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Abstract – We use a new Monte Carlo method to study the Mott transition on the anisotropic-
triangular-lattice Hubbard model. Our real space approach accurately treats the emergence of non-
trivial magnetic correlation in this frustrated structure with reducing temperature. For hopping
anisotropy typical of the two-dimensional organic salts, the coupling of electrons to self-generated
magnetic moments leads to a pseudogap, huge d.c. resistivity, and non-Drude optical response
over a wide temperature window. In addition to these generic signatures of a “bad metal”, the
spatial correlation among the magnetic moments leads to pronounced momentum dependence of
quasiparticle extinction and pseudogap formation on the Fermi surface as the Mott transition is
approached.
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Introduction. – The Mott metal-insulator transition
(MIT), and the proximity to a Mott insulator in doped
systems, are crucial issues in correlated electron sys-
tems [1–4]. The Mott transition on a bipartite lattice is
now well understood but the presence of triangular motifs
in the structure brings in geometric frustration [5,6]. This
promotes incommensurate magnetic fluctuations whose
nature, and impact on the MIT, remain outstanding
problems.

The organic salts provide a concrete realisation of this
situation [7]. The active electronic sites in the quasi–two-
dimensional material κ-(BEDT-TTF)2Cu[N(CN)2]-X live
on a triangular lattice, with anisotropic hopping [8]. For
X = Cl1−xBrx, varying x leads to a chemical-pressure–
driven Mott transition [9]. Distinctive signatures near the
Mott transition include a very incoherent [10] metal (with
resistivity � 100mΩcm above 50K), non-Drude optical
response [11,12], and the presence of a pseudogap in the
density of states [13,14].

The dominant low-energy fluctuations near a Mott tran-
sition are magnetic and the features above would rise
from electrons coupling to these modes. The nature
of these modes remain a mystery. Variational Monte
Carlo suggests that the magnetic correlations have a “spi-
ral” character in the ground state [15] of the frustrated
anisotropic lattice, but the fate of these correlations at

finite temperature and their impact on electronic proper-
ties remain unresolved.

To address these issues we solve the Hubbard model
on the anisotropic triangular lattice using an approach
that retains extended spatial correlations, handles all ther-
mal fluctuations, and allows access to spectral information
across the MIT.

Choosing hopping anisotropy typical of the organics (see
later), we discover the following. i) The magnetic fluctu-
ations are peaked at a wave vector Q ∼ (0.85π, 0.85π),
away from the Néel state, and promote long wavelength
spiral order in the Mott insulator at low temperature.
ii) At intermediate temperature, the coupling of electrons
to disordered local moments leads to strongly non-Drude
optical response and a single-particle pseudogap —with
both of these evolving into a gapped response deep in the
Mott phase. iii) The electronic spectral function A(k, ω)
is anisotropic on the Fermi surface: a) the “hot” and
“cold” spots are determined by the non-trivial magnetic
wave vector Q, b) there is a regime where the cold region
shows a quasiparticle peak while the hot region already
has a weak pseudogap, c) the anisotropy, indicative of a k-
dependent self-energy, is visible only at intermediate tem-
perature —at high temperature the magnetic fluctuations
are q independent, and at low temperature a gap opens
all over the Fermi surface.
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To set our results in context, there have been several
studies of the single-band Hubbard model on a triangular
lattice [16–28]. Dynamical mean-field theory (DMFT)
has been the method of choice [20–22] for studying ther-
mal properties, used sometimes in its cluster variant
(C-DMFT) [23–26] to handle short-range spatial correla-
tions. Other approaches focus on the ground state, us-
ing variational Monte Carlo (VMC) [15,17,19], variational
cluster perturbation theory (VCPT) [27], or small-size
exact diagonlisation (ED) [29].

These studies broadly suggest the following. i) The
ground state is a paramagnetic metal (PM) at weak cou-
pling, a “spin liquid” insulator at intermediate coupling,
and an antiferromagnetic insulator (AFI) with Néel or-
der (Q = (π, π)) at large coupling U/t [16–19] up to
large anisotropy t/t′. Some methods also predict [30–32]
a low-temperature superconducting state near the Mott
transition but this aspect is debated [29]. ii) There
could be a re-entrant insulator-metal-insulator transi-
tion with increasing temperature for a certain window
of frustration [24,25]. iii) The resistivity [20] and opti-
cal conductivity [11] have been obtained within DMFT,
i.e., without retaining any spatial correlations, and show
features generic to any Mott transition.

