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Machine-learning semilocal density functional theory for many-body lattice models at zero and
finite temperature
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We introduce a machine-learning density-functional-theory formalism for the spinless Hubbard model in one
dimension at both zero and finite temperature. In the zero-temperature case this establishes a one-to-one relation
between the site occupation and the total energy, which is then minimized at the ground-state occupation.
In contrast, at finite temperature the same relation is defined between the Helmholtz free energy and the
equilibrium site occupation. Most importantly, both functionals are semilocal, so that they are independent from
the size of the system under investigation and can be constructed over exact data for small systems. These
“exact” functionals are numerically defined by neural networks. We also define additional neural networks for
finite-temperature thermodynamical quantities, such as the entropy and heat capacity. These can be either a
functional of the ground-state site occupation or of the finite-temperature equilibrium site occupation. In the first
case their equilibrium value does not correspond to an extremal point of the functional, while it does in the second
case. Our work gives us access to finite-temperature properties of many-body systems in the thermodynamic
limit.
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I. INTRODUCTION

Machine learning (ML) is a wide field of computer science.
It is constructed over a collection of algorithms and numerical
techniques and aims at recognizing and manipulating the pat-
terns hidden in large volumes of data [1]. Although the most
impressive progress in the field is related to signal process-
ing (images, videos, etc.), ML is now becoming a powerful
tool in both experimental and computational materials science
and in engineering [2,3]. Examples of applications include
the design of new molecules, [4] the running of self-driving
labs [5,6], the construction of ultra-accurate force fields [7,8],
the prediction of physical properties based on structure-to-
property [9] or chemistry-to-property [10] relations, and the
analysis of data from electron microscopy [11], just to name a
few.

In addition to materials science and engineering the use
of ML is now widely spread over an impressive range of
problems in Physics [12]. In particular, it has been utilized
to address the complexity of a number of many-body mod-
els. For these an exact solution typically does not exist,
except for a few limiting cases, while exact diagonalization
is bound by the severe scaling of the Hilbert space with the
system size, and hence by the computational costs. For in-
stance, ML has been used to find ground-state properties and
observables of fermion-boson coupled Hamiltonians [13], dis-
ordered Hubbard-Anderson models [14] and a variety of spin
models [15–17]. At the same time some progress has been
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made in classifying quantum states at finite temperature and
thus identifying phase transitions [18,19]. Finally, restricted
Boltzmann machines have been constructed to represent and
propagate in time wavefunctions [20], a work that has stimu-
lated the introduction of open-source software for the study of
many-body models [21].

Several numerical methods have been designed to solve
many-body problems for systems, whose size makes them
not accessible by exact diagonalization. If the interest lies
in ground-state properties, density matrix renormalization
group [22] and variational Monte Carlo [23] methods are
valuable options, while at finite temperature continuous-time
Monte Carlo [24] and dynamic mean field theory [25] can be
considered. These methods, depending on the nature of their
implementation/design, usually suffer from (i) restrictions
to low or high dimensions, (ii) the fermionic sign problem,
(iii) poor reliability at either low or high temperatures. In
any case, although some schemes may allow one to investi-
gate relatively large systems, their numerical overheads are
still significant. This means that information concerning the
thermodynamic limit of the various models and about the
interplay between interaction and disorder remain difficult to
access.

In this context functional-based methods, such as density
functional theory (DFT), deserve a class on their own. These
are based on the two Hohenberg-Kohn theorems [26], which
have also been extended to lattice models [27–29]. The core
idea is that the total energy can be expressed as a universal
functional of the single-particle electron density, or its lattice
equivalent, and that such functional has a minimum at the
ground-state density, where it gives the ground-state energy.
For interacting theories the universal functional is not known,
although excellent approximations exist and a number of exact
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constraints have been rigorously proved. Most importantly for
the discussion here, the functional formulation of the many-
body problem appears ideal for a ML approach. In fact, one
can construct a dataset of either exact or approximated results
and try to learn the one-to-one relation between the electron
density and the energy. Several examples of this approach
exist for the actual Coulomb-interaction DFT [30] for both
the noninteracting [31,32] and interacting [33,34] case in one
dimension, and in two dimensions for selected external po-
tentials [35,36]. There are also attempts in three dimensions,
in particular, at constructing maps between the potential and
the electron density [37] and between the electron density and
the total energy [38,39], and in learning the self-consistent
electron density in Kohn-Sham DFT [40].

