
Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter 32 (2020) 255601 (7pp) https://doi.org/10.1088/1361-648X/ab7a4b

Orbital Mott transition in two dimensional

pyrochlore lattice

Abhinav Saket1 and Rajarshi Tiwari2,3

1 Samastipur College, Samastipur, Bihar-848134, India
2 School of Physics and CRANN, Trinity College, Dublin 2, Ireland

E-mail: rajarshi84@gmail.com

Received 8 October 2019, revised 27 January 2020

Accepted for publication 26 February 2020

Published 27 March 2020

Abstract

We study orbital Mott transition in two dimensional pyrochlore lattice, using a two orbital

Hubbard model with only inter-orbital electronic hopping. We use a real space Monte Carlo

based approach to study the model at �nite temperature, and establish temperature-interaction

phase diagram that highlights the Mott transition, orbital ordering, and spectral trends, and

possible window of pseudogap. Due to only inter-orbital hopping, the Mott insulator

‘generates’ ferro exchange resulting in ferro-orbital ordering, with Tcorr/t peaked at ≈0.2
around U/t ≈ 6. The optical conductivity shows unusual two peak feature due to two

dimensional pyrochlore lattice.
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1. Introduction

The Mott transition is one of the most widely discussed

phenomenon in strongly correlated systems [1, 2]. It mani-

fests itself at ‘integer’ �lling when electrons localise due to

electron–electron interaction, resulting in an insulating state,

called Mott insulator. The ‘Mott problem’, i.e., understand-

ing why the transition occurs and its consequences, is most

commonly studied through single band Hubbard model [3] on

different lattices. The addition of orbital degrees of freedom

opens more exciting possibilities, such as interplay of orbital

and spin degrees of freedom [4], orbital selective Mott tran-

sition [5], where some orbitals localise, while other remain

itinerant. These possibilities, are, however, explored at the cost

of more complex models that include intra and inter orbital

repulsions and exchange energies [6]. Formally, each energy

scale/parameter adds a dimension to the parameter space,mak-

ing it harder to comprehend.As a result, studies geared towards

model solving usually reduce the parameter space, by assum-

ing simpler electronic hopping structure, and choosing reduced

set of interactions, such as absence of inter-orbital repulsion

[7], �xing interaction to some representative values [8, 9], or

3 Author to whom any correspondence should be addressed.

choosing same intra and inter-orbital repulsions by removing

Hund’s coupling [10].

To solve the Hubbard model for �nite temperature, DMFT

has been amethod of choice, be it single orbitalmodel [11, 12],

or multi-orbital model [7, 8, 13]. Many qualitative features of

orbital-degenerate Mott transition are found to be available in

single band model as well [13], however new features emerge,

that require non-trivial treatment of multiple orbitals, such as

different scaling of the critical couplingsUc1 and Uc2 as func-

tion of the number of orbitals [7]. Recently, Kawakami et al

studied the Mott transition in the three-orbital Hubbard model

and investigated how the orbital level splitting affects the Mott

transition in the case of two electrons per site using (DMFT)

combined with continuous-time quantum Monte Carlo simu-

lations [8]. A general mechanism for the coexistence of both

itinerant and localised conduction electrons has been pro-

posed [14] and the orbital selectiveMott transition in two-band

Hubbard models with different bandwidths has been explored

using another form of DMFT [15].

Within DMFT, or its cluster variants [16, 17], the correlated

lattice system is mapped to one or more correlated sites cou-

pled with non-interacting bath of electrons, and one gets to

solve the quantum problem at the cost of ignoring spatial �uc-

tuation in the lattice. The neglect of spatial correlations and
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the lack of visual intuition about the transition, motivated us

in past to explore a complementary real-space Monte Carlo

based approach (discussed later), which provides a reasonable

description of Mott physics in a real space setting and allows

a certain degree of visualization.

