Eq. (I.6.49) evaluated over ρ̂ =
∑

n pn |n〉 〈n| as

Fc(t1, t2, t3, t4) =
∑

n

pn Fc(En, t1, t2, t3, t4) , (I.6.54)

where Fc(En, t1, t2, t3, t4) is the micro-canonical expectation value, i.e., Eq. (I.6.49)

computed over a single eigenstate |n〉. One can observe that the same result holds from

a purely out-of-equilibrium calculation, where the expectation value in Eq. (I.6.49) is

taken over an initial pure state |ψ〉. In this case, the distribution of the pn is given

by the overlaps with the initial state pn = |〈n|ψ〉|2. One can then show that if pn

is compatible with statistical mechanics, with is guaranteed when the average energy

Ē is defined and the variance (δE)2/〈E〉2 ∼ 1/L decays with the system size, then

the leading term of Eq. (I.6.49) is given by the single-eigenstate expectation value.

One can, however, expect a constant divergence at finite sizes that decreases with

increasing L. In the following, we consider only the microcanonical single eigenstate

four-point functions and omit En in the notations.

Using Eq. (I.6.52), one can re-write the four-point function in Eq. (I.6.49) directly in

terms of the two-point functions from Eq. (I.5.26) as

Fc(t1, t2, t3, t4) = f1(t1, t2, t3, t4) + c1(t2 − t3) + c2(t1 − t4, t2 − t3). (I.6.55)
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We then see that Fc(t1, t2, t3, t4) is composed of

c1(t2 − t3) ..= O′2F ′′2 (t2 − t3), (I.6.56)

with

c2(t1 − t4, t3 − t2) ..= F2(t1 − t4) F2(t2 − t3) + F ′2(t1 − t4)
∂F2(t2 − t3)

∂E
, (I.6.57)

and

f1(t1, t2, t3, t4) ..= O2 [F2(t1 − t3) + F2(t2 − t4) + F2(t1 − t4) + F2(t2 − t3)]

+OO′ [F ′2(t1 − t3) + F ′2(t2 − t4) + 2F ′2(t2 − t3)]

+
1

2
OO′′ [F ′′2 (t1 − t3) + F ′′2 (t2 − t4) + 2F ′′2 (t2 − t3)] , (I.6.58)

where F2(t) is written as defined in Eq. (I.5.26) O , O ′ and O ′′ are obtained from the

diagonal expectation value of the operator Ô and its first and second derivative with

respect to energy evaluated at En. The functions F ′2(t) and F ′′2 (t) can be written as

2ReF ′2(t) = −
∑

β 6=n
ωnβ(eiωnβt + e−iωnβt) |fnβ|2 e−Snβ = − 1

2π

∫
dω ω SÔ(En, ω)eiωt ,

(I.6.59a)

2ReF ′′2 (t) =
∑

β 6=n
ω2
nβ(eiωnβt + e−iωnβt) |fnβ|2 e−Snβ =

1

2π

∫
dω ω2 SÔ(En, ω)eiωt ,

(I.6.59b)

where in the second line of Eq. (I.6.59) we have identified sums with integrals and

expanded the entropy terms around energy En.

The resulting SÔ(En, ω) is the symmetric response function which can be computed

within ETH as stated in Eq. (I.5.50). It is very important to note that f1 and c1 vanish

whenenver O(Ē) = 0, and neither of these functions contain information about the

distribution of the Rnβ in the ETH. We can use this to our advantage to simplify the

calculations. Finally, the OTOC and square-commutator can be directly written as
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combinations of f1, c1 and c2 [Eqs. (I.6.56), (I.6.57) and (I.6.58)] as

FOTO(t) = f1(t, 0, t, 0) + c1(t) + c2(t,−t) (I.6.60)

c(t) = 2 [c1(0) + c2(0, 0)− c1(t)− c2(t,−t)] . (I.6.61)

Within this approximation, the leading terms in the system size of the square-commutator

and of the OTOC read

FOTO = |F2(t)|2 + 2O(En)2 Re[F2(t) + F2(0)] , (I.6.62)

c(t) = 2|F2(0)|2 − 2|F2(t)|2 . (I.6.63)

In fact, all the terms containing derivatives with respect to energy are proportional

to 1/L and are therefore sub-leading in L with respect to |F2(t)|2, both for local or

sums of local operators. Note, however, that these terms could be relevant in large-L

chaotic models at intermediate times, where the square-commutator is expected to

grow exponentially as ∼ e2λt/L2, with λ the classical Lyapunov exponent [221].

The square commutator as defined in Eq. (I.6.51) can be directly evaluated from

the ETH assuming uncorrelated Rnm from Eq. (I.5.1) using the procedure described

above. The resulting expression depends only on the dynamics of two-point functions,

which can be evaluated using the procedure described in Sec. I.5.2.

Square commutator dynamics in non-integrable systems

Under the approximation that theRnm in the ETH are IID Gaussian random variables,

we have

[c(t)]ETH Unc. ≈ 2|F2(0)|2 − 2|F2(t)|2, (I.6.64)

where

F2(t) ..= 〈Ô(t)Ô(0)〉c ..= 〈Ô(t)Ô(0)〉 − 〈Ô(t)〉〈Ô(0)〉. (I.6.65)

We can then proceed to evaluate numerically these results in our non-integrable sys-

tems ĤHB and ĤIS. The OTOC dynamics in the canonical ensemble are computed by

exact diagonalisation, representing Ô(t) as a time-dependent matrix in the Heisenberg
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Figure I.6.11: Time-dependent square-commutator (I.6.37) for the operators B̂HB [(a),(b)]
and B̂IS [(c),(d)] for ĤHB and ĤIS at temperatures T = 5J [(a) and (c)] and T = 1000J
[(b) and (d)]. The expectation value obtained for a canonical state is compared with the
one obtained assuming the ETH and uncorrelated Rnm for increasing system size L. Insets
show the distribution of eigenvalues of the matrix Ôωc=2π/t (I.6.44) for the largest system
size displayed in each case.

picture following the computation of the commutators in Eq. (I.6.37). On the other

hand, the dynamical evaluation of c(t) assuming IID Gaussian statistics in the ETH is

done by obtaining the two-point functions from fÔ(Ē, ω), as described in Sec. I.6.2.1.

The result of this comparison is shown in Fig. I.6.11 for sums of local operators. A

discrepancy between the two predictions at short times signals that this regime is

indeed governed by correlations between the matrix elements. However, the curves

saturate to a similar value at longer times, differing in some cases by a small correction

that we attribute to energy fluctuations in the canonical ensemble at finite size, given

that these deviations are less prominent for larger system sizes. Fig. I.6.11 shows that

the time ts at which saturation occurs qualitatively increases with system size.

Interestingly, our data suggest that this saturation time is related to the frequency

ωGOE by ts ≈ 2π/ωGOE. The procedure employed so far only allows one to study sys-

tem sizes available to exact diagonalisation techniques. Regardless, we can proceed

visually by showing the distribution of eigenvalues of the matrix Ôωc=2π/t at different
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times (insets of Fig. I.6.11). While at short times the distribution deviates from the

GOE prediction, these deviations are strongly reduced when the OTOC nears satu-

ration, approximately leading to semi-circular distributions. This behaviour indicates

that the OTOC’s long-time dynamics encodes the statistical properties of Rnm and

the emergence of random-matrix behaviour at low frequencies.

I.6.2.5 Estimation of the scaling of ωGOE with system size in

the infinite-temperature regime

Our previous results strongly suggests that the frequency scales divided by ωGOE,

studied from the spectrum of banded matrices, have a connection to the saturation

timescales of the OTOCs, denoted by ts. This connection could be used to estimate

the behaviour of ωGOE as a function of the system size L from the saturation point

of the dynamics of the OTOCs. Notice that the saturation time ts is not related

to the relaxation time of two-point correlations, the dephasing time tϕ, which is ex-

pected to be an intensive quantity on general grounds [222]. The saturation time ts

is also generically larger than tϕ. This observation is verified by Fig. I.6.11, since tϕ

determines the fast saturation of the OTOC computed according to the uncorrelated

approximation in Eq. (I.6.64).

In our previous calculations, establishing the connection between ts and ωGOE entailed

the computation of the unitary operator Û that renders the Hamiltonian diagonal,

i.e., H̃ = Û †ĤÛ , where H̃ is a diagonal matrix with the eigenvalues in its entries. This

exact diagonalisation procedure is computationally costly due to the rapid increase

of D as a function of the system size. Having established the relation between ωGOE

and ts, we could evaluate the saturation point in the dynamics of the OTOCs using

a different approach to provide and estimation of the scaling of ωGOE.

For this purpose, we employ the concept of dynamical quantum typicality [223–227].

In this framework, it is possible to approximate the unitary dynamics of a given

system within an equilibrium ensemble from a single pure state |ψ〉, which is drawn

at random from the Haar measure [225] on an arbitrary basis {|φ〉k}Dk=1. We start

with

|ψ〉 = R̂

D∑

k=1

ck |φk〉 , ck ..= ak + ibk, (I.6.66)
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where R̂ is an arbitrary operator on the Hilbert space and ak and bk are independent

random variables drawn from a normal distribution. The averaged expectation value

of an operator Ô in the typical state is equivalent to the expectation value computed

with respect to a density matrix ρ̂, such that O ..= 〈ψ|Ô|ψ〉 ≈ Tr[ρ̂Ô]. In this

particular case, ρ̂ = R̂R̂†. It can be shown that the approximation is more accurate

as D increases [226].

We now focus on the infinite-temperature regime, in which we can write

ρ̂ =
1

D and |ψ〉 =
1√
D

D∑

k=1

ck |φk〉 . (I.6.67)

With this procedure, we may approximate the dynamics of c(t) from Eq. (I.6.37) in

the infinite-temperature regime by

c(t) ≈ −
(
〈ψ|[Ô(t), Ô]2|ψ〉 − 〈ψ|[Ô(t), Ô]|ψ〉2

)
, (I.6.68)

where the approximation becomes more accurate as L is increased. To provide a better

approximation for smaller values of L we carry out an averaging procedure using

several different random states |ψ〉. The dynamics is evaluated in the Schrödinger

picture, using the method of Krylov subspaces to evaluate time-evolved states. The

idea is to evaluate the action of the propagator onto a pure state to obtain a time-

evolved state, i.e., |ψ(t)〉 = e−iĤt |ψ(0)〉. With this method, we evaluate |ψ(t)〉 by

computing the action of e−iĤt onto |ψ(0)〉. This is done by a polynomial approximation

to |ψ(t)〉 from within the Krylov subspace

Km = span
{
|ψ(0)〉 , Ĥ |ψ(0)〉 , Ĥ2 |ψ(0)〉 , . . . , Ĥm−1 |ψ(0)〉

}
. (I.6.69)

The optimal approximation is obtained by an Arnoldi decomposition procedure of

the upper Hessenberg matrix Am, defined as Am ..= V T
mHVm, where Vm corresponds

to the orthonormal basis resulting from the decomposition. Am can be seen as the

projection of Ĥ onto Km with respect to the basis Vm. In the previous description

m is the dimension of the Krylov subspace. In principle, the Arnoldi decomposition

procedure can be replaced by a three-term Lanczos recursion for the specific case of

Hermitian matrices. The latter amounts to a more efficient algorithm, yet to one that

may suffer from numerical instabilities for ill-conditioned matrices.



I.6.2. HIGH-ORDER CORRELATION FUNCTIONS IN TIME 137

The desired solution is then approximated by

|ψ(t)〉 ≈ Vm exp(−itAm) |e1〉 , (I.6.70)

where |e1〉 is the first unit vector of the Krylov subspace. The approximation becomes

an exact solution when m ≥ D, however, the method has been proven to be accurate

even if m � D for short enough time-steps [228, 229]. For the particular case when

m � D, the much smaller matrix exponential exp(−itAm) can be evaluated using

standard numerical techniques, such as a Padè approximation with a scaling-and-

squaring algorithm. The error in the method behaves like O(em−t||A||2(t||A||2/m)m)

when m ≤ 2t||A||2, which indicates that the technique can be applied successfully if a

time-stepping strategy is implemented along with error estimations [230]. In practice,

the dimension of the Krylov subspace m is a free parameter of the simulation, while

the time-step is estimated such that the above a priori error estimation is kept under

control.

We remark that for the case of c(t), evaluating terms of the form 〈ψ|[Ô(t), Ô]2|ψ〉
is more complicated, since it requires running both forwards and backwards time

evolution of operators Ô acting on pure states |ψ〉, where the |ψ〉 are typical states

introduced above. Yet, this procedure can be carried out efficiently dividing the entire

time evolution into several time-steps [225].

Evaluation in non-integrable models

In Fig. I.6.12 we show the results of c(t) averaged over several typical states using

the procedure above for the ĤHB [Fig. I.6.12(a)] and the ĤIS [Fig. I.6.12(b)] models

for their respective extensive observables. The numerical approach described before

allows us to study much larger system sizes (up to L = 28 for ĤHB and L = 24

for ĤIS). The dynamics displayed correspond to the average between many different

typical states, which range from 1000 for the smallest values of L, to 2 for the largest

values. The number of realisations is chosen such that the standard deviation along

each point in the time trajectory does not surpass 1% of the mean value.

The circles marked in the main panels correspond to the saturation points of the

OTOCs. The values of c(Jt) have been scaled by a factor of L4 for visualisation

purposes and do not affect the saturation times. To evaluate these saturation values,
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Ĥ
H

B
:

c(
J
t)

×
L

4
,
B̂

H
B

Ĥ
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Figure I.6.12: Dynamics of the OTOC averaged over many typical states in the infinite-
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(L = 14, · · · , 24 increasing for even L) models and their corresponding observables composed
of sums of local operators. The circles denote our estimation of the saturation time ts. The
insets exhibit the finite-size scaling analysis of the saturation time ts as a function of L,
where the dashed lines depict a fit to a linear function aL+ b.

we first estimate the long-time value of the OTOCs c(Jt→∞) from the average of the

late dynamics (we use Jt ∈ [28, 30] for ĤHB and Jt ∈ [48, 50] for ĤIS). The saturation

time is then selected at the value for which c(Jts) = εc(Jt→∞) is reached, where ε

is a certain threshold parameter. The saturation times are highlighted by the circles

in the main panels of Fig. I.6.12. There exist some very small finite-size oscillations

throughout the dynamics, which introduce a level of uncertainty into the estimation

of ts. To account for these, we compare c(Jt→∞) against a running-average value in

the vicinity of Jt. Explicitly so, we compare the long-time estimation of c(Jt → ∞)

against the average within the set [Jt−0.5, Jt+0.5] to approximate ts more accurately.

The insets in Fig. I.6.12 display the scaling of the saturation time ts as a function of

the system size L. In both cases, the saturation time appears to scale linearly with

L. This behaviour is robust to changes on the parameter ε, as long as ε ≈ 1. The

displayed ts results in Fig. I.6.12 were obtained with ε = 0.99.
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I.6.2.6 Summary and outlook

The observed linear scaling of the saturation time ts, reminiscent of ballistic transport,

is qualitatively consistent with the linear front propagation at the butterfly velocity

expected in chaotic systems [187, 231]. This observation and the results obtained for

both models would imply that, consequently, ωGOE ∝ 1/L for extensive operators

in chaotic many-body systems. The connection of this energy scale to the Thouless

energy ωTh, characterising random matrix behaviour in the spectrum of the Hamilto-

nian, depends on the details of the system. For standard diffusive scaling, ωTh ∝ 1/L2,

one observes ωGOE > ωTh (in apparent contrast with Ref. [232], in which strictly local

operators were considered). The careful numerical study of the scaling of ωTh with

system size required to clarify this issue is beyond the scope of this paper and it is

left for future studies.

We have performed a systematic analysis of statistical correlations within the ETH

and explored their consequences for the dynamics of quantum information scrambling.

Remarkably, we find that correlations between off-diagonal matrix elements indicate

the timescale for the onset of random-matrix dynamics in the corresponding OTOC,

an experimentally observable quantity. This operator- and temperature-dependent

timescale is not apparently connected to hydrodynamic behaviour of linear-response

functions, given that the dynamics of stationary two-point correlation functions are

independent of statistical matrix-element correlations. Moreover we have provided an

estimation of the scaling of the timescale ts as a function of the system size L, which

appears to behave linearly with L, consistently with the expected ballistic propagation

of combustion-like waves associated to the butterfly effect [187, 231]. This timescale

appears to be connected to the frequency scale ωGOE ∼ t−1
s where random-matrix

behaviour is observed from the analysis of banded sub-matrices. The estimation of

the scaling as a function of the system size was possible by employing the concept of

dynamical typicality in conjunction with computationally optimised Krylov subspace

techniques for time evolution. Our results lie at the limit of system size that can

be achieved with this numerical approach using parallel algorithms in supercomput-

ers, due to the long timescales required to study saturation of the OTOCs. Finite

system size thus remains a limitation to our estimations, despite the fact that the

exposed technique allows us to access much larger systems than possible with exact
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diagonalisation techniques.
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Chapter II.1

Introduction

The miniaturisation of technologies in combination with the exquisite control now

available over nanoscale systems has motivated increasing interest in thermal ma-

chines that operate in the quantum regime [233, 5, 68, 7, 8]. While recent demon-

strations with trapped ions [234–237], nanomechanical oscillators [238] and diamond

colour centres [239] serve as impressive proofs of principle, practical applications such

as thermoelectric power generation call for electronic devices. To that end, the focus

of experiments in mesoscopic physics has expanded beyond traditional questions of

charge transport to include the manipulation of heat currents in platforms such as

semiconductor quantum dots [4], superconducting circuits [240] and molecular junc-

tions [241]. Understanding the non-equilibrium thermodynamics of these systems is a

formidable theoretical challenge, due to the simultaneous presence of strong system-

reservoir coupling, inter-particle interactions and finite temperatures.

Existing approaches to modelling energy transport in complex quantum systems typ-

ically depend on perturbative arguments, which require a clear separation of energy

or time scales. For example, a quantum master equation can be derived under the

assumption of weak system-reservoir coupling [242]. However, the approximations

needed to ensure positivity of the density matrix may fail to capture quantum coher-

ences far from equilibrium [243–246], while a first-principles derivation requires full

diagonalisation of the system Hamiltonian and thus becomes infeasible for large open

systems.

A more tractable approach for many-body problems is a local master equation, where

143
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incoherent sinks and sources create and remove excitations at the boundaries of the

system. This method has been successfully applied to study infinite-temperature

transport in strongly interacting systems [247], but its finite-temperature predictions

may violate basic thermodynamic laws [248–251] unless a specific kind of period-

ically modulated system-bath interaction is assumed [252–256]. Alternatively, non-

equilibrium Green functions [257] can be used to model energy transport under strong

system-reservoir coupling, but at the cost of treating many-body interactions within

the system perturbatively [258]. Another possibility is the numerical renormalisation

group, which can handle strong interactions but is typically limited to near-equilibrium

transport properties [259]. The related chain representation of unitary system-bath

dynamics [260] is also capable of non-perturbative transport calculations [261] at finite

temperatures [262] but its scalability to large system size remains unclear.

In Part II, we start by providing the background theory behind local master equa-

tions, in a configuration known as boundary driving. Particularly, in Chapter II.2, we

introduce the concept of local master equations, mathematical expressions for the spin

current, scaling theory and a numerical framework based on matrix product states

and operators to solve for non-equilibrium steady states. Our motivation to introduce

this topic is twofold. First, in Part I, we demonstrated from the perspective of linear

response that spin transport in single impurity model is ballistic in the gapless phase

0 < ∆ < 1, for α = 1 in Eq. (I.4.2) of the XXZ model. We were able to demonstrate

this from the finite-frequency structure of the spin conductivity. However, such calcu-

lations are limited by the available system size reachable with exact diagonalisation

techniques. The method of boundary driving will allow us to overcome this limitation

to solidify these results, and to demonstrate the diffusive regime of the staggered field

model in Eq. (I.4.1), implying that the nature of integrability-breaking terms results

in different transport regimes. The second reason is related to the generalisation of

thermodynamics and transport in the finite-temperature regime. In Chapter II.3, we

shall put forward a general and efficiently scalable numerical approach to quantum

thermodynamics that can deal with simultaneously strong intra-system and system-

bath interactions and which works arbitrarily far from equilibrium. We focus on

autonomous thermal machines, where macroscopic fermion reservoirs held at differ-

ent temperatures and chemical potentials drive currents through a complex quantum

working medium.
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For the approach introduced Chapter II.3, we model the macroscopic reservoirs by

a finite collection of fermionic modes that are continuously damped towards ther-

mal equilibrium by an appropriate Lindblad master equation. We use a purification

scheme based on auxiliary superfermion modes [263] to compute the non-equilibrium

steady states of both non-interacting and interacting working media. For interacting

systems, we develop a tensor-network algorithm to efficiently simulate the real-time

dynamics of the entire configuration, working directly in the energy eigenbasis of the

reservoirs. Our approach is well suited to far-from-equilibrium problems in which

all energy scales are comparable, such that perturbative or linear-response theories

fail. To exemplify this, we demonstrate that the efficiency of a three-site quantum

heat engine is enhanced by repulsive interactions and is further improved when the

system-reservoir coupling is increased.

The concept of modelling infinite baths by a finite set of damped modes has been

widely adopted and adapted since the seminal work of Imamoglu [264] and Gar-

raway [265, 266]. In the context of open quantum systems coupled to bosonic reser-

voirs, this representation has been placed on a mathematically rigorous footing [267,

268], while its amenability to tensor-network simulations has been demonstrated [269].

Related approaches have been used to study quantum heat engines [270, 271] and ther-

malisation in few-level [272] and many-particle systems [273, 274]. In the fermionic

setting, conditions under which continuum baths can be modelled by mesoscopic reser-

voirs have been recently discussed in Refs. [275–277]. Such mesoscopic reservoirs

have been used quite extensively over the last several years for studying transport

in non-interacting systems [263, 278–281, 275, 276], including under time-dependent

driving fields [282]. For interacting systems, a mesoscopic-reservoir description was

recently applied to study particle transport and Kondo phenomena in impurity mod-

els [283, 284], while a related approach to simulating non-equilibrium many-body

problems via an auxiliary master equation has been reported [285, 286].

A key feature of our work that differs from previous approaches is a novel tensor-

network algorithm that exploits the superfermion representation to simulate Lindblad

dynamics directly in the energy eigenbasis of the baths (the so-called star geometry).

This configuration is particularly favourable in fermionic systems, where only a limited

energy window participates in the dynamics at finite temperature due to Pauli exclu-

sion effects at low energies. Although we focus here on steady states of autonomous
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machines, our methods can be adapted to study transient dynamics or time-dependent

Hamiltonians. Moreover, our tensor-network algorithm is inherently scalable to many-

body problems, as we demonstrate by first extracting the super-diffusive transport ex-

ponents of the isotropic Heisenberg model at high temperature, and then by studying

finite-temperature regimes in the gapless phase of the anisotropic Heisenberg model

beyond the predictions of single-site boundary driving configurations. Our work thus

paves the way for simulations of heat transport in strongly correlated systems that

probe heretofore inaccessible regimes of temperature and system size.



Chapter II.2

Local master equation for high-temperature

transport

From the theoretical perspective, studying transport in non-integrable models repre-

sents a significant computational challenge, as both large system sizes and long-time

limits are required [287]. This requirement is even more prevalent at high energies

where effective low-energy field theories fail [288]. A relatively modern approach for

extracting high-temperature transport properties of non-integrable one-dimensional

quantum systems is known as boundary driving [252, 51, 10, 289, 290, 80, 84, 291–

294]. Boundary driving is a setup which stems from the theory of open quantum

systems, in which Lindblad jump operators are applied at the boundaries of the chain

in order to model spin sources and sinks that drive the chain into a non-equilibrium

steady state (NESS). In some cases, it may be combined with the power of matrix

product operator techniques [295] to reach system sizes beyond those accessible via

full exact diagonalisation or Lanczos based techniques. Transport properties can be

determined by means of finite-size scaling of the current operator in the NESS. This

approach has been successful in providing an accurate numerical characterisation of

high temperature transport properties of the XXZ model [289, 84] and of the ergodic

regime of spin chains that exhibit many-body localisation [87–90]. These works have

shown that strong integrability breaking need not result in diffusive transport in the

steady state, and that anomalous diffusion could exist in a variety of circumstances.

