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Double perovskites (DPs) of the form A2BB′O6 usually involve a transition metal ion,
B, with a large magnetic moment, and a nonmagnetic ion B′. While many DPs are fer-
romagnetic, studies on the underlying model reveal the possibility of antiferromagnetic
(AF) phases as well driven by electron delocalization. In this paper we present a com-
prehensive study of the magnetic ground state and Tc scales of the minimal DP model
in three dimensions using a combination of spin-fermion Monte Carlo and variational
calculations. The effective magnetic lattice in three dimensions is face centered cubic
(FCC) and so geometrically frustrated. This promotes noncollinear spiral states and
“flux” like phases in addition to collinear AF order. We map out the possible magnetic
phases for varying electron density, “level separation” ǫB − ǫB′ , and the crucial B′B′

(next neighbour) hopping t′.

Keywords: Double perovskite; double exchange; geometric frustration; noncollinear
magnetism.

1. Introduction

Double perovskites (DPs) constitute a large family of materials1,2 with molecu-

lar formula A2BB
′O6, where A is an alkali or alkaline earth metal, and B and

B′ are typically transition metals. Although DPs have been studied for decades,3

the discovery of high Tc ferromagnetism and half-metallicity in Sr2FeMoO6 has led

to renewed interest in their properties. Later, in a number of explorations it was

discovered that these materials are candidates for various technological applica-

tions, e.g., in spintronics4 (Sr2FeMoO6), magneto-dielectrics5,6 (La2NiMnO6), and

magneto-optics7 (Sr2CrOsO6,Sr2CrReO6). Their properties are determined by the

couplings on the B and B′ ions, the B and B′ valence state, and the structural order

in the B–B′ lattice.
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The magnetism in the DP’s arises from a combination of (i) Hund’s coupling

on the B, B′ ions and (ii) electron delocalization. While there are important DP’s

where both B and B′ are magnetic ions, in the current work we will restrict ourselves

to materials where only one ion, B, say, is magnetic. For example, in Sr2FeMoO6

(SFMO) the B atom (Fe) is magnetic while B′ (Mo) is nonmagnetic.8 Even in this

restricted class, a large variety of compounds can be realized by taking 3d, 4d or

5d transition metals as B and B′, and alkaline earths or rare-earths as A. These

lead to a variety of properties, e.g., high Tc ferro(or ferri) magnetism (FM), with

half-metallic9,10 or insulating11 behavior.

There have been several attempts at a theoretical understanding of the mag-

netism in these materials. These consist of (i) ab initio electronic structure calcula-

tions, and (ii) model Hamiltonian based approaches. The ab initio calculations6–8

provide material specific information about the electronic structure and allow a

rough estimate12 of the Tc. Unfortunately, these calculations are rather complicated

for noncollinear magnetic phases that are likely in a frustrated magnetic lattice, see

Fig. 1 (we discuss the frustration aspect in detail later). In such situations model

Hamiltonian studies can provide some insight on possible ordered states.

Early model calculations for DP’s used dynamical mean field theory (DMFT) to

estimate Tc and the magnetic stability window,13,14 focusing on FM. Earlier work

on the classical Kondo lattice15–18 had revealed that variation in carrier density can

lead to a wide variety of phases in a spin-fermion problem. Indeed, calculation19

in a two dimensional (2D) model of DP’s confirmed the existence of AF metallic,

albeit collinear, phases. Ab initio calculations have confirmed the possibility of

collinear AF metallic phases in realistic three dimensional (3D) situations.20 The

Fig. 1. (Color online) The structure of B–B′ lattice in an ordered DP. The B and B′ alternate
(as in rock-salt) in the ordered structure. If the bottom corner (blue) atom is B, then its B nearest
neighbors (connected by blue lines) are also nearest neighbors of each other. The triangles preclude
a “G-type” AF phase.
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Fig. 2. (Color online) Magnetic ground state for varying electron density, n, and effective B–B′

level separation, ∆. Left: phase diagram with only BB′, i.e., nearest neighbour, hopping. Right:
phase diagram when an additional B′B′ hopping, t′/t = −0.3, is included. The labels are: F
(ferromagnet), A (planar phase), C (line like), FL (“flux”) and SP (spiral). This figure does not
show the narrow windows of phase separation (PS) in the model. The phase diagrams are generated
via a combination of MC and variational calculations on lattices of size upto 20× 20 × 20.

“frustrated” character of the 3D DP lattice raises the intriguing possibility of doping

driven noncollinear magnetic phases as well. Our study aims to explore this issue

in detail.

Our main results are the following. Using a combination of Monte Carlo (MC)

and variational minimization, we map out the magnetic ground state (Fig. 2) at

large Hund’s coupling for varying electron density and B–B′ level separation. In

addition to FM, and collinear A- and C-type order, the phase diagram includes

large regions of noncollinear “flux” and spiral phases and windows of PS. Modest

B′B′ hopping leads to significant shift in the phase boundaries, and “particle-hole

asymmetry”. We provide estimates of the Tc of these nontrivial magnetic phases.

The paper is organized as follows. In Sec. 2 we describe the model and methods,

Sec. 3 describes our results in the particle-hole symmetric case (t′ = 0), and Sec. 4

describes the effect of finite t′. Section 5 discusses some issues of modeling the real

DP. Section 6 concludes the paper.

2. Model and Method

Previous study of DPs in two dimensions19 revealed three collinear phases, namely

FM, a diagonal stripe phase (FM lines coupled antiferromagnetically) and a “G-

type” phase (up spin surrounded by down and vice versa). In 2D the B sub-lattice

is square and bipartite, so there is no frustration. In a 3D simple cubic B lattice

the counterparts of the 2D phases would be FM, A-type (planar), C-type (line like)

and G-type. The magnetic B ion lattice in the DP’s is, however, FCC which is
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nonbipartite, so while one can construct FM and planar A-type phases, the C-type

phase is modified and the G-type phase cannot exist.

Figure 1 briefly indicates why it is impossible to have an “up” (↑) B ion to

be surrounded by only “down” (↓) B ions, i.e., the G-type arrangement. Two B

neighbors of a B ion are also neighbors of each other, frustrating G-type order. The

suppression of the G-type phase, which occupies a wide window in 2D, requires us

to move beyond collinear phases in constructing the phase diagram for 3D. We will

discuss the variational family in Sec. 2.3.

2.1. Model

The alternating arrangement of B and B′ ions in the ordered cubic DPs is shown

in Fig. 1. We use the following one band model on that structure:

H = ǫB
∑

i∈B

f †
iσfiσ + ǫB′

∑

i∈B′

m†
iσmiσ − µN̂ − t

∑

〈ij〉

f †
iσmjσ

+ J
∑

i∈B

Si · f †
iασαβfiβ . (1)

The f † corresponds to the B ions and the m† to the B′. ǫB and ǫB′ are “onsite”

energy on the B and B′ sites, respectively, e.g., the t2g level energy of Fe and Mo

in SFMO. µ is the chemical potential and N̂ =
∑

iσ(f
†
iσfiσ +m†

iσmiσ) is the total

electron number operator. t is the hopping amplitude between nearest neighbor B

and B′ ions. We augment this model later to study first neighbor B′B′ hopping t′

as well. J is the (Hund’s) coupling between the B core spin and the f conduction

electron. We will use |Si| = 1, and absorb the magnitude of S in J . σµ
αβ are the

Pauli matrices.

