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Being the intimate connection between chirality and magnetism, magneto-chiral 

anisotropies (MChA) - featuring non-reciprocal optical responses in chiral systems 

depending on the relative direction of the magnetic field B and the light propagation - 



have attracted much attention throughout the recent history of science1-3. The genuine 

two4-9 MChA phenomena are the so-called ‘pure’4-6,9 and ‘cascaded’7-9 effects. The ‘pure’ 

MChA phenomenon is proportional to the relative orientation between the wave vector 

of light k and B and has already been verified in numerous materials10-16 after its first 

observation in the late 20th century10. In marked contrast, the predicted ‘cascaded’ 

MChA effect remains unrevealed8,9,14. This intriguing ‘cascaded’ form of MChA is given 

by the simultaneous action of natural and magnetically induced optical activities in chiral 

systems and is the hallmark of bianisotropic electromagnetic materials generally referred 

to as Faraday chiral media17-21. 

Here, we report on the experimental observation of the elusive cascaded MChA and 

demonstrate its enantioselectivity. Corresponding electromagnetic simulations are in 

remarkable quantitative agreement with our measurements, which demonstrates the 

controllability of this phenomenon. The existence of this exotic effect is crucial in light-

matter interactions, molecular spectroscopy and the design of novel metamaterials. 
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The interplay between electromagnetism and chirality possesses a rich and long history, 

comprising cornerstone discoveries that have largely contributed to our understanding of the 

electromagnetic properties of matter and the wave nature of light.1-3 The exploration of this 

interdisciplinary field was initiated during the 19th century, when Arago discovered the natural 

optical activity (NOA), a non-local response in media that lack mirror symmetry (chiral 

systems). 1-3 Later, Faraday detected magnetically induced optical activity (MOA), an 

omnipresent phenomenon resulting from the breaking of the time-reversal symmetry by a 



magnetic field perpendicular to the optical polarization.1-3 Despite their different physical roots, 

NOA and MOA are both manifested in a different absorption/emission (dichroism) or 

refraction (birefringence) between left and right circularly polarized light. Such 

phenomenological resemblances inspired several scientists, including Pasteur1,2, to search for 

possible links between chirality and magnetism.  

The late 20th century was a prolific time in the quest for optical responses connecting both  

chirality and magnetism, sparked first by a renaissance of interest on the topic at a theoretical 

level.4-9  Based on symmetry arguments, Baranova and Zeldovich4 deduced a second-order 

contribution (quantified by a parameter ) with a dependence k B to the dielectric constant of 

a chiral medium subjected to a magnetic field (Methods), possessing opposite sign for the two 

enantiomers of the chiral medium. Regarded as a magnetically induced change of NOA in the 

chiral medium, the appearance of this k B  dependence was underpinned by Wagnière et al.5 

and Barron et al.6 by using formalisms from molecular theory. They referred to this effect as 

‘magneto-chiral anisotropy’ (MChA), using the specific terminology ‘magneto-chiral 

dichroism’ in absorption or emission, and ‘magneto-chiral birefringence’ in refraction, in 

analogy with NOA and MOA. 

Eritsyan7,8 envisioned a conceptually-different MChA effect by only assuming a linear 

expansion of the dielectric constant expanded in terms of k and B  (Methods). This MChA 

phenomenon is related to materials exhibiting NOA (quantified by a parameter α) and MOA 

(quantified by a parameter β) at concurring wavelengths and is coined ‘cascaded’ effect, 

proportional to the product of the coefficients  . The existence of the cascaded MChA 

phenomenon was independently predicted by Rikken and Raupach9. Intriguingly, despite being 

broadly predicted7-9,17-22 and sought after9,14, the observation of this ‘cascaded’ form of MChA 

has not been unveiled. This is surprising for two reasons: i) since its first observation in 199710, 

the ‘pure’ MChA counterpart has been detected in several chiral systems9-16 and measurement 



configurations including absorption9, emission10, photochemistry13 or refraction14,15 ; and ii) 

being MOA ubiquitous, media exhibiting the pure phenomenon also display NOA and should 

therefore show the cascaded MChA effect, too. 

This oddity can be resolved emphasizing that selected chiral systems with large NOA and 

MOA responses at coincident wavelengths are required to detect the cascaded MChA.10,14 

Specifically, the magneto-optical response of biaxial chiral systems such as artificial 

ferromagnetic helical nanostructures is expected to be governed by the cascaded 

phenomenon.8,17-21 Moreover, cascaded and pure MChA effects in these systems exhibit 

distinctly different scattering anisotropy behaviour. In transmission, the pure effect shows a 

maximum at the NOA resonance14,21; whereas the cascaded phenomenon is predicted to exhibit 

a distinct zero-crossing at the NOA resonance instead14,21.  

Further insight on the anisotropy of light scattering in ferromagnetic helical media can be 

gained by considering the case of normal reflection. One can demonstrate,21 that the anisotropy 

in reflection in this media stems from an unconventional odd-powered term of cascaded form 

  k B      (Eq. 1) 

appearing in the (quartic) dispersion relation of the system (details in Supplementary Note 1).  