In our previous work we have constructed an exact
machine-learning DFT functional for the one-dimension Hub-
bard model using neural networks [41], a strategy also used
by Moreno et al. to reconstruct the ground-state wave-
function [42]. We have then demonstrated that such functional
satisfies both the Hohenberg-Kohn theorems [26]. The net-
work, trained over exact-diagonalization results for systems
defined by a random single-particle potential, establishes a
one-to-one relation between the sites occupation and the
ground-state total energy. Since the site occupation of every
site (the total charge density) is used to define the functional,
one has to construct a new network, namely, a new functional,
for every different system size and every different filling
factor. This means that, although the functional is exact to
numerical precision it is of little practical use.

Here we circumvent the problem by constructing a semilo-
cal functional, which requires only local knowledge of the
site occupation. This can now be trained over small systems
and be used to predict the ground-state properties of sys-
tems of any size. The same formalism is then extended to
finite-temperature, a task that is approached in two different
ways. First, by using one of the results of the Hohenberg-
Kohn theorems, we construct neural networks that relate the
ground-state density to the thermal average of a number of
operators. These define the finite-temperature equilibrium site
occupation, energy, entropy and specific heat. In this case,
although such quantities are functional of the ground-state site
occupation, they are not found at the functional minimum,
namely, they cannot be determined by variational principle.
In contrast, the second approach consists in extending DFT
to the canonical ensemble as proposed a long time ago by
Mermin [43]. The one-to-one correspondence is now be-
tween the finite-temperature equilibrium site occupation and
the Helmholtz free energy. Also in this case we construct
a universal semilocal functional, which is minimized at the
equilibrium site occupation.

The paper is organized as follows. In the next section we
introduce our ML models, by presenting the semilocal func-
tional and the representation used for the site occupation, by
introducing functionals for finite-temperature thermodynamic
properties and by formulating the extension of DFT to the
canonical ensemble. In this section we will also discuss the
details of the neural networks constructed. Then we present
our results focusing first on the zero-temperature limit and
then on its finite-temperature extension. In particular, we dis-
cuss the actual level of nonlocality required by the functionals

and analyze the homogeneous limit. Finally, we show how the
functional can be minimized to find the ground-state density
(or the finite temperature equilibrium density) and how this
procedure allows us to extract finite-temperature properties of
the model for systems of any size. Finally, we conclude.

II. CONSTRUCTION OF THE MODELS

A. Zero-temperature lattice DFT: The semilocal density
approximation

Our analysis applies to any lattice model with Hamiltonian
of the form

Ĥ = Ĥ0 + Ĥkin + Ĥint, (1)

where Ĥ0 is a single-particle potential, Ĥkin is the kinetic
energy and Ĥint is some form of many-body interaction. In
particular, here we focus our attention on the spinless nonlo-
cal Hubbard model in one dimension. This is implemented
with periodic boundary conditions, namely, for finite rings
comprising L sites. The corresponding Hamiltonian, ĤV , thus
reads

ĤV =
L∑

i=1

εin̂i − t
L∑

i=1

(ĉ†
i ĉi+1 + ĉ†

i+1ĉi ) + V
L∑

i=1

n̂i+1n̂i, (2)

where ĉ†
i (ĉi) is the creation (annihilation) operator for a

spinless electron at site i, n̂i = ĉ†
i ĉi is the number operator, εi

are the onsite energies, V is the nonlocal Hubbard parameter
and t = 1 is the hopping integral that sets the energy scale of
the problem. The results presented here are for the half-filling
case, namely, the total number of electrons is Ne = L/2.