In this chapter, we shall describe and employ the approach of boundary driving to

147
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address the high-temperature transport in the spin-1
2

XXZ chain in the presence of

integrability breaking in the form of a single (static) magnetic defect. This model is

known in the literature to lead to quantum chaos [54–56, 20], and, as we have described

in Part I, presents ballistic spin transport. We will contrast the results for that model

with those from a model in which the (global) integrability breaking perturbation

applied to the XXZ chain is a staggered magnetic field. The latter perturbation is

known to render transport fully diffusive [51, 58, 57, 107]. We recall the Hamiltonian

of the anisotropic Heisenberg model for an open chain of length D1,

ĤXXZ =
D−1∑

i=1

[
α
(
σ̂xi σ̂

x
i+1 + σ̂yi σ̂

y
i+1

)
+ ∆ σ̂zi σ̂

z
i+1

]
, (II.2.1)

described in detail in Part I. Integrability breaking perturbations can be introduced

in the form of a single impurity

ĤSI = ĤXXZ + h σ̂zD/2, (II.2.2)

or a staggered magnetic field

ĤSF = ĤXXZ + b
∑

i odd

σ̂zi . (II.2.3)

By coupling the edges of the spin chain to jump operators that induce excitations,

we study the linear response spin transport in the models above. In Sec. II.2.1 we

introduce the open-system configuration, provide a derivation to the resulting Lind-

blad master equation and describe spin current operators in non-equilibrium steady

states. Sec. II.2.2 describes the approach we employ to address the solution of the

master equation in the long-time limit, by means of a tensor network approach. We

then proceed to evaluate spin transport in Sec. II.2.3 and finalise with a summary in

Sec. II.2.4.

1In Part II we shall use D to denote the number of sites/spins of a given system, while other
symbols such as N and L shall be used for reservoirs’ degrees of freedom in Chapter II.3.



II.2.1. BOUNDARY DRIVING FOR INTERACTING SYSTEMS 149

II.2.1 Boundary driving for interacting systems

In order to study transport in a genuinely non-equilibrium steady-state in a long chain,

we couple the latter to two Markovian baths that create and remove excitations at the

boundaries. The dynamics of such a setup can be analysed by means of the Lindblad

master equation

dρ̂

dt
= −i[Ĥ, ρ̂] + L{ρ̂}

= −i[Ĥ, ρ̂] + LL{ρ̂}+ LR{ρ̂}, (II.2.4)

where ρ̂ is the density matrix of the system and LL,R are dissipative super-operators

that act on ρ̂ inducing excitations in terms of spin creation and annihilation operators

given by σ̂±j = (σ̂xj ± iσ̂yj )/2 for site at position j. Specifically, we have

Lm{ρ̂} =
∑

s=±
2L̂s,m ρ̂ L̂

†
s,m − {L̂†s,mL̂s,m, ρ̂}, (II.2.5)

where m = L, R (left and right, respectively) and {· , ·} is the anticommutator. The

operators in Eq. (II.2.5) are defined as follows:

L̂+,L =
√
γ(1 + µ) σ̂+

1 , L̂−,L =
√
γ(1− µ) σ̂−1 ,

L̂+,R =
√
γ(1− µ) σ̂+

D, L̂−,R =
√
γ(1 + µ) σ̂−D, (II.2.6)

where γ is the bath coupling parameter and µ is a parameter that dictates the strength

of the boundary driving. A diagrammatic depiction of the non-equilibrium configu-

ration is presented in Fig. II.2.1. The Lindblad master equation [Eq. (II.2.4)] can be

obtained from a microscopic derivation, such as the one used in the repeated inter-

actions scheme, which allows one to obtain expressions for thermodynamic quantities

such as heat and work [254, 296].

II.2.1.1 Repeated interactions derivation of the Lindblad mas-

ter equation for boundary-driven spin chains

The Lindblad master equation (Eq. II.2.4) can be derived from first principles using

the repeated interactions scheme. We employ the approach used in Ref. [296] and
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= �i[Ĥ, ⇢̂] + L{⇢̂}
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where ⇢̂ is the density matrix of the system and Ll,r are dissipative super-operators

that act on ⇢̂ inducing excitations in terms of spin creation and annihilation operators

given by �̂±
j = (�̂x

j ± i�̂y
j )/2 for site at position j. Specifically, we have

Lm{⇢̂} =
X

s=±
2L̂s,m ⇢̂ L̂†

s,m � {L̂†
s,mL̂s,m, ⇢̂}, (II.2.5)

where m = l, r and {· , ·} is the anticommutator. The operators in Eq. (II.2.5) are

defined as follows:

L̂+,l =
p
�(1 + µ) �̂+

1 , L̂�,l =
p
�(1 � µ) �̂�

1 ,

L̂+,r =
p
�(1 � µ) �̂+

D, L̂�,r =
p
�(1 + µ) �̂�

D, (II.2.6)

where � is the bath coupling parameter and µ is a parameter that dictates the strength

of the boundary driving. A diagrammatic depiction of the non-equilibrium configu-

ration is presented in Fig. II.2.1. The Lindblad master equation [Eq. (II.2.4)] can be

obtained from a microscopic derivation, such as the one used in the repeated inter-

actions scheme, which allows one to obtain expressions for thermodynamic quantities

such as heat and work [253, 295].

II.2.1.1 Repeated interactions derivation of the Lindblad mas-

ter equation for boundary-driven spin chains

The Lindblad master equation (Eq. II.2.4) can be derived from first principles using
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Figure II.2.1: Diagrammatic depiction of the non-equilibrium configuration used to study
transport in the boundary-driven scheme. Excitations induced by the baths can propagate
through the system (top red arrows) while interactions occur because of the third term
in Eq. (II.2.1) (bottom green arrows). The system-bath coupling strength is given by γ,
while µ represents the driving strength. A sufficiently strong (but finite) field in either
configuration (a single magnetic impurity of strength h or a staggered field of strength b)
renders the system non-integrable.

references therein.

Consider a quantum system with a time-independent Hamiltonian HS, coupled to two

thermal baths on each boundary, with Hamiltonian HR and HL for right and left bath,

respectively. At time t = 0, we assume the system to be decoupled from the baths.

We can then write the density matrix of system + environment as

ρ̂T(0) = ρ̂S(0)⊗ ρ̂E(0), (II.2.7)

where we used subscripts T for total, S for system and E for environment. The re-

peated interactions scheme then goes as follows: We couple the system to the left and

right baths and allow the configuration to evolve to time τ . Subsequently, we take a

partial trace over the baths, couple the system to a new copy of baths and allow the

configuration to evolve up to time 2τ , before taking another partial trace of the new

set of baths. This procedure is done iteratively up to time t. We thus express the

baths as an infinite collection of copies acting in different intervals of time. We write

Ĥm =
∑

n

Ĥn
α , (II.2.8)

where m = L, R for left and right, respectively. The Hamiltonian Ĥn
m interacts with

the system in the time interval t ∈ [(n− 1)τ, nτ ]. The interaction between system

and the baths is, crucially, time dependent in this scheme and given by V̂ (t) = V̂ n,

where V̂ n = V̂ n
L + V̂ n

R . We remark that this interaction at each timestep is of the same

form, however, the interactions occur with different copies of Ĥn
L + Ĥn

R in different
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time intervals.

We write the density matrix of the baths as a product state between all the copies,

i.e., ρ̂E = ⊗nρ̂n where we have

ρ̂n = ω̂βL

(
Ĥn

L

)
⊗ ω̂βR

(
Ĥn

R

)
, (II.2.9)

where ω̂βm are the initial density operators of the m-th bath, which may be expressed

as Gibbs states ω̂βm(Ĥm) = e−βmĤm/Zm, with Zm = Tr[e−βmĤm ]. According to the

scheme described before, we have that the state of the system after the n-th step is

ρ̂S(nτ) = Trn

(
Ûn{ρ̂S[(n− 1)τ ]⊗ ρ̂n}Û †n

)
, (II.2.10)

where Trn denotes the partial trace over the n-th bath. Ûn is the global unitary

using the total Hamiltonian and given by Ûn = exp
[
−iτ

(
ĤS + Ĥn

L + Ĥn
R + V̂ n

)]

with ~ = 1.

Let us now consider, for the specific case at hand, the Hamiltonian of the system to

be the anisotropic Heisenberg model for a one-dimensional spin chain of size D

ĤS =
∑

i

[
α
(
σ̂xi σ̂

x
i+1 + σ̂yi σ̂

y
i+1

)
+ ∆σ̂zi σ̂

z
i+1

]
. (II.2.11)

For the Hamiltonian of the baths we have

Ĥm =
hm
2
σ̂zm, (II.2.12)

where hm is a constant factor. Note that this is a very specific driving configuration

for the Heisenberg model. The interaction Hamiltonian is given by

V̂L = g (σ̂xL σ̂
x
1 + σ̂yL σ̂

y
1) , (II.2.13)

V̂R = g (σ̂xDσ̂
x
R + σ̂yDσ̂

y
R) , (II.2.14)

for left and right baths, respectively. With this type of interaction, there exists trans-

fer of spin excitations (or, equivalently, transfer of particles in the form of spinless

fermions) between the degrees of freedom of the system and the baths. We can express
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Eq. II.2.10 in power series of τ as

ρ̂S(nτ) = Trn

(
Ûn{ρ̂S[(n− 1)τ ]⊗ ρ̂n}Û †n

)

= Trn

(
e−iĤTτ ρ̂S [(n− 1)τ ]⊗ ρ̂neiĤTτ

)

= Trn

(
ρ̂− iτ [ĤT, ρ̂]− τ 2

2
[ĤT, [ĤT, ρ̂]] + · · ·

)
, (II.2.15)

where we have used the notation ρ̂ ..= ρ̂S ⊗ ρ̂n.

We now proceed to take the partial traces. The first term yields Trn(ρ̂S ⊗ ρ̂n) = ρ̂S.

The second term yields

Trn

(
[ĤT, ρ̂S ⊗ ρ̂n]

)
= [ĤS, ρ̂S], (II.2.16)

given that our interaction Hamiltonian does not involve σ̂z terms. There is a subtle

point to be considered now: if we take the limit τ → 0, we find that the interaction

Hamiltonian vanishes as well. In order to consider a proper interaction, we need V̂

properly scaled with the interaction time. We can achieve this by defining g ..=
√
λm/τ

such that

V̂L =

√
λL
τ

(σ̂xL σ̂
x
1 + σ̂yL σ̂

y
1) , V̂R =

√
λR
τ

(σ̂xDσ̂
x
R + σ̂yDσ̂

y
R) . (II.2.17)

Now, from Eq. II.2.15, after some algebra we find that

ρ̂S(nτ) = ρ̂S ({n− 1}τ)−iτ
[
ĤS, ρ̂S ({n− 1}τ)

]

+ τ {LL{ρ̂S([n− 1]τ)}+ LR{ρ̂S([n− 1]τ)}}+O(τ>1),

(II.2.18)

where

τLm{ρ̂S} = −τ
2

2
Trn

[
V̂m, [V̂m, ρ̂S]

]
. (II.2.19)

We can then write an equation for ρ̂S(nτ) − ρ̂S ({n− 1}τ), divide by τ and take the

limit τ → 0 to obtain

dρ̂

dt
= −i[Ĥ, ρ̂] + L{ρ̂} = −i[Ĥ, ρ̂] + LL{ρ̂}+ LR{ρ̂}, (II.2.20)
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where

Lm{ρ̂} =
∑

s=±
2L̂s,m ρ̂ L̂

†
s,m − {L̂†s,mL̂s,m, ρ̂}, (II.2.21)

and, by setting λm = γ/2, we finally identify

L̂+,L =
√
γ(1 + µ) σ̂+

1 , L̂−,L =
√
γ(1− µ) σ̂−1 ,

L̂+,R =
√
γ(1− µ) σ̂+

D, L̂−,R =
√
γ(1 + µ) σ̂−D. (II.2.22)

II.2.1.2 Spin current and steady state

The configuration described previously drives the system towards a non-equilibrium

steady state, denoted by ρ̂NESS, given by

W{ρ̂NESS} = −i[Ĥ, ρ̂NESS] + LL{ρ̂NESS}+ LR{ρ̂NESS} = 0, (II.2.23)

which implies that the steady state is the one that spans the null space of the super-

operatorW . It can be proven that this state exists and is unique if and only if the set of

operators {Ĥ, L̂+,L, L̂+,R, L̂−,L, L̂−,R} generate, under multiplication and addition, the

entire Pauli algebra. This condition is fulfilled in our case [297]. Another property

of the NESS is related to the time evolution of the system. Given the mathematical

existence and uniqueness of this particular state, any initial state will converge to the

NESS in the long time limit

lim
t→∞

ρ̂(t) = ρ̂NESS. (II.2.24)

Since, by construction, we introduce an imbalance in the strength of the boundary

driving µ, the NESS is characterised by a constant flow of magnetisation in the z

direction from one boundary to the other. The boundary driving parameter establishes

the degree of imbalance between the Markovian baths and thus affects transport in

the bulk of the spin chain. We focus on the regime 0 ≤ µ ≤ 1. For µ = 0 there is no

imbalance and the state in the bulk is given by an infinite temperature steady state,

ρ̂ = 1/2D. For any nonzero µ, effective spin excitations are introduced and removed

from the system. For µ = 1 the system is at maximum driving, i.e., maximum bias.

We can determine the flux of magnetisation by means of the equation dictating the
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dynamics of the expectation value of σ̂zi . We then turn to Eq. (II.2.4) to obtain, in

the bulk of the chain

d〈σ̂zi 〉
dt

=
d

dt
Tr (ρ̂σ̂zi ) = Tr

(
σ̂zi

dρ̂

dt

)
= −i Tr

(
σ̂zi [Ĥ, ρ̂]

)

= i Tr
(

[Ĥ, σ̂zi ]ρ̂
)

; ∀i = 2, · · · , D − 1 . (II.2.25)

Using Pauli matrix commutation relations, one obtains for Eq. (II.2.25):

d〈σ̂zi 〉
dt

= 〈ĵi−1〉 − 〈ĵi〉; ∀i = 2, · · · , D − 1, (II.2.26)

where

ĵi ..= 2α
(
σ̂xi σ̂

y
i+1 − σ̂yi σ̂xi+1

)
. (II.2.27)

We call this object the spin current operator. Up to this point, Eq. (II.2.26) is ill-

defined for the leftmost and the rightmost sites of the chain. However, we can obtain

the dynamics of the magnetisation in these sites by interpreting µ as the average

magnetisation of the Markovian baths, where we therefore identify

d〈σ̂z1〉
dt

= 〈ĵL〉 − 〈ĵ1〉, (II.2.28)

d〈σ̂zD〉
dt

= 〈ĵD−1〉 − 〈ĵR〉, (II.2.29)

with the corresponding values of the current on the boundaries given by

〈ĵL〉 = Tr (σ̂z1LL{ρ̂}) = 4γ (µ− 〈σ̂z1〉), (II.2.30)

〈ĵR〉 = Tr (σ̂zDLR{ρ̂}) = 4γ (µ+ 〈σ̂zD〉). (II.2.31)

With these definitions, the continuity equation of the magnetisation in the z direction

is consistent. In the NESS, the relation d〈σ̂zi 〉/dt = 0 holds for all sites, which means

that the spin current is homogeneous across the chain (in one dimension):

〈ĵL〉 = 〈ĵ1〉 = · · · = 〈ĵD〉 = 〈ĵR〉 ..= 〈ĵ〉. (II.2.32)
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II.2.2 Solution to the non-equilibrium steady state

The mathematical properties of the NESS can be obtained from properties of the Liou-

ville super-operator. In order to visualise them, it is convenient to use a vectorisation

procedure on the density matrix [298, 299]. The procedure consists in concatenating

the columns of the density matrix onto a vector. This allows the factorisation of the

Liouville super-operator in matrix form that acts on a vector form of the density ma-

trix. Using a matrix representation of the super-operator, we can write the Lindblad

master equation as

d|ρ̂〉〉
dt

= Ŵ |ρ̂〉〉, (II.2.33)

where |·〉〉 is a vectorised matrix built by concatenating its columns, and Ŵ is the

matrix representation of the super-operator in Eq. (II.2.23). The master equation

(Eq. (II.2.4)) can be expressed in such a way because the vectorisation procedure is

a linear operation, and all the terms in Eq. (II.2.5) are of the form ÂB̂Ĉ, where Â,

B̂, and Ĉ are matrices. In light of this, the following relation can be used to obtain

Eq. (II.2.33) [298]:

|ÂB̂Ĉ〉〉 = (ĈT ⊗ Â)|B̂〉〉. (II.2.34)

From Eq. (II.2.5), this relation is the only one needed to reduce the Lindblad master

equation to Eq. (II.2.33) in terms of the density matrix and the Pauli spin matrices.

In this chapter, we shall employ two different methods to solve for the NESS. In the

first one, we solve a system of linear equations using a matrix representation of the

super-operatorW from Eq. (II.2.23), limited only by the accessible system sizes; while

the second one is based on time-dependent Matrix Product States (tMPS) [295, 300]

in combination with a fourth-order Suzuki-Trotter decomposition of the Liouville

propagator. Let us provide a brief description about both of these approaches.
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II.2.2.1 Exact numerical approach to the solution of the non-

equilibrium steady state

Using the vectorised form of the density matrix described in Sec. II.2.2, one can write

a matrix representation of the Liouville super-operator, and combine operations of

the form in Eq. (II.2.34) in order to factorise this operator from the density matrix.

In this picture, Eq. (II.2.23) transforms to

Ŵ |ρ̂NESS〉〉 = 0, (II.2.35)

where Ŵ is a non-Hermitian matrix of dimension d2
H and |ρ̂NESS〉〉 is the vector form

of the density matrix representing the NESS, with the same dimension. At this point

it is clear that, given that the Hilbert space dimension is effectively increased by a

power of 2, the computational cost of studying interacting open quantum systems is

immensely higher than in closed quantum systems.

The solution of Eq. (II.2.35) is found by directly solving the system of linear equations

constrained to the trace preserving property of the density matrix

〈〈1|ρ̂〉〉 = Tr(ρ̂) = 1, (II.2.36)

where |1〉〉 is the vectorised identity.

One can then define [299]

W̃ = Ŵ + |0〉〉〈〈1|, (II.2.37)

such that

W̃ |ρ̂NESS〉〉 = Ŵ |ρ̂NESS〉〉+ |0〉〉〈〈1|ρ̂NESS〉〉,

W̃ |ρ̂NESS〉〉 = |0〉〉,

=⇒ |ρ̂NESS〉〉 = W̃−1|0〉〉, (II.2.38)

where |0〉〉 is the vectorised form of the first state in the Hilbert space. The choice

of the matrix |0〉〉〈〈1| is in principle arbitrary, with the only condition that the trace

of the density matrix is preserved. In the present case, |0〉〉〈〈1| is a matrix of zeroes,



II.2.2. SOLUTION TO THE NON-EQUILIBRIUM STEADY STATE 157

with ones only in the first row in the columns corresponding to the diagonal elements

of ρ̂.

It is impractical to evaluate W̃−1 given that, even if W̃ is sparse, W̃−1 will not be

sparse in general. Therefore, the solution to the linear system is normally tackled by

means of direct or indirect methods. In general, direct methods are more expensive

in both computational and memory terms. However, indirect methods such as Krylov

subspace techniques normally require preconditioning or other additional techniques

to attain acceptable numerical convergence with a low number of operations.

The main drawback of the exact numerical approach is intractability, in light of the

d2
H scaling of the Hilbert space. In our work, we used this method only for small

system sizes D ∼ 10. These system sizes are generally too small to identify the

transport regime in boundary driven spin chains. We resort to the tMPS technique,

briefly described in Sec. II.2.2.2, and use the exact approach to evaluate the numerical

fidelity of the results obtained with tMPS.

II.2.2.2 Matrix product states-operators approach to the so-

lution of the non-equilibrium steady state

In order to appreciate and properly quantify the transport properties of boundary

driven systems, it is usually required to analyse large system sizes to overcome finite-

size effects. To this end, we can apply the time-dependent Matrix Product States

algorithm to study the evolution of any initial state under Eq. II.2.4, which allows the

study of large system sizes.

We start by writing the density matrix of the system in the form

|ρ〉 =
∑

σ1,··· ,σD
cσ1···σD |σ1, · · · , σD〉, (II.2.39)

where there are dD coefficients cσ1···σD that describe the state of the system and σi is

the local basis at site i for a system with D sites. The Pauli basis is a natural and

commonly used choice to represent the local basis, such that at site i the local basis

is given by

{σi} =

{
1

2
1,

1

2
σx,

1

2
σy,

1

2
σz
}
. (II.2.40)
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In the following, we use the vectorised form of this local basis, i.e., vec(σν) such that

the density matrix operator can be represented as an MPS in the extended Hilbert

space. The power of the MPS representation of the density matrix resides on the fact

that it provides a mathematical sense of locality to the state, while preserving the

inherent quantum non-locality features. In order to achieve this, we write Eq. II.2.39

in MPS form by first reshaping the dD dimensional vector cσ1···σD into a matrix Ψ of

dimension d× dD−1

cσ1···σD → Ψσ1,(σ2···σD), (II.2.41)

and apply the singular value decomposition (SVD) to the resulting matrix:

Ψσ1,(σ2···σD) =

r1∑

a1

Uσ1,a1Sa1,a1(V
†)a1,(σ2···σD)

..=

r1∑

a1

Uσ1,a1ca1σ2···σD , (II.2.42)

where U , S and V are the matrices resulting from the SVD. In the last definition S

and V † have been multiplied together and the result shaped back into a vector. At this

stage, there can only be r1 ≤ d finite Schmidt coefficients from the SVD procedure.

We now proceed to represent Uσ1,a1 → Aσ1a1 as a collection of d row vectors and ca1σ2···σD

as a matrix of dimension r1d× dD−2 to obtain

cσ1···σD →
r1∑

a1

Aσ1a1Ψ(a1σ2),(σ3···σD). (II.2.43)

If we proceed exactly as before we can write:

cσ1···σD →
r1∑

a1

r2∑

a2

Aσ1a1U(a1σ2),a2Sa2,a2(V
†)a2,(σ3···σD)

=

r1∑

a1

r2∑

a2

Aσ1a1A
σ2
a1,a2

Ψ(a2σ3),(σ4··· ...σD), (II.2.44)

where U has been replaced by a collection of d matrices Aσ2 of dimension r1× r2 with

entries Aσ2a1,a2 = U(a1σ2),a2 . Just like before, S and V † have been multiplied together

and reshaped into a matrix Ψ of dimension r2d× dD−3, with r2 ≤ r1d ≤ d2.

Proceeding iteratively, we obtain

cσ1···σD =
∑

a1,··· ,aD−1

Aσ1a1A
σ2
a1,a2
· · ·AσD−1

aD−2,aD−1
AσDD−1
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= Aσ1Aσ2 · · ·AσD−1AσD , (II.2.45)

where the last AσD corresponds to a collection of d column vectors and the sums over

ai have been represented as matrix multiplications. Finally,

|ρ〉 =
∑

σ1,··· ,σD
Aσ1Aσ2 · · ·AσD−1AσD |σ1, · · · , σD〉 (II.2.46)

is the MPS form of the density matrix in the vectorised Pauli basis described above.

The SVD procedure possesses a normalisation condition on the U matrices, given by

U †U = I. This condition translates to the Aσn for the nth site such that

∑

σn

(Aσn)†Aσn = I. (II.2.47)

The matrices pertaining to an MPS that satisfy this condition are known as left-

normalised, while the MPS itself is known as left-canonical. In our description the

MPS form of the density matrix was built from left to right so this condition is

satisfied. The MPS can be built from right to left and from the edges to the centre as

well, respectively these MPS forms are known as right-canonical and mixed-canonical.

We, however, restrict our description to left-canonical MPS. Eq. II.2.46 is valid only

for open boundary conditions.

The representation used in MPS form can be depicted graphically in a neat way

using nodes and lines connecting the Aσn matrices. From this graphical depiction one

can relate each collection of Aσn matrices to the lattice site they belong to. It is a

common practice to use vertical lines to represent the physical degrees of freedom and

horizontal lines to represent the auxiliary degrees of freedom, connected lines mean

degrees of freedom being summed over. We show how an MPS is represented using

this graphical depiction in Fig. II.2.2(a), below the horizontal lines we have written

down the biggest possible dimension that the auxiliary degrees of freedom can take

(in square braces). This value is commonly known as bond dimension.

From Fig. II.2.2(a) we can see that the use of an MPS representation does not readily

solve the intractability problem, one is still left to face exponentially increasing matrix

sizes. In this form, however, the SVD procedure exposes the degree of both quantum

and classical correlations present in the state and truncation can be made on the sizes
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Figure II.2.2: Diagrammatic depiction of (a) an MPS, (b) an MPO and (c) a contraction of
an MPS with an MPO that returns a new MPS.

of the matrices used for the MPS based on this observation. We denote the maximum

value used for bond dimension with χ, as the maximum amount of auxiliary degrees

of freedom used for the Aσn matrices.

