
Translation of CCS into CSP, Correct
up to Strong Bisimulation

Gerard Ekembe Ngondi1,2(B) , Vasileios Koutavas1,2(B) ,
and Andrew Butterfield1,2(B)

1 Trinity College Dublin, Dublin, Ireland
2 Lero - The Irish Software Research Centre, Limerick, Ireland

{Gerard.Ekembe,Vasileios.Koutavas,Andrew.Butterfield}@tcd.ie

Abstract. We present a translation of CCS into CSP which is correct
with respect to strong bisimulation. To our knowledge this is the first
such translation to enjoy a correctness property. This contributes to the
unification of the CCS and CSP families of concurrent calculi, in the
spirit of Hoare and He’s unification programme through Unifying The-
ories of Programming. To facilitate this translation, we define CCSTau,
the extension of CCS with visible synchronisation actions and the hiding
operator. This separation of concerns between synchronisation and hid-
ing turns out be sufficient to obtain our correct translation. Our transla-
tion, implemented in a Haskell prototype, makes it possible to use CSP-
based verifiers such as FDR to reason about trace and failure (hence
may- and must-testing) preorders for CCS processes.

Keywords: Concurrency theory · Calculus of Communicating
Systems (CCS) · Communicating Sequential Processes (CSP) · Correct
translation

1 Introduction

The CCS/Pi-calculus [1,16,17] and CSP/CSPmob [4,14,22] families of calculi
are established formalisms for analysing concurrent systems. Not long after their
inception there have been efforts to relate the two calculi and bridge their dif-
ferences [15]. This would have clear benefits for theoreticians as it would allow
them a deeper understanding of the nature of concurrency and the ability to
transition from one mathematical formulation to the other in a rigorous man-
ner. It would also benefit practitioners working in Process Algebra as it would
allow them to use verification technology from both worlds to address challenges
in assuring system correctness modelled in either family of calculi. To achieve
this, semantics preserving transformations between CCS and CSP are needed.

In previous work, Van Glabbeek [10] builds a general framework for com-
paring the expressiveness of process calculi, with an application proposing a
translation from CSP to CCS that is correct up to trace equivalence. Hatzel et
al. [12] propose an encoding from CSP into asynchronous CCS with two notable
c© Springer Nature Switzerland AG 2021
R. Calinescu and C. S. Pǎsǎreanu (Eds.): SEFM 2021, LNCS 13085, pp. 243–261, 2021.
https://doi.org/10.1007/978-3-030-92124-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92124-8_14&domain=pdf
http://orcid.org/0000-0002-8579-3366
http://orcid.org/0000-0002-3970-2486
http://orcid.org/0000-0002-2337-2101
https://doi.org/10.1007/978-3-030-92124-8_14

244 G. E. Ngondi et al.

encodings of CSP multiway synchronisation into CCS binary synchronisation.
Brookes [3] encodes CSP models as synchronisation trees showing that CSP
failure equivalence is implied by CCS observational equivalence under certain
restrictions. He and Hoare [13] build a retract between CCS and CSP semantics.

To our knowledge however, no translation from CCS into CSP exists to date.
The present paper aims to fill this gap. In particular, we present a translation
from finite state CCS into CSP that is correct up to strong bisimulation, i.e., the
source and target terms are strongly bisimilar. This correctness criterion allows
us to use a prototype implementation of our translation to leverage FDR [5] for
reasoning about trace and failure refinements of CCS terms. The translation is
efficient as it only polynomially increases the size of the term. In the worst case,
the target term has O(nm) additional communication prefixes, where n and m
are the maximum number of prefixes with the same name and corresponding
co-name, respectively, in the source term. For practical systems with a relatively
small number of synchronising prefixes this translation is thus tractable.

One major challenge in achieving a correct translation from CCS to CSP
has been the reconciliation of the different communication primitives in the two
languages, and how these interact with other primitives in the language. To
bridge the gap between binary CCS and multiway CSP synchronisations, our
translation assigns a unique name aij to every pair of a/a-prefixes that might
synchronise, and carefully annotates the interfaces between parallel processes to
enable these synchronisations, effectively implementing binary synchronisation
in multiway CSP semantics. Moreover, a unique name ai is assigned to every
CCS prefix that may be interleaved. This separation of interleaving and syn-
chronisation is key to obtaining our translation (see Example 8). Finally, the
CCS mixed-choice operator is translated to CSP external choice with a special
tau-event to enable internal choice resolution (see Example 9). We use CSP hid-
ing to turn internal synchronisation events aij and tau events into proper CSP
τ -events.

Our translation from CCS to CSP relies on a novel intermediate language
called CCSTau. This is a CCS-like calculus with observable binary synchronisa-
tion and the CSP hiding operator. Our translation is then obtained by the com-
position of an initial translation from CCS into CCSTau, a number of transfor-
mations within the CCSTau language itself, and a final translation from CCSTau
into CSP including hiding of internal transitions. This sequence of smaller trans-
lation steps simplifies the task at hand and allows us to obtain a correct, up to
strong bisimulation, overall translation. The contributions of this work are sum-
marised as follows.

– We provide the first translation from finite state CCS to CSP which is correct
up to strong bisimulation. The translation is efficient and only polynomially
increases the size of the term.

– We propose CCSTau, which adapts CCS by making synchronisation actions
visible and introducing CSP-like hiding, as a middle-ground between CCS and
CSP. This calculus is instrumental in disentangling complex CCS behaviour

Translation of CCS into CSP 245

Table 1. CCS transition semantics (omitting symmetric rules).

Prefix : α.P
α−→ P SumL :

P
α−→ P ′

P + Q
α−→ P ′

Rec :
P [μ X.P/X]

α−→ P ′

μ X.P
α−→ P ′

ParL :
P

α−→ P ′

P |Q α−→ P ′|Q
Com :

P
a−→ P ′ Q

a−→ Q′

P |Q τ−→ P ′|Q′
Res :

P
α−→ P ′ α /∈ B ∪ B

P � B
α−→ P ′ � B

such as mixed choice and combined interleaving/synchronisation and encod-
ing it into CSP.

– We provide a prototype implementation of our translation in Haskell [23]
which enables the use of the FDR refinement tool [5] to reason about may-
and must-testing refinement of CCS processes.

In the rest of the paper we briefly overview definitions for CCS and CSP
(Sect. 2), and provide the high-level intuitions of our translation (Sect. 3). We
then define CCSTau, the extension of CCS with visible synchronisation actions
and the hiding operator (Sect. 4), before defining the actual translation (Sect. 5
and Sect. 6) and prove its correctness (Sect. 7). Section 8 discusses an alternative
translation, correct up to failure equivalence. Section 9 evaluates our translation
against Gorla’s criteria [11] for valid translations. Finally, we present conclusions
and discuss future work (Sect. 10).