There seems to be limited effort on clarifying the nature
of spatial fluctuations, which could be significant in this
low-dimensional frustrated system. At zero temperature,
methods like ED [29], are severely size limited (N ∼ 4×4),
and it is mostly from VMC [17,19] and path integral renor-
malization group (PIRG) [16,18] that some results are
available. At large t′/t, these results indicate the tran-
sition from metal to non-magnetic insulator (PIRG), or to
insulator with a spiral order (VMC), as opposed to Néel
state, which survives up to t′/t ∼ 0.6 in all results. These
methods do not address transport and spectral features
at finite temperature. C-DMFT [24–26] does access finite
temperature and retains at least short-range spatial cor-
relations but we are not aware of any transport results
within this scheme.

Model and method. – Our real space framework aims
to fill this gap: establishing the nature of magnetic corre-
lations in this frustrated system, and their impact on the
spectral properties. We study the following model:

H =
∑
〈ij〉σ

tijc
†
iσcjσ − μ

∑
i

ni + U
∑

i

ni↑ni↓. (1)

We use a square lattice geometry but with the following
anisotropic hopping: tij = −t when Ri − Rj = ±x̂a0

or ±ŷa0, where a0 is the lattice spacing, and tij = −t′

when Ri − Rj = ±(x̂ + ŷ)a0. We will set t = 1 as the
reference energy scale. t′ = 0 corresponds to the square
lattice, and t′ = t to the isotropic triangular lattice. We
have studied the problem over the entire t′/t window [0, 1],
but focus on t′/t = 0.8 in this paper (results on the wider
t′/t variation will be presented separately). μ controls the

electron density, which we maintain at half-filling, n = 1.
U > 0 is the Hubbard repulsion.

We use a Hubbard-Stratonovich (HS) transformation
that introduces a vector field mi(τ) and a scalar field
φi(τ) at each site [33–36] to implement a rotation invari-
ant decoupling of the Hubbard interaction. We can write
ni↑ni↓ = n2

i

4 − (�si · m̂i)2 where ni = ni↑ +ni↓ is the charge
density, �si = 2�σi = 1

2

∑
α,β c†iα�σαβciβ is the local electron

spin operator, and m̂i is an arbitrary unit vector. We
introduce two space-time varying auxiliary fields i) φi(τ)
coupling to charge density, and ii) Δi(τ)m̂i(τ) = mi(τ)
coupling to electron spin density (Δi is real positive).
This allows the SU(2) invariant HS transformation [33–36]
(U being in units of t, is dimensionless)

eUni↑ni↓ =
∫

dφidmi

4π2U
e

„

φ2
i

U +iφini+
m2

i
U −2mi·�si

«

.

The partition function now becomes

Z =
∫ ∏

i

dc̄idcidφidmi

4π2U
e(−

R β
0 L(τ)),

L(τ) =
∑
iσ

c̄iσ(τ)∂τ ciσ(τ) + H0(τ) + Lint,

Lint =
∑

i

[
φ2

i

U
+ iφini +

m2
i

U
− 2mi · �si

]
.

To make progress we need two approximations: i) ne-
glect the time (τ) dependence of the HS fields treating
them as classical, and ii) fully retain the thermal fluctua-
tions in mi, but treat φi at the saddle point level, i.e.,
φi → 〈φi〉 = (U/2)〈〈ni〉〉 = U/2 at half-filling. With
this approximation the half-filled problem is mapped on
to non-interacting electrons coupled to the field mi. Sub-
stituting these, and simplifying the action, one gets the
effective Hamiltonian

Heff =
∑
ij,σ

tijc
†
iσcjσ− μ̃N − U

2

∑
i

mi ·�σi +
U

4

∑
i

m2
i , (2)

where μ̃ = μ − U/2. We have redefined mi → U
2 mi, so

that the mi is dimensionless.
We can write Heff = Hel{mi} + Hcl, where Hcl =

(U/4)
∑

i m
2
i . For a given configuration {mi} one just

needs to diagonalize Hel, but the {mi} themselves have
to be determined from the distribution

P{mi} ∝ Trc,c†e
−βHele−βHcl . (3)

Equation (2) describes electron propagation in the mi

background, while eq. (3) describes how the mi emerge
and are spatially correlated due to electron motion. The
neglect of dynamics in the mi reduces the method to un-
restricted Hartee-Fock (UHF) mean-field theory at T = 0.
However, the exact inclusion of classical thermal fluctua-
tions quickly improves the accuracy of the method with
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increasing temperature. We will discuss the limitations of
the method further on.

