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Abstract

Luuk Coopmans

On the Control of Quantum Many-Body Systems

The ability to control and actively manipulate physical systems at a scale at which quan-
tum properties manifest themselves is crucial for the development of quantum technologies.
While, at present, it is possible to manufacture small-scale quantum devices, controlling quan-
tum systems that consist of many degrees of freedom remains a formidable task. In this thesis,
we look at the problem of stability and control of quantum information in complex quantum
many-body systems. We explore two key aspects of this.

The first deals with the manipulation of the information encoded in the degenerate ground-
state manifold of systems possessing topological quantum order (TQO). In particular, we ex-
ploit Differentiable Programming (∂P) and Natural Evolution Strategies (NES) for the optimal
transport of Majorana zero modes in topological p-wave superconductors. These machine
learning techniques uncover novel optimal control strategies for Majoranas that are robust
with respect to disorder or interactions. Furthermore, we show, using TQO, that topological
quantum memories are protected from dynamically generated phase errors caused by small,
interaction-driven, energy mismatches between bulk modes. This, in turn, can be used to
derive constraints on the bulk energy spectrum of a complex many-body system.

The second aspect concerns the problem of state transfer through a disordered many-body
spin chain. We show that ∂P can be efficiently combined with the other quantum control
techniques CRAB and shortcuts to adiabaticity. With this hybrid approach, we are able to
improve the speed limit for the optimal transport of magnons in a clean Heisenberg model.
In addition, in a disordered chain, perfect fidelity transport protocols can be obtained that
are robust against fixed, unwanted, realizations of the noise. The fact that this setup can be
implemented in a wide range of experimental platforms, makes our results relevant to real-
world quantum-state transfer applications.
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Chapter 1

Introduction

Devices that harness the laws of quantum mechanics are currently being explored as a way
to advance the field of information and communications technology. This technological revo-
lution opens up new opportunities for researchers across the whole scientific community [1].
This is because quantum devices make use of properties such as the superposition princi-
ple, entanglement and quantum parallelism [2], which give them a so-called quantum advan-
tage [3] and the potential to vastly outperform their classical counterparts. These advantages
can be exploited [4] in a wide range of applications, including the simulation of complex
many-body systems [5, 6], the improvement of artificial intelligence [7, 8], and also the en-
hancement of security systems with quantum cryptography [9, 10, 11].

One essential ingredient for the development of quantum technologies is the ability to ma-
nipulate and control physical systems at a scale at which quantum properties manifest them-
selves. This is also known as the area of quantum control. Standard experimental platforms
for this are superconducting circuits [12], trapped ions [13, 14, 15], and nitrogen-vacancy cen-
tres in diamond [16, 17]. These platforms encode qubits, the quantum equivalent of classical
bits, which can be manipulated by adjusting magnetic fields or laser pulses. One of the main
questions in quantum control is how the control fields need to be tuned in time in order to
realise a certain objective or task. This includes steering the qubit from one specific starting
state to the desired target state or stabilising the information encoded in a quantum memory.

However, finding the specific shapes of the protocols is a huge challenge in the field of
quantum control. In most cases, one not only needs to solve and have access to the full
microscopic dynamics of the system but also needs to optimise the control pulses, which
the dynamics implicitly depend on [18]. In addition, there are extra complications involved
when one tries to model real-world devices, which cannot be perfectly isolated from their
environment. Imperfections in the setup, noise sources nearby, and temperature fluctuations
lead to qubit errors and the decoherence of the information encoded within them [19, 20].

Despite these complications, there is by now a large set of different techniques and op-
timisation methods available to explore the complicated landscape of quantum control. This
includes techniques that have their roots in classical mechanics [18] and mathematical optimi-
sation [21]. For example, the extension of the calculus of variations by Lev Pontryagin [22].



2 Chapter 1. Introduction

This method has been applied in a few different quantum control settings, such as quan-
tum metrology [23] and variational quantum algorithms [24]. Another example is the now
widely known Monte Carlo, or simulated annealing method [25, 26], which has found numer-
ous applications in the optimisation of quantum systems. In addition, one can exploit tech-
niques specifically designed for quantum control. Most notably, the shortcut to adiabaticity
approaches, which have been successfully implemented in a range of different experimental
platforms [27].

In this same vein, a more recently proposed approach is to control quantum systems and
devices with Machine Learning (ML) techniques. In ML one trains a machine to perform a
certain task without giving it an explicit set of instructions. The machine either learns from its
past experiences, or from a set of examples (inputs and outputs) until it is able to do the task as
best as it possibly can. This approach has gained widespread attention due to breakthroughs
in natural language processing [28], computer vision [29], and genomics [30]. With respect to
quantum physics [31, 32], it has been used for the representation of quantum states [33], the
classification of phases of matter [34], and the enhancement of density functional theory [35],
to name just a few. For quantum control, a specific ML technique known as Reinforcement
Learning (RL) has been studied in great depth in a growing number of papers [36, 37, 38].
Here the control problem is formulated as a game that is played by an agent (machine) who,
after much trial and error, learns to maximise a reward that encodes the control objective.

Given their success, it is natural to try to apply these techniques to control quantum sys-
tems that consist of a large number of degrees of freedom. The study of such many-body
systems [39, 40] is becoming increasingly important, as the real-world quantum devices that
are being built grow ever larger [41]. In particular, to reach quantum supremacy, one needs
to have the ability to use devices composed of many, O(102), qubits [42]. However, on a
fundamental level, many properties of quantum many-body systems are not well understood.
Moreover, the simulation of them,1 required for the application of some the optimisation meth-
ods, is impossible with the current classical architectures. For these reasons, the control of
these systems remains a challenging and relatively unexplored field.2

In this thesis, we aim to further investigate this topic and look at the problem of stability
and control of quantum information in complex many-body systems. We will focus on two key
aspects of this. The first concerns the control of the information encoded in the ground state
of materials possessing topological quantum order (TQO). TQO is a special phase of matter
that cannot be described by Landau’s symmetry-breaking theory [43]. One of the main, and
earliest, examples of this is the Fractional Quantum Hall State [44, 45, 46, 47], which was
discovered experimentally in the early ’80s. However, the name, and mathematical definition,

1Consisting of at least O(102) qubits.
2We note that while ML has been successfully applied to some fundamental problems involving quantum

many-body systems [33], in the context of quantum control, most studies are concentrated on systems involving
up to a maximum of around 10 qubits.
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of topological order was formulated a few years later, by Wen, in the context of Chiral Spin
States [48].

About two decades ago, it was proposed to use these materials as a way to overcome the
problem of decoherence in the quest for practical quantum devices [49, 50]. This proposal for
topological quantum computation is based on the use of (non-abelian) anyons. Anyons are
special quasiparticle excitations with exotic braiding statistics, which can be found in systems
possessing the TQO property. Associated with the (non-abelian) anyons, these systems have
a (robust) ground-state degeneracy, which can be used to encode and manipulate quantum
information. The advantage of this scheme is that the anyonic quasiparticles can be moved
apart, such that the information is encoded non-locally (topologically), and hence protected
from local noise and error processes.

The particular topological system we will focus on is a one-dimensional p-wave super-
conductor [51]. This many-body system can be effectively realised in the laboratory, by
proximity coupling a conventional s-wave superconductor to a spin-orbit coupled semicon-
ducting nanowire [52, 53, 54, 55, 56].3 The specific anyonic quasiparticles in this model are
known as Majorana zero modes. We will investigate the optimal control of these anyons, by
utilising some of the ML optimisation methods described above. In addition, we will look
at the robustness of Majorana based topological quantum memories with respect to screened
electron-electron interactions. For this we make use of advanced tensor network simulation
techniques [59, 60, 61, 62].

The second key aspect of the control of quantum many-body systems which we consider
in this thesis is somewhat less esoteric and concerns the problem of state transfer through a
many-body spin chain. For this, we make use of the XXX-Heisenberg model [63], which, via
a Jordan-Wigner transformation, can also be interpreted as a fermionic many-body system.
This model can be realised in a wide range of experimental setups [64, 65, 66, 67], and is
often used to study magnetic properties, quantum phase transitions [68], and the spreading of
(quantum) correlations [69].

Our aim is to find optimal control protocols for the transport of a localised spin excita-
tion (Magnon) along the disordered Heisenberg spin chain. Similar to the Majorana control
problem, we will apply some of the ML optimisation methods. However, this time, we will
combine them with other approaches for quantum control, in particular the shortcuts to adi-
abaticity [27, 70]. This hybrid approach allows us to develop control protocols for quantum
state transfer, which can be potentially implemented in real-world versions of this complex
quantum many-body system. Our approach might be particularly relevant for the field of quan-
tum communication [71, 72], where one studies the transmission of quantum information over
large distances.

3However, we note that, while possible, the creation of these systems is extremely difficult in practice. In
particular, the search for anyons has been hampered by the presence of disorder and other imperfections in these
proximity-coupled setups [57, 58].
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To end this introduction, in the following section, we provide a detailed outline of all the
questions and problems we aim to address in this thesis.

1.1 Overview of the Thesis

Chapter 2: We will start the thesis by introducing the topic of quantum control and the (math-
ematical) formulation of the central problem. We will describe a simple example problem
involving a single qubit, for which we introduce some of the basics of quantum informa-
tion science and decoherence. Afterwards, we give an overview of the different traditional
control techniques, including shortcuts to adiabaticity, simulated annealing and Pontryagin’s
maximum principle. In the end, we will briefly introduce machine learning, in particular rein-
forcement learning, and discuss in detail the Differentiable Programming (∂P) paradigm and
the Natural Evolution Strategies (NES) algorithm. To make the discussion easier to follow,
we will apply some of these techniques to the single-qubit example and show that they are
able to come up with efficient control strategies.

Chapter 3: An introduction to the field of topological quantum computation and non-abelian
anyons will be given. This is followed by a discussion of the most promising experimental
material for the realisation, a topological p-wave superconductor. Afterwards, we will look at
the fundamental excitations of this system, in particular the Majorana zero modes. Lastly, we
will look at how to move the Majoranas by imposing and tuning an external potential profile.

Chapter 4: This chapter is based on the work published in Ref. [73], and looks at the control
of Majorana Zero modes with the machine learning algorithms ∂P and NES. Here, we will
first introduce four different Majorana motion control regimes, which connect with the critical
velocity and resonance timescale present within the system. Then, we will apply the ∂P and
NES optimisation algorithms in each of these four regimes and show that they are able to
come up with novel counterintuitive Majorana transport strategies. In the end, these strategies
will be analysed and their robustness with respect to disorder will be tested.

Chapter 5: We will introduce an interacting term in the p-wave model, and investigate its
effects on the stability and control of Majorana zero modes. First, we will show that the inter-
acting model inherits the TQO property from the non-interacting model, which implies that
the interacting ground state is still degenerate. Then, we show that in the interacting model
the ground-state degeneracy does not carry over to the excited states, and small bulk energy
splittings occur. Afterwards, we will numerically simulate this system and look at the robust-
ness of the Majorana transport strategies obtained in chapter 4. Finally, we show analytically
that the broken degeneracy between the excited states does not lead to any additional phase
error in interacting topological quantum memories. This result can then be used to derive
constraints on the many-body spectrum. Some of these results were published in Ref. [74]
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Chapter 6: Here, we will look at the optimal transport of magnons through a Heisenberg spin
chain. We will start by introducing this model and the optimal control optimisation problem.
We then show that a family of approximately perfect transport protocols can be obtained by
exploiting an inverse engineering method based on Lewis-Riesenfeld invariants. We combine
this analytical, shortcut to adiabaticity, method with ∂P to find the best protocol within this
family. In addition, we use another hybrid optimisation method in which we combine ∂P with
a Fourier Series ansatz. With this method, we show that we are able to improve the heuristic
speed limit for the Magnons in the clean spin chain. Lastly, we perform optimisations in the
disordered spin chain and show that for single fixed disorder patterns we are able to obtain
perfect transport protocols.

Chapter 7: We end the thesis by giving a conclusion and putting our results in a broader
context. In addition, we will give an overview of possible directions to explore for future
work.
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Chapter 2

Quantum Control and Techniques for
Numerical Optimisation

Various strategies and methods have been developed to control and manipulate quantum in-
formation encoded in a range of different experimental platforms. This includes, for example,
more traditional approaches such as the analytical optimal control method by Pontryagin [22]
or the numerical optimisation algorithm named after Krotov [75]. In addition, more recently,
novel methods for the control of quantum systems that make use of machine learning have
been introduced. These are largely based upon algorithms for Reinforcement Learning (RL)
in which an agent is trained by interacting with the problem environment such as in the Q-
learning [76] or the Policy Gradient algorithms [77]. In this chapter, we will review some of
these methods while providing a general introduction into the field of quantum control.

We have structured this chapter as follows. We begin by giving the necessary background
of optimal control theory and the formulation of the central problem. As a simple exam-
ple, we consider the control of a single qubit, which forms the fundamental building block
of many quantum devices. This example serves as warm-up exercise for the control of the
more complicated quantum many-body systems that we will encounter in the next chapters.
Afterwards, we first introduce the traditional quantum control methods in section 2.2, before
introducing the machine learning methods in section 2.3. In particular, we will discuss in
detail the paradigm of Differentiable Programming and the numerical optimisation technique
Natural Evolutionary Strategies, which form an important part of the rest of this thesis.

2.1 Introduction and Formulation of the Central Problem

Optimal control is a subfield of mathematical optimisation that aims to construct control
strategies for various systems and dynamical problems [18]. In its most generic and abstract
form, the optimal control problem is formulated via some objective function L(x, ẋ, t, θ) that
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depends on the system variable x ≡ x(θ, t), which depend on time t and the control param-
eters θ1, together with a possible set of boundary (initial) conditions {x0, xf}. The control
problem is said to be solved when a specific optimal protocol θopt is found that minimises
the objective function L. We will now discuss each of the elements in this generic control
problem in detail and show that quantum control problems are just a specific case of optimal
control theory.

Firstly, the parameters x that describe the state of the system to be controlled and its time
evolution ẋ are defined to satisfy some differential equation,2

ẋ = f(x, θ), (2.1)

that depends on the specific dynamical system under consideration. For example, when x
describes the position of a simple pendulum it could be Newton’s equations of motion, or, as
we will see below, when we look at a quantum system, x ≡ |ψ〉 and f is the Schrödinger
equation. A trajectory x(t) of the system that solves this differential equation always starts
in the initial configuration of the system x0 and, provided one is given, ends in the final
configuration xf . The ability to reconstruct this trajectory from experimental measurements3

is known as the observability of the control problem. Specifically, the control system is said
to be observable if we can reconstruct any particular initial condition x0 from a series of
measurements in a time interval [0, t] [18].

The second main ingredient of the generic control problem is the collection of control
parameters θ. The control parameters can be seen as the experimental control knobs, which
can be tuned in time by the controller of the system. For example, an experimentalist changing
a magnetic field or applying a driving force when the system is a pendulum. Importantly, in
this control setup the differential equation f depends directly on the parameters θ, which
therefore drastically influence the evolution of the system. The use of one particular control
θ1 can cause the system to follow a completely different trajectory x1(t) compared to the
trajectory x2(t) that results from a different control θ2 6= θ1.4 In this way the controller can
influence the evolution of the system and potentially steer it to the termination state one is
interested in.

An important concept related to this is the admissibility of the control protocol θ(t). More
precisely, the controller cannot arbitrarily tune the parameters θ, since one is limited by real-
world experimental constraints, such as finite rates of change or maximum amplitudes of the

1For simplicity we write the control parameter here as a single symbol θ. In general, it can represent a single
parameter, a vector, a matrix or even a tensor of control parameters. In addition, note that it is a function of time
t.

2In full generality it could also be a set of (un)coupled differential equations.
3Or via any other way.
4Think, for example, of the difference between applying a driving force to a pendulum in the direction of its

motion or applying a driving force against it.
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control fields. This limits the set of evolution trajectories, x(t), that the system can follow
and the system is potentially not able to access any arbitrary state x. This means that in some
cases a desired target state xT can not be obtained during the evolution no matter what control
is applied. In the control literature, this is known as the system not being controllable, as the
control problem can not be solved [78]. To step ahead and make a connection with some of
the concepts we will see later on in this thesis, speed limits, we note that the total evolution
time τ of the system severely restricts the set of possible states the system can access.

The final element of the control problem is the cost functional L in which the control
objective or the control task is encoded. In general, the objective function can be written as a
sum of three parts,

L =

∫ τ

0

L(x(t), θ(t), t)dt+ g(x(τ)) + p(θ). (2.2)

The first term, L, corresponds to the running payoff, which is integrated over time.5 The
second term, g, is the terminal loss, which only depends on the final state x(τ). The final term,
p, includes potential penalties on using certain control parameters.6 An example of the running
payoff is the amount of fuel used in the control problem of trying to land a spacecraft on the
moon [78]. In this particular problem, the terminal loss could be, for example, the height of
the spacecraft above the moon’s surface and p(θ) a constraint on the maximum acceleration
of the spacecraft. Similarly, for each particular control problem the specific contributions to
the objective function L need to be defined.7

The control objective is encoded in such a way that the higher the value of L the further
away the controller is from its goal. This means that the minimisation of L with respect to θ
is the mathematical formulation of the control problem. This can be written as

min
θ∈θad
L(θ), (2.3)

where θad are all admissible control protocols. The optimal control θopt that solves this min-
imisation problem is the protocol that satisfies

L(θopt) < L(θnopt). (2.4)

Here, θnopt are all the parameterisations of the control that are not optimal θnopt 6= θopt. Note
that within this condition for optimality we can have multiple optimal protocols θopt 6= θ′opt

with L(θopt) = L(θ′opt) < L(θnopt).

5Note that L can depend on the derivative ẋ. However, the differential equation Eq. 2.1 can be used to write
this a function of x.

6Such as excessively large fields. Note that this term is, in the literature, sometimes incorporated into the
definition of L.

7In this thesis we will mainly concern ourselves with objective functions that only depend on the terminal
state g(x(τ)). However, the methods that we use and introduce below can be applied to the most generic cost
function, which includes a running payoff or a penalty term as well.
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(a) (b)

Convex Non-Convex

FIGURE 2.1: One-dimensional example of a convex L1(θ) (a) versus a non-convex L2(θ) (b) opti-
misation problem. For problem (a) any line connecting two arbitrary controls θ1 and θ2 is always
above the graph while for problem (b) there are controls θ1 and θ2 for which the connecting line lies
under the graph as indicated by the black dashed lines. In (a) we only have one minimum which is
the global minimum (black dot) whereas in (b) we have a suboptimal local minimum together with a
global minimum (black dot). Applying gradient descent (GD) to problem (a) will always converge to
the global minimum no matter where is started from (red arrows). Applying GD to (b), however, is
completely different and might not converge to the optimum (green arrow) depending on where one
starts the optimisation from.

An important aspect of this mathematical minimisation problem is the shape of the control
landscape8 L(θ). In particular, whether the control landscape is convex or not, as shown for
a one-dimensional example in Fig. 2.1. We say L(θ) is convex, if for all possible controls θ1,
θ2, and all λ ∈ [0, 1], we have

L(λθ1 + (1− λ)θ2) ≤ λL(θ1) + (1− λ)L(θ2) (2.5)

Geometrically this means that for a convex landscape L(θ) any line between two different
controls θ1 and θ2 is above the graph L(θ) [Fig. 2.1 (a)], while for a non-convex landscape
one can pick controls connected by a line that lies under the graph [Fig. 2.1 (b)]. Another way
to investigate if L(θ) is convex is by checking if d2L

dθ2
≥ 0.9

The convexity of L(θ) is related to the type and number of extrema in the control land-
scape. Crucially, for a convex L(θ) we have only one global minimum, which means that we
can find the optimal control10 by solving the equation

dL
dθ

∣∣∣∣
θopt

= 0. (2.6)

For non-convex landscapes, we have several extrema and, hence, several solutions of this first
derivative condition. However, only one of these is the global optimum. In other words, a

8We say landscape since θ can be multidimensional.
9Which generalises to the Hessian for a multidimensional θ.

10To keep the discussion simple we will focus on the case in which all possible θ are admissible.
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non-convex optimisation problem has a rough control landscape L(θ) with possibly many
suboptimal minima, whereas a convex optimisation problem has only one optimal minimum.
Identifying these convexity properties of the optimal control problem is important for deter-
mining which optimisation techniques to use.11

So far the discussion has been completely general and it applies to any optimal control
optimisation problem. Practical examples include minimising the amount of fuel used when
trying to land a spacecraft on the moon (described above) or balancing production against
consumption in a food factory. Importantly, the generality of this formulation allows us to
fit quantum control problems within this framework as well. In this case, the system to be
controlled is a quantum system and its state x is described by the wave function |ψ(θ, t)〉 or the
density matrix ρ(θ, t). Typically the corresponding differential equation f is the Schrödinger
equation,12

i
∂

∂t
|ψ(θ, t)〉 = H(θ(t)) |ψ(θ, t)〉 , (2.7)

with Hamiltonian H(θ(t)) for a closed quantum system13 or the Lindblad equation14 for an
open quantum system. The control parameters θ are problem-specific, but in most cases are
again the experimental fields that can be applied to the setup. The objective function L has
the same form as before in Eq. 2.2 and depends on the specific quantum control task at hand.

Instead of setting up the quantum control problem and objective function L generally15

in the next subsection we will introduce a specific example of preparing a single qubit. This
will serve as a starter for the more complicated quantum many-body control problems in later
chapters. This example also allows us to introduce some of the basic concepts of quantum
information.

2.1.1 The Control of a Single Qubit

Quantum processors are devices designed to perform computations, i.e. transform given in-
puts into desired outputs. In these devices, information is encoded within basic units called
qubits, which are analogous to the logical bits in classical computers. In addition to the clas-
sical logical 0 and 1 states, qubits can also be in any linear combination of these due to the
superposition principle. This can be mathematically expressed as

|ψ〉 = α |0〉+ β |1〉 (2.8)

11For a more detailed mathematical discussion about convexity and optimisation we refer the reader to refer-
ence [79].

12We set ~ = 1 in this thesis.
13Or the Dirac equation when one is looking at relativistic systems.
14This equation will be discussed below.
15We could argue that the most general formulation is the formulation already given for the general optimal

control problem.
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where α and β are complex numbers that satisfy the normalisation condition |α|2 + |β|2 = 1.
The information encoded within these qubits can be manipulated with special quantum gates,
which each can be represented by a specific unitary matrix U that acts on the state |ψ〉 and
changes the numbers α and β in the superposition. At the end of a computation the qubit state
|ψ〉 is measured to determine the output.

An important (control) problem in this setup is finding the right set of unitary matrices U
that bring a qubit state from a specific initial state |ψ0〉 ≡ |ψ(0)〉 to a target state |ψτ 〉 after
some fixed termination time τ . A natural choice of the objective function for this task is the
state infidelity function, Iτ , defined as,

Iτ ≡ 1−Fτ = 1− | 〈ψτ |U(τ) |ψ0〉 |2, (2.9)

where
U(τ) = T e−i

∫ τ
0 H(θ(t))dt (2.10)

is now the time-ordered unitary operator that solves the time-dependent Schrödinger Equa-
tion (2.7. H is the Hamiltonian of the system, which depends on the control parameters θ.
This infidelity measure is exactly zero when the target state is reached and is exactly one when
it is orthogonal to it. Minimising Iτ thus corresponds to maximising the overlap between the
time evolved state |ψ(τ)〉 and the desired target state |ψτ 〉.

The form of H(θ) depends on the specific experimental platform in which the qubit is
realised. There are various platforms for this, for example in the next chapter we will look at
topological qubits realised in the low energies degrees of freedom of a complex many-body
system. For the moment we will focus on a ”simple” single spin-1/2 system in an external
magnetic field as shown schematically in Fig. 2.2. The Hamiltonian for this quantum setup is
given by

H [θ(t)] = θx(t)σ
x + θy(t)σ

y + θz(t)σ
z, (2.11)

where σi for i = x, y, z are the Pauli spin matrices and the control field is the (three-
dimensional) external magnetic field θ(t) ≡ [θx(t), θy(t), θz(t)]. The objective of the con-
troller is to change this magnetic field θ(t) in such a way that an initial state |ψ0〉 on the
Bloch sphere (Fig. 2.2) is rotated over time to the target state |ψτ 〉. When we fix θz(t) = 0

and θy(t) = 1 this setup describes a single tranverse-field Ising spin system, which is often re-
ferred to as the two-level system. This system is a paradigmatic example for many phenomena
in condensed matter physics and its control has been extensively studied [80, 81].

In a real-world setup, there is always some additional complication in this quantum con-
trol problem due to an unavoidable coupling with the environment. Noise, such as external
magnetic or electric fields from sources nearby the setup, can easily corrupt the setup, and
hence the control process of the qubit. In quantum information, this is known as a decoher-
ence process in which the information encoded in the qubit gets erased over time due to the
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Noisy Environment
Control Field

Quantum System

FIGURE 2.2: Basic example of quantum control. A single qubit is depicted by the Bloch sphere and
manipulated by a control field θ(t) in such a way that the qubit state |ψ(t)〉 rotates from an initial state,
here |0〉, to some target state (not specified here). An additional challenge in a real-world experimental
setup, like an Ising spin, is that it lives in a noisy environment (red waves).

noise. One way to include such noisy effects in the dynamics is to model the entire setup as a
(dissipative) Lindblad system. Here the control differential equation, f , becomes the Lindblad
equation

d

dt
ρ(θ, t) = −i[H(θ(t)), ρ(θ, t)] +

N2−1∑
k=1

γk

[
Akρ(θ, t)A†k −

1

2
A†kAkρ(θ, t),−1

2
ρ(θ, t)A†kAk

]
,

(2.12)
where the Ak are the specific dissipation operators [20]. In this case, one can again choose a
fidelity measure for the objective function L if one is interested in quantum state preparation.
In addition, one can also look at objective functions that include a running payoff such as the
integrated heating rate, see e.g. reference [82].

2.2 Traditional Methods for Quantum Control

To solve the optimal control problem and minimise L with respect to θ a range of different
techniques are available. In this section, we introduce some of the traditional methods for
quantum control that we will use later on in the thesis. Specifically, we focus on Pontryagin’s
principle, shortcuts to adiabaticity and some methods for numerical optimisation such as sim-
ulated annealing. We have termed the combined group of these methods traditional methods
for quantum control to distinguish them from the different group of machine-learning-based
approaches, but this is totally up to someone’s own interpretation.16 We will apply some of
the techniques to the single-qubit problem to show how they perform in practice.

16One could argue for example that the machine learning methods we use are just a form of the general
methods for functional minimisation.
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2.2.1 Pontryagin’s Principle and Bang-Bang Protocols

The first method we discuss is Pontryagin’s maximum principle [22] that can be seen as a
generalisation of the calculus of variations applied to the control functional L. Lev Pontryagin
was one of the first to recognise that the same methods for minimising functionals in classical
mechanics can be applied to control problems to obtain optimal control pulses. For this reason,
Pontryagin is often regarded as one of the founding fathers of optimal control theory.17

To make the analogy with classical mechanics clear we consider for the moment the cost
functional L in Eq. (2.2) that only depends on the running payoff.18 We can recognise that this
functional has the form of the action in classical physics, namely, it is an integral over some
Lagrangian, L(x, θ(t)), t). However, a crucial difference is that we now have the dependence
on the control parameters θ(t) which vary with time, whereas in classical physics this is
usually some fixed setup parameter. Furthermore, we also require the system to satisfy the
differential equation ẋ = f(x, θ, t), which we can add in by a Lagrange multiplier p(t) [18].
This results in the so-called augmented Lagrangian,

La(x, p, θ(t), t) = L(x, θ(t), t) + p(t) [ẋ− f(x, θ(t), t)] , (2.13)

where p(t) is sometimes referred to as the costate. Here, p(t) can be seen as being a conjugate
momentum. This means that by applying a Legendre transform H =

∑
i q̇i

∂La
∂q̇i
− La we can

form the control Hamiltonian

H(x, p, θ(t), t) = p(t) [f(x, θ(t), t)]− L(x, ẋ, θ(t), t). (2.14)

In this way, we have cast the optimal control problem in the form of a (classical) Hamil-
tonian. We can proceed to minimise by applying the calculus of variations,19 which results in
the following Hamilton’s equations for the optimal protocol θ∗(t) ≡ θopt(t),

ẋ∗ =
∂H

∂p
(x∗, θ∗(t), p∗, t), (2.15)

ṗ∗ = −∂H
∂x

(x∗, θ∗(t), p∗, t), (2.16)

∂H

∂θ
(x∗, θ∗(t), p∗, t) = 0, (2.17)

in full analogy with classical mechanics. Note that the first equation is just the differential
equation of the system itself that we added in by the Lagrange multiplier. The second equation

17Fun fact: he was deriving methods to solve how to control rockets during the early days of the cold war.
18We note that we can always write the termination cost as an integral as well if it is a differentiable function

of the termination time.
19The precise calculation is long but straightforward and can be found in [18].
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is known as the costate equation. Both these need to be solved before the control Hamiltonian
Eq. (2.17) can be minimised to find the optimum.

Importantly, these equations are only true for optimisation problems where there are no
additional constraints on the possible control protocols θ(t). As discussed before, in a real-
world setup there might be only a limited set of admissible protocols θad(t). Pontryagin was
able to derive a similar set of equations that specifically deals with this scenario. In this case,
Eq. (2.17) gets changed into

H(x∗, θ∗(t), p∗, t) = maxθad(t)H(x∗, θ(t), p∗, t), (2.18)

which is nowadays regarded as Pontryagin’s maximum (minimum) principle.20

The maximum principle provides a necessary set of equations of motion that the optimal
protocol θopt needs to fulfil. Solving these equations, however, or even writing them down is
often a very hard task, strongly depending on the problem at hand. Nevertheless, examining
the form of the control Hamiltonian, without solving the equations, can already give some
important insights in the form of the optimal control. An important example of this is for
control Hamiltonians that are linear in the control parameter H(θ) ∼ θ. If the admissible
protocols are bounded θad ∈ [θmin, θmax], we find by applying Eq. (2.18) that the optimal
protocol θopt(t) has at each instance in time t either the value θopt(t) = θmax or the value
θopt(t) = θmin. This special type of control protocol is called a bang-bang protocol and an
example is shown in Fig. 2.3 (a).

While Pontryagin’s principle was originally formulated for classical control problems,
it also applies to quantum control problems. In particular, it was recently shown in refer-
ences [24, 83] that physical quantum Hamiltonians,H, linear in the control can be transformed
into classical control Hamiltonians H linear in the control. This means that quantum control
problems with a Hamiltonian linear in the control have bang-bang protocols as optimum. For
example, for the single-qubit control problem as introduced before, which is linear in the mag-
netic control field θ(t), we expect optimal bang-bang protocols. This result is quite powerful,
since it dramatically restricts the search space for the possible optimal protocols.21 This is
particularly relevant for some of the numerical optimisation methods for quantum control as
we will see below.

2.2.2 Shortcuts to Adiabaticity

In its original formulation by Born and Fock [84] the adiabatic theorem can be stated as fol-
lows; a quantum system remains in its instantaneous eigenstate if the change in a parameter

20The proof for this is involved and we refer the reader to reference [18] for a heuristic discussion or to
Pontryagin’s book [22] for the full proof.

21The search space is still exponentially large in the time length of the individual bangs.
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(a) (b)

FIGURE 2.3: (a) An example of a bang-bang control protocol for the control parameter θx. In this
type of protocol at each time θx only takes one of the two extremal values, i.e. θx(t) = θmax = 2 or
θx(t) = θmin = −2. This particular example protocol was obtained with a SA search of the single
Ising spin control problem with magnetic field θx and termination time τ = 1. (b) Optimised target
state fidelity Fτ of the single Ising spin control problem as a function of the termination time τ . We
compare the differentiable programming (∂P) method to a SA search and observe that they give the
same results. For termination times τ > τ∗ ≈ 2.5 a perfect fidelity can be reached. This defines the
speed limit for this control problem. The SA optimisations were run for 104 update steps and the ∂P
method in combination with gradient descent for 200 update steps with a learning rate α = 10.

θ(t) of the Hamiltonian is slow enough and there is a gap between the corresponding eigen-
value and the rest of the spectrum. Mathematically this can be expressed as

T e−i
∫ t
0 H(θ(s))ds

∣∣ψj0〉 ≈ ∣∣ψjt 〉 (2.19)

for a true adiabatic process in which
∣∣ψj0〉 is the j-th eigenstate ofH(0) and

∣∣ψjt 〉 the eigenstate
ofH(t) for all times t ∈ [0, τ ]. The condition under which this approximation is justified [85]
is inversely proportional to the spectral gaps and hence the time of an adiabatic process will
diverge when these become close to zero. Practically speaking this means that adiabatically
tuning the Hamiltonian is not always a successful control strategy due to the fact that the
environment now has an infinite amount of time to decohere and interact with the system.

To overcome this issue physicists started exploring other faster methods, which are now
known under the name of shortcuts to adiabaticity (STA) [27]. In these methods, the specific
evolution of the state at intermediate times, between the initial and termination time, is less
relevant as long as the desired final instantaneous eigenstate of H(τ) is reached. This means
that the system at intermediate times is not necessarily following an adiabatic path and can be
in a completely different state than the instantaneous eigenstate. It turns out that, in this way,
strategies can be developed that can be implemented over much shorter timescales, while still
reaching the target state perfectly.

One method for this is counterdiabatic driving [86, 87], where a specific counterdiabatic
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Hamiltonian Hcd(t) is imposed on top of the original Hamiltonian H0(t) that one tries to con-
trol. The purpose of this additional term is to suppress all unwanted nonadiabatic excitations
such that the system is always in an instantaneous eigenstate of H0. However, this often leads
to nonlocal and possibly inadmissible controls and moreover it is extremely hard to find the
form of Hcd(t) for many-body systems. This is because the construction of Hcd(t) involves
the eigenvectors of H0, which are nontrivial to find for many-body systems. For a more de-
tailed review of counterdiabatic driving and a discussion of how to overcome some of these
issues, we refer the reader to [88, 27].