Since we are going to compare quantities for lattices of dif-
ferent size, it is convenient to define any observable in terms
of its density, namely, by dividing it by the number of lattice
sites. For instance, the energy density is simply, e ≡ E/L,
where E is the total energy. It was demonstrated some time
ago that the Hohenberg-Kohn theorem [26] can be extended
to lattice models [27–29], once the appropriate single-particle
density is defined. In the case of the spinless Hubbard model
the fundamental quantity is the sites occupation, {ni}, defined
as the expectation value of the number operator, ni = 〈n̂i〉,
over all the sites. As a matter of notation here we represent
the ground-state expectation value of the generic operator Ô as
〈�0|Ô|�0〉 = 〈Ô〉0, where �0 is the many-body ground-state
wave-function. The energy density functional (in this case an
actual function) can then be written as

e[{ni}] = fV [{ni}] + 1

L

L∑

i=1

εini, (3)

where fV [{ni}] is a universal functional of {ni} and it is defined
for every value of V (there is a functional for every value of
V ). In our previous work we have shown that a numerically
exact functional could be learnt by using ML [41]. This sat-
isfies both the two Hohenberg-Kohn theorems, namely, for
a given ground-state density it yields the external potential,
and it is variational in the site occupation. The second state-
ment implies that the minimum of the functional is found
at the ground-state site occupation, n0

i = 〈n̂i〉0, where it re-
turns the ground-state energy density, e0 = e({n0

i }). Such ML
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FIG. 1. An illustration of how the semilocal functional,
f ML
V [{ni}], is constructed for a four-site ring with a = 1. In this case

four occupations, {n1, n2, n3, n4}, define uniquely the total energy.
This is written as the site average average of four WV (n̄i,a) contri-
butions, constructed via a ML neural network, each one of them
depending only on three site occupations.

functional depends on the sites occupation at every site; there-
fore, it is strictly defined for a particular system size and
electron filling factor. Thus, the functional is of little practical
use, since it needs to be constructed for any specific system
under investigation, an operation that is limited by the compu-
tational ability of solving exactly the full many-body problem.

Here we overcome such drawback by introducing a new
semilocal functional that is, by construction, lattice-size inde-
pendent. This is defined as

f ML
V [{ni}] = 1

L

L∑

i=1

WV (n̄i,a), (4)

where WV (n̄i,a) is the energy associated to the i-th site. In turn,
WV (n̄i,a) depends on the “local” site occupation,

n̄i,a = {ni−a, ni−a+1, ..., ni, ..., ni+a−1, ni+a}, (5)

meaning that the energy associated to site i depends on the
occupation at site i and on that at the first a sites around it
(overall, it depends on the site occupation at 2a + 1 sites).
Thus a defines the locality of the functional, f ML

V [{ni}], which
is simply the average of WV (n̄i,a) over all the sites. Figure 1
illustrates an example of how to construct the functional for a
ring of 4 sites and a local density of range a = 1.

Recently, a conceptually similar way to construct ML mod-
els for extensive quantities has been brought forward by Mills
and coworkers, [44] who represented the physical space of the
model (e.g., the atomic sites) across a set of nonoverlapping
regions. A common neural network defined for such region
is then averaged over the entire space to yield the desired
extensive quantity. Our approach is similar in spirit, with the
main difference being the use of a site-centered representation
of the local quantity of interest (the site occupation). As well
as being lattice-size independent this approximation has site
symmetry automatically built into it, namely, it will predict,

by construction, the same energy for densities formed by
translating the onsite potential, {εi} → {εi+1}.

B. Zero-temperature lattice DFT: Thermodynamic quantities

In lattice DFT (Coulomb DFT) the Hohenberg-Kohn the-
orem establishes a one-to-one correspondence between the
ground-state site occupation (the single-particle electron den-
sity) and the onsite energies (the external potential). It follows
that {n0

i } completely determines the Hamiltonian of the sys-
tem, hence its solution. Thus, one can conclude that the entire
many-body excitation spectrum is a functional (unknown) of
the ground-state site occupation, namely,

|�m〉 = ∣∣�m
[{

n0
i

}]〉
, Em = Em

[{
n0

i

}]
, for all m, (6)

where Em is the energy of the mth many-body state and |�m〉
the associated wave-function.

