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Correlated electronic systems involve strong short-
range repulsion. At integer filling, the primary effect 
of correlation is the emergence of an insulating state 
where band theory predicts a metal. Understanding 
the transition from a metal to this ‘Mott insulator’, as 
interaction strength is increased, and the effect of 
doping the Mott state, are classic problems in quan-
tum many-body physics. They have been explored for 
decades, starting with the approximate solutions of 
Hubbard. The real breakthrough came in the 1990s 
with the advent of dynamical mean field theory, which 
mapped the correlated system to an embedded single 
site, and described the detailed spectral evolution 
across the Mott transition. The only deficiency in this 
approach is the neglect of spatial correlations, and, 
possibly, the lack of some ‘visual intuition’ about the 
transition. We discuss a complementary approach, 
which provides a reasonable description of Mott physics 
in a real-space setting and allows a certain degree of 
visualization. This article provides a pedagogical review 
of our approach and presents some illustrative results. 
 
Keywords: Correlated electron system, metal–insulator 
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Introduction 

Correlated electron systems define a frontier in con-
densed matter and materials physics1,2. Experimentally, 
many of the fascinating discoveries of the last 25 years, 
e.g. high Tc superconductivity in the cuprates3, ‘colossal 
magnetoresistance’ in the manganites4, the high thermo-
power cobaltates5, or the recently discovered pnictides6 
fall in this category. The theory of such materials is com-
plicated because it involves strongly coupled quantum 
degrees of freedom and the tools of band theory or per-
turbation theory do not allow much headway. Interaction 
effects have to be handled non-perturbatively, and the 
standard numerical tools for such treatment, while pro-
viding benchmarks, have several limitations. 
 Although every class of material involves its own  
detail, condensed matter theorists often home in on some 
simple model that captures the essential physics, and 
build back the details later. Prominent among these is the 
Hubbard model7,8 that describes the competition between 
electron delocalization (band-like character) and inter-
action-driven localization, i.e. a ‘Mott insulator’9. It is 

worth defining the model right at the outset to set the no-
tation and specify the parameter space. 
 