Due to the fermion trace, P{mi} is not exactly calcula-
ble. To generate the equilibrium {mi} configurations we
use Monte Carlo (MC) sampling [37–39]. Computing the
energy cost of an attempted update requires diagonaliz-
ing Hel. To access large sizes within limited time, we use
a cluster algorithm [40] for estimating the update cost.
Rather than diagonalize the full Heff for every attempted
update, we calculate the energy cost of an update by di-
agonalizing a cluster of size Nc around the reference site.
We have extensively benchmarked this cluster based MC
method [40]. Most of our results are based on MC on
N = 24× 24 lattices, with clusters of size Nc = 8× 8. We
will comment on our size dependence checks at the end
of the paper. We calculate the thermally averaged struc-
ture factor S(q) = 1

N2

∑
ij〈mi · mj〉eiq·(Ri−Rj) at each

temperature. The onset of rapid growth in S(q) at some
q = Q, say, indicates a magnetic transition. The elec-
tronic properties are calculated by diagonalizing Hel on
the full lattice for equilibrium {mi} configurations.

We present our results in the following sequence. We
start with the phase diagram, summarising the magnetic,
transport and spectral character that emerges from the de-
tailed calculation. Following this we discuss the tempera-
ture dependence of the d.c. resistivity, since it defines our
transport classification. We then look at the optical con-
ductivity and correlate its features with the single-particle
density of states (DOS) as the system is driven across the
Mott transition. While the transport and DOS are insen-
sitive to the detailed nature of magnetic fluctuations, the
angle-resolved photoemission spectrum (ARPES) depends
crucially on the non-local magnetic correlations. The last
and central part of our presentation deals with the angu-
lar dependence in the ARPES and its relation to magnetic
correlations on the frustrated structure.

Results. – Figure 1 shows the U -T phase diagram at
t′/t = 0.8. Let us first discuss the ground state. Our
T = 0 result is equivalent to UHF and leads to a transition
from an uncorrelated paramagnetic metal to an AF metal
with wave vector Q = Q1 ∼ {0.85π, 0.85π} at Uc1 ∼ 4.0t.
At Uc2 ∼ 4.4t there is a transition to an AF insulator
with Q2 ∼ {0.83π, 0.83π}. At large U/t, this evolves into
slightly away from Néel state with Q2 ∼ {0.8π, 0.8π}.

The magnitude mi = |mi| is small in the AFM and
grows as U/t increases in the Mott phase. The existence
of the AF metal, and the nature of order in the interme-
diate U/t Mott phase, could be affected by the neglected
quantum fluctuations of the mi [41].

Finite temperature brings into play the low-energy fluc-
tuations of the mi. The effective model has the O(3) sym-
metry of the parent Hubbard model so it cannot sustain
true long-range order at finite T . However, our annealing
results suggest that magnetic correlations grow rapidly
below a temperature Tcorr, and weak inter-planar cou-
pling would stabilize in plane order below Tcorr (equivalent

0 2 4 6 8
U/t

0
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T
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T
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MIT
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Fig. 1: (Colour on-line) U -T phase diagram of the Hubbard
model at t′/t = 0.8. The phases are paramagnetic metal (PM),
paramagnetic insulator (PI), antiferromagnetic metal (AFM)
and antiferromagnetic insulator (AFI). The AFM and AFI are
not simple Néel ordered (see text). PG indicates a pseudogap
phase, metallic or insulating. There is no genuine magnetic
transition in two dimensions so our Tcorr indicates the tempera-
ture across which the magnetic correlation length grows rapidly
(see text). The MIT line is determined from change in sign of
the temperature derivative of resistivity, i.e., dρ/dT = 0.

results for the classical Heisenberg model are discussed in
Takahashi [42]). This Tcorr increases from zero at U = Uc1,
reaches a peak at U/t ∼ 6.5, and falls beyond as the kinetic
energy gain from virtual hops decreases. Note that unlike
mean-field theory we can describe a magnetically disor-
dered (Mott) insulating phase since the auxiliary fields
mi survive even after spatial order is lost.