Now take a generic operator, Ô, and calculate its thermal
average, 〈Ô〉T , in the canonical ensemble. This reads

〈Ô〉T =
∑

n

〈�n|Ô|�n〉 e−βEn

Z
, (7)

where Z = ∑
n e−βEn is the partition function, and β = 1/kBT

with kB being the Boltzmann constant and T the temperature.
It then follows, from Eq. (6), that also 〈Ô〉T is a functional
of the ground-state density, 〈Ô〉T [{n0

i }]. Clearly in this case
the variational principle is not established, meaning that 〈Ô〉T

does not necessarily have an extremal point at {n0
i }. However,

one can still define a map, f , between ground-state site occu-
pation and temperature, and 〈Ô〉T ,

f :
[{

n0
i

}
, T

] −→ 〈Ô〉T . (8)

We have thus constructed a number of neural networks
to numerically estimate such mapping. These are also built
within the semilocal approximation, namely, they have the
form

〈ô〉ML
T = 1

L

L∑

i=1

W O
V

(
n̄0

i,a, T
)
, (9)

where ô = Ô/L is the operator density and where now the
neural network, W O

V (n̄0
i,a, T ), depends also on the temperature.

In particular, we have considered the entropy density, ŝ, the
energy density, ê, and the heat capacity density, ĉ, which read,
respectively,

〈ŝ〉T = − 1

L

∑

n

pn ln pn = 1

L

∂

∂T
(kBT ln Z ), (10)

〈ê〉T = 1

L

∑

n

〈�n|Ĥ |�n〉 e−βEn

Z
= − 1

L

∂ ln Z

∂β
, (11)

〈ĉ〉T = ∂〈e〉T

∂T
= 1

L

1

kBT 2

∂2 ln Z

∂β2
, (12)

where pn = e−βEn/Z .
Note that in general the ground-state site occupations de-

termine the energy only up to a constant, Eα . A constant
shift in the many-body energy eigenvalues, En → En + Eα ,
transforms the partition function as Z → Z exp (−βEα ), but
leaves invariant both 〈ŝ〉T and 〈ĉ〉T . The same is not true,
however, for 〈e〉0 and 〈e〉T , so that one has to constrain the
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onsite energies to a constant. In our previous work [41] such
constraint was imposed by setting one of the onsite energies
to zero. Here, to preserve the symmetry of the single particle
potential, we impose that the onsite energies have always zero
mean. We implement such condition by shifting the energy
eigenstates by Eα = −(Ne/L)

∑
j ε j , since this transforms the

total energy as E → E + NeEα .

C. Finite-temperature lattice DFT

In conventional DFT the Hohenberg-Kohn theorems can
be generalized to both the canonical and the grand canonical
ensemble [43]. Their translation to lattice DFT for the specific
case of the spinless Hubbard model and the canonical ensem-
ble reads as follows. One can define a universal functional,
gV [{ni}], independent from the one-site energies, {εi}, such
that

h[{ni}] = gV [{ni}] + 1

L

L∑

i=1

εini (13)

is minimum and equal to the Helmholtz free-energy density, h,
associated to {εi}, when {ni} is the equilibrium site occupation
in the presence of {εi}. This essentially means that at the
minimum of the functional one has

h
[{

nT
i

}] = 〈ê〉T − T 〈ŝ〉T , (14)

with the equilibrium site occupation defined as [see Eq. (7)],

nT
i = 〈n̂i〉T =

∑

n

〈�n|n̂i|�n〉 e−βEn

Z
. (15)

Also in this finite-temperature extension of DFT the uni-
versal functional can be constructed by using a neural network
and a semilocal approximation, namely, we can define

gML
V [{ni}] = 1

L

L∑

i=1

XV (n̄i,a), (16)

which again has a variational minimum at {nT
i }.

Finally, note that the equilibrium site occupation at site
i can be simply viewed as the thermal average of the num-
ber operator, n̂i. Hence, we can construct a machine-learning
model that, given n0

i and T , returns nT
i [see Eq. (9)], namely,

nT
i = 〈n̂i〉ML

T = W ni
V

(
n̄0

i,a, T
)
. (17)

Since all the functionals constructed here are semilocal, we
have now a tool to approach the study of thermodynamic
quantities for a disordered many-body system in the limit
L → ∞. In fact we have two options. On the one hand, one
can consider finite-temperature lattice DFT and compute, by
variational principle, both {nT

i } and h[{nT
i }]. On the other

hand, we can use zero-temperature DFT to determine {n0
i }

and then, by employing the machine-learning maps of Eq. (8),
all the thermal averaged observables. Indeed, one can also
construct a “hybrid” approach where {nT

i } is derived from {n0
i }

via Eq. (17) and then used to determine the Helmholtz free
energy.

