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We introduce a Bayesian genetic algorithm for reconstructing atomic models of nanoparticles from
a single projection using Z-contrast imaging. The number of atoms in a projected atomic column
obtained from annular dark field scanning transmission electron microscopy (ADF STEM) images
serves as an input for the initial three-dimensional (3D) model. The novel algorithm minimizes the
energy of the structure while utilising a priori information about the finite precision of the atom-
counting results and neighbor-mass relations. The results show excellent prospects for obtaining
reliable reconstructions of beam-sensitive nanoparticles during dynamical processes from images
acquired with sufficiently low incident electron doses.

It is commonly accepted that the three-dimensional
(3D) atomic structure of metallic nanoparticles de-
termines their catalytic properties [1–5]. Indeed, the
presence of highly undercoordinated atoms or stepped
facets at the surface govern many catalytic reactions. A
quantitative characterization of the atomic configuration
at the surface of these metallic nanoparticles is therefore
essential to reveal the active sites of the nanoparticle
where reactant molecules are preferentially adsorbed, to
understand the mechanisms of the catalytic behavior,
and to improve the performance of these systems.
Atomic resolution annular dark field scanning trans-
mission electron microscopy (ADF STEM) has become
an invaluable tool for imaging metallic nanostructures
[6–10]. In this context, electron tomography has been
used to provide insights in the 3D shape of nanostruc-
tures [11–13], but this technique requires a significant
electron dose for the multiple projections. Consequently,
this approach is not feasible when investigating small
beam-sensitive catalysts or dynamical processes. There-
fore, an alternative method has been developed where
the 3D atomic structure is reconstructed from a single
ADF STEM projection image [8, 14, 15]. For this
purpose, the number of atoms contained in an atomic
column along the third dimension is retrieved from
an ADF STEM image. These atom counts are used
to create an initial atomic model which serves as an
input for an energy minimization to obtain a relaxed
3D reconstruction of a nanostructure. The validity of
this atom-counting/energy minimization method has
qualitatively been verified using electron tomography
and is applied to study several systems [10, 15].

Two possible approaches for the energy minimization
are nowadays available. Using the first approach, the
energy is minimized by shifting the atomic columns up
and down while keeping the number of atoms in a column

Figure 1. (a) 3D model and (b) cross-section of the Pt
nanoparticle model partially embedded in an amorphous car-
bon support, (c) simulated ABF STEM image and (d) simu-
lated ADF STEM image at 104 e−/Å2.

fixed to the outcome of the atom-counting procedure
[8, 16]. The second approach consists of a full molecular
dynamics simulation to relax the particle’s structure
[5, 10, 15]. The first method is potentially too restrictive
by ignoring the finite atom-counting precision, especially
at lower doses. The expected inevitable counting
imprecision in this case [9], will likely result in slightly
more roughness at the reconstructed atomic surface in
the direction parallel to the beam direction [8, 15]. On
the other hand, the second method runs the risk of
ending up in a global energy minimum and violating
the physical constraints of the experimental observation.
Both approaches hamper a reliable 3D reconstruction
of the atomic configuration at the surface, especially
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Figure 2. (a-b) Simulated ADF STEM images of the Pt nanoparticle embedded in the carbon support along the [110] zone axis
for an incident electron dose of 103 e−/Å2 and 102 e−/Å2. (c-d) Refined parametric models of the images shown in (a-b). (e-f)
Estimated number of atoms in each atomic column for the images shown in (a-b). (g-h) Histograms of SCSs for the images
shown in (a-b). The decomposition into overlapping Gaussian components is shown in color, corresponding to the number of
atoms. (i-j) Probability matrices indicating the probability for a column n to contain a specific number of atoms g.

for images acquired at lower doses. Here we propose
a new method which includes the finite atom-counting
precision via a Bayesian inference scheme to improve
the 3D atomic models for small nanostructures. More-
over, the incorporation of additional prior knowledge
from neighbor-mass relations will be beneficial when
reconstructing atomic models from extremely low dose
ADF STEM images. This prior knowledge is fused into
a genetic algorithm which uses atom-counting results
as an input for reconstructing the 3D atomic structure.
In this Letter, we introduce this advanced Bayesian
genetic algorithm and evaluate quantitatively via an
extensive simulation study the quality of the obtained
reconstructions in terms of the reliability with which the
surface atoms can be reconstructed in 3D. In the last
part, the algorithm is applied to retrieve 3D atomic mod-
els from an experimental time-series of a Pt nanoparticle.

To count the number of atoms, so-called scattering
cross sections (SCSs), corresponding to the total intensity
of electrons scattered toward the ADF detector for every
atomic column, have been introduced in ADF STEM.
These SCSs can be measured using statistical parame-
ter estimation theory [17, 18] or by integrating intensi-
ties over the probe positions in the vicinity of a single
column of atoms [19]. For our simulation study, SCSs
are determined from noise realizations at different doses
of a simulated ADF STEM image of a Pt nanoparticle
partially embedded in a carbon support, illustrated in
Fig. 1(a-b). The created particle largely resembles the
Wulff construction solid for Pt586 (4 atoms along each
edge) and was modified to include several diagnostic fea-