Notably, the presence of this odd-powered term makes each dispersion relation solution to be 

of the form8 𝒌 ≈ 𝒌0 ± 𝑎0𝛼𝛽|𝑩|, where 0k  is the wavevector for zero 𝛼 or 𝛽, and  𝑎0 is a 

constant (Supplementary Note 1). Therefore, k  has different magnitudes for forward and 

backward propagation8,21. Only at the NOA resonance, k possesses identical magnitude for 

forward and backward propagation, which (similar to the transmission case) gives rise to a 

zero-crossing in the reflection anisotropy. In other words, light propagation is reciprocal at this 

wavelength.8,14,21 We emphasise that none of these distinct features are present in helical 

systems if β = 0, regardless of the presence or not of the pure MChA  . Specifically, if 0;   

and  = 0, chiral systems with helical structure show a reciprocal response at fixed B. As such, 



the magnitude of k is the same for forward and backward propagation at any wavelength, which 

implies a vanishing pure MChA in reflection.  

 

By taking into account these premises, we demonstrate here the univocal detection of the 

cascaded MChA phenomenon in the normally reflected magneto-optical signal of nickel helical 

nanostructures22 (Figure 1a). Contrary to naturally gyrotropic systems9-15, NOA in artificial 

helical media is exclusively caused by the twisting of the medium7,8,21,28. Also, the enhanced 

MOA in these nanostructures is primarily due to the use of a ferromagnetic material21,29. 

Figure 1b depicts the specific experimental set-up (Methods) used here to measure the cascaded 

MChA effect in ferromagnetic nanohelices in reflection. We use light from a laser source as the 

incident radiation and, to increase sensitivity, the magnetic field is alternated in the two opposite 

configurations (  B ) so the reflectance difference ( ) ( )R R R    B B  is measured with a 

phase-sensitive detection method. Factors related to excitation intensity and sample geometry 

are eliminated by dividing R  by the total, static reflectance signal (0)R . Therefore, the 

resulting quantity / (0)R R  normalized by B corresponds to the cascaded MChA factor   

(governing contribution in these systems in reflection21, see Supplementary Note 1): 

 
1

(0)R R


  B  (Eq. 2) 

We have fabricated23-27 (Methods) regular arrays of artificial nickel nanohelices with ~1 turn 

and a pitch p  of ~320 nm (Figure 1c) in both types of enantiomer -right-handed (RH) and left-

handed (LH) helices- as our specific ferromagnetic (Supplementary Note 2) chiral medium.  

Figure 2a shows the measured reflectance difference at zero B field between right- and left-

handed circular polarized light, 
RHCP LHCPR R  in both RH and LH helices. This signal is a 

manifestation of the NOA of the system and exhibits a relatively broad response with a 

maximum of magnitude (~0.3) at a wavelength 
max ~640 nm for both enantiomers. 



Figure 2b shows the measured  (λ) plotted for the two enantiomers of the helical structure 

under study in the wavelength range 440 to 740 nm and at B  = 0.375 T.     shows opposite 

behaviour in both RH and LH enantiomers with similar magnitudes. Also, its magnitude 

increases when increasing B  (Supplementary Note 4). Strikingly, we observe a zero-crossing 

of     occurring at ~633 nm, position very close to 
max  (NOA maximum) and with a non-

zero MOA (Supplementary Note 5).     changes sign at the two opposite sides of 
max  of 

this crossing in both enantiomers. As aforementioned, the latter two findings are the unique 

hallmarks of the predicted cascaded MChA phenomenon8,9,21 and thus demonstrate its 

detection. The magnitude of the dissymmetry factor  is ~10-5 T-1, which is in good agreement 

to the common assumption9,14,16 given by the product of NOA and MOA (independently 

measured) in our samples:  ~0.3 (Figure 2a) and  ~10-4 T-1 (Supplementary Note 5).   

We additionally corroborate the observation of the cascaded MChA by undertaking advanced 

electromagnetic simulations (Methods), calculating the expected magneto-optical response of 

our nickel nanohelices in normal reflection. In these calculations, NOA is implicitly considered 

by the helical shape of the structures and MOA is included in the system by accounting for the 

permittivity tensor of the ferromagnetic material (nickel) in the presence of a magnetic field30.  

Figure 3a shows the calculated reflectance difference at zero B, 
RHCP LHCPR R , exhibiting a 

broad response23,28 with a maximum (~0.3) at a wavelength 
max ~665 nm for both 

enantiomers. Thus, these features as well as the overall line-shape are in good agreement with 

the NOA response measured in our nanohelices (Figure 2a). 