FIG. 2. Accuracy of the semilocal functional for ground-state
DFT as a function of the locality parameter, a. Here we plot the
value of the exact universal functional (computed from exact diag-
onalization) against the prediction obtained with our ML semilocal
formulation. Results are for L = 6 and V = 1. The box inside each
plot reports the a value and the MAE, with “full” corresponding to
a functional, where the entire site occupation vector is used (com-
pletely nonlocal case). Data are provided here for the test set and
each graph contains 500 points.

III. RESULTS

To test the accuracy of our semilocal functionals we have
generated datasets for L = 6, 10, 14 and V = 1, 2, 4, by exact
diagonalization. The training and validation sets, used, respec-
tively, to train the model and to enforce early stopping, contain
data where the onsite energies are drawn from several uniform
distributions in the interval, [−W,W ], with W ranging from 2
to 8. In total for any given L and V there are 24000 random
onsite energy realizations in the training set and 8000 in the
validation one. Finally, the test set contains 500 configurations
generated for W = 4.

A. Construction of the semilocal functional at zero temperature

To learn the zero-temperature universal functional, fV , we
have used a fully connected neural network, constructed by
using PyTorch. [45] Weight sharing is implemented to ensure
that the L available local energies, WV {n̄(i,a)}, are the same,
and the “Adam” optimizer is chosen to update the models.
The first validation of our strategy consists in investigating
the accuracy of a functional constructed for a system of L
sites against new onsite energy configurations for systems
with the same number of sites. Namely, we first check how
the ML functional trained for L performs against unknown
L-site systems. This must be done as a function of the locality
parameter, a, so that the efficacy of the semilocal approxi-
mation is established. Our results for V = 1 and L = 6 are
shown in Fig. 2, where we plot the functional computed from
exact diagonalization against our semilocal ML estimation for
a collection of different systems. The figure of merit here is
the mean absolute error (MAE) and similar trends have been
observed for different values of V and L.
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FIG. 3. Accuracy of the semilocal ground-state DFT functional
trained for small systems and tested for larger ones as a function
of the locality parameter, a. Here we plot the value of the exact
universal functional (computed from exact diagonalization) against
the prediction obtained with our ML semilocal formulation. In the
first column the functionals have been trained on rings of L = 6
sites and are used to predict L = 10 data. The second column is
for functionals trained on 6-site rings and predicting L = 14 data.
Finally, in the third column the functionals have been trained on
10-site rings and used to predict L = 14 data. The rows correspond
to different values of V . The value of a is the same for each column.

From the figure it is clear that, although a completely
local approximation, a = 0, is insufficient to approximate
the functional, already a moderate degree on nonlocality,
a = 1, returns us a MAE just below 10−3, corresponding
to an average error of the order of 0.2%. Extending further
the range of the functional improves the description, to a
point that the a = 2 case presents an error, ∼0.1%, numer-
ically indistinguishable from that of the fully nonlocal ML
functional.

Since the local representation is lattice-size independent
and the universal functional is semilocal, in principle one
can use small, cheaply generated, systems as training set,
and then predict quantities for larger systems. The results
of this exercise are presented in Fig. 3, which compares the
accuracy of ML functionals trained over rings of L sites at
predicting, fV , for rings of L′ sites (symbolically L → L′),
with L′ > L and for various values of V and a. We can notice
that when the ML training takes place over relatively small
rings (L = 6 in this case) the ML estimate of fV appears to
be larger in absolute value than the exact result, namely, all
the points lie above the perfect-agreement line. This is, for
instance, the case of training on a L = 6 lattice and predict-
ing for L = 10, 14. Such overestimation is systematic and
independent from the interaction strength V . However, the
error is immediately corrected when training the network on
larger lattices and in fact the 10 → 14 case already offers
an error below 1%, with a nonlocality of a = 2, regardless
of V .