 † .ij i j i i i
ij i i

H t c c n U n nσ σ
σ

μ ↑ ↓
〈 〉

= − +∑ ∑ ∑  

 
Qualitatively, it describes electrons moving on a lattice 
and incurring a cost when two electrons (with up and 
down spin) are present on the same site. c† and c are elec-
tron ‘creation’ and ‘annihilation’ operators respectively. 
tij is the ‘hopping’ amplitude between sites located at Ri 
and Rj. We will assume the simplest case of tij = –t for 
nearest neighbour (NN) sites on a square lattice, and zero 
otherwise. ni is the local electron density operator, and μ 
the chemical potential. U > 0 is the ‘onsite’ repulsion and 
penalizes the simultaneous presence of up- and down-
spin electrons on the same site. We set t = 1. 
 The two parameters in the problem are electron density 
n = Nel/Nsite (where Nel is the number of electrons and Nsite 
the number of lattice sites) and the ratio U/t. When 
U/t ^ 1, one expects the effect of interactions to be per-
turbative, unless there is something unusual about the 
susceptibilities of the non-interacting system. For U/t p 1 
the system would try to avoid double occupancy, i.e. 
ni↑ni↓ ~ O(1). This restricts the mobility as the density 
n → 1, and promotes ‘local moment’ character in the 
electron system. At n = 1, one would obtain an electron 
localized phase, a ‘Mott insulator’, with vanishing d.c. 
conductivity and a gap in the electronic density of states. 
If we caricature the Mott insulator as essentially ‘site  
localized’ electrons, the arrangement of electron spins is 
decided by optimizing the kinetic energy from short-
range excursion. Parallel arrangement, for example, is 
bad since the Pauli principle would prohibit the hopping 
of an up-spin electron to a neighbouring up-spin site. 
Thus, antiferromagnetism is generally preferred, and for 
the simple square lattice with NN hopping one obtains a 
Neel ordered state. The situation where U/t p 1 and  
1 – n = x is small but finite is complicated, and is be-
lieved to be relevant to the physics of high-temperature 
superconductors3. 
 We will specialize to n = 1 and the NN hopping model 
on a square lattice to focus on specific issues. We may 
want to know: (i) the nature of the ground state, metallic 
or insulating, and its magnetic character as U/t is varied; 
(ii) the effect of increasing temperature at fixed U/t, i.e. 
the thermal physics across the magnetic or insulator–
metal transition and (iii) the effect of increasing U/t  
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remaining at some fixed finite temperature. In all these 
cases we would like to know measurable properties like 
magnetic structure, electronic density of states, resisti-
vity, optical conductivity, etc. 
 A great deal is known about these issues for the model 
we have chosen, accumulated over the years from exact 
diagonalization (ED)10, quantum Monte Carlo (QMC)11 
studies or via dynamical mean field theory (DMFT)12,13. 
The ED studies, unfortunately are severely size-limited 
(can access about size ~4 × 4) and are hard to push to  
finite temperature. QMC can access sizes ~10 × 10, but 
being an ‘imaginary time’ method, they do not yield 
spectral, transport or optical information readily. DMFT 
studies are by definition in the thermodynamic limit but 
lose information about spatial correlations. For the simple 
situation we discuss in this article, this can be remedied, 
but in lattices with geometric frustration, where complex 
magnetic order can arise, the limitation is real. Also, 
DMFT implementations often depend on ED or QMC and 
suffer the limitations described earlier14. 
 A method for correlated systems should ideally handle 
large spatial scales accessing inhomogeneous structures, 
capture not only the ground state but also the thermal 
physics, provide information on spectral properties and 
provide some visual intuition about the physics. This is a 
tall order, and the exact numerical tools in standard use 
often fail to meet many of these requirements. We feel 
that a method that has the features above is worth explor-
ing even if it is approximate. In what follows we discuss 
such an approach, essentially resurrecting ideas that go 
back four decades, to the work of John Hubbard15, and 
implement it via modern numerical tools. 

Formalism 

For the Hubbard model, the Hilbert space grows too 
quickly with system size for exact diagonalization on any 
large system. One, therefore, has to resort to some 
method that recasts the problem as effectively ‘non inter-
acting’. Such a decomposition was provided by Stratono-
vich16 and Hubbard17. The Hubbard–Stratonovich (HS) 
transformation maps the interacting electron problem to 
that of non-interacting electrons in a space–time fluctuating 
field. This is the starting point for many approximations18. 
 We would like to use this HS transformation in a form 
where the rotation invariance of the original Hubbard 
model is retained. This was discussed by Hubbard15, in 
his exploration of ferromagnetic order, and revisited by 
Schulz19 in the context of antiferromagnetism. The inter-
action term in the functional integral that describes the 
system can be written as: 
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ni is the electron density, iσ  the electron spin operator, 
and φi and im  are the scalar and vector auxiliary fields 
respectively. To recover the effect of the original Hub-
bard interaction one would have to solve the electron 
problem for all possible backgrounds { ( ), ( )}.i imφ τ τ  The 
partition function: 
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is now an integral over the Grassmann fields c and ,c  
and also the auxiliary fields im  and φi. 
 

 
0

cl

( ) ( )

[( ) . ] ,

i i
i

i i i i
i

c c H

i n m H

σ τ σ
σ

τ τ

φ μ σ

= ∂ +

+ − − +

∑

∑

L

 

 
where Hcl = 2 2( ) / .i i im Uφ∑ +  
 Full QMC calculations would retain the space–time 
dependence of the auxiliary fields on a small system, 
while DMFT would retain their dynamics at a single site. 
Our principal approximation is the neglect of dynamics 
for the auxiliary fields. We treat them as ‘classical’, i.e. 
static and time-independent20. This still allows the fields 
to fluctuate thermally at a given site at finite T, but  
suppresses the T = 0 quantum fluctuations. The static  
approximation has strengths and weaknesses that we dis-
cuss later. Further, we treat the scalar field φi at the  
saddle point level (i.e. ignore its thermal fluctuations). 
The saddle point value at half-filling exactly cancels the 
chemical potential (μ = U/2). 
 With the overall static approximation and the saddle 
point φi, the effective Hamiltonian is given by 
 

 † 2
eff . .