Another shortcut method designed for the same purpose is based on Lewis-Riesenfeld
invariants [89, 90, 27] and is also known as inverse engineering. A Lewis-Riesenfeld or
dynamical invariant is an observable that remains invariant during an arbitrary evolution of
the system |ψ(t)〉 with Hamiltonian H(t). More formally, it is a hermitian operator I(t)

which satisfies the equation22

∂I(t)

∂t
+ i[H(t), I(t)] = 0. (2.20)

It can be shown that any arbitrary solution |ψ(t)〉 of the Schrödinger equation can be expanded
in the eigenstates |φj(t)〉 of the invariant I(t) as

|ψ(t)〉 =
∑
j

aje
iγj(t) |φj(t)〉 , (2.21)

in which the γj(t) are the so-called Lewis-Riesenfeld phases given by

γ(t) =

∫ t

0

〈φj(s)| i
∂

∂s
−H(s) |φj(s)〉 ds (2.22)

and aj the time-independent expansion coefficients.
This invariant and the knowledge of its eigenstates can be used to inverse engineer the

Hamiltonian H(t) such that an initial eigenstate |ψ0〉 is driven to the target eigenstate |ψτ 〉 in
arbitrary short times. The trick is to always remain in the instantaneous eigenstates of I(t),
which means we use the unitary evolution operator

U(t) =
∑
j

eiγj(t) |φj(t)〉 〈φj(0)| . (2.23)

The Hamiltonian can then be found by inverting the equation iU̇ = H(t)U resulting in

H(t) = iU̇U †. (2.24)

22Note that this is just the time evolution equation in the Heisenberg picture with dI/dt = 0.
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Importantly we still need to apply the boundary conditions [I(0), H(0)] and [I(τ), H(τ)] to
find the H(t) that brings the initial state to the target.

This method to inverse engineer the Hamiltonian and hence the control parameters θ(t)
is fully dependent on there being a dynamical invariant for the quantum system one is trying
to control. For the control of a single qubit the invariant and solution can be found in refer-
ence [91]. For many-body systems, in contrast, it is much harder to find a dynamical invariant.
For example, for the topological system that we will look at in the next chapter it is unclear
if such an invariant exists. In chapter 6 we will look, however, at a quantum many-body sys-
tem that can be (approximately) mapped to a single-particle system. The known invariant of
the single-particle system can then be exploited to derive approximate STA solutions for the
many-body system.

2.2.3 Numerical Techniques

Pontryagin’s principle and the STA methods largely depend on the ability to solve the system
(eigenstates) or Hamilton’s control equations. In a lot of cases, this is not possible or at least
very hard, so one needs to resort to numerical methods for the minimisation of the objective
function L. For this, there is a whole zoo of mathematical algorithms available [92] and here
we will just review two of them that can be applied to arbitrary quantum control problems.

Simulated Annealing

One of the most widely used algorithms for optimisation problems is simulated annealing
(SA). This method is based on the Metropolis-Hastings Monte Carlo algorithm [25] and was
originally pioneered in a few different (independent) studies [93, 26, 94]. Today it is applied
to tackle a broad range of problems [95] within and also outside Physics. There are several
formulations of SA but the one that we use here is based on a randomised (stochastic) search
of the cost landscape, L(θ). In our optimal control context this means we start from some
initial configuration for the control ~θ = (θ1, ...θn), which we assume to be a vector of in total
n individual parameters θi. In the next step we randomly select an individual parameter θi and
update it according to

θj+1
i = θji ±∆θi (2.25)

in which ∆θi is some small finite element. We evaluate the cost, L(θj+1
i ), and accept the

update with a probability
PSA = e−L(θj+1

i )/TSA . (2.26)

TSA is the so-called annealing temperature, which is slowly cooled down to zero while we
iteratively update according to Eq. (2.25). Once the annealing temperature is zero or the
cost L does not change anymore the process is said to be converged and the optimisation
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completed. Due to the stochastic component, the process is often restarted a few times to
ensure a minimum is reached.

The idea behind this algorithm is that during the optimisation it stochastically explores a
large part of the cost landscape, L(θ), and finally terminates approximately near the global
minimum. However, a drawback is that the search can be exhaustive due to the large family
of possible control protocols θ(t) or a computationally expensive computation of the cost. In
this case, it is helpful to reduce the size of the search space by restricting it to a preconditioned
set of protocols, such as the bang-bang protocols. We will now exemplify this method with
the single-qubit control problem.

We focus on the Ising spin case23 in which we have a single time-dependent control field
θx(t). We discretise this field into n = τ/∆t individual time steps (bins) of time ∆t giving
~θ = (θ1, ..., θn) with θi ≡ θx(i∆t). We wish to start from the initial ground state |ψ0(θx = 2)〉
of H(θx = 2) in Eq. (2.11) and end up in the ground state |ψ0(θx = −2)〉 of H(θx = −2).
The objective function is then given by the infidelity L = Iτ of Eq. (2.9). We can compute
this numerically by diagonalising and exponentiating the Hamiltonian H(θx(t)). Since the
Hamiltonian is linear in θx(t) we know from Pontryagin’s principle that the optimal control
protocols are of the bang-bang form, θx(t) = θmax or θx(t) = θmin for all times t. For this
we assume that there is a maximum and minimum amplitude of the magnetic field, which we
set to θmax = 2 and θmin = −2. This means that for the SA algorithm we can set ∆θi = 4

in Eq. (2.25), randomly select a time bin θji and update according to θji = θmax 7→ θmin or
θji = θmin 7→ θmax, i.e. switch the field. We note that while this bang-bang search space is
small compared to a continuous θx(t) search space, it is still exponential in the number of time
bins n and the search can be slow.

In Fig. 2.3 (b) we show the final target state fidelity Fτ obtained with this SA search for
a range of different termination times τ . We see that from approximately τ ≈ 2.5 ≡ τ ∗

the method is able obtain protocols that reach the target state perfectly Fτ = 1. This means
that for times smaller than τ ∗ the single-qubit system is not controllable since the optimal
control problem can not be solved.24 This is because the system has not enough time to
evolve into the target state for these small termination times no matter what protocol is used.
The time τ ∗, therefore, defines a speed limit for this system as is discussed in more detail
in references [80, 36]. As our only aim is to show how the SA method can be used to search
for optimal control protocols we will leave the discussion here and refer the interested reader
to these other studies mentioned above.

23Recall that for the Ising spin the magnetic fields in the y and z directions are fixed to be θy(t) = 1 and
θz(t) = 0.

24We verify this with a different optimisation method below and this also agrees with the results found in [36].
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Chopped Random Basis

Another numerical optimisation method that can be applied to quantum control problems is
the chopped random basis (CRAB) algorithm [96, 97].25 In CRAB one reduces the number of
control parameters θi, while still being able to explore a large part of the generic search space.
This is done by using a complete random basis of functions as ansatz for the control protocols
θ(t). The most typical example is a Fourier series ansatz,

θ(t) = b(t)
N∑
i=1

Ai sinωit+Bi cosωit, (2.27)

in which b(t) imposes the boundary conditions and the Fourier parameters Ai, Bi and ωi be-
come the new control parameters. The number of parameters can now be reduced to be smaller
than n by choosing (chopping) N < 3n. Moreover, in most cases, the frequencies are chosen
as a fixed set ωi = 2πi/τ + δω where δω is some random number. This means that one now
only needs to optimise over 2N parameters, which is a large reduction and can lead to quicker
convergence to the minimum of L.

The Fourier parameters can be optimised with numerical algorithms such as the SA dis-
cussed above. Another method that is often used for this is Nelder-Mead, which is based on
simplices of test points of the objective function [98, 99]. Both these methods do not make
use of any gradient signal dL

dθ
, however, which means that they can be slow compared to gra-

dient based numerical methods for quantum control such as GRAPE [100] and Krotov [75].
To apply gradient based methods one needs to obtain a gradient signal, which typically is
computed analytically or approximated numerically. In the Machine Learning community,
a different efficient way of computing derivatives has been known for a long time, which
is known as Differentiable Programming. We will introduce this method and some gradient
based optimisation algorithms in detail in the next section.

2.3 Machine Learning for Quantum Control

In recent years machine learning (ML) techniques have been applied to solve all kinds of
optimisation problems in quantum physics, see [31, 32] for extensive reviews. Similar to
the traditional methods for quantum control the problems are defined by some generic cost
functional L that needs to be minimised. One particular ML technique for minimisation that
is also explored for optimal control problems is Reinforcement Learning (RL) [101]. Here
the machine is trained to perform the (control) task by reinforcing the information gained
from past experiences. In this section we will briefly introduce the RL approach for quantum
control and then focus on two specific optimisation methods to train the machine.

25In fact it is more of a randomised ansatz for the protocols than a full algorithm.
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Agent

Environment

FIGURE 2.4: Schematic of the generic reinforcement learning setup. At time t in the game, an agent
(robot) takes an action ati ∈ At that changes the state st ∈ St of the environment. Afterwards, the
agent receives a new observation Oti and possibly a reward rt. Based on this information the agent
then determines its next move at+1

i ∈ At+1. This cycle is repeated until the game is finished at t = τ
with total cumulative reward R =

∑
t γtrt. The aim of the agent is to choose the actions such that

R is maximised. In reference [36] it was shown that optimal quantum control problems, such as the
single-qubit example, can be formulated within this RL game paradigm.

2.3.1 Reinforcement Learning

Reinforcement learning has achieved significant success in the context of gameplay [102,
103]. In a standard RL game setting, there is a player (agent) that needs to achieve some goal
in a (game) environment and gets rewarded depending on how well it performs. During the
game, the agent interacts with the environment, which means the environment changes/evolves
over time. The agent is able to receive information of the state of the environment via obser-
vations, for example, the positions of individual pieces on a chessboard. Based on these
observations, and the reward, the agent makes a guess for the best next move. By playing a
game many times, and tracking its past experiences and rewards, the agent learns to optimise
its moves such that it maximises the chance to win the game (maximises the reward).

This setup is summarised schematically in Fig. 2.4 and can be formulated mathematically
as follows. The moves at times t in the game are known as actions ati

26 and the space of
all possible actions is denoted as At. We denote the state space of the environment by St

and observations of it by Ot
i . The, possibly cumulative, reward is given by R =

∑
t γtr

t in
which γt is a discount factor that determines the relative importance of near term versus long
term rewards rt. The optimisation task is to find a certain policy π(at) to select the individual
actions ati ∈ At that maximises R. Specific examples of this generic RL setup can be found
in [101].

The general RL problem formulation is closely related to the optimal control problem
formulation. A characterisation for this analogy is given by the dictionary in Table 2.1. Here

26Note that i labels the different types of actions and can be discrete (finite action space) or continuous (infinite
action space).
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Optimal (Quantum) Control Reinforcement learning
Objective Function L Cumulative Reward R
Control Parameters θ Actions ai
Optimal Control θopt Final Policy πfin

Controller (RL) Agent
System (ẋ = f(x, θ)) Environment (model)
Feedback/Measurement Observation

TABLE 2.1: Dictionary for the similarity between optimal control language and the reinforcement
learning game setting language.28 In this thesis we will sometimes use the RL and control formulations
interchangeably.

the objective function takes the role of the reward, the control parameters correspond to the
actions and the system becomes the environment. In reference [36] it was, for example, shown
that the single-qubit control problem27 can be fitted within the RL game setting. The specific
reward which the agent in this case needs to maximise is the target state fidelity R = Fτ . The
single-qubit system plays the role of the environment and the actions the agent is allowed to
take are manipulations of the value of the magnetic field ati ∼ θx(t). By playing this game the
agent then learns how to change the magnetic field such that the desired target state is reached.

Maximising the reward R by training the agent is not very different from optimising the
control functional L and similar techniques can be used. However, from the RL (and more
generally ML) literature, there are some additional methods available compared to the tradi-
tional control methods introduced before. These include, for example, policy gradients [77]
and the Watkins Q-learning algorithm [76]. Two specific (ML-inspired) algorithms, Differen-
tiable Programming and Natural Evolutionary strategies, will be used in the following chap-
ters to control quantum many-body systems. We will now give a general description of these
methods.

2.3.2 Differentiable Programming

Learning algorithms for the optimisation of objective functions or the training of RL agents
can be divided into gradient-based and gradient-free methods. For the gradient-based methods
one requires access to the gradient of the cost function with respect to the control parameters,
∂L
∂θ

. Differentiable Programming (∂P) [104, 105] is a special programming paradigm that
allows to compute exact derivatives of arbitrary cost functions efficiently without requiring
much implementation effort.29 In some situations ∂P is computationally much more efficient
than methods such as numerical differentiation or symbolic differentiation in Mathematica.

27And also the control of a few coupled qubits.
29Provided one makes use of a programming language that allows automatic differentiation such as JAX [106]

discussed below.
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This was exploited recently for the optimisation of tensor networks [107], Monte Carlo simu-
lations [108], and also to search for quantum control protocols [109, 38].

To compute derivatives ∂P makes use of the computational graph of a computer pro-
gramme. A computational graph is a visual representation of all the elementary functions
(primitives) f i in a computer programme that maps the input to the output. An example of
this is a programme that computes the loss function L(θ) = fn ◦fn−1 ◦ · · · ◦f 1(θ)30 as shown
in Fig. 2.5 (a). Here ◦ is the composition of two functions. In such a graph the edges repre-
sent the operations (functions) and the nodes the returned data types. The most fundamental
elementary operations are addition and multiplication of scalars. For practical considerations,
computational graphs also allow for some granularity in which higher-order primitives like
exponentiation or matrix operations are expressed as edges. Any computer programme can be
decomposed in this way and represented as a computational graph.

The derivative of a generic computational graph can then be obtained by applying the
chain rule. For a simple sequential graph this reads31

∂L
∂θi

=
∂L

∂fn−1

∂fn−1

∂fn−2
· · · ∂f

1

∂θi
(2.28)

for a particular input parameter θi that could be part of a vector ~θ = (θ1, ..., θN) of input
parameters. If all the elementary operations f j are differentiable and have known derivatives
∂fj

∂fi
with j > i, the total derivative can be found by recursively assembling them together.
In ∂P one distinguishes between two orderings of recursively evaluating the chain rule.

In the so-called forward-mode differentiation one traverses the computational graph in the
regular order of execution, i.e. from left to right [black arrows in Fig. 2.5 (a)]. The chain rule
is then assembled via

∂f j

∂θi
=

∂f j

∂f j−1

∂f j−1

∂θi
. (2.29)

A second method is reverse-mode differentiation32 in which one transverses the computational
graph from the output all the way back to the input [orange arrows in Fig. 2.5 (a), (b)]. Here
the chain rule is evaluated by recursively computing the so-called adjoint defined by

f̄ j = f̄ j+1∂f
j+1

∂f j
. (2.30)

in which f̄n = 1.
Whether to use forward-mode or reverse-mode differentiation depends on the specific

30Note that this equation only holds for sequential computational graphs in which all the functions are applied
in series.

31This can be generalised to non-sequential computational graphs like the graph in Fig. 2.5 (b).
32This generalises the notion of backpropagation for neural networks [110].
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(a)

(b)

(c)

FIGURE 2.5: (a) Example of a sequential computational graph for the evaluation of some loss function
L. The nodes represent data structures and the edges the evaluation of primitive functions fi. In
backward-mode ∂P one evaluates the gradient of L by traversing the graph from the right to the left
(orange arrows). At each step, the adjoints f̄i are evaluated and assembled together recursively to find
the total derivative ∂L

∂θ . (b) An example of a non-sequential computational graph. Here the application
of the primitives does not necessarily have to be done in series. The same forward and backward mode
differentiation techniques can be used for the evaluation of the gradient. (c) Comparison between the
gradient of the infidelity Iτ with respect to the magnetic control field θx obtained with differentiable
programming (∂P) and finite-difference. This gradient was evaluated for a constant magnetic field
θx(t) = −2.0.

problem at hand. When the number of output parameters is greater than the number of in-
put parameters it is computationally more efficient to use the forward mode [105]. However
in quantum control applications one usually has one scalar output and many, say N , input
parameters. For this type of problem reverse-mode differentiation is the most efficient since it
only requires evaluating the chain rule once compared toO(N) evaluations for forward-mode.
The highest computational efficiency that can be reached for any given gradient evaluation is
given by the Bauer-Strassen theorem [111]. This theorem states that the computational cost
of computing a function, together with its derivative, is upper bounded by three times the com-
putational complexity of the forward evaluation of the function. This gives a good benchmark
to test the computational performance of gradient evaluations.

Gradient Descent and Single Qubit Control

The gradient ∇~θL33 obtained with ∂P can be used to train the RL agent and minimise the
objective function L. A widely used algorithm for this in the machine learning community
(and also in the field of mathematical optimisation) is ’vanilla’ gradient descent. In gradient
descent, one steps down in the direction of the steepest descent, see e.g. the red arrows in
Fig. 2.1, until a local minimum (or saddle point) ∇~θL = 0 is reached. This has the following

33For generality we assume we have a vector of control parameters ~θ = (θ1, θ2, ..., θn) and hence ∇~θL =

( ∂L∂θ1 , ...,
∂L
∂θn

).
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iterative update rule for the control parameters

θji 7→ θj−1
i − α∂L

j−1

∂θi
, (2.31)

in which α is the so-called learning rate, which determines the size of the steps. For convex op-
timisation problems this update scheme, with appropriately chosen α, is expected to converge
monotonically towards the global minimum [79]. For non-convex optimisation landscapes,
this method could, however, get stuck in a sub-optimal local minimum. To circumvent this
drawback one can restart the optimisation from different initial configurations or use other
more elaborate update schemes such as the quasi-Newton method [92] or the optimiser with
the acronym Adam [112].

We demonstrate the power of this gradient based optimisation approach with the single
Ising spin control example. As before the objective function is the infidelity Iτ and we are
allowed to tune the magnetic field θx(t) in time. The programming code to compute Iτ in-
volves the diagonalisation and exponentiation of the Hamiltonian in Eq. (2.10) and matrix
multiplications for the overlap in Eq. (2.9). Each of these operations (primitives) is differen-
tiable [113] and we can apply ∂P to obtain dIτ

dθx
. In practice we make use of a programming

language that makes use of automatic differentiation (AD) such that we do not need to imple-
ment the derivatives of the primitives ourselves. The specific python library we use for this is
JAX [106], which has as additional advantage that the computations are automatically paral-
lelized and can be run on GPUs. The derivatives can then be obtained with a computational
time close to the Bauer-Strassen bound.34

To test that the code is working correctly we compare the ∂P derivatives with derivatives
obtained from the less efficient finite difference method. In this method, the derivatives are
approximated by taking a finite element ∆θ and using

dL
dθ

∣∣∣∣
θ0

≈ L(θ0 + ∆θ)− L(θ0 −∆θ)

2∆θ
. (2.32)

This is essentially the finite approximation of the definition of the real continuous derivative,
which is obtained in the limit ∆θ 7→ 0. In Fig. 2.5 (c) we give the results for this benchmark
test and we observe that the derivatives match.35 However, the finite difference derivative
calculation is much more demanding to compute when compared to ∂P, since the loss L is
evaluated 2N times with N being the number of discrete time steps. This advantage of ∂P
over the finite difference method is particularly relevant for calculating derivatives of control
problems involving many-body systems.

34Note however that we use a Trotter expansion for the unitary time evolution operator U(τ), which means
that the memory complexity grows with the number of discrete individual time steps in the evolution.

35Up to the finite precision of the finite difference method.
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To then solve the single Ising spin quantum control problem we use this derivative dIτ
dθx

in
combination with gradient descent on θx(t). Since ∂P is so efficient we can scan over a large
number of termination times τ . In Fig. 2.3 we show the results of these optimisations and
compare them to the infidelity values obtained earlier with the SA method. The Iτ values are
competitive and the same speed limit of about τ ∗ ≈ 2.5 is acquired. Although not shown here,
the optimal protocols obtained with ∂P are of the bang-bang form. This means that with ∂P
we are able to (independently) uncover the correct physical protocols. For ∂P this was done in
only 200 gradient descent update steps, while for SA 104 evaluations of the objective function
were required. This shows the potential of the ∂P gradient-based optimisation method for
quantum control problems.

2.3.3 Natural Evolution Strategies

Aside from gradient based-optimisation algorithms, there are also gradient-free optimisation
schemes to train the RL agent. These methods offer a way out in scenarios where no gradient
signal can be obtained. For instance, when the exact model (Hamiltonian) of the underlying
system is unknown. One of these methods is Natural Evolution Strategies (NES). Evolution
strategies is a family of blackbox optimisation techniques inspired by the process of natural
evolution that can be used to minimise arbitrary cost functions [114, 115]. In the context of
game play it was recently shown that NES can be used as an efficient alternative optimisation
approach compared to other reinforcement-learning methods [116]. For physics applications,
this method is, however, rather unexplored with only a limited number of studies [117, 118,
119].

The particular version of NES that we will use in this thesis to control quantum many-
body systems is shown schematically in Fig 2.6 and can be described as follows. One first
draws a set of sample parameters φj from a Gaussian distributionN (θ, σ2I) with mean θ and
diagonal covariance matrix Σ = σ2I . Here, θ, are the control parameters that we wish to
optimise and σ is a hyperparameter. The individual samples φj for j = 1, ..., npop are seen as
members of a population and each individual loss, L(φj) (their fitness), is evaluated. The goal
of the NES algorithm is to optimise the mean θ36 of the Gaussian distribution such that the
expectation value of the loss over the population,

Eφ∼N (θ,σ) [L(φ)] =

npop∑
j=1

pθ(φ
j)L(φj), (2.33)

36There are versions of the NES algorithm that also optimise the variance σ to increase the expectation value
of individual members in the population [115].
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(a) (b) (c)

'

FIGURE 2.6: Schematic of the Natural Evolution Strategies optimisation process. (a) In the j-th iter-
ation of the algorithm, samples for control parameters φji are drawn from a (multi-variate) Gaussian
distribution centred around θji with fixed standard deviation σ. (b) The mean θji of the Gaussian distri-
bution is updated until the optimum θ

opt
i is reached. (c) Depending on the specific NES algorithm, the

standard deviation is updated as well such that at the end the Gaussian becomes sharply peaked around
the optimum. In the ideal case this would approach a delta function.

is minimised. Here pθ(φ) is the probability for drawing φ from the Gaussian distribution.
This means that the NES algorithm can be seen as solving a Gaussian-blurred version of the
original control problem with objective L.

The minimisation is done by applying (stochastic) gradient descent

θ 7→ θ − α∇θEφ∼N (θ,σ2I) [L(φ)] (2.34)

to the parameter θ. The required gradient of the population is obtained by using the ’log-
likelihood-trick’ [115], which gives

∇θEφ∼N (θ,σ2I) [L(φ)] = ∇θ

npop∑
j=1

pθ(φ
j)L(φj), (2.35)

=

npop∑
j=1

pθ(φ
j)∇θlogpθ(φj)L(φj), (2.36)

=

npop∑
j=1

pθ(φ
j)

(φj − θ)
σ2

L(φj). (2.37)

Then by changing variables φj = θ + σεj , we arrive at

∇θEφ∼N (θ,σ2I) [L(φ)] =

npop∑
j=1

pI(ε
j)L(θ + σεj)εj/σ (2.38)

= Eε∼N (0,I) [L(θ + σε)ε/σ] . (2.39)

The gradient can thus be approximated by sampling the value of the objective L for perturbed
parameters θ + σε and no exact gradient evaluations need to be done. In practice, these
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evaluations can be done in parallel, which means that NES is very efficient.

2.4 Summary

In this chapter, we have introduced the general problem of quantum control and several meth-
ods to solve it. We started by giving the mathematical formulation of the optimal control
optimisation problem. We saw that the most important ingredient is the control functional L,
which needs to be minimized to find the optimal control protocols. We then looked at some
traditional methods for the minimisation of L. This includes analytical approaches such as
Pontryagin’s principle and the STA methods, and also the numerical optimisation schemes
SA and CRAB. We argue that the advantage of the numerical approaches is that they can be
applied to any arbitrary control problem. The analytical methods are often harder to apply
since they require specific knowledge, e.g. the eigenstates, of the system.

Afterwards, we showed how quantum control problems can be formulated in the language
of reinforcement learning. This means that some additional approaches from the field of
machine learning can also be applied to search for optimal control protocols. We looked at
two approaches in particular, Differentiable Programming and Natural Evolution Strategies.
We saw that ∂P has as advantage that it is really efficient if a gradient signal is available. NES,
while possibly less efficient, can be applied to problems where one does not have access to
the gradient.

As a demonstration, we successfully applied some of these methods to control a single
qubit. In the next chapters, we will investigate if they perform equally well for the control of
more complicated quantum many-body systems.
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Chapter 3

Topological Quantum Computation and
Majorana Zero Modes

To realise real-world quantum processing devices one needs to be able to physically build
qubits and have an experimental procedure to control and measure the quantum information
encoded within them. A whole array of different setups have been proposed for this task
ranging from trapped ions [13, 15] and cold atoms [120] to superconducting circuits [12] and
photonic devices [121]. One of the main challenges of these setups is that they are susceptible
to noise from the environment, as we briefly discussed, for example, in the last chapter for
the single Ising spin in a magnetic field. Decoherence can potentially make these devices
unworkable and quantum computations prone to errors.

About two decades ago, an alternative scheme based on topological materials that host
special quasiparticles called anyons [49] was proposed as a potential way to overcome this
challenge. In these topological schemes quantum information can be encoded non-locally,
a feature that makes it robust against local errors. A crucial property of these topological
systems is that they have a spectral gap between the ground and bulk states, which protects
from unwanted excitations. Despite this, finding real-world candidate materials that host (non-
abelian) anyons has turned out to be very hard [122, 50]. Furthermore, it is still an open
question what is the best way to control these systems.

In this chapter, we introduce some of the aspects of topological quantum many-body
physics. We first explain what anyons are, and then briefly review the theoretical proposal
for topological quantum computation. Afterwards, we will introduce a concrete candidate
material, the proximity-coupled superconductor, which hosts Majorana zero modes. These
quasiparticles are among the most promising types of (non-abelian) anyons to be realised in
experiments. We will discuss how to move these Majorana modes, an operation that is re-
quired to be able to perform computations with them. This material serves as a necessary
primer for later chapters, where we will look at the optimal control of these anyons and also
at possible internal sources of error induced by interactions.
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3.1 Quantum Computation by Anyons

Anyons are quasiparticle excitations with exotic braiding statistics that can be found in low di-
mensional condensed matter systems (see Fig. 3.1 a)), such as on the boundaries of proximity-
coupled superconductors [56] and fractional quantum hall systems [122]. A quasiparticle is
not a standard particle but can be seen as an effective particle that is obtained after dressing an
ordinary particle with effects and interactions from other particles in its surrounding environ-
ment [123]. For example an electron moving in a semiconductor can be described as a free
quasiparticle with a specific effective mass m∗ due to the effective potential from the band
structure.

L2

L1

T
im
e

(a) (b) (c)

FIGURE 3.1: a) Localised anyons numbered a1−4 are effective quasiparticles living in two dimensional
materials. Two times exchanging two anyons can be done by moving anyon a1 via the path (L1) around
anyon a4. Traversing the path (L2) on the other hand is equivalent to doing nothing. Local excitations
caused by perturbations (red arrow) need to travel throughout the system and reach other anyons before
causing an error. b) Braiding anyons in two dimensions can be used to perform quantum computation
where the braids and exchanges of the anyons (red an yellow strands) are used to implement the unitary
gate transformation Ui required for making the quantum circuit in c).

The low dimensionality makes that these special anyonic quasiparticles have nontrivial
exchange statistics. This can be seen from the fact that paths traced out by moving anyons in
two dimensions can not always be continuously deformed into one another, whereas in three
dimensions they can. For instance, in 3D the loop (L1) taken by anyon a1 in Fig. 3.1 (a) can
be lifted up and transformed into the loop (L2) without cutting through the other anyon a4.
In 2D this is not possible. This makes that twice exchanging a particle in 3D always leads to
the same state, since the paths can always be connected to the trivial path (no movement). In
2D the state does not necessarily come back to itself after two exchanges of two anyons. The
change of the wave function under n exchanges1 can be expressed as |ψ〉 7→ eiθn |ψ〉. When
θ = 0 (π) the particles are ordinary bosons (fermions) since the wave function only changes

1For simplicity we assume here that we only have two particles in our system described by the wave function
|ψ〉.
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by a sign. As such, in 3D we can only have bosons or fermions. When we have fractional
phases θ = π/m, the particles are Abelian anyons with m defining for the specific type of
anyon model. This also explains the name anyon [124], which means any angle θ.

These particular anyons are called Abelian since the order in which they are exchanged
does not matter, namely eiθ1eiθ2 |ψ〉 = eiθ2eiθ1 |ψ〉. In systems with a degenerate ground-state
space |ψ〉 = α |φ1〉+β |φ2〉, spanned by states |ψ1〉 and |ψ2〉, one can additionally have anyons
with non-abelian exchange statistics. In this case, the exchange of two (non-abelian) anyons
affects both the |φ1〉 and |φ2〉 states. The action of such an exchange on the wave function
|ψ〉 7→ Un |ψ〉 is then represented by a unitary matrix Un that rotates within the degenerate
subspace.2 As the unitary matrices Un and U ′n, corresponding to two different exchanges, do
not necessarily commute UnUn′ 6= Un′Un the exchange statistics are called non-abelian [50].

This property of exchanging non-abelian anyons means that they can be used as building
blocks for topological quantum computers [49]. The states |φ1〉 and |φ2〉 can be seen as being
the logical 0 and 1 qubit states and the physical braids (exchanges) of anyons represented by
the matrices Un act as the quantum gates, see Fig. 3.1 (c). For such a quantum computer
to work one needs to be able to make all the possible quantum gates that are needed for the
algorithms in universal quantum computation [125]. This means that for N qubits the braid
matrices Un need to span all representations of the group U(2N). The braid matrices of a few
anyon models, such as the so-called Fibonacci anyons [126, 127], satisfy this requirement
and hence can be used for universal quantum computation. The Majorana zero modes (Ising
anyons) that will be discussed below do not satisfy this property but, as we will see, can be
used as building blocks of a topological quantum memory.

To read the quantum information encoded in such topological qubits one can bring the
anyons together and fuse them to form other (composite) quasiparticles. For example, when
we fuse an abelian anyon with θ = π/m with another identical anyon with θ = π/m we get
a composite particle with θ′ = 2π/m. This means that, if m = 2, we will obtain an ordinary
fermion by combining two anyons. Computing the result of a fusion of two non-abelian
anyons is more difficult since now we can have multiple different fusion outcomes resulting
from the underlying non-abelian statistics.3 The specific quantum state |ψ〉 of the degenerate
ground-state manifold determines the particular fusion outcome. The fusion outcomes can
thus be used as a probe for the encoded quantum information. A more detailed discussion of
this can be found in references [50, 128].

The use of anyons for quantum computation compared to other schemes, such as super-
conducting circuits and ion traps, is beneficial in the light of different sources of decoherence
coming from the surrounding environment. The topological encoding of quantum information
in pairs of anyons is intrinsically protected from local error and noise processes; an excitation

2Note that in the (non-degenerate) Abelian case Un is a diagonal matrix.
3This can be seen since we are now looking for higher order representations of the non-abelian (braid) group

elements [50].
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occurring near one anyon needs to propagate throughout the system and reach another anyon
before it can cause an error as shown in Fig. 3.1 (a). Moreover, the degenerate ground-state
space is, as we will see later for a specific model, separated and protected by a robust (topo-
logical) energy gap from the excited states. In chapter 5 we will formally show that local
perturbations are not able to distinguish between the different states that span this ground-
state space (also known as topological order) and smooth adiabatic deformations of the states
(braiding of the anyons) can be done in a finite amount of time.

This robustness of quantum information makes that anyons have been extensively studied
in the last two decades for the use in (topological) quantum computers. Notably, last year
the fractional exchange statistics of Abelian anyons was measured in a collider of anyons in a
two dimensional electron gas [129] and also in a fractional quantum hall system [130]. Non-
abelian anyons, in contrast, required for universal quantum computation, have proven to be
very hard to find. One candidate are parafermions in a specific fractional quantum hall system
[131], but so far they have not been realised in experiments. A more promising candidate
are materials and devices based on topological superconductors. In these systems hints of the
existence of non-abelian Ising anyons (Majorana zero modes) have been found in 2012 [55].4

We will discuss these special superconductors in the next section.

3.2 Topological Superconductivity and Majorana Zero Modes

Topological superconductors are a special type of superconductors, which have nontrivial
topological bulk properties leading to the existence of non-abelian anyons at their boundaries.
One specific class is made by p-wave superconductors, which have gained interest in the last
years because of the possibility to realise them in real-world experimental setups. The non-
abelian quasiparticles in these systems are called Majorana zero modes because, as we will
see below, these modes have zero energy and their quasiparticle mode creation operators are
hermitian γ†j = γj .5 Associated to the zero-energy modes these systems have a degenerate
ground-state manifold that can be used to make a topological qubit.

In this section, we first introduce a toy-model, the Kitaev Chain, for these topological
superconductors and discuss in detail its topological properties together with the Majorana
zero modes. Then we will describe how this model can be effectively realised in proximity-
coupled superconductors and provide an update on its current experimental implementation.

4However, there is some controversy regarding some more recent experiments [57]. We will discuss some of
the experimental issues in the next section.

5Similar to Majorana particles known from high energy physics [132].
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3.2.1 The Kitaev Chain

The Kitaev chain is a lattice model introduced by Kitaev in 2001 [51], which in the continuum
and low energy limits describes a spinless one-dimensional p-wave superconductor.6 The
Hamiltonian of this one-dimensional tight-binding model is given by

H0 = −
N∑
x=1

[µ(x)−V (x)](c†xcx−1/2)−w
N−1∑
x=1

(c†xcx+1 +h.c)+
N−1∑
x=1

(∆xc
†
xc
†
x+1 +h.c.) (3.1)

in which cx (c†x) are the annihilation (creation) operators of electrons at the (discrete) posi-
tion x in the chain. These operators satisfy the fermionic anti-commutation relation given
by {c†i , cj} = δij and {ci, cj} = 0. In this Hamiltonian, µ(x) describes an onsite chemical
potential on which an external onsite potential V (x) can be superimposed. The next term
is the kinetic energy and accounts for hopping of particles between neighbouring sites with
probability amplitude w. The final term is the p-wave superconducting term with supercon-
ducting gap ∆x, which is included at a mean-field level [133, 134]. It describes a p-wave
superconductor since ∆x couples different lattice sites because the model is spinless.7

To investigate the topological properties of this model we first transform it to the so-called
Majorana basis, given by the 2N Hermitian Majorana operators

γ2x−1 = cx + c†x, γ2x =
cx − c†x

i
, (3.2)

which satisfy the Clifford algebra {γi, γj} = 2δij , γ = γ†. Since these operators are super-
positions of both a fermionic creation and a fermionic annihilation operator, Majoranas can
only be effectively realised as quasiparticles in systems that break parity conservation, e.g.
superconductors. Applying this transformation to Eq. (3.1) results in the Hamiltonian

H0 = − i
2

N∑
x=1

(µ(x)− V (x))γ2x−1γ2x + (w + ∆x)γ2xγ2x+1 + (−w + ∆x)γ2x−1γ2x+2. (3.3)

By using this construction, Kiteav realised that for certain model parameters and open bound-
ary conditions, the bulk of the model dimerises, while individual isolated Majoranas are resid-
ing at the edges (see Fig. 3.2). This phase of the Kitaev model is referred to as the topological

phase. When there are no isolated Majoranas the model is in the topologically trivial phase.
In order to characterise these two distinct topological phases and the exact topological

phase transition between them more precisely, we can look at the continuum Bogoliubov-de-
Gennes (BdG) representation (App. A) of this model and solve for the quasiparticle mode

6We note that this lattice model can also be obtained from a Jordan-Wigner transformation of the XYZ
Heisenberg spin chain, see App. B.