The model has parameters J , ǫB, ǫB′ and µ (or n). Since only the level difference

matters, we set ǫB′ = 0. We have set t = 1, and use J/t ≫ 1 so that the conduction

electron spin at the B site is slaved to the core spin orientation. However, to keep

the effective level difference between B and B′ sites finite we use the parameter

∆ = ǫB − J/2, and explore the phases as a function of n and ∆/t. We will present

results for t′/t = 0 and ±0.3.

A schematic for the levels is shown in Fig. 3. The structural unit cell of the

system has two (one B, one B′) atoms, which amounts to four atomic levels (two

up spin, two down spin). The two spin levels at the B site are separated by JS and

overlap with two spin degenerate levels of the B′ site at ǫB′ = 0. We take the large

J limit, and take ǫB = J/2 + ∆ with ∆ in the range (0–10). One B band become

centered at ∆ and second goes to JS + ∆. In this situation the down spin B and

two B′ bands overlap while up spin B band is always empty. The relevant electron

density window includes the lowest three bands, so our electron density will be in

the range [0, 3].

To get a general feel of the band structure of the particle hole symmetric case,

we notice that we have three levels (excluding the highest f↑ level at JS+∆ which
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Fig. 3. (Color online) Level scheme and schematic band structure for the DP model when only
B–B′ hopping is allowed. The arrows denote localized atomic levels. Red and blue denote ↑ and
↓ spins respectively. The atomic level scheme is shown in (a). where the spin degenerate B′ levels
are at ǫB′ = 0 and the spin split B levels are at ǫB ± JS/2. We define the effective B level as
∆ = ǫB − JS/2. When JS ≫ t, the levels at ǫB′ and ∆ hybridize to create bands, shown for the
FM case in (a), and for a collinear AF phase in (b).

remains empty and is redundant for our purpose) in atomic limit. These include one

spin slaved f↓ level at ∆, and the twom↑, m↓, levels which overlap with the f↓ levels

depending on the spin configurations. This overlap leads to electron delocalization

and band formation.

In the ferromagnetic case, Fig. 3(a), only one spin channel (say m↓) gets to

delocalize through f sites and forms two bands, separated by a band gap of ∆,

while other spin channel (say m↑) is localized at 0.

Fig. 4. (Color online) Left: Spin configuration for “A-type” order. The spins are parallel within
the 111 planes (shown) and are anti-parallel between neighboring planes. Right: The differently
colored bands show the electron delocalization pathway for up and down spin electrons in the
A-type phase. The delocalization is effectively 2D.
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For collinear AF configurations, the rough band scheme is as shown in Fig. 3(b).

The conduction path gets divided into two sub-lattices, such that each spin channel

gets to delocalize in one sub-lattice (in which all the core spins point in same

direction, making the sub-lattice ferromagnetic.) See Figs. 4 and 5 for the details of

the conduction path. In one such sub-lattice, only one of the ↑ or ↓ is delocalized,

the other remains localized. The roles of ↑ and ↓ are reversed in going from one

sub-lattice to other, as a result one gets spin-degenerate localized and dispersive

bands for AF phases.

Fig. 5. (Color online) Left: Spin configuration in the “C-type” phase. Core spins are parallel on
alternating 110 planes, and anti-parallel on neighboring planes. Right: the delocalization path,
consisting of the 110 planes and the horizontal 001 planes.

Fig. 6. (Color online) Spin configuration for a typical spiral phase (left) and the “flux” phase
(right). Since the spin configurations are noncollinear the electrons delocalize over the whole
system.
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2.2. Monte Carlo method

The model involves spins and fermions, and if the spins are “large”, 2S ≫ 1,

they can be approximated as classical. This should be reasonable in materials like

SFMO where S = 5/2. Even in the classical limit these spins are annealed variables

and their ground state or thermal fluctuations have to be accessed via iterative

diagonalization of the electronic Hamiltonian. We use a “traveling cluster” Monte

Carlo (MC) method where the cost of a spin update is estimated via a small cluster

Hamiltonian instead of diagonalizing the whole system.21

We typically use a 12×12×12 system with the energy cost of a move estimated

via a 43 cluster built around the reference site. We principally track the magnetic

structure factor

S(q) =
1

N2

∑

r,r′

〈Sr · Sr′〉eiq·(r−r′) , (2)

where 〈· · ·〉 denote thermal average.

Although the magnetic lattice is FCC, the electrons delocalize on the combined

B–B′ system which is a cubic lattice. Hence we define our wave-numbers q with

respect to the full B–B′ lattice. As a result even a simple state like the ferromagnet

corresponds to peaks at q = (0, 0, 0) and q = (π, π, π) and not just q = (0, 0, 0).

This is because the spin field is also defined on B′ sites and it has to have zeros on

these sites.

This complication, and the possibility of spiral phases, etc, mean that (i) there

are multiple q values which could be significant at low temperature, and (ii) the

S(q) peaks could be small even in the ordered state. Combined with the intrinsic

noise in MC data (which is enhanced due to a complex energy landscape, discussed

later) it is sometimes difficult to identify complicated ordered phases. Therefore, to

complement the MC results we have also used the following variational scheme.

2.3. Variational scheme

We explore a set of magnetic states, comparing their energy to locate the minimum

within that family for a fixed set of electronic parameters. We use:

Sr = pr(x̂ sin θr cosφr + ŷ sin θr sinφr + ẑ cos θr) , (3)

where θr = qθ · r and φr = qφ · r with pr = 1 if r ∈ B and pr = 0 if r ∈ B′. x̂, etc,

are unit vectors in the corresponding directions.

The vector field Sr is characterized by the two wave-vectors qθ and qφ.

For a periodic configuration, these should be qθ = (2π/L)(q1, q2, q3) and qφ =

(2π/L)(p1, p2, p3), where qi’s and pi’s are integers, each of which take L values in

{0, 1, 2, 3, . . . , L − 1}. There are ∼ L6 ordered magnetic configurations possible,

within this family, on a simple cubic lattice of linear dimension L.

The use of symmetries, e.g., permuting components of qθ, etc, reduces the num-

ber of candidates somewhat, but they still scale as ∼ L6. For a general combination
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of qθ,qφ the eigenvalues of H cannot be analytically obtained because of the non

trivial mixing of electronic momentum states. We have to resort to a real space di-

agonalization. The Hamiltonian matrix size is 2N (= 2L3) and the diagonalization

cost is ∼ N3. So, a comparison of energies based on real space diagonalization costs

∼ N5, possible only for L ≤ 8.