2 4i j i i i
ij i i

U UH t c c m mσ σ
σ

σ
〈 〉

= − − +∑ ∑ ∑  

 
The approximation has mapped on the original Hubbard 
problem to electrons coupled to (auxiliary) magnetic 
moments im . One sees the similarity to the ‘double  
exchange model, or the classical Kondo lattice21. For a 
given im  configuration, the electron problem is quadratic 
and the Hilbert space scales linearly with lattice size. 
 What decides the relevant { }im  configurations? Nei-
ther the magnitude nor the orientation of im  is a priori 
given. If Heff is the Hamiltonian for the composite ‘elec-
tron + im ’ system, the Boltzmann weight for the im s 
themselves can be obtained by tracing over the electrons. 
Formally: 
 

 eff
†,

1{ } e .H
i c cP m Tr

Z
β−=  
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{ },iP m  unfortunately, is not analytically calculable when 
U/t is large. 
 To generate the ‘equilibrium’ configurations, governed 
by { },iP m  we use a real-space Monte Carlo (MC) tech-
nique. We start with a configuration of im  with random 
magnitudes and orientation at high T. We then attempt an 
update im → im′  at site Ri. The energy 
 
 eff

†,log e H
c cT Tr β−= −E  

 
is computed before and after the attempted update, and 
ΔE = { } { }i im m′−E E  is compared to kBT in the Metropolis 
spirit. 
 Since a single diagonalization costs O(N3), a MC 
sweep over the lattice would cost ~N4, prohibitive for a 
large lattice. Algorithms have been developed to speed up 
the process. We make a cluster approximation for esti-
mating the update cost22. ΔE is calculated by diagonaliz-
ing a small cluster (of Nc sites, say) around the reference 
site (Figure 1), rather than the full lattice (of N sites). The 
MC was done for lattice of size N = 24 × 24, with clusters 
of size Nc = 8 × 8. The exact diagonalization of the clus-
ters handles the effect of the large U accurately. 
 While the annealing is done based on the cluster algo-
rithm, physical properties are computed over the whole 
lattice. We calculate the thermal average of the structure 
factor S(q) = 2

.( )1 . e i ji
ij i jN

m m −∑ 〈 〉 q R R  at each tempera-
ture, which serves us as the order parameter of the mag-
netic transition. Using this we can locate the magnetic 
transition Tc. The electronic properties like density of 
states and transport are computed and averaged over 
equilibrium configurations of { }.im  
 
 

 
 
Figure 1. Schematic of the cluster-based Monte Carlo update. The 
‘spins’ represent the auxiliary local moments .im  The electrons move 
in the background defined by these variables, and each update, in prin-
ciple, requires diagonalization of the entire electronic Hamiltonian. If 
we are updating the moment at the centre of the top right green square, 
we diagonalize the electron Hamiltonian only on the green cluster. 
Similarly, for any other update site (bottom left, say). This dramatically 
reduces the computational cost, and makes the overall cost O(N), rather 
than O(N4), where N is the system size. 