Figure 3b depicts the calculated     for the two enantiomers of the chiral system under study. 

    exhibits a zero-crossing occurring at the NOA resonance (~650 ± 25 nm) and with 

opposite sign of the slope for each enantiomer. The magnitude found for     at these 



wavelengths is ~10-5 T-1. Remarkably, both line shape and magnitude of the calculated     

are in excellent quantitative agreement with our experiments (Figure 2b), especially when 

considering that no theory has been able to model successfully any MChA effect up to date9-

16. For completeness (Supplementary Note 3), we further calculate the normalized total 

transmission difference ( )   of our ferromagnetic nanohelices. ( )   does not show any zero-

crossing close to 
max (< ±25 nm) since it entails more contributions than just the cascaded 

MChA14,16,21. This calculation reconfirms normal reflection as unique measurement to 

unambiguously detect the cascaded MChA in ferromagnetic nanohelices21. 

In conclusion, we have reported the detection of the long missing cascaded form of MChA. 

This effect is perceptible in the normal reflectance difference from ferromagnetic helical 

nanostructures, samples and measurement configuration appropriately designed so that this 

magneto-optical effect is dominant. The existence of the cascaded MChA fully validates the 

phenomenological electromagnetic constructs utilized to conceptualize magneto-chiral 

effects4-9,17-21. This phenomenon opens the door to the observation of exotic wave properties 

predicted to occur in Faraday chiral media17-22 such as negative reflection19 and the realization 

of envisioned electromagnetic devices like optical diodes21. 

 

 

Figures 



 

Figure 1. Detection of cascaded MChA in periodic arrays of nanohelices. a, Illustration of 

the study. Arrays of ferromagnetic nanohelices are subjected to the external magnetic field B 

generated by a coil, collinear to their helical axis. Samples are excited (brighter green) with 

linearly polarized light which propagates parallel to the helical axis, too. The normally reflected 

magneto-optical signal from the sample (darker green) is proportional to the cascaded MChA 

effect21, allowing its experimental detection as shown below. b, Schematic of the experimental 

set-up. The external magnetic field B is generated by a coil and is collinear with the propagation 

direction and the helical axis. Samples are excited with linearly polarized light at four different 

laser wavelengths (440 nm, 540 nm, 633 nm and 741 nm). The optical reflectance from the 

sample is detected by a silicon photodiode (PD). The intensity difference ( R ) between the 



two magnetic field directions is phase-sensitively detected by a lock-in amplifier at the 

frequency 𝑓=19 Hz of the alternating magnetic field. c, (Right panel) optical image showing 

the array of ferromagnetic (nickel) nanohelices on top a 80 nm thick silver film. Scale bar is 1 

mm. (Left panel) scanning electron micrograph of one of the enantiomers, showing well defined 

nickel nanohelices with a pitch of ~320 nm . Scale bar is 300 nm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Figure 2. Experimental MChA in ferromagnetic helices in reflection. a, NOA of our 

samples measured as the normal reflectance difference
RHCPR -

LHCPR  between right- and left-

handed circular polarized light in RH (black) and LH (red) helices at zero magnetic field. Both 

enantiomers show a clear maximum ~0.3 which appears within a region around ~640 nm. A 

zero reflectance difference is measured for a thin film of nickel (blue). b cascaded MChA signal 

in reflection   for both RH (black) and LH (red) helices plotted as a function of the used laser 

wavelengths, exhibiting zero-crossing close to the NOA maximum and a change of sign at both 

sides of this position in each enantiomer8,14.  These measurements are undertaken with linearly 

polarized light in an external magnetic field B  = 0.375 T. Dashed lines are only meant to guide 

the eye. For reference, a   below 5×10-7 T-1 was measured at any wavelength for nickel powder 

(blue circles), indicating the detection limit in our setup.  

 

 

 

 

 

 

 



Figure 3. Calculated MChA in ferromagnetic (nickel) nanohelices placed on a silver 

substrate in reflection. a,  NOA. Calculated reflectance difference between righ-  (
RHCPR ) and 

left- (
LHCPR ) handed circular polarized light in RH (black) and LH (red) helices and a nickel 

film (blue) at zero magnetic field. The NOA maximum appears within the range of 550 to 770 

nm.  b , calculated MChA signal  in normal reflection  of both RH (black) and LH (red) helices 

plotted as a function of the wavelength  , exhibiting a clear cascaded MChA behaviour in 

ferromagnetic nanohelices, similar to the one predicted for helical media8,14,21 (zero-crossing 

close to NOA maximum and corresponding sign change for both enantiomers). These 

calculations are undertaken with linearly polarized light (as in the experiment).  

 

 

 

 

 

 

 

 

Methods 

Dielectric function  in chiral media: pure and cascaded MChA phenomena 

Optical magneto-chiral effects can be formalized by expanding the dielectric tensor of chiral 

media subject to a magnetic field to first order in both the magnitude of the wave vector of the 

incoming radiation ( k ) and the magnitude of the total magnetic field ( B ) within the chiral 



media4-6,9. Here, we discuss the form of the dielectric tensor for two common type of media: 

homogeneous and periodic arrays of nanohelices (our samples in consideration). 