We have adopted two strategies: (i) we have pushed this “qθ,qφ” scheme to large

sizes via a selection scheme described below, and (ii) for a few collinear configu-

rations, where Fourier transformation leads to a small matrix, we have compared

energies on sizes ∼ 4003.

First, scheme (i). For L = 8 we compare the energies of all possible phases, to

locate the optimal pair {qθ,qφ}min for each µ. We then consider a larger system with

a set of states in the neighborhood of {qθ,qφ}min. If we consider ±π/L variation

about each component of qθ,min, etc, that involves 36 states. The shortcoming of

this method is that it explores only a restricted neighborhood, dictated by the small

size result. We have used L = 12, 16, 20 within this scheme.

The phases that emerge as a result of the above process are (i) Ferromagnet

(FM), (ii) A-type, (iii) C-type, (iv) “flux”, and (v) three spirals SP1, SP2, SP3.

A-type consists of (1, 1, 1) FM planes with alternate planes having opposite spin

orientation (see Fig. 4 left panel). If we convert each of these planes to alternating

FM lines, so that the overall spin texture is alternating FM lines in all directions,

we get C-type phase (see Fig. 5).

The “flux” phase is different from the spiral families described using period

vectors qθ, qφ. It is the augmented version of “flux” phase used in cubic lattice

Table 1. Candidate phases, the associated qθ, qφ, for the spirals, and the peak
locations in the structure factor S(q). All the q components have the same satu-
ration value, given by 1/2Np, where Np is the number of nonzero q peaks in the
S(q). Np = 2 for FM, A and C, Np = 4 for ↑↑↓↓ and SP1, Np = 6 for flux and
Np = 8 for SP2 and SP3. The factor of 1/2 comes as we have half the spins at
zero value, which halves the normalization.

Phase Peak location in S(q)

FM (0, 0, 0), (π, π, π)

A-type
(

π
2
, π
2
, π
2

)

,
(

3π
2
, 3π

2
, 3π

2

)

C-type (0, 0, π), (π, π, 0)

Flux (π, 0, 0), (0, π, 0), (0, 0, π)

(π, π, 0), (π, 0, π), (0, π, π)

↑↑↓↓ phase
(

π
2
, 0, 0

)

,
(

3π
2
, 0, 0

)

,
(

π
2
, π, π

)

,
(

3π
2
, π, π

)

SP1: qθ =
(

0, π
2
, π

)

, qφ = 0
(

0, π
2
, π

)

,
(

π, π
2
, 0

)

,
(

0, 3π
2
, π

)

,
(

π, 3π
2
, 0

)

SP2: qθ =
(

0, π
2
, π

) (

0, π
2
, π

)

,
(

π, π
2
, 0

)

,
(

0, 3π
2
, π

)

,
(

π, 3π
2
, 0

)

qφ =
(

0, π
2
, 0
)

(0, 0, π), (π, 0, 0) + (π, π, 0) + (0, π, π)

SP3: qθ =
(

0, π
2
, π

) (

0, π
2
, π

)

,
(

π, π
2
, 0

)

,
(

0, 3π
2
, π

)

,
(

π, 3π
2
, 0

)

qφ =
(

π
2
, 0, π

2

) (

π
2
, π
2
, 3π

2

)

,
(

3π
2
, 3π

2
, π
2

)

,
(

π
2
, 3π

2
, 3π

2

)

,
(

3π
2
, π
2
, π
2

)
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double exchange model by Alonso et al. (Table 1 of Ref. 17). It has spin-ice like

structure, and is described by:

S(r) =
p(r)√

3
((−1)y+z, (−1)z+x, (−1)x+y)

The spiral SPn phases are characterized by commensurate values of qθ,qφ (See

Table 1 for details of periods and the S(q) peaks).

The simplest, SP1 can be viewed as π/2-angle pitch in the (110), (101) and

(011) directions. The other two spirals SP2, SP3 are respectively C-type and A-

type modulations upon SP1. Just as flipping alternate 1, 1, 1 planes in a FM leads

to the A-type phase, flipping the spins in the (111) planes alternatively in SP1,

leads to SP3. Analogously, flipping FM lines in a FM and leads to C-type order

and a similar exercise on SP1 leads to SP2. This modulation is also seen in the

S(q) peaks of SP2 and SP3. See the Table 1, where all the three spirals have four

S(q) peaks common, and SP2 and SP3 possess extra S(q) peaks of the A-type and

C-type correlations.

In scheme (ii) we take collinear phases from the phase diagram via MC and vari-

ational scheme (i), and compare them on very large lattices. This does not require

real space diagonalization. The simple periodicity of these phases leads to coupling

between only a few |k〉 states. The resulting small matrix can be diagonalized for

the eigenvalues and these summed numerically. We also did it for the “flux” phase,

where the resulting matrix is a bit larger, but still it gets us access to eigenvalues

for the “flux” phase on large lattices. The details of this calculation, and the the

magnetic phase diagram from comparison of FM, A, C and flux phases at large

lattice size are discussed in Appendix A. Where the collinear phases (and “flux”)

seem to dominate the phase diagram we compute phase boundaries by calculating

the energy on very large lattices.

3. Results: Particle-Hole Symmetric Case

The electrons move on the cubic lattice divided into two FCC sub-lattices each

of which accommodate B and B′ sites. For each of these sub-lattice, one can

define particle-hole transformation22 for B and B′ sub-lattices as fi → f †
i and

miσ → −m†
iσ. This transforms the Hamiltonian as Hparticle(∆, t, t′) − µN →

Hhole(−∆, t,−t′) − (µ − ∆)N . When t′ = 0, this simplifies to H(∆, t) − µN →
H(−∆, t)− (µ−∆)N which reflects in the phase diagram as the repetition of the

phases after half-filling. Introducing the t′ hopping destroys this symmetry, but a

reduced symmetry still remains relating (∆, t, t′) → (−∆, t,−t′), which is reflected

in the phase diagrams of particle-hole asymmetric case.

We first discuss the case of particle-hole symmetry, i.e., t′ = 0, and the case of

t′ 6= 0 in the next section. For each of these cases we first discuss the MC results since

these are unbiased, though affected by finite size and the cluster update mechanism.

This provides a feel for the relevant candidate states that we can explore more
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carefully within a variational scheme. It also provides an estimate of Tc, not readily

available within the variational scheme.

Following this we show the ground states and PS windows that emerge from

the variational calculation for varying n and ∆/t. We also provide an alternate

estimate of the “Tc” of these phases by calculating the energy difference δE(n) =

(Epm(n)−Eord(n))/Ns, that the system gains via magnetic ordering. Here Epm is

the electronic energy averaged over disordered (paramagnetic) spin configurations

while Eord is the energy of the magnetically ordered ground state, both at the same

electron density n. Ns(= N/2) is the number of spins in the system. The phases

that dominate the phase diagram are listed in Table 1, with the associated qθ, qφ,

and the peak locations in the structure factor.