7Two Fermionic particles are needed for Cooper pairing.
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Trivial phase

Top. phase

Unpaired Majorana Unpaired Majorana

Paired Majoranas

FIGURE 3.2: The Kitaev Chain is a 1D lattice model ofN sites (grey disks). Each site can be occupied
or unoccupied by 2 Majorana modes (purple blobs), which together make up an ordinary fermion
(dashed line). In the topologically trivial phase (top row) all Majoranas pair together and no individual
Majoranas can be isolated. In the topological phase (bottom row) only the Majoranas in the bulk pair
together and individual unpaired Majoranas can be found at the edges (for a chain with open boundary
conditions). These unpaired Majorana modes can used to make a topological qubit (Eq. 3.7).

energies. The continuum BdG Hamiltonian in the momentum k representation (with periodic
boundary conditions) is given by

Hk =

(
k2

2m
− µ i∆k

−i∆k − k2

2m
+ µ

)
(3.4)

in which m is the mass of the electrons. The mass is related to the lattice hopping parameter
via w = 1/2ma2, where a is the lattice constant. Similarly, µx = µ + 2w + Vx and ∆ =

∆x/(2a) relate the lattice chemical potential and superconducting gap from Eq. (3.1) to their
corresponding continuum versions in Eq. (3.4). The BdG Hamiltonian can be diagonalised to
find the mode dispersion

ε±k = ±
√

(
k2

2m
− µ)2 + ∆2k2, (3.5)

which consists of two energy bands; one for the holes (negative energies) and one for the
particle modes (positive energy). We will denote the associated quasiparticle mode creation
and annihilation operators for energy εk as β†k and βk.

The topological phase transition can be found by solving for the parameters at which the
energy gap in the quasiparticle spectrum closes, namely when ε±k = 0 [135]. When ∆ = 0,
this leads to µ = |2w| (taking a = 1). The ∆ = 0 point separates the two distinct topological
phases, one of which, from the discussion above, has unpaired Majorana modes residing at the
edges. One way to distinguish between those phases, and characterise when Majoranas form,
is to use the bulk-boundary correspondence [123]. This correspondence relates properties
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from the bulk dispersion (closed system) to the existence of bound states. For this, one would
need to calculate a so-called winding number (in 2D it is called the Chern number) [123],
which gives for the Majorana chain an integer ν = 0 or ν = ±1 that labels the two distinct
phases (similar to characterising Chern classes).8 When this bulk index is ν = ±1, the model
is in the topological phase with Majorana modes residing at the edges. The details of this
derivation can be found in [123, 135].

Here, instead, we distinguish the two phases by looking at the energy spectrum for open
boundary conditions on the lattice (see Fig. 3.5 for the slightly more general proximity-
coupled superconductor). Since the Majorana operators γi are Hermitian, this means that
in this system with particle-hole symmetry the quasiparticle energies of unpaired Majorana
modes should have exactly zero energy εi = 0. For the Kitaev chain model this happens when
µ ≤ |2w|.

The wave function of the Majorana zero modes can be found by solving for the eigen-
vectors of the continuum Hamiltonian Eq. (3.4) with eigenvalue εk = 0, i.e. [Hk][Γ] = 0[Γ].
By taking the two-component spinor ansatz, Γ = [φ,−φ]T , and imposing open boundary
conditions this leads to the left boundary solution9

φ(x) ∝ e−x/ξ sin

(√
k2
F − 1/ξ2x

)
. (3.6)

Here we have defined the Fermi momentum kF =
√

2µm and correlation length ξ = 1/(∆m).
From this equation, we see that the Majorana mode is localised at the left edge with a decay
length equal to ξ and is Hermitian φ† = φ. In Fig. 3.5 (b) we plot this mode at the left edge
of the system (the p-wave superconducting wire).

To make a topological qubit from these localised Majorana modes we can use the associ-
ated degeneracy in the many-body spectrum. For a single qubit we require in total 4 Majorana
modes, which we will label by Γi for i = 1, 2, 3, 4.10 We first pair these Majoranas together
into two ordinary Dirac fermionic zero modes, βa/b0 = 1

2
(Γ1/3 + iΓ2/4). We can then define

8This Z2 integer labelling can also be derived from the fact that the Hamiltonian in Eq. 3.4 has particle-hole
and chiral symmetry which puts it in class DIII of the table of topological insulators and superconductors [136,
137].

9Note that we get two solutions, one on the right boundary of the system and one on the left.
10How one can realise 4 localised Majorana modes in a network of Kitaev chains will be described below in

section 3.3.
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logical zero |0̄〉 and one |1̄〉 qubit states from the total even parity sector11 as

|0̄〉 = βa0β
b
0

N−2∏
i=1

βi |vac〉 = |0〉 ⊗ |0〉 ⊗ |nB〉 , (3.7)

|1̄〉 = (βa0 )†(βb0)†
N−2∏
i=1

βi |vac〉 = |1〉 ⊗ |1〉 ⊗ |nB〉 , (3.8)

in which |vac〉 is the vacuum of the c fermions. The vector |nB〉 corresponds to the ground
state of the (real space) quasiparticle bulk modes βi and |0(1)〉 are the unoccupied (occupied)
fermionic zero modes.

Both these states have the same energy since the Dirac fermionic modes βa/b0 have both
zero energy ε

a/b
0 = 0. This means that the |0̄〉 and |1̄〉 span the degenerate ground state

manifold that can be manipulated by braiding the individual Majoranas. To perform quantum
computation with Majoranas one thus needs to be able to move (control) them in real space.
In section 3.3 we will discuss proposals for how this can be done by changing the potential
profile V (x). Before this, in the next subsection, we will look at how the Kitaev Chain toy-
model can be realised in real world proximity-coupled superconductors.

3.2.2 The proximity-coupled Superconductor

Proximity-coupled superconductors are a class of materials in which an ordinary s-wave su-
perconductor is placed on top of another (non-superconducting) material, such as a topolog-
ical insulator, to effectively make it superconductive near the interface, see e.g. Fig 3.3 (a).
This effect can be understood at a phenomenological level from the Ginzburg-Landau theory,
which states that the superconducting order parameter cannot change discontinuously over
distances shorter than the superconducting coherence length [133]. At a microscopic level the
mechanism behind this effect is the diffusion of Cooper pairs from the parent superconductor
into the coupled material that can be described by the theory of Andreev reflection [138, 139].

In 2009 Fu and Kane [54] established that the proximity effect can be used to realise
an effective version of a 2D topological (px + ipy) superconductor.12 Following this initial
proposal, in references [53, 52] it was shown that by proximity coupling a semiconducting
nanowire to an s-wave superconductor one obtains, in certain limits, the 1D Kitaev chain
model. As these proximity-coupled setups can be build in the laboratory, experimentalists
then started looking for the presence of Majorana zero modes in these systems. A few years
later, in 2012, the first signatures for their existence were found in [55]. This was the first step
towards the realisation of a real world topological quantum computer.

11By parity we mean the total number of Fermionic modes in the many-body state. Note that we can not use
two Majorana modes (1 Dirac mode) since the Fermion parity in a superconductor is only preserved modulo
two.

12This is the 2D generalisation of the Kitaev chain discussed in the last section.
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Al

InSb

(a) (b) (c)

FIGURE 3.3: (a) The proximity-coupled superconductor used in the experiments for detecting Majo-
rana zero modes. In this setup a spin-orbit coupled semiconducting nanowire (InSb) is placed on top
of a s-wave superconductor (Al). The nanowire becomes an effective p-wave superconductor when an
external magnetic field B is applied. For the tunnelling transport experiments a voltage, V , is applied
to the gate electrode (yellow) and the current I is measured at the end of the wire. (b) Experimental
results for the differential conduction, dI/dV , as a function of the magnetic field. (c) A zero-bias peak
in the experimental differential conductance occurs when the magnetic field is increased to B = 0.8, a
signature of the presence of Majorana zero modes. Figures (b) and (c) are taken from [140].

We will now introduce the microscopic model for the specific proximity-coupled super-
conductor used in this experiment. Afterwards we then show how to obtain the Kitaev chain
from this model and provide a discussion on the latest experimental developments.

Model and Dispersion

In the experiments reported in references [55, 140] a semiconducting nanowire (NW) with
strong spin-orbit coupling was proximity coupled to a s-wave superconductor and placed in
an external magnetic field, as shown in Fig. 3.3 (a). The continuum model for this setup
[53, 52] is given by the Hamiltonian

HNW =
1

2

∫
dkΨ†kH

NW
BdG(k)Ψk (3.9)

with (Nambu) spinors Ψ†k = [c†k↑c
†
k↓c−k↑c−k↓] and the BdG (App. A) Hamiltonian

HNW
BdG(k) = (

k2

2m
− µ+ V +Bσx + αkσy)τz + ∆σyτx. (3.10)

Here the cks (c†ks) are fermionic annihilation (creation) operators for particle modes of mo-
mentum k and hole modes of momentum −k, which have either up spin s =↑ or down spin
s =↓. These operators satisfy the fermionic anti-commutation relations {c†ks, ck′s′} = δkk′δss′

and {cks, ck′s′} = 0. The σi and τi for i = {x, y, x} represent the Pauli spin matrices, which
act on the spin-degrees of freedom (σi) and on the particle-hole space (τi).
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The first term of the BdG Hamiltonian is a standard kinetic energy term for free electrons
(and holes) of mass m in an external potential V and chemical potential µ. The term propor-
tional toB ≡ µBgBx

2
describes the effect of the external magnetic field, which is coupled to the

spin of the particles. α is the strength of the (Rashba) spin-orbit coupling [141] in the semi-
conducting nanowire. Lastly, the s-wave superconductivity is included at a mean-field level
with superconducting gap ∆. We note that ∆ is the superconducting gap within the nanowire
induced by the proximity-coupled parent superconductor, which itself has a different gap.

The energies of the quasiparticles (excitations) of the system can be found by diagonalis-
ing the BdG Hamiltonian HNW

BdG(k) in Eq. (3.10). This results in the energy dispersion

ε2±(k) = ξ2
k +B2 + α2k2 + |∆|2 ± 2

√
B2|∆|2 + ξ2

kB
2 + α2k2ξ2

k, (3.11)

in which we have defined ξk = k2

2m
+ V − µ. This dispersion relation describes four energy

bands, which are plotted for various choices of the model parameters in Fig. 3.4. In the
absence of the external field B, spin-orbit coupling α and the proximity effect ∆ we have the
familiar quadratic dispersion for free fermions in which the two different spin components
are degenerate. The spin degeneracy is broken when B is turned on (panel b) due to the
Zeeman effect [85]. The main effect of the spin-orbit coupling α, in addition to breaking the
conservation of spin, is a shift of the Fermi momentum kF . Here, kF is defined to be the
momentum k where |εk| is minimised. Lastly, ∆ opens up a small energy gap between the
conduction and valence bands (panel d). This gives rise to the characteristic dispersion for a
p-wave superconductor for the middle two bands.

The Kitaev Chain Limit and Majorana Zero Modes

The correspondence between the middle energy bands of the proximity-coupled supercon-
ducting nanowire setup, Eq. (3.10), and the dispersion, Eq. (3.5), of a p-wave supercon-
ductor can be made explicit by considering certain limits of the model parameters. The
first limit that achieves this consists of making the magnetic field very large, B >> α,∆,
such that the bands corresponding to the different spin components can be effectively decou-
pled [142, 143]. Formally this can be seen by expressing HNW

BdG(k) in the eigenbasis of the
Hamiltonian HNW

BdG(k)|∆=0. This results in
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(a) (b)

(e) (f)

(c) (d)

(g) (h)

FIGURE 3.4: Energy dispersion for different parameters of the Hamiltonian Eq. 3.10 of the proximity-
coupled semiconducting nanowire in a Zeeman field. The top row (a-d) shows the contributions from
the various terms in the Hamiltonian. The two bottom left plots (e, f) are for parameters that recover
the Kitaev chain limit for which we can estimate the energy gap. The bottom right plots (g, h) are for
parameters outside this limit and we need to resolve the size of the gap numerically.

HNW(k) =
−
√
B2 + k2α2 − ξk 0 −iB∆√

B2+k2α2

kα∆√
B2+k2α2

0
√
B2 + k2α2 − ξk −kα∆√

B2+k2α2

iB∆√
B2+k2α2

iB∆√
B2+k2α2

−kα∆√
B2+k2α2 −

√
B2 − k2α2 + ξk 0

kα∆√
B2+k2α2

−iB∆√
B2+k2α2 0

√
B2 + k2α2 + ξk

 .

(3.12)

In the limit B >> α,∆, the terms proportional to ∝ iB∆ that couple the different spin
components become ineffective13 and we can project onto the middle two bands to obtain14

HNW
eff (k) ≈

(√
B2 + k2α2 − ξk −kα∆√

B2+k2α2

−kα∆√
B2+k2α2 −

√
B2 − k2α2 + ξk

)
. (3.13)

This effective Hamiltonian, HNW
eff (k), matches the BdG Hamiltonian, Eq. (3.4), for the Kitaev

Chain with effective p-wave superconducting gap ∆Kit ≈ −α∆
B

. To confirm this result, in
panel (e) of Fig. 3.4 we plot the energy dispersion of the proximity-coupled superconductor in
the high magnetic field limit. The different spin components clearly decouple and the middle

13Due to the large energy separation of the bands that these terms couple, see e.g. Fig. 3.4 (e).
14Note that projecting on the two other bands gives the same result.
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bands show a ’w’-like p-wave dispersion with the minimum energy gap appearing at kF .
Another limit that results in a p-wave superconductor is the strong spin-orbit coupling

limit α >> B,∆. The derivation for this limit is similar to the high magnetic-field limit
and is discussed in reference [144]. For this limit the effective Kitaev chain Hamiltonian has
a p-wave superconducting gap ∆Kit ≈ − ∆

mα
. In panel (f) of Fig. 3.4 we show the energy

dispersion in this limit. We observe that the spins do not decouple for small k, but near kF
there is a large energy separation between the different spin bands. The middle two bands
have again the characteristic p-wave dispersion.

In both of these limits Majorana zero modes can appear at the domain boundaries between
topological and non-topological regions in the proximity-coupled nanowire. However, these
are not the only parameters for which there are localised Majorana modes [52]. For example,
two other parameter regimes for which the model is in a topological phase are shown in panels
(g) and (h) of Fig. 3.4. Crucially, all terms in the nanowire model in Eq. (3.9) need to be there
for Majorana modes to exist. In order to check if for certain choices of the model parameters
we have Majorana zero modes we can diagonalise the BdG Hamiltonian on the lattice with
open boundary conditions and, like for the Kiteav chain, look for zero energy solutions. An
example of this is shown in Fig. 3.5 (b).

a) b)

FIGURE 3.5: (a) Localisation of the Majorana zero mode (Eq. 3.6) at the left edge of the wire. Note
that we have not plotted the Majorana mode localised at the right edge of the wire. (b) Excitation
spectrum as a function of the chemical potential µ for the lowest energies of the BdG Hamiltonian
(Eq. 3.9) for the proximity-coupled nanowire model on the lattice. For approximately−0.8 ≤ µ ≤ 0.8
we get two degenerate zero energy Majorana modes (blue line). When µ is close to the bottom of the
band, µ ≈ −0.9, we get also low energy Andreev bound states (orange lines). These Andreev states
could cause the appearance of non-topological zero-bias peaks in experiments [58]. The mode energies
were obtained by numerically diagonalising the Hamiltonian with parameters outside the Kitaev Chain
limits B = α = 1.0, ∆ = 0.5.
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3.2.3 Experimental Implementation

The proximity-coupled nanowire model can be used to look for experimental signatures of
Majorana zero modes [55, 56]. There are various types of measurements that one can perform,
but so far finding definite proof for the existence of a topological Majorana zero modes has
been very challenging. One signature is that in the presence of Majorana zero modes there
is a 4π (fractional) Josephsen effect [145]. As a consequence, observable quantities like the
current through a Josephson junction Ijos(φ) made of two p-wave superconducting nanowires
are 4π periodic as a function of the flux (superconducting phase difference) φ. One then needs
to measure the current, while changing the applied flux φ slowly.

However, a huge challenge is that when this is done too slowly, an effect known as quasi-
particle poisoning [146, 147] due the coupling to the environment (or even from the parent
superconductor) kicks in. This effect destroys the 4π periodicity of observable quantities back
to the normal 2π Josephson periodicity. In contrast, doing it very fast is also not an option
because changing the phase too quickly could lead to Landau-Zener tunnelling [148] through
small energy gaps. This, incorrectly, can give a 4π effect, while the material under study really
has a 2π Josephson effect. Despite these challenges, recently evidence for the 4π Josephson
effect was reported in an experiment [149].

Another, arguably more robust, signature is a zero-bias peak in the measured tunnelling
conductance G through the Majorana wire [140, 150]. This type of measurement allows one
to observe the presence of subgap states at low energies, such as the Majorana zero modes.
To probe this one applies a bias voltage V to a lead connected to one end the nanowire and
measures the current I at the other end, see Fig. 3.3 (a). The tunnel conductance is then given
by G = dI/dV . For Majoranas G is quantised to 2e/h when V = 0 due to a perfect Andreev
reflection at the lead-nanowire interface [151].15 These measurements were performed in
several experimental studies [55, 140] and, as shown in Fig. 3.3 (b) and (c), indeed show a
conductance peak for zero bias when the external magnetic field B is large enough.

Although these observations are a strong indication that Majoranas are present in this
system, there are also other mechanisms that could explain such zero-bias peaks. In refer-
ence [58] several different effects were theoretically investigated and the authors identified
three different regimes, the ”good, bad and ugly”, for the detection of Majorana zero modes.
The good regime is where there is an actual topological Majorana, which is the theoretical sce-
nario we have discussed above in the proximity-coupled superconductor. A smooth confining
potential [152] or the presence of unintended quantum dots due to imperfect manufacturing
of the device could, however, also lead to a conductance peak, not always exactly quantised
at 2e/h, caused by low energy Andreev bound states. This possibility can be circumvented
by increasing the external magnetic field B and is therefore dubbed the bad regime. An even
worse scenario is when there is inhomogeneous disorder in either the chemical potential or

15This exact quantisation is a signature of the nontrivial topology.
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the magnetic field. This is called the ugly regime since disorder cannot be removed easily.
After an extensive comparison between the experimental results and numerical simulations of
the setup with disorder it was concluded [58] that likely most, if not all, observations of a
conductance peak could be explained by the presence of disorder and hence are in the ugly
regime.

Many improvements in the setup or measurements thus need to be made before the exis-
tence of Majorana modes can be proven. However in this thesis we take a positive (theoretical)
perspective and assume that we have access to localised Majorana zero modes. We highlight
that the quantum control methods we use in Chapter 4 and the conclusions for error processes
we draw in Chapter 5 are generic and can be applied to more complex setups, which have the
discussed sources of error from real-world devices.

3.3 Moving Majorana Zero Modes

To perform quantum computation with Majorana zero modes in superconducting nanowires
one needs to move (braid) the individual Majoranas around each other, while remaining within
the protected ground-state manifold. A way to achieve this is by attaching a so-called ’key-
board’ of gate electrodes to the Majorana wire [153] as shown schematically in Fig. 3.6 (a). A
potential Vi can be applied to each individual gate electrode to control the chemical potential
(electron density) in the wire. These gate potentials can be used to create domain boundaries
between topological (µ+Vi) < |2w| and non-topological (µ+Vi) > |2w| regions. By tuning
the individual Vi in time it is possible to move such domain walls and hence the Majoranas.

Non-Top Topological Non-Top

(a)

(c)

(b)

FIGURE 3.6: (a) Majoranas γL and γR localised at domain boundaries between topological (darker
blue) and non-topological (lighter blue) regions in the nanowire can be moved by tuning a ’keyboard’
of gate potentials applied to the wire. (b) Instead of modelling the individual discrete gates we use
a smooth potential, Eq. (3.14), that can be tuned to move the Majoranas in our simulations. (c) The
wires (and gate potentials) can be deploited in 2D network architectures to exchanges Majoranas. In
the specific example shown three moves are required to exchange the middle two Majoranas γ2 and γ3.
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Modelling analytically or numerically the individual gate electrodes separately is rather
cumbersome.16 Here, instead, we will utilise the continuous inhomegeneous potential profile
given by

V (x) = Vheight[f(x− xL) + f(xR − x)], (3.14)

in which f(x) = 1/(1 + exp{x/σ}) are sigmoid (step) functions as shown in Fig. 3.6 (b).
Vheight is the height of the potential and is chosen to lie far outside the topological phase
Vheight >> |2w|. This means that xL and xR represent the positions of two domain bound-
aries. The idea is that, with a fine enough ’keyboard’ of gate electrodes, it should be possible
to approximate this potential in experiments. We note that for numerical simulations this
potential V (x) will go into the lattice Hamiltonian in Eq. (3.1).

However, using the potential to control the position of Majoranas in a single one-dimensional
nanowire is not enough to be able to braid Majoranas in real space since they cannot be moved
through each other. This issue can be resolved by deploying the individual nanowires in 2D
wire networks, such as the example shown in Fig. 3.6 (c). In these architectures it is possible
to move the Majoranas for a small distance in the extra dimension (vertical wires) so to ef-
fectively exchange them. Another option is to use the two dimensional generalisation of the
Kitaev model, the p + ip superconductor [135]. In here topological defects such as flux vor-
tices can host Majoranas. These vortices can potentially be moved more easily around each
other.

For fault-tolerant quantum computation the system should be in the ground state at the
end of the braiding process. Moving the Majoranas too fast, however, can result in unwanted
excitations outside the ground-state manifold and a loss or corruption of the encoded quantum
information. A quantitative measure for how much quantum information is excited at the end
of the motion is the infidelity given by

Iτ ≡ 1−Fτ = 1− | 〈ψτ | T e−i
∫ τ
0 H(t)dt |ψ0〉 |2. (3.15)

We saw this measure before in the single qubit control problem in section 2.1.1. This time,
the Hamiltonian H(t) used for the evolution can either be the Kitaev chain of Eq. (3.1) or the
proximity-coupled nanowire of Eq. (3.10). The Hamiltonian is time dependent because we
are changing the potential profile V (x) in time. The initial state |ψ0〉 is the ground state of the
system H(0) and |ψτ 〉 the target ground state of H(τ) after the movement. Iτ is zero when
the target state is reached perfectly and is equal to one when it is orthogonal to it.

One way to exactly reach the target state is by moving the Majoranas adiabatically, which
means the system remains in the instantaneous ground state throughout the entire motion.
However, in real-world experimental setups this is not a desirable strategy because of noise

16It can be done, see for example [154].
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from the environment. For long movement times τ processes like quasiparticle poisoning and
thermal noise are able to decohere the encoded quantum information. Trying to move faster
than adiabatically on the other hand is tricky and generically increases the infidelity when not
the right strategy is chosen. Nevertheless it turns out to be possible to move faster in this
topological system by a concept known as superadiabaticity [155, 144]. Superadiabaticity is
a notion of adiabaticity in moving frames. We will discuss and investigate this further in the
next two subsections.

(a) (b)

Moving Frame

Lab Frame

FIGURE 3.7: (a) The left and right domain boundary in a single wire are being moved at a constant
velocity v. In the lab frame (blue box) it looks like the localised Majoranas are moving with velocity v
and the wire itself is stationary. In the moving frame (red box) we move along at the same speed as the
motion of the domain boundaries and it looks like everything is stationary. (b) The energy dispersion
εk of the Kitaev chain in the moving frame for three different velocities. When the velocity approaches
the critical velocity vcrit = ∆ the energy gap closes and we have a topological phase transition in the
moving frame.

3.3.1 Moving Frame

Moving at a constant velocity is intimately tied with the concept of a moving reference frame.
In this setting one distinguishes between a so-called lab frame and a reference frame moving
at some constant velocity v. In our context, when we are moving both domain walls in the
nanowire with a constant velocity v, this means that in the lab frame it looks like we are
moving the Majoranas, whereas in the moving frame everything seems static, see Fig. 3.7 (a).
Switching between such reference frames can be useful for evaluating the effect of the motion
on the Majoranas. For example, from this we can find that above a certain critical velocity,
vcrit, the spectral gap of the Hamiltonian in the moving frame closes and the topological phase
is destroyed. In the following we will derive this critical point formally.

In order to bring the system in the moving frame with velocity v (in non-relativistic quan-
tum mechanics) we can apply the time-dependent (Galilean) translation operator U(t) =

e−ik
∫ t
0 v(t′)dt′ to the system Hamiltonian. This results, for the Kiteav chain, in the moving-

frame Hamiltonian
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Hv(t) = U †(t)HkU(t) + i
dU †

dt
U(t) =

(
k2

2m
− µ+ v(t)k i∆k

−i∆k − k2

2m
+ µ+ v(t)k

)
. (3.16)

We see that compared to the lab-frame Kitaev chain Hamiltonian of Eq. (3.1) there is an extra
contribution v(t) on the diagonal. This leads to a modified mode dispersion

εk = ±
√

(
k2

2m
− µ)2 + ∆2k2 + vk, (3.17)

which is plotted in Fig. 3.7 (b). When the velocity approaches the critical velocity v =

vcrit ≈ ∆ the gap in the excitation spectrum closes indicating a topological phase transition.
At this transition point the Majoranas delocalise in the moving frame. This can be seen

by solving for the zero energy quasiparticle modes of the moving-frame Hamiltonian of
Eq. (3.16), which gives

φ(x) ∝ e−x/(γξ) sin

(√
k2
F + 1/(γξ)2x

)
. (3.18)

Note that this equation matches the lab-frame Majorana localisation in Eq. (3.6) when we
set v = 0. The effective Majorana coherence length is now given by ξv = γξ = γ/∆m,

which is dilated by a factor γ = 1/
√

1− v2

∆2 . When we approach the critical velocity, ∆,
the localisation length will diverge ξv 7→ ∞ and the local character of the Majoranas will be
lost.17 Superadiabaticity can now be explained as the ability to move the Majoranas at finite
velocities below vcrit, which means it is adiabatic in the moving frame.

3.3.2 Susceptibility to boundary oscillations

The ability to move at finite velocities does not mean that it is possible to instantly start moving
the domain walls at a large velocity18 without losing some fidelity. For superadiabaticity to
work it is important to first reach the moving-frame ground state, which can take some finite
amount of time. In the next chapter we will discuss several strategies for this in more detail.
Here we briefly review some important related concept, which we call resonant Majorana
motion.

This concept can be understood by considering the scenario in which we are shuttling the
position of the left domain wall xL(t) in Eq. (3.14) with a certain fixed frequency ω according

17Note that this can also be shown for the more experimentally relevant proximity-coupled semiconducting
nanowire model [144]. Here within the high magnetic field Kitaev chain limit the critical velocity is given by
vcrit ≈ α∆

B . And in the strong spin-orbit coupling limit the critical velocity is vcrit ≈ ∆
mα . Outside these limits

vcrit needs to be determined numerically.
18But below critical vcrit.
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to the velocity protocol given by

vL(t) = vmax sinωt. (3.19)

When the maximum velocity, vmax, of the motion is small enough, such that the amplitude19

is tiny compared to the total length of the system N , we can consider this motion as a per-
turbation on top of the static Hamiltonian H0 with fixed domain wall positions xL(0) and
xR. Applying perturbation theory, specifically Fermi’s golden rule [156, 85], then leads to the
following rate of fidelity loss

lim
τ 7→∞

Iτ
τ

= lim
τ 7→∞

1

τ
[1− | 〈ψ0| exp

{
−i
∫ τ

0

H(t)dt

}
|ψ0〉 |2], (3.20)

= lim
τ 7→∞

1

τ

∑
i 6=0

| 〈ψi| exp

{
−i
∫ τ

0

H(t)dt

}
|ψ0〉 |2, (3.21)

= 2π
∑
i 6=0

(δ(Ei − E0 + ω) + δ(Ei − E0 − ω))| 〈ψi| δV |ψ0〉 |2. (3.22)

Here, we have expanded in terms of the eigenstates |ψi〉 of H0, and δV is the amplitude of
the perturbation. From this equation we can see that when ω is exactly equal to the energy
difference between the ground state, E0, and a specific excited state, Ei, there is a resonance.
As we explained above, within the topological phase, the system is gapped with gap size
Egap ≡ E1 − E0 = ∆kF for the Kitaev chain. Thus, when oscillating the Majorana with
ωres = ∆kF , we obtain a resonance in the infidelity.

Below the resonance frequency ω < ωres no resonance appears because these frequencies
are below the size of the energy gap. This low frequency regime is desired when one tries to
accelerate the system from a static ground state into the moving-frame ground state at a finite
velocity. The other limit is the high frequency limit ω 7→ ∞, which seems useful since there
is no fidelity loss for back and forth shuttling of the Majorana. However, this can be explained
because these frequencies are so high that the system does not have time to respond to the
motion and, hence always remains in its initial state.

As in the following chapters we are interested in forward motion of Majoranas, we verify
that in this case the same resonance occurs. For this we move the left domain wall with
velocity

vL(t) = vmax
1− cosωt

2
, (3.23)

and compute Iτ numerically. The results of these simulations for a wide range of frequencies
and maximum velocities are shown in Fig. 3.8. We clearly observe a resonance in the infidelity
when the frequency is equal to ωres. Furthermore, for small enough ω < ωres and vmax << vcrit

we obtain near perfect fidelities for the Majorana motion.

19Maximum distance from the starting position of the wall xL(0).
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FIGURE 3.8: (a) Shuttling of the left Majorana in a single nanowire leads to a resonance in the infidelity
when the frequency is approximately equal the size of the energy gap ωres = ∆kF (black dashed line).
(b) This resonance remains visible when the maximum velocity vmax is increased up to vcrit = ∆ = 0.3.
Above vcrit there are no slow adiabatic frequencies (with respect to the gap) left to oscillate at. The
parameters used in these simulations are N = 140, µ = 1, w = 1, ∆ = 0.3 and σ = 1.

3.4 Summary

In this chapter we have introduced quantum computation with non-abelian anyons. After a
general introduction we have focused on Majorana zero modes in topological p-wave super-
conductors. We saw that these Majoranas need to be moved (braided) to make quantum gates.
For fault-tolerant quantum computation the Majoranas need to be transported with perfect
fidelity. However, adiabatic or superadiabatic transport might not be the best strategy due
to various sources of decoherence. In the next chapter we will look at how the traditional
quantum control and machine-learning algorithms introduced in Chapter 2 can be exploited
to come up with alternative strategies for moving Majoranas with high fidelities.
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Chapter 4

Optimising Transport of Majorana Zero
Modes

The ability to control Majorana zero modes and more generally non-abelian anyons is, as we
saw in the last chapter, of critical importance for the development of real-world topological
quantum devices. The Majorana modes, from which we construct a topological qubit, need to
be moved around each other or fused together to be able to perform computations. By defi-
nition, adiabatic transport of Majoranas in topological superconductors by tuning the external
gate potential V (x) is a slow process, and is therefore susceptible to noise such as quasiparti-
cle poisoning [146]. This motivates the search for alternative control strategies that are faster
and more efficient.

A different approach is to use schemes where the Majoranas do not need to be transported
over excessively long distances. This includes protocols where one aims to braid the Majo-
ranas by controlled tunnelling [157] or by changing the interaction strength [158, 159, 160].
In addition, there are the so-called measurement-only braiding schemes in which one applies
topological charge measurements to implement the logical quantum gates [161, 160]. How-
ever, all these methods require the ability to precisely tune specific parameters in experiments,
namely the tunnelling rates or the interaction and measurement strengths. Thus, in each case
the specific form of the optimal control pulses needs to be determined. This means that these
schemes are possibly still limited by adiabatic time constraints and in some cases shortcuts
to adiabaticity need to be applied [162]. Furthermore, for the measurement-only schemes an
additional drawback is that the state manipulation is inherently probabilistic [163].

Instead of looking for completely different braiding schemes one could also try to see if
the (adiabatic) time scales for the movement of Majoranas can be shortened by using some of
the techniques for quantum control introduced in Chapter 2. Such an optimal control approach
for the physical movement of Majorana zero modes was taken, for example, by Karzig et al.
in reference [83]. The authors applied Pontryagin’s principle to a specific Majorana edge
setup and showed that the optimal transport protocol is of the bang-bang form. The specific
bang-bang protocol was then obtained by applying a similar simulated annealing (SA) search
as we did for the single-qubit problem presented in section 2.2.3. Importantly, we note that
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for this argument to work one requires the Hamiltonian to be linear in the control parameter.
In this chapter, we build upon such approach, using numerical optimal control techniques

to design fast and high-fidelity transport protocols for the movement of Majoranas.1 Specif-
ically, we exploit Differentiable Programming (∂P) and the Natural Evolutionary Strategies
(NES) optimisation algorithm for this task. With these methods we find alternative strategies
that, for the range of parameters and searches we did, perform better than standard param-
eterised bang-bang protocols. For short transport times, τ , and relatively long transport dis-
tances, l, we find a novel counter-intuitive strategy, dubbed jump-move-jump (JMJ) and shown
in Fig. 4.6, which makes use of pulse-like jumps at the beginning and end of the protocol.
In between the jumps there is a period of motion at a nearly constant velocity. For long (su-
per)adiabatic time scales the methods recover the expected smooth adiabatic protocols from
previous studies [144, 164].

To capture (all) these different behaviours for the control strategies as a function of the
transport time τ we propose a new characterisation in terms of different Majorana motion
control regimes based on the resonance times scale Tres and critical velocity vcrit. As these
quantities only depend on the size of the topological energy gap Egap we argue that this cate-
gorisation applies both to the Kitaev chain as well as the proximity-coupled semiconducting
nanowire model. We provide an understanding of the (physical) working mechanisms behind
the various strategies in these different regimes. We find that the small jumps in the position
of the Majorana in the JMJ strategy do not lead to a large decrease in the ground-state fidelity
and that during the move part the system is stable when evaluated in a moving frame. Based
on this, we derive an approximate equation for the ground state fidelity of the JMJ strategy
that allows us to predict the value and its performance for a wide range of parameters (l, τ).