In this paper, we use this approach to solve a two orbital

Hubbardmodel, inspired from the recent interest in pyrochlore

compounds for studying the effects of spin–orbital inter-

play and geometrical frustration [18]. The metal-insulator

transition (MIT) in Mo pyrochlore oxides (R2Mo2O7) [19]

(where R is rare earth metal) and role of its frustrated lat-

tice structure has been extensively studied earlier for Ir based

pyrochlore [20, 21]. The evolution of charge dynamics at

metal-insulator transition has been experimentally investigated

for Nd2(Ir1−xRhx)2O7 where the spin–orbit interaction as well

as the electron correlation is effectively tuned by the doping

level x [22]. The transition from ferromagnetic metal to spin

glass insulator and paramagneticmetal has been observedwith

increase of the radius of rare earth metal ion R3+ and exter-

nal pressure due to the competing double exchange and super

exchange interactions on the frustrated lattice [23]. Likewise,

the role of orbital degrees of freedomhas been debated inmetal

insulator transitions in various pyrochlore oxides [24].

A number of theoretical attempts have beenmade to explore

the antiferromagnetism [25], frustration [26–28], Hall effect

[29] etc, through a variety of models. Ground state [19]

and �nite temperature phase diagrams [30] have been estab-

lished, showing transition from ferromagnetic to spin glass,

or cooperative paramagnetic phase. However, these transitions

are seen primarily in terms of double-exchange model with-

out electron–electron interaction, or within weak interaction

limit. Furukawa et al [19] (�gure 2) illustrated an elegant

schematic of phases in terms of interaction and super-exchange

phase diagram, which shows the possibility of orbital Mott

transition in the ferromagnetic spin background in the weak

super-exchange limit. We wish to explore this transition in

detail.

2. Model

The lattice structure of R2Mo2O7 is composed of two interven-

ing pyrochlore lattices formed by Mo cations and R cations.

TheMo cation is surroundedby octahedra of oxygens (MoO6),

which splits the �ve fold degenerate d-orbitals into three and

two fold degenerate t2g and eg orbitals respectively. Further,

the distortion of the MoO6 octahedra along local (111) axis

(towards centre of each Mo tetrahedra) splits the t2g levels

into lower single a1g level (below Fermi level) and higher

two fold degenerate e′g levels (above Fermi level) [31]. Mo

being Mo4+ cation in these compounds, strong Hund’s cou-

pling results in the fully occupied single a1g up-spin band,

well below Fermi level, and half-�lled two-fold degenerate

e′g up-spin bands. We start with the following two band dou-

ble exchange model, previously proposed by Furukawa et

al [19] for various pyrochlore systems to describe the elec-

tronic motion for the compound, including kinetic energy,

coulomb interaction, Hund’s coupling and anti-ferromagnetic

super-exchange:

Figure 1. The phase diagram of the Furukawa model on
checkerboard lattice (shown in the inset) in the U/t, T/t plane. The
colour map denotes the value of maxima of S(q) at given
temperature and U/t. The maxima in this case corresponds to
q = (0, 0), which gives the ferromagnetic order. The blue (circle)
curve shows Tcorr temperature, at which magnetic correlation grow
up to lattice size. The green (square) curve shows the metal-insulator
transition, determined by the sign of dρ/dT (see text).

H = −
∑

〈i j〉,αβσ

tαβ

(

c
†
iασc jβσ + h.c.

)

+ JH
∑

iα

~Si ·~si,α

+
∑

iαβα′β′σσ′

Uαβα′β′c
†
iασc

†
iβσ′ciβ′σ′ciα′σ

+ JAF
∑

〈i j〉

~Si ·~S j (1)

where, c
†
iασ creates an electron at site i, orbital α and spin σ.

~siα is electronic spin operator for site i, orbital α. ~Si is core
spin at site i. The �rst term denotes the kinetic energy of itin-

erant e′g electrons with spin σ and orbitals α running over two

degenerate orbitals (say 1, and 2) of the e′g band. tα,β is the

electronic hopping. Second term, with coupling JH, denotes

double exchange coupling between itinerant e′g electrons with

localised a1g electron, treated as core spins. Third term denotes

the anti-ferromagnetic super-exchange among localised a1g
electrons with strength JAF. JAF = is approximately set by

t2a1g/Ua1g where ta1g is the transfer integral between the a1g
orbitals and Ua1g the intra-orbital Coulomb repulsion in the

a1g orbital. The last term denotes on-site coulomb interactions

between e′g including intra and inter-orbital repulsions.