2 CCS, CSP, Correct Translations: a Brief Overview

CCS (Calculus of Communicating Systems) [1,17] and CSP (Communicating
Sequential Processes) [14,22] are process algebras that allow reasoning about
concurrent systems. Here we overview the main definitions of the two calculi.

2.1 CCS

In CCS [17], we assume a set of countable names N , ranged over by a, b, c,
with a total bijective function · with the property that a = a. This function
identifies co-names, the names that can synchronise. The symbol τ denotes an
unobservable internal move. We let α range over names and τ . The syntax of
CCS processes is given by the grammar

P,Q,R ::= 0 | α.P | P + Q | P | Q | P � B | μ X.P | X

The set of names that a process can use, denoted by A(P) for a given CCS
process P , is defined hereafter.

Definition 1 (Alphabet/Sort of CCS processes [17, Chap. 2, Def. 2]).

A(0) =̂ {}
A(τ.P) =̂ A(P)
A(a.P) =̂ {a} ∪ A(P)

A(P + Q) =̂ A(P) ∪ A(Q)
A(P | Q) =̂ A(P) ∪ A(Q)

A(P � B) =̂ A(P)\(B ∪ B)

246 G. E. Ngondi et al.

The semantics of CCS is traditionally given as a Labelled Transition System
(LTS), shown in Table 1. Term 0 (or NIL) is the process that performs no
action, whereas α.P performs an action α, where α is either a name a or τ , and
then behaves like P (Prefix rule). The choice term P + Q behaves either like P
or Q (SumL rule). The parallel P |Q runs P and Q in parallel; P and Q may
interleave (Par rule) or synchronise on co-actions, resulting in a silent τ action
(Com rule). Restriction P � B cannot engage in actions consisting of names in
B ∪ B, where B = {ā|a ∈ B} (Res rule); however, names in B ∪ B can be used
for internal synchronisation in P . Term μ X.P encodes recursion, where variable
X, appearing as a process in P , denotes a recursive unfolding (Rec rule). We
only consider closed processes where X is under a corresponding μX operator.
Moreover, as we are interested in finite state processes, we apply the sufficient
requirement that no parallel operator appears under recursion.

Equivalence based on bisimulations is the preferred choice for distinguishing
CCS processes (cf. [17,21]).

Definition 2 (Strong Bisimulation [21]). A strong bisimulation is a sym-
metric binary relation R on processes satisfying the following: PRQ and

– P
α−→ P ′ imply that ∃ Q′ : Q

α−→ Q′ ∧ P ′RQ′

– Q
α−→ Q′ imply that ∃P ′ : P

α−→ P ′ ∧ P ′RQ′

P is strong bisimilar to Q, written P ∼ Q, if PRQ for some strong bisimulation
R.

Example 3. In CCS, internal and external choices can be combined thus yield-
ing a mixed choice, e.g., a.P + b.Q + τ.R. According to Table 1, this process
enables external choice between a and b, meaning that the context of the pro-
cess, through synchronisation on a or b, can force this process to become P or Q.
Additionally, the process itself can non-deterministically decide to evolve to R,
resolving the choice independently from external stimuli. As we show in Exam-
ple 9, this mixed choice in CCS needs to be encoded specifically into CSP, where
internal reductions do not resolve an external choice. �	

2.2 CSP

In CSP, we assume again a countable set of names N , called the set of observable
events and ranged over by a, b, c, the special � event denotes termination, and
the τ event denotes an internal move. We let α range all events. The syntax of
CSP processes we consider is given by the grammar:1

P,Q,R ::= SKIP |STOP | a → P |P � Q |P � Q |P ‖
B

Q |

P\B | f(P) | μ X.P |X

The alphabet of CSP processes is defined hereafter.
1 In what follows, whether P, Q, R refer to CCS or CSP will be clear by the context.

Translation of CCS into CSP 247

Table 2. CSP transition semantics (omitting symmetric rules).

Term : SKIP
�−→ STOP Prefix : (a → P)

a−→ P InChL : P � Q
τ−→ P

ExChL1 :
P

a−→ P ′

P � Q
a−→ P ′

ExChL2 :
P

τ−→ P ′

P � Q
τ−→ P ′ � Q

Rec :
P [μ X.P/X]

α−→ P ′

μ X.P
α−→ P ′

Hide1 :
P

a−→ P ′ [a /∈ B]

P\B
a−→ P ′\B

Hide2 :
P

a−→ P ′ [a ∈ B]

P\B
τ−→ P ′\B

Ren :
P

α−→ P ′

f(P)
f(α)−−−−→ f(P ′)

ParL :
P

a−→ P ′ [a /∈ B�]

P ‖
B

Q
a−→ P ′ ‖

B
Q

Sync :
P

a−→ P ′ Q
a−→ Q′ [a ∈ B�]

P ‖
B

P
a−→ P ′ ‖

B
Q′

Definition 4 (Alphabet of CSP processes [14]).

A(STOP) =̂ {}
A(a → P) =̂ {a} ∪ A(P)
A(P � Q) =̂ A(P) ∪ A(Q)
A(P � Q) =̂ A(P) ∪ A(Q)

A(P ‖
B

Q) =̂ A(P) ∪ A(Q)

A(P\B) =̂ A(P)\B

A(f(P)) =̂ {f(a) | a ∈ A(P)}
We present the semantics of CSP as an LTS in Table 2, following Schnei-

der [22]: Term SKIP refuses to engage in any event, terminates immediately
(Term rule), and does not diverge. Term STOP is unable to interact with its
environment. The prefix process α → P first engages in event α then behaves
like P (Prefix rule). Term P � Q behaves like P or Q, with the choice decided
internally (InChL), whereas P � Q behaves like P or Q, with the choice decided
by the environment (ExtChL1,2 rules). Parallel P ‖

B

Q runs processes P and Q

in parallel, which must synchronise on the set of events in B and the � event
(ParL and Sync rules). The renaming term f(P) engages in f(a) whenever P
engages in a (Ren rule). Hiding P\A engages in all events of P except those in A
(Hide1, 2 rules), and μ X.P runs P recursively (Rec rule).

Equivalence based on (enriched versions of) traces is the preferred choice for
distinguishing CSP processes (cf. [14,21,22]).

Definition 5 (Failure equivalence [21]). A failure is a pair (tr, A), where tr
is a finite sequence of actions (or trace) and A a set of actions. The failure
(tr, A) belongs to process P if, for some P ′: P

tr−→ P ′ ∧ ∀ a ∈ A : ¬(P ′ a−→).
P is failure equivalent to Q, written P =F Q, if they have the same sets of

failures.

2.3 Correct Translations

A correct translation of one language into another is a mapping from the valid
expressions in the first language to those in the second, that preserves their
meaning [10]. Below we recap the main two definitions of correctness.

Let L = (TL, � �L) denote a language as a pair of a set TL of valid expressions
in L and a surjective mapping � �L : TL → DL from TL to some set of meanings
DL. Candidate instances of � �L are traces and failures (Definition 5).