3.1. Monte Carlo

We studied a N = 123 system using the cluster based update scheme. We used a

large but finite J to avoid explicitly projecting out any electronic states,a since that

complicates the Hamiltonian matrix but allows only a small increase in system size.

The magnetic phases were explored for ∆ = 0, 4 and 10. An illustrative plot of peak

features in S(q) as function of temperature T , is shown in Fig. 7 for some typical

densities, where, for FM, S(qFM) shows monotonic decrease of Tc with increasing

∆. For A-type and “flux” phase, the S(q) data shows a number of sub-dominant q

peaks whose number keeps increasing as we move to more complicated phases with

increasing density.

Using the structure factor data, we establish the n − Tc phase diagram for

∆ = 0, 4, 10 that is plotted in Fig. 8. The MC captures mainly three collinear

phases, namely FM, A-type, and a ↑↑↓↓ phase. The ↑↑↓↓ phase corresponds to two

FM up planes followed by two FM down planes and so forth. As the carrier density

is increased via increasing µ, we find a FM phase followed by the A-type AF. A

↑↑↓↓ phase appears in a thin window surrounded by FM itself. We suspected this

as a finite size effect, and a comparison with the energy of the FM on larger lattices

(203), shows that the FM is indeed the ground state in the thermodynamic limit,

and so we consider FM and ↑↑↓↓ collectively as FM only, and presence of ↑↑↓↓ is

not indicated in the phase diagram.

The FM is stable at the ends of the density window, and its region of occurrence

is slowly enhanced as we increase ∆, see Fig. 2 as well. The Tc however decreases

with increasing ∆ since the degree of B–B′ mixing (and kinetic energy) decreases.

With further increase in n the 2D system is known to make a transition to a

line-like phase, and then a “G-type” phase (up spin surrounded by down, etc). In

3D one would expect the FM to change to a “planar” (A-type) phase, then a “line

like” (C-type) phase and finally to a G-type phase if possible. All of these are of

aWe have worked on ∆ ∈ [−10, 10], so J has to be large compared to it. We used J = 1000, as
the atomic bands which, for finite J , are actually dispersive (of band-width ∼ O(1/∆)) become
actually atomic to required numerical accuracy.
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Fig. 7. (Color online) Temperature dependence of structure factor peaks for three typical densi-
ties and t′ = 0. (a). For ∆ = 0, 4, 10, ferromagnetic order at n = 0.20. (b). The growth of A-type
correlations (and the noise around the principal peak, at n = 0.50. The ordering wave-vector q0

is listed in Table 1. δq0 are ∼ O(1/L) (c). “flux” type correlations at n = 1.50. The features are
at and around the ordering wave-vector in Table 1. Note the scale factors on the y-axis in (b) and
(c).
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Fig. 8. (Color online) n − Tc diagram for ∆ = 0, 4, 10 (top to bottom rows) as estimated from
the MC. Starting from low density (n = 0) towards high density (n = 1), we find FM with high
Tc, thin window of A-type with very low Tc as compared to FM, followed by “flux” in ∆ = 0 and
“spiral” in larger ∆ case. The symbols are the actual MC estimated Tc, while the smooth lines
are fit to the data.

course collinear phases, and geometric constraints may lead to noncollinear order

as well.

While we do access the A-type phase with some difficulty, our MC cannot access

the long range ordered C-type phase. However, we see clear evidence of C-type

correlations in the structure factor. Comparing the energy of the ideal C-type phase

with the short range correlated phase that emerges from the MC we infer that such
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order is indeed preferred. However, we cannot estimate a reliable Tc scale. In the

next section we will see that the variational calculation confirms the stability of

the C-type, among collinear phases, in this density window, and will get a rough

estimate of the Tc from the energy δE.

The G-type phase is geometrically disallowed on the B sub-lattice due to its FCC

structure. An examination of the structure factor in the density window n = [1, 2]

suggests “flux” like correlations at small ∆ which evolves into a spiral at larger ∆.

The frustration reduces the Tc of the phases in this density window compared to

that of the FM. We studied the situation in 2D, where the system is unfrustrated,

and the numbers below highlight the impact of frustration. In 2D, MC results yield

TAF
c /TFM

c . 1, while in 3D TAF
c /TFM

c . 0.1. We had focused on AF states at

n ∼ 1.5. If we compare the (δE)AF /(δE)FM for 2D and 3D, the numbers come out

to be ∼ 1.1 and 0.5 respectively.b The comparisons suggest a significant decrease

in the binding energy (and hence Tc) of the AF phases relative to the FM as we

move from 2D to 3D.

When t′ = 0, the electron delocalization happens through B–B′–B paths only

(see the conduction paths, for example of collinear phases A and C in Figs. 4 and 5

respectively). In this case all the phases have an atomic level located at ǫB′(= 0) in

the limit J → ∞. This is directly seen in the density of states (DOS) of these phase.

In Fig. 10 we show the DOS for the F, A, C, “flux” and paramagnet phases. This

dispersion-less level gives constant Tc in density region n = [1, 2]. This feature, and

several others, are modified by finite B′B′ hopping, which leads to broadening of

this level. It makes the DOS of the various magnetic phases asymmetric (in energy)

and also destroys the particle-hole symmetry in the phase diagram.

3.2. Variational scheme

Using the approach discussed earlier, we found the ground state configurations at

different electron densities. In this set we also get certain spiral phases, which are

small variations of FM, A and C phases in the left and right part of the density

window. Since in these parts MC also gives (for FM, A) clean result, we interpret

it as a finite size effect. To get convinced about it, we compare the energies of these

collinear phases (FM, A, C) with all their neighboring modulations δqs, at various

lattice sizes. We find that with increasing lattice size, the per particle energy dif-

ference between collinear phase, and lowest energy candidate with the neighboring

qθ, qφ, decreases, which convinces us that if we go to large enough lattice size,

this difference will eventually vanish and the collinear phases (F, A, C) will be the

relevant candidates.

We use a similar scheme for the middle part, however there no simple phase

suggested by this variational scheme (neither by MC). The phases we propose for

bWe campared ratio of the maximum of (δE)FM and maximum of (δE)AF in the density window,
for ∆ = 0 and t′ = 0.
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Fig. 9. (Color online) The energy difference δE of ground-state and paramagnetic phase. A
variational estimate of the Tc for three values of (a) ∆ = 0, (b) ∆ = 4, (c) ∆ = 10 and t′ = 0.
The sequence of phases from low density to middle is FM, A, C and “flux” (∆ = 0) or spiral
(∆ = 4, 10). The decrease in the “Tc” with ∆ is more drastic in AF phases.
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Fig. 10. (Color online) DOS for the F, A, C, FL (“flux”) and PM (paramagnetic) phases. (a) for
∆ = 0 and (b) for ∆ = 6. In order of decreasing band width are phase F, PM, C, FL and A (FL
and C have same bandwidth). This is for both ∆ = 0, 6, and the order in general does not depend
on the ∆. The plot for ∆ = 6 is split in two parts, with the region between ǫ = [0, 6], with zero
weight, omitted. The δ function arises from the localized B′ level.

the middle density part based on this variational scheme are SP1, SP2, SP3 and

“flux”. See the configurations in Fig. 6 and S(q) details from Table 1.