We classify the finite T phases as metal when dρ/dT > 0
and insulator when dρ/dT < 0. The dotted line indicat-
ing the MIT corresponds to the locus dρ(T,U)/dT = 0.
In addition to the magnetic and transport classification
we also show a window around the MIT line where the
electronic density of states (DOS) has a pseudogap. To
the right of this region the DOS has a “hard gap” while
to the left the DOS is featureless. The MIT line shows re-
entrant insulator-metal-insulator behavior with increasing
T near U ∼ Uc2. On the overall scale of fig. 1 only a mild
concavity is visible in the metal-insulator phase bound-
ary. We will discuss this feature in detail elsewhere [43]
and compare to the organic experiments.

Figure 2 shows the resistivity ρ(T ) computed via the
Kubo formula for varying U/t. The optical conductivity
σ(ω) of the two-dimensional system is given by [44]

σxx
2D(ω) =

σ0

N

∑
α,β

nα − nβ

εβ − εα
|〈α|Jx|β〉|2δ(ω − (εβ − εα)),

where the current operator Jx is

Jx = −i
∑
i,σ

[
t(c†i,σci+x̂,σ − h.c.) + t′(c†i,σci+x̂+ŷ,σ − h.c.)

]
,

nα = f(εα) is the Fermi function, and εα and |α〉 are, re-
spectively, the single-particle eigenvalues and eigenstates
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Fig. 2: (Colour on-line) Temperature dependence of the resis-
tivity for different U near the M-I transition. The normalizing
scale is ρ0 = �/πe2 (see text). The U/t values are indicated on
the curves.

of Heff in a given background {mi}. The d.c. conductiv-
ity is the ω → 0 limit of σxx

2D(ω). σ0 = πe2

�
, the scale for

two-dimensional conductivity, has the dimension of con-
ductance. Our results are averaged over ∼ 20 equilibrium
MC configurations. We have verified the f -sum rule nu-
merically for the optical conductivity.

As T → 0 the resistivity ρ(T ) goes either to zero (for
U < Uc2 ∼ 4.4t) or diverges (for U > Uc2). The T → 0
behaviour for U very close to Uc2 is, however, difficult to
settle numerically with finite annealing time. The seem-
ingly finite ρ(0) in the metal arises from the survival of a
few finite mi which should all ideally vanish as T → 0.

We make the following observations about the finite T
resistivity: i) For U � Uc2 the prominent Mott gap leads
to dρ/dT < 0 over the entire temperature window. How-
ever, just beyond Uc2, for (Uc2 − U) � Uc2, we observe
non-monotonic ρ(T ): at the lowest temperature we have
dρ/dT < 0, which then crosses over to dρ/dT > 0 and
at even higher T to another weakly dρ/dT < 0 regime!
This re-entrant behaviour is hard to make out on the log
scale in fig. 2 and we will discuss it elsewhere [43]. ii) In
the metallic phase, U < Uc2, the resistivity arises from
thermally generated magnetic fluctuations. Within a per-
turbative scheme the scattering rate is ∝ 〈m2

i 〉 ∼ T . A full
treatment including the quantum effects in mi may lead
to a Fermi liquid T 2 behaviour. However, at higher T the
classical thermal fluctuations should provide an adequate
description of the transport.