We have structured this chapter as follows. In section 4.1, we introduce the specific Ma-
jorana quantum-control setup and show that the average velocity constraint leads to distinct
control regimes that connects (on a physical level) with the moving-frame picture as described
in the last chapter. We give the specific mathematical objective function to which the numeri-
cal optimisation algorithms can be applied and also explain the problem from a reinforcement
learning (RL) perspective. In section 4.2 we then show the optimisation results obtained with
∂P and NES and benchmark them with Majorana transport protocols obtained with the tradi-
tional (numerical) quantum control-methods, specifically SA. Afterwards in section 4.3, we
discuss and explain the novel JMJ strategy that the optimisation algorithms came up with by
evaluating it in a moving frame and applying a sudden approximation. Here we also look at
the robustness of the protocol with respect to an inhomogeneous (disordered) chemical poten-
tial in the Majorana wire. Finally, in section 4.5 we summarise and give an outlook for further
work.

1The results presented in this chapter have been published in [73] coauthored by the author of this thesis.
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4.1 Setup of the Optimisation Problem and the Different
Majorana Control Regimes

We start by introducing the mathematical formulation of the Majorana control setup as shown
schematically in Fig. 4.1. Our objective is to find the optimal control xL(t) to move the left
Majorana in a single nanowire from a position xL(0) = xA to a position xL(τ) = xB ≡ xA+ l

in a time τ by tuning the external potential V (x, t), see Eq. (3.14). As discussed in the last
chapter, for fault-tolerant quantum computation we want to end up in the ground state of the
system. A natural measure for the quality of the Majorana transport is thus the infidelity,2

Iτ = 1− | 〈ψB|U(τ) |ψA〉 |2, (4.1)

in which |ψA〉 and |ψB〉 are the ground states of the wire with the Majorana at the positions
xA and xB respectively. U(τ) is again the time-ordered unitary evolution operator that de-
scribes the time evolution of the system. In the following we take Iτ as our cost (objective)
function, which we wish to minimise. We consider both the Kitaev chain model of Eq. (3.1)
and separately the proximity-coupled superconductor of Eq. (3.10) as the underlying system
HamiltonianH(t) to compute this infidelity.

For the application of the NES and ∂P methods we recall from Chapter 2 that we can
also formulate the optimisation problem in RL language. In the RL formulation the Majorana
nanowire, together with the potential profile, corresponds to the environment, which is manip-
ulated by an agent (controller). This agent is able to perform actions and receive feedback in
the form of rewards and observations of the environment. In our specific Majorana setting the
allowed actions of the agent are a continuous modification of the position of the left domain
boundary, xL(t), in the potential profile, V (x, t). The only feedback the agent receives is the
final infidelity Iτ for the NES algorithm, and the gradient with respect to the control dIτ

dxL
for

∂P.3 This feedback is then used to update the control xL(t) and gradually minimise the infi-
delity Iτ over a large number of iterations. This can be interpreted as the agent learning from
past experiences by trying many different paths for the Majorana as shown in Fig. 4.1 (b).

An important constraint in this optimisation problem is the average velocity vavg = l/τ

of the Majoranas, which we set externally when we fix the termination time τ and movement
length l = xB−xA. After some initial optimisation trials we found that this constraint dictates
the character of the optimal protocols obtained with the optimisation algorithms. In particular,
in relation to the critical velocity vcrit and the resonance timescale Tres = 2π

ωres
, which are present

2We recall that we have seen this infidelity measure before in Eq. (3.15) for the single qubit and Eq. (3.15)
for the shuttling of Majoranas. For our current specific optimisation problem we have however slightly different
initial and target states so we have defined it here again.

3It is possible to provide more feedback signals to the agent, such as observations retrieved from measure-
ments [165, 166, 167] or for example a sum of instantaneous infidelity values at different times during the
evolution L =

∑
i I(ti).
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(a) (b)

FIGURE 4.1: (a) For the Majorana control problem we give a ML agent (robot) the task to move the
left Majorana γL from a position xA to a position xB in a total time τ . The aim of the agent is to find
the right strategy to change the external potential V (x) in time such that the system ends up in the final
ground state |ψB〉. (b) During the learning (training) process the agent attempts different paths xL(t)
for the Majorana. In this way the agent can use its past experiences (NES) together with the gradient
signal (∂P) to minimise the ground state infidelity.

in this topological system, we find that it is useful to set and interpret the magnitude of the
average velocity constraint vavg with respect to these model parameters. Motivated by this we
divide the Majorana control up into the four distinct Majorana motion regimes shown in Fig.
4.2. These regimes hold for both the proximity coupled superconductor as well as the Kitaev
chain and are defined4 as follows:

• Regime I corresponds to the critical regime in which the Majorana must move on av-
erage above the critical velocity vavg > vcrit. In this regime the ground-state fidelity is
expected to rapidly decrease to zero.

• Regime II is the sub-critical regime for which the velocity is on average close to but
nonetheless below vcrit. This regime is open ended in both the termination time τ and
the movement length l. The key feature distinguishing this regime from regime IV
below is the character of the found optimal protocols.

• Regime III is again a sub-critical regime, defined for times shorter than the resonance
time Tres, but also with low velocity. This region cannot be used to efficiently move
Majorana states over long distances, but we expect it to be relevant for braiding pro-
tocols based on small relative movements that change the effective couplings between
Majoranas.

• Finally regime IV is the adiabatic regime in which we are above Tres and we have suf-
ficient time to expect that the slow superadiabatic ramp-up/ramp-down protocols [144,
164] from earlier studies are optimal. Ideally, one would always like to be in this regime,

4Note that these definitions are taken from [73] coauthored by the author of this thesis.
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I
II

III
IV

FIGURE 4.2: The different Majorana motion control regimes labelled (I-IV). The red line corresponds
to the critical velocity. Note that the blue line is not a hard boundary but determined by the specific
protocols the algorithms come up with. This specific control ’phase’ diagram is not limited to the
Kitaev chain but can be generalised to include the proximity coupled superconductor and we speculate
it is also relevant to braiding schemes where the coupling between different Majoranas is altered [160].

however, as discussed earlier, a gradual build up of noise and decoherence may make it
necessary to get things done more quickly.

In the next section we aim to find the optimal controls xL(t) for the transport of a Majorana
in each of these four regimes.

4.2 Numerical Optimisation Results

In order to find the optimal5 strategies we aim to minimise the infidelity Iτ with some of the
numerical optimisation methods introduced in Chapter 2 for each regime separately. Specif-
ically we apply the NES and ∂P methods and benchmark them with SA and some param-
eterised bang-bang and superadiabatic protocols. In this section we will first focus on the
results obtained with NES and ∂P in which the Kitaev chain model in Eq. (3.1) is used to com-
pute the infidelity. For this, we find a novel counter-intuitive jump-like strategy in regimes I,II
and III and recover the expected smooth superadiabatic protocols in regime IV (see Fig. 4.3).
We then show that these ML protocols outperform our parameterised benchmark protocols
(see Table 4.1). Lastly, we will briefly discuss that the obtained Majorana transport strategies

5Note that for the numerical optimisation methods for a potentially non-convex problem like ours it is hard to
prove that we have obtained the ”optimal” protocol. By optimal we therefore mean the protocol with the lowest
cost value that we encounter and is obtained after the optimisation methods are converged.
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also work for the proximity coupled superconductor by showing some optimisation results for
this slightly more complicated model.

4.2.1 Machine Learned Majorana Transport Protocols

To study the distinct Majorana motion regimes we pick four representative points, (l, τ) =

{(4.32, 12), (4.95, 22), (0.48, 8), (2.4, 40)}, each of which belongs to a different regime. For
the simulations that we perform l is chosen to be relatively small, only a few lattice sites. This
is needed to avoid a large τ for some of the regimes, which would result in excessively long
computation times.6 We choose a system size of N = 110, which is large enough to remove
finite size effects and the Majoranas are localised with a small, but finite, energy splitting of
δE0 ∼ O(10−8). To the best of our knowledge the NES and ∂P optimisation methods we use
here have not been previously applied to (free) dynamical many-body systems of this size.

The next important practical aspect of the optimisation is the definition of the set of pro-
tocols (ansatz) over which to optimise, i.e. how to parameterise the control xL(t). We saw
in section 2.2.3 that restricting to bang-bang protocols or a Fourier series (CRAB method)
can dramatically shrink the size of the search space. However, since the Hamiltonian, through
V (x, t), is nonlinear in the control, we do not necessarily expect optimal bang-bang protocols.
For this reason, we do not a priori fix the form of the control and revert to an unrestricted time-
bin optimisation. This means that, like for the ∂P single-qubit control example, we discretise
the control parameter into [xL(t1), xL(t2), ..., xL(tM)]. Here, the individual time bins xL(ti)

with ti = i∆t become the in totalM = τ/∆t new control parameters that can take continuous
values. Importantly, we take the discretisation of the control ∆t to be larger than the discreti-
sation of the underlying simulation ∆t ≥ 10δt to avoid potentially discontinuous cuts in the
Majorana motion. Aside from the domain wall position it is also possible to parameterise by
the velocity vL(ti), from which the position can be obtained via xL(t) =

∫ t
0
vL(t)dt. Another

option is to represent the control as the output of a neural network xL(t) = NNη(t) where η
are now the parameters of the neural network to optimise over.

After extensive tests and comparisons, see reference [73], we find a combination of these
different parameterisations to work the best in practice. For the simulations presented in Fig.
4.3 and analysed below we use for ∂P a combination of a neural network7 together with a
subsequent position optimisation. For NES we parameterise by position in regimes I and II

6The maximum simulation times we test are on the same order of magnitude as previous studies that looked
at Majorana motion within in this system [83, 164]. It remains interesting however to investigate the optimal
protocols for very large termination times and long transport distances. We will come back to this matter in the
concluding remarks.

7The standard feedforward neural network that we use consists of three layers with rectified linear unit (ReLu)
activation functions combined with one single sigmoid output neuron. The input to the network is the time t and
the output the position xL(t) of the Majorana. This means we view the neural network as a special type of
function approximator [168].
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Regime IIIRegime II Regime IVRegime I

NES

(a) (b) (c) (d)

(e) (f) (g) (h)

SA

(i) (j) (k) (l)

FIGURE 4.3: Control strategies xL(t) for Majorana transport obtained after minimisation of the in-
fidelity Iτ with Differentiable Programming (top row), Natural Evolution Strategies (middle row)
and simulated annealing (bottom row). Four optimisations in the different control regimes I, II, III,
and IV are performed (columns) for which we choose the external constraint parameters (l, τ) =
{(4.32, 12), (4.95, 22), (0.48, 8), 2.4, 40}. For regime I we have included the red dashed line to com-
pare to linear motion at the critical velocity vcrit. In regime IV the algorithms reproduce the superadi-
abatic ramp up-down protocols whereas in the other regimes we find a new type of strategy which we
have called jump-move-jump. In here the simulations for the infidelity are based on a Kitaev Chain
with parameters N = 110, µ = 1, w = 1, ∆ = vcrit = 0.3, Vheight = 30.1, and σ = 1.

and velocity in regimes III and IV. We find that optimising with a neural network parameteri-
sation gives suboptimal smooth protocols that can be further refined with either the position or
velocity optimisations respectively. In addition, we find that optimising the velocity with NES
seems to give smoother protocols compared to a direct position optimisation. This explains
why the velocity optimisation is preferable in the low velocity regimes III and IV. Lastly, we
note that for the neural-network parameterisations we perform updates with the optimisation
algorithm Adam, while for all the other parameterisations we use vanilla gradient descent. We
determine the hyperparameters for these optimisations empirically by scanning over a range
of different values and we also restart the optimisations a few times from different initial
conditions to avoid getting stuck in a local minimum.

In Fig. 4.3 we plot the resulting Majorana position protocols xL(t) obtained after the
learning process has been completed. We first remark that both NES and ∂P converge to qual-
itatively similar-looking final protocols in each of the four regimes. In the slower regimes
III and IV, ∂P seems to perform slightly better, in terms of final infidelity value. In contrast,
NES performs better in the short-time regimes I and II. The differences are, however, small
O(10−3) and could be partially attributed to the fact that different parameterisations for the
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control are used. Furthermore, we note that the results for the ∂P optimisation are obtained
after 440 update steps and for NES after in total 50 update steps (with 100 infidelity evalua-
tions), which could also explain the small difference between the two methods.

We observe that the resulting protocols in regimes I, II, and III are similar and each consist
of three main parts (features). Right at the start of the protocol the Majorana is kicked abruptly.
This kick consists of an instantaneous forward jump followed by a rapid backward motion
over a short time.8 Afterwards, in the middle part of the protocol, the Majorana moves on
average with a nearly constant velocity motion that is dressed to various degrees with some
rapid oscillations. At the end of the protocol a kick similar to the first one is applied, but now
with first backward motion and then a large instantaneous forward step in position. We note
that the constant-velocity middle parts are always at a velocity lower or right at the critical
velocity, even in regime I.9 Another observation is that the controls move the domain wall
position sometimes outside the target range, i.e. before the starting position xL(t) < xA and
after the final position xL(t) > xB. This seems counter-intuitive, but it is important to keep in
mind that we are looking here at the driving protocol in H(t). The instantaneous ground state
of this does not exactly match up with the time evolved state |ψ(t)〉 for quick non-adiabatic
changes (the jumps and oscillations).

For the (super)adiabatic time scales, i.e. regime IV, we observe that the optimisation
algorithms are able to recover the smooth superadiabatic ramp up-down protocols that were
discussed earlier in literature [144, 169, 164]. The rationale behind this strategy is that the
velocity of the Majorana is slowly building up to some finite velocity below vcrit and then
decelerating back to zero again, in a symmetric fashion.10 During the entire protocol, when
done perfectly, the ground state follows the moving-frame ground state and the motion is
called superadiabatic, as we discussed in Chapter 3. However, a distinction with the previously
studied protocols is that the ML protocols start with a small nonzero velocity vL(t = 0), which
does not lead to a huge increase in infidelity. This indicates that there is still some freedom
within the family of superadiabatic protocols.

The infidelity values of these protocols are reported as labels in Fig. 4.3. It can be seen that,
as expected, the performance is insufficient in the critical regime I. In this regime the strategies
have infidelity values as bad as Iτ ≈ 0.35. This confirms that trying to move the Majorana
with a velocity which is on average greater than the critical velocity is a bad strategy. It could
still be a relevant regime (and strategy) for near term Majorana demonstration experiments,
where high-fidelity values are not yet required. In all the other regimes we find significantly
lower infidelity values. In particular in regimes III and IV, where the obtained strategies result
in infidelities values of about Iτ ≈ O(10−3) and lower. For regime IV, however, this requires

8This can be best observed in panel 4.3 (c).
9We explain below in the jump-move-jump section why this is needed for this type of strategy to work.

10We will give an exact equation for this type of protocol below.
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long transport times, which potentially leads to other problems.11 Furthermore, in regime III
the Majoranas are only moved over very short distances. Therefore, regime II would likely be
the most relevant regime. In this regime our protocols give an infidelity of about Iτ ≈ 0.15.
However, to better interpreted these results, and to argue that they are relevant for experiments,
we need to make sure that there are no other control protocols, such as bang-bang protocols,
with lower infidelities. We will look into this matter in the next subsection.

4.2.2 Simulated Annealing and Benchmark Protocols

In order to benchmark the performance of the ML protocols we compare them to parame-
terised bang-bang protocols, ramp up-down protocols, and protocols obtained with an unre-
stricted SA search. In Table 4.1 we provide an overview of the lowest numerical values of the
infidelity obtained with these different methods. We will now discuss them one by one and
compare the resulting protocols.

Regime linear bang-bang ramp up-down SA DP NES
I 0.4738 0.3923 0.4817 0.3801 0.3546 0.3431
II 0.2236 0.1713 0.2350 0.1637 0.1549 0.1514
III 0.0120 0.0067 0.0125 0.0062 0.0056 0.0071
IV 0.0077 0.0004 0.0045 0.0004 0.0005 0.0009

TABLE 4.1: Infidelity values of different types of parameterised protocols versus the machine learned
protocols for optimal Majorana transport. We compare optimal bang-bang protocols, ramp up-down
protocols and protocols obtained with an unrestricted SA search to the optimal ∂P and NES protocols.
For completeness we have also included the values for a naive linear ramp xL(t) = vavgt. The simula-
tions for these values were done with a Kitaev chain of system size N = 110 and the same parameters
as in Fig. 4.3 above.

For the unrestricted12 SA search we use a variant of the method described in section 2.2.3
that was also applied to optimise the Majorana edge setup in reference [83]. Here, we param-
eterise by the wall velocity vL(t) and iteratively update it by choosing two random intervals
of time ∆t of which one interval is increased by ∆v and the other is decreased by ∆v. The
new infidelity Ii is calculated for the updated velocity profile and the move is accepted with
a probability e−δI/TSA , where δI = Ii −Ii−1 is the difference in the infidelity with respect to
previous iteration. As before, the annealing temperature TSA is slowly cooled down to zero.
The results of this benchmark approach in each of the four regimes are shown in Fig. 4.3(i-l)
and are qualitatively similar to the results obtained with NES and ∂P [Fig. 4.3(a-h)]. We note
that for these SA optimisations we need about O(105) infidelity evaluations before conver-
gence is reached. Thus, in this specific example the SA approach is far more computationally
demanding than the NES and ∂P methods.

11Such as disorder, see the discussion in section 4.4.
12By unrestricted we mean that we put no constraints on the family of protocols over which we optimise.
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Next, we benchmark against the ’optimal’ bang-bang protocols obtained by performing an
SA search with bang-bang ansatz, like we did for the single qubit control in Chapter 2. This
time we consider bang-bang protocols in the velocity of the Majorana vL(ti), where at each
time step ti the velocity is either vL(ti) = vmax or vL(ti) = vmin. Importantly, the width of the
bangs ti+1 − ti is at least 10δt, where δt is the discretisation of the Trotter evolution of the
numerical integration method. We fix vmin = 0, like in reference [83], and optimise for several
different vmax ≤ 8vavg. We note that this sometimes means that vmax > vcrit, which is different
from [83]. The high velocity jumps in the ML protocols inspired us to follow such strategy.

(a) (b)

Regime II Regime IV

FIGURE 4.4: Control protocols for the domain wall position xL(t) (main panels) and corresponding
velocities (insets) obtained with a simulated annealing search that was restricted to bang-bang proto-
cols. We plot both the results for the high velocity regime I (panel a) and slow adiabatic regime IV
(panel b). We observe that in both cases the optimal bang-bang protocols start to approximate the
protocols found with the ML methods (c.f. Fig. 4.3). For these simulations we have the same Kitaev
chain parameters as in Fig. 4.3.

The resulting infidelity values of these optimisations are reported in Table 4.1 and the pro-
tocols for regimes II and IV given in Fig. 4.4. We see that for large enough maximum velocity
vmax and small enough bang widths ti+1 − ti the bang-bang protocols start to approximate the
jump-like ML protocols in regimes I, II, and III, and the superadiabatic protocols in regime IV.
The infidelity performance of these protocols is slightly worse compared to the NES and ∂P
protocols in the non-adiatbatic regimes. Therefore, we conclude that the bang-bang protocols,
as far as they can be still called bang-bang, only approximate the ML and superadiabatic pro-
tocols and are thus not optimal in this setting.13 However, it remains interesting to investigate
if the optimal protocols become of bang-bang form when the slope of the domain wall, σ in
V (x), is increased, such that the control becomes more linear, or when we look at a disordered
system.

13An important remark here is that one needs to take into account that the bang-bang protocols are restricted
by a maximum and minimum velocity, whereas for the ∂P and NES unrestricted methods we did not need to
impose this limitation.
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The final protocol we compare our ML results to is part of the family of superadiabatic
protocols studied in reference [144, 164]. This is based on the idea of slowly ramping up and
down the velocity of the Majorana, while following the moving-frame ground state. This can
be expressed mathematically by the following domain wall velocity

vL(t) =


vmax

1−cosωt
2

, 0 ≤ t ≤ π
ω

vmax,
π
ω
≤ t ≤ τ − π

ω

vmax
1−cos(ωt−ωτ)

2
, τ − π

ω
≤ t ≤ τ

0, otherwise

(4.2)

in which ω is the parameter that determines how quickly the velocity is accelerated to vmax.
For true superadiabaticity one needs to choose ω � ωres. In order to determine the best ramp
up-down benchmark protocol, in each of the four regimes separately, we scan over a range
of vmax and ω, and pick the protocol with the lowest infidelity value. In regimes I, II and
III this leads to a very high ω with vmax ≈ vavg, while in regime IV, by definition, there is
enough time for this protocol to work. This can be seen in Table 4.1 where only in regime
IV it performs well. However even in this regime it performs slightly worse than the ML
protocols. This is likely due to the fact that NES and ∂P have more freedom to make small
refined changes compared to the parameterised ramp up-down protocols. For example we saw
that the NES and ∂P protocols in regime IV start with a small, but nonzero, velocity vL(0)

while the parameterised protocols always need to start at zero velocity.

4.2.3 Extension to the Proximity Coupled Superconductor

To end this numerical results section, we show here that for the proximity-coupled super-
conductor model of Eq. (3.10) we obtain qualitatively similar-looking protocols in all four
regimes. For this we apply the same ∂P and NES algorithms and use the same parame-
terisations for the control of the domain wall as we did for the optimisations of the Kitaev
chain. In practice, this means we only change the Hamiltonian14 in the underlying numerical
simulations for the time evolution and keep all other the components of the numerical optimi-
sation algorithms the same. However, as a consequence of the extra spin degree of freedom,
the proximity-coupled superconductor Hamiltonian [Eq. (3.10)], for a fixed lattice size N , is
twice as big as the Kitaev chain Hamiltonian. This means that the simulations become compu-
tationally more expensive and the optimisation more challenging. Nevertheless, we find that
∂P and NES still converge relatively quickly (O(102) update steps) to the optimal protocols.

The results for these optimisations are shown in Fig. 4.5 for two different sets of param-
eters of the proximity-coupled semiconducting nanowire model. One set of parameters (in
panels a-h) is within the Kitaev chain limit (high B-field). The other set of parameters is

14Note that the control is still encoded in the external potential profile V (x, t) in Eq. (3.14).
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Regime IIIRegime II Regime IVRegime I

NES

(i) (j) (l)

(m) (o)

(k)

(n) (p)

(a) (b) (d)(c)

NES
(g)(f) (h)(e)

9e-6

FIGURE 4.5: Control strategies xL(t) for the domain wall of the Majorana transport in the proximity
coupled semiconducting nanowire obtained after minimisation of the infidelity Iτ with Differentiable
Programming (top rows, panels a-d, i-l) and Natural Evolution Strategies (bottom rows, panels e-h,
m-p) in the four different regimes. The optimisations were performed for two sets of parameters. The
top two rows (panels a-h) correspond to simulations with the parameters inside the Kitaev chain limit
N = 100, µ = 0.0, w = 1, ∆ = 0.8, B = 2, α = 0.8, Vheight = 30.1, and σ = 1. For the
bottom two rows (panels i-p) we have the parameters N = 100, µ = −0.55, w = 1, ∆ = 0.5,
B = 1, α = 1.0, Vheight = 30.1, and σ = 1, which are outside the Kitaev chain limit. For both of
these the external constraint parameters (l, τ) for the different regimes in chronological order are given
by {(4.32, 12), (4.95, 22), (0.48, 8), (2.4, 40)}. The resulting protocols are qualitatively similar to the
protocols obtained for the Kitaev chain in Fig. 4.3.

outside the Kitaev limit, but in a phase where there are still localised Majoranas. We choose
the parameters in both cases such that vcrit is approximately the same as for the simulations of
the Kitaev chain. This means that a direct comparison with the previous results for the Kitaev
chain in Fig. 4.3 is possible for the same external constraint parameters (l, τ). We observe in
all panels that the optimal protocols for the movement of the Majoranas xL(t) are qualitatively
similar-looking to the protocols obtained for the Kitaev chain. That is, in regimes I, II and III
we obtain a protocol comprising two pulses at the boundaries that consist of forward jumps
and backward motions over short periods of time. In between the jumps this protocol has a
period of on average constant motion with a velocity below vcrit. In regime IV, we again obtain
the smooth adiabatic ramp up-down protocols with a low ground state infidelity.
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One difference is that in this case the boundary jumps in the protocols in the non-adiabatic
regimes are of smaller magnitude compared to the protocols in Fig. 4.3. Furthermore, for the
parameters outside the Kiteav chain limit the initial and final pulses consist of three parts; a
forward jump followed by a backward jump and again a forward jump. The performance of
all these protocols as quantified by the infidelity is similar however, and even slightly better
in regime II, compared to the Kitaev chain. This means that despite those small differences
in protocols the performance is still robust and our results from the Kitaev chain generalise to
the more complicated proximity coupled nanowire model.

4.3 The Jump-move-Jump Control Strategy

Thus far, we have obtained control strategies for Majorana zero modes with ∂P and NES and
shown that they outperform the previously studied bang-bang and superadiabatic protocols.
In particular, in the short time regimes I,II, and III, we found an intriguing jump-like strategy
with low infidelities for relatively long movement distances. In this section we aim to uncover
the underlying (physical) working mechanisms for the success of this strategy.

To this end, and to make (semi-)analytical analysis possible, we simplify the ML strategies
and focus on a simple model strategy. The simple model that we consider, which we call the
jump-move-jump (JMJ) strategy, is shown in Fig. 4.6 and encapsulates the main features of
the ML protocols. At the start of this strategy, there is a pulse15 in which the Majorana is
kicked instantaneously forward over a distance ∆xforward and then pulled back over a distance
∆xback in a time ∆tback. This initial pulse is followed by a motion at a constant velocity v. At
the end of the protocol, a pulse similar to the first one is performed but in the reverse order;
a movement backward over a distance ∆xback followed by a final instantaneous kick in the
position of size ∆xforward. Note that, while we restrict here to exactly the same initial and final
jumps, it is straightforward to generalise to unequal jump sizes.

In the following analysis16 we will show that we can derive an approximate expression for
the infidelity Iτ of this protocol based on some of the system parameters. We will evaluate the
JMJ strategy in the moving frame and treat the instantaneous jumps by invoking the sudden
approximation. We will first stick to protocols in which ∆xback = 0 and refer to this as the
bare JMJ strategy. The scenario when ∆xback 6= 0 we refer to as the dressed JMJ strategy and
will be treated numerically.

15Note that by jumps in jump-move-jump we refer to these pulses. When backward motion is included these
can be seen as dressed jumps.

16This follows the derivation presented in [73] coauthored by the main author of this thesis.
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FIGURE 4.6: (a) The JMJ strategy xL(t) inspired by the protocols obtained with ∂P and NES in
regimes I, II, and III. This model strategy consists of three core parts; two dressed jumps consisting
of forward and backward motions at the start and end of the protocol and a period of nearly constant
motion between the jumps. (b) Infidelity surface of the JMJ strategy as a function of the forward
∆xforward and backward ∆xback jump sizes in regime I. The red line indicates where ∆xforward is equal
to the total movement length l = 4.32. Larger jump sizes thus end up outside the target range xL(t) >
xB . We set ∆tback = 0.07 and the parameters for the Kitaev chain simulations of the infidelity are the
same as in Fig. 4.3.

4.3.1 An Expression for the Infidelity of the Bare JMJ Control Strategy

When ∆xback = 0 the sizes of the initial and final forward jumps of the JMJ strategy can be
expressed as ∆xforward = (l − vτ)/2 ≡ δ with v the constant velocity of the middle part of
the protocol. This means that we can just focus on v and the other parameters are fixed by
the external constraints (l, τ). To evaluate this strategy in the moving frame we recall from
section 3.3.1 that the entire system (Majorana wire) needs to move at the same velocity. For
this reason we will focus on the case in which both the left and right Majorana are moved
with the JMJ strategy. That is, the right domain wall in V (x, t), Eq. (3.14), becomes time
dependent as well via xR(t) := xL(t) + Cx, where Cx is the fixed distance between the two
Majoranas. During the middle part of the protocol the whole system thus moves at a velocity
v.

The effect of the initial forward boundary jump xL 7→ xL = xA + δ is evaluated by
expanding the infidelity in terms of the instantaneous eigenbasis

∣∣ψiA+δ

〉
of the Hamiltonian

right after the first jump, which gives

Iτ = 1−

∣∣∣∣∣∑
i

〈ψB|Uτ
∣∣ψiA+δ

〉
〈ψiA+δ|ψA〉

∣∣∣∣∣
2

, (4.3)

= 1−

∣∣∣∣∣〈ψB|Uτ ∣∣ψ0
A+δ

〉
〈ψ0

A+δ|ψA〉+
∑
i>0

〈ψB|Uτ
∣∣ψiA+δ

〉
〈ψiA+δ|ψA〉

∣∣∣∣∣
2

. (4.4)

HereUτ = T e−i
∫ τ
0 H(t)dt is the time-evolution operator that follows the time dependence of the

control strategy. Note that H(t) can correspond to the Kitaev chain Hamiltonian in Eq. (3.1)
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or the proximity coupled nanowire model in Eq. (3.10) and that our analysis does not depend
on it. We assume that after this initial kick we are still close to the ground state

∣∣ψ0
A+δ

〉
and in

the following ignore17 the comparatively small contributions coming from the excited states
(i > 0) in the sum in Eq. (4.4).

During the move part of the protocol the system is static in the moving frame and we insert
projections onto the ground state |ψ0

v〉 of the moving frame HamiltonianHv in Eq. (3.16). This
results in the approximate18 infidelity

Iτ ≈ 1−
∣∣〈ψB|ψ0

v〉
〈
ψ0
v

∣∣Uτ ∣∣ψ0
v

〉
〈ψ0

v

∣∣ψ0
A+δ

〉
〈ψ0

A+δ |ψA〉
∣∣2 . (4.5)

Importantly, the effect of the unitary operator Uτ in the moving frame is trivial (up to some
phase) and we have | 〈ψ0

v |Uτ |ψ0
v〉 |2 = 1. Then, we account for the final instantaneous jump

to xB by projecting onto the instantaneous ground state
∣∣ψ0

B−δ
〉

of H with the domain wall at
position xL = xB − δ, which gives

Iτ ≈ 1−
∣∣〈ψB|ψ0

B−δ〉
〈
ψ0
B−δ
∣∣ψ0

v〉〈ψ0
v

∣∣ψ0
A+δ

〉
〈ψ0

A+δ |ψA〉
∣∣2 . (4.6)

With these projections we have reduced the expression of the target state infidelity for the
bare JMJ strategy to a product of four different overlaps. The amplitudes

〈
ψA(B)

∣∣ψ0
A(B)±δ〉

come from the boundary jumps in position and can be computed numerically for our model
H. We find that they can be characterised by a Gaussian19

Oδ ≡
∣∣〈ψA(B)

∣∣ψ0
A(B)±δ〉

∣∣2 ∼ e
−
(

δ
ε+αλF

)2
, (4.7)

in which λF = 2π/kF is the Fermi wavelength and (α, ε) are two fitting parameters that
depend on the model. For the Kitaev chain with ∆ = 0.3 with two-wall movements (α, ε) are
(−0.12, 0.3) and for one-wall movement (−0.33, 0.44).

The other two overlaps, 〈ψ0
A(B)±δ|ψ0

v〉, correspond to boosts from the static-frame ground
states to the moving frame. To estimate these contributions we use the results from refer-
ence [164], which showed that there is a (relativistic) kinetic energy correction E ∼ γMv2 to
the moving-frame ground state with effective mass M ∝ kF/∆ and γ =

√
1− v2/v2

crit. From
this we approximate the ground state overlaps as

Ov =
∣∣〈ψ0

A(B)±δ
∣∣ψ0

v〉
∣∣2 ∼ 1− β

( ν
∆

)2

γ, (4.8)

in which the parameter β needs to be determined from a to our model. For the Kitaev chain

17This assumption possibly breaks down when δ becomes very large.
18Approximate because we do not include the excited state contributions in Eq. (4.4). The projection into the

moving frame is exact.
19Note that in this overlap the specific starting and target positions xA and xB do not matter.
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FIGURE 4.7: (a) Fidelity Fτ and overlaps of the various contributions to the expression Eq. 4.9 for
the JMJ strategy compared to a numerically obtained fidelity from simulations of the Kitaev chain. In
here we set (l, τ) = (4.32, 12) (regime I) and move only the left domain wall (i.e. β = 0.065). The
other parameters are the same as in Fig. 4.3. Our approximate analysis (solid blue line) captures the
behaviour of the JMJ strategy (blue stars) well for low velocities v but breaks down near vcrit = ∆.
(b) Infidelity surface obtained after maximisation of Eq. 4.9 for a range of parameters (l, τ). The red
dashed line shows where vavg = vcrit and can be used to distinguish the critical regime I from the other
control regimes. For these results we have used the same Kitaev chain parameters as in panel (a).

we find β ≈ 0.13 for motion with two walls and β ≈ 0.065 for motion with one wall. It is
straightforward to generalise this equation and the fitting parameters to the proximity-coupled
semiconducting nanowire model.

By combining these contributions we thus arrive at the following expression for the infi-
delity

Iτ = 1− |OδOv|2 = 1− exp

{(
− (l − vτ)2

2(ε+ αλF )2

)}
×
[
1− β

( ν
∆

)2

γ

]2

, (4.9)

in which we have substituted δ = (l − vτ)/2 in Oδ. This equation can be used to make
estimates for the value of the infidelity of the JMJ strategy based on the fitting parameters and
the external constraint parameters. In Fig. 4.7 (a) we show the estimated values for the fidelity
Fτ = 1−Iτ in regime I and compare it to numerical simulation data of the Kitaev chain. We
observe that up to velocities that are very near vcrit = ∆ the predicted values match closely
with the simulation data. The break down near vcrit is expected as we have put a harsh penalty
on moving at the critical velocity by our approximation for Ov in Eq. (4.8).

In the same figure we also show the individual contributions Oδ and Ov to the infidelity.
We observe that at the specific velocity v ≈ 0.85vcrit the product of these two contributions and
hence Fτ is maximised. This means that to find the optimal bare JMJ strategy one carefully
needs to choose v such that the product of the two contributions is maximised. This can
be interpreted as a trade-off between the amount of fidelity lost by the jumps (1-Oδ) and the
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fidelity lost due the constant velocity motion (1-Ov). The maximisation can be done efficiently
for a wide range of parameters (l, τ) for which we show results in Fig. 4.7 (b). Here we see
that the bare JMJ strategy in the critical regime I (above the red dashed line) gives infidelity
values Iτ > 0.25 while in regimes II and III (below the red dashed line) it performs well with
infidelities of O(10−2) and smaller.