 

A. Dielectric function in homogeneous media, including uniaxial crystals with optical axis 

collinear to k , B  

Homogeneous and isotropic media (or uniaxial crystals with their optical axis collinear to k , 

B  and  the helical axis), lead to a complex dielectric tensor for the ± circular eigenmodes9: 

         / /, , d l d l              k B k B k B ,  (Eq. 3) 

where    is the permittivity at zero field, the coefficients 
/ ( )d l  and ( )   represent NOA 

and MOA, respectively, and / ( )d l   refers to the pure MChA effects for right- ( d ) and left- (

l ) handed media. We note that under parity transformation       ˆ d d lP         and 

     ˆ d d lP        . We have omitted the super indices (d, l) and the frequency 

dependence   for all coefficients in the main text for simplicity. 

Eq. 3 clearly shows that the pure MChA depends on the relative orientation of these two vectors 

( coskB k B , with  being the angle between k and B ).   

 

B. Dielectric function for periodic arrays of nanohelices 

Artificial helical nanostructures, such as the here considered ferromagnetic nanohelices, are 

periodically inhomogeneous media with biaxial dielectric permittivity21,31. In the presence of a 

magnetic field B directed along the helical axis, and considering only a linear expansion, 

Eritsyan8 and Gevorgyan21 showed that the dielectric constant in these systems is a tensor that 

can be expressed as: 
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where  1 2 / 2m    ,    1 2 1 2/        and 
1 2,  are the principal axis of the 

dielectric constant tensor in a coordinate frame (local to the structure) that rotates with respect 

to the Cartesian laboratory coordinate frame (x,y,z), in the absence of magnetic field. We note 

that NOA in this artificial system8,21,31 is exclusively caused by the twisting of the medium and 

is reflected in Eq.4 by the parameter 2 /a p , where p is the helical pitch.  

 

 

Experimental setup to observe cascaded MChA effects 

Figure 1b depicts the experimental set-up used to observe the cascaded MChA effect based on 

normal specular reflection. We use four laser sources (440, 540, 633 and 740 nm) and a phase-

sensitive detection method using a lock-in amplifier at a frequency f = 19 Hz to detect the signal 

 . The main difference with respect to the one used for transmission measurements14-16 is the 

inclusion of a beam splitter directing the normally reflected radiation towards the 

photodetector.  

 

Fabrication of arrays of ferromagnetic metallic nanohelices 

We have fabricated regular arrays of metal nanohelices of the two opposite enantiomers made 

from nickel using an oblique evaporation technique23,25. Our samples (Figure 1c) have an 

approximate pitch of 320 nm, a diameter of 160 nm and separated 200 nm from neighbouring 



helices. They are grown on Si substrates with a ~ 100 nm thin film of silver evaporated on top, 

film which enables the creation of regular helices with a large (>200 nm) pitch23.  

Figure 1c, right panel shows a top-view optical image of the nickel nanohelix array of approx. 

size 1mm2 (black square) on top of the Ag film. The matt-black appearance indicates a strong 

visible-light absorption in nickel nanohelices as demonstrated in our previous study24. 

Supplementary Note 2 shows the magnetization curve of these samples with external magnetic 

field applied parallel to the axis of the nanohelices. They show a clear ferromagnetic behaviour. 

 

Numerical simulations 

Finite-element method calculations were performed with the commercial software COMSOL 

5.1. Nickel helices were arranged on a 200-nm thick silver substrate. Floquet periodic 

boundary conditions were used in the xy plane, while a 500 nm thick perfectly matched layer 

(PML) was used at the top (air) side of the geometry, and a scattering boundary condition at 

the bottom (silver) side. To achieve the desired spacing between helices of 200 nm, the one 

helix contained in the unit cell was divided in smaller parts centred around the unit cell edges 

(see Supplementary Note 6). For the finite-element discretisation, a mesh of 108000 domain 

elements with maximum element size 20 nm and minimum element size 2 nm was found 

sufficient to provide converged spectra. The structure was illuminated by a plane wave 

(circularly or linearly polarised) impinging from the top side, and reflection (transmission) 

spectra were calculated by integrating energy flow over the entire top (bottom) faces (at the 

air-PML interface and the edge of the silver substrate, respectively). Silver was described by 

the dielectric function of Johnson and Christy32, while nickel was described by a 3x3 tensor 

with a retarded Drude model with two extra Lorentzians as its diagonal components, and 

Lorentzian oscillator contributions for the off-diagonal elements30. Further information about 

these calculations can be found in the Supplementary Note 6. We emphasize that these 



numerical simulations account for both pure and cascaded MChA contributions in our nickel 

nanohelices: NOA is present in the system due to the helical shape and MOA is included by 

accounting for the permittivity tensor of the material (nickel) in the presence of a static 

magnetic field31.  
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S1. Axial wave propagation along the helical axis of periodic helical media in the presence 

of cascaded MChA and pure MChA effects. Reflectance calculation. 



It is possible to obtain an analytic expression for the dispersion relation of periodic (biaxial) 

helical media in the case of the wave propagation k  parallel to the helical axisS1-S4 (here 

situated along the z  direction in Cartesian coordinates for convenience) and B . 