Figure 3 shows the optical conductivity σ(ω) at T = 0.1t
and T = 0.2t as U/t is varied across the Mott crossover.
The following are our main observations. i) There is
a distinctly non-Drude character to σ(ω) in the metal,
U/t � 4.4, with dσ(ω)/dω|ω→0 > 0. ii) The low fre-
quency hump in this “bad metal” evolves into the inter-
band Hubbard peak, at a frequency ω ∼ Um̄ in the Mott
phase, as increasing U in panels (a), (b) reveal. iii) The
change in the lineshape with increasing T is more promi-
nent in the metal, with the peak location moving outward,
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)/σ
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(a) T/t=0.1 (b) T/t=0.2

Fig. 3: (Colour on-line) Optical conductivity at T/t = 0.1 and
0.2 for U varying across Uc. At these temperatures the σ(ω)
is non-Drude even in the “weakly correlated” case U/t ∼ 4.0.
The finite frequency peak evolves into the Hubbard transition
at large U/t.
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U=4.0
U=4.4
U=4.8
U=5.2
U=5.6
U=6.0
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U=4.4
U=4.8
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T/t=0.1 T/t=0.2
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Fig. 4: (Colour on-line) Density of states at T/t = 0.1, 0.2
for U varying across Uc. The dip in the DOS deepens with
increasing T for U/t � 4.6. For larger U/t the system slowly
gains spectral weight with increasing T .

and is more modest deep in the insulator. iv) The tem-
perature dependence of the low-frequency optical weight,
at ω � 0.2t, is different on the two sides of the Mott
crossover. In the lower U/t “metal” the large Drude weight
at low T decreases quickly with increasing T while at
larger U/t, in the insulator, the low frequency weight in-
creases somewhat with increasing T .

The crossover from the “bad metal” to the insulator in-
volves a wide window with a pseudogap in the electronic
DOS, N(ω). One may have guessed this from the deplet-
ing low frequency weight in σ(ω), fig. 4 makes this feature
explicit. Our results indicate a wide interaction window,
U/t ∼ 4–5.3, where there is a distinct pseudogap in the
global DOS for T � 0.05t. For U/t � 4.6 the dip fea-
ture deepens with increasing T , we have dN(0)/dT < 0
(compare panels (a) and (b), fig. 4), while for U/t � 4.6
we have a weak dN(0)/dT > 0. The PG arises from the
coupling of electrons to the fluctuating mi. A large mi at
all sites would open a Mott gap, independent of any order
among the moments. Weaker mi, thermally generated in
the metal near Uc1 and with only short-range correlations,
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Fig. 5: (Colour on-line) Top: momentum dependence of the low-frequency spectral weight in the electronic spectral function
A(k, ω = 0) showing its anisotropy, at T/t = 0.1, and U/t = 4.2, 4.4, 4.6, 4.8, 5.0, left to right. kx, ky range from [−π, π] in the
panels. Note the systematically larger weight near k = [π

2
, π

2
] and [−π

2
, −π

2
] and smaller weight in the segments near [π, 0] and

[0, π]. Bottom: magnetic structure factor S(q) for the auxiliary fields mi for the same set of U/t. The qx, qy range from [0, 2π].
Note the very weak and diffuse structure at U/t = 4.2 and the much larger and differentiated structure at U/t = 5.0.

manages to deplete low frequency weight without opening
a gap. Since the typical size 〈mi〉 increases with T in the
metal, we see the dip deepening at U < Uc.

We extract the thermal and spin averaged spectral func-
tion A(k, ω) as follows. The retarded Green’s function
Gσ(k, t) = −iθ(t)〈{ckσ(t), c†kσ(0)}〉 can be simplified to
Gσ(k, t) = −iθ(t)

∑
α |〈kσ|α〉|2e−iεαt where {|α〉} are the

single-particle eigenstates and εα are eigenvalues in a given
{mi} background. In the frequency domain, this becomes

Gσ(k, ω) =
∑
α

|〈kσ|α〉|2
ω − εα + i0+

.

The spectral function is Aσ(k, ω) = − 1
π ImGσ(k, ω) =∑

α |〈kσ|α〉|2δ(ω − εα). We average this over the thermal
{mi} configurations and electron spin σ.

Figure 5, top row, shows maps of A(k, 0) in kx, ky plane
at T/t = 0.1, as increasing U/t transforms the bad metal
to a Mott insulator. The first panel at U/t = 4.2 shows
weak anisotropy on the nominal FS while fig. 4(a) sug-
gests that a weak PG has already formed. At U/t = 4.4,
next panel, the weak anisotropy is much amplified and the
weight in the [0, 0] → [π, π] direction is distinctly larger.