4.3.2 The Dressed JMJ Control Strategy

In addition to the instantaneous forward jumps, a key feature of all the ML protocols in
regimes I, II and III are rapid backward motions for short periods of time. This motivates
us to dress the bare JMJ strategy with additional backward motions over distances ∆xback 6= 0

as shown in Fig. 4.6 (a). In this section we investigate the effect of these dressings and show
numerically that they allow to better target the moving frame ground state during the move

part of the (dressed) JMJ control strategy.
In Fig. 4.6 (b) we show the target state infidelity Iτ of the dressed JMJ protocol in regime I

as a function of ∆xforward and ∆xback. We observe a clear diagonal structure in the surface plot,
which shows that there is an optimal combined jump size ∆xopt = ∆xforward−∆xback where the
infidelity of the JMJ protocols is minimised. Once ∆xopt is fixed the magnitudes of ∆xforward

and ∆xback themselves only slightly change the infidelity value, i.e. ∆xopt is within the valley
of the infidelity surface Iτ (∆xforward,∆xback). This indicates that the rationale behind the
dressed JMJ strategy is the same as for the bare JMJ strategy and the purpose of the dressed
jumps is to bring20 the system in a state moving at a particular constant velocity v. Note that
when ∆xback = 0 the optimal ’combined’ jump size ∆xopt reduces to the optimal forward
jump, ∆xforward, that minimises the infidelity of the bare JMJ strategy in Eq. (4.9).

In order to understand the benefits of the backward motions for targeting a moving-frame
ground state we compute the instantaneous infidelity

I(t) = 1− | 〈ψ(t)|ψ0
ins(t)〉|2, (4.10)

with |ψ(t)〉 = T e−i
∫ t
0 H(t)dt |ψA〉 for various dressed JMJ protocols in the lab and moving

frames of the system. For the lab frame we use the standard Kitaev chain HamiltonianH(t) =

H(t) (Eq. 3.1) with |ψ0
ins(t)〉 its instantaneous ground state at time t. The lab frame results are

shown in Fig. 4.8 (a). In here we see that while the bare JMJ strategy (in red) initially has a
lower I(t) over time the dressed JMJ protocols start to perform better. At the final time t = τ

the dressed protocols have a lower target state infidelity Iτ = I(τ).
For the moving-frame analysis we use the moving-frame Hamiltonian H(t) = Hv(t),

Eq. (3.16), with v equal to the velocity of the middle part of the protocols. Importantly, to
make a fair comparison we scan over different dressed JMJ protocols that all have the same

20Or get the system out in case of the final dressed jump.
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FIGURE 4.8: Instantaneous infidelity I(t) of the dressed jump-move-jump strategy in (a) the lab frame
and (b) the moving frame at a velocity v. The inset shows the control protocols xL(t) that were used
for the simulations in the main panels. The best protocol measured by the target state infidelity Iτ is
given in blue and the bare JMJ protocol in red. The green curves correspond to the protocols with the
largest backward motion ∆xback. The main observation is that the dressed protocols are able to better
target the moving frame ground state.

v, see the inset in Fig. 4.8 (a). Here |ψ0
ins(t)〉 is the instantaneous ground state of Hv(t). The

results for this exercise are plotted in Fig. 4.8 (b), where we see that all the protocols dressed
with backward motions have a lower instantaneous infidelity I(t) than the bare protocol. This
is interesting and shows that the dressings ∆xback 6= 0 can be used to better target the moving-
frame ground state.

Then, to find the optimal dressed JMJ protocols that minimise the target state infidelity in
the different Majorana motion regimes, we scan over the parameters {∆xforward,∆xback,∆tback}
and select the values corresponding the lowest infidelity value that we encounter. In Fig. 4.9
we show the JMJ protocols obtained in this way in regimes I, II and III. In regimes I and
III we observe a large dressing effect with jumps that go outside the target ranges, while in
regime II this effect is less pronounced. The infidelity values of these protocols are similar to
the values of the optimal ML protocols, with only small differences of O(10−2). This shows
that the optimal parameterised dressed JMJ protocols that we analysed are competitive with
the protocols obtained with our numerical optimisation methods.

4.4 The Effect of Disorder

In section 3.2.3 we discussed that the real-world implementation of Majorana based topolog-
ical quantum devices is hampered by the presence of disorder and other imperfections in the
experimental setup. For this reason, in this section, we will look at the robustness of our op-
timal transport protocols with respect to disorder in the Majorana nanowires. We will show
that the jumps of the JMJ strategy are robust, whereas during the move part of the protocol the
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IIII II

FIGURE 4.9: The optimal dressed JMJ strategies xL(t) in regimes I, II
and III. The parameters (∆xforward,∆xback,∆tback) for these protocols are
{(7.992, 7.506, 0.05), (1.909, 1.550, 0.31), (0.548, 0.457, 0.33)} and the parameters of the Ki-
taev chain simulations to compute Iτ are the same as in Fig. 4.3. We see that the protocols in regimes
I and III have a large forward jump that goes outside the target range xL(t) > xB while the jumps in
regime II stay within the target range. The performance Iτ of these protocols is competitive with the
ML protocols in Fig. 4.3.

infidelity gradually increases over time. The optimal superadiabatic protocols in regime IV,
in contrast, are not robust and, for sufficiently strong disorder strength, start to perform worse
than the naive linear benchmark protocol21.

The effect of disorder in the wires [170, 171, 172] is modelled by consider the Kitaev
chain HamiltonianH(t) with a disordered chemical potential

µdis(x) = µ(x) + µ̃(x). (4.11)

Here, we have added the Gaussian noise term µ̃(x) with mean 0 and standard deviation λ
to the clean µ(x). As a consequence of this noise, the effective coherence length ξeff of the
Majoranas increases and is given by

1

ξeff
=

1

ξ
− 1

2ldis
(4.12)

in the continuum limit of the model. The length ldis = v2
F/λ

2 is the characteristic disorder
length scale. This means that in the presence of disorder the Majoranas effectively delocalise.
When the disorder strength is such that 2ldis = ξ the effective Majorana coherence length
diverges ξdis 7→ ∞ and the topological phase is destroyed.

To assess the robustness of our optimal protocols obtained in the clean system we simulate
them in this disordered Kitaev chain and compute the disorder averaged infidelity measures
〈I(t)〉 and 〈Iτ 〉. In Fig. 4.10 (a) we show the instantaneous infidelity 〈I(t)〉 for various dis-
order strengths for the optimal JMJ protocol in regime I. We observe that the value of 〈I(t)〉
right after the first jump does not change (visibly) with increasing disorder strength. This is

21Note that here again we follow the results and discussion published in [73] coauthored by the main author
of this thesis.
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FIGURE 4.10: Robustness of the optimal JMJ and superadiabatic protocols with respect to disorder
in the chemical potential µ̃(x). In panels (a) and (b) we plot the disorder averaged instantaneous
infidelity 〈I(t)〉 of the protocols in regimes I and IV respectively. We observe that the jumps of the JMJ
strategy are robust whereas during linear motion and also superadiabatic accelerating motion 〈I(t)〉
increases with disorder strength λ. In (c) we show the disorder averaged target state infidelity 〈Iτ 〉
versus disorder strength in all four regimes. In here we benchmark against a linear protocol (orange)
and see that while the optimal JMJ protocols outperform the linear protocol at all λ, the superadiabatic
strategy becomes worse than linear motion near λ ≈ 0.2. For all these simulations we used 500 noise
realisations and the parameters of the Kitaev chain were the same as in Fig. 4.3.

also the case for the final jump, although it is a bit harder to observe. During the move part of
the protocol, 〈I(t)〉 increases slightly with disorder strength. This increase could be explained
by the lower critical velocity [173] in the disordered system resulting from the fact that we are
pushing the Majorana through a rough potential landscape. Another possible reason could be
that the longer ξeff implies that the Majoranas are less robust to moving at a specific constant
velocity v.

As a consequence of this increase, the final averaged infidelity 〈Iτ 〉 increases approxi-
mately quadratically22 with the disorder strength as shown in Fig. 4.10 (c). For low disorder
strengths λ ≤ 0.1 the increase is still small with a difference of about O(10−2). In contrast,
for strengths λ > 0.2 the infidelity shoots up significantly to values of 〈Iτ 〉 > 0.4. Despite this
the optimal JMJ protocol still outperforms a naive linear benchmark protocol at all disorder
strengths. This indicates that lowering the velocity v < vavg of the middle part of the protocol
by dressed initial and final jumps is still beneficial compared to just constant motion at vavg.

22Note that this is observed for all regimes but we are still focusing our discussion in this paragraph on
regime I.
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For the other regimes we find a similar quadratically increasing behaviour of 〈Iτ 〉 as a
function of the disorder strength. In regimes II and III, the optimal JMJ protocols seem to
be still robust since they outperform the linear protocol at all λ. In regime IV, where in the
clean case we have an optimal superadiabatic protocol, we find that this quadratic increase,
at an disorder strength of about λ ≈ 0.25, leads to an infidelity value that is worse than the
value of the linear benchmark protocol. From the 〈I(t)〉 plot in Fig. 4.10 (b) we see that this
break down of the performance of the protocol in regime IV comes from a gradual build23

up of fidelity loss over time that does not find its way back to the target ground state. This
possibly means that the superadiabatic ramp up-down protocols are not able to slowly bring
the disordered system in a moving frame. It could be that the slow ramping up of the velocity
needs to be done over a much longer time frame. Another possible explanation is that the
maximum velocity of the protocol is higher than the new effective (disordered) vcrit.

Although these results look promising for the JMJ control strategy24, we cannot claim that
it is also the optimal strategy in the disordered system. Moreover, it is still open question if
there is a better strategy than linear motion in regime IV. To answer these questions, we need
to perform numerical optimisations with the ML or SA methods directly in the presence of
disorder. This can be achieved by using the disorder averaged target state infidelity 〈Iτ 〉 as the
cost functional. However, we remark that simulating the averaged infidelity is computationally
expensive, which means that such an optimisation becomes expensive and challenging.

4.5 Summary

In this chapter we looked at the optimisation of the transport of Majorana zero modes in su-
perconducting nanowires. We formulated the transport problem in the form of a mathematical
optimisation problem that can be tackled by the ML optimisation techniques ∂P and NES. We
defined four different Majorana motion control regimes depending on the movement length
and total time of the transport. With the ML methods we found in the non-adiabatic regimes
I,II and III a novel counter-intuitive strategy that makes use of dressed jumps at the start and
end of the protocol and in between the jumps has a period of nearly constant velocity motion.
In the long-time regime IV we recovered the optimal superadiabatic ramp up and down proto-
cols that were studied in previous works. In addition, we showed that the ML protocols retain
their high efficiency in the proximity-coupled semiconducting nanowire model and that they
outperform parameterised bang-bang protocols. Interestingly, from an SA search restricted to
bang-bang protocols, we obtained optimal bang bang protocols that mimic the behaviour of
the optimal ML protocols, but with a lower performance in regimes I, II and III.

23For which the rate depends on the disorder strength.
24And not so good for the superadiabatic protocols.
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On a theoretical level we analysed a parameterised JMJ model strategy for the ML proto-
cols in the non-adiabatic regimes. We found that without dressing the jumps with backward
motions an approximate expression for the infidelity can be derived by evaluating the protocol
in the moving frame. Thus, we learned that a possible explanation for the strategy is that the
jumps try to target the steady moving-frame ground state during the middle part of the proto-
col. The additional backward motions can then be used to further maximise this overlap. By
optimising these jumps we additionally showed that we can obtain JMJ strategies that perform
competitively to the ML protocols and are robust to weak disorder in the wire.

For future work it will be interesting to investigate if the JMJ strategy has a connection
with other protocols studied in the optimal control literature. The bare JMJ strategy could
possibly be seen as a special form of a bang-off-bang protocol [174, 80]. Another example of
a possibly related family of protocols are the so-called bang-anneal-bang protocols that were
discovered in [175] for a quantum annealing problem. Analysing the performance of these
protocols in the Majorana nanowire or another many-body system will likely tell if they are
related in some way. Furthermore, our theoretical analysis for the JMJ strategy can potentially
shed light on the physical working mechanisms behind the success of these protocols.

Another direction to explore is to apply the optimisation methods to different setups for the
braiding of Majoranas and compare the performance of the obtained control protocols. One
could, for example, think of the earlier discussed measurement-only or controlled coupling
schemes. To apply NES to these schemes one needs to define a specific cost measure that
encodes the control objective for which the value can be determined in some way, either
numerically or experimentally. In addition, for ∂P one needs to have a numerical model of
the cost measure that one can differentiate through. The advantage of ∂P and NES is that
any potential additional constraints of these setups or a combination of different performance
measures can be easily incorporated within the cost functional.

Lastly, from an optimisation perspective it will be interesting to compare the (computa-
tional) efficiency of different RL optimisation algorithms or numerical optimal control meth-
ods to the efficiency of the NES and ∂P methods discussed here. We saw for example that,
compared to the SA method, the ML methods ∂P and NES require much less numerical eval-
uations of the infidelity. It remains to be seen how many evaluations other ML algorithms
such as the Watkins Q-learning algorithm [76] and the Policy Gradients [77] need, and if
they can do better. To make definite statements about which optimisation methods has the
highest efficiency, however, one needs to have a proper understanding of the convexity of
the Majorana-control cost landscape. Investigating this landscape and how it changes in the
presence of disorder would be another interesting avenue for future studies.
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Chapter 5

The Effect of Repulsive Interactions on
the Control of Majorana Zero Modes

In the last two chapters we looked at controlling Majorana zero modes in superconducting
nanowires. For this we made use of a mean-field description for topological p-wave super-
conductivity via the Kitaev chain and proximity-coupled superconductor lattice models. Here
the system can be described effectively by a set of non-interacting quasiparticles because the
Hamiltonian is quadratic in the creation and annihilation operators c(†)

x for the electrons. This
has several advantages since the mean-field model can be solved and simulated numerically
without requiring access over the full many-body Hilbert space. This means that we can ef-
ficiently optimise the ground-state infidelity and obtain control strategies for the transport of
the Majoranas.

To make contact with real-world topological quantum devices, however, it is important to
investigate possible additional effects caused by interactions [176, 177, 178, 179, 180, 181]. It
remains to be seen, for instance, which aspects of the jump-move-jump (JMJ) control strategy
for Majorana transport are robust and if the target state fidelity does not rapidly decrease to
zero in the presence of interactions. Furthermore, one might also reasonably worry about
the possibility for completely new types of interaction driven qubit errors [19]. Such errors
could be seriously troublesome if they lead to undetectable corruption or decoherence of the
topologically protected quantum information. One example of such an error is a dynamically
generated phase error between the even and odd parity sectors of an interacting topological
system. These phase mismatches can occur due to interaction driven energy splittings [180,
182] between the bulk energy modes as explained in Fig. 5.1.

In this chapter, we investigate these possible additional interaction driven effects, and show
that, in fact, a (large) part of the intuition gained for the mean-field models can be carried over
to an interacting model for topological superconductivity. Specifically, we focus on the effects
of a screened (coulomb) interaction [183, 184, 39] between two neighbouring electrons on the
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Even Odd

FIGURE 5.1: As a consequence of the presence of interactions [ux 6= 0 in Eq. ( 5.1] splittings occur
between the excited states of different topological sectors, here labelled e for the even parity sector and
o for the odd parity sector. This opens up an apparent phase error loophole if a local process δL(t) is
able to couple the protected ground states with the bulk energy modes (yellow arrow). During such
a process relative dynamical phases e−iεjt between the sectors are picked up in the bulk which when
returned back to the ground-state manifold |0〉e and |0〉o potentially leads to an undetectable phase
error in the topological qubit. In this chapter we show based on TQO that this error does not happen
for times shorter than a time proportional to the system size L.

lattice. We model this by adding the term

HI =
N−1∑
x=1

uxc
†
xcxc

†
x+1cx+1 (5.1)

to the non-interacting Kitaev chain HamiltonianH0 of Eq. (3.1). ux is the interaction strength,
which for positive values is repulsive. It can be seen that this interaction term is not quadratic
in the creation (annihilation) operators, which means that the simulation of the interacting
system is a nontrivial and computationally expensive task.

By using tensor network simulation techniques for this interacting system we show nu-
merically that the jumps in the jump-move-jump strategy are robust, whereas during the
move part the ground-state fidelity decreases with increasing interaction strength ux1. More-
over, we show,2 by using an argument based on the topological quantum order (TQO) prop-
erty [48, 185, 186], that the potential additional phase error described above is suppressed
with the size of the system L, such that by making the system longer it be can effectively
removed. This means that the phase error occurring in this interacting system is not any dif-
ferent from the same error in the non-interacting (mean-field) system. This rather peculiar
result can be used to derive constraints on the bulk energy splittings between excited states in
a complicated interacting many-body system [74].

We have structured this chapter as follows. In section 5.1 we show that the interacting

1These results were published in [73], coauthored by the main author of this thesis.
2This will be an extended discussion of the results presented in [74], coauthored by the main author of this

thesis.
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Kitaev chain model inherits the TQO property from the non-interacting model, which means
that it retains some of the useful properties of topological quantum computation. To make this
argument, we will formally define TQO and discuss a notion called quasiadiabatic continua-
tion. In section 5.2 we show the consequences of the interacting term on the energy spectrum,
including the bulk energy splittings between different topological sectors. Afterwards, in sec-
tion 5.3, we present numerical results of the various protocols for Majorana transport, such as
the JMJ strategy that we discussed in the last chapters, but now in the presence of interactions.
In section 5.4 we then show by using the TQO property that the bulk energy splittings do not
lead to any additional phase error. Finally in section 5.5 we comment on the consequences of
this result for the bulk energy spectrum and conclude.

5.1 Topological Order and Quasiadiabatic Continuation

The ground-state degeneracy and the protection against local perturbations that make some
topological systems so interesting for the application in quantum computation are a conse-
quence of a deeper, mathematical, property known as topological quantum order (TQO) [48,
185]. In this section we formally define the TQO property and show that the non-interacting
Kitaev Chain Hamiltonian, H0, possesses it. Then we show how the interacting model H =

H0+HI inherits approximate TQO from the free model, utilising quasiadiabatic continuation.
This means that some of the (nice) features of the non-interacting model extend to the more
complicated interacting model, and also that we can use it to argue that the interaction driven
phase error is suppressed.

Before defining TQO we first need some preliminary notions and definitions. For our
arguments we consider gapped lattice Hamiltonians which are a sum of Hermitian operators
Hi that act only on nearest neighbour3 sites

H =
∑
i

Hi. (5.2)

Furthermore, we assume that we are looking at an anyonic model, which means that H has
fractional excitiations. The (interacting) Kitaev chain model H is a specific example of such
a Hamiltonian.

Since we are looking at anyon models, we can define different topological sectors cor-
responding to the different anyon flavours in the model. For simplicity we restrict here to
two topological sectors (even and odd), for which we label the ground states |e〉 ≡ |0〉e and
|o〉 ≡ |0〉o, as is the case for the Kitaev chain. However, the arguments can be generalised to
other anyon models with more than two distinct topological sectors.

3Most Hamiltonian models in condensed matter physics fall into this category. This includes both fermionic
and bosonic models. In addition, we note that we not restrict to a specific dimension d of the lattice.
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(a) (b)
TQO

FIGURE 5.2: (a) Schematic explanation of the topological quantum order property. Local operators,
such as the 2-local operator O (green region), that act within a region of size max L∗ = cL (yellow
region) have approximately the same expectation values, see Eq. 5.4, between the different parity
sectors |e〉 and |o〉. Since L∗ scales with L, we can always increase the system length L to include
larger operators O. (b) We are specifically interested in initially local time dependent perturbations
δ̃(t) whose support in space (green region) grows, by the Lieb-Robinson result [187], in time. After
a time T ∗ the support becomes larger than L∗ (non-local) and differences in the expectation values
between the sectors can start occurring. Thus, by making the system larger we can increase T ∗.

Lastly, for the definition of topological order, we also need to define what we mean by
local. We define a generic operator O to be k−local if it acts in a region of size k on the
lattice. That is, O can be written as

O =
∑

A∈S(k)

OA (5.3)

where A is a subset of the ball S(k) with radius k on the lattice, see Fig. 5.2 for an example.
The operatorsOA in the subsetA can be connected, as in a connected product of neighbouring
operators (a string), or disconnected, where OA constitutes a sum of disconnected strings of
size most k. For example, the nearest neighbour operators Hi in the generic Hamiltonian H
(Eq. 5.2) are 2−local operators.

The definition for topological quantum order is then given as follows.

Definition (TQO): Assume that there exists some length L∗ that scales with the total size

(radius) L of the system via some constant c > 0 as L∗ > cL. Then the ground states |e〉 and

|o〉 satisfy topological quantum order4 if for every local operator, O, supported in a region

S(L∗) of diameter at most L∗, we have

〈e|O |e〉 = 〈o|O |o〉+O(e−L/ξ) , (5.4)

4See Fig. 5.2 for a schematic explanation of this definition.
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for some constant ξ > 0. That is, local operators cannot be used to distinguish the two

sectors, up to exponential corrections in system size L.

To make this formal (abstract) definition more concrete we can show that the ground states
of the non-interacting Kitaev chain, H0 in Eq. (3.1), satisfy the TQO property. We recall that
within the topological phase (µ ≤ |2t|) the two degenerate ground states forH0 can be defined
as, see section 3.2.1,

|e〉 ≡
L/2∏
i=1

β†i |c-vac〉 , |o〉 ≡ β†0 |o〉 . (5.5)

Here β†0 = 1
2
(ΓL − iΓR) is the creation operator of a Dirac fermionic zero mode, and ΓL/R

are the hermitian Majorana bound state operators acting on the left and right edges of the
one-dimensional wire. We can write these Majorana operators as

ΓL = i

L∑
x=1

(
c†x − cx

)
uL(x), (5.6)

ΓR =
L∑
x=1

(
c†x + cx

)
uR(x), (5.7)

where uL(x) and uR(x) are the exponentially decaying Majorana functions at the left and
right of the system. For simplicity we consider ∆ = w and µ = 0 for which we have perfectly
localised Majoranas, i.e. uL(x) = δx,1 and uR(x) = δx,L. To show TQO we can now write

〈e|O |e〉 = 〈o| β0Oβ
†
0 |o〉 (5.8)

= 〈o| β0β
†
0O |o〉+O(e−L/ξ) (5.9)

= 〈o|O |o〉+O(e−L/ξ), (5.10)

which holds when
[
O, β†0

]
= O(e−L/ξ). Note that this is trivially true when O is not parity

preserving, in which case both 〈e|O |e〉 and 〈o|O |o〉 are exactly zero. When O is parity
preserving, one can show that 〈e/o| β0

[
O, β†0

]
|e/o〉 = O(e−L/ξ) provided thatO is supported

in a region smaller than L∗, see App. D.
The result that H0 has TQO shows that the topological encoding of quantum information

in the ground states of the non-interacting system is robust against local error processes. This
is because local perturbations O are not able to distinguish between the two distinct topologi-
cal sectors |e〉 and |o〉. Only when an excitation is able to travel from one edge of the system
to another, and effectively becomes non-local, can we start observing differences between the
two sectors. Furthermore, another consequence of the TQO property is that the ground states
of H0 are exponentially degenerate5. This can be seen from the fact that the non-interacting

5This is true for any system possessing the TQO property. So any topological system possessing TQO has a
robust ground-state degeneracy that can potentially be used to encode quantum information.
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Kitaev chain Hamiltonian is a sum of 2-local operators, which, by virtue of the TQO property,
are not able to distinguish between the two sectors. In total there are O(L) terms in the sum
which are all exponentially suppressed with L, which means that the sum is also exponentially
suppressed. For completeness, we include this calculation in detail in App. D.

We cannot use the same construction to show TQO for the interacting model H, since for
this model we technically do not have a zero energy mode.6 Nor can we obtain expressions for
the many-body ground states. However, we can show that H possesses the TQO property by
locally adiabatically7 connecting it to the non-interacting model. This construction is known
as quasiadiabatic continuation [186]. In the following will review this construction in detail
and apply it to the Kitaev chain. For formal (technical) proofs we refer the reader to [186].

In quasiadiabatic continuation we define a set of parameterised Hamiltonians given by

H(s) = H0 + sHδ, (5.11)

whereHδ is some local perturbation away from the original unperturbed Hamiltonian8H0 (the
non-interacting Kitaev chain). We tune s adiabatically from the unperturbed H(0) = H0 to
the perturbed Hamiltonian H(1) = H0 + Hδ. We denote the instantaneous eigenstates along
the process by H(s) |ψis〉 = Ei

s |ψis〉, and require that the energy gap between the ground-
state manifold and first excited states Egap(s) = E1(s) − E0(s) remains open for every s.9

Importantly, we note that we do not require or assume the states in the ground-state manifold
to be degenerate or satisfy TQO. This manifold only constitutes a set of states that is separated
by a large energy gap from the bulk states.

We can then define a special unitary continuation operator V (s) =
∑

i |ψis〉 〈ψi0| that takes
us from the unperturbed eigenstates |ψi0〉 to the perturbed eigenstates |ψis〉 of H(s). This
operator takes local operators O acting on the perturbed system into ”dressed” operators

Odres(s) = V (s)†OV (s), (5.12)

which act on the unperturbed system. This means that we can relate expectation values10 in
both pictures via 〈

ψis
∣∣O ∣∣ψis〉 =

〈
ψ0
s

∣∣V (s)†OV (s)
∣∣ψi0〉 . (5.13)

However, this does not mean that the TQO property in Eq. (5.4) of the unperturbed system
H0, directly implies TQO for the perturbed system H . This is because the dressed operators

6Here we mean that we cannot have non-interacting quasiparticles modes in this interacting system, and
hence not a zero mode. However, we can formally find zero modes defined via the commutator [188, 189].

7Without closing the gap.
8For simplicity of the argument we restrict here to the non-interacting Hamiltonian, but in full generality

quasiadiabatic continuation can be applied to any gapped system.
9We use the label i = 1 for the first excited state, with energy E1(s), above the possibly many degenerate

ground states with energy E0(s).
10Here we have not restricted to the ground-state manifold yet and i runs over all the states.
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Odres(s) are by no means local, as the unitary continuation operators V (s) involve sums over
possibly non-local eigenstates |ψis〉.

To resolve this, in [186] it is proven that Odres(s) can, in fact, be approximated by a local
operator acting within a distance of maximum size l fromO, if one allows for a small error, on
the order of O(e−l/ξ), between the expectation values of states in the ground-state manifold.
For this a special local quasiadiabatic unitary continuation operator Ṽ (s) can be defined,
which replaces the former adiabatic operator V (s). Similar to before, we can define dressed
operators as

Õdress = Ṽ (s)†OṼ (s) (5.14)

and prove11 that the expectation values of the states in the ground-state manifold are related
by 〈

ψ0
s

∣∣O ∣∣ψ0
s

〉
=
〈
ψ0

0

∣∣Q0(s)ÕdressQ
†
0(s)

∣∣ψ0
0

〉
+O(e−l/ξ). (5.15)

Here Q0(s) is some operator that only acts within the ground-state manifold, see [186]. The
important difference with Eq. 5.13 is that Õdress is an operator with a support up to length l
around the support of the original undressed operator O.

With this we can show that the perturbed system H satisfies an approximate (with error
O(e−l/ξ)) TQO condition. By quasiadiabatic continuation it follows from Eqs. 5.15 and 5.4
that, for local operators O and provided that 2l is smaller than L∗, we have

〈e|sO |e〉s = 〈o|sO |o〉s +O(e−l/ξ). (5.16)

This construction is completely general12 and only depends on the gap remaining open through-
out the whole quasiadiabatic tuning process, i.e. for every s. In particular it does not depend
on the specific form of the perturbation Hδ, as long as it is a sum of local terms. This means
that we can quasiadiabatically continue the interacting Kitaev chain Hamiltonian to the non-
interacting Hamiltonian, since Hδ ≡ HI is a sum of local nearest neighbour terms. The
exact topological order (with error O(e−L/ξ)) from the non-interacting system can thus be
connected to approximate TQO in the interacting system.

As another example of this general quasiadiabatic continuation approach, we can show
that the moving-frame Hamiltonian for the Kitaev chain in Eq. (3.16) possesses TQO for
velocities lower than the critical velocity v < vcrit. We again start from the unperturbed
Hamiltonian H0 of the non-interacting Kitaev chain. Then we define the perturbation to be
equal to the term resulting from the unitary transformation to the moving frame13 with velocity

11The proof is quite involved so we will not repeat it here and refer the interested reader to [186].
12In [186] a few examples are shown of how the degenerate ground states of the Ising model and some

fractional Quantum Hall systems are robust against small perturbations.
13This term can be obtained by Fourier transforming the diagonal term ∼ vk in Eq. (3.16) back to real (and

discrete) space.
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v, which gives

Hδ =
N−1∑
x=1

v

2i

(
c†xcx+1 − c†xcx−1

)
. (5.17)

Now, since Hδ consists only of local 2-body terms, and since the gap remains open for veloc-
ities v < vcrit, we can quasiadiabatically connect it to H0, and show that the ground states of
moving-frame Hamiltonian satisfy an approximate TQO condition.

Lastly, we remark that, although we have been focusing on the Kitaev chain model, this
construction can, in theory, also be applied to the proximity-coupled semiconducting nanowire
model. Here one again needs to start from some set of parameters of the Hamiltonian for
which one can show exact TQO. Then one can quasiadiabatically connect it, via a path in
parameter space along which the energy gap remains open, to the interacting Hamiltonian.
However, in this case, the type of interaction [183] can be different since it involves spin
degrees of freedom. Nevertheless, as long as the interaction term is local, the quasiadiabatic
continuation can be applied and an approximate TQO condition can be derived.

5.2 Spectrum of the Interacting Kitaev Chain

While the TQO property ensures that the interacting system has (up to finite size corrections)
an exact ground-state degeneracy,14 in this section we show that this degeneracy does not carry
over to the excited states above the gap, and that interactions lead to small energy splittings
between the even and odd parity sectors. We will also briefly look at the spectral gap itself
and show numerically that when the interaction strength ux becomes too strong it closes, see
Fig. 5.4. The closing of the gap is important because it means that the topological order is
destroyed, and that the quasiadiabatic continuation construction from the last section fails.

5.2.1 Interaction Driven Bulk Energy Splittings

To show how the interacting term in Eq. (5.1) leads to small energy splittings between bulk
states in the even and odd parity sectors we review here the arguments given in [180] and
[182]. Unlike for the non-interacting system, we cannot solve the spectrum exactly by finding
the quasiparticle excitations. To make quantitative statements about the excited states of the
interacting system, one therefore requires other methods, such as the Bethe ansatz [190] or
exact diagonalisation [191]. However, these methods are generally hard to apply or limited to
small system sizes. Another approach, which we adopt here, is based on perturbation theory
in which the interaction term HI is treated as the perturbation. Although this approach is

14By the same argument as for the non-interacting Kitaev chain, i.e. the fact that the Hamiltonian consists
only of 2-local terms, see App. D.
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FIGURE 5.3: In the presence of interactions ux there are small energy gaps (avoided crosses) between
energy bands with different zero mode occupancy number. These splittings result from the the matrix
elements Bnm ∼ Lnm ± Rnm that contain one zero mode operator β0 in Eq. (5.19). l ≡ Lnm comes
from the contribution of the left Majorana zero mode and r ≡ Rnm from the right Majorana zero
mode. This figure was, with permission from the main author, taken from [182].

perturbative, it allows us to show the origin of the splittings, which one can verify numerically
(see Fig. 5.3).

To give the argument for the splittings, we first expand the interaction term HI in the
eigenstates of the non-interacting system H0. We assume we have diagonalised the non-
interacting system ux = 0 in terms of the mode creation operators β†i , i.e. H0 =

∑
i(β
†
i βi −

1/2). In addition, we assume we are in the topological phase and have one exact zero mode
β†0 in the system. We can then employ the inverse BdG quasiparticle transformation15

c†x =
∑
n

U∗xnβ
†
n + Vxnβn (5.18)

to write the interactionHI in terms of the non-interacting mode operators β(†)
i . This gives

HI =
L−1∑
x=1

uxc
†
xcxc

†
x+1cx+1 =

L−1∑
x=1

Ux

[∑
k

U∗xkβ
†
k + Vxkβk

]
×[∑

l

Uxlβl + V ∗xlβ
†
l

]
×[∑

m

U∗x+1mβ
†
m + Vx+1mβm

]
×[∑

n

Ux+1nβn + V ∗x+1nβ
†
n

]
. (5.19)

Expanding out the four products in the equation above is tedious and leads to a long
expression, see [40, 180]. We recognise however that we get a large sum over terms that

15The details of the BdG formalism are discussed in App. A
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are products of a combination of four mode creation or annihilation operators, i.e. terms
∼ β

(†)
i β

(†)
j β

(†)
k β

(†)
l . We note that sometimes these products can be reduced to 2-body terms,

but we will focus here on the most general 4-body terms. In this large sum we can then
distinguish, depending on the zero modes, between three different types of terms:

1. Terms that do not contain the zero mode operators β0 or β†0, which we call (A).

2. Terms that include a single zero mode operator, which we call (B).

3. Terms that include an even multiple (two or four) of the zero mode operators, which we
call (C).

We evaluate the effect of each of these terms in the eigenbasis of the diagonalised non-
interacting system

|0n〉e , |1n〉e , |0n〉o , |1n〉o , (5.20)

in which n corresponds to the n-th many-body eigenstate (see Fig. 5.1). The first entry in
the ket corresponds to the occupancy of the zero mode. The labels e/o still distinguish the
even and odd parity sectors. We are interested in the matrix elements 〈HI〉e/o, which we can
evaluate by using the expansion in Eq. (5.19). Specifically, for the splittings, we want to know
the differences between the even and odd subspace Hamiltonians

He = 〈H〉e = Ee + Ae +Be + Ce, (5.21)

Ho = 〈H〉o = Eo + Ao +Bo + Co. (5.22)

The Ae/o, Be/o, Ce/o matrices correspond to the evaluation of the terms defined above in the
even and odd sectors respectively. Ee/o are the contributions coming from the non-interacting
Hamiltonian 〈H0〉e/o, which, by the presence of the exact zero mode, are equal in both sectors
Ee = Eo.

The contributionsAe/o, from the terms without zero mode operators, are also equal in both
sectors. This is because for these termsHI does not change the zero mode occupancy, and for
every odd parity state there is a corresponding even parity state with the opposite zero mode
occupancy. In a similar way we can argue that the terms Ce/o are the same in both sectors
because the overall occupancy of the Majorana zero mode is not changed. The terms Be/o are
different in both sectors, since they switch the occupancy of the Majorana mode. This means
that we can show that the corresponding matrix elements can be written asBnm ∼ Lnm±Rnm,
where Lnm results from the contribution of the left Majorana mode and Rnm from the right
mode.16 Importantly, the sign of the Rnm contribution depends on the sector, such that a
difference between the two occurs, see Fig. 5.3 (a) for a schematic example.