Results 

Phase diagram 

We illustrate the usefulness of this method in the much 
studied case of the two-dimensional square lattice Hub-
bard model10–12. We will comment on effects that arise in 
more complex ‘frustrated’ lattices at the end. 
 Figure 2 shows the U–T phase diagram of this model 
obtained via the Monte Carlo implementation of the aux-
iliary field scheme. It is well known that the ground state 
in this bipartite lattice is antiferromagnetically ordered at 
all U. The weak U ordering is driven by a divergent sus-
ceptibility χ0(Q), at Q = {π, π}, arising from the nested 
Fermi surface. This smoothly crosses over to the strong 
coupling ordered phase which is essentially a nearest 
neighbour Heisenberg antiferromagnet with Neel order, 
i.e. again at Q = {π, π} but with a larger moment. This 
answer can be derived from Hartree–Fock theory, and 
arises naturally as the temperature T = 0 limit of our 
scheme. 
 While the ground state can be readily captured by 
mean field theory (MFT), and MFT results agree qualita-
tively with QMC-based estimates, the transition tempera-
ture beyond weak coupling crucially involves the effect 
of fluctuations. At large U, the auxiliary moments remain 
more or less fixed in magnitude as T increases, but they 
have angular fluctuations controlled by a scale J ~ t2/U. 
MFT misses this scale, whereas our implementation retains 
it, enabling us to capture the correct Tcorr in Figure 2. 
 The identification of metallic or insulating regimes in 
the phase diagram is based on our study of the resistivity, 
 
 

 
 
Figure 2. Phase diagram of the square lattice Hubbard model, with 
nearest neighbour hopping, at half-filling. There is no genuine mag-
netic transition in two dimensions, so we indicate the boundary  
between the paramagnetic phase and the antiferromagnet (AF) as a 
‘correlation temperature’ Tcorr, where the correlation length becomes 
comparable to system size. The AF phase is always insulating while the 
paramagnetic phase could be metallic or insulating. The two dotted 
lines indicate cross-sections that we discuss in detail in the text. 



SPECIAL SECTION: CONDENSED MATTER PHYSICS 
 

CURRENT SCIENCE, VOL. 103, NO. 5, 10 SEPTEMBER 2012 521

ρ(T), shown in Figure 3. The resistivity shows insulating 
character at low T, in the antiferromagnetic (AF) phase, 
for all U, but a crossover to metallic behaviour at higher 
T when U é 2.5. There is a small window of paramag-
netic insulating behaviour at small U, but this window 
widens rapidly with increasing U, and for U á 3 there is 
no paramagnetic (PM) phase. 

The thermal transition 

Let us focus on U = 4, where Tcorr ~ 0.15, to highlight 
how temperature affects physical properties. We examine  
 
 

 
 

Figure 3. Temperature dependence of resistivity at different U. This 
‘d.c. resistivity’ has a low temperature upturn at all U, indicating an  
insulating ground state. At low U, the resistivity has a crossover from 
insulating (dρ/dT < 0) to metallic (dρ/dT > 0) behaviour with increas-
ing T. This occurs at a temperature slightly higher than Tcorr, see Figure 
2. For U á 2.5, however, there is no ‘metallic state’ at moderate T. 
 

 
 

Figure 4. The distribution P(m) of the magnitude of the auxiliary 
moment im  averaged over sites and over Monte Carlo configurations 
at three different temperatures. The distribution should ideally be a 
delta function as T → 0. It broadens progressively, and the mean value 
also increases as T increases. 

the im  distribution first, since this field dictates elec-
tronic properties. At low temperature mi = | im | is essen-
tially the same at all sites, whereas the orientation 
alternates. The distribution P(m) = ( )i im mδ〈∑ − 〉  at low 
T should be sharply peaked. The angular brackets denote 
thermal average. Figure 4 bears this out at T = 0.02. At 
higher T ~ 0.10, still in the ordered phase, the mean value 
of mi has increased but the distribution is also much 
broader. A single valued mi with rigid AF correlation 
would of course have led to a more insulating state, but 
the high degree of amplitude fluctuation and loss of ori-
entational correlation (Figure 5 below) actually weakens 
the insulating state. P(m) at T = 0.20 has an even greater 
mean, but the broadening too is larger. Overall, in this  
intermediate U situation, increasing T tends to increase 
the typical magnitude of ,im  but there is a rapid growth 
of amplitude fluctuations. What about angular fluctua-
tions with increasing T? 
 Figure 5 shows snapshots of the ‘classical background’ 
that the electrons encounter. The top row shows typical 
maps of mi at T = 0.02, 0.10, 0.20 (left to right). Remem-
ber these are individual thermal configurations, and  
control electronic properties. The second row shows the 
angular correlation map for the im  configuration. We 
plot the overlap 0. ,i im mα =  where 0m  is a fixed refer-
ence spin. The bottom row shows the magnetic structure 
factor S(q) associated with the im  configuration. This is 
meant to highlight the wavevector at which the moments 
correlate. 
 