For the specific case at hand, one can keep the degree of correlations under control

by using an initial product state, say for instance, the identity state; and evolving

the system under dynamics that keep the state close to an identity state throughout

the evolution as the NESS is reached. From Eq. II.2.6, this can be achieved for small

values of µ. Increasing this parameter (e.g., µ ∼ 1) induces a state into the system

much further away from the identity in terms of quantum correlations, i.e, states that

require a large bond dimension to be represented with fidelity; particularly for large

system sizes.

Just like states, operators can be written down in MPS form in a representation

known as Matrix Product Operators (MPOs). Given that any quantum operator can

be expressed as

O =
∑

σ1,··· ,σD,σ′1,··· ,σ′D

c(σ1,··· ,σD),(σ′1,··· ,σ′D)|σ1, · · · , σD〉〈σ′1, · · · , σ′D|, (II.2.48)

we can decompose O the same way we did for an MPS with the double index σiσ
′
i

taking the role of the single index σi to give

O =
∑

σ1,··· ,σD,σ′1,··· ,σ′D

V σ1,σ′1V σ2,σ′2 · · ·V σD−1,σ
′
D−1V σD,σ

′
D |σ1, · · · , σD〉〈σ′1, · · · , σ′D|,

(II.2.49)

where we have omitted the sums auxiliary indices as they can be recognised as matrix

multiplications.

Graphically, an MPO is represented just like an MPS with an extra physical set of
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degrees of freedom vertically coming out of each node, as depicted in Fig. II.2.2(b). At

this point we note that technically a density matrix should be represented as an MPO

instead of an MPS, however, the vectorisation procedure allows the density matrix

to be represented as an MPS and, as we shall see, the Liouvillian propagator to be

represented as an MPO.

One of the most relevant operations involving MPSs and MPOs for us is the contrac-

tion of an MPS with an MPO that returns a new MPS. Analytically, we proceed with

this operation as follows:

O|ρ〉 =
∑

σ,σ′

(
V σ1,σ′1V σ2,σ′2 · · ·

)(
Aσ
′
1Aσ

′
2 · · ·

)
|σ〉

=
∑

σ,σ′

∑

a,b

(
V
σ1,σ′1

1,b1
V
σ2,σ′2
b1,b2

· · ·
)(

A
σ′1
1,a1

Aσ
′
2
a1,a2
· · ·
)
|σ〉

=
∑

σ,σ′

∑

a,b

(
V
σ1,σ′1

1,b1
A
σ′1
1,a1

)(
V
σ2,σ′2
b1,b2

Aσ
′
2
a1,a2

)
· · · |σ〉

=
∑

σ

∑

a,b

Nσ1
(1,1),(b1,a1)N

σ2
(b1,a1),(b2,a2) · · · |σ〉 =

∑

σ

Nσ1Nσ2 · · · |σ〉, (II.2.50)

where σ ..= |σ1, · · · , σD〉, a ..= a1, · · · , aD−1 and b ..= b1, · · · , bD−1. From this pro-

cedure we note two important observations. First, the contraction of an MPS with

an MPO has to be done in a certain order to avoid an exponentially-complex opera-

tion. Particularly, the tensors corresponding to a certain site are contracted together

vertically and not horizontally by grouping them in relation to the site they belong

to, as shown above. Second, the bond dimension of the MPS resulting from the

MPS-MPO contraction is bigger than the one from its predecessors, namely, an MPS

contracted with an MPO containing bond dimensions χMPS and χMPO respectively,

corresponds to an MPS with bond dimension χMPS · χMPO. This operation is de-

picted in Fig. II.2.2(c). The contraction, when operated in this fashion, has an overall

complexity of O(Dd2χ2
MPSχ

2
MPO) [295].

Real time evolution

To obtain the NESS, we target the solution to the master equation numerically given

by

|ρ(τ)〉 = eWτ |ρ(0)〉, (II.2.51)
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Figure II.2.3: First order even-odd Trotter decomposition

in the limit τ → +∞, with |ρ(τ)〉 being the density matrix of the state at time t = τ ,

|ρ(0)〉 describing the density matrix of the initial state and W a linearised form of the

super-operator W written down in Eq. II.2.23. As described before, in this form, W

corresponds to a square non-Hermitian matrix while the density operators correspond

to vectors in an extended Hilbert space. The MPS formalism allows us to describe in

a tractable way the states of the system, so now we devote the following to the MPO

description of the Liouville propagator eWτ .

We first start by noting that the Liouville superoperator can be written as a sum of

terms involving only two sites

W =
D−1∑

i=1

Wi,i+1, (II.2.52)

given that the Hamiltonian involves only two-site terms and the Lindblad operators

act locally2. This structure allows for the so-called Trotter decomposition of the

Liouville propagator. Let us first describe the first-order decomposition, given by

eWτ =
D−1∏

i=1

eWi,i+1τ +O(τ 2). (II.2.53)

The error introduced in this decomposition is due to the fact that nearest-site local

Hamiltonians do not commute. However, next nearest-site local Hamiltonians do

commute and this allows for an even-odd decomposition of the Liouville propagator

that can be carried out at the same time. In such a way, we can define

Oodd
..= eW1,2τ ⊗ 1⊗ eW3,4τ ⊗ 1⊗ · · · (II.2.54)

Oeven
..= 1⊗ eW2,3τ ⊗ 1⊗ eW4,5τ ⊗ · · · , (II.2.55)

2This is the case when one considers local Hamiltonians, of the form Ĥ =
∑
i ĥi,i+1, such as

ĤXXZ from Eq. (II.2.1)
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such that Oodd and Oeven can be applied at the same time τ . It can be noticed

that each of the eWi,i+1τ acts on two sites so in this form the MPO structure is no

longer present as shown in Fig. II.2.3. To recover MPO form, we need decompose the

operators in a way that preserves the locality attributed to the MPS; to do that, we

can reshape the operators and apply the SVD procedure as follows:

eWi,i+iτ →
∑

σiσi+1,σ′iσ
′
i+1

Oσiσi+1,σ
′
iσ
′
i+1|σiσi+1〉〈σ′iσ′i+1|

→
∑

σiσi+1,σ′iσ
′
i+1

O(σiσ′i),(σi+1σ′i+1)|σiσi+1〉〈σ′iσ′i+1|

=
∑

σiσi+1,σ′iσ
′
i+1

∑

k

U(σiσ′i),k
Sk,k

(
V †
)
k,(σi+1σ′i+1)

|σiσi+1〉〈σ′iσ′i+1|

=
∑

σiσi+1,σ′iσ
′
i+1

∑

k

U
σiσ
′
i

k Ū
σi+1σ

′
i+1

k |σiσi+1〉〈σ′iσ′i+1|

=
∑

σiσi+1,σ′iσ
′
i+1

∑

k

U
σiσ
′
i

1,k Ū
σi+1σ

′
i+1

k,1 |σiσi+1〉〈σ′iσ′i+1|, (II.2.56)

with U
σiσ
′
i

k = U(σiσ′i),k

√
Sk,k and Ū

σi+1σ
′
i+1

k =
√
Sk,k

(
V †
)
k,(σi+1σ′i+1)

. The last step is

just an extension of the tensor rank by a dummy index to obtain the MPO form. In

Fig. II.2.3 we show in the pictorial depiction the previously described decomposition.

With this procedure, the Liouville propagator is brought into MPO form and can be

operated with an MPS to yield a time-evolved state.

To attain higher accuracy, instead of implementing the first-order decomposition de-

scribed above we use a higher order approximation, namely, the fourth-order Trotter-

Suzuki decomposition given by

eWτ = U(τ1)U(τ2)U(τ3)U(τ2)U(τ1) +O(τ 5), (II.2.57)

with

U(τi) = eWoddτi/2eWevenτieWoddτi/2 (II.2.58)

and

τ1 = τ2 =
τ

4− 41/3
; τ3 = τ − 2τ1 − 2τ2. (II.2.59)
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The even-odd propagators from Eq. II.2.58 are decomposed as described above in

terms of U and Ū , we then construct two different MPO representations: one given

by the contraction of the MPOs for each term on the right of Eq. II.2.58 for τ1 = τ2

and another for τ3. Once these two MPOs are operated in the sequence shown in

Eq. II.2.57 on an initial state |ρ(0)〉, the MPS for |ρ(τ)〉 is obtained. This procedure is

done iteratively until the NESS is reached in light of Eq. II.2.24, evaluating expectation

values of observables after each time step. To contract the Liouville propagator in

MPO form and the MPS at time t, we combine both methods presented in Ref. [295]

to contract an MPS: SVD truncation and the variational approach. We find that

convergence is achieved by providing the SVD-truncated state as an initial guess for

the variational algorithm with only a few variational sweeps (≈ 3-5); this approach

provides better numerical results than using one of the two contraction methods on

its own for a fixed value of χ, albeit at a higher computational cost. We refer the

reader to Ref. [295, 300] for details on both contraction techniques.

The described method presents two main sources of error. One of them is a truncation

error due to the maximum value of bond dimension χ used, in the specific case of

simulations to reach non-equilibrium steady states, this error strongly depends on

the system size D, the strength of the driving µ and the interaction parameter ∆ at

fixed α from Eqs. II.2.1, II.2.2 and II.2.3. This error can be analysed by studying

the expectation value of the current operator (Eq. II.2.27) for the largest system size

desired at fixed µ for different values of χ. A specific value of χ that introduces a

small tolerable error in simulations is then selected.

The second main source of error is related to the Trotter-Suzuki decomposition from

Eq. II.2.57, which introduces an error of order O(Mτ 5) for the M-th time step. This

error has also been found to linearly depend on the system size D [301], though in the

particular case of NESS simulations, this error is not as important as the truncation

error, given that the state does not change after the NESS is reached. For practical

applications, in light of Eq. II.2.32, enough time steps can be applied such that the

standard deviation of the expectation value of the current operator averaged over all

sites becomes very small (≈ 0.5% in the calculations presented in Sec. II.2.3).
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II.2.3 Transport from non-equilibrium steady states

in non-integrable models

The procedure described in Sec. II.2.1 shall now be used to describe spin transport

in the single impurity model ĤSI [Eq. (II.2.2)] and the staggered field model ĤSF

[Eq. (II.2.3)]. As we have described in Part I, the single impurity model displays

anomalous thermalisation and ballistic transport, despite its quantum-chaotic prop-

erties. We shall now confirm those results from the perspective of boundary-driven

configurations, which allow much larger system sizes to be reached. We shall also

revisit spin transport in the staggered field model as a testbed for our calculations.

II.2.3.1 Transport and scaling theory

The behaviour of 〈ĵ〉 [Eq. (II.2.27)] changes depending on the transport regime of the

system, and can be analysed using scaling theory. From basic microscopic transport

theory, the variance of a local inhomogeneity 〈∆x2〉 grows in space as a function of

time t as

〈∆x2〉 = 2D t2δ , (II.2.60)

where δ (0 < δ ≤ 1) is the transport coefficient, and D as the diffusion coefficient. The

value of δ is set by how perturbations propagate across the system. This parameter

can also be extracted by studying the scaling of the expectation value of the current

in the NESS (from here on, unless otherwise specified, all expectation values are taken

in the NESS) as a function of chain size as

〈ĵ〉 ∝ 1

Dν
(II.2.61)

where ν ≥ 0 is the transport exponent. The parameters δ and ν are related by

δ = 1/(1 + ν) [50].

Different transport regimes are identified based on the value of ν as follows: ν = 0

implies no dependence on system size and occurs when excitations in the system

propagate without scattering, i.e., the system behaves as a perfect conductor and

transport is ballistic (also known as coherent). This regime is expected for integrable
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Figure II.2.4: (a) Magnetisation profile of the non-equilibrium steady state for the non-
interacting XXZ model and (b) for the non-interacting model XXZ in the presence of a
staggered magnetic field with different values of b. The driving parameters are γ = 1.0 and
µ = 1.0.

systems [302]. A known exception is the XXZ model for ∆ ≥ 1 for α = 1, which

is integrable yet exhibits non-ballistic spin transport [84]. ν = 1 implies a regular

diffusive regime and spin transport in the system obeys Fick’s law, so the current

across the system is proportional to the gradient of the driving field. The cases

0 < ν < 1 and ν > 1 are referred to as anomalous diffusion, specifically, super-diffusion

and sub-diffusion, respectively. In these cases, the constant of proportionality (the

diffusion coefficient D) in Eq. (II.2.61) picks up a dependence on the system size given

by D ∝ D1−ν [302].

In Sec. II.2.3.2, we use finite-size scaling of the expectation values of the current in

the NESS to probe the effect of integrability breaking in Eqs. (II.2.2) and (II.2.3).

II.2.3.2 High-temperature transport in non-integrable sys-

tems

In this section, transport will be investigated by studying the expectation value of

the current operator 〈ĵ〉 in the non-equilibrium steady state. Following our discussion

above, transport regimes can be identified from the finite-size scaling of 〈ĵ〉.
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Figure II.2.5: Scaling of the expectation value of the current operator in the non-equilibrium
steady state as a function of system size (D = 4, · · · , 1000) for the non-interacting model in
the presence of a staggered magnetic field. The driving parameters are γ = 1.0 and µ = 1.0.

The non-interacting regime: ∆ = 0

Let us begin with the non-interacting regime ∆ = 0 in the single impurity and stag-

gered field models from Eqs (II.2.2) and (II.2.3), respectively. In this limit, all these

models are (trivially) integrable, and one can use the approach proposed in Ref. [303]

to solve large system sizes at a low computational cost. Within this approach, a per-

turbative expansion is used to obtain the exact form of the non-equilibrium steady

state by solving an equation of the Lyapunov type for any value of the boundary

driving strength µ (we use µ = 1). In the non-interacting limit, the dependence of the

expectation value of the local magnetisation and the spin current on µ is always linear.

This is in contrast with the interacting case, which shows a non-linear dependence for

sufficiently strong boundary driving [304].

In Fig. II.2.4, we show the magnetisation profile of the NESS for the ĤXXZ model

with ∆ = 0, dubbed ĤXX, and for the staggered field model with different values of

b in the non-interacting regime. The magnetisation profile across the chain in the

non-equilibrium steady state is a signal of the transport regime being investigated.

This follows from the fact that hydrodynamical behaviour is characterised by Fick’s

law and a gradient has to be developed across the chain for the system to display

incoherent transport [51]. Therefore, it is interesting to observe the expectation value

of the local magnetisation in the z direction σ̂zi for all the sites across the chain. As

can be observed in Fig. II.2.4, the magnetisation across the chain is flat and there exist

no gradient of magnetisation, signalling ballistic transport. The magnetisation at the
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Figure II.2.6: (Left) Magnetisation profiles in the NESS of the non-interacting limit of the
ĤSI model (∆ = 0) in the presence of a single magnetic impurity with different strengths
h. The profiles were obtained with D = 80, γ = 1.0, and µ = 1.0. (Right) Scaling of the
expectation value of the current operator in the non-equilibrium steady state of the ĤSI

model with ∆ = 0 as a function of system size (D = 4, · · · , 1000), for different values of h.
The driving parameters are γ = 1.0 and µ = 1.0.

boundaries is different due to the imposed magnetisation by the driving scheme.

Indeed, if one considers the expectation value of the current operator in the non-

equilibrium steady state, it can be observed that as the system size is increased the

current reaches an asymptotic value in the thermodynamic limit. This is clear from

Fig. II.2.5 for the non-interacting Heisenberg model and the non-interacting staggered

field model. As a function of the strength of the staggered field, the absolute value

of the current decreases when b is increased. The regime of spin transport, however,

is clearly ballistic. From Eq. (II.2.61), we have that ν = 0 for the non-interacting

models, as detailed in Chapter I.4.

The same procedure can be applied to the single impurity model ĤSI as a function

of the impurity strength h in the non-interacting regime. In Fig. II.2.6(left panel)

we present the magnetisation profile in the z direction for this particular case. These

profiles of magnetisation, as before, are an indication of ballistic transport since no

gradient of magnetisation is present across the chain, with the exception of the site

of the impurity where the perturbation is located. The strength of the perturbation

dictates the magnetisation slant, yet the profile in the bulk of the chain remains flat,

as expected for ballistic systems.

In Fig. II.2.6(right panel) we show the expectation value of the spin current operator

in the NESS 〈ĵ〉 as a function of the chain sizes. One can see that, for sufficiently

large system sizes, 〈ĵ〉 becomes independent of D, in analogy to the results for the

XXZ model and the staggered field model in the non-interacting regime ∆ = 0. The
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Figure II.2.7: Magnetisation profile in the non-equilibrium steady state of the anisotropic
Heisenberg model in the presence of a single magnetic impurity with different values of h
[see Eq. (II.2.2)]. The profiles were obtained for chains with D = 100, ∆ = 0.5, γ = 1.0,
and µ = 0.005.

absolute value of 〈ĵ〉 decreases with increasing the strength of the impurity as 1/(1 +

ah2) [see the inset in Fig. II.2.6(right)]. This functional form is obtained from the

transmission probability of free particles through a barrier at high temperatures [305].

We can conclude then, that the effect of the single impurity in the non-interacting

regime is to act as a barrier for the spin transport, without changing its transport

regime but merely the absolute value of the expectation value of the current. These

results are consistent with the prediction that the non-interacting models remain

ballistic for any values of the perturbation strength in the thermodynamic limit D →
∞.

The interacting regime: ∆ 6= 0

In the interacting regime ∆ 6= 0, the solution to the non-equilibrium steady state

is non-trivial. The tensor network method presented in this chapter can be used to

approximate the long-time state |ρ(t→∞)〉 from Eq. (II.2.4), via a time-stepped

time evolution of the density matrix with a fourth-order Trotter decomposition. At

each time step, the expectation values of observables such as the current of the lo-

cal magnetisation can be evaluated by expressing these operators in MPO form and

contracting the networks with the time-evolved state [295]. Given Eq. (II.2.32), we

apply enough time steps such that the current across the chain is homogeneous up to

numerical tolerance.

It is enlightening to first look at the magnetisation profile across the chain in the NESS

in the presence of the impurity perturbation. In fact, the profile itself is determined
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〈ĵ
〉/

2µ

System size D

h = 0.2
h = 0.4

h = 0.5
h = 0.8

h = 1.0
h = 2.0

〈ĵ
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Figure II.2.8: Scaling of the expectation value of the current operator in the non-equilibrium
steady state of the anisotropic Heisenberg model in the presence of a single magnetic im-
purity [see Eq. (II.2.2)], plotted as a function of system size (D = 4, · · · , 100), for ∆ = 0.5
and different values of h. The driving parameters are γ = 1.0 and µ = 0.005.

by the transport regime of the system. In Fig. II.2.7, we show the expectation value

of σ̂z in the NESS, as a function of site positions, for different values of the impurity

strength h. The profiles reveal strong boundary effects induced by the driving at the

edges of the chain, and are nearly flat in the bulk of the chain, with the exception

of the site where the impurity is located. The “kink” at the latter point is larger

the stronger the impurity field. The flat profiles in Fig. II.2.7 are a first indicator

that transport is ballistic, as seen in integrable models such as the unperturbed XXZ

chain [84, 51].

Next, we quantify how the current in the NESS scales with increasing system size.

In Fig. II.2.8, we plot 〈ĵ〉 vs D for ∆ = 0.5 and different values of h. Transport in

the XXZ model is ballistic for any 0 < ∆ < 1, a regime that is expected to change

to incoherent, either diffusive or anomalous, when integrability is broken. We chose

∆ = 0.5 because the system is in the strongly-interacting regime, and obtaining the

NESS numerically is not as difficult as for ∆ ≈ 1. The main observation in Fig. II.2.8

is that, for sufficiently large system sizes, 〈ĵ〉 becomes independent of D, a property

of systems that exhibit coherent/ballistic transport.

Our high-temperature non-equilibrium calculations indicate that, even though a single

magnetic impurity breaks the integrability of the XXZ chain as seen from the proba-

bility distribution of energy level spacings (Fig. I.3.3), transport remains ballistic and

the system behaves as a perfect conductor. This becomes apparent in the scaling of
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Figure II.2.9: Magnetisation profile of the non-equilibrium steady state of the anisotropic
Heisenberg model in the presence of a staggered magnetic field with b = 0.5. The results
were obtained for ∆ = 0.5, γ = 1.0, and µ = 0.001. (a) Magnetisation, and (b) average
magnetisation [see Eq. (II.2.62)].

the spin current only for sufficiently large system sizes, see Fig. II.2.8, in analogy with

the integrable XXZ case [84]. We stress that this behaviour persists for all the values

of h studied, and that we expect it to persists for any finite non-vanishing magnetic

impurity strength (for h = 0 one has an integrable XXZ chain, and for h = ∞ one

has two disconnected integrable XXZ chains). This is the first example known to us

in which a quantum many-body system exhibits a Wigner-Dyson level spacing dis-

tribution and displays coherent transport. The latter can be understood to be the

result of excitations traveling in a ballistic fashion on either side of the integrability

breaking defect and scattering only at the impurity site.

The inset in Fig. II.2.8 shows the scaling of the steady-state spin current, for D = 100,

with the impurity strength. 〈ĵ〉 vs h can be well fitted with the function a/(1+bh2), an

ansatz that follows from results for the non-interacting case discussed in this section.

The main effect of increasing the magnitude of h is to decrease the magnitude of 〈ĵ〉,
while transport remains ballistic.

The results reported here suggest that a single impurity is not sufficient to render

transport incoherent, despite the fact that it is enough to render the system quantum

chaotic, as indicated by the distribution of energy levels.

While it is known that the gapless XXZ model (0 < ∆ < 1) exhibits ballistic spin
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Figure II.2.10: Scaling of the spin current in the NESS of the staggered field model as a
function of system size (D = 60, 70, 80, 90, 100), for ∆ = 0.5 and b = 0.5 (same parameters
as in Fig. II.2.9). The driving parameters are γ = 1.0 and µ = 0.001. To reduce finite-size
effects, in our calculations we discard the five leftmost and the five rightmost sites of the
chains.

transport, and it is therefore an ideal conductor [84, 57], breaking integrability by

means of a staggered magnetic field renders the system chaotic and spin transport be-

comes diffusive [51]. We shall revisit spin transport in the ĤSF model [see Eq. (II.2.3)]

to contrast it with that in the ĤSI model [see Eq. (II.2.2)].

Figure II.2.9(a) shows the magnetisation profile in the NESS of the ĤSF model for

∆ = 0.5, b = 0.5, and different chain sizes. Unlike the magnetisation profile in the

NESS for the ĤSI model, the staggered field induces a ramp-like linear profile in the

magnetisation across the chain. The small oscillations of the magnetisation are due

to the presence of the staggered field. In Fig. II.2.9(b), we show the average

〈σ̂zi 〉ave =
(
〈σ̂zi 〉+ 〈σ̂zi+1〉

)
/2. (II.2.62)

Figure II.2.9(b) makes apparent that, aside from boundary effects, the magnetisation

profile is linear.

Figure II.2.10 shows results for the finite-size scaling of the spin current in the NESS

of the ĤSI model, for the same parameters used in Fig. II.2.9. We obtain the diffusion

parameters, D = 19.3 (the diffusion coefficient) and ν = 0.98, from

〈ĵ〉
2∆σ̂zave

=
D

(D − 10)ν
. (II.2.63)
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Figure II.2.11: Expectation value of the current in the NESS as a function of driving
strength. (inset) Truncation error in the tMPS method versus the bond dimension χ for the
largest system size we simulated for the ĤSI model with h = 0.5.

Our results show that the current obeys the diffusion equation (Fick’s law). They are

in agreement with the results in Ref. [51]. Note that we have truncated the boundaries

by five sites on each side, to reduce boundary effects in the estimation of the transport

exponent.

Linear response regime and error analysis

We have now fully characterised spin transport in the single impurity model and have

found it to be ballistic for any strength of the impurity, as long as 0 < ∆ < 1,

just as in the unperturbed model. In Chapter I.4, however, we estimated transport

regimes from the theory of linear response. It is therefore crucial to ascertain that our

boundary-driven configurations follow under the same predictions of linear response

theory.

We have compared transport properties of different models using non-equilibrium

configurations and linear response theory, we shall now demonstrate that the non-

equilibrium transport calculations are within linear response regime. Figure II.2.11

shows that the magnitude of the spin current depends linearly on the driving strength

for values well above those used in our simulations. This implies that the transport

properties in our systems depend linearly on µ,

〈ĵ〉 ∝ µ, (II.2.64)
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and can be well-captured by linear response theory, as linear dependence on the driving

field is the hallmark of linear response. For µ = 0, the fit shown in Fig. II.2.11 is

very close to zero, as no boundary driving implies no excitations propagating through

the chain. The small value in the intercept is a witness of the numerical fidelity of

calculations we have carried out.