16This can be most easily seen from looking at a small example of a few bulk modes and the zero mode.
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This observation allows one to argue on a perturbative level for topologically protected
degeneracies between even and odd eigenstates in cases where there are no overlaps between
bands with different quasiparticle number [180]. Such scenarios arise when one considers the
model around the flat-band limit. However, away from this limit, when there are overlapping
energy bands with different zero mode occupancy, the even and odd parity subspace Hamilto-
nians are different. This means that the eigenvalues are also different and we get small energy
splittings (avoided crossings) between the two sectors. The zero mode in this interacting sys-
tem is therefore called a ’weak’ zero mode instead of a ’strong’ zero mode (fully degenerate
spectrum) [192, 193, 194, 195]. Despite this, we will show below, in section 5.4, that these
splittings do not lead to any additional phase error.

5.2.2 Interaction Driven Reduction in the Topological Energy Gap

Aside from inducing bulk energy splittings, the interaction term HI also reduces the size of
the energy gap Egap. Intuitively this can be understood from the idea that repulsive interac-
tions compete with the superconducting pairing interaction ∆, and hence lead to a smaller
effective energy gap (weaker superconductor). This reduction can be found for example by
again utilising mean-field theory and running some Hartree-Fock-Bogoliubov minimisation
to find the effective quasiparticles [40].

Here we make use of tensor network techniques to find the many-body spectral gap numer-
ically, see App. C. First we use the density-matrix renormalization group (DMRG) [61, 62]
to find the even and odd |e/o〉 ground states of the interacting system H in terms of matrix
product states (MPS).17 Then we evolve these MPS ground states in time by using the time-
dependent variational principle (TDVP) [59, 60], and compute the single particle Green’s
functions defined by

Ge/o(x, x′, t) = eiE0t〈e/o|U(x, x′, t)|e/o〉. (5.23)

Here the unitary operator is given by

U(x, x′, t) = (c†x′ + cx′)e
−iHt(c†x + cx). (5.24)

We fix x = 1 and we let x′ run over all L lattice sites. By Fourier transforming these Green’s
functions Ge/o in space and in time we can find the spectral correlation functions18

Ae/o(k, ω) =

∫ ∞
−∞

dte−iωt
∫ ∞
−∞

dx′e−ikx
′
Ge/o(1, x′, t). (5.25)

17DMRG can be applied (computationally) efficiently since the ground states satisfy an area law for the Von-
neumann entanglement entropy, see [196] and App. C.

18Note that in our simulations everything is discrete, so in practise we use a discrete Fourier transforms.



82 Chapter 5. The Effect of Repulsive Interactions on the Control of Majorana Zero Modes

(b)(a)

FIGURE 5.4: (a) Spectral function Ae(ω, t) as defined in Eq. (5.25) with interaction strength ux = 0.4
and other parameters µ = −1, ∆ = 0.3, w = 1, and N = 200. The Fourier transform was cutoff
in time to smoothen the resolution in energy ω. We obtain a ’w’-like dispersion with a smaller gap
and slightly larger kF compared to the non-interacting single particle dispersion (dashed line). (b) The
topological energy gap Egap = E1 − E0 as a function of interaction strength u. The gap was resolved
by computing the spectral function Ae with the same parameters,, aside from ux, as in panel (a). We
find that the gap reduces approximately linearly with the interaction strength. Note that we include
error bars on the finite interaction strength results because of the resolution of the spectral correlation
function and the manual reading of the gap.

These spectral functions Ae/o are related to the single excitation energies [183] and can be
used to determine the spectral gap as shown in Fig. 5.4. In panel 5.4 (a) we see that, even in the
presence of strong interactions ux = 0.4, we get a roughly ’w’-like looking dispersion for the
excitation energies. We recall from section 3.2.1 that this dispersion is characteristic for a p-
wave superconductor. However, this time the energy gap is significantly reduced compared to
the free non-interacting dispersion (dashed line). As we show in panel 5.4 (b), this reduction
seems to scale linearly with the interaction strength ux. As a consequence, the gap is expected
to close for sufficiently strong interactions. We note that these results are in agreement with
the results found in [176] which showed, with a different (DMRG only) technique, that the
topological gap reduces with increasing interactions.

5.3 Robustness of Majorana transport with respect to inter-
actions

The fact that in the presence of interactions ux 6= 0 the gap in the spectrum of the Kitaev chain
in topological phase gets reduced and also that the spectrum is not exactly two-fold degener-
ate anymore makes asking whether the protocols for Majorana transport that we investigated
in chapter 4 remain robust a valid question. In this section we answer this question numeri-
cally for the Jump-move-Jump (JMJ), Superadiabatic and oscillating boundary protocols by
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FIGURE 5.5: Response of the system to boundary wall oscillations for four different interactions
strengths. We see that the resonance peak distinguishing the adiabatic from non-adiabatic regimes
shifts to lower values when increasing the uniform interaction strength u. For these simulations the
left wall is oscillated with frequency ω and max velocity vmax = 0.1 and we set the other parameters
N = 50, µ = −1, w = 1 and ∆ = 0.5.

encoding them in the time-dependent potential profile V (x, t)19 in the interacting Hamiltonian
H. For these simulations we use the same TDVP-MPS time-evolution approach as described
for the spectral function. In here we time evolve the initial even and odd degenerate ground
states |e〉 and |o〉 with the time-dependent Hamiltonian H(t) that follows the Majorana trans-
port protocol. We then use these time evolved states to compute the target state infidelity20 Iτ
by contracting the time evolved MPSs, see App. C. We will now discuss the results of these
simulations for the different Majorana control strategies.

First in figure 5.5 we show the response of the system with respect to boundary wall
oscillations with frequency ω for various interaction strengths. For this we oscillate the left
domain wall position x(t) encoded in V (x, t) with a velocity v(t) = ẋ(t) = vmax cosωt.
The specific infidelity measure we use is the qubit-loss (quantum information lost from the
degenerate ground states) as defined by

Ploss(t) = 1− | 〈e|U(t) |e〉 |2 − | 〈o|U(t) |o〉 |2 (5.26)

with U(t) the unitary evolution operator of the interacting system. Similarly to the non-
interacting case discussed in section 3.3, 21 we see that a clear resonance occurs that dis-
tinguishes between a regime in which there is almost no loss of quantum information (low
frequency) and a regime (high frequency) where the loss decreases with increasing frequency.

19Recall Eq. (3.14), and see Fig. 5.7 for a two-wire Majorana-based topological qubit.
20Recall that Iτ ≡ 1 − Fτ = | 〈ψτ |U(τ) |ψ(0)〉 |2 with U(τ) the time evolution operator is a quantitative

measure for the robustness of the Majorana transport protocols as described in section 4.1.
21Compare Fig. 3.8 (a).
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The Fermi-golden rule argument also directly applies here, which means that the low fre-
quencies ω < ωres are not able to couple the ground states to the excited states since they are
smaller than the energy gap Egap. The resonance frequency is found to decrease with interac-
tion strength, which can be directly attributed to the interaction driven reduction of the energy
gap. These results can possibly be argued for by using mean-field theory, which results in an
effectively smaller superconducting pairing ∆. However, we note that contrary to simulations
with a smaller ∆, see Fig. 2 (b) in [164]22, we observe that interactions increase the qubit loss
at all frequencies.

Next we compute the robustness of the optimal JMJ protocols for the domain wall position
xL(t) in the non-adiabatic Majorana transport regimes23 with respect to interactions. For this
we take the specific JMJ protocols obtained for zero interaction strength with the exact same
jump sizes and keep all the model parameters the same except turning on the interacting
term HI . These protocols move the left Majorana from a position xA to a position xB in the
interacting system. Importantly we note that for these protocols we have not performed any
additional optimisation in the presence of interactions.

In Fig. 5.6 a) we show the instantaneous infidelity

I(t) = 1− | 〈ψt|U(t) |ψ0〉 |2 (5.27)

of the optimal JMJ in regime I for a few different interaction strengths. In here |ψt〉 is the
instantaneous ground state of the interacting systemH(t) which means that I(t) gives insight
in how far away the evolved state is from the adiabatic path. We observe that the initial and
final jumps (at times t = 0 and t = τ−dt) remain robust with increasing interactions since the
change in I(t) at these times does not (noticeably) change for different interaction strengths.
During the move part of the protocol, i.e. between the jumps, however the instantaneous
infidelity becomes gradually bigger over time and increases with interactions. This increase
means that the final target state infidelity Iτ ≡ I(τ) becomes bigger with interacting strength.
This can also be observed from Fig. 5.6 (c) where we have plotted Iτ as function of u. As
a comparison we have included data of a naive linear protocol as well which shows that the
target state infidelity of the JMJ is superior to linear motion in regimes I, II and III at all
interaction strengths.

These results can again possibly be explained on the basis of mean-field theory with a
lower energy gap and potentially lower critical velocity vcrit.24 A lower gap and critical ve-
locity imply that moving at the same constant velocity will give a larger fidelity loss. This
is especially important in regime I if the velocity of the move part becomes above the new

22Here it was found that when ∆ is reduced a topological qubit can become more resilient to high frequency
noise ω >> ωres.

23See sections 4.3 and 4.1 for the discussion of these protocols and the Majorana motion regimes respectively.
24It remains to be seen however if there is also a moving frame in the interacting system in the same way as

there is in the free system.
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(a)

JMJ 

I II III IV

(c)

(b)

Super Adiabatic

FIGURE 5.6: Overview of the robustness results of the Jump-move-Jump (JMJ) and superadiabatic
Majorana control protocols with respect to uniform interactions u. In panel (a) the instantaneous
infidelity I(t) of the JMJ protocol in regime I is plotted. We observe that the jumps are robust with
respect to interactions while during the move part the infidelity increases with interactions. Panel
(b) shows I(t) as well but then for the superadiabatic ramp up-down protocol in regime IV for the
same interaction strengths as in (a). We see that for increasing interactions the infidelity increases
significantly at all times. In panel (c) the final target state infidelity Iτ of these protocols is plotted
(blue) compared to a naive linear benchmark protocol (orange). Here for completeness we have also
included regimes II and III. We see that the JMJ strategy outperforms the linear protocol in regimes I, II
and III at all interation strengths while the infidelity of superadiabatic protocol in regime IV becomes
bigger than the linear protocol for sufficiently strong interactions. These results were obtained with
TDVP-MPS simulations of the interacting system H with parameters N = 110, µ = 1, w = 1,
∆ = 0.3, Vheight = 30.1, and σ = 1.

effective vcrit. For example for the biggest interaction strengths that we investigated the gap
is expected to be almost fully closed so that any motion would result in a significant fidelity
loss. Furthermore, on a mean-field level one generically finds that the couplings in the model
become nonuniform and thereby effectively induce disorder in the wire. Disorder as we stated
above in section 4.4 results in a strongly decreased vcrit which can also explain the increase in
infidelity with interaction strength.

In addition we also look at the robustness of the superadiabtic ramp-up and down protocols
that we found to be optimal in the long transport time regime IV after optimization in the non-
interacting system. In Fig. 5.6 (b) we show the instantaneous infidelity I(t) of this protocol as
a function of interaction strength. We clearly observe that the superadiabatic protocol seems
to break down since it is now not able to bring the infidelity fully down to zero during the
ramp-down part, i.e. towards the end of the protocol. This means that the final infidelity
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values Iτ increase drastically with interaction strength as shown in Fig. 5.6 (c). Importantly
for an interaction of about ux ≈ 0.15 the simple linear protocol obtains better values hence
being a better strategy.

Two reasons similar to the ones discussed before can be given for this observed behaviour
in regime IV. Firstly, we can argue again on the basis of mean field theory that it is caused by
a lower vcrit but this would not directly explain why linear motion suddenly becomes better.
The second possible reason is based on the fact that a lower gap means that the resonance
frequency is lower as we showed for the oscillating boundary protocol in Fig. 5.5. This
implies that the timescale τres above which regime IV is defined gets longer which could mean
that by not changing the external constraint we effectively end up in one of the other regimes.
If this is the case and we end up in one of the other regimes it is expected that the JMJ strategy
is optimal again. To test this one needs to run more simulations to determine the exact energy
gap as a function of the interactions and also optimise in a corresponding free (mean-field)
system with the same energy gap. This is quite involved and we leave this for exploration in
future studies.

We thus find that the JMJ strategy seems to be robust with respect to interactions whereas
the superadiabatic protocols lose there low target state infidelity. We note however that since
we have not performed the optimisations of the Majorana transport directly in the presence of
interactions we cannot argue that the optimal JMJ protocol from the non-interacting system is
also the optimal protocol in the interacting system. It might be that there is another movement
strategy that is able to outperform the JMJ strategy in regimes I, II, and III in the presence of
interactions that is totally different. Moreover, it remains to be seen what the optimal strategy
is in regime IV25 in the presence of interactions.

To investigate these questions one needs to embed the MPS-TDVP simulation method
for the interacting system with the ML optimisation techniques NES and ∂P used in chapter
4. For the NES algorithm this poses no additional challenges other than a potential blow up
of the computational complexity since many MPS-TDVP simulations need to be performed.
Amending the ∂P requires more effort because one needs to code up the MPS-TDVP algo-
rithm in a way such that each individual primitive is differentiable. In this regard we note that
a step towards the realisation of this has already been made in [107] which showed that the
DMRG and tensor network contraction algorithms are differentiable.

5.4 Supression of the Interaction Driven Phase Error

In addition to the effect of interactions on the qubit-loss (or infidelity) error we look at the
potential phase error in the topological ground-state manifold caused by interaction driven

25Both where we define regime IV with respect to the non-interacting gap or with respect to the effective
mean-field gap induced by interactions.
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FIGURE 5.7: The 2-wire setup of the interacting topological quantum memory we consider to investi-
gate the phase error numerically. Four Majorana Zero Modes form at the domain boundaries between
topological and non-topological regions encoded by V (x) that can be combined to make a topological
qubit. We consider noise processes δx(t) that happen on the left of the system, i.e. near the left domain
boundary, and in our arguments we effectively forget about the right wire.

splittings between bulk energy modes of different topological (parity) sectors (see Fig.5.1).
Although the phase error is possibly more violent26 and can be caused by a local perturbation
here we show that it is suppressed with the length of the system L. For this we make use of
an analytical argument based on the TQO property which we verify numerically with MPS-
TDVP simulations of a two wire interacting topological memory as shown in Fig. 5.7. We
follow here the discussion and results presented in [74] coauthored by the main author of this
thesis.

5.4.1 Analytical Argument for no Phase Error

The phase error that we consider is a dynamically accumulated phase difference between the
even and odd ground states |e〉 and |o〉 of the interacting systemH27. Specifically we say there
is a phase error if the expectation values of the two ground states

〈e|U(t) |e〉 6= 〈o|U(t) |o〉 (5.28)

differ after some time t in which U(t) is the unitary time evolution operator that describes the
evolution of the system.

Since we are interested in dephasing caused by the little energy splittings in the bulk modes
we include a local time-dependent perturbation δ(t) that over time excites parts of the ground
states to the bulk modes28. The time-dependent unitary is then defined as

U(t) = T {e−i
∫ t
0 dt
′H+δ(t′)} . (5.29)

26As it is undetectable.
27The two wire form of the potential profile V (x, t) does not matter at this point as long as we have two

degenerate topological groundstates.
28We note that without a perturbation only a phase difference can be picked up by the relative energy splitting

between the two ground states. This splitting is however exponentially small with the system size such that it
always can be removed. Also this ground-state mechanism for phase error is not unique to the interacting system.
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in which T ensures the time ordering. At this point we do not put any restrictions on the form
of this perturbation and only require that it is local, for example an oscillating left domain
boundary of the Majorana wire.

To now show that there is no phase error we need to show that this unitary acts similarly
in both topological sectors, i.e. 〈e|U(t) |e〉 ≈ 〈o|U(t) |o〉. We can achieve this by first
transforming U(t) to the interaction picture which gives

U(t) = e−iHt × T {e−i
∫ t
0 dt
′δ̃(t′)}, (5.30)

in which δ̃(t) := eiHtδ(t)e−iHt. We can then write the expectation values for the even (a = e)
and odd (a = o) sectors as

〈a|U(t) |a〉 = 〈a| e−iHt × T {e−i
∫ t
0 dt
′δ̃(t′)} |a〉

= e−iE0t 〈a| T {e−i
∫ t
0 dt
′δ̃(t′)} |a〉 , (5.31)

in which E0 is the ground-state energy which is the same in both sectors up to corrections of
order O(e−L)/ξ)29.

In this way we have removed the contribution from the unperturbed Hamiltonian H and
only need to look at the difference in expectation values of the perturbation δ̃(t) in the inter-
action picture. As this perturbation is now dressed it is not necessarily local and we cannot di-
rectly apply the TQO condition in Eq. (5.4) to argue that both expectation values are the same.
However, by the Lieb-Robinson bounds [187] the support of the operator δ̃(t), and hence the
time-ordered unitary U(t), grows approximately linear in time with the Lieb-Robinson ve-
locity vl as shown schematically in Fig. 5.2 (b). This means that when the support remains
smaller than the length L∗ we can apply the TQO condition and argue that the expectation
values〈a|U(t) |a〉 are the same up to corrections of order O(e−L/ξ). We therefore have no
phase error for times |t| < T ∗ ∼ L∗/v. Importantly the phase error can thus always be
removed by increasing the system length L since L∗ = cL.

We remark that this argument for no phase error can be extended two two separate initially
local time-dependent perturbations and also to time-indepedent local unitary kicks, see [74].
Moreover since our argument only makes use of the TQO condition in combination with the
spreading of operators by the Lieb-Robinson velocity it also applies to other gapped local
Hamiltonians with topological order.

5.4.2 Numerical Verification

To verify these analytical results we perform numerical simulations of the interacting system
H with a local time-dependent perturbation δx(t). To model a real-world topological memory,

29Recall that the ground-state degeneracy for the interacting system directly follows from the TQO condition.
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(a) (b)

FIGURE 5.8: (a) Time averaged rate of phase error as a function of the ground-state energy splitting
〈δE〉 (main panel) and the uniform interaction strength u (inset) for a few different system sizes L.
From about 〈δE〉 = 10−10 we start detecting a phase error that results from the ground-state splitting.
We however see no additional error arising that could come from the mismatches bulk levels. The
other parameters that we use are µ = −1.5, ∆ = 0.7, ω = 1.0 and vmax = 0.1. (b) Phase error as a
function of time for two time dependent perturbations x1(t) and x2(t) at the different edges of the left
wire. After a time T ∗ = L∗/v proportional to the system size the phase error suddenly kicks in. The
propagation velocity v increases with the interaction strength u. For these simulations we use L = 70,
w = 1, µ = −1.2, ∆ = 0.8, ω = 1 and vmax = 0.1.

for which 4 Majorana zero modes are required, we encode the potential profile as

Vx = Vouter[f(x1 − x) + f(x− x4)]

+ Vinner[f(x− x2)− f3(x− x3)],
(5.32)

in which we have four domain walls at the positions xi for i = 1, 2, 3, 4 and f(x) = (1 +

exp(−x/σ))−1 is a Sigmoid function. We have shown this setup schematically in Fig. 5.7 and
note that we only focus on the two parity sectors |e〉 and |o〉 corresponding to the occupancy
of the Dirac zero mode of the left wire β0 = 1

2
(γ1 + iγ2). To this end we choose the inner

potential barrier Vinner and the separation |x3 − x2| large enough such that the right wire is
effectively disconnected. We quantify the phase error as

Pphase(t) =
1

4
| 〈e|U(t) |e〉 − 〈o|U(t) |o〉 |2 (5.33)

and note that this measure is zero for no phase error.
We first focus on a single oscillating perturbation δx(t) that acts on the left of the system.

Specifically this perturbation corresponds to small oscillations of the left domain wall position
x1(t) = (vmax/ω) sin(ωt) in the potential Eq. 5.32. As we want to couple to the bulk we
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choose the frequency larger than Egap (adiabatic). In Fig. 5.8 (a) we show the results of MPS-
TDVP simulations for this perturbation in the interacting system as a function of the time-
averaged ground-state energy splitting 〈δE〉 (main panel) and interaction strength u (inset).
We observe that with our numerical methodology we are able to detect phase errors due to a
ground-state splitting up to orders as small as 〈δE〉 ∼ 10−10. When making the system size
large enough such that the ground-state splitting 〈δE〉 ∼ O(e−L/ξ) becomes negligible, we
do not detect any additional increase in Pphase.

We also consider the scenario in which we add a second time-dependent perturbation that
oscillates the right domain wall position x2(t) with the same frequency and velocity as the left
wall x1(t). In Fig. 5.8 (b) we show numerical simulation results for this case and we observe
that while Pphase first slowly increases according the the ground-state splitting after some time,
which we call T ∗, the error shoots up. This is as expected from the argument above since the
support of both of the two perturbations spreads out in time and at the time T ∗ ∼ L/(2v)

when they start overlapping we expect a phase error30. By making the Majorana wires longer
we could delay and eventually even remove this effect. Moreover we note that exactly the
same type of effect occurs in the non-interacting system which means that the observed phase
error at T ∗ is completely understood on a mean-field level and is not necessarily attributed to
the splittings between the bulk energies.

5.5 Summary and Further Work

In this chapter we have looked at the effects repulsive interactions on the control and decoher-
ence of Majorana-based topological quantum devices. We saw that the topological quantum
order property that ensures the stability of topologically encoded quantum information against
local perturbations can be (quasiadiabatically) continued from the non-interacting to the in-
teracting Kitaev chain model for p-wave superconductivity. This is important since it implies
that the ground states of the interacting system remain degenerate and hence could still be
used to make a topologically protected qubit.

Despite this we also showed that as a consequence of interactions the topological energy
gap is reduced and, crucially, that the exact degeneracy between the excited states of the
different topological sectors above the gap is broken. Although this seemed detrimental for
the robustness of Majorana based topological memories, we showed, using an argument based
on TQO, that this does not lead to any additional phase error other than the one coming from
mean-field or finite size effects. We verified this numerically with tensor network simulation
techniques. This also allowed us to show that the optimal JMJ Majorana control strategy

30Note that the propagation velocity v depends on the specific perturbations and the parameters of the system.
We can determine it numerically from the numerics by reading of the time T ∗ when the error kicks up.
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from the free system still outperforms the naive linear benchmark protocol. In contrast, the
robustness of the superadiabatic protocols gets destroyed in the presence of interactions.

This leaves us with a few different directions to explore for future work. Firstly, regarding
the robustness of the Majorana control strategies, we could incorporate the tensor network
simulation method within the ∂P and NES optimisation algorithms to search for optimal con-
trols directly in the presence of interactions. While in theory this might be possible to do,
it is questionable if this will lead to completely new insights or control strategies other than
the ones already encountered in the free system. Thus, it might be better to do a proper
mean-field analysis of the interacting term, and then optimise within the effective mean-field
system. Such an analysis could also possibly provide an explanation for the breakdown of the
robustness of the superadiabatic protocols.

Another, arguably more interesting, direction to explore are the implications of the no
phase error results. The fact that there is no phase error can be used to derive a large set
of constraints on the splittings between the excited states. This is partly explored in refer-
ence [74], coauthored by the author of this thesis, where a finite time cutoff of the Fourier
transform in the spectral correlation function Ae/0(ω, t) is used to argue that the splittings
need to be smaller than some finite resolution. It remains to be seen if more quantitative and
exact bounds can be derived. We note that making such statements is compelling since it
means that TQO, normally a ground-state property, has implications on the excited states as
well.

Lastly, it will be interesting to look at the combined of effect of disorder and interactions.
An open question still is if disorder has consequences for the time scale of the phase error. In
this respect, possibly a connection with the works [197, 194, 198] on prethermalisation can
be made.
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Chapter 6

Optimising Magnon Transport in
Disordered Spin Chains

An important aspect of quantum information processing and the quest for practical quantum
devices is the ability to transfer quantum states over large distances. For example, in the field
of quantum communication one is interested in using quantum channels to transmit informa-
tion from one sender to a receiver [71, 72]. Moreover, for quantum computing applications
one may need to transport qubit states in networks of quantum computers or between inde-
pendent qubits via some form of quantum bus, see e.g. [199]. For such transport of quantum
information over long distances a very well studied and implemented system is the optical fi-
bre [200, 201]. In these fibres photons carry the quantum information. However, for transport
over shorter distances, e.g. in quantum networks, other schemes that can be combined with
solid state architectures are more desirable.

In 2003 Bose [202] proposed to make use of spin chains with short range Heisenberg
interactions to transmit quantum information. In this proposal, the information is encoded
in a single quantum spin at one edge of the system (open boundaries) and then transported
to the final spin at the other edge, see e.g. Fig. 6.1. The main advantage of using such a
spin chain is that a wide array of (potential) experimental platforms are available to realise it
in the laboratory. This includes systems consisting of an array of Josephson junctions [65],
coupled quantum dots [67], optical lattices [64] and also atomic nuclei [203]. In particular, for
cold atom setups it has been recently shown that it is possible to transport spins [66]. Aside
from this transport application, Bose also showed that the Heisenberg chain can be used to
create distributed entanglement over large distances. This represents another useful resource
for quantum communication.

A crucial aspect for all these architectures is the ability to control the encoded quantum
information in the spin chain and find optimal protocols for the transport. Various studies have
looked into this, starting from the seminal work by Bose himself. An important contribution
was made by reference [204], which proposed to use an external magnetic field in the form
of a harmonic trap, as shown in Fig. 6.1, and move it adiabatically from the first spin to the
last. This has as advantage that the transport is relatively robust against static disorder and
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FIGURE 6.1: Setup of the disordered Magnon transport problem. The objective of the agent is to move
the harmonic (parabolic) trap Bx in such a way that a localised wave packet (Magnon excitation) is
transported from the first spin site to the last spin site (note that in the real simulations we define a
different starting and final site). Outside the trap the spins are aligned (blue arrows), whereas inside the
trap the spin is anti-aligned (red arrow). The disorder is uniform across the spin chain (yellow wiggly
line) and stays constant in time.

also it is not required to have full control over the individual spin couplings, as was studied
earlier in reference [205]. However, a drawback is that, as we know from previous chapters,
adiabatic protocols tend to be slow and hence susceptible to noise from the environment.
Other faster, non-adiabatic, protocols have been studied numerically with the Krotov method
in reference [206] and an analytic shortcut to adiabaticity approach in reference [70].

In this chapter, we build upon these studies and aim to look for fast control protocols
for transporting a magnon1 along an isotropic Heisenberg spin chain. For the optimisation
we use the numerical optimisation method Differentiable Programming (∂P) that we have
introduced and applied before in the context of Majorana transport. An important distinction2

is, however, that here we are looking at state transfer and not at the transport of a single
quasiparticle mode. What is more, here we are interested in the transmission of information
instead of the manipulation of quantum information, which was the aim for the movement
of Majoranas. To model the real-world experimental scenario closely we include onsite non-
uniform disorder along the chain. We apply ∂P directly in this noisy setup and compare
the results to the clean, non-disordered, setup. As before, the main advantage of ∂P is that it
allows us to efficiently obtain the required gradients, which makes gradient based optimisation
of this quantum many-body system computationally manageable.

1A localised wave packet (spin excitation) as in Fig. 6.1.
2Aside from the system itself.
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With this ∂P method we obtain transport protocols that have high fidelity even in the pres-
ence of fixed, unwanted, disorder realisations. As part of this we show that we can efficiently
combine ∂P with several other traditional quantum control methods, specifically the shortcut
to adiabaticity protocol method (STA) in reference [70] and also the CRAB fourier proto-
col ansatz described in Chapter 2. With this combined approach we are able to improve the
heuristic speed limit for the clean system found in reference [70], which did not make use of
additional numerical optimisation. Lastly, upon inspection of the optimal transport strategies
in the clean system, we find a connection between the frequency of the applied harmonic trap
and the frequencies of the protocols. This indicates a potentially deeper physical origin for
their high fidelity3.

We have structured this chapter as follows. In section 6.1, we introduce the Heisenberg
spin chain model and define the optimisation objective. Then, in section 6.2, we will look at
the two different protocol ansätze obtained with the traditional methods, which we aim to op-
timise further, i.e. combine, with ∂P. In section 6.3, we discuss the results for the optimisation
in the clean spin chain and show that we can improve the heuristic speed limit. Afterwards
in section 6.4, we look at the effects and optimisation of disorder before concluding in sec-
tion 6.5.

6.1 The Spin Model and Optimisation Objective

The model we consider is the one-dimensional Heisenberg model [63] of N interacting spin-
1/2 particles with the Hamiltonian given by

H = −J
2

N−1∑
i=1

~σi · ~σi+1 +
N∑
i=1

Biσ
z
i , (6.1)

in which ~σi ≡ (σxi , σ
y
i , σ

z
i ) are the usual Pauli matrices and we have used open boundary

conditions. We have an isotropic (J ≡ Jx = Jy = Jy) nearest-neighbour coupling4 with
constant J . Note that, in other literature, this model is sometimes also referred to as the
XXX-model in a local external magnetic fieldBi. After a Jordan-Wigner transformation, see
App. B, this model maps to the Hubbard model [209, 39] for interacting fermions hopping on
a one-dimensional lattice.

Diagonalising this type5 of Hamiltonian and looking for the eigenstates and eigenenergies
is generally a hard task since the model cannot be mapped to a free fermion model. To find
the full spectrum and set of eigenvectors of the 1D Heisenberg chain one therefore needs to
make use of techniques like the Bethe Ansatz [190] or exact diagonalisation. However, in the

3Some of the results in this chapter are, after the submission of this thesis, published in Ref. [207]
4This describes (magnetic) exchange interactions [208] between the neighbouring spins, see for a review [85]
5Heisenberg-like Hamiltonians including the XXX, XYZ, etc. models.
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following, we will see that for our single spin transport problem we do not need access to
the full many-body Hilbert space and that we can restrict to a specific subspace. Moreover,
by simple inspection of the terms in the Hamiltonian Eq. 6.1 one can already find, without
full diagonalisation, that in the absence of a magnetic field the ground state for J > 0 is
ferromagnetic, i.e. all the spins are aligned6. This is a direct consequence of the exchange-
interaction that aligns the spins.

In order to show that we do not need to work in the full many-body space, we first ob-
serve that the total spin excitation number, Ŝ =

∑N
i=1 σ

z
i , is preserved by the Heisenberg

Hamiltonian, since we have [
H, Ŝ

]
= 0. (6.2)

This means that we can divide up the problem into separate (non-connecting) sectors with
each a fixed total number of spin excitations S = 〈Ŝ〉. The simplest sector is the single
spin-excitation sector in which in total one spin is up, denoted by |↑〉, whereas all the other
spins are down |↓〉. In total we have N of such 1-spin excitation states which we label by
|n〉 = |↓〉1 ⊗ · · · ⊗ |↑〉n ⊗ · · · ⊗ |↓〉N in which only the n-th spin is up.

The Hamiltonian Eq. (6.1) projected into this subspace then becomes

H =
N∑
n=1

[Bn − 2J ] |n〉 〈n|+ J |1〉 〈1|+ J |N〉 〈N | (6.3)

+ J
N−1∑
n=1

|n〉 〈n+ 1|+ |n+ 1〉 〈n| . (6.4)

Now since for our optimisation problem we are interested in transporting a single spin and as
the Hamiltonian preserves the total spin, for our simulations it is sufficient to only consider
the single spin excitation subspace Hamiltonian H . This can be efficiently implemented as a
N ×N matrix on a computer, which is an exponential reduction in memory compared to the
2N × 2N many-body Hamiltonian of the full system.

We note that the single excitation Hamiltonian Eq. (6.4) is similar to a standard tight-
binding Hamiltonian with hopping t ∼ J and chemical potential µi ∼ Bi − 2J (in the bulk).
To be precise, up to some edge effects7 this model can be mapped to a discretised version of
a single particle in a potential trap. In the continuum limit this has a Hamiltonian

Hc =
k2

2m
+ V (x), (6.5)

in which we associate the potential V (x) with the local (discrete) magnetic field Bi and the

6This means it is twofold degenerate, i.e. all spins up or all spins down.
7The two diagonal terms proportional to J in Eq. (6.4).
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inverse mass in the kinetic energy term 1/2m with the coupling J . This approximate cor-
respondence is useful for solving analytical STA control protocols, as we will do in section
6.2. Importantly, the physics in both scenarios is different. In one case we look at a localised
spin excitation in a discrete system, and in the other case at a single particle in a continuous
trapping potential.

6.1.1 Magnons and the Optimisation Objective

For our optimisation problem we aim to transport magnons from one position in the chain to
another, see Fig. 6.1. Magnons are spin wave excitations travelling through the chain, which
can be written as a (generic) series expansion

|ψk〉 =
∑
n

cn,k |n〉 (6.6)

of the single spin excitation states |n〉. When cn,k = eink, we have plane (Fourier) waves
and the magnon excitations |ψk〉 are the eigenstates of the single excitation Hamiltonian H =∑

k Ek |ψk〉 〈ψk|, forBn = 0 and closed boundary conditions. The energy dispersion for these
modes is then given by

Ek = −2J(1− cos k), (6.7)

where k is the momentum. This means that the group velocity of the spin waves is given by

vg ≡
dEk
dk

= −2J sin k. (6.8)

The group velocity vg limits how fast the magnons can maximally travel and, hence, puts a
lower bound on the heuristic speed limit of our control problem.

Freely propagating magnons, without a confining potential or magnetic field Bi, disperse
over time throughout the chain. This effect of propagating magnons has been investigated in
detail in reference [210] and is a direct result of the nonlinear dispersion relation Eq. (6.7).
In order to counteract this spreading it is necessary to guide the magnon transport [211, 204].
This can be done by imposing the external magnetic field Bn(t) to have the form of a trap
around the wave packet and then slowly change the position of the trapping minimum over
time. Various kinds of magnetic traps with different spatial profiles can be used for this, such
as the Pöschl-Teller [212] potential, a square well [210] potential, or a harmonic trap [204].

For our control problem we focus on a (harmonic) parabolic trap, which has the form

Bn(t) = −ω(t)2

4J

[
n−X0(t)

∆x

]2

|n〉 〈n| , (6.9)
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where ω(t) and X0(t) are the now time dependent trapping frequency and minimum of the
trap. These variables, ω(t) and X0(t), are our control parameters. We set the lattice spacing,
∆x, to ∆x = 1 in what follows. The motivation for this specific form of trap stems from the
correspondence with the single particle Hamiltonian Eq. (6.4) for which the potential becomes
a harmonic oscillator (well) potential V (x) = 1

2
mω(t)2 [x−X0(t)]. This means that we can

exploit known analytic optimal control pulses derived with STA methods for the harmonic
oscillator, see e.g. [213, 70] and section 6.2. We remark that, due to this specific nonlinear
encoding of the control, we do not expect the optimal protocols to be of the bang-bang form
studied in section 2.2.