We study the above two band double exchange (DE) model

(1) on the two dimensional pyrochlore lattice, which is essen-

tially ‘checkerboard lattice’ (shown in the inset of �gure 1), in

the limit JAF = 0. This gets further simpli�ed in the JH →∞
limit as follow. Rotating the axis of quantization of every

fermionic operator ci,α from universal z-axis to the direction

of the core spin Si(θi,φi) at every site,
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[

ci,↑

ci,↓

]

= U(θi,φi)

[

pi

ai

]

where

U(θi,φi) = exp

(

−i
φi
2
σz
)

exp

(

−i
θi
2
σy
)

. (2)

renders theHund’s term diagonal in spin, and in JH →∞ limit,

the parallel pi state gets projected out from the Hamiltonian,

as have higher energy. By shifting the zero of the energy by

JH, we get the following low energy Hamiltonian, written in

terms of the ai operators with their axes aligned opposite to

the localised spin at each site [19].

H = −
∑

〈i j〉αβ

tiα, jβ

(

a
†
iαa jβ + h.c.

)

+ U
∑

i,α 6=β

niαniβ (3)

where aiα is spinless fermion operator and niα = a
†
iαaiα. U

is inter-orbital interaction and the electronic hopping element

tiα,jβ becomes angle dependent, (θi,φi) being the angles of spin
~Si.

tiα, jβ = tαβ

(

cos
θi
2
cos

θ j
2
+ ei(φi−φ j) sin

θi
2
sin

θ j
2

)

(4)

Its easy to see from equation (4) that tiα,jβ = tα,β if the

spins are parallel (θi = θj,φi = φj), and tiα,jβ = 0 when they

are anti-parallel (θi = π − θj,φi = π + φj). Thus, for ti,j to be

maximum, nearest neighbouring spins have to be parallel to

each other. In general, a non-trivial core spin state would gen-

erate complex spatial texture of hopping for electrons to delo-

calise. However, since we consider JAF = 0, the ground state

for the core spins is ferromagnetic (FM), with its Tc driven

by the kinetic energy, which we assume to be large compared

to ∼ t2i j/U, so we can approximate the the core spins to be

frozen in FM state, for which the hopping becomes site inde-

pendent tiα,jβ = tαβ . We commentmore on this later during the

discussion.

Because of anisotropy of the e′g orbitals and relative angle

of Mo–O–Mo bond [19, 32], the relative strength of tα=β

and tα 6=β can be expressed as [19]
tα 6=β

tα=β
= 3−cos δ

3+cos δ
. In Mo

pyrochlore oxides δ > 90◦, and in Mo based systems about

130◦ [33] so the inter orbital hopping tα 6=β is larger than the

intra orbital hopping tα=β [19]. So we choose, for simplicity,

tα=β = 0, and set tα 6=β = t. We will comment on the inclusion

of the intra-orbital hopping in the section 4.

Treating the two orbital as ‘pseudo-spins’ ↑, ↓, we get the
following ‘orbital-Hubbard model’:

H = −t
∑

〈i j〉

(

a
†
i↑a j↓ + a

†
i↓a j↑ + h.c.

)

+ U
∑

i

ni↑ni↓ (5)

Notice that, in this model, electrons delocalise through hop-

ping alternatively via the two ‘pseudo-spin’ channels, which,

as opposed to the usual Hubbard model, would generate

‘ferromagnetic’ interaction among the neighbouring pseudo-

spins in large U/t Mott state, because due to the presence of

‘alternate hopping’, an electron of spin ↑ at site i can virtu-

ally hop to neighbouring site j and back, provided the electron

at site j is in ↓ state, generating ∼ t2

U
exchange. From now on

what we refer to as ‘magnetic’ is in context of pseudo-spins,

and hence should be considered appropriately as orbital ver-

sion of magnetism, for example, ferromagnetism is really a

ferro-orbital order.