We analysed the truncation error (induced by using a finite value of χ) by studying

the expectation value of the current operator [Eq. (II.2.27)] for the largest system

size we simulated at fixed µ for different values of χ. We then selected a value of χ

that introduces a small tolerable error in our simulations. In the inset of Fig. II.2.11,

we show the error defined as |〈ĵ(χ)〉 − 〈ĵ(∞)〉|/〈ĵ(∞)〉 × 100, where 〈ĵ(∞)〉 is an

extrapolated value of the current, as a function of the bond dimension χ, i.e., ĵ = ĵ(χ).

The scaling of the bond dimension suggests convergence for χ→∞, as expected. In

our calculations, we used χ = 100 which results in an error due to the truncation that

is . 2% for the specific case of the current in the single impurity model.

II.2.4 Summary and outlook

In this chapter, we have introduced the approach known as boundary driving. Com-

bined with the theory of tensor networks, it constitutes an extremely powerful ap-

proach to address the transport in both integrable and non-integrable systems alike.

We have derived the local master equation from first principles and described a nu-

merical technique to address non-equilibrium steady states, from which transport can

be inferred. As a numerical problem, identifying transport regimes in interacting

quantum systems is a computationally-difficult problem since both the long-time and

thermodynamic limits need to be described.

Complementing the results exposed in Chapter I.4, we have found from the theory of

open systems that the single impurity model is indeed a special case of a non-integrable

system with interesting thermalisation properties (Chapter I.5) that displays coherent

transport in the thermodynamic limit. Global perturbations, such as the introduction

of a staggered magnetic field to the XXZ model renders the model diffusive. We

remark that traditional linear response theory points towards the same conclusion

and our results are, therefore, fully consistent. As stated in Chapter I.4, the notion

of integrability breaking and ballistic transport from Mazur’s inequality can be made
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to be fully consistent. For the particular case of the single impurity model, we found

that translational invariance plays a pivotal role in transport regimes.

The local Lindblad approach introduced here in the context of transport in the single

impurity model, opens further interesting questions.

We bring our attention, in particular, to the question of thermalisation and finite-

temperature transport in quantum thermal machines. Akin to the configuration we

employed in this chapter, quantum thermal machines are composed of a central quan-

tum system, which may be strongly interacting, coupled to thermal reservoirs that

may be kept away from equilibrium. One can then study the properties of a quantum

system as the working medium for a thermal machine. These particular configurations

fall outside of the range of applicability of the local Lindblad approach employed in this

chapter, where only the degrees of freedom of the edges are coupled to a driving that

enforces a local magnetisation. One may only attempt to study infinite-temperature

regimes from such an approach. The reason behind the correspondence between the

transport observed at infinite temperature and the one obtained from boundary-driven

configurations is subtle. We shall explore this in further detail in Chapter II.3.

For the description of a more general scenario where a quantum system is coupled

to true thermal reservoirs, one needs to go beyond boundary-driven schemes. These

considerations drive our motivation for the following chapter.





Chapter II.3

Finite temperature transport and autonomous

quantum thermal machines

Having established the fundamentals of boundary driving configurations and non-

equilibrium steady states, we now proceed to develop a framework to address finite-

temperature transport in autonomous quantum thermal machines.

In this chapter, we build our methodology step by step. We begin by providing

a description of the pitfalls of local and global master equations in Sec. II.3.1. This

insight provides the urgency to address finite-temperature transport, from which ther-

modynamic properties of interacting systems connected to thermal reservoirs follow.

We then proceed to introduce autonomous thermal machines in Sec. II.3.2, where

the problem to be solved is precisely defined. Following the statement of the prob-

lem, we outline the mesoscopic-reservoir approach and demonstrate its connection to

the infinite-bath scenario in Sec. II.3.2.1. Subsequently, in Sec. II.3.3, we introduce

Landauer-Büttiker theory as a fundamental framework to study finite-temperature

transport in systems where incoherent effects are not present. This theory will serve

as a benchmark to our mesoscopic reservoir construction. The superfermion repre-

sentation description then follows in Sec. II.3.4, and we employ this description to

find an analytical expression for the non-equilibrium steady state of a non-interacting

(quadratic) system.

In Sec. II.3.5 we explain how to compute particle and energy currents within our

framework. Equipped with the exact solution for quadratic systems, we study a non-

177
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interacting quantum-dot heat engine and compare the results with Landauer-Büttiker

theory in order to identify the number and distribution of modes in the mesoscopic

reservoirs needed to accurately reproduce the continuum limit. Next, in Sec. II.3.6

we detail our tensor-network algorithm for studying interacting problems. We then

apply this algorithm in Sec. II.3.7 to study a three-site interacting heat engine and

a many-body Heisenberg spin model at infinite and finite temperatures. Finally, we

summarise and conclude in Sec. II.3.8.

II.3.1 Local vs global master equations and their

pitfalls

II.3.1.1 Local master equations

In Chapter II.2, we introduced boundary driving as an open-systems approach to

address transport in interacting spin chains. We derived a local master equation from

first principles using the repeated interactions scheme. Such master equation has the

form

dρ̂

dt
= −i[Ĥ, ρ̂] + L{ρ̂}

= −i[Ĥ, ρ̂] + LL{ρ̂}+ LR{ρ̂}, (II.3.1)

for the specific configuration in which only the degrees of freedom pertaining to the

boundaries are locally driven to a given magnetisation parameter. This follows from

the Lindblad super-operators Lα which act only on the left and right boundaries of

the chain α = L, R, and

Lα{ρ̂} =
∑

s=±
γsα

[
2L̂s,α ρ̂ L̂

†
s,α − {L̂†s,αL̂s,α, ρ̂}

]
, (II.3.2)

where

L̂+,L = σ̂+
1 , L̂−,L = σ̂−1 ,

L̂+,R = σ̂+
D, L̂−,R = σ̂−D, (II.3.3)
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for a spin chain of length D. Note that instead of absorbing the coupling γsα into

the definitions of L̂s,α as we did in Chapter II.2, we have instead kept it as a pre-

factor in Eq. (II.3.2). These local Lindblad operators act as incoherent sinks and

sources that create and remove excitations from the boundaries, yielding a true and

parameter-dependent out-of-equilibrium configuration. This approach allowed us to

overcome the achievable system size limitations inherent to other techniques, such as

exact diagonalisation, when applied in conjunction with tensor network techniques.

If one is interested, however, in modelling true thermal reservoirs connected to a

generic and interacting many-body quantum system, the local Lindblad description

would fail to capture basic thermodynamic principles. Specifically, a many-body

quantum system coupled to Lindblad jump operators acting only on its boundaries,

would fail to thermalise to the state imposed by the macroscopic parameters of the

reservoir.

Let us describe this in further detail [254]. Within the approach of boundary driving,

the canonical density matrices ω̂βα(Ĥα) = e−βαĤα/Zα, with Zα = Tr[e−βαĤα ] are only

imposed on the spin degrees of freedom pertaining locally to the boundaries. As

described from the repeated interactions scheme in Sec. II.2.1.1, a single copy of the

Hamiltonian of the reservoirs is Ĥα = (hα/2)σ̂zα suffices to characterise the density

matrices ω̂βα(Ĥα) of the boundaries via its magnetisation

〈σ̂zα〉 = Tr[σ̂zαω̂βα ]

= Tr[σ̂zαe
−βαĤα ]/Zα

=
e−βαhα/2 − eβαhα/2
e−βαhα/2 + eβαhα/2

(II.3.4)

= − tanh(βαhα/2). (II.3.5)

As described in Sec. II.2.1.1, we find that the couplings are connected to the magneti-

sation of the boundaries via

γsα = λα(1± 〈σ̂zα〉), (II.3.6)

which then implies, from Eq. (II.3.4),

γ+
α

γ−α
= e−βαhα . (II.3.7)
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If we disconnect the spin degree of freedom being driven from the rest of the chain,

a local detailed-balance condition is respected with respect to the canonical state

ω̂βα(Ĥα). This follows from the fact that after evaluating Eq. (II.3.2) with ω̂βα(Ĥα),

we find1

Lα{ω̂βα(Ĥα)} = 0, (II.3.8)

which then implies that

0 = −i[ĤS, ρ̂] + Lα{ρ̂} (II.3.9)

is satisfied for α = L, R if ρ̂ = ω̂βα(Ĥα), since the single spin degree of freedom of

the boundary has been disconnected from the rest of the chain. However, if the full

many-body system is only driven from its boundary, we find that the above condition

is not satisfied, given that in such case Lα{ρ̂} 6= 0.

We have then shown that, in boundary driving, local detailed-balance is only satisfied

for the single spin degree of freedom being driven. This immediately implies that

appropriate thermalisation is not guaranteed from such a configuration if the full

many-body system is connected only from its boundary.

In fact, the question of the necessary requirements for appropriate thermalisation to

be achieved using local couplings between the reservoirs and the system has been

addressed independently by Guimaraes et al. in Ref. [281] and Reichental et al. in

Ref. [274]. It has been shown numerically, particularly in Ref. [274], that a single set

of dissipators acting locally on the boundaries of the system fails to thermalise the

system to the parameters dictated by the reservoirs. As we have discussed, this is

expected from the lack of local detailed balance. Crucially, however, thermalisation

can be achieved by coupling the system not just from its boundaries, but by employing

a set of multiple dissipators that enforce local detail balance in the sites of the chain

that compose the reservoir. For thermalisation to be achieved, weak system-reservoir

coupling is also required.

Most interestingly, the local Lindblad master equation Eq. (II.3.1) for boundary-driven

configurations (Fig. I.2.1), can be shown to satisfy appropriate thermodynamic laws

1Take, for instance, LL{ρ̂} = γ+L
(
[2σ̂+

1 ρ̂σ̂
−
1 −

{
σ̂−1 σ̂

+
1 , ρ̂

}
] + eβlh1 [2σ̂−1 ρ̂σ̂

+
1 −

{
σ̂+
1 σ̂
−
1 , ρ̂

}
]
)
, where

we have used Eq. (II.3.7) for the second coupling factor. It is straightforward to then show
LL{ω̂βL(ĤL)} = 0
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(first law of thermodynamics and positivity of the entropy production) when a time-

dependent interaction is introduced in the form of the repeated interactions discussed

in Sec. II.2.1.1. For the specific case of the boundary-driven XXZ chain, however,

it was shown by Pereira in Ref. [296] that the spin current and the energy currents

are connected by a constant factor, i.e., these thermodynamic quantities are always

proportional to each other. This behaviour is not expected to be generic at finite

temperatures, but a restriction imposed by the driving scheme.

Finally, we remark that even though the local Lindblad master equation Eq. (II.3.1)

introduces parameter-dependent rates γ±α , there exists no energy dependence of the

excitations being introduced and removed from the boundaries. The rates γ±α depend

on the temperature through Eq. (II.3.7), however, this only provides a given prob-

ability to induce or remove an excitation via σ̂±α . The excitation is created locally

in configuration space, which implies that in energy-momentum space, the excitation

is fully delocalised. This heuristic argument brings us to the following illuminat-

ing conclusion: boundary driving configurations induce and remove excitations with

equal probability for every possible energy density. In a true reservoir, with an infinite

collection of degrees of freedom, this can only happen at infinite temperature. It fol-

lows that the properties of a given quantum system deduced from boundary driven

configurations can only represent infinite-temperature behaviour with fidelity.

II.3.1.2 Global master equations

The discussion above brings us to the topic of global master equations. A global ap-

proach is also characterised by the dynamical evolution of a quantum master equation

of the the form

dρ̂

dt
= −i[Ĥ, ρ̂] + L{ρ̂}, (II.3.10)

where Ĥ and ρ̂ are the Hamiltonian and density operators associated to the system

alone, while Eq. (II.3.10) describes the evolution under dissipation. As before, L{ρ̂}
needs to be expressed in Lindblad form [Eq. (II.3.2)] for the evolution of the density

operator to completely positive and trace-preserving [242]. It is common to assume in

multi-reservoir configurations that each reservoir is independent, which then implies

that generators Lα{ρ̂} for the αth reservoir are additive, in the sense that L{ρ̂} =
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∑
α Lα{ρ̂} [246].

The global approach to the master equation rests on fixing the state r̂α such that

Lα{r̂α} = 0. (II.3.11)

For the specific case of the local approach from before, the generators that satisfy the

fixed-point condition can be obtained microscopically under certain approximations,

as we did in Sec. II.2.1.1. For the global approach, the following fixed-point condition

defines the Lindblad generators [246]:

Lα{r̂α} = 0⇐⇒ r̂α =
e−βα(ĤS−µαN̂S)

Z
, (II.3.12)

where r̂α is the grand-canonical ensemble state, Z = Tr[e−βα(ĤS−µαN̂S)], ĤS and N̂S

are system Hamiltonian and total number operators, respectively. The generators

that satisfy this condition can be derived using a microscopic model and applying the

Born-Markov and secular approximations [242], which can usually be justified under

certain conditions of the system Hamiltonian and system-reservoir couplings.

Most importantly, even in the case of a system coupled to two thermal reservoirs kept

away from equilibrium, the global approach yields a stationary state

ρ̂NESS =
d∑

n=1

pn |n〉 〈n| , (II.3.13)

where d is the dimension of the Hilbert space being considered and |n〉 are eigenstates

of the system Hamiltonian ĤS |n〉 = En |n〉 [243]. This immediately implies that

that the non-equilibrium steady state is diagonal in the energy eigenbasis and the

expectation value of current operators can be expressed as

〈Ĵ(t→∞)〉 = Tr[ρ̂NESSĴ ] =
d∑

n=1

pn 〈n|Ĵ |n〉 . (II.3.14)

Crucially, it is expected that 〈n|Ĵ |n〉 = 0 as a very plausible condition, since energy

eigenstates |n〉 are stationary and do not carry currents for systems with open boundary
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conditions. This implies

〈Ĵ(t→∞)〉 = 0 (II.3.15)

in the global approach. In other words, the global approach fails to capture the steady

state coherences required for the existence of currents of conserved quantities. This is

an un-physical consequence, which occurs even in the case of two reservoirs kept out

of equilibrium coupled to the system [243]. Furthermore, it has been shown that such

an approach may violate the additivity condition required in order to write a master

equation in the Lindblad form [246].

The considerations introduced in this section pose a problem to understand quan-

tum thermal machines, in which a quantum system is coupled to thermal reservoirs

kept away from equilibrium. The local approach violates thermalisation and basic

thermodynamic laws. Although the first and second laws of thermodynamics can

be conciliated from the repeated interactions scheme, it yields a non-generic propor-

tionality between particle (spin) and energy currents. Thermalisation is not satisfied

and, furthermore, only infinite temperature properties can be understood from such

a description. The global approach conciliates thermalisation, but does not capture

the required coherences required for a current to be induced in the steady state. It

follows that another description is required, which is the driving motivation for this

chapter. We shall introduce a fully thermodynamically-consistent approach, to ad-

dress and understand quantum thermal machines in which the working medium is a

generic interacting quantum system.

II.3.2 Autonomous thermal machines

This chapter is concerned with autonomous thermal machines whose working medium

is a quantum system S, which may be a complex entity comprising many interact-

ing subsystems. The working medium is connected to multiple fermionic reservoirs

labelled by the index α. These reservoirs are macroscopic systems described by equi-

librium temperatures Tα = 1/βα and chemical potentials µα (we set kB = 1 = ~).



II.3.2. AUTONOMOUS THERMAL MACHINES 184

Figure II.3.1: A simple thermal machine scenario in which the system S is coupled to two
reservoirs L and R at temperatures TL > TR and possessing a chemical-potential difference
µR − µL > 0. A particle JP and energy JE current is thus sustained through S.

The total Hamiltonian of such a setup takes the form

Ĥtot = ĤS +
∑

α

(
Ĥα + ĤSα

)
, (II.3.16)

where ĤS is the system Hamiltonian, Ĥα is the Hamiltonian of bath α and ĤSα

describes its coupling to the system. We will consider exclusively Hamiltonians Ĥtot

that conserve fermion number N̂ = N̂S +
∑

α N̂α, where N̂S and N̂α are the total

particle number operators for the system and each bath α, respectively.

Crucially, the baths are taken to have an infinite volume and heat capacity, implying

a diverging number of degrees of freedom, N →∞. Moreover, it is typical to assume

a factorised initial state of the form

ρ̂tot(0) = ρ̂(0)ρ̂B, (II.3.17)

where ρ̂(0) is the initial system state and ρ̂B =
∏

α ρ̂α, with ρ̂α = e−βα(Ĥα−µαN̂α)/Zα

a thermal state and Zα the partition function of each reservoir. Evolving into the

long-time limit the system S will generically relax to a steady state given by

ρ̂(∞) = lim
t→∞

lim
N→∞

TrB

[
e−iĤtottρ̂tot(0)eiĤtott

]
, (II.3.18)

where TrB denotes the trace over all bath degrees of freedom. If the temperatures

or chemical potentials of the reservoirs differ, ρ̂(∞) will be a non-equilibrium steady

state (NESS) possessing currents of particles and energy.

We focus especially on the simplest scenario depicted in Fig. II.3.1, with two reservoirs

labelled by α = L, R. The sustained fluxes of particles and energy in this setup can

be exploited, for example by operating the device as an autonomous heat engine. In
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this case a temperature gradient, TL > TR, drives a current that performs work by

moving fermions against a chemical-potential difference V = µR − µL > 0. The power

developed per unit time is given by

P = V JP, (II.3.19)

where JP is the particle current, defined to be positive when flowing from left to right.

The concomitant energy current JE (also from left to right) transfers heat out of the

left lead and into the right lead at a rate [6]

Q̇α = JE − µαJP, (II.3.20)

so that the first law of thermodynamics can be written as P = Q̇L − Q̇R. The second

law of thermodynamics imposes the relation βRQ̇R ≥ βLQ̇L. The efficiency of heat-to-

work conversion is thus given by

η =
P

Q̇L

= 1− Q̇R

Q̇L

≤ ηC, (II.3.21)

where ηC = 1 − TR/TL is the Carnot efficiency. Thus, the performance of an au-

tonomous thermal machine depends on the currents and their relationship to the

thermodynamic properties of the reservoirs.

Evaluating the currents requires finding the NESS of the quantum system. In general,

however, the computation of Eq. (II.3.18) is a difficult task. Analytical solutions are

available only if the global Hamiltonian is non-interacting, while a direct numerical

approximation with finite baths may require prohibitively large values of N in order

to avoid Poincaré recurrences within the timescale of relaxation. On the other hand,

perturbative schemes are limited to cases where either the internal interactions within

S or its couplings to the reservoirs are weak.

It is thus desirable to consider an alternative approach that is not bounded by these

restrictions. Part II of this thesis proposes an alternate approach, in which the macro-

scopic reservoirs are replaced with mesoscopic leads comprising L sites, which are

continuously damped towards thermal equilibrium by dissipative processes. As a con-

sequence, as we shall demonstrate, convergence can be obtained with only moderate

values of L, bringing the non-equilibrium thermodynamics of complex many-body



II.3.2. AUTONOMOUS THERMAL MACHINES 186

Figure II.3.2: The dynamics of a system coupled to a single thermal bath is determined by
the bath’s spectral density J (ω), with a bandwidth W , and the Fermi-Dirac distribution
f(ω) corresponding to its chemical potential µ and temperature T .

quantum systems within reach.

II.3.2.1 From macroscopic reservoirs to mesoscopic leads

The thermal reservoirs described before are composed of an infinite amount of degrees

of freedom. Our purpose now is to describe the reservoirs in a more tractable way,

while attempting to retain the properties inherent to infinite, macroscopic reservoirs.

The main details of our approach to studying the problem described in Sec. II.3.2

are outlined in this section, where an infinite bath is replaced by a finite collection

of damped modes. For the formal mathematical description, we refer the reader to

Appendix A.

The system S is assumed to be a lattice of D sites, with arbitrary geometry and

interactions, while the baths are modelled by infinite collections of non-interacting

spinless fermionic modes. To illustrate the approach, we consider first the case of a

single bath B, as shown in Fig. II.3.2, described by the Hamiltonian

ĤB =
∞∑

m=1

ωmb̂
†
mb̂m, (II.3.22)

where b̂†m creates a fermion with energy ωm. Each site j of the system is described

by a fermionic operator ĉj. A particular site p of the system exchanges particles and

energy with the bath via a tunnelling interaction

ĤSB =
∞∑

m=1

(
λmĉ

†
pb̂m + λ∗mb̂

†
mĉp

)
, (II.3.23)

where λm is its coupling to bath mode m.
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The Heisenberg equation for the system operators reads as

d

dt
ĉj(t) = i[ĤS, ĉj(t)] + δjp

[
ξ̂(t)−

∫ t

0

dt′ χ(t− t′)ĉp(t′)
]
. (II.3.24)

Here, we have defined the noise operator

ξ̂(t) = −i
∑

m

λme−iωmtb̂m, (II.3.25)

and the memory kernel χ(t − t′) = 〈{ξ̂(t), ξ̂†(t′)}〉. The Gaussian statistics of the

noise operator with respect to the initial product state Eq. (II.3.17) are defined by

〈ξ̂(t)〉 = 0 and

〈{ξ̂(t), ξ̂†(t′)}〉 =

∫
dω

2π
J (ω)e−iω(t−t′), (II.3.26)

〈ξ̂†(t)ξ̂(t′)〉 =

∫
dω

2π
J (ω)f(ω)eiω(t−t′), (II.3.27)

where we have defined the spectral density as

J (ω) = 2π
∞∑

m=1

|λm|2δ(ω − ωm), (II.3.28)

and introduced the Fermi-Dirac distribution f(ω) = (eβ(ω−µ) + 1)−1. The average

system-bath coupling strength is typically quantified as

Γ =
1

2W

∫ ∞

−∞
dωJ (ω), (II.3.29)

where 2W denotes the reservoir bandwidth, namely the size of the energy range over

which J (ω) has support. The state of S is completely determined by f(ω) and J (ω)

via the noise statistics, since for an overall closed system the solution of Eq. (II.3.24)

is sufficient to reconstruct all n-point correlation functions.

Our approach is based on a key insight. Namely, that the open-system dynamics in

Eq. (II.3.24), induced by an infinite bath with spectral function J (ω), can be accu-

rately approximated by instead coupling the system to a finite collection of damped

modes. Indeed, let us consider a lead of size L coupled to site p of the system, described
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Figure II.3.3: (a) A Lorentzian spectral density J Lor(ω) is equivalent to coupling the system
to a single auxiliary mode damped by a structureless reservoir. (b) A mesoscopic reservoir
comprising many damped modes gives rise to an effective spectral density J eff(ω) that is a
sum of Lorentzians. By tuning the damping of each mode and its coupling to the system
J eff(ω) can approximate J (ω) of the infinite bath depicted in Fig. II.3.2.

by the Hamiltonian

ĤL =
L∑

k=1

εkâ
†
kâk, (II.3.30)

ĤSL =
L∑

k=1

(
κkpĉ

†
pâk + κ∗kpâ

†
kĉp

)
, (II.3.31)

where â†k creates a fermion in the lead with energy εk, and κkp is the coupling strength.

Each energy eigenmode k of the lead is coupled to an independent thermal bath mod-

elled by an infinite non-interacting fermion reservoir Bk, as illustrated in Fig. II.3.3 (see

Appendix A for details). These baths have identical temperatures and chemical po-

tentials, but crucially they are characterised by a structureless frequency-independent

spectral density Jk(ω) = γk, where γk is a characteristic damping rate whose value

may be different for each bath.

To analyse the steady-state physics it is sufficient to focus on long times, such that

t� γ−1
k , τrel. Here τrel represents the characteristic relaxation timescale of S due to its

coupling with the bath2. In this limit, we find that the Heisenberg equations for the

system variables in this configuration are identical to Eq. (II.3.24), but the statistics

2Note that some systems, such as glassy systems, may never relax when coupled to a bath. In
such cases, our arguments regarding the equivalence of mesoscopic and infinite reservoirs do not
hold. Indeed, one expects that for such systems the effect of a bath must be highly dependent on
the microscopic details of the bath and its coupling to the system.



II.3.2. AUTONOMOUS THERMAL MACHINES 189

Figure II.3.4: In the limit L � 1 modes in the lead each bath Bk is sufficiently weakly
coupled its corresponding lead mode that it can be accurately modelled by a Lindblad
dissipator. The dissipator on a lead mode then that injects and ejects fermions at rates
which in isolation damp the mode into a thermal state.

of the noise operator are now determined by an effective spectral density

J eff(ω) =
L∑

k=1

|κkp|2γk
(ω − εk)2 + (γk/2)2

. (II.3.32)

It follows that this damped mesoscopic lead configuration reproduces the correct

steady state of S, so long as the true spectral density J (ω) can be well approximated

by a sum of Lorentzians as above. This is depicted in Fig. II.3.3. In particular, con-

sider a given set of lead energies εk that sample the spectral density and are arranged

in ascending order, with energy spacing ek = εk+1−εk. By taking κkp =
√
J (εk)ek/2π

and γk = ek, we have γk ∼ L−1 so that Eq. (II.3.32) reduces to Eq. (II.3.28) in the

limit L → ∞. We therefore obtain a controlled approximation of the bath spectral

function as the lead size L increases.