The inability to train the model over very small rings is
rooted into our representation, which does not describe the
homogeneous case. Consider, in fact, the situation where εi =

ε0, namely, all the onsite energies are identical. Translational
invariance then imposes that ni = Ne/L for any site i, so that
n̄i,a = n̄a = {Ne/L, ..., Ne/L}. The ML functional then has the
following simple form:

f ML
V [{ni}] = 1

L

L∑

i=1

WV (n̄i,a) = WV (n̄a), (18)

namely, it returns the same energy density regardless of
the system size, e({ni}) = WV (n̄a) + ε0Ne/L. This is clearly
incorrect, even for the noninteracting case (V = 0). Thus,
our semilocal functional formulation is unable to describe
the kinetic energy of rings of arbitrary size. Such error be-
comes progressively smaller as one trains the network on
large rings, since the difference in kinetic energy density
between a ring with L sites and one with L + n reduces
with L. Eventually the error is completely eliminated in
the thermodynamic limit, where the kinetic energy density
becomes 4t/π sin( Neπ

2L ).
One can then design a number of alternative strategies to

eliminate or mitigate the error made on the noninteracting
kinetic energy density. For instance, we can explicitly sub-
tract from the universal functional the noninteracting energy,
a single-particle quantity easy to compute in a Kohn-Sham
framework. This is effectively what usually done in con-
ventional DFT, when defining the exchange and correlation
functional. Here, we have decided not to include any cor-
rection, but simply train over larger rings (e.g., L = 10),
for which our numerical analysis demonstrates that the er-
ror is relatively small (see Fig. 3). Most importantly, it
needs to be noted that the kinetic contribution to the total
energy gets smaller as disorder is included (as we de-
part from the homogeneous limit) and the interaction gets
larger.

The tests presented so far only concern the energy, namely,
we have computed the value of fV at the exact charge density
obtained with exact diagonalization. This simply demon-
strates that our neural network is a good approximator for fV ,
but does not mean that we have a variational theory. What
we need to show instead is that a network trained on a small
lattice can be minimized by the ground state charge density
also for larger lattices, and that at the minimum the energy
density returns its exact ground-state value. This essentially
means that the functional is variational and it is transferrable
from small to large rings (namely, the semilocal approxi-
mation works). Figure 4 provides such demonstration. By
taking the V = 1 case, we train a neural network on a L = 10
ring. Then, by starting from the homogeneous site occupation
distribution, ni = Ne/L, we minimize the energy density for
a ring of 14 sites. The minimization is performed by using
gradient descent with momentum [1] (learning rate, 0.002, and
momentum, 0.9), and then the converged site occupations are
used to compute the energy density. The top panel of Fig. 4
compares the ML-computed energy density with the exact
diagonalization result for 100 random rings. In the inset we
show an histogram of the Euclidean distances between the
initial and the converged site occupations, and the exact {n0

i }.
The agreement appears quite good, with a MAE of 0.0047,
and a generally accurate estimate for the ground-state occu-
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FIG. 4. Demonstration of the variational principle for the ML
functional. In the top panel we show the energy density computed
by minimization with respect to the site occupation. Our network
has been trained for L = 10 and used for a ring containing 14 sites
(V = 1). The figure contains 100 different disorder realizations with
W = 4. The insert shows histograms of the Euclidean distances �n,
of the initial and converged site occupation from the exact one.
The lower panel presents a selection of the converged occupations
compared against the exact value. These are taken for different
ground-state energy densities as indicated by the numbers in the
upper panel. The overall MAE of the site occupation is 0.0047.

pation. Some examples of converged site occupations are also
included in the figure.

B. Construction of the semilocal finite temperature maps

In this section we establish one-to-one mappings between
the ground-state occupation and a number of thermodynamic
quantities. For this task we have used two fully connected
neural networks; the first predicts the three scalar thermo-
dynamic functions, 〈ŝ〉T , 〈ê〉T , and 〈ĉ〉T , and the second, the
equilibrium site occupation {〈ni〉T } (a vector). For all of the
thermodynamic predictions, our validation and test sets con-
sist of the function to predict for a particular system at a
particular temperature. In contrast, the training set contains
data for several temperatures for the same system, so to in-