We use static auxiliary �eld (SAF) approximation [34–36],

earlier applied to Hubbard model on different lattices to solve

this model in real space. We use Hubbard Stratonovich trans-

formation [37, 38] in terms of a vector �eldmi(τ ) and a scalar
�eld φi(τ ) at each site to decouple the Uni↑ni↓ interaction,

retaining rotation invariance of the Hubbard model. We treat

themi and φi as classical �elds, i.e., neglect their time depen-

dence, but completely retain the spatial �uctuations in mi,

while we treat φi at saddle point level, i.e., 〈φi〉 =
U
2
〈ni〉 =

U
2

(at half �lling). We have used this approach successfully in

past for Mott transition on anisotropic triangular lattice [34],

fcc [35] and pyrochlore [36]. Within this approximation, the

model (equation (5)) maps to the following

Heff = −t
∑

〈i j〉α

a
†
iαa j−α −

U

2

∑

i

mi · ~σi +
U

4

∑

i

m2
i (6)

which describes the motion of electrons coupled classical aux-

iliary �eldsmi. The ground state of 6 is given by {mi} thatmin-

imizes the total energy. The thermal physics is accessed using

Monte Carlo (MC) sampling of the auxiliary �eld {mi} that

have distribution P({mi}) ∝ Trp,p†e
−βHeff . We use single site

update scheme, where we attempt an update mi →m′
i at site

Xi. We compute the energy cost of the attempted update∆E =

E{mi} − E{m′
i} by numerically diagonalizing the electronic

Hamiltonian, and use Metropolis algorithm to update the aux-

iliary �eld. To access large lattices within limited time, we use

travelling cluster algorithm [39] for estimating the update cost

of MC, where instead of diagonalizing the full lattice, we cal-

culate the energy cost of and update mi by diagonalizing a

cluster of smaller, �xed size de�nedwith auxiliary �eld around

the reference site. We have extensively benchmarked this clus-

ter scheme [39]. The results we show in the next section, are

averaged over equilibriumMC con�gurations.

3. Results

Most of our results are based on MC done on N = 24× 24

lattice, with clusters of size Nc = 8× 8, which is big enough

considering �nite size effects, and computational resources.

We annealed the system from high temperature T/t ≈ 0.3 for

different values of U/t. We probe the magnetic correlation

and transition temperature Tcorr through thermal average of the

structure factor de�ned as S(q) = 1
N2

∑

i j〈mi ·m j〉e
iq·(Ri−R j) at

each temperature. Its rapid growth at few speci�c q at some

critical temperature serves us as the onset of a transition to

a state with long range order, giving us an estimate of Tcorr.

Throughout the U window, the maxima of the structure factor

occurs at q = (0, 0), which describes ‘ferromagnetic’ order of

the pseudo-spins.

The conductivity of the two dimensional system is �rst

calculated as follows (reference [40]), using the Kubo formula:

3
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Figure 2. (Left) temperature dependence of the resistivity at different U/t. (Right) colour map of the density of state at Fermi level in U–T
plane. The blue and green curves are for the magnetic transition Tcorr and insulator metal transition, same as in �gure 1 (see text).

σx(ω) =
σ0

N

∑

α,β

nα − nβ

ǫβα
|〈α|Jx|β〉|

2δ(ω − ǫβα) (7)

Jx = −it
∑

i,~δ,σ

[

~δ · x̂ a†i,σai+~δ,σ − h.c.
]

(8)

Where, ǫβα = ǫβ − ǫα, Jx is current operator, and ~δ runs over

the set of vectors connecting the neighbouring sites. The dc

conductivity is the ω → 0 limit of the above result. σ0 =
πe2

~
,

the scale for two dimensional conductivity, has the dimension

of conductance. nα = f(ǫα) is the Fermi function, and ǫα and

|α〉 are respectively the single particle eigenvalues and eigen-
states of Heff in a given background {mi}. The thermal aver-

age of the conductivity that we show later is averaged over

equilibrium {mi} con�gurations generated through MC, i.e.

σ(ω, T) = 〈〈σx(ω)〉〉MC .