In general, these periodically inhomogeneous media are characterized by the dielectric tensor 

shown in Eq.4, main text, re-written here for convenience: 
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,  (Eq. S1) 

with  1 2 / 2m    , 
1 2,  are the principal axis of the dielectric constant tensor in a 

coordinate frame (x’,y’,z)  (local to the structure) that rotates with respect to the Cartesian 

laboratory coordinate frame (x,y,z). In this expression,  B  is the MOA, and the NOA of the 

system is reflected in the parameter 
02 /a p , where p0 is the pitch of the helix in the absence 

of a magnetic field.  𝜃 is the angle between the propagation direction of waves with wavevector 

k and the magnetic field B direction ( cos 1   for the here considered propagation cases along 

the helical axis) .  Importantly, contrary to naturally gyrotropic systems, the NOA activity in 

artificial helical media such as our ferromagnetic nanohelices is exclusively caused by the 

twisting of the mediumS1-S4 and is characterized by a coefficient 0( ) ( )m mca p     

, where   is the angular frequency of the incident wave and c  is the speed of light. The problem 

of light propagation in these media is solved representing the fields in the medium in two 

circular components S1-S4. We consider the case of a permeability tensor equal to the unit matrix 

I   and a non-absorbing medium for simplicity, but the problem can also be addressed in 

the general case I  S2,S4 and in the presence of absorptionS1,S4. 

 



The dispersion relation for these systems is given by S2-S4 : 

4 2

1 2 3 0b a b a b a      (Eq. S2) 

where 2

1 2(1 )a    , 
2 4 cos / ma    B , 2

3 2 (1 cos / )ma          B . The exact 

roots of equation S2,  
jb , can be found in Ref S2 and are the one we use for the calculations in 

Figure S1. Nevertheless, for simplicity, we mention here the approximated solution of this 

equation: roots of Eq. S2 can be approximated toS1 
0 ( | | cos ) /j jb b     B , where 

0

jb are 

the roots of the equation when 0   or 0  and   is a parameter of the system containing 

the principal axes of the permittivity tensor 
1 2,   and the light wavelengthS1. 

Since the roots 
jb   are related to the wavevector of the circular components of the field  


k  as 

jb   k ;  


k  can be then approximated by 0 ( | | cos ) /    k k B , where 0


k is the 

wavevector of the medium when 0   or 0  . 

 

In the following, we point out the main differences in the dispersion relation and wave 

propagation for the following specific cases: 

i) When only the cascaded MChA effect is present (i.e. 0  ; 0  ) 

ii) When only the pure MChA effect is present (i.e. 0;    = 0) 

iii) When both pure and cascaded MChA effects are present (i.e. 0;   0  ) 

 

In particular, we highlight the unique wavelength dependency of the cascaded MChA in helical 

systems, main effect of the present study. We note that the odd-power product  

2 4 cos / ma    Bk k  in Eq.S2 (term containing   B k  main text, Eq.1) is the key 

factor to understand the existing differences between all these cases: it represents the origin of 

the cascaded effect and the non-reciprocal optical properties for forward and backward 



propagation in ferromagnetic helical media S1,S3. Finally, we justify why our measured R is 

univocally due to the cascaded MChA effect (case i)). 

 

Case i) 

The term
2a  breaks both parity and time reversal symmetry and generates the cascaded ( ) 

MChA effect in the system. The existence of this term is directly related to the presence of both 

NOA   and MOA  , and gives rise to anisotropies in the optical properties (transmission, 

reflection, absorption) in these systemsS1-S4. We note that, for a fixed B,  the magnitude for 

forward and backward wave vectors is different when the cascaded effect is present (
f bk k

), i.e. 
fk  and 

bk  are not simultaneous solutions of the systemS1-S4. Moreover, in the presence 

of   Bk , the optical properties of the film are highly different for  B and B , even at 

qualitative level (see for instance the reflectance in Figure S1a). In this sense, the transmission 

( ) ( )T T T    B B  and reflectance differences ( ) ( )R R R    B B  for polarized light 

traversing the media do not vanishS1,S3 and show a zero-crossing at the NOA resonance (unique 

wavelength position where 
f bk k )  and a sign reversal for the two enantiomers of the 

systemS1-S4 . This behaviour can be seen below in Figure S1b where R  is calculated as a 

function of the wavelength. Importantly, despite R  only accounting for the cascaded MChA 

effect in Figure S1, its wavelength dependence is qualitatively similar to the one numerically 

calculated for our ferromagnetic helical nanostructures (Figure 2b in the main text). This 

qualitative agreement occurs despite no assumptions are made for  ,   and/or   in our 

numerical simulations and demonstrates that the cascaded MChA effect is the mechanism 

giving rise to the measured R in our nanohelices (Figure 3b, main text).  