FIG. 5. Demonstration of the one-to-one mapping between
ground-state charge density and thermodynamic quantities: 〈ê〉T ,
〈ŝ〉T , 〈ĉ〉T , and {〈ni〉T }. For {〈ni〉T } we plot only site i = 1. Ap-
proximated values are plotted against exact results for systems at
random temperatures in the range T ∈ [1, 2] obtained with V = 1
and W = 4. The left-hand side column is for L = 10 rings and fully
nonlocal models trained on rings of same size. In this case the site
occupation is taken from exact diagonalization. The middle column
is for semilocal models with a = 2, where the networks are trained
on L = 10 rings and predict for L = 14 ones. In this case the ground-
state charge density used is the exact one. The right-hand side column
depicts results for the same model, but where now the charge density
is obtained by variational principle from the ground-state functional.
In each panel we report the MAE.

crease the size of the set. The temperatures are randomly
chosen between 1 and 2, with the Boltzmann constant set to
one (natural units).

Figure 5 shows the results obtained by using this method.
In particular, we present a comparison between the ML-
estimated and the exact quantities for a number of random
samples and temperatures, when three different computational
strategies are adopted. Data in the left-hand side column are
for L = 10 rings obtained with neural networks trained on
rings of the same size. In that case the entire site-occupation
vector is used as input, namely, the model is completely non-
local. The ground-state site occupation used in the ML model
is taken from exact diagonalization, namely, it is exact. Thus,
this first case aims at understanding whether ML can con-
struct the one-to-one correspondence between ground-state
occupation and thermodynamical quantities in the canonical
ensemble. In contrast, the middle column shows results for
networks trained on L = 10 rings and predicting the thermo-
dynamics quantities for L = 14 rings. The locality parameter
is chosen to be a = 2, but the site occupation used to evaluate
the various quantity is against the exact one. Thus, this set
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effectively tests the accuracy of the one-to-one mappings.
Finally, the left-hand side column is for the same models but
now evaluated at the site occupation obtained by minimizing
the total energy density with the fV built for the L = 10
case. Such last case, then explores whether or not a semilocal
approximation to the thermodynamics exists and whether this
is accessible from the site occupation obtained by variational
principle.

From the figure it clearly emerges that ML is indeed
able to predict the mapping, and this is significantly more
accurate when the ground-state site occupation is exact. A
semilocal approximation for such mapping appears to be pos-
sible, although the error is certainly larger. In particular, it
is clear that there are two main sources of error. The first
one is related to the semilocal approximation, so that the
thermodynamical quantities computed at semilocal level are
less accurate than those for the completely nonlocal model,
even when these are evaluated at the exact site occupation
(compare the left-hand side column with the middle one).
Then there is additional error originating from the use of an
approximated site-occupation (compare the middle column
with the right-hand side one). Notably, the entropy seems to
be the quantity suffering the most from the absence of the
correct homogeneous limit in the semilocal models, since the
predictions systematically underestimate the exact values.

C. Construction of the semilocal functional at finite temperature

Finally, we discuss the extension of ML lattice DFT to
finite temperature, namely, we compute the universal func-
tional, gV . First, we investigate the locality of the functional
by evaluating the MAE as a function of temperature for a = 0
and a = 1, when gV is computed at the exact equilibrium site-
occupation, {nT

i }. Our results for L = 6, V = 1, and W = 4
are presented in Fig. 6. For each temperature the model has
been trained over 6000 samples, validated over 2000, and
tested over 2000. Two considerations can be made. On the
one hand, a semilocal approximation clearly performs better
than a fully local one, which underperforms, in particular at
low temperature. On the other hand, the error is significantly
reduced as the temperature gets larger and already at T > 6
little difference is detected between a semilocal and a local
approximation. In other words, the functional becomes more
local as the temperature increases. This should not be sur-
prising considering that in the limit T → ∞ the equilibrium
density matrix becomes

ρ̂ = 1



1, (19)

where 
 is the dimension of the Hilbert space and 1 the
identity. This means that for T → ∞ the equilibrium site
occupation is uniform, nT

i = Ne/L, and hence a local and
semilocal functionals contain the same information.