We �rst summarize our results in the U–T phase diagram,

shown in �gure 1, where the colour map represents the value

of the structure factor at q = (0, 0), indicative of ferromag-

netic order. The blue curve shows the Tcorr as function of U/t.
We see that there is a critical Uc/t ≈ 3 at T/t = 0, separating

ferromagnetic insulator (FI) with an orbital-insensitive metal.

Before Uc, we have no long range order. The Tcorr starts to

increase afterUc up toU/t = 6, after which it decreasesmono-

tonically (at large U/t it goes as ∼ t2/U). The green curve

de�nes metal-insulator boundary Uc(T), based on change of

sign of resistivity derivative dρ/dT.
The phases are as follows. For U < Uc we have

‘paramagnetic’ metal (PM), characterized by increasing

resistivity with temperature, and no long range spatial corre-

lation. For U > Uc, we have paramagnetic insulator (PI) state

at high temperature, and ferromagnetic insulator (FI) at low

temperature. Both are characterized by decreasing resistivity

with temperature. The Tcorr curve (shown in blue circles in

�gure 1) separates FI state with ferromagnetic order with the

PI state that has no long range order.

In left panel of �gure 2, we show the temperature depen-

dence of the resistivity ρ(T) at several U/t, which neatly

demonstrates the MIT. At low U/t the resistivity is metallic,

and increasing U/t results in progressively higher, yet metal-

lic resistivity up to critical interaction strength Uc/t ∼ 3, after

which we have insulating resistivity, increasing with U/t.
In the metallic window of U/t, the resistivity decreases rel-

atively slowly when T/t is lowered, while in the insulating

window, the change is rather drastic due to presence of the

Mott gap. The right panel of the �gure 2 re-highlights the phase

diagram in terms of the density of state (DOS) at Fermi level

(DFermi) shown as colour map. Clearly, the insulating PI and FI

phases show absence of the DOS at Fermi level, while deep in

the metallic side we have non-trivial DFermi, which are close

to tight-binding (TB) DFermi at low, or rather zero tempera-

ture. However, in the metallic side close to MIT, the DFermi

decreaseswith increasing temperature. This occurs due to ther-

mally generated auxiliary �elds {mi}, which grow larger with

temperature. Close to MIT line, the ‘locus’ of constant DFermi

seems to follow the MIT line, with DFermi > 20%, of its max-

ima, showing that the system becomes insulating before the

DFermi gets depleted, or the Mott gap opens. Next, we discuss

the optics and DOS.

Close to the MIT boundary on the insulating side, U/t ≈
3.2, the resistivity has a weak non-monotonic behaviour

(�gure 2 right panel). The ground state atU = 3.2, being close

to the MIT, but on insulating side has a small gap. As the T

is increased, angular �uctuations of mi weaken the long-range

order,which lowers this gap, reducing the resistivity till the gap

closes. Further increase to rather large T, the magnitude �uc-

tuations ofmi become large, which push the DOS slowly away

from Fermi level. This we think results in slow increase of

resistivity, and this non-monotonic behaviour. This behaviour

4
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Figure 3. The left panel (a)–(e) shows optical conductivity σ(ω), and the right panel (a)–(e) shows the DOS. In both the panels, we show
the U/t dependence at low (a) T /t = 0.08, and high (b) T /t = 0.30 temperature, while we show T/t dependence at three representative
strengths of interaction (c) U/t = 2, (d) U/t = 4, (e) U/t = 6 (see text).

is seen close to MIT boundary,when the gap is small. TheMIT

boundary for Mott transition is often non-monotonic, though

why it is more prominent some system than others is poorly

understood.

In �gure 3 we show optical conductivity (left panel), along

with the DOS (right panel). Figures 3(a) and (b), show theU/t

dependence of the optical conductivity (left panel) and DOS

(right panel) at low T/t = 0.08, and high T/t = 0.3 temper-

atures. Similarly, �gures 3(c)–(e) show T/t dependence of of

the optical conductivity andDOS at three representative values

of interaction strength (c) U = 2 which is metallic, (d) U = 4

which is insulator close to MIT, and (e) U = 6 deeper in insu-

lating side. In the right panel for DOS, we also show the TB

DOS in dotted line for reference.