248 G. E. Ngondi et al.

Definition 6 (Correct Translation up to Semantic Equivalence [10]). A
translation T : TL → TL′ is correct up to a semantic equivalence ≈ on DL ∪DL′

when �T(E)�L′ ≈ �E�L for all E ∈ TL.

Operational correspondence allows matching the transitions of two pro-
cesses, which can help determine the appropriate relation (semantic equivalence)
between a term and its translation. Let the operational semantics of L be defined
by the labelled transition system (TL, ActL,−→L), where ActL is the set of labels
and E

λ−→L E′ defines transitions with E,E′ ∈ TL and λ ∈ ActL.

Definition 7 (Labelled Operational Correspondence [8,20]). Let T :
TL → TL′ be a mapping from the expressions of a language L to those of a
language L′, and let f : ActL → ActL′ be a mapping from the labels of L to
those of L′. A translation 〈T, f〉 is operationally corresponding w.r.t. a semantic
equivalence ≈ on DL ∪ DL′ if it is:

– Sound: ∀E,E′ : E
λ−→L E′ imply that ∃ F : T(E)

f(λ)−−→L′ F and F ≈ T(E′)

– Complete: ∀ E,F : T(E) λ′
−→L′ F imply that ∃ E′ : E

λ−→L E′ and F ≈ T(E′) ∧
λ′ = f(λ)

3 Intuitions of the Translation

In this section, we illustrate some of the differences between CCS and CSP, and
how we address them in the different stages of our translation shown in Fig. 1.
We start with the challenges in translating CCS binary into CSP’s multiway
synchronisation in a term where both interleaving and synchronisation of prefixes
is possible.

Fig. 1. Translation workflow

Example 8. Consider the CCS process (a.P | a.Q) | a.R composed of three paral-
lel sub-processes a.P , a.Q and a.R. According to CCS semantics, binary synchro-
nisation can occur between a.P and either a.Q or a.R. Both synchronisations
result to τ -transitions in the LTS (Sync in Table 1).

We initially translate this process into CCSTau through the c2ccsτ function
(Definition 11), which gives us ((a.P ′ | a.Q′)\{τ [a|a]} | a.R′)\{τ [a|a]}. As we will
see in the following section, in CCSTau, a.P ′ can perform an observable τ [a|a]
synchronisation with one of the other two parallel processes. This transition is
turned into an internal τ -transition via the hiding operator (−\{τ [a|a]}) bor-
rowed from CSP. After this first translation, the source and target terms have
the same transition system, i.e., they are strongly bisimilar (Theorem 12).

Translation of CCS into CSP 249

We then apply a sequence of three transformations within CCSTau. The
first one, ix (Property 13), assigns a unique index to the names of every prefix,
thus obtaining the process a1.P

′′ | a2.Q
′′ | a3.R

′′. The ix-indexed process cannot
perform any synchronisation and therefore hiding of synchronisation actions is
removed. However, the next transformation, g∗ (Definition 15), adds new pre-
fixes, denoted with double indices, which re-introduces these synchronisations
(though without hiding them):

(a1 + a12 + a13).P ′′′ | ((a2 + a12).Q′′′) | (a3 + a13).R′′′

where (a + b).S is syntactic sugar for a.S + b.S. For simplicity in this example,
we assume that a does not appear in P , Q and R.

At this stage in our translation, every prefix that may lead to an interleaved
action is represented by an ai prefix, while every possible synchronisation has its
own unique name and co-name, aij , aij . In this way, we separate synchronisation
from interleaving, which is crucial for translating into CSP.

Note here that the introduction of the additional aij prefixes also introduces
interleaved aij transitions. These will be removed by hiding at a following stage
of the translation.

Transformation conm (Definition 18) identifies co-names synchronisation
events, and tl (Definition 20) maps CCS operators to corresponding CSP con-
structs while filling in the interface sets in every CSP parallel operator. We thus
obtain:

(

(a1 � a12 � a13) → P ′′′′ ‖
{a12}

(ā2 � a12) → Q′′′′) ‖
{a13}

(ā3 � a13) → R′′′′

To obtain a CSP process with a transition system identical to the original CCS
term, we need to apply the final two stages of the translation. These introduce
a top-level hiding operator for tau events (not relevant in this example) and all
aij synchronisation events, as well as a renaming operation ai2a (Definition 25)
which maps all ai names to a. The final CSP term is thus:
(

(

(a � a12 � a13) → P ′′′′ ‖
{a12}

(ā � a12) → Q′′′′) ‖
{a13}

(ā � a13) → R′′′′
)

\{a12, a13}

The original CCS and final CSP terms have indeed strongly bisimilar LTSs
(Theorem 30). �	
Example 9. Consider again the mixed choice a.P +b.Q+τ.R (Example 3). After
applying the c2ccsτ translation and the ix, g∗ and conm transformations, we
obtain the CCSTau term: a1.P

′ + b2.Q
′ + τ.R′. We assume here that P,Q,R do

not contain a and b prefixes and thus no hiding or additional nij prefixes are
introduced. Translation tl is the most important for this example. It results in
the CSP process a1 → P ′′ � b2 → Q′′ � tau → R′′. Crucially, the last prefix
involves the special name tau, which is different than τ and can indeed resolve
the choice. In order to turn tau into a CSP τ move, the translation then hides
this name and, with the application of the final renaming function ai2a, the CSP
term we obtain is (a → P ′′′ � b → Q′′′ � tau → R′′′) \ {tau} which indeed has
an LTS which is strongly bisimilar to that of the original CCS term. �	

250 G. E. Ngondi et al.

4 From CCS to CCSTau

We define CCSTau to serve as a middle-ground calculus between CCS and CSP
for our translation. CCSTau is obtained from CCS, as described in Sect. 2.1, by
two modifications: making binary synchronisation observable, and introducing
CSP-style hiding.

To make binary synchronisation observable we introduce an additional action
which can appear on the transitions of our LTS: τ [a|a]. We let β range over CCS
actions α and the new synchronisation actions τ [a|a], and define the CCSTau

LTS with rules of the form P
β−→ Q. To make synchronisation observable we use

the following Com rule, instead of that in Table 1.

Com :
P

a−→ P ′ Q
a−→ Q′

P |
T
Q

τ [a|a]−−−→ P ′|
T
Q′

Note that we annotate the parallel operator with a T -subscript to make clear
that it is the CCSTau parallel. Its alphabet contains visible synchronisations.

Definition 10. A(P |
T
Q) =̂ A(P) ∪ A(Q) ∪ {τ [a|a] | a ∈ A(P), ā ∈ A(Q)}

To introduce hiding, we extend CCS syntax with the hiding construct: P :: =
. . . |P\

T
B. The set B contains actions which are names a or τ [a|a], with the

closure condition that “if a ∈ B then a ∈ B and τ [a|a] ∈ B.” We introduce the
following hiding rules in the LTS which are similar to the CSP rules (Table 2)

Hide1 :
P

β−→ P ′ β /∈ B

P\
T
B

β−→ P ′\
T
B

Hide2 :
P

β−→ P ′ β ∈ B

P\
T
B

τ−→ P ′\
T
B

The remaining LTS rules consist of Prefix, SumL (and its symmetric), ParL,
Res and Rec from Table 1, with the only change that we now use β instead of α
for transition annotations. Note that CCSTau restriction cannot restrict τ [a|a]
actions as these are single-name actions only.