The next three panels basically show insulating states
but without a hard Mott gap. Overall, the “destruction”
of the FS seems to start near [±π, 0] and [0,±π], the “hot”
regions, and ends with the region near [π/2, π/2], etc., the
“cold spots”.

Second row in fig. 5 shows the S(q) of the auxiliary
fields at T/t = 0.1 for the same U/t as in the upper row.
While there is no magnetic order we can see the growth of
correlations centered around Q ≈ [0.85π, 0.85π] as U/t in-
creases. The dominant electron scattering would be from
k to k + Q, and the impact would be greatest in regions
of the FS in the proximity of minima in |∇εk| (which cor-
respond to large DOS). The location of the hot spots on
the FS, and the momentum connecting them, indeed cor-
respond to this scenario.
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Fig. 6: (Colour on-line) The spectral function A(k, ω) at two
k points on the FS that correspond to the highest and lowest
value of A(k, 0). We highlight the anisotropy over a range of
U/t values, as the system evolves from a moderately damped
metal to a pseudogap phase, and three temperatures.

The full spectral function at the “cold spot” and “hot
spot”, where A(k, 0) is maximum and minimum, are
shown, respectively, in the top and bottom panels in the
fig. 6. At T = 0.1t, panels (c) and (f), for which A(k, 0)
is shown in fig. 5, there is no quasiparticle (QP) peak in
A(k, ω) at either the cold or hot spot for the U range
shown. The kmax and kmin data differ only quantitatively.
At lower T and weaker U , however, the cold spot shows
a QP peak while a pseudogap feature is already visible at
the hot spot. However, as we will see next, the lower T
result may be less reliable, due to missing dynamics of mi.

Discussion. – We wish to quickly touch upon four
issues.

i) The limitations of our method : While we capture non-
trivial spatial correlations and its impact on electronic
properties, caution is in order about the following:
a) Neglecting the dynamics of the mi misses correlation
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effects, beyond UHF, in the ground state of the metal and
underestimates Uc/t. b) It misses possible “Fermi liquid”
physics in the low T metal. Near the MIT it is useful to
think of the metal, crudely, in terms of a self generated
Kondo scale T ∗

K , so that for T > T ∗
K the dynamics of mi

is not crucial [45]. As a rough measure we would suggest
that our frequency dependent results would be valid for
|ω| > T ∗

K when T < T ∗
K , and all the way down to ω = 0

when T > T ∗
K . T ∗

K ∼ 0.1t can be considered as an upper
limit for the U/t window we have focused on. c) There
could be a “spin liquid” insulator at intermediate U/t as
suggested [27,28] t′/t = 1. We would prefer to emphasize
our finite T results rather than the detailed nature of the
ground state.

ii) Checks on size dependence: While thermodynamic
features and the overall DOS can be reasonably accessed
even on small system size, the ARPES can be significantly
size dependent. We have checked the MC results for sizes
L × L, with L = 8, 12, 16, 20, 24, 30 to establish that our
results represent the L → ∞ limit.

iii) Connection to experiments: This paper has delib-
erately focused on results arising from the model without
attempting a comparison with data on the organics. Our
preprint [46] provided a detailed comparison on the re-
sistivity and optical conductivity. We will discuss these
transport features, as well as the re-entrance aspect in the
M-I phase diagram, in a separate paper [43].

iv) Effect of varying t′/t: While Uc depends strongly
on t′/t, varying from Uc/t → 0 as t′ → 0, to Uc/t ∼ 5
as t′ ∼ t, the PG width doesn’t vary significantly. The
magnetic character of the insulating phase changes from
Néel to spiral around t′/t ∼ 0.7.

Conclusion. – We introduced and explored in detail a
method which retains the spatial correlations that are cru-
cial near the Mott transition on a frustrated lattice. For
the anisotropic-triangular-lattice Hubbard model at half-
filling we find that increasing interaction strength leads
to a wide pseudogap window and non-Drude response in
the optical conductivity near the Mott transition. The
angle-resolved spectral function reveals that the coupling
of electrons to the non-local magnetic fluctuations leads to
a strong and distinctive momentum dependence of quasi-
particle damping and pseudogap formation as the Mott
transition is approached.
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