In order to obtain a tractable description of the augmented system-lead configuration,

we use the fact that both the damping rates γk and the coupling constants κkp are small

in the large-L limit. Tracing out the baths, we derive a master equation describing

the joint state of S and L, valid for times t� γ−1
k , τrel and up to second order in both

the lead-bath and system-lead coupling (see Appendix A). We emphasise that the

assumption that individual modes of the lead couple weakly to the system does not

imply that the overall system-bath coupling Γ is weak. The quantum master equation



II.3.3. LANDAUER-BÜTTIKER THEORY 190

is

dρ̂

dt
= i[ρ̂, Ĥ] + LL{ρ̂}, (II.3.33)

where Ĥ = ĤS + ĤL + ĤSL denotes the Hamiltonian of the system and lead, while

thermalisation of the lead is described by the Lindblad dissipator

LL{ρ̂} =
L∑

k=1

γk(1− fk)
[
âkρ̂â

†
k − 1

2
{â†kâk, ρ̂}

]
+

L∑

k=1

γkfk

[
â†kρ̂âk − 1

2
{âkâ†k, ρ̂}

]
.

(II.3.34)

with fk = f(εk) denoting the sampling of the Fermi distribution by the lead modes.

This master equation configuration is illustrated in Fig. II.3.4.

The above representation does not simplify the problem a priori, since it is strictly

valid only in the large-L limit. However, a simplification may arise if the expectation

values of operators converge with increasing L. We show numerically in later sections

that this convergence occurs rapidly in several examples of interest for quantum ther-

modynamics. In such cases, a tractable number of lead sites L can be used to obtain

a good approximation of an infinite bath with a continuous spectral density. For this,

it is crucial that γk remains the smallest energy scale in the physical configuration, to

both model the spectral function correctly and accurately approximate the baths via

the Lindblad equation [281, 274].

So far we have considered a single bath coupled to a particular site of the system.

However, the above results are easily generalised to describe the situation of several

sites connected to multiple baths at different temperatures and chemical potentials.

The steps of the above analysis are carried out independently for each bath, leading

to additive contributions to the master equation.

II.3.3 Landauer-Büttiker theory

Also known as scattering method, the Landauer-Büttiker formalism is a well-established

theory to describe transport of electrons across quantum junctions from the wave-

functions in quantum mechanics. In its own right, it provides a very simple and

powerful framework to study currents of non-interacting particles. Furthermore, the

requirement of interacting effects could in principle be relaxed if an effective quasi-
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particle description suffices, whenever a mean-field approximation is valid such that

inelastic scattering effects can be neglected. The second condition associated to the

applicability of Landauer-Büttiker theory is the absence of environmental effects that

destroy coherence. In this sense then, the formalism can be applied whenever coherent

transport is at play [305].

Crucially, however, the theory is fully consistent from the perspective of thermody-

namics whenever a non-interacting system is connected to reservoirs with an infinite

number of degrees of freedom. This implies that temperature-dependent effects are

fully captured by the theory in such configurations. In our work, Landauer-Büttiker

theory shall be employed as a benchmark, to understand if the mesoscopic lead con-

struction described in Sec. II.3.2.1 is consistent even when the reservoir is composed

of a finite number of damped modes.

The theory is based on the scattering effects induced by a central system, when it

is coupled locally to reservoirs on each side. Let us assume, without any loss in

generality, that we want to study currents in a configuration such as the one depicted

in Fig. II.3.1. Consider the fixed temperature configuration TL = TR and a chemical

potential difference such that µL > µR. With these parameters, a steady-state flow of

particles from left to right should be achieved. The main point of Landauer-Büttiker

theory is that the central system with Hamiltonian ĤS acts as scatterer for the flow

of particles between the two reservoirs.

The main assumption within the theory [305] is that the particles moving from left to

right are populated with the equilibrium distribution of the reservoir on the left, while

the particles flowing from right to left are populated, accordingly, with the equilibrium

distribution of the reservoir on the right. Under this assumption, it is straightforward

to derive (in favour of plausible arguments [305]) that the total particle current flowing

in the configuration is given by (~ = e = kB = 1)

JP
LB =

1

2π

∫ W

−W
dω τ(ω)[fL(ω)− fR(ω)], (II.3.35)

where τ(ω) is an energy-dependent global transmission function that describes the

probability of a particle to flow across the scatterer. It is natural to assume that such

function depends on the microscopic details of ĤS. On the other hand, there exists

a concomitant energy current, which follows trivially from the particle current since
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the lack of incoherent effects implies that the particles are the only carriers of energy,

given by

JE
LB =

1

2π

∫ W

−W
dω ωτ(ω)[fL(ω)− fR(ω)]. (II.3.36)

In principle, the limits of integration should be taken to infinity, i.e., W →∞. How-

ever, the only channels available for transport are those dictated by the energies of

the central system [305], which implies that the limits of integration can be kept finite

as long as W is much larger than the bandwidth of ĤS.

II.3.3.1 Transmission functions in Landauer-Büttiker theory

As long as we can provide a description of the transmission functions τ(ω), we can fully

characterise transport from Landauer-Büttiker theory. In this section we briefly intro-

duce the methodology to compute the transmission functions τ(ω) from Eqs. (II.3.35)

and (II.3.36). As remarked before, these functions are required to compute the cur-

rents in Landauer-Büttiker theory which correspond to our point of comparison for

non-interacting systems.

The transmission function can be obtained in terms of the non-equilibrium Green’s

function [305, 69]

G(ω) = M−1(ω). (II.3.37)

For the specific case of a system composed of D fermionic sites connected to leads on

sites j = 1 and j = D, M(ε) can be expressed as

M(ω) = ω1−HS −Σ(1)(ω)−Σ(D)(ω), (II.3.38)

where HS is the Hamiltonian matrix of the system and Σ(ω) corresponds to the self-

energy matrices of the leads. We remark that, in order to employ Landauer-Büttiker

theory, ĤS must either be non-interacting or fall within the range of applicability of

the mean-field approximation. In other words, for fermionic systems, ĤS must be

composed of, at most, quadratic fermionic field operators.

For a system with D fermionic sites, all these matrices have D×D elements. For the

specific case of Σ(1)(ω) and Σ(D)(ω), the only non-zero matrix elements (due to local
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coupling) are given by

[Σ(j)]jj(ω) =
1

2π
P.V.

∫
dω′
J (ω′)

(ω′ − ω)
− i

2
J (ω), ∀j = 1, D; (II.3.39)

where P.V. denotes principal value and J (ω) is the spectral function of the leads. In

our configuration, both leads are of equivalent form. For the sake of comparison be-

tween L-B theory and mesoscopic reservoirs, we employ the wide-band approximation

in which

J (ω) =





Γ, ∀ω ∈ [−W,W ]

0, otherwise

(II.3.40)

where Γ is the coupling strength between the system and the leads. Let us know

consider a specific case, in which the central system is a collection of D fermionic

modes in a one-dimensional chain, such that

ĤS =
D∑

j=1

εj ĉ
†
j ĉj −

D−1∑

j=1

tS

(
ĉ†j+1ĉj + H.c.

)
, (II.3.41)

Under these considerations, the transmission function for a system composed of D

fermionic sites with ĤS from Eq. (II.3.41) is given by

τ(ε) = J 2(ε)|[G(ε)]1D|2 =
J 2(ε)

|det[M]|2
D−1∏

i=1

t2S,i. (II.3.42)

When the central system is a single-level with ĤS = εĉ†ĉ, the transmission function

can be proven to be of Lorentzian form and equivalent to

τSL(ε) =
J 2(ε)

|det[M]|2 , (II.3.43)

while a central system composed of D fermionic sites with ĤS from Eq. (II.3.41) has

a transmission function which corresponds to a convolution of Lorentzian functions

whose form depends on the site energies ε and hopping amplitudes tS, as observed

from Eq. (II.3.42). With the previous expressions for τ(ε), Eqs. (II.3.35) and (II.3.36)

can then be evaluated numerically to obtain particle and energy currents for a given

system.
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Figure II.3.5: Example of a transmission function for a fermionic chain, ĤS from Eq. (II.3.41)
with D = 3 and tS = 1.0. For this example we chose ε1 = 1/4, ε2 = 1/2 and ε3 = 3/4.

In Fig. II.3.5 we show an example of a transmission function obtained for a fermionic

chain with three sites using the procedure denoted above. From Eq. (II.3.41), we

chose tS = 1.0, ε1 = 1/4, ε2 = 1/2 and ε3 = 3/4. The overall shape of the transmission

function will depend on the parameters chosen. It can be observed, as well, that the

transmission function decays rather quickly as a function of ω, which in turn depends

on the energy bandwidth of the Hamiltonian. It demonstrates that the integrals

Eq. (II.3.35) and Eq. (II.3.36) can be truncated at a finite W since the contributions

will decay as ω increases (decreases). This procedure shall be employed in multiple

instances in the following sections, to evaluate currents from Landauer-Büttiker theory

as a benchmark for our mesoscopic configuration in Sec. II.3.2.1.

II.3.4 Superfermion approach for the dynamics of

non-equilibrium configurations

In order to solve the dissipative dynamics under a master equation of the form in

Eq. (II.3.33), we use the superfermion formalism introduced in Ref. [263]. For a

non-interacting (quadratic) open system, this method provides numerically tractable

analytical expressions for steady-state quantities. The superfermion representation

is also central to our approach to simulating interacting systems. Here, we limit

ourselves to a concise review of the formalism; for more details, see Appendix B.
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The superfermion approach is akin to a purification or thermofield scheme for open

systems. It doubles the system size by introducing a new fermionic ancilla mode

for each of the modes present in the system and leads. To describe the formalism

succinctly we stick for now to the single-lead setup of Eq. (II.3.33). In order to

distinguish clearly between the ancillary modes and the physical modes of the system

and lead, we introduce a unified notation for the latter. In this single-lead setup the

total number of system and lead modes is M = D + L and so we define M fermion

mode operators

d̂k ..=





âk k = 1, . . . , L

ĉk k = (L+ 1), . . . ,M
(II.3.44)

The ancillary modes are described byM additional canonical creation and annihilation

operators ŝ†k and ŝk. We use an interleaved ordering for the physical and ancillary

operators, so that the Fock basis of the combined Hilbert space is defined by

|n|m〉 = (d̂†1)n1(ŝ†1)m1 · · · (d̂†M)nM (ŝ†M)mM |vac〉 . (II.3.45)

Here n are m are binary strings of length M that describe occupation numbers for

the physical and ancillary modes, respectively. While the ordering used for the Fock

basis is entirely arbitrary, we shall see shortly that interleaving has useful locality

properties, which we will exploit later when we introduce interacting systems. We

now define a new (unnormalised) ket vector called the left vacuum as

|I〉 ..=
∑

n

|n|n〉 , (II.3.46)

where the sum runs over all 2M binary strings n. Using this ket, we can define a

quantum state representing the system-lead density operator as

ρ̂(t) |I〉 = |ρ̂(t)〉 , (II.3.47)

and the expectation values of any system or lead operator Â as

〈I|Â|ρ̂(t)〉 = 〈Â(t)〉. (II.3.48)
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A key aspect of this formalism are the conjugation relations allowing physical creation

(annihilation) operators to be swapped for ancillary annihilation (creation) operators.

For the interleaved Fock ordering these conjugation relations are given by

d̂†j |I〉 = −ŝj |I〉 , 〈I| d̂j = −〈I| ŝ†j,

d̂j |I〉 = ŝ†j |I〉 , 〈I| d̂†j = 〈I| ŝj. (II.3.49)

Acting the master equation Eq. (II.3.33) on |I〉 and using the conjugation relations

yields a Schrödinger-type equation for the state,

d

dt
|ρ̂(t)〉 = −iL̂ |ρ̂(t)〉 , (II.3.50)

with the (non-Hermitian) generator of time evolution given by

L̂ = Ĥ − Ĥd⇔s − i
L∑

k=1

γkfk

− i

2

L∑

k=1

γk(1− 2fk)
(
d̂†kd̂k + ŝ†kŝk

)

+ i
L∑

k=1

γk

(
fkd̂

†
kŝ
†
k − (1− fk)d̂kŝk

)
, (II.3.51)

where Ĥd⇔s is the same as the system-lead Hamiltonian Ĥ but with all physical

operators replaced by their ancillary counterparts, d̂k → ŝk. Crucially, dissipative

processes are now described by non-Hermitian quadratic operators that, according to

the interleaved mode ordering of Eq. (II.3.45), couple only nearest neighbours d̂k and

ŝk. The formalism generalises straightforwardly to multiple leads by introducing an

additional ancilla mode needed for each additional lead mode.

So far the superfermion formalism is entirely general. In the special case where the

system Hamiltonian ĤS is non-interacting the formalism provides a compact expres-

sion for the exact solution of the NESS. In this case the system-lead Hamiltonian is

quadratic with the form

Ĥ =
M∑

i,j=1

[H]ij d̂
†
i d̂j, (II.3.52)

where H is an Hermitian M×M matrix. Next we define M×M diagonal matrices Γ+

and Γ− containing the injection and ejection rates of fermions for each site. Specifi-
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cally, for the single-lead setup the first L follow the thermal damping rates contained

in the dissipator Eq. (II.3.34), while the last D entries corresponding to the system

modes are zero, giving

Γ+ = diag
(
γ1f1, . . . , γLfL, 0, . . . , 0

)
,

Γ− = diag
(
γ1(1− f1), . . . , γL(1− fL), 0, . . . , 0

)
.

Using these we define two additional diagonal matrices Λ = (Γ− + Γ+)/2 and Ω =

(Γ− −Γ+)/2. Consequently, for the case of a non-interacting system the generator L̂

is quadratic with the form

L̂ = f̂ †


H− iΩ iΓ+

iΓ− H + iΩ


 f̂ − Tr (H + iΛ)

= f̂ † L f̂ − η, (II.3.53)

where f̂ = (d̂1, . . . , d̂M , ŝ
†
1, . . . , ŝ

†
M)T is the full 2M -dimensional column vector of all

physical and ancillary operators3.

To determine the NESS we diagonalise L̂ by a similarity transformation, L = V εV−1,

to find the complex eigenvalues ε = diag(ε1, . . . , ε2M) and the matrix of right eigenvec-

tors V of L. As shown in Appendix B, the many-body NESS is a Fermi-sea-like state

in which only modes with Im(εµ) > 0 are occupied, furnishing us with a complete

solution of the problem. In particular, two-point correlation functions of physical

modes in the NESS are found to be

〈d̂†i d̂j〉 = [V D V−1]ji, (II.3.54)

where Dµν = δµνΘ( Im{εµ}), with Θ(x) the Heaviside step function. This gives an effi-

cient prescription to find steady state observables such as currents for non-interacting

systems, while higher-order correlation functions follow from Wick’s theorem.

3Note that the ordering of operators in this vector is completely unrelated to that used to define
the Fock basis.
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Figure II.3.6: The Lindblad mesoscopic lead approximation of the simple thermal machine
setup shown in Fig. II.3.1 where some generic system S is coupled to two reservoirs with
differing chemical potentials and temperatures.

II.3.5 Non-equilibrium thermodynamics with meso-

scopic leads

The central focus of our work is autonomous thermal machines in the two-lead con-

figuration illustrated in Fig. II.3.6, with mesoscopic reservoirs labelled by α = L, R.

These two leads of size L are described by Hamiltonians of the form Eq. (II.3.30) and

Eq. (II.3.31), where the left lead couples to the first system site, p = 1, and the right

lead to the last system site, p = D. Each lead is also acted on by a dissipator of the

form given in Eq. (II.3.34). The master equation for this set-up thus reads as

dρ̂

dt
= i[ρ̂, Ĥ] + LL{ρ̂}+ LR{ρ̂}, (II.3.55)

where Ĥ = ĤS + ĤL + ĤR + ĤSL + ĤSR.

To find expressions for the particle and energy currents, we need to consider the

continuity equations for the total particle-number operator N̂ = N̂S + N̂L + N̂R and

total energy operator Ĥ for the system and the leads. Since [Ĥ, N̂ ] = 0, we derive

d〈N̂〉
dt

= JP
L + JP

R ,
d〈Ĥ〉

dt
= JE

L + JE
R , (II.3.56)

where JP
α and JE

α are respectively the particle and energy currents flowing into the

entire configuration via lead α, given by

JP
α = Tr

[
N̂Lα{ρ}

]
, and JE

α = Tr
[
ĤLα{ρ}

]
. (II.3.57)
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In the NESS, the time derivatives in Eqs. (II.3.56) vanish. Defining positive currents

to flow across the system from left to right, we thus take JP = JP
L = −JP

R and

similarly JE = JE
L = −JE

R . The currents are straightforward to evaluate using the

adjoint dissipator L†α, for α = L,R, which satisfies Tr[ÂLα{B̂}] = Tr[L†α{B̂}Â] for an

arbitrary operator Â. For the Lindblad dissipator in Eq. (II.3.33), we have

L†L{•} =
L∑

k=1

γk(1− f(εk))
[
â†k • âk − 1

2
{â†kâk, •}

]

+
L∑

k=1

γkf(εk)
[
âk • â†k − 1

2
{âkâ†k, •}

]
. (II.3.58)

Since this superoperator acts only on the lead degrees of freedom, we find the explicit

expressions for the currents flowing from the leads and into the system

JP =
L∑

k=1

γk

〈
fL,k − â†kâk

〉
, (II.3.59)

JE =
L∑

k=1

γkεk

〈
fL,k − â†kâk

〉

− 1

2

L∑

k=1

γk

〈
κk1ĉ

†
1âk + κ∗k1â

†
kĉ1

〉
, (II.3.60)

where the sum runs over only the modes of the left lead with fL(ε) = (eβL(ε−µL) + 1)−1

being its corresponding equilibrium distribution and fL,k = fL(εk). Interestingly, the

second term of Eq. (II.3.60), which describes the effect of thermal dissipation on

the system-lead interaction energy, must be taken into account in order to obtain a

conserved energy current.

For sufficiently large systems with short-range interactions4, it is possible to define

current operators ĴP,E
S supported only on S. In this case, the fermion number and

Hamiltonian can be written as

N̂S =
D∑

j=1

n̂j, ĤS =
D−1∑

j=1

ĥj,j+1, (II.3.61)

where n̂j = ĉ†j ĉj is the local fermion density on site j and ĥj,j+1 denotes a local energy

density operator. Since ĥj,j+1 has support only on sites j and j + 1, we derive the

4For nearest-neighbour interactions D ≥ 3 is sufficient.
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continuity equation for number density from the Heisenberg equation for n̂j:

d

dt
n̂j = ĴP

j−1→j − ĴP
j→j+1, (II.3.62)

where we defined the particle current operator

ĴP
j−1→j = i[ĥj−1,j, n̂j], (II.3.63)

which clearly depends only on system variables. In the steady state, the time deriva-

tives of all expectation values vanish and we find that the current is homogeneous, i.e.

〈ĴP
j−1→j〉 = 〈ĴP

j→j+1〉. Eq. (II.3.62) holds only for j 6= 1, D. For j = 1, for example,

we have instead that
d

dt
n̂1 = i[ĤSL, n̂1]− ĴP

1→2. (II.3.64)

Meanwhile, the mean number of particles in the left reservoir obeys the equation

d

dt

〈
N̂L

〉
= JP

L +
〈

i[ĤSL, n̂1]
〉
. (II.3.65)

Here we used the fact that [ĤSL, N̂L+ n̂1] = 0, which merely reflects the overall conser-

vation of fermion number and the fact that L couples only to site j = 1. Combining

Eqs. (II.3.64) and (II.3.65) and assuming steady-state conditions we deduce that

JP
L =

〈
ĴP

1→2

〉
. (II.3.66)

Therefore, so long as the system comprises D ≥ 2 sites, the current computed via

Eq. (II.3.59) coincides with the expectation value of a system operator.

For the energy current, one similarly finds in the bulk of the system

d

dt
ĥj,j+1 = ĴE

j−1→j+1 − ĴE
j→j+2, (II.3.67)

where

ĴE
j−1→j+1 = i[ĥj−1,j, ĥj,j+1]. (II.3.68)

Considering the leftmost site, on the other hand,

d

dt
ĥ1,2 = i[ĤSL, ĥ1,2]− ĴE

1→3. (II.3.69)
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Now, considering the Heisenberg equations for both ĤSL and ĤL and assuming steady-

state conditions, we conclude that

JE
L =

〈
ĴE

1→3

〉
. (II.3.70)

Therefore, the energy current computed from Eq. (II.3.60) also coincides with the

expected value of a system operator, so long as D ≥ 3.

The above arguments, although developed for the specific case of two-body interac-

tions in one dimension, are based only on conservation laws and the locality of inter-

actions, which are general principles. Similar arguments can thus be developed for

more general n-body interacting systems in higher-dimensional geometries, so long as

a sufficiently large region of the central system is not directly connected to the baths.

However, in some cases, e.g. if S comprises just a single lattice site, no system operator

for the currents can be defined. Nevertheless, whether or not such a system operator

exists, the average currents computed from Eqs. (II.3.59) and (II.3.60) converge to

the infinite-reservoir prediction when L→∞.

II.3.5.1 Non-interacting example: the resonant-level heat en-

gine

In this section, we apply our methods to analyse the performance of an autonomous

thermal machine with a non-interacting working medium. Since exact results are

available here for the L → ∞ limit, this serves as a benchmark to evaluate the per-

formance of the mesoscopic-reservoir formalism which can also be solved numerically

exactly using the superfermion formalism. Using this we estimate the number of lead

modes needed to accurately reproduce the continuum limit of infinite baths. We take

a single resonant level as our working medium, described by the Hamiltonian

ĤS = ε ĉ†ĉ, (II.3.71)

where ĉ† and ĉ are the fermionic creation and annihilation operators in the system,

respectively, and ε is the energy of the level. This models a single quantum dot in

the spin-polarised regime running as a heat engine between two baths [306]. We note

that a quantum-dot heat engine was recently realised experimentally [4].
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In principle, our methods can handle structured spectral densities that are different

for each bath. For simplicity, however, we take both reservoirs to be characterised by

identical, flat spectral densities within a finite energy band, given by

J (ω) =





Γ, ∀ω ∈ [−W,W ]

0, otherwise

(II.3.72)

where Γ is the coupling strength between the system and the leads. In the continuum

limit of macroscopic baths, the particle and energy currents for a non-interacting

system can be computed from the Landauer-Büttiker (L-B) formulae

JP
LB =

1

2π

∫ W

−W
dω τ(ω)[fL(ω)− fR(ω)], (II.3.73)

JE
LB =

1

2π

∫ W

−W
dω ωτ(ω)[fL(ω)− fR(ω)], (II.3.74)

where fα(ω) denotes the Fermi-Dirac distribution for lead α = L, R and τ(ω) is

the transmission function. The latter is computed using the formalism described

in Sec. II.3.3.1.

In the mesoscopic-reservoir approach, the spectral density is sampled by a finite num-

ber L of lead modes, as in Eq. (II.3.32). Taking the distribution of lead mode energies

{εk}, widths {γk} and couplings {κkp} to be identical for each lead, there remains

significant freedom to choose these distributions in order to well approximate the

continuum limit using moderate values of L. In particular, we use the logarithmic-

linear discretisation scheme proposed in Refs. [283, 307]. Here, Llin modes are placed

in the energy window [−W ∗,W ∗], with equally spaced frequencies, i.e. ek = εk+1−εk =

2W ∗/Llin. Energies outside of this range are sampled by a smaller set of modes Llog,

with frequencies logarithmically spaced from W ∗ (−W ∗) to W (−W ), with energy

intervals [εn−1, εn] = [±Λ−(n−1),±Λ−n] for n = 1, · · · , Llog and Λ−Llog = W ∗. The dis-

sipation rates are taken equal to these spacings, γk = ek, while the coupling constants

κkp (p = 1, D) are determined by the equation Γ = 2πκ2
kp/ek [263], in accordance

with the considerations of Sec. II.3.2.1. For a given number of modes L = Llog +Llin,

this discretisation scheme gives better resolution within a smaller energy window

[−W ∗,W ∗] that includes the most relevant energy scales for the problem at hand.

We remark that this discretisation scheme was chosen due to the featureless nature
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Figure II.3.7: Comparison between L-B predictions and the mesoscopic configuration of the
expectation value of the total particle current flowing from the left lead through a single
level, (a) as a function of the energy of the level, (b) absolute difference in the predictions
from both scenarios with increasing number of modes in the leads L, (c) as a function
of temperature and (d) as a function of the system-lead coupling strength Γ. In these
calculations we used µL = −µR = W/16, TL = TR, Llog/L = 0.2 and W ∗ = W/2.

of J (ω) in Eq. (II.3.72) to contain more energy modes in a given transport window.