Encoding CCS into CCSTau. We describe here a translation of CCS pro-
cesses into CCSTau. This encoding is concerned with hiding the now-observable
synchronisation actions.

Definition 11 (c2ccsτ). Translation function c2ccsτ , when applied to a CCS
process, returns a CCSTau process.

c2ccsτ(0) =̂ 0 c2ccsτ(P � B) =̂ c2ccsτ(P) � B

c2ccsτ(α.P) =̂ α.c2ccsτ(P) c2ccsτ(μ X.P) =̂ μ X.c2ccsτ(P)
c2ccsτ(P + Q) =̂ c2ccsτ(P) + c2ccsτ(Q) c2ccsτ(X) =̂ X

c2ccsτ(P |Q) =̂ (c2ccsτ(P)|
T
c2ccsτ(Q))\

T
{τ [a|a] | a ∈ A(P), ā ∈ A(Q)}

Translation of CCS into CSP 251

In the above definition the only interesting case is parallel which hides the
CCStau synchronisation actions, leaving all other actions unaffected. The fol-
lowing theorem shows that the translated terms are strongly bisimilar to the
original CCS terms, when there is no parallel under recursion.2

Theorem 12. Let P be a CCS process. Then: P ∼ c2ccsτ(P).

Proof. By observing that c2ccsτ is the identity CCS-to-CCSTau translation on
parallel-free processes, and then proving the conditions of bisimulation via rule
induction on the LTS transitions. �	

5 CCSTau Transformations

We provide a translation of CCSTau into CSP in two parts. Here we describe
the first part involving the CCSTau transformations, ix, g∗, conm, mentioned
in Sect. 3.

Indexing (ix). The intention here is that an indexing function assigns unique
indices to every prefix in a CCS process. There are many straightforward schemes
to choose these indices from the set of natural numbers N. Here, instead of
defining a concrete scheme, we specify how it should distribute over CCSTau
operators.

Property 13.

ix(τ.P) = τ.ix(P)
ix(a.P) = ai.ix−i(P)

ix(P + Q) = ix1(P) + ix2(Q)
ix(P |

T
Q) = ix1(P)|

T
ix2(Q)

ix(P � {a}) = ix(P) � {ai|ai ∈ A(ix(P))}
ix(P\

T
{a}) = ix(P)\

T
{ai|ai ∈ A(ix(P))}

ix(P\
T
{τ [a|ā]}) = ix(P)

ix(μ X.P) = μ X.i x(P)

where ix−i is some indexing scheme which does not assign the i-index, and
ix1, ix2 are some indexing schemes that assign disjoint indices.

Since ix generates unique indexed names, ix(P) cannot synchronise, whence
hidden τ [a|ā] synchronisations are dropped out. They will be recovered later on.

In the following, we assume an indexing function ix which satisfies the above
properties. Our Haskell implementation [23] indeed implements such an indexing
function.

Explicit Binary Synchronisation (g∗). Given an indexed process ix(P),
function g∗ generates, by over-approximation, a unique name aij for every pos-
sible synchronisation pair (ai, āj) from ix(P).

Given a set S of names in the context, the next definition shows how g∗

applies to a CCSTau action and set of actions. For technical convenience, the
definition ensures that smaller indices always come first.
2 Although more involved versions of c2ccsτ would lift the restriction on recursion

here, the same restriction would be needed for the end-to-end translation into CSP.

252 G. E. Ngondi et al.

Definition 14 (g∗(S, a), gπ2(S, a)).

g∗(S, τ) =̂ {τ}
g∗(S, ai) =̂ {ai} ∪ gπ2(S, ai)

g∗(S,B) =̂
⋃

ai∈B

g∗(S − {ai}, ai)

gπ2(S, ai) =̂ {aij | āj ∈ S, i < j}
∪ {aji | āj ∈ S, j < i}

We can now define our transformation function g∗ over CCSTau processes.

Definition 15 (g∗(S, P)). Let P,Q be ix-indexed CCSTau processes and S a
set of names such that S ∩ A(P) = S ∩ A(Q) = {}.

g∗(S, 0) =̂ 0 g∗(S, P � B) =̂ g∗(S, P) � g∗(S,B)
g∗(S, α.P) =̂ Σ

b∈g∗(S,α)
b.g∗(S, P) g∗(S, P\

T
B) =̂ g∗(S, P)\

T
g∗(S ∪ B,B)

g∗(S, P + Q) =̂ g∗(S, P) + g∗(S,Q) g∗(S, μ X.P) =̂ μ X.g∗(S, P)

g∗(S, P |
T

Q) =̂ g∗(S ∪ A(Q), P) |
T

g∗(S ∪ A(P), Q)

When P is the top context, we require S = {}. We define: g∗(P) =̂ g∗({}, P).
Condition S ∩ AP = {} allows us to separate P from its context, while the

condition that the processes are ix-indexed excludes processes where indexing
has not been applied consistently such as g∗((a1 + a2) � {a2}).

For restriction, no ai ∈ B should be able to interact with the environment.
Hence, (dummy) synchronisations between B and S, {aij |ai ∈ B, āj ∈ S|i <
j} ∪ {aji|ai ∈ B, āj ∈ S|j < i}, should also be restricted.

Example 16.

1. g∗((a1.0|
T
ā2.0) � {a1, a2}

)

=
(

(a1.0 + a12.0)|
T
(ā2.0 + ā12.0)

)

� {a1, a2}
2. g∗((a1.0|

T
ā2.0) � {a1, a2}|

T
ā3.0

)

=
(

(a1.0 + a12.0 + a13.0)|
T
(ā2.0 + ā12.0)

)

� {a1, a2, a13}
)|

T
ā3.0

Proper synchronisations remain unrestricted as illustrated above with a12. Since
CCS restriction ‘− � {aij}’ will be translated to CSP ‘− ‖

aij

STOP ’ (cf. Defi-

nition 19), restricting proper synchronisation names would lead to deadlock in
CSP. Instead, they will be added into the CSP interface-parallel operator later
on (cf. Definition 20).

For hiding, no ai ∈ B should be visible. Unlike restriction, we must hide both
dummy and proper synchronisations involving hidden ais.

Example 17.