 

 
 
Figure 5. Snapshots of the auxiliary field and its correlations. Top 
row: mi = | ;| im  middle row: αi = 0

. ,im m  where 0m  is a fixed refer-
ence spin; bottom row: S(q) = 2 . ..exp( ( ))i ji jijN m m iq− ∑ −R R  The 
spatial maps are on a 24 × 24 lattice, S(q) is plotted between 0 and 2π 
on each axis. Temperatures along the row are T = 0.02, 0.10, 0.20. 
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 At low T, the mi snapshot is more or less homogeneous, 
with a mean value ~0.7. The associated αi map shows  
alternating (Neel) pattern and S(q) has a strong peak at 
{π, π}. This is roughly the MF ground state. For the mid-
dle column, T = 0.10, about 0.7Tcorr. The mi mean is lar-
ger as P(m) had indicated, but there is significant spatial 
fluctuation in mi and the angular correlations show a  
domain pattern. On the right column, T = 0.20 ~ 1.3Tcorr, 
the magnitude and angular fluctuations are even stronger 
and ‘long-range order’ is lost. There is still a diffuse scat-
tering peak in ( )S q  arising from short-range correlations. 
 Figure 6 shows the impact of thermal fluctuations on 
the density of states (DOS). The low T result shows the 
clean gap and sharp gap edge features expected from  
a Neel ordered background. With increasing T we see a 
narrowing of the gap and at T = 0.20 there is only a pseu-
dogap in the spectrum. This transfer of spectral weight  
to low energies is driven by the increasing disorder in  
the im  background, but the gap does not close due to the 
relatively large value of mean mi. We have not shown  
the resistivity at U = 4 since it is too large for the scales 
in Figure 3, but it shows a monotonic fall with increasing T. 

Interaction-driven Mott transition 

The thermal transition that we discussed was related to 
the loss of magnetic order, the electronic properties con-
tinued to be insulating throughout. Also, since the ground 
state is always insulating, we cannot probe a metal–
insulator transition (MIT) there with increasing U. How-
ever, at finite temperature there exists a PM phase, and 
we wish to understand the effect of increasing correla-
tions starting with this finite T metal. 
 Figure 7 shows the evolution of the background fields 
as U increases at T = 0.10. We wish to probe the change 
in physical properties across the horizontal line in Figure 
2, going from the paramagnetic metal to the AF corre-
lated insulator. We have done a similar scan at T = 0.20 
 

 
 
Figure 6. Density of states at U = 4, showing the thermal evolution. 
Note that although the mean mi increases with T, the low T gap gradu-
ally closes with increasing T due to the strong disorder in .im  