If J (ω) was structured a different discretisation scheme to resolve its features could

provide a better approximation of the spectral function. With respect to smooth

spectral functions, however, we expect the chosen discretisation scheme to yield accu-

rate results as the number of modes is increased. In our calculations, we henceforth

set W = 8 and use this parameter as the overall energy scale, while W ∗ = W/2.

Moreover, we choose Llog/L = 0.2.

Under these conditions, we show in Fig. II.3.7 the behaviour of the particle current,

where we have set equal temperatures in the leads TL = TR = W/8 but used dif-

ferent chemical potentials µL = −µR = W/16. In Fig. II.3.7(a) we show the results

for the particle current as a function of the system energy ε for different numbers

of modes L in the leads and compare it with L-B theory. From both Fig. II.3.7(a)

and Fig. II.3.7(b), it can be observed that a good agreement is obtained, the biggest

difference observed as ε → 0, when the current reaches its maximum value. As ex-

pected, the agreement is improved with increasing L, although even moderate values

of L ∼ O(10) approximately reproduce the continuum. In our calculations, we fixed

the bath parameters as we varied the self-energy of the single-level ε, however, the

approximation could be improved by adapting the mode distribution around the rele-

vant transport window dictated by ε. Furthermore, in Fig. II.3.7(c) we fix the energy

ε of the level to study the behaviour with increasing L as a function of temperature
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Figure II.3.8: Comparison between L-B predictions and the mesoscopic configuration of the
expectation value of the total energy current flowing from the left lead through a single
level, (a) as a function of the energy of the level, (b) absolute difference in the predictions
from both scenarios with increasing number of modes in the leads L, (c) as a function
of temperature and (d) as a function of the system-lead coupling strength Γ. In these
calculations we used µL = −µR = W/16, TL = TR, Llog/L = 0.2 and W ∗ = W/2.

TL = TR = T with system-lead coupling strength Γ fixed, and in Fig. II.3.7(d) the

behaviour with Γ for fixed T . For this particular choice of parameters we find the par-

ticle currents are robust to a wide range of T and Γ. Either low or high temperatures

and weak or strong coupling yield similar results in both continuum or mesoscopic

scenarios, even for a moderate number of modes in the mesoscopic leads.

In Fig. II.3.8 we show the corresponding results for energy current. From Fig. II.3.8(a)

it can be observed that a better approximation is obtained when the number of modes

in each lead is increased for a fixed set of parameters, with the absolute difference

decreasing as a function of L, as can be concluded from Fig. II.3.8(b). In Fig. II.3.8(c)

a key difference can be observed from the results obtained for particle current. The

mesoscopic lead configuration is a good approximation as long as T is kept above a

given threshold. This threshold is dictated by the smallest energy spacing in the leads

ek and can be understood as follows. The effective spectral function of the mesoscopic

leads is a sum of Lorentzian peaks, as in Eq. (II.3.32). When the temperature is

smaller than the minimum energy spacing ek in the mesoscopic lead, these peaks are

too far apart to properly resolve the variation of the Fermi-Dirac distribution. In

this regime, the noise statistics given by Eq. (II.3.27) are significantly modified and

the approximation is not reliable. It can be observed from Fig. II.3.8(c) that the
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Figure II.3.9: Power as a function of potential difference V and average chemical potential
µ − ε for the single-level system using (a) continuum leads and (b) mesoscopic reservoirs.
In (c) we present the maximum power as a function of the system-lead coupling for both
configurations. In (b) and (c) we used Llog/L = 0.2 and W ∗ = W/2.

approximation at lower temperatures is much better for larger leads5.

In Fig. II.3.8(d) we analyse the energy current as a function of the system-lead coupling

Γ. We observe that the approximation for energy current in the mesoscopic lead

configuration is quite robust to a wide range of couplings. This provides further

evidence that the accuracy of the approximation is primarily determined by the size

of γk and ek relative to the temperature and voltage bias of the reservoirs [275].

Next we evaluate the power and efficiency given by Eqs. (II.3.19) and (II.3.21). In

Fig. II.3.9(a) we show the power output as a function of average chemical potential

µ = (µL +µR)/2 and the potential difference V = µR−µL using the L-B prediction for

continuum leads. In our calculations we set TL = 1.1W/8 and TR = W/8 and show

the power output results only for the values of µ− ε and V for which the system acts

as a power generator. It can be observed that the power output reaches a maximum

value depending on bias and average chemical potential. In Fig. II.3.9(b) we show

the results for the same calculation, but instead we substitute the continuum leads

with our mesoscopic lead configuration. The results are in good agreement up to the

point where µ − ε reaches the boundary of linearly discretised and logarithmically

discretised lead modes. Beyond W ∗ and −W ∗, the spectral function is not sampled

as finely and the power output results get distorted. We note that the window can be

increased to resolve a bigger set of the parameter space, however, this would require

5One method that can be used to obtain a better approximation at lower temperatures, that
reduces the value of ek in the leads and without increasing the number of modes, is to change the
width and position of the window [−W ∗,W ∗] depending on the region of the parameter space that
needs to be resolved in greater detail.
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Figure II.3.10: Efficiency (normalised by the Carnot efficiency ηC) as a function of potential
difference V and average chemical potential µ − ε for the single-level system using (a)
continuum leads and (b) mesoscopic reservoirs. In (c) we present the efficiency at maximum
power as a function of the system-lead coupling for both configurations. In (b) and (c) we
used Llog/L = 0.2 and W ∗ = W/2.

more lead modes to resolve the maximum power output with the same accuracy.

Alternatively, the range of linearly discretised modes could be adapted for each value

of ε to ensure that the relevant energy range for transport is always included within

this window. In Fig. II.3.9(c) we show the maximum power output Pmax as a function

of the system-lead coupling for both the L-B and mesoscopic lead predictions, which

in turn reveals the value of Γmax for which Pmax reaches its maximum value. With our

choice of parameters, Γmax lies very close in both configurations, as well as the overall

behaviour as a function of system-lead coupling. The absolute value of the maximum

power is better approximated, following the expected behaviour from Fig. II.3.7(a),

as the number of lead modes is increased.

In Fig. II.3.10(a) we show the efficiency obtained using continuum leads, normalised

by the Carnot efficiency. It can be observed that the points of maximum efficiency lie

close to the boundary where the system stops operating as an engine, i.e., where the

potential difference becomes too large for the temperature gradient to drive electrons

in the opposite direction of the bias. In Fig. II.3.10(b) we present the results for the

mesoscopic lead configuration. As before, we find that both predictions are quantita-

tively similar up to the point where the boundary of W ∗ is reached. In Fig. II.3.10(c)

we show the efficiency at the point where the maximum power is obtained from the

configuration as a function of Γ, where we observe that both the continuum and meso-

scopic lead configurations predict very similar results, even with a moderate number

of lead modes. As expected, the approximation becomes more accurate as the lead
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size is increased. Furthermore, not only is the strong system-lead coupling behaviour

well-captured, but so is the Curzon-Ahlborn efficiency limit (approximately given by

ηC/2) at weak coupling [308].

II.3.6 Tensor network method

Having established that relatively modest sized mesoscopic leads can capture the con-

tinuum behaviour of a non-interacting system we now move on to consider the highly

non-trivial problem of interacting systems. To do this we introduce in this section a

tensor network based numerical method that can efficiently and accurately compute

the interacting NESS of the the two-reservoir problem illustrated in Fig. II.3.6. To

describe the method we will return briefly to the single-lead configuration shown in

Fig. II.3.4 in which the first site p = 1 of the system S is coupled to the mesoscopic

lead. Since we will exploit the superfermion formalism we continue to use the unified

notation for modes d̂k given in Eq. (II.3.44).

II.3.6.1 Spin-1/2 representation

Our approach uses the matrix product state (MPS) decomposition that is a tensor

network with a one-dimensional chain-like geometry [295], as shown in Fig. II.3.11(a).

To apply this powerful method to our setup we first map the lead and system modes

into a one-dimensional chain. In doing so the coherent coupling between the lead

modes and the system become long-ranged within this chain since they correspond-

ing to a so-called star geometry. Fundamentally this is because we use the energy

eigenbasis of the lead.

Additionally, since MPS apply to systems built from a tensor product of local Hilbert

spaces, to describe a spinless fermionic system requires that we transform it into a

spin-1/2 representation. Our starting point is to introduce Fock states constructed

from the unified physical modes with occupation-number vector n as

|n〉 =
(
d̂†1

)n1

· · ·
(
d̂†M

)nM |vac〉 , (II.3.75)

which in the single-lead case has M = L+D and is ordered with lead modes first, as

shown in Fig. II.3.11(b). A spin-1/2 representation is then obtain via the well-known
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Figure II.3.11: (a) A MPS tensor network in which every site (except the boundaries) have
an order-3 tensor associated to it. The vertical dangling legs are the physical indices of the
system of dimension 2 in our case, the horizontal contracted legs are the internal bonds of
the MPS of dimension χ. (b) The lead and system modes are ordered into a one-dimensional
geometry to match the MPS. (c) With this ordering the star geometry system-lead coupling
ĤSL is long-ranged and the local fermionic dissipators LL on the lead also become long-ranged
due to JW strings.

Jordan-Wigner (JW) transformation involving M spins [86, 17]

d̂†j =

(
j−1∏

q=1

σ̂zq

)
σ̂−j , (II.3.76)

where σ̂zq is the Pauli spin matrix in the z direction and σ̂±q are the spin raising/lowering

operators for the q-th spin. Correspondingly, the Fock states of Eq. (II.3.75) are

equivalent to the spin states

|n〉 =
(
σ̂−1
)n1 · · ·

(
σ̂−M
)nM |↑ · · · ↑〉 , (II.3.77)

since each JW string vanishes on polarised spins to which it is applied. Transforming

the total Hamiltonian Ĥ = ĤS + ĤL + ĤSL [from Eqs. (II.3.30) and (II.3.31)] to this

representation gives

Ĥ = ĤS +
L∑

k=1

{
κk1σ̂

+
k

(
L∏

q=k+1

σ̂zq

)
σ̂−L+1 (II.3.78)

+κ∗k1σ̂
−
k

(
L∏

q=k+1

σ̂zq

)
σ̂+
L+1

}
+

L∑

k=1

εkσ̂
−
k σ̂

+
k .
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The star geometry, shown in Fig. II.3.11(c), thus introduces JW strings to the lead-

system coupling terms making them long-ranged multi-body spin operators. Similarly,

the Lindblad dissipator of Eq. (II.3.34) becomes

LL{ρ̂} =
L∑

k=1

γk(1− fk)
[
−1

2
{σ̂−k σ̂+

k , ρ̂}+ σ̂+
k

(
k−1∏

q=1

σ̂zq

)
ρ̂

(
k−1∏

q=1

σ̂zq

)
σ̂−k

]

+
L∑

k=1

γkfk

[
−1

2
{σ̂+

k σ̂
−
k , ρ̂}+ σ̂−k

(
k−1∏

q=1

σ̂zq

)
ρ̂

(
k−1∏

q=1

σ̂zq

)
σ̂+
k

]
, (II.3.79)

showing that the jump operators are now also non-local due to the JW strings.

II.3.6.2 Superfermion representation

By using the energy eigenbasis of the lead we have arrived at a master equation with

a highly non-local multi-body Hamiltonian and dissipator. The JW strings therefore

appear to severely frustrate the use of MPS algorithms in this setup. Typically those

arising from the star geometry of the Hamiltonian in Eq. (II.3.78) are dealt with by

tridiagonalising the lead Hamiltonian, transforming it into a chain geometry and lo-

calising its coupling to the system. However, it is clear that this procedure profoundly

complicates the dissipator in Eq. (II.3.79). The thermal damping of the lead induced

by the dissipator is most naturally described in the lead’s energy eigenbasis.

In the lead energy eigenbasis, the JW strings of the dissipators can be eliminated by ex-

ploiting the superfermion representation of the open system introduced in Sec. II.3.4.

There, an interleaved physical and ancillary mode ordering was used, resulting in the

dissipative processes becoming nearest-neighbour non-Hermitian Hamiltonian terms,

as shown in Eq. (II.3.51). In this form, when moving to a spin-1/2 representation, the

JW string of each system or lead site cancels with that of the corresponding ancillary

mode, rendering the dissipator terms local.

To observe this explicitly, first note that the Fock basis of the combined Hilbert space

of the physical and ancilla sites, namely Eq. (II.3.45), can be written in the spin-1/2

basis as

|n|m〉 =
(
σ̂−1
)n1
(
σ̂−2
)m1 · · ·

(
σ̂−2M

)nM (σ̂−2M
)mM |↑↑ · · · ↑↑〉 . (II.3.80)
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The non-Hermitian generator of the superfermion time evolution thus becomes

L̂ = Ĥ − Ĥd⇔s + i
L∑

k=1

γk(1− fk)σ̂+
2k−1σ̂

+
2k

+ i
L∑

k=1

γkfkσ̂
−
2k−1σ̂

−
2k − i

L∑

k=1

γkfk (II.3.81)

− i

2

L∑

k=1

[
γk(1− 2fk)

(
σ̂−2k−1σ̂

+
2k−1 + σ̂−2kσ̂

+
2k

)]
,

showing that the dissipator contribution consists of on-site and nearest-neighbour

terms.

II.3.6.3 Time evolving block decimation with swaps

To efficiently simulate the time evolution of the correlated system Eq. (II.3.81), we use

one of the most well-known algorithms within the tensor network family, namely, the

time-evolving block decimation (TEBD) [309, 310]. Given some system governed by a

Hamiltonian Ĥloc =
∑

i ĥi,i+1, comprising a sum of two-site terms ĥi,i+1 along a chain

of length M , the standard formulation of TEBD computes the MPS approximation

of the propagation |ψ(t)〉 = exp(−iĤloct) |ψ(0)〉. This is done by first breaking up the

evolution into many small time-steps δt and then performing a second-order Trotter

expansion as

e−iĤlocδt ≈
(
M−1∏

i=1

Ûi,i+1

)(
1∏

i=M−1

Ûi,i+1

)
, (II.3.82)

where Ûi,i+1 = exp(− i
2
ĥi,i+1δt). In this way, a time step of propagation is implemented

by a staircase circuit of two-site gates sweeping right-to-left and then left-to-right.

Each two-site gate can be applied to the MPS and, via a singular value decomposition,

the result can be re-factorised and truncated back into MPS form.

Here, we use a simple modification of TEBD that allows us to compute the time-

evolution under fermionic star-geometry Hamiltonians Ĥstar =
∑

i ĥi,M , where all

sites i < M interact with the last site M . The key ingredient is the fermionic SWAP

gate Ŝf , which is a conventional SWAP gate between spins j and j+1 that exchanges

their spin configurations, but also incorporates the application of the local σ̂zj operator



II.3.6. TENSOR NETWORK METHOD 211

Figure II.3.12: The sweeping sequence of two-site gates Ûk,1 between the k-th lead mode

and the first system site along with the fermionic SWAPs Ŝf needed to implement a Trotter
step for the star geometry couplings shown in Fig. II.3.11(c).

from the JW string of Eq. (II.3.78). For two sites, the gate is given by

Ŝf =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 −1



, (II.3.83)

where the negative sign accounts for the anticommutation relation between two fermionic

creation operators when both sites j and j+1 are occupied. By interspersing fermionic

SWAP gates within the Trotter expansion, as shown in Fig. II.3.12, distant sites are

temporarily made adjacent, allowing the standard nearest-neighbour two-gate gate

update to be applied.

Time-evolution under a long-ranged Hamiltonian is generally considered impractical

for tensor network calculations, due to very fast growth of entanglement across the

system. This conjecture has been challenged in recent studies of fermionic impurity

models, where efficient tensor network calculations have been performed using a star-

like geometry [311, 312]. The proliferation of correlations in these models is curtailed

by Pauli exclusion within the majority of the modes of the lead, limiting them to

the range of modes around the Fermi energy. This favourable situation persists in

the mesoscopic thermal lead setup considered here. Furthermore, it has been recently

shown that using a suitable order of the lead modes can significantly enhance the
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efficiency of tensor network simulations [313].

II.3.6.4 Non-equilibrium steady state solver

The TEBD algorithm works equally well for non-Hermitian Hamiltonians generating

non-unitary propagation. Indeed, it has been widely used to study the NESS of

incoherently driven chains where the coupling to the reservoirs is localised to one [10,

289, 290, 84, 291, 292, 314, 87, 88] or two sites [315, 316, 90, 89] at the boundaries. We

have now introduced all the elements required to extend the capabilities of TEBD to

simulate the open-system governed by the Hamiltonian Eq. (II.3.78) and the dissipator

Eq. (II.3.79).

First, we move to the superfermion representation where the generator L̂ is given

by Eq. (II.3.81). We define dimer sites composed of a physical (system or lead) site

and its corresponding ancilla, as shown in Fig. II.3.13(a). This procedure squares

the dimension of the local basis. The left vacuum state |I〉 in this representation

is a product state of dimers, with each dimer local to a given site being an equal

superposition of |↑↑〉 and |↓↓〉.
Next, we identify all the terms in L̂ that correlate the dimers located at lead site

k and system site p = 1. Assuming these sites are adjacent to each other through

SWAP operations, we express

L̂dim,k = εk
(
σ̂−1 σ̂

+
1 − σ̂−2 σ̂+

2

)
+
ε

L

(
σ̂−3 σ̂

+
3 − σ̂−4 σ̂+

4

)

+ κkLσ̂
−
1 σ̂

z
2σ̂

+
3 + κ∗kLσ̂

+
1 σ̂

z
2σ̂
−
3

− κkLσ̂+
2 σ̂

z
3σ̂
−
4 − κ∗kLσ̂−2 σ̂z3σ̂+

4

− i

2
γk(1− 2fk)

(
σ̂−1 σ̂

+
1 + σ̂−2 σ̂

+
2

)
− iγkfk

+ iγk(1− fk)σ̂+
1 σ̂

+
2 + iγkfkσ̂

−
1 σ̂
−
2 . (II.3.84)

We identify spin 1 as the k-th lead eigenmode with spin 2 being its corresponding

ancilla mode. On the other hand, spin 3 is the system site coupled to the lead with

spin 4 its corresponding ancilla mode. A JW string appears between interacting spins

that are not adjacent, however, they remain local to the dimer pair. The exponential

of this operator, Ûdim,k = exp(−iL̂dim,kδt/2), defines a non-unitary gate for a half

time step δt. This operator accounts for all the coherent interactions and the non-
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Figure II.3.13: (a) Ancilla modes are interleaved with the system and lead modes they are
associated to. Computationally the system or lead site and its ancilla are bundled together
as a dimer site. (b) A two-dimer site gate Ûdim,k is applied between the k-th lead mode

dimer, and the first system site dimer. This is followed by four fermionic SWAPs Ŝf to
shuffle the system site and its ancilla through the lead and its ancilla making the next lead
mode adjacent. This is repeated all the way along the chain and back to complete one
time-step.

Hermitian terms, describing the dissipation between the lead mode and the system

site. We have assumed a Hamiltonian of the form Eq. (II.3.71) in Eq. (II.3.84).

Finally, the non-unitary gates Ûdim,k are then applied along with fermionic SWAP

gates that shuffle the system dimer along the chain, as shown in Fig. II.3.13(b). The

latter can be defined from the two-site SWAP gates of Eq. (II.3.83) in the following

way: naming Â = I2 ⊗ Sf ⊗ I2, with I2 the 2× 2 identity matrix, and B̂ = Sf ⊗ Sf ,
the two-dimer SWAP gate depicted in Fig. II.3.13(b) is given by ÂB̂Â. Altogether,

this sequence of gates computes the action of the propagator exp(−iL̂δt) and formally

solves Eq. (II.3.50) for a single time-step. We take the initial state to be |ρ(0)〉 = |I〉,
and find the steady state |ρ(∞)〉 by evolving towards the long-time limit. Expectation

values and the trace of the density operator follow from the inner product with |I〉 as

given in Eq. (II.3.48).

The same simulation scheme can be readily extended to the two-lead configuration,
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Figure II.3.14: (a) The lead and system mode ordering for a two lead setup. (b) The
configuration used for the interacting system examples. Here the system S is a fermionic
chain with hopping amplitude tS and nearest-neighbour interaction U .

as shown in Fig. II.3.14(a), with the long-time limit now giving rise to a NESS. The

approach to the stationary state is assessed by evaluating the convergence of observ-

ables such as the particle and energy currents. For the examples that follow, we used

a dynamically-increasing truncation parameter χ for different time-step parameters

δt. In the standard MPS language [309, 310], χ refers to the maximum MPS bond

dimension in between each pair of neighbouring nodes in the network, where each

node represents a dimer. To perform the simulation, we chose an initial value of χ

and δt, and evolved the system up to an intermediate time. The resulting state was

then further evolved in time with a larger χ and an appropriately reduced δt. This

procedure is repeated until the currents obtained converged up to a small tolerance

of 1 − 2%. The largest bond dimension used in our calculations was χmax = 220,

showing that a moderate computational effort was required to access the NESS. All

MPS calculations in the following examples were performed using the open-source

Tensor Network Theory (TNT) library [317, 318].

II.3.7 Interacting examples

In this section, we employ the tensor network algorithm from Sec. II.3.6 to study

an autonomous thermal machine with an interacting working medium, as depicted

in Fig. II.3.14(b). Our methods enable us to consider the challenging problem of

simultaneously strong interactions and system-bath coupling, far beyond the linear-

response regime.
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II.3.7.1 Interacting three-site engine

Our first example is an autonomous quantum heat engine with a three-site interacting

working medium, which is described by the Hamiltonian

ĤS =
D∑

j=1

εjn̂j −
D−1∑

j=1

tS

(
ĉ†j+1ĉj + H.c.

)
+

D−1∑

j=1

Un̂jn̂j+1, (II.3.85)

where n̂j = ĉ†j ĉj is the density operator for site j and U is the interaction strength.

The last term in the equation above corresponds to a density-density interaction

of neighbouring particles. A small central system composed of D = 3 interacting

fermionic sites can be interpreted as a three-site version of the interacting resonant

level model [319].

We set the system hopping tS = W/8 and focus on the regime in which the temperature

gradient and the difference in chemical potential between the mesoscopic reservoirs is

strong. We set TL = 10tS, TR = tS, µL = −tS/2, µR = tS/2 and εj = ε = tS. With these

parameters, the system operates as a heat engine, i.e. particle current flows from

the left reservoir to the right reservoir, driven by the temperature gradient against

a chemical potential gradient. As in Sec. II.3.5.1, both leads are assumed to have

identical, flat spectral densities given by Eq. (II.3.72) and we use the logarithmic-

linear discretisation scheme with W ∗ = W/2 and Llog/L = 0.2. We remark that the

chosen Hamiltonian parameters are far apart from the energy scale dictated by W ,

such that the effect of the finite bandwidth is expected to be negligible. This choice

of parameters is thus a useful representative example for exposing the efficacy of the

proposed methodology.

We first focus on the dependence of the currents on the system-lead coupling Γ, as

shown in Fig. II.3.15. In Fig. II.3.15(a), the energy current for a particular value

of the interaction strength U = 1.2tS is shown as a function of Γ. Remarkably, a

density-density interaction yields a larger energy current flowing through the system

compared to the non-interacting case in the chosen regime. The same observation

holds for the particle current in Fig. II.3.15(b), since for our choice of parameters the

particle current and the power output are equivalent [see Eq. (II.3.19)]. The efficiency

shown in Fig. II.3.15(c), remains approximately constant as a function of system-lead

coupling strength just like the non-interacting case. Future work will investigate a
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Figure II.3.15: (a) Energy current, (b) power and (c) efficiency of the interacting three-site
system as a function of the system-lead coupling strength Γ. The insets in (a) and (b) show
the error associated to the finite number of modes in the leads L (up to L = 100), estimated
from extrapolated values of the currents at the point in which the maximum is observed
(Γ ≈ 3tS). In these calculations we used Llog/L = 0.2, W ∗ = W/2 and W = 8tS.

larger range of parameters to identify a maximum power output for a given interaction

strength.