1. g∗((a1.0|
T
ā2.0)\

T
{a1, a2}

)

=
(

(a1.0 + a12.0)|
T
(ā2.0 + ā12.0)

)\
T
{a1, a2, a12}

2. g∗((a1.0|
T
ā2.0)\

T
{a1, a2}|

T
ā3.0

)

=
(

(a1.0 + a12.0 + a13.0)|
T
(ā2.0 + ā12.0)

)\
T
{a1, a2, a12, a13}

)|
T

ā3.0

Translation of CCS into CSP 253

IdentifyingCo-names (conm).Unlike CCSTau, synchronisation occurs in CSP
between pairs of events that have the same name. That is, (a → P) ‖

{a}
ā → Q

would behave like (a → P) ‖
{a}

b → Q, not (a → P) ‖
{a}

a → Q. Before going into

CSP, we need to ensure that a can synchronise with ā, more precisely, we only need
aij to synchronise with āij . This can be achieved through the following renaming
function, conm, which transforms any āij-name into an aij-name.

Definition 18 (conm). Let ai, aij range over g∗-indexed names. Then:

conm =̂ {τ �→ τ, ai �→ ai, āi �→ āi, aij �→ aij , āij �→ aij | i < j}

6 From CCSTau to CSP

Translation into CSP (tl). The translation of CCSTau processes into CSP
requires us to translate CCSTau prefixes. To do this we use a fresh (not previ-
ously used) CSP event tau, which we will later hide, thus creating a true CSP
internal transition. Moreover, we need to translate CCS restriction, which is part
of the CCSTau language, into CSP. We do this by introducing a deadlock for
the restricted names.

Definition 19. Let P be a CSP process. Then: P �csp B =̂ P ‖
B∪B

STOP .

We can now present the translation tl from CCSTau to CSP.

Definition 20. Let P and Q be CCSTau processes; let tau be a fresh, non-
synchronising, CSP event.

tl(0) =̂ STOP

tl(τ.P) =̂ tau → tl(P)
tl(a.P) =̂ a → tl(P)

tl(P + Q) =̂ tl(P) � tl(Q)

tl(P |
T
Q) =̂ tl(P) ‖

{a|a∈A(P)∩A(Q)}
tl(Q)

tl(P � B) =̂ tl(P) �csp B

tl(P\
T
B) =̂ tl(P) \csp B

tl(μ X.P) =̂ μ X.tl(P)

The following example illustrates the rationale for our encoding restriction
into CSP.

Example 21. In CCSTau (as in CCS) restriction obeys the law: (a.P) � {a} ∼ 0.
Definition 19 obeys the same law, viz., (a → t2csp(P)) �csp {a} = STOP .

tl((a.P) � {a}) = tl(a.P) �csp {a} = (a → tl(P)) ‖
{a}

STOP

The last process behaves like STOP which is the tl-translation of 0. �	
Hereafter, it will be convenient to refer to the composition of all CCSTau

transformations and the tl-translation into CSP as a single function, which we
call t2csp.

254 G. E. Ngondi et al.

Definition 22 (t2csp). Let P be a CCSTau process. Then:

t2csp(P) =̂ (tl ◦ conm ◦ g∗ ◦ ix(P))\
csp

{tau}
Example 23. We illustrate the translation of CCSTau parallel operator, to be
contrasted with the translation of CCS parallel operator (cf. Example 26).

t2csp(a.0|
T
ā.0)

= tl
(

conm
(

g∗({}, ix(a.0|
T
ā.0))

))\
csp

{tau} (t2csp-Def. 22)

= tl
(

conm
(

g∗({}, (a1.0|
T
ā2.0))

))\
csp

{tau} (ix-Prop. 13)

= tl
(

conm
(

(a1.0 + a12.0)|
T
(ā2.0 + ā12.0)

))\csp{tau} (gstar-Def. 15)

= tl
(

(a1.0 + a12.0)|
T
(ā2.0 + a12.0)

)\
csp

{tau} (conm-Def. 18)

=
(

(a1 → STOP � a12 → STOP) ‖
{a12}

(ā2 → STOP � a12 → STOP)
)\csp{tau} (tl-Def. 20)

Final CSP Transformations (−\
csp

{aij}, ai2a). The final stages of our trans-
lation consists of hiding every aij synchronisation name (thus effectively turning
them into τ) and renaming of all ai names to a.

Definition 24. Let ai range over g∗-indexed names; ai2a =̂ {ai �→ a, āi �→ ā}.
The following definition gives the end-to-end translation from CCS to CSP,

as described in Sect. 3.

Definition 25. Let P be a CCS process. Then:

ccs2csp(P) =̂ ai2a ◦ (t2csp ◦ c2ccsτ(P))\
csp

{aij |aij ∈ A(

t2csp(c2ccsτ(P))
)}

Example 26. In Sect. 3, we discuss at length the translation of CCS binary syn-
chronisation into CSP. This can be illustrated more succinctly as follows:

ccs2csp(a.0|ā.0)

= ai2a ◦ t2csp
(
c2ccsτ(a.0|ā.0)

)\csp{aij |..} (ccs2csp-Def. 25)

= ai2a ◦ t2csp
(
(a.0|T ā.0)\T{τ [a|ā]})\csp{aij |..} (c2ccsτ -par-Def. 11)

= ai2a ◦ tl ◦ conm ◦ g∗({}, ix
(
(a.0|T ā.0)\T{τ [a|ā]})

)\csp{tau}\csp{aij |..}
(t2csp-Def. 22)

= ai2a ◦ tl ◦ conm ◦ g∗(
(a1.0|T ā2.0)

)\csp{tau}\csp{aij |..} (ix-Prop. 13)

= ai2a ◦ tl ◦ conm
(
(a1.0 + a12.0)|T (ā2.0 + ā12.0)

)\csp{tau}\csp{a12} (gstar-Def. 15)

= ai2a ◦ tl
(
(a1.0 + a12.0)|T (ā2.0 + a12.0)

)\csp{tau, a12} (conm-Def. 18)

= ai2a ◦ (
(a1 � a12 → STOP) ‖

{a12}
(ā2 � a12 → STOP)

)\csp{tau, a12} (tl-Def. 20)

=
(
(a � a12 → STOP) ‖

{a12}
(ā � a12 → STOP)

)\csp{tau, a12} (ai2a-Def. 24)

Translation of CCS into CSP 255

7 Correctness of the Translation

Here we discuss the correctness up to a semantic equivalence (Definition 6) of
functions g∗, t2csp, and ccs2csp defined above. In each case, we use labelled
operational correspondence to relate a source term to its translation. In the
end, the labelled operational correspondence between a CCS term and its CSP
translation is a strong bisimulation, hence, translation ccs2csp is correct up to
strong bisimulation.

First, we consider the correctness of g∗.