First, the U/t dependence, at low temperature (�gure 3(a),

both panels). At small interaction strength U/t the low fre-

quency Drude weight is large, as we would expect from a

metal having �nite DOS at Fermi level, and decreases as we

move to higherU/t due to lowering of the DOS at Fermi level.

The Drude weight collapses to zero as we cross to the insu-

lating side when a gap opens in the DOS, showing a ‘gapped’

response at higher U/t.

In the optics, interestingly, we have a ‘two-peak’ behaviour

at low temperature. The low energy peak is the Drude peak,

which is strong at weak interaction, systematically shifts its

weight from ω = 0 to higher energy, to ω ≈ mU, m being the

average magnitude of the auxiliary �eld mi, and is absent at

large U/t in the insulating state. The second peak, typically

prominent only in metallic side, can be attributed to the TB

part of the checkerboard lattice. The TB DOS, shown in the

right panel, has divergence at ω/t ≈ ±2, which would result in

strong response in optical conductivity around ω/t ≈ 4, hence

the second peak. This is what we see in the corresponding opti-

cal conductivity panel [compare (c) in both panels] when the

interaction is small, system metallic, and auxiliary �eld mag-

nitudes mi dictating the spectrum are small. With increasing

interaction, the �rst peak progressively moves from ω/t = 0,

to ω/t ≈ mU, while the second peaks stays close to ω/t ≈ 4.

The divergence in the DOS, also results in making the

�nite size effects more severe in the metallic sides at low tem-

perature, when auxiliary �eld magnitudes mi are small, and

the spectrum of the system resembles closer to that of TB

system. This is seen in DOS panel, where the low temper-

ature DOS in metallic side (c) has large �uctuations, which

become smoother as one increases U [see panels (d) and (e)],

or temperature.

To check the quality of our Monte-Carlo annealing, we also

estimated the ground state of the equation (6) using variational

minimization. We constructed spiral con�gurations m(r) =

m(cosq · r, sinq · r, 0) as variational states and minimized the

total energy with respect to the magnitudem and period vector

q. Such periodic states can be easily diagonalized in Fourier

space, as one gets only off diagonal matrix elements connect-

ing |k ↑〉→ |k+ q ↓〉 and back from them(r) dependent term.

We �rst minimized for both q andm over the phase diagram on

larger lattice N = 48× 48, and saw that the q that minimizes

the energy throughout the interaction was ferromagnetic, i.e.,

q = (0, 0), with U dependent m = mvar. We then calculated

optimal mvar for ferromagnetic phase as function of U/t over
even larger lattice N = 2000× 2000. In �gure 4(a), we show

the DOS of the variationally minimized ferromagnetic state

at different U/t. In �gure 4(b), we show U/t dependence of
the average auxiliary �eld magnitudem calculated at different

temperature from Monte Carlo, and compare it with the vari-

ationally minimized value mvar. As we see, the MC estimates

of average m have non-zero values at low T and low U. This

is actually consequence of MC annealing, rather than �nite

size, since one samples random mi vectors uniformly from

inside a sphere of radius, say m0 for Monte Carlo, and one

would largely generate vectors with magnitude m > 0, even

if small, due to zero measure of point m = 0. Thus the MC

picks up |m| > 0, even in theU < Uc side at very low tempera-

ture. However, such issues do not occur, for example in similar

5
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Figure 4. (a) The DOS at variationally minimized grounds state at
different U/t. (b) The average magnetization m and mvar as function
of U/t at different temperature.

simulations of say double exchange model, where the spins

have unit magnitude.