In Fig. 2, the magnetic ground state is shown for t′ = 0 and t′ = 0.3 (top and

bottom). We see that for t′ = 0 the phase diagram is symmetric in density. For

small ∆, in the range 0 − 4, we have FM, followed by A-type, C-type and “flux”

phase. The order reverses as we go in the other half of the density window. The

G-type phase which was largest stable phase in 2D (Figs. 2 and Fig. 5 in Ref. 19) is

almost taken over by the “flux” phase. The stability of the “flux” phase decreases

with ∆ and it does not show up for ∆ > 4.

In Fig. 10, we show the DOS for F, A, C “flux” and PM phases. The upper and

the lower panel correspond to ∆ = 0 and ∆ = 6 respectively. In all the phases, at all

∆, there is a spike (delta function) at ǫ = 0, which accounts for the nondispersive

level at ǫB′ = 0.
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For FM all the core spins are ↑ (say), so only ↓ spin electrons from B′ site get

to delocalize while ↑ spin electrons remain localized at ǫ = 0, which corresponds

to the localized band in the spectrum and the spike in the DOS. So the localized

level in FM is an ↑ spin level. The nature of this localized level however changes

when we go to AF phases. In collinear phases, its easy to understand the nature

of this localized band. Take for example the case of A-type in Fig. 4 down panel

with conduction path. The lattice is divided into two sub-lattices (each of which

are of layered zigzag shape), blue and red, such that, if (say) core spins in the f

sites in the blue sub-lattice are all ↑, then the same in red sub-lattice are ↓. As a

result, in the blue sub-lattice, ↓ spin electrons get to delocalize, while ↑ spin electron

remain localized. The opposite happens in the red sub-lattice. Since these lattices

are disconnected from each other, one can separately diagonalize them. But each of

this sub-lattice, however complicated in shape, is a FM, so it gives 1/3 of the levels

localized at ǫ = 0, which will be ↑ spin in blue sub-lattice, while it will be ↓ spin

in red sub-lattice. Since both the sub-lattices have same number of sites/unit cells,

we get 1/3 of the levels localized at ǫ = 0 but now spin degenerate. The delocalized

states have also to be spin-degenerate, and their nature depends on the way the

conduction paths divide the lattice into two sub-lattices.

For each spin channel the conduction paths are layered zigzag, 2D in the A-type

phase, while they are 3D in the C-type phase.

This appearance of the localized band is not restricted to just the collinear

phases, but also happens for noncollinear phases, and even the paramagnet.

4. Results: Particle-Hole Asymmetry

The model with only “nearest neighbor” (BB′) hopping has a rich phase diagram.

However, this has the artificial feature of a nondispersive level. In reality all ma-

terials have some degree of B′B′ hopping and we wish to illustrate the qualitative

difference that results from this hopping. We explored two cases, t′ = 0.3 and

t′ = −0.3 for these particle-hole asymmetric cases.

4.1. Monte Carlo

In Figs. 11(a) and 11(b) we show the structure factor data, at two densities, for

(a) A-type and (b) C-type phases, to demonstrate one remarkable difference from

the particle-hole symmetric case. As we saw earlier in Fig. 7 for t′ = 0 the structure

factor data were very noisy for AF phases, with many sub-dominant q peaks around

the central peak. The saturation value for the A-type peak in the symmetric case

was ∼ 10−2, while now it is ∼ 0.2, close to the ideal value of 0.25. The sharp

change in the structure factor makes the identification of the Tc scale more reliable.

Although inclusion of t′ does not remove the noise completely, it is reduced over a

reasonable part of the phase diagram.

Figure 12(a) presents the n−Tc phase diagram for t′ = 0.3 and ∆ = 0 established

from MC, along with the δE from the variational approach [Fig. 12(b)]. In this
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unlike at t′ = 0.
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Fig. 12. (Color online) Phase diagram obtained via MC (left) and from the variational calculation
(right) at t′ = 0.3 and ∆ = 0.

case, the phases that appear as a function of density n are FM, A-type, spiral,

C-type, A-type and FM again. For FM, the window of stability gets reduced in

the left (low density) part but enhanced to almost full band (n ∼ 2 to 3) in the

right (high density) part. The ↑↑↓↓ phase appears again, but being a finite size

artifact, is absorbed in the FM (and not shown). The Tc is usually reduced, from

the symmetric (t′ = 0) case, as BB′ hopping provides conduction paths that are

nonmagnetic. There is a wider space with moderate Tc for A-type phase, located

asymmetrically in density. It is more stable, in the right window, than left window,

hence possessing relatively higher Tc than left. The correlations of spiral and C-

type phases are also captured with relatively less noise, see Fig. 11(b) for example

of C-type correlation. Although S(q) data for these phases still contain some noise,

so that we don’t get clean ground state here either. The n − T phase diagram for

t′ = −0.3 and ∆ = 0, can be obtained from transformation n → 3−n, i.e., reversing

the density axis of Figs. 12(a) and 12(b).

1350018-15



January 30, 2013 9:18 WSPC/Guidelines-IJMPB S0217979213500185

R. Tiwari & P. Majumdar

n
0

5

10

∆
F

A

C

FL

SP

0 1 2 3
n

-10

-5

0

∆

0 1 2 3
n

t’ = 0.3

t’ = -0.3

Fig. 13. (Color online) Ground state phase diagram in the presence of t′ = ±0.3.

4.2. Variational scheme

We employ the variational scheme discussed earlier and obtain the ground state

phase diagram for t′ = ±0.3 is shown in Fig. 13. Turning on t′ has a significant

effect on the phase diagram, when we use the t′ = 0 case, Fig. 2 top panel, for

reference. The particle hole symmetry (n → 3 − n) is destroyed at finite ∆ but a

reduced symmetry (n,∆, t′) → (3 − n,−∆,−t′) still holds. The phase diagram is

richer in the middle of the density window where crossing among various phases

occurs at different densities. Due to the symmetry mentioned above it is enough to

discuss the ∆ > 0 case with t′ = ±0.3.

For t′ = 0.3 the trends from MC are well reproduced by the variational scheme

on large (203) systems at ∆ = 0. We observe reduced stability of FM at low density

and enhancement at high density.

Note that the overall correspondence between the Monte Carlo and the varia-

tional approach is much better here than in the t′ = 0 case, Fig. 8 and Fig. 9.

The A-type phase becomes very thin in the left, but unaffected by ∆, while

in right side it widens up in the low ∆ and gets replaced by the spiral quickly as

we go up in ∆. “flux” and C-type both become stable for high ∆ with a gradual

shift in the high density. For t′ = −0.3, at very small ∆ in the left and the middle

part A-type and the spiral are major candidates with small window for C–AF and

“flux”. The behavior in this part is not very sensitive to sign of t′.