Theorem 27 (OperationalCorrespondence betweenP and g∗(S, ix(P))).
Let P be a CCSTau process. Let c4star(S, P) =̂ g∗(S, ix(P)

)

. Then:

1. P
τ−→ P ′ imply that ∀S|S ∩ Aix(P) = {} : c4star(S, P) τ−→ Q and Q ≡

c4star(S, P ′)
2. ∀S|S ∩ Aix(P) = {} : c4star(S, P) τ−→ Q imply that ∃!P ′ : P

τ−→ P ′ and
Q ≡ c4star(S, P ′)

3. P
a−→ P ′ imply that ∀ S|S ∩ Aix(P) = {} : c4star(S, P) ai−→ Q and Q ≡

c4star(S, P ′)
4. ∀S|S ∩ Aix(P) = {} : c4star(S, P) ai−→ Q imply that ∃!P ′ : P

a−→ P ′ and
Q ≡ c4star(S, P ′)

5. P
a−→ P ′ imply that ∀ S|S ∩ Aix(P) = {} : c4star(S, P)

aij−−→ Q and Q ≡
c4star(S, P ′)

6. ∀S,∃ i, j|i �= j ∧ ai ∈ S ∧ āj ∈ Aix(P) : c4star(S, P)
aij−−→ Q imply that

∃!P ′ : P
a−→ P ′ and Q ≡ c4star(S, P ′)

7. P
τ [a|ā]−−−→ P ′ imply that ∀ S|S ∩ Aix(P) = {} : c4star(S, P)

τ [aij |āij]−−−−−−→ Q and
Q ≡ c4star(S, P ′)

8. ∀S|S ∩ Aix(P) = {} : c4star(S, P)
τ [aij |āij]−−−−−−→ Q imply that ∃!P ′ : P

τ [a|ā]−−−→ P ′

and Q ≡ c4star(S, P ′)

Proof. By co-induction on the transitions of P and c4star(S, P) respectively.
E.g., consider every rule yielding a τ transition, e.g., Prefix, Sum. Induction
over each rule yields structural induction over P . Apply the definition of c4star,
then c4star(S, P) has a τ transition by successive application of the Sum rule
then the Prefix rule. Conversely, given c4star(S, P), induction over each rule
yields structural induction over c4star(S, P).

Since aij-names denote synchronisation, τ [aij |āij]-actions only should be vis-
ible/allowed, viz., aij-names must be restricted. Hence, g∗(S, ix(P)) is not cor-
rect. We obtain a correct translation by restricting all aij names.

Corollary 28 (Correctness up to Strong Bisimulation of g∗(S, ix(P))).
Let P be a CCSTau process. Then, g∗(S, ix(P)) � {gπ2(S, ai)|ai ∈ Aix(P)} is
correct up to strong bisimulation.

256 G. E. Ngondi et al.

Proof. Apply the restriction operator, � {gπ2(S, ai)|ai ∈ Aix(P)}, to every
clause in Theorem27. This eliminates clauses 5 and 6 since aij can no longer
occur.

Theorem 29 (Operational Correspondence of t2csp). Let P be a CCSTau
process. Then:

1. P
τ−→ P ′ imply that ∀S|S ∩ Aix(P) = {} : t2csp(S, P) τ−→ t2csp(S, P ′)

2. ∀S|S ∩ Aix(P) = {} : t2csp(S, P) τ−→ Q imply that ∃!P ′ : P
τ−→ P ′ and

Q = t2csp(S, P ′)
3. P

a−→ P ′ imply that ∀ S|S ∩ Aix(P) = {} : t2csp(S, P) ai−→ t2csp(S, P ′)
4. ∀S|S ∩ Aix(P) = {} : t2csp(S, P) ai−→ Q imply that ∃!P ′ : P

a−→ P ′ and
Q = t2csp(S, P ′)

5. P
τ [a|ā]−−−→ P ′ imply that ∀ S|S ∩ Aix(P) = {} : t2csp(S, P)

aij−−→ t2csp(S, P ′)

6. ∀S|S ∩ Aix(P) = {} : t2csp(S, P)
aij−−→ Q imply that ∃!P ′ : P

τ [a|ā]−−−→ P ′ and
Q = t2csp(S, P ′)

Proof. By co-induction on the transitions of P and t2csp(P) respectively.

Theorem 30 (Correctness of ccs2csp). Let P be a CCS process. Then:

1. P
τ−→ P ′ imply that ∀S|S ∩ Aix(P) = {} : ccs2csp(S, P) τ−→ ccs2csp(S, P ′)

2. ∀S|S ∩ Aix(P) = {} : ccs2csp(S, P) τ−→ Q imply that ∃!P ′ : P
τ−→ P ′ and

Q = ccs2csp(S, P ′)
3. P

a−→ P ′ imply that ∀ S|S ∩ Aix(P) = {} : ccs2csp(S, P) a−→ ccs2csp(S, P ′)
4. ∀S|S ∩ Aix(P) = {} : ccs2csp(S, P) a−→ Q imply that ∃!P ′ : P

a−→ P ′ and
Q = ccs2csp(S, P ′)

We say that ccs2csp is correct up to strong bisimulation.

Proof. Apply c2ccsτ (Definition 11), this turns CCS process P into CCSTau
process ccs2τ(P). Apply −\

csp
{aij}, this hides every aij from t2csp(c2ccsτ(P)).

As a consequence, this eliminates clauses 5 and 6 from Theorem29. Then apply
ai2a, this renames every ai into an a. Thus, every ai from Theorem29 becomes
an a.

The above theorems culminate to the following correctness result of our end-
to-end translation.

Corollary 31 (Correctness of the Translation up to Strong Bisimula-
tion). Let P be a CCS process. Then: ccs2csp(P) ∼ P .

A trivial consequence of this corollary is that P ∼ Q ⇔ ccs2csp(P) ∼
ccs2csp(Q). Since strong bisimulation is included in failure equivalence, we have
P ∼ Q ⇔ ccs2csp(P) =F ccs2csp(Q). We illustrate this subsequently.

Translation of CCS into CSP 257

Example 32. In CCS, we have: (a.0|ā.0) � {a} + b.0 ∼ τ.0 + b.0. We check that:
ccs2csp

(

(a.0|ā.0) � {a} + b.0
)

=F ccs2csp(τ.0 + b.0).
We have:

ccs2csp
(
(a.0|ā.0) � {a} + b.0

)

= ai2a ◦ t2csp ◦ c2ccsτ
(
(a.0|ā.0) � {a} + b.0

)
(ccs2csp-Def. 25)

= ai2a ◦ t2csp
(
(a.0|T ā.0)\T{τ [a|ā]} � {a} + b.0

)
(c2ccsτ -par-Def. 11)

= ai2a ◦ [
(
(a1 � a12 → STOP) ‖

{a12}
(a2 � a12 → STOP)

)
�csp{a1, a2} �

(b → STOP)]\csp{tau, a12} (Ex. 23, t2csp-Def. 22)

= [
(
(a � a12 → STOP) ‖

{a12}
(a � a12 → STOP)

)
�csp{a} �

b → STOP]\csp{tau, a12} (ai2a-Def. 24)

= [
(
(a � a12 → STOP) ‖

{a12}
(a � a12 → STOP) ‖

{a}
STOP

)
�

(b → STOP)]\csp{tau, a12} (res-Def. 19)