 

Case ii) 



A different scenario occurs when only the pure MChA effect is present ( 0;    = 0) in helical 

systems. We note that the pure MChA effect can be accounted for by the alteration of  (NOA) 

due to the presence of an external magnetic field the systemS4,S5: i.e.  ' cos     B . This 

implies that, up to a first approximation, the pure MChA effect in helical media is a direct 

consequence of perturbations to the helical pitchS1,S2,S4  p0 due to the presence of the external 

magnetic field B.  

In this case, the term 
2 4 cos / ma    B  does not exist (  =0), and Eq.S2 can be simplified 

to a biquadratic expression: 

4 2

1 3 0b a b a     (Eq. S3) 

Following Eq.S3, we first note that the remaining coefficients ( 1 3,a a ) containing the term

22 2 2 2' cos 2 cos       B B  do not simultaneously break parity and time reversal 

symmetry. Furthermore, the roots of Eq.S3 for  forward and backward propagation 
fk  and 

bk  

will only show a comparably small change in the absolute value of 2'  in this case, given by 

the third order term 2 B .This means that 
f bk k in this system up to a second order 

approximation, i.e. the system is reciprocal up to that order when 0;    = 0.  

Finally, we note that, first, contrary to the cascaded effect, reflectance ( )R  B  and  ( )R  B  

due to the pure effect are qualitatively similar to the one at zero field (0)R (see Figure S1c): 

they will only show a shift in wavelength due to the distortion of p0 in the presence of B. Second, 

the reflectance difference ( ) ( )R R R    B B  does not show a zero-crossing at the NOA 

resonance due to the pure effect (Figure S1d) as in the cascaded MChA. The absence of a zero-

crossing at the NOA due to the pure effect has been already experimentally seen in helical (and 

non-ferromagnetic) liquid crystalsS6.  



The magnitude of R  related to the pure effect contribution in these systems will thus depend 

on the degree of distortion of the helical pitch p0 by the external magnetic field in these systems. 

Being our nanohelices in a solid state, and having performed our magneto-optical 

measurements at low magnetic fields (< 0.4 T), the pitch our helices will not be severely 

modified and thus the contribution to the reflectance by the pure effect in our samples will be 

R ~ 0. We note that this fact is supported by the small magnetostriction effects observed in 

nickel at ~0.1T (~0.002%S7). Furthermore, this agrees with our numerical calculations (Fig.2, 

main text) not displaying the predicted features of the pure effect: the helical pitch was kept 

constant at p0 in all calculations (i.e. even in the presence of an external magnetic field).  

 

Case iii) 

Even if both cascaded and pure MChA effects are present in the system, one can show that the 

cascaded MChA effect dominates the reflectance of ferromagnetic helical nanostructures over 

the pure MChA effect. Regarding the dispersion relation, the term 
2a k in this case is 

proportional to ' B k  = cos B k + 
2 2cos B k . The first term is the 

origin of the cascaded MChA (case i) above); while the second term in this expression (term 

containing  ) is a new (third order) term which does not simultaneously break parity and time 

reversal symmetries. Moreover, since
2 2cos B k  does not break time reversal 

symmetry, this term does not contribute to the reflectance difference ( )R  B .   

Also, we note that the second order term cos B k   governs the magneto-optical 

response of helical nanostructures with respect to the third order term 
2 2cos B k . 

 



Finally, for completeness, we emphasize that the cascaded MChA effect can only be univocally 

detected in helical media in reflection but not in transmission: additional magneto-optical 

phenomena are predicted to occur in these systems in transmission if the constituting material 

has lossesS4 as in our case (nickel). This is also confirmed in our numerical calculations below, 

showing a clearly different dependence of the transmission difference T  on the wavelength 

  with respect to ( )R  (Figure 2 main text).  

 

  

 

Figure S1.  Reflectance difference calculation ( ) ( )R R R    B B  at an interface between 

vacuum and semi-infinite right-handed helical media with pitch p0 = 400 nm, 0.25m  and 

0.9   (same parameters as in Ref. S2), accounting for cascaded (a,b) and pure (c,d) MChA 

effects. a, Reflectance of helical media due to the cascaded MChA, depending on the 



wavelength λ in the absence (blue) and presence (red, black) of an external magnetic field B  

aligned to the helical axis. At zero field, we have considered right-handed circularly polarized 

light to calculate the R(0). From this graph, one can see that the NOA region in this system lies 

between 70 - 300 nm (around the wavelength 0~ mp   = 200 nm). In the presence of 

magnetic field, incident light considered in the calculations is linearly polarized along the x 

direction. For these calculations the value of the field is such that the MOA parameter  of the 

system is 0.25  B  or 0.25  B  (red and blue cases, respectively).   b, Calculated 

reflectance difference ( ) ( )R R R    B B  of the helical system extracted from panel a. A 

clear zero-crossing occurs within the NOA resonance of the system (non-shadowed part) at the 

NOA wavelength ~ 0 mp  =200 nm.  We only consider a semi-infinite helical medium for 

simplicity, however, similar behaviour occurs when considering a slab of helical mediaS2,S4. 

c, Reflectance of helical media due to the pure MChA depending on the wavelength λ in the 

absence (black) and presence (red, blue) of an external magnetic field B  aligned to the helical 

axis (accounted for as a 1% perturbation of the helical pitch p0). Here, we have considered right-

handed circularly polarized light to calculate these reflectances. d, Calculated reflectance 

difference ( ) ( )R R R    B B  of the helical system extracted from panel c. No zero-

crossing occurs within the NOA resonance of the system (non-shadowed part) when only 

accounting for the pure MChA. Finally, we note that more realistic perturbations of p0, such as 

the actual magnetostriction effects in nickel (0.002% at ~0.1TS7) would produce R ~ 0 in these 

helical systems.   