Focusing on t′ = −0.3, as go up from ∆ = 0 to ∆ ∼ 5 the AF phases become

less and less stable and are almost wiped out from the left part of the density, and

FM becomes stable there. The largest stability window of FM occurs roughly near

∆ ∼ 5, where its stable up-to n ∼ 1.8. Going further with higher ∆, FM looses

its stability, from C-type, “flux” and spirals. However, there is very thin strip of

stability of the FM in the band edge in the left part, and towards the middle density,

there is re-entrance of the FM phase.

In the right part of the density, we have FM, A-type and spiral. Increasing ∆
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Fig. 14. (Color online) DOS for the F, A, C, FL, PM phases (a) ∆ = 0, t′ = 0.3, there is no
resemblance to the particle-hole symmetric case. FM and PM have largest bandwidth, while A,
C, “flux” have almost same bandwidth (b) ∆ = 6, t′ = 0.3, due to large band-gap, two bands are
shown in two different panels (left, right) the same bandwidth order, right band less effected from
t′, being situated around ∆ (c) ∆ = 6, t′ = −0.3. The structure of the band edges has changed
drastically. Now band edges of the FM, “flux” and C-type coincide on the left, while on the right
edge of the first panel FM is more widespread.

reduces the stability of A-type to FM, making it vanish near ∆ ∼ 7, while FM

window keeps increasing with ∆.

The DOS for the ordered F, A, C, “flux” phase and the paramagnet are shown

in Fig. 14. (a) For t′ = 0.3, ∆ = 0 FM has the largest bandwidth, with paramagnet

second largest. The band edges of A, C, “flux” almost coincide both for small and

large ∆. (b) For t′ = 0.3, ∆ = 6 the left band shows that all the phases seem to have

‘almost’ similar features in the DOS, while the right band shows distinct features

of each of the phases, similar to t′ = 0 DOS. (c) For t′ = −0.3,∆ = 6 however,

has a distinct case. Here the lower edge of the band for FM, “flux” and C coincide,

and the DOS of “flux”, or C, is higher than FM, which explains why FM becomes

unstable in the left side and taken by “flux” and C, upon increasing ∆.

We also estimate the PS boundaries between FM, A, C phases shown in Fig. 15.

For t′ = 0 and for ∆ > 0, we see that PS regions are significant, while they vanish

for ∆ < 0 as we go down. For t′ = 0.3, (right panel) the PS boundaries are too

narrow to be visible.

In Fig. 16 we have shown the δE(n) calculated for 203 size, for ∆ = 4, t′ = −0.3,

with the large stability window of ferromagnet (see Fig. 12). Here, though the ∆

and t′ are nonzero, due to unusually large stability window, the δE (or Tc) is large.

To summarize, from the MC and variational data we learn that, apart from

asymmetry in the phase diagram, collinear FM and A-type phases become stable

in wide density window. Their Tc however is slightly reduced than the symmetric

case. The S(q) data showing less noise for A-, C-type and spirals indicates that

the energy landscape become “smoother” by t′ so that annealing process becomes

easier to get to the ground state. The energy differences δE as well as MC estimated

Tcs show overall decrease with t′. This is understandable as, by introducing t′ we

allow electrons to more on the “nonmagnetic” sub-lattice B′. Now the energy of

any phase, depends on the energy gain via the hopping process. From the nearest
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that PS regions are significant for ∆ > 0 and t′ = 0, for t′ 6= 0 and for ∆ < 0 PS boundaries
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Fig. 16. (Color online) Asymmetric case, the energy difference δE of ground-state and paramag-
netic phase. Top: ∆ = 4, t′ = −0.3 where FM is stable in the large portion of the density. Bottom:
∆ = 0, t′ = 0.3 The trends of δE match with Tc.

f −m hopping, this gain scales as t2/∆ subject to spin configurations, while from

the next nearest m − m hopping, this gain simply scales as t′, and does not care

upon spin configurations. So more we increase t′ and ∆, the more we are making

the energy of the system insensitive to spin-configurations. The asymptotic limit

of this is (t2/∆) → 0 when every phase has same energy as paramagnet. That also

explains why the PS windows become very small with inclusion of t′.

In the couple of paragraphs below we try to create an understanding of how the

phase diagram is affected by t′. There is not, unfortunately, an understanding of

the effects over the entire density window, but we can at least motivate the changes

at low density.

For t′ = −0.3, the FM loses its stability to AF phases even at low n. That

is puzzling since one would expect the FM phase to have the largest bandwidth.

We recall that in the t′ = 0 case, there is a localized band coming from B′ level

for all the phases. The dispersion of this previously localized level causes the m

and f to have a k dependent separation, which was ∆ for all k in the symmetric

case. The separation for these levels in the asymmetric case is ∆k = ∆− ǫ′k, which
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varies from ∆ − 12|t′|, to ∆ + 12|t′| in 3D. In 2D it varies from from ∆ − 4|t′|, to
∆ + 4|t′|.

If we consider the simpler 2D case for illustration, ǫ′k = −4t′ cos k1 cos k2, which,

for t′ > 0 is minimum at k = (0, 0), (π, π) while the maximum is at k = (π, 0), (0, π).

For t′ < 0 the opposite will happen. Thus, for t′ > 0 k = (0, 0), (π, π) and neigh-

boring states will experience enhanced mixing ∼ ∆ − 4|t′|, while, the states near

k = (π, 0), (0, π) experience lower mixing. In the ferromagnet (both in 2D and 3D),

the lowest eigenvalue corresponds to k = (0, 0), while (for 2D) the G-type phase has

lowest eigenvalues at k = (0, 0), (π, 0)(0, π)(π, π). Therefore, for t′ < 0, the lowest

eigenvalues of both the phases are enhanced but the band-edge of FM stays lower

than G-type. While in the other, the strongest mixing states are (π, 0) and (0, π),

which are not at the edge for FM, its band-edge gets lower enhancement, while the

band-edge of G type gets lowered. For a given t′, as we increase ∆, a point comes

where band edges of the FM and G, coincide. This is the point where FM loses its

stability.

The same argument can be extended to 3D, with C and flux phases, just the

role of the qs gets extended to 3D (e.g., (π, 0, 0) etc), and the correction in the

separation is ∼ 12t′ instead of ∼ 4t′. In Fig. 17 we have shown the plot of lowest

eigenvalues of F, A, C and flux phases with ∆ for t′ = ±0.3.

Finally, a comment (mainly a conjecture), Fig. 18, on how the energy landscape

of the DP model changes on addition of t′. We already know that the “binding

energy” and Tc of magnetic phases reduce with increasing t′ — but also that the

“noise” in the cooling process also reduces quickly.