The insets in Figs. II.3.15(a) and II.3.15(b) show the error associated to employing

a finite number of modes in each reservoir for a specific value of Γ = 3tS, where the

currents in the interacting case reach the maximum value. The error is computed

from an extrapolated value of the currents to the L→∞ limit, based on the currents

for finite L, for each respective case. We define Error % ..= |K(L → ∞) − K(L)| ·
100/K(L → ∞), where K = JE, P for energy current and power, respectively. The

value K(L→∞) is taken from an extrapolation following the trend of K(L). A linear

extrapolation was made for the power as shown in the inset in Fig. II.3.15(b), while no

extrapolation is required for the energy current in Fig. II.3.15(a), as the current has

converged for L smaller than the final value of L = 100. It can be observed that for the

specific choice of parameters, a good approximation can be obtained to a few percent

accuracy using L = 50, compared to larger reservoirs. The energy current converges

faster than the particle current (power) in this case. This behaviour is expected, as

observing Figs. C1 and C1 for the non-interacting case in Appendix C, the largest

deviation for the particle current occurs where the maximum value is obtained, while

the largest deviation for the energy current is observed near the edges of the band.
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II.3.7.2 High-temperature transport

The transport properties of spin chains have been studied extensively using standard

open-system MPS approaches based on a boundary driving Lindblad master equa-

tion. This approach has been successful in accurately describing the high-temperature

spin/particle transport behaviour of the integrable anisotropic XXZ Heisenberg model

[289, 290, 80, 84] as well as non-integrable versions of the model when integrability-

breaking perturbations are introduced, such as magnetic impurities (see Chapter I.4)

or disorder [87, 88, 90, 89]. However, driving on the boundary spins is formally equiv-

alent to infinite temperature baths. Modelling energy currents therefore requires more

elaborate multi-site boundary driving to mimic finite temperature differences. While

this approach has proven successful for the very high temperature limit, its reliabil-

ity as the temperature is lowered is questionable, as we debated in Sec. II.3.1. The

mesoscopic leads construction introduced here overcomes this deficiency.

The system Hamiltonian introduced in Eq. (II.3.85) is the spinless fermion equivalent

of the anisotropic XXZ Heisenberg model. This model exhibits a range of distinct

linear response particle and energy transport behaviour as a function of the anisotropy

U . Specifically, these include ballistic transport which is characterised by a constant

value of the current as a function of system size D, as well as diffusive transport, where

JP ∝ 1/Dν with ν = 1. Anomalous diffusion is signalled by 0 < ν < 1 and ν > 1,

corresponding to super-diffusion and sub-diffusion, respectively. A sharp transition

in the system’s transport properties is known to occur at the isotropic point U/tS =

2, with the system displaying ballistic transport for U/tS < 2, while for U/tS > 2

transport becomes diffusive. Furthermore, precisely at the isotropic point U/tS = 2,

boundary driving calculations have shown that transport is super-diffusive with ν =

1/2 [84]. These results are expected to hold only in the linear-response regime at high

temperatures, where the structure of the thermal baths becomes irrelevant. We now

corroborate these results using our mesoscopic reservoir formalism.

As before, we choose the same discretisation scheme and bath structure parameters.

We focus on the isotropic point U/tS = 2 and set εj/tS = ε/tS = 1. We set the

temperature on each reservoir to a high value of TL = TR = 1000tS and choose a small

chemical potential gradient µL = −µR = 0.025tS, where we expect the system to be in

linear response regime. In Fig. II.3.16 we show both the particle and energy currents
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Figure II.3.16: Particle and energy currents as a function of system size D for the isotropic
Heisenberg model U/tS = 2 [see Eq.(II.3.85)]. The results shown correspond to a very high
temperature TL = TR = 1000tS and a small chemical potential bias µL = −µR = 0.025tS,
where the system is expected to be in linear response regime. In these calculations we used
Llog/L = 0.2, W ∗ = W/2, W = 8tS and Γ = ε = tS.

as a function of system size D. We have used L = 20 modes for both left and right

reservoirs. As can be observed, the currents fit a power law scaling with an exponent

very close to ν = 1/2 in clear indication of super-diffusive behaviour. We remark

that at high temperature, fewer reservoir modes can be used to obtain the correct

transport exponent, as observed from boundary driving calculations [84].

II.3.7.3 Finite-temperature transport and CP symmetry

We now test the capabilities of our method to extract transport properties outside of

the high-temperature limit. As a benchmark, we focus on the anisotropic Heisenberg

Hamiltonian given by Eq. (II.3.85) with U = tS and homogeneous on-site energies,

εj = ε.

In this regime, the Hamiltonian is integrable and the total energy current is conserved,

implying ballistic energy transport at all temperatures under linear-response condi-

tions [11, 1]. Ballistic particle conduction is also expected for U < 2tS, as indicated

by extensive numerical calculations [1] and arguments based on quasi-local conserva-

tion laws [80, 81]. We confirm the ballistic nature of transport at finite temperature

by a scaling analysis with the system size D of the particle and energy currents, as

shown in Fig. II.3.17. We drive the system out of equilibrium either by applying a
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Figure II.3.17: Finite-size scaling of (a) particle current and (b) energy current for the
anisotropic Heisenberg model in Eq. (II.3.85) with U = tS. Size-independent currents imply
ballistic particle and energy transport under chemical-potential or temperature bias. Data
shown by the black triangles are rescaled by a factor of 10−1 to be visible on the same scale.
In these calculations we used L = 20, Llog/L = 0.2, W ∗ = W/2, W = 8tS and Γ = U = tS.

chemical-potential bias at fixed temperature, or by a temperature gradient applied at

fixed chemical potential. In each case we find that the particle and energy currents

are essentially independent of system size, as expected. We note that our method

can be applied far outside linear response, for example with a large temperature bias

TL − TR � TR, as shown by the black triangles in Fig. II.3.17.

The magnitudes of the currents strongly depend on the bulk Hamiltonian and the ther-

modynamic potentials of the baths. Configurations that are invariant under a charge

conjugation-parity (CP) transformation, i.e., a combined reflection and particle-hole

symmetry, are found to exhibit vanishing energy current. More precisely, CP sym-

metry requires equal bath temperatures, TL = TR, opposite chemical potentials,

µL = −µR, and bulk Hamiltonian parameters ε = −U . As shown by the blue triangles

in Fig. II.3.17(b), the energy current is zero in this case, in agreement with exact ana-

lytical calculations detailed in Appendix D. A finite energy current emerges whenever

the on-site energies of ĤS are moved away from the CP-symmetric point, even when

the forcing from the baths remains CP-symmetric (red circles in Fig. II.3.17). This is

in stark contrast with the predictions of single-site boundary driving transport calcu-

lations on the Heisenberg model, where symmetric driving leads to vanishing energy
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Figure II.3.18: Non-equilibrium density profile in the anisotropic Heisenberg model,
Eq. (II.3.85), under symmetric chemical-potential bias and various temperatures. In these
calculations we used D = 48, L = 40, Llog/L = 0.2, W ∗ = W/2, W = 8tS and Γ = tS. We
checked that the site occupation results are robust towards changes from L = 20 to L = 40
in all cases shown.

current independent of the bulk Hamiltonian parameters [320]. This ultimately stems

from the fact that boundary driving simulates white noise and thus does not capture

the energy dependence of true thermal fluctuations.

We further explore the effect of temperature by examining the non-equilibrium density

profile of the system in Fig. II.3.18. We consider equal reservoir temperatures, TL =

TR = T , fixed system (D = 48) and lead (L = 40) sizes, and a symmetric chemical

potential bias, µL = −µR. We also take ε 6= −U , to break CP-symmetry. Away

from the boundaries, we find the flat profile characteristic of ballistic transport, with

a density that depends on temperature. Lower temperatures correspond to lower

densities and larger currents. As the temperature is increased, the bulk density tends

to the CP-symmetric value 〈n̂j〉 → 0.5. This shows that the CP symmetry enforced

by the single-site boundary driving configuration is indeed recovered in the high-

temperature limit.

II.3.8 Summary and outlook

In this chapter, we have introduced a novel methodology to simulate the heat and

particle currents in thermal machines which comprise a complex working medium

coupled to fermionic leads at fixed temperatures and chemical potentials. The method
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is based on the concept of mesoscopic reservoirs whose energy modes are damped in

order the replicate the continuum. The method allows for calculations in highly non-

equilibrium scenarios such as strong system-lead coupling and large biases. In order

to cope with non-quadratic interactions in the working medium, we implemented a

novel tensor network algorithm directly in the star geometry using auxiliary modes.

For the purpose of expounding the method, in this paper we considered only au-

tonomous thermal machines where the working medium is time independent. In

order to benchmark our technique we first focused on replicating the steady-state

thermodynamics of the resonant-level heat engine. The simplicity of this quadratic

model allows for direct comparison with the Landauer-Büttiker theory for quantum

transport. We observed excellent agreement across a wide parameter regime. We

then explored efficiency and power in a strongly interacting three-qubit machine in

a parameter regime where other methods are known to struggle. In doing this we

observed that, remarkably, the efficiency is enhanced as a function of the system-lead

coupling in the presence of non-quadratic interactions. Furthermore, we demonstrated

that our technique is capable of highly non-trivial heat and particle transport calcu-

lations in strongly correlated many-body systems by performing a scaling analysis

at the isotropic point of the paradigmatic Heisenberg model. Finally, we analysed

the current scaling and non-equilibrium density profile in the integrable regime of the

anisotropic Heisenberg model, confirming the ballistic nature of transport at finite

temperature and well beyond linear response.

Due to the flexibility of our technique we expect that the method is extendable fur-

ther in the direction of steady-state thermodynamics of complex interacting quantum

systems. Beyond strong coupling and far-from-equilibrium scenarios, our technique

may also find useful applications in the study of time-dependent working media, bulk

noise effects and non-trivial spectral densities, thus taking quantum thermodynamics

to unexplored horizons.
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Final remarks and future work

The topics exposed in this thesis were motivated by a very simple question.

A single magnetic impurity is enough to imprint the signatures of chaotic eigenstates

onto the integrable Heisenberg model. Yet, intuitively, a O(1) form of integrability-

breaking perturbation does not suffice to render a ballistic system into a diffusive one.

We have conciliated this result from the perspective of linear response theory through

global conservation laws, where we found translational invariance to be crucial in the

determination of spin Drude weights at high temperature. These results were put to

the test from the perspective of open systems theory in boundary-driven calculations,

which allowed us to overcome finite-size limitations.

These results prompted the questions about thermodynamics we addressed afterwards,

namely, thermalisation and its connection to entanglement and chaos at the funda-

mental level. The treatment we proposed to address finite-temperature transport in

autonomous quantum thermal machines, followed from the necessity to introduce a

novel approach to overcome the limitations imposed by the technique of boundary

driving.

Having established these concepts, many open questions remain.

For the sake of the single impurity model and its properties, we open two questions.

The first one related to thermalisation. We have established that thermalisation in the

single impurity model is anomalous, in the sense that the statistical properties of the

unperturbed model end up embedded in the perturbed one. Crucially, this holds true

for observables away from the site of the impurity or sums of local observables, such

as the total spin current. This allowed us to present a complete picture of the nature

of coherent transport in the single impurity model. The topic of prethermalisation has

223
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been discussed recently [171, 321, 112], whereby a first stage of relaxation happens

to a non-thermal state, followed by true thermalisation as predicted by the ensembles

of statistical mechanics at later timescales. Our results suggest that this could be

the relaxation mechanism in the single impurity model. This could be explored from

the unitary dynamics of typical states in the high-temperature regime, akin to the

procedure employed in Sec. I.6.2.5.

The second question we could open in relation to the single impurity is related to

transport at finite temperature. For repulsive interactions (such as the ones considered

in this thesis), it was shown by Kane and Fisher in Ref. [322] that the probability

of electron transmission through a single barrier in a one-dimensional electron gas

vanishes at zero temperature. It then follows that the system behaves as an insulator.

Yet, from our results, we argued that the system is a perfect conductor at sufficiently

high temperature. So, the behaviour between these two temperature limits could shed

light to very interesting phenomena. It was argued by Kane and Fisher in Ref. [322]

that the conductance vanishes as a power of temperature in the finite-temperature

regime, a statement that could be put to the test using the procedure introduced in

Chapter II.3. Moreover, the transport exponents (or lack thereof) could be equally

evaluated by employing our method.

This brings us to the domain of finite-temperature transport, around which many

open questions remain [1]. We shall mention spin/particle and particle transport in

interacting systems where integrability is broken by the introduction of disorder. This

integrability-breaking perturbation introduces a competition between inelastic colli-

sions and coherent effects, giving rise to a phase of matter first described by Basko,

Aleiner and Altshuler in Ref. [27]. Its existence has been questioned recently [150],

though whether there exists a phase transition or not, transport in disordered systems

poses some interesting open questions. Particularly in the nature of energy filtering.

Whenever a system is exposed to a certain degree of disorder, some energy eigenstates

are localised while some are extended, depending on the disorder parameter and the

energy density of the relevant eigenstate [323]. Disordered systems then, could be

proposed as energy filters. Suppose we couple a one-dimensional disordered system to

mesoscopic reservoirs on both sides kept at different equilibrium states, following the

configurations we introduced in Chapter II.3. Due to the nature of disorder, flow of

particles in direction will be favoured depending on the equilibrium states chosen for
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the reservoirs, as states with lower energy density will not constitute transport chan-

nels due to localisation. This energy filtering phenomenon was originally suggested by

Basko, Aleiner and Altshuler in Ref. [27], and it could be probed using our technique.

Finally, another problem that could be addressed with our mesoscopic reservoir ap-

proach is related to Kondo physics in quantum impurity models [324] and the Ander-

son single-impurity model [325], for which most known results have been addressed

through the numerical renormalisation group at thermal equilibrium. Away from

equilibrium in configurations that lead to non-equilibrium steady states, much less is

known, particularly when interactions are treated exactly while resolving very small

energy scales [284]. Recently, a novel scheme was proposed in Ref. [284] to address

part of these issues, with a technique related to the one we introduced in Chap-

ter II.3. Crucially, the treatment introduced for the reservoirs in Ref. [284] does not

include dissipation, driving each energy mode to thermal equilibrium. For this reason,

our intuition is that the methodology introduced in Chapter II.3 will provide better

scalability, where we would be able to describe thermal reservoirs via fewer modes. Al-

though the introduction of a spin degree of freedom to the particles to address Kondo

physics seems challenging, it could be feasible by introducing auxiliary reservoirs, as

suggested in Ref. [284], bringing these interesting problems within the reach of our

methods.
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and I. Bloch, Nat. Phys. 8, 325 (2012).

[38] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and
M. Greiner, Science 353, 794 (2016).

[39] Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, M. Rigol, S. Gopalakrishnan,
and B. L. Lev, Phys. Rev. X 8, 021030 (2018).

[40] V. Zelevinsky, Annu. Rev. Nucl. Part. S. 46, 237 (1996).

[41] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore, Rev. Mod. Phys.
83, 863 (2011).

https://doi.org/https://doi.org/10.1016/j.physrep.2019.02.004
https://doi.org/10.1103/PhysRevResearch.2.043034
https://doi.org/10.1103/PhysRevResearch.2.043034
https://doi.org/10.1103/PhysRevB.80.125118
https://doi.org/10.1103/PhysRevB.80.125118
https://doi.org/10.1103/PhysRevX.10.041017
https://doi.org/10.1103/PhysRevX.10.041017
https://doi.org/10.1016/j.aop.2010.08.004
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1088/1742-5468/2016/06/064007
https://doi.org/https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.90.035005
https://www.nature.com/articles/s41567-018-0295-5
https://doi.org/10.1103/PhysRevLett.123.230606
https://doi.org/10.1103/PhysRevE.99.042139
https://doi.org/10.1103/PhysRevE.102.042127
https://doi.org/10.1103/PhysRevE.102.042127
http://pages.physics.cornell.edu/~sethna/StatMech/EntropyOrderParametersComplexity20.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.070604
https://doi.org/10.1038/nature00968
https://doi.org/10.1038/nature04693
https://doi.org/doi:10.1038/nphys2232
https://doi.org/10.1126/science.aaf6725
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021030
https://doi.org/10.1146/annurev.nucl.46.1.237
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863


BIBLIOGRAPHY 231

[42] V. Yukalov, Laser Phys. Lett. 8, 485 (2011).

[43] F. Borgonovi, F. Izrailev, L. Santos, and V. Zelevinsky, Phys. Rep. 626, 1 (2016).

[44] S. Lepri, R. Livi, and A. Politi, Phys. Rep. 377, 1 (2003).

[45] A. Dhar, Adv. Phys. 57, 457 (2008).

[46] S. Chen, J. Wang, G. Casati, and G. Benenti, Phys. Rev. E 90, 032134 (2014).

[47] F. Haake, Quantum signatures of chaos , 3rd ed. (Springer Science & Business
Media, Berlin Heidelberg, 2013).

[48] B. Chirikov, Open Syst. Inf. Dyn. 4, 241 (1997).

[49] P. Mazur, Physica 43, 533 (1969).

[50] B. Li and J. Wang, Phys. Rev. Lett. 91, 044301 (2003).
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[89] J. J. Mendoza-Arenas, M. Žnidarič, V. K. Varma, J. Goold, S. R. Clark, and
A. Scardicchio, Phys. Rev. B 99, 094435 (2019).

https://d-nb.info/974939242/34
https://doi.org/https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1088/1742-5468/ab02f4
https://doi.org/10.1088/1742-5468/2013/09/p09012
https://doi.org/10.1088/1742-5468/2013/09/p09012
https://link.springer.com/book/10.1007/978-3-642-58244-8
https://link.springer.com/book/10.1007/978-3-642-58244-8
https://doi.org/10.1007/s00220-012-1599-4
https://doi.org/10.1007/BF01341708
https://doi.org/10.1017/CBO9780511524332
https://doi.org/10.1103/PhysRevLett.65.243
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1119/1.3671068
https://doi.org/10.1119/1.4798343
https://dataspace.princeton.edu/handle/88435/dsp019k41zg72f
https://doi.org/10.1103/PhysRevLett.106.217206
https://doi.org/10.1103/PhysRevLett.111.057203
https://doi.org/10.1088/1742-5468/2014/09/p09037
https://doi.org/10.1088/1742-5468/2014/09/p09037
https://doi.org/10.1103/PhysRevLett.112.120601
https://doi.org/10.1103/PhysRevLett.112.120601
https://doi.org/10.1103/PhysRevLett.106.220601
https://doi.org/10.1103/PhysRevLett.119.020602
https://doi.org/10.1007/BF01331938
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.040601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.040601
https://onlinelibrary.wiley.com/doi/full/10.1002/andp.201600298
https://onlinelibrary.wiley.com/doi/full/10.1002/andp.201600298
https://doi.org/10.1103/PhysRevB.99.094435


BIBLIOGRAPHY 233

[90] M. Schulz, S. R. Taylor, C. A. Hooley, and A. Scardicchio, Phys. Rev. B 98,
180201 (2018).

[91] C.-C. Chien, S. Peotta, and M. Di Ventra, Nat. Phys. 11, 998 (2015).

[92] S. Krinner, T. Esslinger, and J.-P. Brantut, J. Condens. Matter Phys. 29, 343003
(2017).

[93] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi,
A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Nature 551,
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[140] G. Biroli, C. Kollath, and A. M. Läuchli, Phys. Rev. Lett. 105, 250401 (2010).

[141] T. N. Ikeda, Y. Watanabe, and M. Ueda, Phys. Rev. E 87, 012125 (2013).

[142] V. Alba, Phys. Rev. B 91, 155123 (2015).

[143] M. Rigol, Phys. Rev. Lett. 116, 100601 (2016).

[144] M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, Phys. Rev. Lett. 98, 050405
(2007).

[145] F. H. L. Essler and M. Fagotti, J. Stat. Mech. 2016, 064002 (2016).

[146] J.-S. Caux, J. Stat. Mech. 2016, 064006 (2016).

[147] K. Mallayya and M. Rigol, Phys. Rev. Lett. 123, 240603 (2019).

[148] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Rev. Mod. Phys. 91, 021001
(2019).

[149] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phys. Rev. B 90, 174202 (2014).

[150] B. Bertini, P. Kos, and T. c. v. Prosen, Phys. Rev. Lett. 121, 264101 (2018).

[151] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk,
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Phys. 14, 745 (2018).

[155] E. J. Torres-Herrera, D. Kollmar, and L. F. Santos, Phys. Scr. T165, 014018
(2015).
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[295] U. Schollwöck, Ann. Phys. (N. Y.) 326, 96 (2011).

[296] E. Pereira, Phys. Rev. E 97, 022115 (2018).

[297] T. Prosen, Phys. Scr. 86, 058511 (2012).

[298] G. T. Landi, E. Novais, M. J. de Oliveira, and D. Karevski, Phys. Rev. E 90,
042142 (2014).

https://doi.org/10.1038/srep24514
https://doi.org/10.1063/1.5000747
https://doi.org/10.1088/1367-2630/ab5ec5
https://doi.org/10.1103/PhysRevB.86.125111
https://doi.org/10.1103/PhysRevB.86.125111
https://doi.org/10.1103/PhysRevB.87.195114
https://doi.org/10.1021/ct500135e
https://doi.org/10.1103/PhysRevE.94.032139
https://doi.org/10.1103/PhysRevE.94.032139
https://doi.org/10.1021/acs.jctc.9b00999
https://doi.org/10.1103/PhysRevB.94.155142
https://doi.org/10.1103/PhysRevLett.121.137702
https://doi.org/10.1103/PhysRevLett.121.137702
https://doi.org/10.1103/PhysRevB.92.125145
https://doi.org/10.1103/PhysRevB.92.125145
https://doi.org/10.1103/PhysRevB.92.245125
https://doi.org/10.1103/PhysRevB.92.245125
https://doi.org/10.1140/epjst/e2007-00369-2
https://doi.org/10.1140/epjst/e2007-00369-2
https://doi.org/10.1063/1.1509143
https://doi.org/10.1088/1367-2630/12/4/043001
https://doi.org/10.1088/1742-5468/2010/05/L05002
https://doi.org/10.1103/PhysRevB.87.235130
https://doi.org/10.1103/PhysRevB.87.235130
https://doi.org/10.1088/1742-5468/2013/07/P07007
https://doi.org/10.1088/1742-5468/2013/07/P07007
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.047201
https://doi.org/10.1103/PhysRevB.91.174422
http://www.sciencedirect.com/science/article/pii/S0003491610001752
https://doi.org/10.1103/PhysRevE.97.022115
http://stacks.iop.org/1402-4896/86/i=5/a=058511
https://doi.org/10.1103/PhysRevE.90.042142
https://doi.org/10.1103/PhysRevE.90.042142


BIBLIOGRAPHY 242

[299] E. Mascarenhas, D. Gerace, H. Flayac, M. F. Santos, A. Auffèves, and
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Appendices

A From macroscopic to mesoscopic reservoirs

In this appendix we give further mathematical details of the connection between

mesoscopic and infinite reservoirs described in Sec. II.3.2.1.

A.1 Infinite-bath configuration

We begin by discussing the equations of motion assuming that the system is in contact

with an infinite thermal reservoir. The total Hamiltonian is thus Ĥ = ĤS + ĤB + ĤSB,

where ĤB and ĤSB are respectively given by

ĤB =
∞∑

m=1

ωmb̂
†
mb̂m, (A.1)

ĤSB =
∞∑

m=1

(
λmĉ

†
pb̂m + λ∗mb̂

†
mĉp

)
, (A.2)

while ĤS is arbitrary. In the Heisenberg picture, the equations of motion read as

d

dt
b̂m(t) = −iωmb̂m(t)− iλ∗mĉp(t), (A.3)

d

dt
ĉj(t) = i[ĤS, ĉj(t)]− iδjp

∑

m

λmb̂m(t), (A.4)

where p denotes the system site connected to the bath. The formal solution of

Eq. (A.3) reads as

b̂m(t) = e−iωmtb̂m(0)− iλ∗m

∫ t

0

dt′ e−iωm(t−t′)ĉp(t
′). (A.5)
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Substituting this back into Eq. (A.4) yields the quantum Langevin equation

d

dt
ĉj(t) = i[ĤS, ĉj(t)] + δjp

[
ξ̂(t)−

∫ t

0

dt′ χ(t− t′)ĉp(t′)
]
. (A.6)

Here, the noise operator is ξ̂(t) = −i
∑

m e−iωmtλmb̂m(0) and the memory kernel is

χ(t− t′) = 〈{ξ̂(t), ξ̂†(t′)}〉.