The magnetic trap Bn(t) has the form of a parabola and can be used to control where
the magnon excitation is localised by tuning the minimum X0(t). Moreover, the trapping
frequency ω(t) can be used to control the spatial extent of the wave packet, which becomes
very narrow for very large values of ω. For our magnon transport problem we initialise these
parameters (at t = 0) such that we have a nicely confined (Gaussian) wave packet

|ψA〉 =
1√∑
n c

2
n(xA)

∑
n

cn(xA) |n〉 (6.10)

at a position xA in the chain. Here, we set cn(x) = exp{−(n− x)2/2σ}, which means the
magnon has the shape of a Gaussian. We fix ω(t) ≡ ω0 to be constant in time and aim to
change X0(t) in such a way that we reach the target state

|ψB〉 =
1√∑
n c

2
n(xB)

∑
n

cn(xB) |n〉 (6.11)

after a total time τ . This target state has the same magnon profile but now localised at a
position xB = xA + d, where d is the transport distance. Importantly, we choose xA and xB
far enough from the boundaries to avoid any finite system size effects.

The quality of a generic magnon transport protocol parameterised by X0(t) can be mea-
sured by the standard infidelity measure that we saw before (section 2.1.1). However, this
time we define the starting and target states to be |ψ0〉 ≡ |ψA〉 [Eq. (6.10)] and |ψτ 〉 ≡ |ψB〉
[Eq. (6.11)], which gives

Iτ = 1− | 〈ψB|U(τ) |ψA〉 |2. (6.12)

Here, U(τ) = T exp
{
−i
∫ τ

0
H(t)dt

}
is the time-ordered unitary that solves the time-dependent

Schrödinger equation with the single spin excitation Hamiltonian H(t). This infidelity Iτ
forms the objective function, which we minimise with respect to X0(t) to obtain the optimal
magnon control pulses. We note that this objective function slightly changes if we include
disorder8 in the chain, as we will discuss in section 6.4.

8It becomes an average of the infidelity values of a batch of disorder realisations.
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As a final remark, we note that this optimisation problem for transporting localised wave
packets with an infidelity objective function feels very similar to the transport of localised
Majorana modes in Chapter 4. In fact, on a mathematical level, and from an abstract op-
timisation perspective, there are no significant differences and the same techniques can be
used. However, the underlying physical systems and control goals are different. For example,
locality in the spin-picture does not directly transfer to locality in the fermion picture for Ma-
joranas. Moreover, in one case we have a gapped topological system whereas in the other we
have a continuous spectrum.9 This means that we do not expect the same type of protocols
or intuition gained from the Majorana problem, i.e. the superadiabatic and Jump-move-Jump
protocols, to apply to the magnon transport as well.

6.2 Ansätze for the Optimal Protocols

To search for the optimal magnon transport protocols Xopt
0 (t) that minimise the infidelity

Eq. (6.12) we use a few different optimisation approaches and protocol ansätze. Specifically,
we compare the performance of protocols obtained with two hybrid ∂P - traditional quantum
control approaches to protocols obtained with a standard ∂P time-bin optimisation approach
and a naive linear benchmark protocol. In this section, we will first briefly introduce the latter
two approaches and then discuss the hybrid ∂P methods in detail. In the following sections
we will then show the optimisation results.

The linear benchmark protocol is given by

X0(t) = xA +
xB − xA

τ
t (6.13)

and was first studied in reference [204]. The advantage of this protocol is that it is relatively
simple to implement experimentally. However, it has as main disadvantage that it requires
long (adiabatic) transport times τ before the infidelity Iτ becomes zero. This time scale
becomes even longer in the presence of disorder. This means that, in general, this approach is
not useful for fast and robust magnon transport. As such, we use the linear protocol simply to
benchmark the increase in performance of our optimised control protocols.

The second approach is the standard ∂P time-bin optimisation method that we have used
before in section 2.3.2 for the single-qubit control problem and in chapter 4 for the optimal
Majorana transport. Here, we discretise the control into M individual time bins X0(t) 7→
[X0(t1), X0(t2) · · ·X0(tM)] of time width ∆t = τ/M and we define tn = n∆t. The optimi-
sation task becomes finding the values for each X0(tn) that minimise Iτ . The advantage of
this method is that we do not a priori put any restrictions on the form of the protocols X0(t).
However, this means that the size of the search space scales with the number of (discrete)

9Which is discretised on the lattice.
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time steps in the evolution and that the optimisation problem can become computationally
expensive10.

This scaling is one of the motivations for using the two hybrid ∂P-traditional quantum
control methods. In these hybrid approaches we first specify a parameterised ansatz for the
form of the optimal protocols and then optimise the parameters of the ansatz with ∂P. The
hybrid nature comes about because we use the traditional quantum control methods STA and
CRAB to provide us with two specific ansatze. We will now describe (and derive for STA)
these ansatze and discuss how to optimise them with ∂P.

6.2.1 Shortcut to Adiabaticity Inspired Protocol Ansatz

For the STA protocol ansatz we derive optimal control protocols for a particle in a harmonic
trap [see Eq. (6.5] with the inverse engineering method based on Lewis-Riesenfeld (LR) in-
variants described in section 2.2. The approximate correspondence with the single spin ex-
citation Hamiltonian H [Eq. (6.5)] means that these protocols are also expected to work for
the magnon transport in a Heisenberg chain, as was shown in reference [70]. Our derivation
follows [70], which also uses some of the results from the works [89, 90, 214, 213] for generic
(quantum) harmonic oscillators.

To apply the inverse engineering STA method we recall from section 2.2 that we need
to find a suitable dynamical invariant I(t). For the single particle in a harmonic trap with
Hamiltonian11

Hc(t) =
k2

2m
+

1

2
mω(t)2 [x−X0(t)]2 (6.14)

a quadratic in momentum LR invariant [89, 213] is given by

I(t) =
1

2m
[η(k −mα̇)−mη̇(x− α)]2 +

1

2
mω2

0

(
x− α
η

)2

, (6.15)

where ω(0) = ω0. Here, the time dependent functions η ≡ η(t) and α ≡ α(t) need to satisfy
the equations

η̈ + ω(t)2η =
ω2

0

η3
, , (6.16)

α̈ + ω(t)2(α−X0(t)) = 0, (6.17)

so that ∂I(t)
∂t

+ i[Hc(t), I(t)] = 0. These equations (6.16), (6.17) put constraints on the control
functions X0(t) and ω(t), such that I(t) is an exact dynamical invariant.

10This is most evident for non-gradient based optimisation methods such as simulated annealing but also
applies (to a lesser extend) to gradient based optimisation methods.

11Note that this is just Eq. (6.5) with our specific parabolic trapping potential, (Eq. 6.9), substituted in.
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We recognise that I(t) has the form of a harmonic oscillator, which means its eigende-
composition I(t) |φn(t)〉 = λn |φn(t)〉 can be written in terms of harmonic oscillator eigen-
functions and eigenvalues. The eigenvalues of I(t) are therefore given by λn = ω0(n + 1/2)

and the eigenmodes (in real space) can be found [214] to be

φn(x, t) = eim[η̇x2/2η+(α̇ η−α η̇)/η]η−1/2fn

(
x− α
η

)
, (6.18)

in which the fn(x) are the standard quantum harmonic oscillator eigenfunctions. Any par-
ticular solution of the Schrödinger equation for Hc(t) can be expanded in terms of these
eigenstates via |ψ(t)〉 =

∑
n ane

iγn(t) |φn(t)〉 [recall Eq. (2.21)]. Here, the LR-phases have
the form [89, 214]

γn(t) = −
∫ t

0

dt′
[
λn
η2

+
m(α̇ η − α η̇)2

2η

]
. (6.19)

In order to find optimal transport protocols for the harmonic trap we need to ensure that
the initial and final (at t = τ) eigenstates of I(t) match with the initial and target states,
|ψA〉 and |ψB〉, of our control problem.12. This can be achieved by imposing [I(0), H(0)] =

[I(τ), H(τ)] = 0, which results in the following additional boundary conditions

α(0) = xA, α(τ) = xB,
dnα

dtn

∣∣∣∣
t=0,τ

= 0,

η(0) = 1, η(τ) =

√
ω0

ω(τ)
,

dnη

dtn

∣∣∣∣
t=0,τ

= 0 (6.20)

for n = 1, 2. The final shortcut protocol solutions for X0(t) and ω(t) are then obtained by
solving the invariant equations (6.16), (6.17) with arbitrary functions α(t) and η(t) that satisfy
the boundary conditions Eq. (6.20). Since we are only interested in X0(t) and set ω(t) = ω0

we only need to use α(t) in the following.
In practice we can pick any function α(t), and η(t), but we restrict to generic polynomi-

als α(t) =
∑7

n=1 bnt
n that satisfy the boundary conditions Eq. (6.20). This gives a whole

family of STA protocols for X0(t) in which each member corresponds to a specific configu-
ration of the expansion coefficients bn. In the case of the single particle in the harmonic trap
each of these protocols will yield perfect target state fidelity. However, since the correspon-
dence with the magnon transport is not exact (discretisation and finite size), and also because
of potential anharmonicities, we do not expect all of these protocols to work equally well for
the magnon transport.13 Furthermore, real-world experimental constraints make that possibly

12In this derivation |ψA〉 and |ψB〉 are the eigenstates of Hc in Eq. (6.14) with the harmonic trap at positions
x(0) = xA and x(τ) = xB By the correspondence with the single spin excitation Hamiltonian H we can
analogously think of them as the initial and target states of the magnon excitation in the Heisenberg chain.

13We will show below that in fact the set of STA protocols with perfect fidelity for the magnon transport grows
with the operation time τ .
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(a) (b)

FIGURE 6.2: (a) Set of example protocols that fulfil the boundary conditions of the Lewis-Riesenfeld
shortcut to adiabaticity approach in Eqs. (6.17) and (6.20). These protocols were used for the simula-
tions in Fig. 6.3. The parameters for these protocols are ω0 = 0.5, xA = 50, xB = 100, C1 ∈ [50, 75]
and C2 ∈ [75, 100]. (b) Fourier Ansatz example protocols for three different total number Nc of fre-
quency components ωn = 2πn

τ . The Fourier coefficients An were chosen randomly from a uniform
distribution An ∈ [−1.5, 1.5] and d = xB − xA = 90. The higher the frequencies involved, i.e. the
bigger Nc, the more rapid fluctuations and details the protocols can have.

some of these protocols are not admissible. This means that additional optimisation within
this family of STA protocols is desirable.

To be able to optimise within this family of protocols we need to parameterise it in such
a way that the minimisation algorithms can be applied. One possible way is to define the
coefficients bn as the new control parameters, but we have found that it is nontrivial to apply
∂P in this case. This is because for each set bn the boundary conditions, Eq. (6.20), need
to be imposed and the STA equations, (6.17), inverted. In theory this can be done in a fully
differentiable way by, for example, using Lagrange multipliers. However, this can become
complicated and possibly unstable in practice. Here, instead, we parameterise (a subset) of
this family by defining two14 new control parameters C1 = X0(τ/4) and C2 = X0(3τ/4),
which are the positions of the trap at times τ/4 and 3τ/4. These can be used as control
parameters by imposing them as additional constraints when solving the polynomial for α(t).
The advantage of this is that the contrainsts only need to be imposed once. In addition, the
resulting fixed polynomial of C1 and C2 can be implemented as a differentiable function for
∂P. The downside is that, since we only have two parameters, we do not cover the full family
and only look at a subset.

A sample set of these STA protocols X0(t) as a function of C1 and C2 is shown in
Fig. 6.2 (a). It can be seen that all of these have an initially slow acceleration (second deriva-
tive), which, to various extents, initially increases and finally slows back down to zero at the
final time. Some of the protocols go beyond the initial or target state positions xA/B, which

14For practicality we restrict to two parameters, this approach can however be generalised to 4,6,...,N control
parameters without any (significant) additional computational cost for ∂P.
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might not be feasible to implement in experiments if they go outside the chain. Moreover, as
shown in Fig. 6.3, not all these protocols work equally well, as not all of them have a per-
fect fidelity F . In fact, we find that the subset of protocols of this parameterised group that
has near perfect fidelity shrinks with the transport time τ (shrinking white-yellow island in
Fig. 6.3). This observation is in agreement with the results in reference [70], which found
for one specific unparameterised STA protocol a heuristic speed limit of τ = τ ∗ ≈ J below
which the magnon cannot be perfectly transported. With our hybrid ∂P approach we can,
however, optimise the parameters C1 and C2 with gradient descent and find which member of
the (sub)-family of STA protocols performs the best.

FIGURE 6.3: Fidelity surfaces (for three different transport times τ ) of the family of shortcut to adia-
baticity (STA) protocols parameterised by C1 and C2 and shown in Fig. 6.2 (a). As C1 and C2 are the
control parameters these surfaces are also the control landscapes. The landscapes look convex and the
set of STA protocols with near perfect target fidelity (coloured island) shrinks with the total transport
time.

6.2.2 Fourier Series Ansatz

The final ansatz for the optimal protocols that we use and aim to optimise with ∂P is based
on a Fourier basis and inspired by the CRAB method [96, 97] discussed in section 2.2.3.
Specifically, to fulfil the boundary conditions X0(0) = xA and X0(τ) = xB we define the
Fourier ansatz to be the family of protocols parameterised as

X0(t) = xA + (xB − xA)
t

τ
+

Nc∑
n=1

An sinωnt. (6.21)

The control parameters we wish to optimise are now the Fourier coefficients An, as we fix the
frequencies ωn = nπ

τ
to be the first n < Nc harmonics. A few examples of these protocols are

shown in Fig. 6.2 (b).
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The set of protocols defined by Eq. (6.21) is again a constrained set of protocols if we fix
Nc to be finite, which means we are not optimising over the full space of available protocols.
This could mean that outside this set there are potentially better protocols with lower infidelity
values. However, the main advantages of this ansatz are that the boundary conditions are
automatically satisfied and also that we can put a cutoff on the maximum frequency ωNc . This
means we can choose a specific Nc based on knowledge about the system or by considering
the maximal rates of change that can be reached in real experimental setups. To go back to the
Majorana transport optimisation problem, we could have for example restricted to frequencies
lower than the resonance frequency (superadiabatic frequencies) if we had used this Fourier
ansatz.

In order to find the optimal protocols in this restricted family we use ∂P to compute the
derivatives dI

dAn
. These derivatives can then be employed in standard gradient based optimisa-

tion algorithms such as vanilla gradient descent. This means that we can scale to thousands of
fourier coefficients An without much additional computational cost, whereas previous stud-
ies [215, 36] that used CRAB in combination with non-gradient methods were restricted to
O(101) optimisation parameters.

6.3 Optimisation Results for the Clean Spin Chain

Our aim is to minimise the infidelity of the magnon transport Iτ in Eq. (6.12) and find the opti-
mal control protocols for the trapping centre X0(t). For this task we apply ∂P in combination
with the various ansatze and protocols described in the last section. To define the external
constraints of the control problem we fix the total transport distance d = 50 and choose four
different total transport times τ = 40, 60, 80, 100. For the specific spin chain parameters that
we consider we have a heuristic speed limit velocity vτ∗ = d/τ ∗ ≈ J = 1 following [70].
However, we will show that we can improve this with the ∂P method and bring the transport
velocity closer to the maximum magnon group velocity of vg = 2J = 2. Finally, in order to
obtain the optimal protocols we minimise with the vanilla gradient descent algorithm (section
2.3.2) for a maximum of 200 update steps15 with an empirically determined learning rate.16

The use of this (basic) gradient descent algorithm is motivated by the shape of the control
landscapes for the STA protocols in Fig. 6.3, which look convex.

The results for these optimisations are given in Fig. 6.4 and the corresponding infidelity
values are reported in Table 6.1. Firstly, we note that above the speed limit time τ ∗ = 50

we are able to obtain protocols that have infidelities between the orders of O(10−3 to −10−4)

with all three optimisation methods. In contrast, the linear reference protocol has significantly

15The minimisation is stopped when an infidelity lower than O(10−3) is reached.
16Note that for the various different ansatzes we use different derivatives such as ∂Iτ

∂Ci
for the STA protocol

ansatz and ∂Iτ
∂An

for the Fourier ansatz.
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FIGURE 6.4: Clean (disorder-free) optimisation results obtained with ∂P in combination with no con-
straints on the protocols (rows labelled ’Free’), a Fourier ansatz with Nc = int [τ/2] (rows labelled
’Four.’) and the STA protocol ansatz parameterised by C1 and C2 (rows labelled ’STA’). In panels (a-l)
we plot the position of the trapping minimum X0(t) as a function of time and in panels (m-x) the cor-
responding velocity protocols Ẋ0(t). The simulations were done for 4 different total times τ (columns)
of which the first column is below the heuristic speed limit time τ∗ = 50 and the others above. The
infidelity values below the speed limit are reported as a label in the subplots (a, e, i) and the others are
reported in Table. 6.1 but are ’perfect’ O(10−3 − 10−4). We obtain different protocols for the three
different methods (rows) and note that the STA method is not able to reach a low infidelity below the
speed limit. The system parameters are chosen to be N = 251, d = xB − xA = 50, ω0 = 0.5, and
J = 1.0.

bigger infidelity values, O(10−1). Below the speed limit the ∂P Free and Fourier approaches
are still able to achieve low infidelities O(10−2), whereas ∂P in combination with STA does
not perform as well but still better than the linear protocol. This is likely due to the fact that we
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have a restricted search space and that the speed limit is a hard limit for the STA protocols. In
addition, it might be that increasing the number of control parameters Ci of the STA protocols
will lead to a better performance of the ∂P STA optimisation combination below the speed
limit.

τ ∂P Free ∂P STA ∂P Fourier Linear Ramp (Eq. 6.13)
40 0.03832 0.36139 0.01755 0.98450
60 0.00146 0.000126 0.00516 0.67802
80 0.00086 0.000229 0.00034 0.07908

100 0.00241 0.00023 0.00173 0.44136

TABLE 6.1: Infidelity Iτ results for optimisation in the clean system N = 251, J = 1, ω0 and d = 50
and the linear benchmark protocol. The corresponding control protocols are shown in Fig. 6.4.

The shape of the optimal protocols X0(t) themselves, see Fig. 6.4, depends, not surpris-
ingly, on the different methods and also if we are above or below the speed limit. We observe
that the protocols for the Free and Fourier methods are more or less similar above the speed
limit. These protocols start and end with a small quench in position and in the middle oscillate
with an on average constant velocity (see panels m-f). The size of the quenches in position
grows with decreasing transport time, while the oscillations tend to become smoother with
increasing time (most notably for ∂P Free in panel p). The STA protocols are drastically dif-
ferent and all look like a form of ramp-up and down protocol in velocity. These protocols
slowly accelerate (ramp) to a finite velocity and then symmetrically decelerate again to zero
velocity (panels u-x). This behaviour is reminiscent of the superadiabatic protocols that we
used for the Majorana transport in Chapter 4.

In order to analyse the frequencies ωp of the oscillations of the ∂P Free protocols further
we show in Fig. 6.5 (a) velocity protocols Ẋ0(t) for different trapping frequencies ω0. In the
main panel we observe that the protocol frequency ωp tends to increase with increasing ω0.
From the inset we can then see that the relationship is linear with a coefficient very close to
one, i.e. ωp ≈ ω0. This indicates that there is a connection between the setup parameter
ω0 and the optimal protocols obtained with ∂P Free. Moreover, it provides a good starting
point for the optimisation of systems with a different ω0. For this potentially a parameterised
protocol can be extrapolated. We leave the investigation of this and a possible deeper physical
explanation for future studies.

Another feature of the optimal protocols that we briefly report about is the maximum
velocity vmax. Specifically for the STA protocols, since they have the shape of a superadiabatic
protocol. We determine vmax for a range of different protocols obtained after grid scans of the
parameters c1 and c2. These results are plotted in Fig. 6.5 (b) in which we observe that at the
heuristic speed limit time τ ∗ we get a maximum velocity v∗ ≈ 1.38 ≈

√
2J .17 For shorter

17We note that this value did not seem to depend on d.
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(a) (b)

.

FIGURE 6.5: (a) Main panel: velocities of the Magnon transport protocols Ẋ(t) obtained with the
∂P Free approach for 4 different trapping frequencies ω0. Inset: the characteristic frequency ωp of the
protocols in the main panel versus ω0. A linear relationship ωp ≈ ω0 is observed. For these simulations
τ = 100, N = 251, J = 1 and d = 50. (b) Main panel: maximum velocity of the STA protocols
for various different total transport times τ . Inset: the corresponding target state fidelity Fτ of these
protocols. At the critical (speed limit) time τ∗ the maximum velocity of the magnon is v∗. For shorter
times, τ < τ∗, the fidelity starts to decrease. The parameters for these simulations are the same as in
Fig. 6.4.

times we get higher maximum velocities but the fidelity starts decreasing (inset). This v∗ is the
maximum velocity of the trap and hence the magnon for the STA protocols.18 Although the
determined v∗ is slightly higher than the heuristic speed limit on the total transport velocity
vτ∗ , it is still lower than the maximum group velocity vg. We note that this is just a feature of
the STA protocols and, in fact, in the next subsection we will show that it is possible to get
closer to vg with ∂P in combination with the Fourier ansatz.

6.3.1 Tightening the Heuristic Speed Limit with ∂P

To show that we can tighten the heuristic speed limit time τ ∗ ≈ d/J we first show how it
can be determined from the original (unparameterised) STA protocol for magnon transport
derived in reference [70]. This protocol is just one specific example of our parameterised
family of STA protocols derived in section 6.2.1 and is given by

X0(t) = xA + d

[
6t5 − 15t4 + 10t3 +

60t

ω2
0τ

2
(1− 3t+ 2t2)

]
. (6.22)

This protocol is a function of the total transport time τ , the trapping frequency ω0 and the
initial and target positions xA and xB. This means that it can be determined (extrapolated) for
a range of different values of τ and d.

18Since the system is not topological or gapped however we cannot directly make the analogy with the critical
velocity of the superadiabatic Majorana motion. Nevertheless, it is still possible that the STA protocols are
following a superadiabatic path and the magnon is actually in the ground state of a moving frame Hamiltonian.
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In Fig. 6.6 (a) we show the target state Fidelity Fτ of this protocol for a specific range of
values of d and τ . We observe a clear lightcone-like surface with a velocity of vτ∗ ≈ d/J .
Outside this lightcone a fidelity of at least Fτ > 0.5 can be obtained, whereas inside it the
fidelity drops quickly to zero. The speed vτ∗ now defines the heuristic speed limit for this
protocol. We see that this speed limit is still far away from the lightcone of the group velocity
vg = 2J , and even further from the Lieb-Robinson velocity vl = 6J lightcone found in [216].
The Lieb-Robinson speed defines (mathematically) the fastest speed of information spreading
in the spin chain.

In order to show that we can improve this speed limit with ∂P we focus on one spe-
cific distance slice d = 50 and minimise Iτ for a range of different total times τ near the
original speed limit time τ ∗ = 50. We use the Fourier ansatz with Nc = 50 frequency com-
ponents. To push the limits of our optimisation methodology we run 500 update steps19 with
the Adam [112] update scheme. The resulting fidelity values as function of τ compared to the
original STA protocol are shown in Fig. 6.6 (b). Compellingly, we see that we can push the
heuristic speed limit closer to the group velocity time τg = d/vg. When we take the Fτ > 0.5

measure again, the speed limit is about τ∂P ≈ 29.0, which approaches τg = 25.0. Below τg

the fidelity quickly drops to zero an no improvement seems to be able to be made with the
optimisation. This is in accordance with the group velocity being the maximum speed of the
magnons [211]. Moreover, it agrees with the speed limit found in reference [206] with the
numerical Krotov method. The authors there used the same spin system but with a different
form of spin excitation.20

6.4 The Effects of Disorder

To model real-world experimental setups more closely in this section we look at the effects
of disorder in the Heisenberg spin chain [217, 218, 204, 210, 70]. We will first introduce two
different types of disorder and investigate its effects on the performance of the STA protocols.
Afterwards, we will apply our ∂P optimisation method in combination with the Fourier ansatz
directly in the presence of disorder. We will show that with this method it is still possible
to find an optimal control that transports the Magnon with perfect fidelity for a single fixed
realisation of the noise. However, for an average over a batch of disorder realisations we
find that the (averaged) infidelity for the obtained optimal protocols increases approximately
quadratically with the disorder strength. While ∂P is able to slightly suppress this increase for
the simulations we perform, it is not able to reach an averaged infidelity of zero.21

19Again we stop the optimisation when an infidelity of O(10−5) is reached.
20We note that this study incorporated in addition a time dependent trapping frequency ω(t) which might have

gotten the limit closer to vg than without it.
21Note that the results presented here have not yet been published and are still being expanded.
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(a) (b)

FIGURE 6.6: (a) Target state fidelity surface of the standard non-parameterized STA protocol defined
in Eq. 6.22 as function of the transport distance d and transport time τ . The black line gives the
Fτ = 0.5 contour for which the heuristic speed limit vτ∗ = 1 is defined, the red dashed line the group
velocity vg = 2 and the white dashed line the Lieb-Robinson velocity vl = 6. (b) Target state fidelity
as a function of the transport time τ for the original STA protocol (blue solid line) versus the optimised
∂P Fourier protocols (green line). We see that the optimised ∂P Four. protocols keep the fidelity at one
for smaller transport times τ than the original STA protocol. The group velocity bound time is given
by the red dashed line. The parameters for these simulations were N = 251, ω0 = 0.5, J = 1 and in
(b) d = 50.

6.4.1 Two Types of Disorder and Robustness of the STA Protocols

We consider two different types of static disorder, motivated by potential experimental im-
perfections. The first is a randomised exchange interaction between the neighbouring spins
which can arise from spatial disorder in a realistic spin chain. To model this [204] we change
the originally homogeneous spin coupling Jn ≡ J to

Jn = J(1 + εn) (6.23)

in the Hamiltonian in Eq. (6.1). Here, εn is a random number drawn from a uniform dis-
tribution εn ∈ [−∆,∆] with noise strength ∆. As a consequence of this type of (coupling)
disorder, the energy spectrum of the Hamiltonian fluctuates when the potential trap is moved
along the chain as shown in [210]. This means that the transport infidelity is expected to
increase due to additionally created excitations and dispersion of the magnon.

The second type of disorder that we consider is an inhomogeneous magnetic trapping field

Bn(t) 7→ Bn(t) + εn.
22 (6.24)

Here, εn is again a random number from a uniform distribution with disorder strength ∆. Like

22Note that, while the trapping field is time dependent for the control of the position of the magnon, the
disorder itself is static.



110 Chapter 6. Optimising Magnon Transport in Disordered Spin Chains

for the coupling disorder, this scenario can arise due to imperfections in realistic implemen-
tations of the spin chain. This time the noise is local (acting on each spin site individually),
however, and we will sometimes refer to this case as ”onsite” disorder to distinguish it from
the ”coupling” disorder.

The main effect of the disordered magnetic field is the localisation of the single spin ex-
citation wave functions. We have shown this in Fig. 6.7 for the lowest energy eigenstate of
the disordered Hamiltonian H for several disorder strengths. We observe that the localisation
length ξ decreases approximately with the square root of the disorder strength, ξ ∼ 1/

√
∆.

This localisation behaviour can be understood from the approximate mapping to the single
particle model, which results for the onsite disordered case in the Anderson model for Ander-
son localisation [219].23 The wave function localisation means that the transport infidelity is
expected to increase when the magnon is moved for a distance of at least a few disorder length
scales, ξ.

(a) (b)

FIGURE 6.7: (a) Disorder averaged amplitude |ψ| of the lowest energy eigenstate of the single spin
excitation Heisenberg Hamiltonian in Eq. 6.4 with a disordered magnetic fieldBn = εn. εn is a random
number from a uniform distribution [−∆,∆]. For increasing ∆ the amplitude |ψ| becomes spatially
more confined (localised) to a smaller number lattice sites x. For these simulations we diagonalised
H for in total 1000 disorder realisations and shifted the maximum of |ψ| to the middle of the chain at
x = 125. The other parameters we used were N = 251, ω0 = 0.5 and J = 1. (b) Localisation length
ξ of the amplitudes in (a) obtained after fitting a decaying exponential, ae−(x−x0)/ξ, to |ψ|. ξ (blue
dashed line) falls off approximately as a square root of ∆ as shown by the fit (orange solid line).

In order to test the effects of both of these types of disorder on the robustness of the
magnon transport we perform numerical simulations of the family of STA protocols in the
disordered systems. As a figure of merit for the performance we now look at the disorder av-
eraged fidelity 〈Fτ 〉 = 1−〈Iτ 〉. In Fig. 6.8 we show the disorder averaged fidelity landscapes
for both types of disorder with disorder strength ∆ = 0.1. The localisation length for the
onsite disorder is approximately ξ ≈ 12 in this case and, hence, we look at relatively strong

23We note that the coupling disorder model also has localised wave functions. However, this type of disorder
corresponds to a disordered hopping (kinetic energy) term after the mapping to the single particle Hamiltonian.
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disorder. In these simulations we move the magnon for a total distance of d = 50 sites, which
means that the magnon is moved for about four disorder length scales ξ. We set the total
transport time τ = 100, such that we are far above the (disorder free) heuristic speed limit
time, τ ∗ = 50, where the members of the family of analytic STA protocols [shown in Fig. 6.2
(a)] have almost all perfect fidelity.

For the onsite disorder case, we observe in the surface plots 6.8 (a) and (b) a rich structure
with some peaks and valleys.24 There are two areas in the (C1, C2) parameter space of the
STA protocols that perform the best. These are around (C1, C2) = (58, 78) and (C1, C2) =

(73, 93), for which the average fidelity is about 〈Fτ 〉 ≈ 0.89. This is still a relatively good
fidelity given that we have transported the magnon for four localisation lengths. In between
these peaks there is a valley and the fidelity drops to about 〈Fτ 〉 ≈ 0.82 near (C1, C2) =

(67, 85). Although this seems bad, these STA protocols still perform significantly better than a
naive linear ramp, which has a fidelity of 〈Fτ 〉 = 0.52 averaged over 500 disorder realisations.
Note that the linear ramp does not have an infidelity close to one because the simulation time,
τ , is quite large compared to τ ∗.

For the coupling disorder case, shown in Figs. 6.8 (c) and (d), we get a very different
fidelity surface. Firstly, the surface is smooth and has only one broad rounded peak (island)
with a large fidelity.25 The island is centred at around (C1, C2) = (67, 85)26 and has a max-
imum averaged fidelity of about 〈Fτ 〉 ≈ 0.98. This is nearly perfect and the STA protocols
on this island are robust with respect to disorder. The maximum average fidelity is also better
than the maximum of the onsite disorder case.

From an optimisation perspective the difference between the two different disorder sur-
faces is important. As we discussed in Chapter 2, the convexity properties of the control
landscape determine the difficulty of the optimisation problem. The coupling disorder land-
scape in Fig. 6.8 (c) is convex, since it smooth and has only one global minimum. The onsite
disorder landscape in Fig. 6.8 is non-convex and seems to have two maxima (peaks) with ap-
proximately the same size (fidelity). Thus, optimising the STA protocols is potentially harder
for the onsite disorder case compared to the coupling disorder case. This does not tell us any-
thing, however, about the complexity or shape of control landscapes in which other ansätze
for the protocols are used. It remains open if the coupling disorder problem in general (for
any type of ansatz) is convex. Similarly, if the onsite disorder optimisation problem is always
non-convex.

24Compare also to the clean landscapes in Fig. 6.3, which have a much smoother structure with only one area
(island) where the fidelity is high.

25It looks similar to a bar stool that somebody has carefully srubbed near the edges with some sandpaper.
26Remarkably, this point in the (C1, C2) parameter space is exactly in the low fidelity valley for the onsite

disorder case.
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Coupling Disorder

Onsite Disorder

(a) (b)

(c) (d)

FIGURE 6.8: Disorder averaged fidelity surfaces 〈Fτ 〉 for onsite disorder Bn(t) [Eq. (6.24)] shown
in panels (a) and (b) and coupling disorder Jn [Eq. (6.23)] shown in panels (c) and (d). Panels (b)
and (d) are top views of the 3d surfaces in (a) and (c). The disorder strength for these simulations is
∆ = 0.1 and the other parameters are the same as in 6.7. The C1 and C2 parameterise the family of
STA protocols as in Fig. 6.2 (a). We observe a rough (non-convex) landscape for the onsite disorder
case in which 〈Fτ 〉 varies significantly with (C1, C2). For the coupling disorder case the surface is
smooth and convex with one high fidelity island around (C1, C2) = (67, 85).

6.4.2 Optimisation in the Presence of Disorder

In order to see if we can improve the robustness of the magnon transport with respect to
disorder, in this section we optimise directly in the presence of disorder. We focus here on the
onsite disorder case, which by the non-convexity of the fidelity landscape is possibly a harder
optimisation problem. We use ∂P in combination with the Fourier ansatz in Eq. (6.21) and
aim to find the optimal protocol(s) in two different scenarios. In the first scenario we focus
on one specific disorder realisation and in the second we optimise over a batch of different
disorder realisations. We will now discuss the specifics and results of these scenarios one by
one.

For the first scenario we assume that the exact disorder pattern of the experimental setup is
known. This means that we first pick one particular fixed disorder realisation ~εp = (εp1, ..., ε

p
N)
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(one fixed set of random numbers εn), which we label by p.27 For this pattern p we then aim
to minimise the infidelity Ipτ . This infidelity measure is the same as the standard target state
infidelity Iτ from before, but computed with the fixed disorder pattern p added to the magnetic
field Bn(t)+ εpn in the Hamiltonian. For the minimisation we use Ipτ as the cost functional and
we compute its derivatives with respect to the control parameters with ∂P. These derivatives
are then used in combination with Adam to update the controls An of the Fourier ansatz. We
repeat the complete optimisation process for a few different disorder patterns p and finally
average the result 〈Iτ 〉s = 1

pmax

∑
p Ipτ . Here, the sublabel ’s’ indicates that the infidelity was

optimised for each single disorder pattern individually.
In Fig. 6.9 (a) we show the results for these optimisations as a function of the disorder

strength ∆. We also show benchmark results of the optimal protocols obtained with the ∂P
STA and ∂P Fourier methods in the clean system. We observe that the disorder ∂P optimisa-
tion method (green line) is able to keep the infidelity 〈Iτ 〉s close to zero (on the order of 10−3

and smaller). This is remarkable because the infidelity 〈Iτ 〉s of the benchmark protocols (blue
and orange lines) for the same fixed disorder patterns is found to be increasing approximately
quadratically with disorder strength. This shows that our ∂P optimisation method is still able
to obtain high fidelity control protocols in the presence of single fixed disorder patterns. This
means that disorder in the setup is not immediately an issue as long as the exact form of the
pattern is known.