If t′ ≫ t then the electrons could delocalize on the wide t′ based band populating

the nonmagnetic sites only. Magnetic order would make little difference to electronic

energies and the “energy landscape” in the space of spin configurations would be

featureless, Panel (c) in Fig. 18. There are no global minima, i.e., ordered states,

and no local minima either. If t′ = 0 then delocalization takes place necessarily

through the magnetic sites and the deep minima in configuration space represent

ordered states while the “grassy” features indicate shallow metastable states close
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Fig. 17. (Color online) Asymmetric case, lowest eigenvalues plotted as function of ∆ for the
F,A,C and flux phases calculated from the dispersions. (a) t′ = −0.3 and (b) t′ = 0.3.
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Fig. 18. (Color online) A schematic energy landscape of the DP model, in the space of spin
configurations, for (a) t′/t = 0 (bottom), (b) t′/t ∼ O(1) (middle) and (c) t′/t → ∞ (top). The
panels are indicated for a fixed set of electronic parameters, except t′ which varies as indicated
above. At t′ = 0 the landscape has many local minima around the deep minimum, and while the
“binding energy” of the ordered state, with respect to the paramagnet, is large (and so also the
Tc) the system is apt to get stuck in one of the neighboring minima in the cooling process. When
t′/t → ∞ magnetic order makes no difference to the energy, the electrons bypass the magnetic
sites. At intermediate t′, while the binding energy and Tc are smaller, the local minima also seem
to be fewer and shallower. This makes the ordered state easier to access.

to them. Our MC data probing AF states at t′ = 0 suggests this picture, curve (a)

in Fig. 18. At intermediate t′ the ordered states are shallower, but the metastable

states seem to have been affected even more drastically, if our MC data, Fig. 11, is

to be taken seriously.

While the discussion above seems to be merely an analysis of trends in the MC

annealing process, a simpler energy landscape would make the occurrence of AF

states more likely in the real materials as well.

5. Discussion

The real DPs are multi-band materials, involving additional interaction effects and

antisite disorder beyond what we have considered in this paper. Nevertheless, we

feel it is necessary to understand in detail the phase diagram of the “simple” model

we have studied, and then move to more realistic situations. In what follows, we

first provide a qualitative comparison of the trends we observe with experimental

data, and then move to a discussion of issues that are ignored in the present model.

The t2g orbitals in the DPs are three-fold degenerate and this is a major differ-

ence with respect to the model we have studied. At the simplest level it requires a

renormalization of the electron count to relate our results to real materials. We do

this first, below. Orbital effects can also qualitatively change the phase diagram, as

in the manganites, we comment on that later.

Comparison to experiments: There is limited experimental signature23 of metal-

lic AF phases driven by the kind of mechanism that we have discussed. So, the

comparison to experiments is, at the moment, confined to the Tc scales24,25 etc,

of the ferromagnetic DP’s. In a material like SFMO the electron density can be
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increased by doping La for Sr, i.e., compositions like Sr2−xLaxFeMoO6. This was

tried24 and the Tc increased from 420 K at x = 0 to ∼ 490 K at x = 1. SFMO

has threefold degeneracy of the active, t2g, orbitals while we have considered a one

band model. When we create a correspondence by dividing the electron count by

the maximum possible per unit cell (3 in our case, 9 in the real material), in our

units x = 0 corresponds to n = 0.33 and x = 1 to n = 0.66.

When t′ = 0, as a function of n the Tc peaks around n = 0.2, Fig. 8, quite far

from the experimental value. However, in the presence of t′ = −0.3 and ∆ = 4,

Fig. 16, the peak occurs above n = 1. So, modest t′ can generate the ferromagnetic

window that is observed, and produce a Tc ∼ 0.1t. For t = 0.5 eV, this is in the

right ballpark.

Effect of orbital variables: Apart from renormalization of the electron count,

multiple orbitals could, in principle, have a qualitative effect. If the local orbital

degeneracy is lifted by Jahn–Teller or Coulomb effects then the resulting “orbital

moment” could order in some situations. This orbital ordered (OO) background

can modify electron propagation and the magnetic state. This is known to happen

at some dopings in the manganites. Even there, however, the broad sequence of

magnetic phases is consistent with predictions from a one band model. The DPs do

not seem to involve strong lattice effects, the orbital degeneracy survives, and there

is no orbital order. This suggests that there is even better chance of a one-band

model being qualitatively correct here, compared to the manganites.

Had there been strong OO effects, the spin–spin coupling in that background

may have picked up strong directionality, and the geometric frustration may not

have been relevant. This does not seem to be relevant in most DPs. Indeed, there

are experiments on the insulating DP’s27–29 where the geometric frustration of the

FCC lattice leads to a nontrivial magnetic state, unrelieved by the presence of

multiple orbitals.

We of course expect that the phase boundaries and Tc scales that we calculate

would be affected by the orbital degeneracy. However, the trends in the phase

diagram with increasing density simply reflect a growing AF tendency and the non

coplanar phases emerge due to the impossibility of G-type order. This trend should

be independent of number of orbitals, although the specific noncoplanar phase may

not be “flux” like.

Antisite disorder: Attempts to increase n via A site substitution also brings

in greater antisite disorder (B–B′ interchange) and even the possibility of newer

patterns of A site ordering (!) complicating the analysis. For example, one would

try compositions of the form: A2−xA
′
xBB

′O6, where A and A′ have different valence

in an attempt to change n. The assumption is that the A′ only changes n without

affecting other electronic parameters, i.e., A′ ions do not order and remain in an

alloy pattern. This may not be true. In fact, at x = 1, the material AA′BB′O6

may have a specific A–A′-B–B′ ordering pattern that affects electronic parameters

in a nontrivial way and one cannot understand this material as a perturbation on

A2BB
′O6. In such a situation one needs guidance from experiments and ab initio
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theory to fix electronic parameters as x is varied. All this before one even considers

the inevitable antisite (B–B′) disorder and its impact on magnetism.26

6. Conclusions

We have studied a one band model of DPs in three dimensions in the limit of strong

electron-spin coupling on the magnetic site. The magnetic lattice in the cubic DPs

is FCC and increasing the electron density leads from the ferromagnet, through A-

and C-type collinear antiferromagnets, to spiral or “flux” phases close to half-filling.

We estimate the Tc of these phases, via MC and variational calculation, and find

the AF Tc to be significantly suppressed compared to the 2D case. We attribute it

to the geometric frustration on the FCC lattice. The introduction of B′B′ hopping

t′/t ∼ 0.3 significantly alters the phase diagram and Tc scales and creates a closer

correspondence to the experimental situation on DP ferromagnets.
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Appendix A. Dispersion for Ordered Phases

Here we show how to calculate dispersion for selected ordered phases, which have

relatively small unit cells. We define the unit cell for each phase, and go to k-space

where the Hamiltonian becomes block diagonal.