which goes from a paramagnetic metal to the paramag-
netic (Mott) insulator, but cannot discuss that here due to 
space constraints. The principal observation in Figure 7 is 
the increase in the typical value of mi and decrease in the 
site-to-site fluctuation as U increases. In parallel, the an-
gular correlations become more prominent with increase 
in U, evolving from a short-range correlation at U = 2 to 
a progressively better AF ordered state for U ≥ 3. The 
correlation length ‘diverges’ between U = 2 and U = 3. 
Figure 8 shows the P(m) at T = 0.10 as U is increased. It 
clearly bears out the trend in the spatial plots about the 
mean and variance of mi. What is the impact of this 
changing background on electronic properties? 
 Figure 9 shows the density of states and optical con-
ductivity as U is increased. First the density of states. In 
response to the increase in the typical value of mi, there is 
progressive transfer of spectral weight away from the 
Fermi level (ω = 0) to the wings. U = 2 shows a weak 
pseudogap, U = 3 a much stronger dip (with vanishing 
DOS at εF), while U = 4, 5 has a clear gap in the spec-
trum. U = 3 onwards one can speak of the presence of 
Hubbard bands in the system. 
 The optics similarly shows a Drude feature at U = 1 
and gapped character for U á 3, but the most interesting 
result is for U = 2. Here the ω = 0 conductivity is finite, 
so the system is a metal, but σ (ω) has a peak at finite fre-
quency. The low value at ω = 0 arises from the depleted 
DOS (top panel), and the finite frequency peak is crudely 
correlated with the separation between the two peaks in 
the DOS data. This bump in σ (ω) evolves into the ‘inter 
Hubbard band’ transition at large U. 

Discussion 

Within the static approximation our numerical method is 
quite accurate. The static approximation itself is quite  
effective in capturing most physical effects for the half-
filled square lattice case that we have considered. So, in 
this particular case the corrections arising from the dyna-
mics of im  would be mostly quantitative. However, there 
are situations, notably magnetically frustrated lattices23, 
and of course deviation from half-filling, where quantum 
fluctuations of im  would be crucial. In what follows we 
mainly discuss the issues at half-filling on frustrated  
lattices. 
 There are broadly two shortcomings: (a) the poor  
description of a magnetically unordered metal, and (b) 
the description of geometrically frustrated insulators. 
 First (a). On structures which frustrate antiferromag-
netic order, for example, the triangular or FCC lattice, the 
static method yields a ground state with mi = 0 for 
U < Uc, where Uc depends on the lattice type. This is poor 
on two counts. (i) For U < Uc, it completely misses the 
‘high energy’ effects associated with U, e.g. the forma-
tion of Hubbard satellites, and just yields the tight 
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Figure 7. Snapshot of the im configuration at T = 0.10 for U = 2, 2, 3, 5. Top: auxiliary moment magnitude mi. Bottom: the angular 
correlation αi (see text). The electrons see these as typical configurations as the system evolves from a correlated metal to an antiferro-
magnetic insulator. 

 

 

 
 
Figure 8. The P(m) distribution, showing an increase in the mean, 
and progressive narrowing as U is increased. 
 
 
 
binding result. (ii) It misses the renormalization of the 
low-energy physics (Fermi liquid corrections like enhance-
ment of effective mass, etc.) arising from Kondo like 
physics. 
 For (b), magnetism in geometrically frustrated insula-
tors, the method yields the ground state of a classical 
model of the form . ,ij i jJ m m  where Jij is a short-range  
interaction. On a triangular lattice, for example, this 
would generate a 120° phase, while the full quantum cal-
culation suggests a spin liquid. The role of quantum fluc-
tuations in destroying magnetic order in frustrated S = 1/2 
systems is not captured by this approach. 

 
 
Figure 9. Indicators for the metal–insulator transition as U varies 
from 1 to 5 at T = 0.10. Top: the density of states, showing the evolu-
tion from an essentially tight binding DOS at U = 1 to the gapped state 
at U = 5, through a pseudogap regime. Bottom: the optical conductivity 
σ (ω), showing the evolution from a Drude response at U = 1 to a ‘bad 
metal’ response at U = 2, and then a gapped feature for U á 3. 
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Conclusion 

We have discussed a real-space approach to correlated 
electron systems, illustrating it in the case of metal–
insulator transition in the two-dimensional Hubbard 
model. The approach, we feel, is intuitive, reproduces 
most benchmarks, and is tractable with computational re-
sources available today. Generalization to more complex 
phases and models is the subject of ongoing research. 
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