Pattern 1

Pattern 2

Pattern 3

(a) (b)

FIGURE 6.9: (a) Disorder averaged infidelity 〈Iτ 〉s for 5 single disorder realisations versus disorder
strength ∆. For the ∂P Dis. Single optimisation method (green dashed line) we optimised the Ipτ for
each pattern p individually with ∂P before computing the average 〈Iτ 〉s. This optimisation method
is able to keep the infidelity near zero while the infidelity of the benchmark protocols obtained for
optimisation in the clean system increases quadratically. For these simulations we used Adam with
500 update steps on a Fourier ansatz of 50 frequency components n = 50 with external constraints
(τ, d) = (50, 100). All the other parameters are the same as in Fig. 6.7. (b) The obtained velocity
protocols (left y-axis) with the 〈Iτ 〉s method for 3 specific disorder patterns at ∆ = 0.12. The disorder
value εx where x = int [X0(t)] is plotted in orange with the scale on the right y-axis. For each different
pattern we obtain a different optimal transport protocol.

27Note that this is just a N -dimensional random vector from the uniform distribution [−∆,∆].
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To try to understand how the optimisation method is able to achieve these low infidelity
values in the presence of disorder we show in Fig. 6.9 (b) the optimal velocity protocols Ẋ0(t)

for three specific disorder patterns. The obtained optimal protocols Ẋ0(t) are different for
each different disorder pattern. This means that during the optimisation process the machine
learns about the specific disorder realisation and finds a way to correct for it. This is likely
due to the fact that the information of a fixed pattern p is directly encoded in the derivatives
∂Ipτ
∂An

that the optimiser gets. However, the difference in the strategies also means that there is
possibly no universal strategy that obtains a low infidelity value for any disorder realisation.
This can be seen because a simple averaging of the strategies will give a different strategy that
does not perform well. We leave a more formal mathematical exploration of this for future
studies.

The second scenario we consider is the case in which we do not know the exact disorder
realisations. In other words, we are interested in figuring out the optimal control strategy that
performs on average the best for all possible disorder realisations. For this we take the dis-
order averaged infidelity 〈Iτ 〉 as the figure of merit and minimise it. To minimise it with ∂P
we use batch gradient descent. Here, we first fix a set of 200 different disorder realisations
and divide it up into 20 individual batches of 10 realisations. For each batch we compute the
disorder averaged gradients ∂〈Iτ 〉

∂An
and use them to update the control protocol with Adam. We

do this cyclically, which means we start from the first batch do an update and then move on
to the second batch. When all batches have had one update we have completed one learning
’episode’ and repeat the cycle again. During this process, the value of 〈Iτ 〉 averaged over
all the 200 disorder patterns is gradually reduced until convergence is reached. We note that
due to large number of disorder realisations the optimisation becomes computationally de-
manding. The gradient evaluations of ∂P can be done in parallel, however, which makes the
optimisation task manageable.

In Fig. 6.10 (a) we show the resulting averaged infidelity 〈Iτ 〉 values for the optimal pro-
tocols obtained with batch gradient descent for 49.5 episodes.29 For these 〈Iτ 〉 values we have
used a new set of disorder realisations, which were not used during the optimisation process.
This gets rid of any optimisation bias to particular disorder realisations and we can fairly eval-
uate the performance. This time, we see that the optimisation method is not able to keep the
infidelity close to zero for increasing disorder strength ∆. Instead, it is increasing quadrati-
cally, similarly to the benchmark protocols. Although the batch optimisation method seems to
slightly decrease the quadratic increase compared to the other protocols, the difference with
the optimal STA protocol is almost negligible. This is remarkable and seems to indicate that
the optimisation in the presence of disorder made barely any difference. It is therefore reason-
able to ask whether there exist useful strategies in the presence of disorder. To investigate this,

29Note that we first optimised for 24.5 episodes on one fixed set of 200 disorder realisations and then 25
episodes on a different set of 200 disorder realisations.
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(a) (b)

FIGURE 6.10: (a) Disorder averaged infidelity 〈Iτ 〉 versus disorder strength for protocols obtained
with the ∂P batch optimisation method (green dashed line) compared to the optimal clean protocols.28

The disorder averaging was done over 500 disorder realisations and all the model parameters are the
same as in Fig. 6.7. The external constraints are set to (τ, d) = (100, 50). All the protocols increase
approximately quadratically with disorder strength and the batch optimisation slightly outperforms the
benchmark protocols. (b) The optimal velocity protocol Ẋ0(t) (green line) obtained with the batch
optimisation method at ∆ = 0.16. We have also shown the optimal protocols for the disorder free
system. The batch optimisation protocol has much more drastic/rapid changes in velocity compared to
the optimal clean protocols.

more (computationally expensive) optimisations need to be performed for different constraint
parameters (d, τ). In particular, near the heuristic speed limit for the clean system where the
performance of STA protocols breaks down.

As a final remark we note that although the batch optimisation method does not give an
enormous improvement in infidelity compared to the STA protocols the form of the protocols
is completely different. We show in Fig. 6.10 (b) the optimal velocity protocol obtained at
a disorder strength of ∆ = 0.16 compared to optimal clean Fourier and STA protocols. We
observe that the batch optimisation protocol has much more rapid changes in the velocity
and also obtains higher speeds. This might result from the presence of disorder but more
optimisations are needed to confirm this.

6.5 Summary

In this chapter, we have looked at the optimal transport of magnons in clean and disordered
Heisenberg spin chains. For this optimisation task we have exploited a hybrid numerical-
analytical approach. We took two different types of analytical ansatze for the optimal magnon
transport protocols and optimised them with ∂P. The first ansatz we used was a family of
parameterised protocols obtained with an analytic STA approach following [70]. The sec-
ond ansatz was a Fourier series ansatz and was inspired by the CRAB method for quantum
control [97].
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With these methods we found in the clean system that, for transport times that are longer
than the heuristic speed limit time τ ∗, we could efficiently find magnon transport protocols
with perfect fidelity. In particular, we found a new type of strategy which comprises two small
quenches in position at the beginning and end of the protocol. In between the quenches this
protocol has a period of perfectly oscillatory motion. The frequency of this oscillatory motion
scales linearly with the harmonic frequency of the magnetic trap. In addition, with the ∂P
Fourier method, we were able to push the heuristic speed limit closer to the maximum group
velocity of the magnons.

We also looked at the effects and optimisation in the presence of disorder. Here we found
a structural difference in the control landscapes of the STA protocols between disordered cou-
plings and a disordered external magnetic field. The coupling disorder has a smooth convex
landscape, whereas the onsite disorder case has a rough non-convex landscape. The maxi-
mum infidelity values are found to be relatively robust with respect to both types of disorder.
With optimisation we were able to find optimal magnon transport strategies with near perfect
fidelity in the presence of a fixed onsite disorder pattern. However, for a batch of onsite dis-
order realisations additional optimisation for a long transport time τ did not seem to make
any significant difference. In this case, the disorder averaged infidelity was found to increase
approximately quadratically with disorder strength.

For future work a few different directions can be explored. Firstly, it would be interesting
to investigate if it is possible to show that there is no universal strategy that has a perfectly
fidelity in the presence of any random disorder pattern. This could explain why the batch op-
timisation with ∂P is not able to make any significant improvement in performance compared
to the performance of the clean optimal protocols. Related to this is the question if there is an
explanation for the quadratic growth of the fidelity in the presence of disorder. In particular,
if the rate of this quadratic increase depends on the total transport time τ .

Another direction to explore is to see if the heuristic speed limit can be even further im-
proved by using more (and different) control parameters. For example, one could allow a
time-dependent trapping frequency ω(t) or the ability to change the couplings in time. It
might be possible to transport the magnons faster than the group velocity in this way. In this
respect, it will also be interesting to see what role disorder plays in the heuristic speed limit.
In references [220, 221] it was found that the Lieb-Robinson velocity is changed in disor-
dered spin chains (a logarithmic lightcone instead of a linear lightcone appears). It will be
interesting to see if this has some consequences for the heuristic speed limit as well.

From an optimisation perspective several additional interesting avenues could be inves-
tigated. The effect of disorder on the control landscapes for any arbitrary type of protocol
ansatz is one of these. A few other related works [222, 223], for slightly different systems,
have looked at the shape of control landscapes but did not incorporate the effect of disorder.
It might be that some of the smooth convex landscapes in these problems get destroyed by
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disorder which could affect the optimisation and optimal protocols.
To explore these kind of questions about the effects of disorder often many computation-

ally expensive numerical simulations need to be performed. To resolve this ,and bring the
computational complexity down, a final interesting question would be to see if one can train a
neural network to predict the value of the cost function, like was in done in [222]. The input of
the neural network could, for example, be the parameters of the protocol ansatz and the output
the value of the infidelity. Applying the neural network would potentially be computationally
cheaper than computing the full unitary evolution numerically. A step towards this is already
made in [224]. In that work it is shown that neural networks are able to correctly predict the
reduced dynamics of the (many-body) XYZ Heisenberg spin model.
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Chapter 7

Conclusion and Future Directions

In this thesis we have investigated the problem of stability and control of quantum information
in complex many-body systems. We began by introducing the problem of optimal quantum
control and several numerical and analytical techniques to solve it. In order to make the ab-
stract formulation of the problem more accessible, we discussed a simple single-qubit example
and applied some of the methods for quantum control to its initialisation. In particular, we
focused on the machine learning (ML) optimisation techniques Differentiable Programming
(∂P) and Natural Evolution Strategies (NES). Our motivation for using ML techniques was
that they have proven to be very successful in a wide range of applications in physics [31, 32],
with a few in the specific area of quantum control [36, 37, 38].

In the following chapters, we exploited some of the introduced techniques to control quan-
tum many-body systems. The first aspect we looked at concerned topological quantum order
(TQO) and the control of information encoded in the ground-state degeneracy associated with
non-abelian anyons. In Chapter 3, we introduced this topic and explained that non-abelian
anyons need to be braided to make topological quantum gates. We focused on one specific
type of anyon, the Majorana zero mode, which potentially can be realised in real-world hybrid
superconducting devices. Although we showed that these Majoranas can be moved by tuning
an external gate potential, (super)adiabatically changing this potential is a slow process and
therefore susceptible to noise and decoherence.

In Chapter 4, we aimed to address this issue and formulated the optimal transport of Ma-
joranas in terms of a mathematical optimisation problem. In this guise, we took the target
state infidelity as the figure of merit, which we minimised with the ML techniques. From this
minimisation we obtained different types of Majorana control strategies depending on the to-
tal transport time and movement distance. To capture all the different strategies we proposed
a categorisation in terms of 4 distinct transport regimes, defined by the critical velocity and
the resonance time scale. In the non-adiabatic regimes we found a counterintuitive strategy
that we dubbed the jump-move-jump control strategy. In the adiabatic regime the ML optimi-
sation methods correctly recovered the smooth superadiabatic protocols. These results shed
new light into this area where previously, for a related model [83], bang-bang protocols were
proven to be optimal. This shows that ∂P and NES can be efficiently used to discover control
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protocols for complex quantum many-body systems.
In Chapter 5 we then added an interacting term to the superconducting p-wave model and

investigated its effects on the stability and control of the topologically encoded quantum infor-
mation. This allowed us to make closer contact with real-world topological quantum devices
and also to address some fundamental questions with respect to the spectrum of this complex
many-body system. Firstly, we found that the jumps of the jump-move-jump control strategy
are robust with respect to interactions, whereas during the move part of the protocol the infi-
delity gradually increases. We provided some potential explanations for this behaviour on the
basis of mean-field theory and the critical velocity. However, a more detailed mathematical
analysis is still needed to obtain a better understanding.

The second main result obtained in Chapter 5 was that the interaction-driven splittings
between bulk energy modes of different topological sectors do not cause an additional phase
error in the ground-state space. For this, we used an argument based on the topological quan-
tum order (TQO) property in combination with Lieb-Robinson bounds. This result indicates
that one can use TQO to derive constraints on the energy eigenvalue statistics of an interacting
many-body system. Investigating this question, and also the interplay between disorder and
interactions, would be an interesting avenue for further work. There would be a clear connec-
tion with works on strong zero modes [225, 180, 226] and prethermalisation [197, 194, 198].

In Chapter 6 we switched gears to a different, but related, quantum many-body system
and looked at the problem of quantum-state transfer. Specifically, we focused on the XXX-
Heisenberg spin chain and aimed to transfer a localised single-spin excitation, a magnon, from
one end of a spin chain to the other. The Heisenberg model has as advantage that it can be
implemented in a wide range of experimental platforms, which makes our results and analysis
relevant for real-world quantum-state transfer applications.

For the optimisation of the magnon transport we showed that ∂P can be efficiently com-
bined with an analytical control ansatz derived from a shortcut to adiabaticity (STA) method
and also a Fourier series ansatz. With this hybrid approach, we were able to improve the
heuristic speed limit for the magnons found with a fully analytical STA approach in Ref. [70].
In addition, we included disorder along the spin chain and saw that our method can find per-
fect state transfer protocols for fixed disorder realisations. For a batch of disorder patterns we
found that the optimised averaged infidelity increases quadratically with the disorder strength.
This compelling result might indicate that no universal strategy exists for perfectly transport-
ing magnons in disordered media.

For future studies it will be interesting to see if the methods for quantum control devel-
oped and used in this thesis can be applied to different problems in quantum information.
One of these is the optimisation of control pulses for open quantum systems, namely those
governed by the Lindblad equation. For example, recently in Ref. [227] it was shown that the
performance of quantum thermal machines can be enhanced by controlling the system-bath
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coupling. Another example is the minimisation of the dissipated heat during the erasure of
a quantum bit of information, as studied in references [228, 229]. Applying ∂P or NES to
such quantum thermodynamics problems can potentially lead to higher efficiencies and novel
control protocols. In this respect, we note that for ∂P this was already demonstrated for the
optimisation of a quantum Otto engine [230]. The application of NES will also be interesting,
since it does not require a model of the system and can be based on real experimental data.

Another aspect of quantum information that is worth studying deeper is the influence
of projective measurements and/or continuous monitoring of quantum systems. Aside from
more fundamental motivations, such as understanding measurement-induced entanglement
phase transitions [231, 232], this is directly relevant for quantum control. One can exploit
the information obtained with such measurements to improve the training of the ML control
agent. This was done, for example, in references [233, 234, 235] and connects with the field of
(quantum) feedback control [236]. It will be interesting to see, if the ML techniques combined
with measurement data, or some techniques for feedback control, can improve the ability to
control quantum many-body systems.

In relation to the particular many-body systems discussed in this thesis, there are also
some future directions that can be investigated. For the transport of Majoranas one could
look at the application of the optimisation methods directly in the presence of disorder or
interactions. In addition, the methods could be used to study the control of different setups
for Majorana braiding, such as the measurement-only schemes. For the magnon transport,
one could look at the performance of the Natural Evolution Strategies optimisation algorithm.
It will be compelling if this algorithm is also able to obtain high fidelity protocols in the
presence of fixed disorder patterns. One could then, for example, try to apply NES directly to
an experimental implementation of the Heisenberg chain.

From an algorithmic perspective it would be interesting to further investigate the shape of
the control landscapes of these optimisation problems. Specifically, what the effects are of
interactions, disorder or a coupling to the environment. For example, for the magnon trans-
port we saw that disorder significantly affects the shape of the cost landscape. Studying these
landscapes gives insights both into the control problem itself as well as which optimisation
technique is best to use. For instance, the roughness of this landscape determines the com-
plexity of the optimisation problem and the chances of successfully finding an optimal control
protocol. Thus, this knowledge is relevant for the realisation of controllable quantum devices.

Lastly, to end this thesis with a more broader and futuristic outlook, it will be fascinating
to explore the possibility for a fully autonomous ML quantum-control agent. This ML agent
could, for example, be composed of two different (sub)machines. The first machine tries to
understand and learn the behaviour of the quantum system and gives as output an estimate for
the value of the control functional L, for instance the infidelity. This machine could learn to
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predict L from the feedback by experimental measurements or by training on a mathemati-
cal model. After the training is completed an estimate for L could then be obtained with a
much lower computational complexity than the complexity of the full many-body quantum
evolution. A similar idea was exploited in references [222, 224].

The second machine can then use the prediction of the cost by the first machine to devise
efficient control strategies. This ML scheme for quantum control might be related to gen-
erative adversarial networks (GANs) [237, 238], where two ML algorithms play a zero-sum
game. In order to make this connection one needs to be able to formulate the quantum control
problem in a way that GANs can be applied. It will be intriguing to see if this is possible and if
the development of such an autonomous ML control agent can lead to stable and controllable
large scale quantum devices.
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Appendix A

The Bogoliubov-de-Gennes formalism

Here we shortly introduce the Bogoliubov-de-Gennes (BdG) formalism for (free) fermions
hopping on a lattice [40, 135]. We will start from the generic quadratic Hamiltonian

H =
1

2

∑
jk

ξjkc
†
jck − [ξjk]

T cjc
†
k + ∆jkc

†
jc
†
k + [∆jk]

†cjck (A.1)

in which ξjk describes an onsite chemical potential when j = k, and hopping between differ-
ent lattice sites j and k otherwise. The inclusion of ∆ij gives the possibility for superconduc-
tivity (electron pair creation/annihilation). In the first section below, we will describe how to
solve this Hamiltonian. In the second section we review quantum time evolution within the
BdG formalism.

A.1 General Solution of the Quadratic BdG Hamiltonian

First one writes Hamiltonian (A.1) in BdG form,

H0 =
1

2

[
c†↔ c↔

] [ ξ ∆

∆† −ξT

] cl

c†l

 =
1

2

[
C†
]

[HBdG] [C] (A.2)

with C† ≡ [c†↔ c↔] ≡ [c†1...c
†
i ....c

†
N c1...ci....cN ], and diagonalises

[HBdG][W ] = [W ][D] (A.3)

with eigenvectors W =

[
U V ∗

V U∗

]
and eigenmode energies [D]ii = εi. The U, V matrices

correspond to the coefficients of the BdG quasiparticle transformation βn, given in Eq. 5.18
in the main text. Applying this formalism to the Kitaev chain model in the momentum repre-
sentation (Eq. 3.4), results in the energy dispersion εk in Eq. 3.5.
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A.2 BdG Time Evolution

In this section we show how to time evolve many-body states with ordinary Schrödinger time
evolution within the BdG formalism. We also show how to calculate overlaps of states in the
many-body picture by utilising the BdG quasiparticle mode picture.

To time evolve an initial state in the many-body picture |ψ(0)〉 up to time T one needs to
apply the unitary evolution operator

u(T ) = T e−i
∫ T
0 H(t′)dt′ . (A.4)

Here H(t) is the time depedent many-body Hamiltonian of the system, and T the time order-
ing operator. By discretising time, in time steps δt, and exploiting the Trotter decomposition
(equation C.4) when [H(t), H(t+ δt)] 6= 0, u(T ) can be approximated by

u(T ) ≈
T/δt∏
t=0

e−iH(t)δt +O(t2). (A.5)

This can be transformed from the many-body picture to the BdG picture with a time dependent
BdG transformation

βn(t) =
∑
j

V ∗jn(t)c†j + U∗jn(t)cj. (A.6)

V (t) and U(t) diagonalise HBdG(t) at time t,

[HBdG(t)][W (t)] = [E(t)][W (t)], (A.7)

with corresponding eigenvalue matrix E(t). Then the evolution operator in the BdG picture
is given by

U(t) = W (t)eiE(t)δtW †(t). (A.8)

The BdG quasiparticle modes can now be evolved forward in time byW (t+δt) = U(t)W (t).
To go back to the many-body picture and calculate overlaps, one can make use of the

Onishi formula
| 〈ψ(0)|ψ(T )〉|2 = det [U(0)∗U(T ) + V (0)∗V (T )] , (A.9)

which can be derived with help of the Thouless theorem [40].
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Appendix B

Equivalence between the Interacting
Kitaev Chain and XYZ Heisenberg Spin
Chain

In this appendix we show the equivalence/duality between the (interacting) Kitaev chain [51]
and the XY(Z)-Heisenberg [63] spin-1/2 model. We will use the 1928 Jordan-Wigner [239]
result that qubits (spin-1/2) particles are dual to fermions obeying the fermionic commutation
relations {ci c†j} = δij and {c(†)

i c
(†)
j } = 0. This isomorphism between spins and fermions

has been extended to more than one dimension [240, 241], but we focus here on the one-
dimensional version.

This Jordan-Wigner transformation is given by a linear map which maps the Pauli spin
operators ~σi into the spinless fermionic creation and annihilation operators

σxi =
∏
i<j

(1− 2c†jcj)(ci + c†i ), (B.1)

σyi = i
∏
i<j

(1− 2c†jcj)(ci + c†i ), (B.2)

σzi = (1− 2c†ici). (B.3)

Applying this map to the XYZ Heisenberg N -site spin chain

H = −
N∑
i=1

(Jxσ
x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1 + Jzσ

z
i σ

z
i+1 + hzσ

z
i ) (B.4)

with coupling constants ~J and external field hz, we obtain

H = −
N∑
i=1

[(−2hz − 2Jz − 2Jz|i>2)c†ici + (Jx + Jy)(c
†
ici+1 + h.c.)

+(Jx − Jz)(c†ic
†
i+1 + h.c.) + 4Jzc

†
icic

†
i+1ci+1 + hz + Jz]. (B.5)
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Chain

It can see the that H resembles the interacting Kitaev chain model given in Eqs. 3.1 & 5.1
in the main text. The coupling constants are linked to the Kitaev chain parameters by

µ− V = −2hz − 2Jz, t = Jx + Jy, ∆ = Jx − Jy, U = −Jz. (B.6)

Note that we did not include some boundary effect term for the chemical potential result-
ing from the Z-interaction. However, the interpretation is different in both pictures (spins
vs. fermions), this makes the Jordan-Wigner transformation useful if one wants to gain more
insight in another physical picture. For example, [242] solved the one-dimensional antiferro-
magnetic XY chain with a Jordan-Wigner transformation to the fermion picture.
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Appendix C

Tensor Networks

In this appendix we introduce the topic of tensor networks and the density matrix renormal-
isation group (DMRG), which has been a widely used numerical method to study quantum
systems of low-entanglement ever since the initial invention by Steven White in 1992 [61].
Because we are interested in interactions, which makes the interacting Kitaev chain not ex-
actly solvable with methods like BdG, the use of MPS and DMRG, which are able to capture
interactions, is very useful. This method will now be shortly introduced, starting from the
definition of matrix product states. For more extensive reviews we refer the reader to refer-
ences [62, 243].

C.1 Matrix Product States

Before giving the definition of a matrix product state (MPS), we first recall the definition
of the Schmidt decomposition of a quantum state |Ψ〉. |Ψ〉 is living in the 2N dimensional
Hilbert space H and can be expanded into a tensor product of two partitions A and B, with
2N/2 dimensional orthonormal bases |i〉A and |i〉B, giving

|Ψ〉A+B =
∑
i

λi |i〉A |i〉B . (C.1)

Here, the λi are the square roots of the eigenvalues of the density matrix, which can be ob-
tained from the singular values of the singular value decomposition (SVD) of |Ψ〉A+B.

We restrict to quantum systems in one-spatial dimension consisting of N lattice sites, the
extension of MPS to higher dimensions is called projected entangled pair states (PEPS) and
can be found in [244]. By partitioning the system in N subsystems, one for each site, by
performing N − 1 Schmidt decompositions (Singular Value Decompositions) we obtain the
MPS

|Ψ〉N =
∑

i1,i2,..,iN

~A[i1] ~A[i2].... ~A[iN ] |i1〉 |i2〉 ... |iN〉 . (C.2)

The ~Ai for each site are the two-index tensors, matrices in this case, with local onsite physical
basis states |in〉 (spin up/down for a spin-1/2 chain). The matrices are bonded together in terms
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of a tensor product, which is contracting the shared singular values of the expansion between
two sites. This is an example of a tensor network, a quantum state with Hilbert space of
dimension 2N is expanded into smaller local tensors connected by bonds with bond dimension
χ. We can do a similar expansion for operators such as Hamiltonians, called matrix product
operators MPO, as can be found in references [62, 245]. In the MPO the only difference is
that there are two physical indices in and jn, one for the physical kets and one for the physical
bras, as in |jn〉 〈in|.

Since writing down all the tensors with indices is quite tedious, there is a graphical notation
for MPS/MPO as shown in figure C.1 for a N = 10 system. The tensors are represented
by boxes, the physical basis by vertical bonds and the tensors are connected by horizontal
(virtual) bonds. Expectation values and overlaps can be easily calculated in this notation by
contracting over the indices.

FIGURE C.1: Graphical representation for tensor networks. The top expansion is a MPS of
the form |Ψ〉 =

∑10
i Ψi1....i10 |i1〉 ... |i10〉. The bottom expansion is a MPO of the form M =∑10

i M j1....j10
i1....i10

|j1〉 ... |j10〉 〈i1| ... 〈i10|.

C.2 Density Matrix Renormalization Group

In principle any 1D quantum state can be represented by a MPS if one does not put a bound on
the bond dimension χ. However, this does not give much advantage in computational speed
over, for example, exact diagonalisation methods. Steven White introduced an ansatz [61],
now known as the density matrix renormalisation group (DMRG), in which there is a bound
χ′ ≤ χ on the amount of entanglement, i.e. the number of singular values kept from the SVD
for the Schmidt decomposition [Fig. C.2 (c)]. In this way, many low-entangled ground states
of systems with local Hamiltonians can be efficiently described by an MPS. The downside is
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that this bound results in a truncation error given by

|| |Ψ〉 − |Ψ〉trun ||
2 ≤ 2

N∑
i

(εi(χ)− εi(χ′)), (C.3)

where εi(x) is the sum of the x biggest singular values of the SVD at site i. This will give
problems for high entangled phases, for example near phase transition points, however, in
regions far away from these points it will not give problems. The main advantage of DMRG
is that for a Hamiltonian given as MPO, the ground state can be efficiently found variationally
for large system sizes, much larger than with exact diagonalisation is possible. This variational
ground state search can be done by solving a generalized eigenvalue problem as explained in
[62].

FIGURE C.2: Diagram representation of time evolution in DMRG. )a) Local exponentiated term, two-
site MPO. (b) Application of the local MPOs first to the even bonds and then to the odd bonds. (c) The
new time evolved MPS sites are reduced by performing an SVD with truncation D on the number of
singular values.

C.3 Time Evolution with MPS

Time evolution is nontrivial in DMRG because one expects the entanglement to grow with
time as the system is evolved. Therefore, the required bond dimension χ′ to keep the trunca-
tion error small will need to grow, resulting in a higher computational cost. Time evolution
is done by making the evolution operator as a MPO and applying it to the MPS to move
it forward in time. This new evolved MPS is reduced by bringing the bond dimension to
manageable sizes as shown in Fig. C.2. There are several schemes available to do this [62],
but one common way is via Trotter time evolution (TEBD). The time evolution operator is
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approximated via a Trotter decomposition

e−τĤ ≈
N/2∏
i=1

e−τĥi
N/2∏
i=1

e−τĥi+1 +O(τ 2), (C.4)

where one applies local exponentiated MPO terms e−τĥi (ordinary matrix exponential) first to
the odd and then to the even bonds (figure C.2). Another more stable scheme, without Trotter
error, to do this is the time-dependent-variational principle (TDVP). This method is solving
a minimisation problem for the Schrödinger equation to find an approximation for the new
time-evolved MPS as discussed in reference [59].
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Appendix D

Topological Order of the Non-Interacting
Kitaev Chain

In this appendix we show that

〈e/o| β0[O, β†0] |e/o〉 = e−L/ξ (D.1)

which is required to show the TQO property the non-interacting Kitaev chain H0 by the ar-
gument in section 5.1 in the main text. In here O is some sufficiently local parity preserving
operator and β†0 = 1

2
(Γl − iΓr) is the creation operator for the Dirac fermionic zero mode.

Since we have assumed perfectly localized Majoranas (∆ = w, µ = 0)1 we have Γl = γ1 and
Γr = γL where x = 1, L are the first and last lattice sites of the chain. The γ1 and γL are thus
the uncoupled Majorana bound state operators whereas the bulk Majorana operators γi with
i 6= 1, L are the dimerized bulk Majorana operators, see section 3.2.1 in the main text.

To show Eq. D.1 we first assume a simple 2-body parity preserving form

O =
∑
i,j

Oijγiγj. (D.2)

To make sure this operator is sufficiently local we impose |i − j| < L, i.e. they do not cross
the entire system. The commutator in Eq. D.1 can then be written as

1

2

∑
j,k

Ojk[γjγk, γ1 − iγL] =
1

2

∑
j,k 6=L

Oij[γjγk, γ1]− i

2

∑
j,k 6=1

Oij[γjγk, γL]. (D.3)

Focusing for the moment only on the first term we note that this commutator is only non-zero
when either j = 1, k 6= 1 or j 6= 1, k = 1. When j = 1 we find [γ1γk, γ1] = −2γk and
when k = 1 we find [γjγ1, γ1] = 2γj . However the expectation value in Eq. D.1 for these
commutators

〈e/o| β0[O, β†0] |e/o〉 = 〈e/o| (γ1 + γL)γj |e/o〉 = 0 (D.4)

1We can always use quasiadiabatic continuation to argue TQO for a H0 with some different parameters for
which the gap is still open.
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because j 6= 1, L. The same argument, with permuted indices, can be made for the second
term in Eq. D.3 to show it also has zero contribution.

This shows that for the particular 2-body operator in Eq. D.2 we have an exact TQO
condition as long as it has a maximum support of size L∗ = L−1. The exactness comes from
the fact that the RHS in Eq. D.1 in this case is exactly zero which results from the perfectly
localized Majoranas. For different parameters for which the Majoranas have some finite decay
length ul(x) 6= δx,1 one gets the approximate TQO condition with a correction on the order
of O(e−L/ξ). Futhermore, it is straightforward to generalize the argument above to N-body
operators O which have support only an a region of maximum size L∗ = L − 1. This can be
seen by again considering the commutation properties with the localized Majorana operators
γ1 and γL.

D.0.1 Groundstate Degenaracy as a Consequence of Topological Order

For completeness we now also show the mathematical derivation behind the argument that we
use in the main text for the groundstate degeneracy of some systems2 that possess TQO. We
consider Hamiltonians of the form

H =
∑
k

Hk (D.5)

where the Hk are maximally L∗-local. Now by the TQO condition Eq. 5.4 we have

E0
e − E0

o =
∑
k

〈e|Hk |e〉 − 〈o|Hk |o〉 (D.6)

= k ×O(e−L/ξ). (D.7)

This difference is exponentially suppressed because the number of terms in the sum k grows
at most linearly with the system size L. From this we conclude that the groundstates of the
even and odd sectors are degenerate E0

e ≈ E0
o for long enough system sizes L.

2Systems that can be described by local Hamiltonians
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B. Plaçais, A. Cavanna, Q. Dong, U. Gennser, Y. Jin, and G. Fève. Fractional statistics
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Krogstrup, Leo P. Kouwenhoven, and Attila Geresdi. Observation of the 4π-periodic
josephson effect in indium arsenide nanowires. Nature Communications, 10(1):245,
Jan 2019.

[150] Chun-Xiao Liu, Jay D. Sau, and S. Das Sarma. Distinguishing topological majorana
bound states from trivial andreev bound states: Proposed tests through differential tun-
neling conductance spectroscopy. Physical Review B, 97(21), Jun 2018.

[151] K. T. Law, Patrick A. Lee, and T. K. Ng. Majorana fermion induced resonant andreev
reflection. Phys. Rev. Lett., 103:237001, Dec 2009.

[152] G. Kells, D. Meidan, and P. W. Brouwer. Near-zero-energy end states in topologically
trivial spin-orbit coupled superconducting nanowires with a smooth confinement. Phys.

Rev. B, 86:100503, Sep 2012.

[153] Jason Alicea, Yuval Oreg, Gil Refael, Felix von Oppen, and Matthew P. A. Fisher. Non-
abelian statistics and topological quantum information processing in 1d wire networks.
Nature Physics, 7(5):412–417, Feb 2011.



146 BIBLIOGRAPHY

[154] Bela Bauer, Torsten Karzig, Ryan Mishmash, Andrey Antipov, and Jason Alicea. Dy-
namics of majorana-based qubits operated with an array of tunable gates. SciPost

Physics, 5(1), Jul 2018.

[155] Michael Victor Berry. Quantum phase corrections from adiabatic iteration. Proceedings

of the Royal Society of London. A. Mathematical and Physical Sciences, 414(1846):31–
46, 1987.

[156] Jun John Sakurai. Modern quantum mechanics; rev. ed. Addison-Wesley, Reading,
MA, 1994.

[157] Jay D. Sau, David J. Clarke, and Sumanta Tewari. Controlling non-abelian statistics of
majorana fermions in semiconductor nanowires. Phys. Rev. B, 84:094505, Sep 2011.

[158] B van Heck, A R Akhmerov, F Hassler, M Burrello, and C W J Beenakker. Coulomb-
assisted braiding of majorana fermions in a josephson junction array. New Journal of

Physics, 14(3):035019, mar 2012.

[159] M. Burrello, B. van Heck, and A. R. Akhmerov. Braiding of non-abelian anyons using
pairwise interactions. Phys. Rev. A, 87:022343, Feb 2013.

[160] Parsa Bonderson. Measurement-only topological quantum computation via tunable
interactions. Phys. Rev. B, 87:035113, Jan 2013.

[161] Parsa Bonderson, Michael Freedman, and Chetan Nayak. Measurement-only topolog-
ical quantum computation. Phys. Rev. Lett., 101:010501, Jun 2008.

[162] Torsten Karzig, Falko Pientka, Gil Refael, and Felix von Oppen. Shortcuts to non-
abelian braiding. Phys. Rev. B, 91:201102, May 2015.

[163] Chuanchang Zeng, Girish Sharma, Tudor D. Stanescu, and Sumanta Tewari. Feasi-
bility of measurement-based braiding in the quasi-majorana regime of semiconductor-
superconductor heterostructures. Phys. Rev. B, 102:205101, Nov 2020.

[164] A. Conlon, D. Pellegrino, J. K. Slingerland, S. Dooley, and G. Kells. Error generation
and propagation in majorana-based topological qubits. Phys. Rev. B, 100:134307, Oct
2019.
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