A.1. Spectrum for collinear phases

The Hamiltonian can be diagonalized by Fourier transformation. We write the

Hamiltonian H as H = H0 +HJ , where, H0 is given by:

H0 =
∑

Xσ

[ǫ1f
†
X,σfX,σ + ǫ2m

†
X+a1,σ

m†
X+a1,σ

]− t
∑

X,σ,δ∈NN

(f †
X,σmX+δ,σ + h.c.)

− t′
∑

X,σ,δ∈NNN

(m†
X+a1,σ

mX+a1+δ,σ + h.c.) (A.1)

and HJ is given by:

HJ = J
∑

X

S(X) · σα,βf
†
X,αfX,β . (A.2)

The lattice vectorX is defined asX = n1A1+n2A2+n3A3 with Ai, i = 1, 2, 3 as

the primitive lattice vectors (A1 = (2, 0, 0), A2 = (1, 1, 0), A3 = (0, 1, 1)), defining

the periodicity of lattice with the 2 site unit cell. With this periodicity, the unit
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cell has one “f” and one “m” site at (0, 0, 0) and (1, 0, 0) respectively. Now doing

a Fourier transform on “f” operators (similarly for “m”s)

f †
X,σ =

1√
N

∑

k

f †
k,σ exp(ik ·X) . (A.3)

This simplifies the nonmagnetic part H0 as follows:

H0 =
∑

k,σ

[(ǫ2 +A′
k)m

†
k,σmk,σ + ǫ1f

†
k,σfk,σ + (Akf

†
k,σmk,σ + h.c.)]

=
∑

k,σ

(f †
k,σm

†
k,σ)

(

ǫ1 Ak

Ak ǫ2 +A
′

k

)(

fk,σ

mk,σ

)

, (A.4)

which is reduced to 2× 2 block. The amplitudes Ak = −2t(coskx +cos ky +cos kz)

and A′
k = −4t′(cos kx cos ky + cos ky cos kz + cos kz cos kx) are just the cubic and

FCC dispersions.

Next, we have to simplify the HJ part. For the collinear phases, S(X) can

be expressed as S(X) = (0, 0, eiq·X). For FM, q is trivially (0, 0, 0). For A-type,

q = (π/2,−π/2, π/2), while for C-type q = (0, π,−π). Now, plugging this value of

S(X) in HJ and doing the Fourier transform for the HJ , we get,

HJ = J
∑

k

σf †
k,σfk+q,σ ; σ = ±1 . (A.5)

Now q = 0 for FM, so HJ becomes diagonal. Thus total Hamiltonian H still

remains 2× 2 block, and the eigenvalues for the FM are solutions of the following

2× 2 block,

H2×2(k, σ) =

(

ǫ1 + Jσ Ak

Ak ǫ2 +A′
k

)

. (A.6)

For A-type and C-type phases, we get matrix elements connecting |k, σ〉 →
|k+ q, σ〉 → |k, σ〉, so that now we get to solve following 4× 4 block

H4×4(k, σ) =













ǫ1 Jσ Ak 0

Jσ ǫ1 0 Ak+q

Ak 0 ǫ2 +A′
k 0

0 Ak+q 0 ǫ2 +A′
k













(A.7)

From these we obtain the spectrum for F, A, C phases on large (∼ 1003− 5003)

lattices, which can be used to calculate the DOS, phase diagram, PS windows etc.

A.2. Spectrum for the “flux” phase

The unit cell for the “flux” phase has 4B, and 4B′ atoms lying on the corners of

the cube. The primitive lattice vectors become Ai = {(2, 0, 0), (0, 2, 0), (0, 0, 2)} At

finite J , the same procedure (as for collinear phases) will reduce the Hamiltonian
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Fig. A.1. Unit cell structure for the Flux phase.

into 16 × 16 block. To make life a bit simple, we use the J → ∞ limit on the

Hamiltonian for the “flux” phase, which is same as used in Ref. 19 except its the

3D version.

This gives us four spin-less fi levels and 8 mi,σ levels in the unit cell, which upon

simplification reduces to 12× 12 block. With the basis (fi(k)mi↑(k))i∈{1,2,3,4}. The

Hamiltonian breaks into 12× 12 block given as follows:

H =



























































∆ 0 0 0 t1↑a1 t1↓a1 t1↑a2 t1↓a2 0 0 t1↑a3 t1↓a3

0 ∆ 0 0 t2↑a2 t2↓a2 t2↑a1 t2↓a1 t2↑a3 t2↓a3 0 0

0 0 ∆ 0 t3↑a3 t3↓a3 0 0 t3↑a2 t3↓a2 t3↑a1 t3↓a1

0 0 0 ∆ 0 0 t4↑a3 t4↓a3 t4↑a1 t4↓a1 t4↑a2 t4↓a2

t∗
1↑a1 t∗

2↑a2 t∗
3↑a3 0 0 0 t12 0 t23 0 t13 0

t∗
1↓a1 t∗

2↓a2 t∗
3↓a3 0 0 0 0 t12 0 t23 0 t13

t∗
1↑a2 t∗

2↑a1 0 t∗
4↑a3 t12 0 0 0 t13 0 t23 0

t∗
1↓a2 t∗

2↓a1 0 t∗
4↓a3 0 t12 0 0 0 t13 0 t23

0 t∗
2↑a3 t∗

3↑a2 t∗
4↑a1 t23 0 t13 0 0 0 t12 0

0 t∗
2↓a3 t∗

3↓a2 t∗
4↓a1 0 t23 0 t13 0 0 0 t12

t∗
1↑a3 0 t∗

3↑a1 t∗
4↑a2 t13 0 t23 0 t12 0 0 0

t∗
1↓a3 0 t∗

3↓a1 t∗
4↓a2 0 t13 0 t23 0 t12 0 0



























































,

where the symbols in the above are defined as:

α =

√√
3 + 1

2
√
3

; β =

√√
3− 1

2
√
3

; z =
1− i√

2
;

a1 = 2 cosk1 ; a2 = 2 cosk2 ; a3 = 2 cos k3 ;

t12 = −4t′ cos k1 cos k2 ; t23 = −4t′ cos k2 cos k3 ; t13 = −4t′ cos k1 cos k3 ;

t1↑ = t2↑ = −tα ; t3↑ = t4↑ = −tβ ; t1↓ = −t2↓ = tzβ ;

t3↓ = −t4↓ = −tz∗α .

This gives us H(k)12×12, which is very difficult to diagonalize analytically, but still

saves us from diagonalizing full real-space matrix of O(N ) size, and reduces the

problem to O(N ) number of diagonalizations of 12 sized matrix.

The comparison of energies using the ǫk obtained for F, A, C and flux phases,

one can draw the magnetic phase diagram for large lattice size (N ∼ 4003). The
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Fig. A.2. (Color online) Phase diagram based on k space based diagonalization for t′ = 0, 0.3,
−0.3. System size N = 1603. Here we can only use F, A, C and “flux” phase as candidate states
but some of the complexity of more elaborate phase diagrams, Fig. 2, are already present.

Fig. A.2, shows the phase diagram, which can be compared to that obtained through

real space calculations done on 203 size.
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