Finally, we demonstrate the variational principle for finite
temperature DFT with a semilocal functional. Also in this
case we train on L = 10 systems and compute the equilibrium
site occupation for rings with 14 sites by gradient-descent
minimization (we use exactly the same algorithm as in the
T = 0 case). The starting site occupation is uniform, and
the converged one is finally used to compute the Helmholtz

FIG. 6. MAE of the finite-temperature universal functional, gV ,
as a function of T and for different value of the locality parameter,
a. Data are presented for L = 6 rings and parameters V = 1 and
W = 4. The equilibrium site occupation used to evaluate the func-
tional is that obtained by exact diagonalization. The shaded regions
are the standard deviation of the absolute error. For each temperature
the training, validation and test sets contain, 6000, 2000, and 2000
samples, respectively.

free-energy density. Figure 7 presents our results for V = 1,
W = 4, a = 2, and temperatures randomly distributed be-
tween 1 and 2.

Clearly, the ML finite-temperature functional appears able
to return equilibrium site occupations extremely close to the
exact ones (the MAE computed over 100 configurations is
0.029), and good quality Helmholtz free-energy densities.
Intriguingly, the Euclidean distance between the converged
site occupations and the exact ones is much smaller than in
the T = 0 limit (compare the histograms in Figs. 4 and 7).
This reflects two main facts. First, the finite-temperature site
occupation is, on average, closer to the homogeneous case
than the zero-T one; second, the functional becomes more
local at finite temperature. Such tendency towards relatively
homogeneous site occupations at high temperatures brings
back the issue related to the incorrect homogeneous limit
of the semilocal funcitonals, discussed for the T = 0 case.
In fact, the Helmholtz free-energy density appears now sys-
tematically underestimated, in particular, for rather uniform
densities (see lower panel 4 of Fig. 7). Again the issue can be
resolved by either training on larger rings, or by subtracting
the noninteracting Helmholtz free-energy density from the
functional.

IV. CONCLUSION AND FUTURE WORK

In this work we have introduced a semilocal approxi-
mation to lattice density functional theory for the spinless
Hubbard model in one dimension. This has been defined for
ground-state DFT, and it has been extended to finite temper-
ature, where the universal functional is constructed for the
Helmholtz free-energy density. At the same time, strong of
the Hohenberg-Kohn theorems, we have evaluated a num-
ber of one-to-one mappings between the ground-state site
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FIG. 7. Demonstration of the variational principle for the finite-
temperature ML functional. In the top panel we show the Helmholtz
free-energy density computed by minimization with respect to the
site occupation. Our network has been trained for L = 10 and used
for a ring containing 14 sites (V = 1). The figure contains 100 differ-
ent disorder realizations with W = 4. The insert shows histograms of
the Euclidean distances �n, of the initial and converged equilibrium
site occupation from the exact one. The lower panel presents a
selection of the converged occupations compared against the exact
value. These are taken for different ground-state energy densities as
indicated by the numbers in the upper panel.

occupation and various thermodynamical quantities at finite
temperature. Also in this case a semilocal mapping appears to
be possible.

The benefit of constructing such semilocal approximations
is that one can train the machine-learning models over systems
of moderate size and then use them for much larger ones.
In practice, this allows one to explore the thermodynamical
limit of various interacting models with disorder. It must
be noted that the semilocal approximation defined here does
not describe the homogeneous limit, a problem that becomes
evident when training on very small systems, or for rather
homogeneous exact density. Such problem can be overcome
by an appropriate subtraction of the noninteracting energy
density (or of the noninteracting Helmholtz free-energy den-
sity), or simply by training over systems with adequate
size.

The work presented here can extend now to several fu-
ture directions. First, one can construct similar formalism
in two and three dimensions. In this case the dimension of
Hilbert space becomes prohibitively large already for small
systems and it is likely that it may be no longer possible to
generate the training set by exact diagonalization. However,
one can alternatively use datasets generated with many-body
techniques such as Quantum Montecarlo or other real space
approaches (e.g., the Hubbard-Stratonovich approach). A sec-
ond possibility is to incorporate spin into the representation,
namely, consider spin-full models (e.g., the complete Hubbard
model). All in all, it appears that machine-learning lattice DFT
may become a powerful tool to explore the interplay between
interaction and disorder in different dimensions and various
lattice models.
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