 

 

 

 



 

 

S2. Magnetic characterization of the samples under study 

 

 

 

Figure S2. Magnetic characterization of the samples under study. Magnetization curve 

with field applied parallel to the axis of the nanohelices shown in (Figure 1b) measured with 

a SQUID magnetometer. Their saturation for these samples is produced at an external field 

~0.4 T. The latter agrees with  an  increasing    observed in the magneto-optical response of 

our samples when increasing the external magnetic field below saturation  (Supplementary 

Note 4). 

 

 

S3. Simulated magneto-optical activity of nickel nanohelices in transmission  

Additional magnetochiral effects other than the cascaded effect  may occur in 

transmissionS1,S2,S4, so the transmission difference
11( ( ) ( )) (0)T T T
    B B B  in helical 



media normalized with respect to the magnetic field B and the transmission at zero field (0)T  

might i) have a different wavelength dependence from the one shown at normal reflection 

    and ii) have a different magnitude than    .  

Indeed, the calculated ( )   does not show any zero-crossing around the NOA resonance 

max (wavelength range 650 ± 25 nm, Figure S3) in clear contrast to the optical magneto-

chiral response calculated in normal reflection     (Figure 3b, main text). Instead, ( ) 

shows a maximum close to 
max in agreement with the fact that additional contributions other 

than the cascaded effect affect the transmission difference of this systemS4.  This is 

additionally confirmed by noticing that ( )   is ~10-4 T-1 , one order of magnitude larger than 

   .  

For completeness, we note that the MChA signal measured in transmission similar type of 

samplesS8 agrees well with our calculations: it does not show any zero-crossing close to the 

NOA maximum (650 ± 25 nm) and its magnitude is ~10-4 T-1,  too. Furthermore, the overall 

lineshape is similar ( )  . Slight differences between our calculated  (Figure  S3) and the 

measured MChA signal in transmission in Ref.S8  at different wavelengths are attributed to 

the considerable differences in the size of helices in both studies (our samples have a pitch of 

~320 nm, whereas samples in Ref. S8 have a pitch of ~50 nm). 



 

Figure S3. Calculated normalized MChA signal in transmission 

11( ( ) ( )) (0)T T T
    B B B  of both RH and LH helices plotted as a function of the laser 

wavelengths. In the former expression 1(0)    is the transmission signal at zero magnetic field. 

We note that this magneto-optical signal may contain, in principle, several MChA effectsS4, 

making thus the wavelength dependence of ( )   and that one for the cascaded MChA   

different. Indeed, contrary to    ,  no zero-crossing is observed within the NOA resonance 

range (650 ± 25 nm) in ( )  . 

 

 

 

 

 

 

 



S4. Variation of   with B  

 

Figure S4. Magnitude of   for the samples under study LH helices (red) and RH helices 

(black) for different external magnetic fields B at an excitation wavelength of 540 nm.   

increases linearly when increasing the external magnetic field B . We do not observe a 

saturation of the signal since the maximum magnetic field used in these measurements is 

below the saturation field of our samples (see Figure S2). 

 

 

 

 

 

 

 

 

 

 



S5. Magnetic optical activity of nickel nanohelices 

 

 

Figure S5. Measured MOA (magnetic circular dichroism MCD) of our samples extracted as 

the difference
RHCP LHCPR R   at an external magnetic field B = 0.375T  and different laser 

wavelengths. Measurements of MCD on our substrate (Ag thin film, grey) show a much smaller 

signal than the one of nickel nanohelices and nickel powder (blue), indicating that the MOA 

activity is indeed higher in ferromagnetic materials.  Not only that, our data also shows a larger 

MCD signal in our nanohelices than in (micron size) nickel (Ni) powder. This behaviour may 

be due to the plasmonic activity of Ni nanohelices in the measured wavelength rangeS9, 

situation already observed in other nanostructuresS10. Finally, we note that this signal manifests 

the MOA of the system, having thus an estimated normalized parameter  ~1×10-4 T-1. 

 

S6. Further description of the theoretical calculations 

We provide additional information regarding the finite-element simulations in this section. 

Figure S6 shows the simulation setup, implemented in Comsol Multiphysics 5.1, RF module. 