At small U, when the optimal mvar = 0, we get the TB

ground state, and correspondingDOS, that is nearly constant at

half �lling, with singularity at ±2. Around U ≈ 2.5, the opti-
mal mvar starts growing [panel (b)], and a gap opens at half

�lling, and each singularity splits into two [panel (a)]. For

moderate to strong interactions, U/t & 3, or Uc, the average

of the auxiliary �eldm is monotonic, i.e., it increases withU/t
as well as temperature, and in large U/t limit, starts to satu-

rate towards atomic limit. The lowest temperatureMCestimate

matches with the variational estimate at large interaction. At

lower interaction, however, we notice that (i) the m(U) pro�le

for a given temperature is non-monotonic, and (ii) the lowest

temperaturem fromMC is higher than the variational one. The

later, results as consequence of the �nite size effect, which in
combination of large degeneracy in the spectrum close to and

in metallic side, becomes more severe. The non-monotonicity

results from the fact that at very low U, when the system’s

ground state is m = 0, �nite temperature �uctuations require

largerm, at smallerU, as the actual �uctuations in the spectrum

depend on Umi.

4. Discussion

We studied the complimentary scenario of weak to zero super-

exchange limit, to explore the Mott transition only in term of

U/t interaction window. We have done a comprehensive study

of the model de�ned in equation (5), on checkerboard lattice,

which shows strong correlation driven Mott transition with

ferro-orbital order. In term of comparison with real materials,

unfortunately, since majority of the pyrochlore compounds,

are not half �lled orbitals system with weak super-exchange,

where the MIT can be seen as purely Mott phenomenon.

There are ferromagnets such as Nd2Mo2O7 and Sm2Mo2O7

[23], but these are metals. We now comment on some limita-

tions, and simpli�cations used in our model. It is worth recall-

ing the assumption that the underlying spin-ordering remains

ferro at temperatures well above orbital ordering temperature

∼ Tcorr shown in �gure 1. If that assumption is relaxed, say

the spin-ferro ordering temperature Tc becomes comparable to

the orbital Tcorr, the core spins, of the model (equation (1)) can

not be treated as frozen, and the electronic hopping becomes

angle dependent. This would happen when we switch on the

super-exchange interaction JAF. When JAF 6= 0, but small, the

long range order of the core spins would still be ferromagnetic,

however, with lower Tc. For larger JAF, the ordering of the core

spinswould becomeantiferromagnetic. In either case, the elec-

tronic hopping would become angle dependent through spins

(see equation (4)). One would need to include the core spins, in

the simulations, as the spin �uctuations driven hopping would

crucially impact electronic properties, including transport. As

a result, the effective electronic delocalisation would reduce,

pushing the Mott boundary to lower values, along with pos-

sibly reducing the Tcorr scales. As mentioned above, for large

JAF, more accurate treatment would require solving the current

model with spin dependent hopping, and we plan to present

such a work separately in future.

We considered only the inter-orbital hopping in the current

work, which led to ferro-orbital order. However in reality, the

intra-orbital hoppingwould also be non-zero.To understand its

impact, consider the two limits, (i) the spin conserving limit,

tα6=β = 0, the effective exchange between sites as seen at half

�lling through virtual hopping is AF with exchange∼ t2/U at

large U. (ii) With spin conserving term being zero, tα=β = 0,

where the corresponding exchange is ferro due to alternating

hopping.When both hoppings are present and comparable, so

are the corresponding competing exchanges,whichwould lead

to emergence of other long-range orders. Such scenario, even

without the complications of super-exchange, is an intriguing

test bed of frustration in orbital space, and warrants further

investigation.

We also wish to comment on phase diagram near the

Mott transition, in �gure 2 (right), where we plot the MIT

boundary, the Tcorr curve, and DOS at Fermi level as colour.

The Mott transition, usually re�ects a windows of pseudo-

gap at �nite temperature [34, 36], bracketing the MIT curve.

Our coloured DOS with colour values between 20% to up-

to ≈50% represents a rough estimate of the pseudo-gap

window.
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5. Conclusion

We studied correlation driven orbital Mott transition in two

dimensional pyrochlore lattice using a real space based Monte

Carlo approach, and established �nite temperature phase

diagram describing the Mott transition, in terms of MIT

boundary, orbital ordering, and a rough estimate of pseudo-

gap window. We also calculated electronic transport, optical

conductivity, and thermal density of states across the Mott

transition.
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