The solution of Eq. (A.6) at time t depends in principle on the entire past history of

the noise operator ξ̂(s) for s < t. Once found, the solution for ĉj(t) is sufficient to

reconstruct all n-point correlation functions of S, which together uniquely specify the

quantum state (amongst other information). Since the initial bath state is Gaussian,

these correlation functions depend on the noise only via its two-time correlations

〈{ξ̂(t), ξ̂†(t′)}〉 =

∫
dω

2π
J (ω)e−iω(t−t′), (A.7)

〈ξ̂†(t)ξ̂(t′)〉 =

∫
dω

2π
J (ω)f(ω)eiω(t−t′). (A.8)

In some cases, like for a single site system, the particle and energy currents from the

bath also become important. The particle and energy currents from the bath are

given by

JP = i

〈 ∞∑

m=1

(
λmĉ

†
pb̂m − λ∗mb̂†mĉp

)〉
, (A.9)

JE = i

〈 ∞∑

m=1

ωm

(
λmĉ

†
pb̂m − λ∗mb̂†mĉp

)〉
. (A.10)

This requires evaluation of the operators 〈∑∞m=1 λmĉ
†
pb̂m〉 and 〈∑∞m=1 ωmλmĉ

†
pb̂m〉. The

evolution of these operators can be written down from Eq. A.5 and are given by

〈
∞∑

m=1

λmĉ
†
p(t)b̂m(t)〉 = i〈ĉ†p(t)ξ̂(t)〉 − i

∫ t

0

dt′ χ(t− t′)〈ĉ†p(t)ĉp(t′)〉, (A.11)

〈
∞∑

m=1

ωmλmĉ
†
p(t)b̂m(t)〉 = i〈ĉ†p(t) ˆ̃ξ(t)〉 − i

∫ t

0

dt′ χ̃(t− t′)〈ĉ†p(t)ĉp(t′)〉, (A.12)
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where we have additionally defined

ˆ̃ξ(t) = −i
∑

m

e−iωmtωmλmb̂m(0), (A.13)

χ̃(t− t′) =

∫
dω

2π
ωJ (ω)e−iω(t−t′). (A.14)

The operator ˆ̃ξ(t) satisfies

〈 ˆ̃ξ†(t) ˆ̃ξ(t′)〉 =

∫
dω

2π
ω2J (ω)f(ω)eiω(t−t′), (A.15)

〈 ˆ̃ξ†(t)ξ̂(t′)〉 =

∫
dω

2π
ωJ (ω)f(ω)eiω(t−t′). (A.16)

Eqs. (A.6), (A.14), (A.8), (A.11), (A.12), (A.15), (A.16) completely define time evolu-

tion of any operator of the system, as well as that of the energy and particle currents

from the baths. In the following, we show that the same equations can be recovered

in the mesoscopic-lead configuration, thereby showing their equivalence.

A.2 Mesoscopic-lead configuration

We now turn to the mesoscopic-reservoir configuration, with total Hamiltonian Ĥ =

ĤS + ĤSL + ĤL + ĤLB + ĤB. Here ĤL and ĤSL describe the lead and its coupling to

the system and are given explicitly by

ĤL =
L∑

k=1

εkâ
†
kâk, (A.17)

ĤSL =
L∑

k=1

(
κkpĉ

†
pâk + κ∗kpâ

†
kĉp

)
. (A.18)

Each mode of the lead is further coupled to an infinite reservoir according to

ĤB =
L∑

k=1

∞∑

q=1

Ωkq b̂
†
kq b̂kq, (A.19)

ĤLB =
L∑

k=1

∞∑

q=1

(
ζkqâ

†
kb̂kq + ζ∗kq b̂

†
kqâk

)
, (A.20)
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where âk describes mode k of the lead, while the ladder operators b̂kq describe the

bath connected to mode k. Each bath is described by the flat spectral density

Jk(ω) = 2π
∑

q

|ζkq|2δ(ω − Ωkq) = γk. (A.21)

We are interested in the evolution of the joint system-lead state ρ(t) starting from

the initial product state Eq. (II.3.17), where all baths are initialised at the same

temperature and chemical potential.

As in Eq (A.5), we formally solve the Heisenberg equation of motion for the bath

variables to find

b̂kq(t) = e−iΩkqtb̂kq(0)− iζ∗kq

∫ t

0

dt′ e−iΩkq(t−t′)âk(t
′). (A.22)

Substituting this into the equation of motion for âk(t), we obtain

d

dt
âk(t) = −iεkâk(t)− iκ∗kpĉp(t) + ξ̂k(t)−

∫ t

0

dt′ χk(t− t′)âk(t′). (A.23)

Here, we defined the noise operators

ξ̂k(t) = −i
∑

q

ζkqe
−iΩkqtb̂kq(0), (A.24)

and the memory kernels χk(t− t′) = 〈{ξ̂k(t), ξ̂†k(t′)}〉. For the flat spectral density in

Eq. (A.21), the noise correlations are given by

〈{ξ̂k(t), ξ̂†k′(t′)}〉 = δkk′γkδ(t− t′), (A.25)

〈ξ̂†k(t)ξ̂k′(t′)〉 = δkk′γk

∫
dω

2π
f(ω)eiω(t−t′). (A.26)

Next we formally solve Eq. (A.23) to find

âk(t) = e−iεkt−γkt/2âk(0) +

∫ t

0

dt′ e(−iεk−γk/2)(t−t′)
[
ξ̂k(t

′)− iκ∗kpĉp(t
′)
]
. (A.27)

Considering long times, such that γkt� 1, the first term above is negligible and will

be ignored in the following. Substituting this solution into the equations of motion
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for the system variables, we finally obtain an effective quantum Langevin equation

d

dt
ĉj(t) = i[ĤS, ĉj(t)] + δjp

[
ξ̂eff(t)−

∫ t

0

dt′ χeff(t− t′)ĉp(t′)
]
. (A.28)

This is of the same form as Eq. (A.6), but with the noise operator

ξ̂eff(t) = −i
L∑

k=1

κkp

∫ t

0

dt′ e(−iεk−γk/2)(t−t′)ξ̂k(t
′), (A.29)

and the memory kernel

χeff(t− t′) =
L∑

k=1

|κkp|2e(−iεk−γk/2)(t−t′)

=

∫
dω

2π
J eff(ω)e−iω(t−t′), (A.30)

where the effective spectral density J eff(ω) is the sum of Lorentzian functions

J eff(ω) =
L∑

k=1

|κkp|2γk
(ω − εk)2 + (γk/2)2

. (A.31)

The second equality above follows via an identity which can be proved by contour

integration:

e−iεkt−γkt/2 =

∫
dω

2π

γke
−iωt

(ω − εk)2 + (γk/2)2
. (A.32)

It remains to check the effective noise correlations. We have, using Eqs. (A.25), (A.26)

and (A.32),

〈{ξ̂eff(s), ξ̂†eff(s′)}〉 ≈
∫

dω

2π
J eff(ω)e−iω(s−s′), (A.33)

〈ξ̂†eff(s)ξ̂eff(s′)〉 ≈
∫

dω

2π
J eff(ω)f(ω)eiω(s−s′), (A.34)

where we have neglected all terms proportional to e−γks or e−γks
′
. This approximation

is valid at long times, so long as the solution of Eq. (A.28) depends only on the past

history of ξ̂eff(s) within a time window that is essentially finite. This will generically

be the case for any system that relaxes to a steady state when coupled to a bath,

since any memory of environmental fluctuations in the far past is eventually lost. In

particular, if τrel is the (slowest) characteristic timescale of relaxation of S, then we
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need consider only arguments of ξ̂eff(s) in the range t − τrel . s < t. Hence, the

approximations leading to Eqs. (A.33) and (A.34) are valid for all times such that

t� γ−1
k , τrel. (A.35)

If this holds, we have shown that the effective noise generated by the mesoscopic lead

is equivalent to an infinite bath with a spectral density given by Eq. (A.31), giving

rise to an identical equation of motion for the system, Eq. (A.28).

Under this condition, the currents from the mesoscopic leads also become the same

as the currents obtained in the infinite bath case. To see this, we write down the

expressions for particle and energy currents from the lead,

JP = i

〈
L∑

k=1

(
κkpĉ

†
pâk − κ∗kpâ†kĉp

)〉
, (A.36)

JE = i

〈
L∑

k=1

εk

(
κkpĉ

†
pâk − κ∗kpâ†kĉp

)〉
. (A.37)

This requires evaluation of the operators 〈∑L
k=1 κkpĉ

†
pâk〉 and 〈∑L

k=1 εkκkpĉ
†
pâk〉. From

Eq. (A.27), and considering the time regime in Eq. (A.35), we have the following

equations for evolution of these operators,

〈
L∑

k=1

κkpĉ
†
pâk〉 = i〈ĉ†p(t)ξ̂eff(t)〉 − i

∫ t

0

dt′ χeff(t− t′)〈ĉ†p(t)ĉp(t′)〉, (A.38)

〈
L∑

k=1

εkκkpĉ
†
pâk〉 = i〈ĉ†p(t) ˆ̃ξeff(t)〉 − i

∫ t

0

dt′ χ̃eff(t− t′)〈ĉ†p(t)ĉp(t′)〉, (A.39)

where

ˆ̃ξeff(t) = −i
L∑

k=1

εkκkp

∫ t

0

dt′ e(−iεk−γk/2)(t−t′)ξ̂k(t
′), (A.40)

χ̃eff(t− t′) =

∫
dω

2π
ωJeff(ω)e−iω(t−t′). (A.41)

The operator ˆ̃ξ(t) satisfies

〈 ˆ̃ξ†eff(t) ˆ̃ξeff(t′)〉 =

∫
dω

2π
ω2J eff(ω)f(ω)eiω(t−t′), (A.42)

〈 ˆ̃ξ†eff(t)ξ̂eff(t′)〉 =

∫
dω

2π
ωJ eff(ω)f(ω)eiω(t−t′). (A.43)
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Here we have neglected terms proportional to e−γkt and e−γkt
′
, following the same

arguments that led to Eqs. (A.33) and (A.34). In addition, we have made the approx-

imation
∑

k ε
n
k |κkp|2γk/[(ω − εk)2 + (γk/2)2] ≈ ωnJ eff(ω), which holds so long as γk

is sufficiently small that the replacement εk → ω in the numerator is valid. In this

limit, J eff(ω) reproduces J (ω) faithfully and therefore the above equations become

equivalent to Eqs. (A.11)–(A.16).

We note that in Eq. (A.37) we have considered only the contribution to the current

associated with the change in the lead energy, i.e. JE = −〈dĤL/dt〉. However, due to

the Lindblad damping, there is an additional term associated with the change in ĤSL,

i.e. the second term in Eq. (II.3.60). This term is of order O(γkκkp) and therefore

becomes negligible in comparison to the first term in the limit L→∞. Thus, currents

from the baths in the infinite bath configuration also become the same as currents

from the mesoscopic lead in this regime.

A.3 Quantum master equation

Finally, we briefly discuss the derivation of the quantum master equation. In the

limit of large lead size, L→∞, the energy spacing ek = εk+1 − εk → 0. So both the

lead-bath couplings κkp ∝
√
ek and the system-lead coupling γk = ek must tend to

zero in order to recover the continuum spectral density J (ω) (see the discussion below

Eq. (II.3.32)). In this limit, we derive a quantum master equation using perturbation

theory correct to O(ek). Following the standard procedure [242], and working in an

interaction picture with respect to the free Hamiltonian Ĥ0 = ĤS + ĤSL + ĤL + ĤB,

we obtain
d

dt
ρ̂(t) = −

∫ ∞

0

dt′TrB [ĤLB(t), [ĤLB(t− t′), ρ̂(t)ρ̂B]]. (A.44)

Here, the upper limit of the t′ integration is taken to infinity because we consider the

long-time limit, i.e. only the Born approximation and not the Markov approximation

is invoked in Eq. (A.44). In the interaction picture, the free evolution of the lead

operators is given by

âk(t) = eiĤ0tâke
−iĤ0t = e−iεktâk +O(κkp). (A.45)

Since Eq. (A.44) is already of order O(γk), we keep only the leading-order term in

Eq. (A.45). Straightforward manipulations then lead to the master equation given by
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Eq. (II.3.33). Note that the usual Lamb-shift Hamiltonian does not appear here due

to the flat spectral densities in Eq. (A.21).

The quantum master derived up to O(ek) is of the form

d

dt
ρ̂(t) = L(0)ρ̂+ L(1)ρ̂, (A.46)

where L(0) is the O(1) term of the Liouvillian, and L(1) is the O(ek) term of the

Liouvillian. The solution of this equation is

ρ̂(t) = e(L(0)+L(1))tρ̂(0), (A.47)

which has all orders of O(ek). Clearly, all orders of O(ek) are not accurate. Following

Ref. [326], it can be shown that the diagonal elements of ρ̂(t) in the eigenbasis of

the system Hamiltonian ĤS are correct to O(1) and error occurs at O(ek), whereas

the off-diagonal elements are correct to O(ek) and the error occurs at O(e
3/2
k ). Thus,

by reducing ek, i.e., by increasing the number of lead modes, it is possible to make

results from the quantum master equation arbitrarily close to those obtained from the

infinite-bath configuration.
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B Superfermion formalism for steady states in con-

figurations kept out of equilibrium

In this appendix we give further details the superfermion [263] steady state solution

of the master equation in Eq. (II.3.33) for a non-interacting system of size D coupled

a single mesoscopic lead of size L.

This open system has a quadratic generator L̂ = f̂ † L f̂ − η defined by the 2M × 2M

non-Hermitian matrix L where M = D + L. To compute its NESS we proceed

to diagonalise this matrix as L = V εV−1 to give a diagonal matrix ε of complex

eigenvalues εµ. These eigenvalues come in conjugate pairs and we shall denote the

half with Im{εµ} > 0 as set Ξ+ and the other half with Im{εµ} < 0 as Ξ−.

We identify the corresponding normal mode operators as ξ̂† = f̂ †V and χ̂ = V−1f̂ .

Although χ̂µ and ξ̂µ mix physical d̂k and ancillary modes ŝk via a similarity transfor-

mation, and so are not Hermitian conjugates of one another, they still obey canonical

anticonmmutation relations [327], e.g.

{χ̂µ, ξ̂†ν} = δµν1. (B.1)

The equations of motion for the normal mode operators follow from the commutator

with L̂ giving

[L̂, χ̂µ] = −εµχ̂µ, and [L̂, ξ̂†µ] = εµξ̂
†
µ, (B.2)

so in vector form the time-evolved mode operators are

ξ̂†(t) = ξ̂†eiεt and χ̂(t) = e−iεtχ̂. (B.3)

A defining property of the NESS is L̂ |ρ(∞)〉 = 0. Using this we compute the time-

evolution of the NESS when acted upon by a normal mode operator to obtain

e−iL̂tξ̂†µ |ρ(∞)〉 = e−iεµtξ̂†µ |ρ(∞)〉 , (B.4)
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and also

e−iL̂tχ̂ν |ρ(∞)〉 = eiενtχ̂ν |ρ(∞)〉 . (B.5)

For these time-evolved states not to diverge in time we require that ξ̂†µ |ρ(∞)〉 = 0

when µ ∈ Ξ+ and χ̂ν |ρ(∞)〉 = 0 when ν ∈ Ξ−. This pair of constraints is analogous

to those of a Fermi sea state |FS〉 where ĉ†j |FS〉 = 0 when mode j is occupied, and

ĉj |FS〉 = 0 when it is empty. Similarly for the left vacuum state |I〉 we get

〈I| ξ̂†µe−iL̂t = eiεµt 〈I| ξ̂†µ and 〈I| χ̂νe−iL̂t = e−iεµt 〈I| χ̂ν ,

implying the complementary constraints 〈I| ξ̂†µ = 0 when µ ∈ Ξ− and 〈I| χ̂ν = 0 when

ν ∈ Ξ+. Together these relations fully define the 2M × 2M matrix D of normal mode

two-point correlations of the NESS with elements

Dµν = 〈I| ξ̂†µχ̂ν |ρ(∞)〉 . (B.6)

We immediately see that Dµν = 0 whenever µ ∈ Ξ− and/or ν ∈ Ξ−. The case

µ, ν ∈ Ξ+ is then determined using Eq. (B.1) to find that Dµν = δµν . Hence in general

we have

Dµν = δµνΘ(Im{εµ} > 0). (B.7)

indicating that the set Ξ+ of normal modes are the unit filled Fermi sea of the NESS.

Using this result we can evaluate physical quantities such as the single-particle Green

function Gij(t, t
′) = 〈ĉ†i (t)ĉj(t′)〉 = 〈I|ĉ†i (t)ĉj(t′)|ρ(∞)〉 for the system S. Transforming

back from the normal modes we have

f̂ †(t) = ξ̂†eiεtV−1, and f̂(t) = Ve−iεtχ̂, (B.8)

and thus the Green function follows as

Gij(t, t
′) = 〈I|

[
f̂ †(t)

]
i

[
f̂(t′)

]
j
|ρ(∞)〉

=
∑

µ,ν

[
eiεtV−1

]
µi

[
Ve−iεt

′
]
jν
〈I|ξ̂†µχ̂ν |ρ(∞)〉 ,



B. SUPERFERMION FORMALISM 255

=
∑

µ,ν

[
Ve−iεt

′
]
jν
Dµν

[
eiεtV−1

]
µi
,

=
[
Ve−iεt

′
D eiεtV−1

]
ji
, (B.9)

where we have used that D is diagonal and the indices i, j = (L+ 1), . . . ,M give the

physical system S modes. This reduces to the NESS expectation value in Eq. (II.3.54)

once t = t′ = 0. The Fermi sea structure of the NESS allows Wick’s theorem to be

applied to breakup expectation values for high-order correlations into two-point ones,

for example

〈I| ξ̂†µχ̂ν ξ̂†τ χ̂σ |ρ(∞)〉 = 〈I| ξ̂†µχ̂ν |ρ(∞)〉 〈I| ξ̂†τ χ̂σ |ρ(∞)〉

+ 〈I| ξ̂†µχ̂σ |ρ(∞)〉 〈I| χ̂ν ξ̂†τ |ρ(∞)〉

− 〈I| ξ̂†µξ̂†τ |ρ(∞)〉 〈I| χ̂νχ̂σ |ρ(∞)〉 ,

leaving products of terms that can be readily evaluated using the NESS normal mode

constraints determined above.
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C Many fermionic sites

Another configuration of interest is a system composed of many fermionic sites, one

for which we can express the Hamiltonian as

ĤS =
D∑

j=1

εj ĉ
†
j ĉj −

D−1∑

j=1

tS

(
ĉ†j+1ĉj + H.c.

)
, (C.1)

where ĉ†j and ĉj are fermionic creation and destruction operators and D is the number

of sites in the system. We couple the leftmost and rightmost sites of this system to

mesoscopic reservoirs, as shown in Fig. II.3.6.

Given that our expressions for particle and energy currents in Eqs. (II.3.59) and

(II.3.60) are defined in terms of canonical operators in the leads, the corresponding

expressions for the case of a many-fermionic central system are equivalent to those of

a single-level system.

For a sufficiently large amount of sites in the central system, these operators can be

defined in terms of just system operators. Here, however, we will use the expressions

in Eqs. (II.3.59) and (II.3.60) which are general for any number of sites D.

We now evaluate whether the mesoscopic lead configuration can provide a good ap-

proximation of the continuum even if the central system is composed of many fermionic

sites. In a similar fashion as for the single-level system, in Fig. C1(a) we present the

particle current flowing from the left lead and into system as a function of the on-site

energy ε = εj for every site j. In our calculations we use the same macroscopic param-

eters as before, given by TL = TR = W/8 and µL = −µR = W/16. We fix the number

of energy modes in each lead to L = 50 and the number of sites in the central system

to D = 100. The Landauer-Büttiker calculations are done by evaluating Eq. (II.3.35)

using the transmission function obtained as described in Sec II.3.3.1. It can be ob-

served that for a fixed number of modes in the leads L and a fixed number of sites

in the central system D the approximation to the continuum limit using mesoscopic

reservoirs is robust to a wide range of on-site energies. The small oscillations that can

be observed near the band edges at |ε| ' |W ∗| are due to the logarithmic spacing of

modes. Furthermore, from Fig. C1(b), the same can be said when ε is fixed and tS is

changed to different values. Given that the energies in the central system are bounded

by −2tS and 2tS, the oscillations due to logarithmic discretisation are observed close
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Figure C1: Particle current from L-B and mesoscopic reservoir predictions flowing from
the left lead and into the system (a) as a function of the on-site energy (same parameter
for every site) for a central system with D = 100 sites and a fixed number of modes in
the leads L = 50, and (b) as a function of the hopping amplitude tS (same parameter for
every site). In panels (c) and (d) we fix every parameter and study the particle current as
a function of temperature and system-lead coupling, respectively. In these calculations we
used µL = −µR = W/16, TL = TR, Llog/L = 0.2 and W ∗ = W/2.

to tS ≈ W/2. The same observations hold for energy current in Figs. C1(a) and C1(b)

As a function of temperature, a similar behaviour as for the single-level system can

be observed. In particular, for particle current and energy current in Figs. C1(c) and

C1(c), respectively, the continuum is properly approximated with the exception of

the values of temperature that are lower than the minimum energy spacing of the

modes in the leads. For these small temperatures, the Fermi-Dirac distributions of

the leads resemble a Heaviside step function and the discontinuity can no longer be

well-captured by discrete and broadened energy modes. Following from our previ-

ous discussion for the single-level system, to obtain a better approximation at lower

temperatures one can either increase the number of total energy modes or decrease

the width of the window [−W ∗,W ∗]. The former choice comes with the cost of a

larger computational complexity, while with the latter one can then only provide a

good approximation of the continuum for a smaller range in the parameter space of

ε, tS, µL and µR. If these values are fixed, a good choice of [−W ∗,W ∗] can be used

to obtain better approximations at lower temperatures with its limit, as discussed for

the single-level system, related to the minimum value of ek in the linearly-discretised

region.

As a function of the system-lead coupling, the results are very robust to a wide range

of values as observed from Figs. C1(d) and C1(d). Because of the ballistic (coherent)

nature of transport in the central system, currents become independent of D in the
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Figure C1: Energy current from L-B and mesoscopic reservoir predictions flowing from
the left lead and into the system (a) as a function of the on-site energy (same parameter
for every site) for a central system with D = 100 sites and a fixed number of modes in
the leads L = 50, and (b) as a function of the hopping amplitude tS (same parameter for
every site). In panels (c) and (d) we fix every parameter and study the energy current as
a function of temperature and system-lead coupling, respectively. In these calculations we
used µL = −µR = W/16, TL = TR, Llog/L = 0.2 and W ∗ = W/2.

asymptotic regime.
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D CP symmetry

Here we prove that the energy current vanishes in the Heisenberg model described by

Eq. (II.3.85) under conditions of combined charge conjugation-parity (CP) symmetry.

The symmetry corresponds to a unitary transformation ĈP̂ , with the particle-hole

transformation Ĉ and the parity transformation P̂ .

In the bulk of the system, the parity and particle-hole transformations are respectively

defined by

P̂ ĉjP̂† = ĉD−j+1. (D.1)

Ĉĉj Ĉ† = (−1)j+1ĉ†j. (D.2)

The phase factor in Ĉ is defined so that particle excitations are mapped to hole

excitations with the same kinetic energy. The bulk Hamiltonian in Eq. (II.3.85) is

invariant under P̂ , i.e. P̂ĤSP̂ = ĤS, and also invariant under Ĉ so long as ε = −U .

The particle-hole transformation for the lead operators that is consistent with the

action of Ĉ in the bulk is of the form

Ĉâk,LĈ† = −â†L−k,L, (D.3)

Ĉâk,RĈ† = (−1)Dâ†L−k,R, (D.4)

while spatial reflection simply consists of the swap L↔ R. With these conventions, the

total Hamiltonian is invariant under P̂ if the left and right leads have identical spectra

εk and system-bath couplings κkp. The Hamiltonian is also invariant under Ĉ if the lead

spectra and couplings are symmetric around the centre of the band, i.e. εk = −εL−k
and κk,p = κL−k,p. Finally, the non-equilibrium forcing is CP-symmetric if the bath

temperatures are equal, TL = TR, and the chemical potentials are opposite, µL = −µR,
while the dissipation rates are invariant under spatial reflection and inversion about

the centre of the band, i.e. γk,L = γL−k,L = γk,R.

Under the above assumptions, the generator of the master equation is invariant under

a combined CP transformation and therefore so is the steady state, i.e. ĈP̂ ρ̂(∞)(ĈP̂)† =

ρ̂(∞). At the particle-hole symmetric point of the Hamiltonian, with ε = −U , the

bulk energy current operator (defined in Sec. II.3.5) is odd under a CP transformation,
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in the sense that ĈP̂ ĴE
j−1→j+1(ĈP̂)† = −ĴE

D−j→D−j+2. It follows that

〈ĴE
j−1,j+1〉 = 〈ĈP̂ ĴE

j−1,j+1(ĈP̂)†〉 = −〈ĴE
D−j,D−j+2〉, (D.5)

and therefore 〈ĴE
j−1,j+1〉 = −〈ĴE

j−1,j+1〉 = 0 because the mean current is homogeneous

in the steady state. Note that the particle current operator is even and therefore

is not constrained by CP symmetry. However, the particle density transforms as

ĈP̂n̂j(ĈP̂)† = 1 − n̂D−j+1, so that in a CP-symmetric steady state we have 〈n̂j〉 +

〈n̂D−j+1〉 = 1. In a ballistic regime with 〈n̂j〉 = const., we must therefore have

〈n̂j〉 = 0.5, consistent with the trend in Fig. II.3.18 at high temperature.
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