= (a12 → STOP � b → STOP)\csp{a12} (CSP)

= (STOP � b → STOP) � STOP (CSP[17, §3.5.1, L10])

We also have:

ccs2csp(τ.0 + b.0)

= ai2a ◦ t2csp ◦ c2ccsτ(τ.0 + b.0) (ccs2csp-Def. 25)
= ai2a ◦ t2csp ◦ (τ.0 + b.0) (ccs2csp-Def. 11)
= ai2a ◦ (tau → STOP � b → STOP)\csp{tau} (t2csp-Def. 22)
= (tau → STOP � b → STOP)\csp{tau} (ai2a-Def. 24)
= (STOP � b → STOP) � STOP (CSP[17, §3.5.1, L10])

8 Alternative Translation, Correct up to Failure
Equivalence

De Nicola and Hennessy [18] define a version of CCS, called TCCS, which
removes from CCS the summation operator and τ action, and adds external
(�) and internal (�) choice operators. They further provide a translation from
CCS to TCCS that is correct up to must equivalence ([18, Thm. 4.4]). Reusing

258 G. E. Ngondi et al.

their translation ([18, Def. 4.1]), we arrive at the following CCS-to-CSP trans-
lation:

ccs2csp2(P) =̂ ai2a ◦ (tl2 ◦ conm ◦ g∗ ◦ ix(P))\csp{aij} (ccs2csp2-def)

tl2(α.P) =̂

{
tl2(P) if α = τ

α → tl2(P)
(tl2-prefix)

tl2(P + Q) =̂

⎧
⎨

⎩

tl2(P) � tl2(Q) if ∀ P ′ : ¬(P
τ−→ P ′ ∨ Q

τ−→ P ′)(
tl2(P) � tl2(Q)

)
� �{tl2(P

′)|P τ−→ P ′ ∨ Q
τ−→ P ′}

(tl2-choice)
tl2(P) =̂ tl(P) if P is not prefix or choice

Example 33. In particular, from the definition of ccs2csp2, we derive:

ccs2csp2(a.P + b.Q) = a → ccs2csp2(P) � b → ccs2csp2(Q)

ccs2csp2(τ.P + b.Q) = (ccs2csp2(P) � b → ccs2csp2(Q)) � ccs2csp2(P)

ccs2csp2(τ.P + τ.Q) = (ccs2csp2(P) � ccs2csp2(Q)) � ccs2csp2(P) � ccs2csp2(Q)

(tl2-prefix) implies that τ prefixes are absent from the LTS of the CSP trans-
lation. As a consequence, P and ccs2csp2(P) are not strong bisimilar ; however,
they are failure equivalent: P =F ccs2csp2(P). Note that ccs2csp (Definition 25)
is failure equivalent to ccs2csp2: ccs2csp2(P) =F ccs2csp(P).3

9 Structural Properties of the Translation

In the literature of evaluating the relative expressiveness of different calculi,
different evaluation criteria for encodings have been proposed (e.g., [6,8,10,11,
19,20]). Gorla [11] notably proposes five requirements for a translation to be
valid : on the structural end, it must enjoy the compositionality and name invari-
ance properties; on the behavioural end, operational correspondence, divergence
reflection, and success sensitiveness.

The translation from CCS to CSP we provide here (ccs2csp, Definition 25) is
correct up to strong bisimulation (Corollary 31). This is a stronger result than
operational correspondence, and by definition, implies both divergence reflection
(viz., if a CSP translation diverges then its source CCS term does) and success
sensitiveness (viz., a CCS term converges if, and only if, its CSP translation
converges, and both converge to the same success final term). Correctness up to
strong bisimulation also implies name invariance. E.g., let P be a CCS process,
f a given renaming function; then ccs2csp(f(P)) ∼ f(ccs2csp(P)).

3 E.g., let P = Q = 0 in Example 33 then, compare the mixed choice case with
Example 32.

Translation of CCS into CSP 259

Our translation is not compositional in the sense of Gorla [11], whereby
a compositional translation T : L1 → L2 is such that T(op(S1, ..., Sk)) =
CN

op(T(S1), ...,T(Sk)), where op is any operator of L1, CN
op a context that coor-

dinates translated subterms, and N = fn(S1, ..., Sk). However, Gorla acknowl-
edges the existence of correct translations that are not compositional and further
acknowledges that his proposal is not adequate to deal with encodings defined
as a family of translations TΣ, where Σ denotes auxiliary parameters of the
translation (including sets of names) [11, Conclusion]. Our encoding from CCS
to CSP, ccs2csp (Definition 25), falls into the latter category.

10 Conclusion and Future Work

In this paper we have studied the relationship between CCS and CSP as part
of a greater work that aims to link also Pi-calculus [16] with CSPmob [4]. Many
extensions were necessary in order to define the links from CCS to CSP. We have
not explored here links in the opposite direction, from CSP to CCS. We leave
this to future work. For reference, van Glabbeek [10] proposes a link from CSP
to CCS that is correct up to trace equivalence.

We have defined CCSTau, which extends CCS with visible synchronisations
and the hiding operator. This allowed us to separate synchronisation from hid-
ing in a CCS context. We notably show that CCS is a subset of CCSTau. We
then defined the translation from CCSTau to CSP. In order to achieve this, we
extended CSP with the restriction operator.

The most difficult feature to translate was the CCS synchronisation mecha-
nism. In CCS, a single name is capable of both interleaving and synchronisation;
and synchronisation (automatically) implies hiding. This is unlike CSP where
all these issues are handled in separate operators. The constraint then was to
preserve CCS binary synchronisation from capture by CSP multiway synchro-
nisation. To resolve this, we have proposed the g∗ renaming approach: if two
CCS processes can synchronise on an action b, then a name unique to these two
processes, say bij , is generated to substitute b. Hence, only two processes will
ever be able to synchronise on bij after application of g∗. This guarantees that
in CSP, there will never be more than two processes capable of synchronising
on bij , thus avoiding capture by multiway synchronisation. We show that the
g∗-based translation is correct. Another solution is possible: extend CSP with
binary synchronisation, then translate CCS binary synchronisation into CSP
binary synchronisation. We leave the presentation of this alternative to a future
publication.

We have proposed here the translation from CCS to CSP only. The main
reason for this is our interest in using CSP tools such as FDR for reasoning
about CCS processes. With regard to this concern, the g∗-renaming approach is
more readily implementable than the second approach. The latter would require
extending FDR with semantics (viz. rules) for m-among-n synchronisation.