Figure S6a shows the full simulation area. The unit cell is a cuboid with sides equal to 200 nm 

(x and y directions) and 750 nm (z direction). A nickel helix with major radius 75 nm, minor 



radius 45 nm, pitch 300 nm, 1 turn, and rotated by 30 degrees with respect to the z axis, is 

placed in the unit cell (air), over a 250 nm-thick silver substrate described by its experimental 

dielectric functionS11 . A perfectly-matched layer (PML, 500 nm thick) boundary condition is 

used on top of the simulation area, while a scattering boundary condition is used below the Ag 

substrate. The system is illuminated by a port placed at the PML/air interface, either linearly 

or circularly polarized. Reflectance and transmittance spectra are calculated by integrating 

energy flow over the PML/air interface and the end face of the Ag substrate, respectively, as 

noted in Figure S6a. 

Since the dimensions of the helix in the x-y plane exceed the unit cell, it is necessary to split 

the helix into smaller parts, as shown in Figure S6b for a right-handed helix. Four helices are 

placed at the four corners of the unit cell, and the parts that lie outside the unit cell are then 

subtracted. This means that appropriate Floquet boundary conditions need to be applied to the 

faces of the helix that intersect the unit cell boundaries. The same procedure is followed for 

left-handed helices. 

For the transmittance simulations, the Ag substrate is replaced by a glass substrate with 

dielectric function equal to 2.1, followed by a 500 nm-thick PML. The transmittance 

integration then takes place at the glass/PML interface. 

 



 

Figure S6. a, full view of the simulation area. b Parts of 4 helices are used to reduce the lattice 

constant (i.e. separation between helices). 

 

Regarding the permittivity of Ni in the presence of a static magnetic field, we use the fitting to 

experimental data from Ref. S12. The permittivity tensor is related to the susceptibility tensor 

through 𝜀̅ = 1 + 𝜒̅, and it contains a retarded Drude contribution plus two Lorentzians for the 

diagonal elements, and a sum of Lorentzians for the non-diagonal elements, as follows (the 

magnetic field is assumed along the z direction): 

𝜒(𝜔) = (

𝜒xx 𝜒xy 0

𝜒yx 𝜒yy 0

0 0 𝜒zz

)   Eq. S4 

where 

𝜒xx = 𝜒yy = −
𝜔p
2(𝜔+i𝛾D)(1−i𝜔𝜏D)

𝜔[(𝜔+i𝛾D)2−ΩcD
2 ]

⏞            
retarded Drude

− ∑
ΔL𝑖𝜔L𝑖

2 (𝜔2+i𝜔𝛾L𝑖−𝜔L𝑖
2 )

(𝜔2+i𝜔𝛾L𝑖−𝜔L𝑖
2 )

2
−𝜔2Ωc𝑖

2

⏞            
Lorentzians

2
𝑖=1    Eq.S5 

 



𝜒xy = −𝜒yx =
i𝜔p
2ΩcD(1−i𝜔𝜏D)

𝜔[(𝜔+i𝛾D)2−Ω𝑐D
2 ]

⏞        
retarded Drude

− ∑
i ΔL𝑖𝜔L𝑖

2 𝜔Ωc𝑖

(𝜔2+i𝜔𝛾L𝑖−𝜔L𝑖
2 )

2
−𝜔2Ωc𝑖

2

⏞            
Lorentzians

2
𝑖=1    Eq.S6 

 

𝜒zz = −
𝜔p
2(1−i𝜔𝜏D)

𝜔(𝜔+i𝛾D)

⏞        
retarded Drude

+ ∑
ΔL𝑖𝜔L𝑖

2

(𝜔L𝑖
2 −i𝜔𝛾L𝑖−𝜔

2)

⏞        
Lorentzians

2
𝑖=1    Eq.S7 

The parameter values used areS13: 

ℏ𝜔p = 6.07 eV, ℏ𝛾D = 0.0305 eV, ℏ/𝜏D = 4.55 eV, and ℏΩcD = 0.0499 eV for the plasma 

frequency, the damping rate, the retardation time and the cyclotron frequency in the Drude 

model, respectively; 

ℏ𝜔L1 = 0.918 eV, ℏ𝛾L1 = 2.66 eV, ΔL1 = 93.1, and ℏΩcL2 = 0.0204 eV for the Lorentz 

frequency, the Lorentz damping rate, the oscillator strength and the cyclotron frequency in the 

first Lorentz model, respectively; 

ℏ𝜔L2 = 4.62 eV, ℏ𝛾L2 = 1.62 eV, ΔL2 = 2.32, and ℏΩcL2 = −0.0312 eV for the Lorentz 

frequency, the Lorentz damping rate, the oscillator strength and the cyclotron frequency in the 

second Lorentz model, respectively. 

We note that the cyclotron frequency ΩcD corresponds to a magnetic field B between 85 and 

95 T (through ΩcD =
𝑒

𝑚
𝐵 where −𝑒 is the electron charge and 𝑚 its effective mass), assuming 

an effective mass of about 1/5 to 1/4 the electron massS13,S14. We have used B = 90 T to 

normalize the calculated     and      (Figure 3, main text; and Figure S3). 
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