A natural extension of this paper is to translate Pi-calculus [16] into CSPmob
[4]. Assuming that CCS is a subset of Pi-calculus and given that CSP is a subset

260 G. E. Ngondi et al.

of CSPmob, we will focus our attention on mobility constructs hence. Our final
goal is to formalise our results in Unifying Theories of Programming (UTP) [13].
One advantage of the latter would be the extension of both CCS and CSP with a
richer notion of state. For illustration, Garavel [9] deplores the limitations of the
prefix operator in both CCS and CSP and shows that a richer form of sequential
composition can be achieved based on a richer notion of state. Moving to UTP
will also allow us to mechanise our results using ongoing mechanisation of UTP
theories in Isabelle [7], and link up with Isabelle mechanisation of Psi-calculi [2]
(a variant of Pi-calculus).

Acknowledgments. The authors are grateful to the anonymous reviewers for their
suggestions on how to improve this paper. This work was funded in part by the Sci-
ence Foundation Ireland grant 13/RC/2094 (LERO), and co-funded by the European
Union’s Horizon 2020 research and innovation programme under the Marie Sk�lodowska-
Curie grant agreement No 754489. For the purpose of Open Access, the authors have
applied a CC BY public copyright licence to any Author Accepted Manuscript version
arising from this submission.

References

1. Aceto, L., Larsen, K.A., Ingolfsdottir, A.: An Introduction to Milner’s CCS (2005).
http://twiki.di.uniroma1.it/pub/MFS/WebHome/intro2ccs.pdf. Accessed 30 July
2021

2. Bengtson, J., Parrow, J., Weber, T.: Psi-calculi in Isabelle. J. Autom. Reason.
56(1), 1–47 (2015). https://doi.org/10.1007/s10817-015-9336-2

3. Brookes, S.D.: On the relationship of CCS and CSP. In: Diaz, J. (ed.) ICALP 1983.
LNCS, vol. 154, pp. 83–96. Springer, Heidelberg (1983). https://doi.org/10.1007/
BFb0036899

4. Ngondi, G.E.: Denotational semantics of channel mobility in UTP-CSP. For-
mal Aspects Comput. 33(1), 803–826 (2021). https://doi.org/10.1007/s00165-021-
00546-3

5. FDR Documentation. https://cocotec.io/fdr/manual/. Accessed 30 July 2021
6. Felleisen, M.: On the expressive power of programming languages. Sci. Comput.

Program. 17, 35–75 (1991). https://doi.org/10.1016/0167-6423(91)90036-W
7. Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: a mechanised theory engineering

framework. In: Naumann, D. (ed.) UTP 2014. LNCS, vol. 8963, pp. 21–41. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-14806-9 2

8. Fu, Y., Lu, H.: On the expressiveness of interaction. TCS 411, 1387–1451 (2010).
https://doi.org/10.1016/j.tcs.2009.11.011

9. Garavel, H.: Revisiting sequential composition in process calculi. J. Log. Algebraic
Methods Program 84, 742–762 (2015). https://doi.org/10.1016/j.jlamp.2015.08.
001

10. van Glabbeek, R.: Musings on encodings and expressiveness. In: EPTCS, vol. 89,
pp. 81–98 (2012). https://doi.org/10.4204/EPTCS.89.7

11. Gorla, D.: Towards a unified approach to encodability and separation results for
process calculi. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS,
vol. 5201, pp. 492–507. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85361-9 38

http://twiki.di.uniroma1.it/pub/MFS/WebHome/intro2ccs.pdf
https://doi.org/10.1007/s10817-015-9336-2
https://doi.org/10.1007/BFb0036899
https://doi.org/10.1007/BFb0036899
https://doi.org/10.1007/s00165-021-00546-3
https://doi.org/10.1007/s00165-021-00546-3
https://cocotec.io/fdr/manual/
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1007/978-3-319-14806-9_2
https://doi.org/10.1016/j.tcs.2009.11.011
https://doi.org/10.1016/j.jlamp.2015.08.001
https://doi.org/10.1016/j.jlamp.2015.08.001
https://doi.org/10.4204/EPTCS.89.7
https://doi.org/10.1007/978-3-540-85361-9_38
https://doi.org/10.1007/978-3-540-85361-9_38

Translation of CCS into CSP 261

12. Hatzel, M., Wagner, C., Peters, K., Nestmann, U.: Encoding CSP into CCS. In:
EXPRESS/SOS Workshop. EPTCS, vol. 190, pp. 61–75 (2015). https://doi.org/
10.4204/EPTCS.190.5

13. He, J., Hoare, C.A.R.: CSP is a retract of CCS. TCS 411, 1311–1337 (2010).
https://doi.org/10.1016/j.tcs.2009.12.012

14. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Hoboken
(1985)

15. Hoare, C.A.R.: Why ever CSP. ENTCS 162, 209–215 (2006). https://doi.org/10.
1016/j.entcs.2006.01.031

16. Milner, R.: Communicating and Mobile Systems: The Pi-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

17. Milner, R.: Communication and Concurrency. Prentice-Hall, Hoboken (1989)
18. De Nicola, R., Hennessy, M.: CCS without τ ’s. In: Ehrig, H., Kowalski, R., Levi,

G., Montanari, U. (eds.) CAAP 1987. LNCS, vol. 249, pp. 138–152. Springer,
Heidelberg (1987). https://doi.org/10.1007/3-540-17660-8 53

19. Parrow, J.: Expressiveness of process algebras. ENTCS 209, 173–186 (2008).
https://doi.org/10.1016/j.entcs.2008.04.011

20. Peters, K.: Comparing process calculi using encodings. In: EXPRESS/SOS Work-
shop. EPTCS, vol. 300, pp. 19–38 (2019). https://doi.org/10.4204/EPTCS.300.
2

21. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge Univer-
sity Press, Cambridge (2012)

22. Schneider, S.: Concurrent and Real-Time Systems - The CSP Approach. Wiley,
Hoboken (2000)

23. Haskell Prototype Automation of CCS-to-CSP Translation: GitHub Repository.
https://github.com/andrewbutterfield/ccs2csp. Accessed 30 July 2021

https://doi.org/10.4204/EPTCS.190.5
https://doi.org/10.4204/EPTCS.190.5
https://doi.org/10.1016/j.tcs.2009.12.012
https://doi.org/10.1016/j.entcs.2006.01.031
https://doi.org/10.1016/j.entcs.2006.01.031
https://doi.org/10.1007/3-540-17660-8_53
https://doi.org/10.1016/j.entcs.2008.04.011
https://doi.org/10.4204/EPTCS.300.2
https://doi.org/10.4204/EPTCS.300.2
https://github.com/andrewbutterfield/ccs2csp

	Translation of CCS into CSP, Correct up to Strong Bisimulation
	1 Introduction
	2 CCS, CSP, Correct Translations: a Brief Overview
	2.1 CCS
	2.2 CSP
	2.3 Correct Translations

	3 Intuitions of the Translation
	4 From CCS to CCSTau
	5 CCSTau Transformations
	6 From CCSTau to CSP
	7 Correctness of the Translation
	8 Alternative Translation, Correct up to Failure Equivalence
	9 Structural Properties of the Translation
	10 Conclusion and Future Work
	References