tures of interest commonly observed for catalytic metallic
nanoparticles including a surface adatom, a surface va-
cancy, a terrace edge, a small area of {110} face, and
rounded corners. With these modifications the parti-
cle model contains 587 atoms. The slab of amorphous
carbon measures 5 nm × 5 nm × 2 nm and the geome-
try follows the work of reference [20]. Image simulations
were performed for the Pt particle viewed along the [110]
zone axis using the MULTEM package [21, 22]. An ac-
celeration voltage of 200 kV, a semi-convergence angle
of 22.48 mrad, and a pixel size of 0.124 Å were chosen
and averaging over 30 unique phonon configurations was
performed. A source size having a FWHM of 1.0 Å was
added to further reflect experiments recorded under the
same conditions. Fig. 1(c) shows the annular bright field
(ABF) STEM image with a detector collection range of
9-21 mrad, illustrating the presence of the carbon sup-
port and Fig. 1(d) shows the ADF STEM image with a
detector collection range of 52-248 mrad, using an elec-
tron dose of 104 e−/Å2. In Figs. 2(a-b) simulated ADF
STEM images are shown using lower incident electron
doses with respective 103 e−/Å2 and 102 e−/Å2. The
simulated ADF STEM images can be modeled as a su-
perposition of Gaussian functions using the StatSTEM
software [15]. The refined models for the simulated ADF
STEM images are shown in Figs. 2(c-d). From the esti-
mated model parameters, the SCSs are determined for
each atomic column and can be represented in a his-
togram in Figs. 2(g-h). In a subsequent analysis, the
distribution of the SCSs of all atomic columns is decom-
posed into overlapping normal distributions, i.e. a Gaus-
sian mixture model, as illustrated in Figs. 2(g-h) [23, 24].
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The locations of the normal distributions are matched
to the expected SCS values for a column containing g
atoms [25] and their widths are determined (details can
be found in the Supplementary Material). The number
of atoms in each projected atomic column in Figs. 2(e-f)
is then obtained by assigning the SCS to the component
that generates this SCS value with the highest probabil-
ity. The width of the normal distributions reflects the
finite precision of the atom-counting results, which will
be used as prior knowledge in the genetic algorithm for
reconstructing the 3D atomic structure. As an input we
need the probability that an atomic column contains a
specific number of atoms and this can be defined from
the decomposition into normal distributions, illustrated
in Figs. 2(g-h). Indeed, the normal distribution functions
describe the probability that component g generates the
nth SCS, i.e. p(SCSn|g), and by using Bayes’ theorem,
the probability that the nth SCS has g atoms can be
computed p(g|SCSn):

p(g|SCSn) =
p(g)p(SCSn|g)

p(SCSn)
=

p(g)p(SCSn|g)∑
g p(g)p(SCSn|g)

.

(1)

Equal probabilities are assigned to the probability for
having g atoms in a column p(g). p(g|SCSn) is visual-
ized by a probability matrix in Figs. 2(i-j). From the
representation of the Gaussian mixture model on top of
the histogram, the relation between the probability ma-
trix and the width of the normal distributions is clearly
illustrated.
For improving the quality of the low-dose reconstruc-
tions, we can include even more relevant prior knowl-
edge. For spherical convex nanoparticles, we can in-
clude neighbor-mass relations because abrupt disconti-
nuities are highly non-physical for small nanoparticles
[26]. The neighbor-mass matrix helps to predict the col-
umn mass based on the average mass of the neighboring
columns. For small nanoparticles, we propose a diago-
nal neighbor-mass matrix. The matrix is visualized in
Fig. S1 of the Supplementary Material. The probabil-
ity profile is Gaussian and the width of this Gaussian is
chosen such that the interval ±1 and ±0 atoms contains
80% of the probability. The normalized neighbor-mass
probability, p(g|NBn) with NBn indicating the average
neighbor-mass, is combined with the probability matrix
accounting for the atom-counting reliability p(g|SCSn),
in order to take the two types of prior knowledge into
account:

p (g|columnn) =
p(g|SCSn)p(g|NBn)∑
g p(g|SCSn)p(g|NBn)

. (2)

This final probability matrix is used as input of the prior
knowledge for the genetic algorithm that we will use to
reconstruct the 3D atomic structure of the nanoparticle,
hence the name Bayesian genetic algorithm. Genetic al-
gorithms are powerful tools for solving large optimization

problems where finding a direct solution is not possible
[27–31]. It is an iterative process where first a population
of randomly generated individuals is created. In our al-
gorithm, this initial population is generated by randomly
modifying the number of atoms and the height offset of
the atomic columns of a 3D starting configuration within
a certain mutation range. This 3D starting configuration
is obtained by positioning the atoms (i.e. the outcome
of the atom-counting procedure) in each atomic column
parallel to the beam direction and symmetrically around
a central plane. A population size of 500 is used in all
calculations, the count mutation range equals 1, and the
height mutation range for the offset of a column equals
a lattice step. In each iteration, i.e. a generation, the fit-
ness of every individual in the population is evaluated by
the cost-function of the optimization problem. The in-
dividuals with the best cost-function values are selected
from the current population, and a new complete pop-
ulation of candidate solutions is formed by recombining
and mutating the selected individuals. The fraction of
the population that is used for the recombination step
equals 50%. For each recombined member, two parents
are randomly chosen from the selected individuals, and
cross-over is performed by randomly selecting columns
from both parents. A mutation density of 2% is included
to avoid ending up immediately in a local minimum by
randomly modifying the number of atoms and height off-
set for 2% of the atomic columns in each new member. In
addition to the usual iterations over many breeding gen-
erations, in this work we introduce a second loop to pro-
vide for multiple unique starting initializations, specifi-
cally to reduce the risk of finding only local-minima so-
lutions. The cost-function χ that we use here to evaluate
the candidate solutions is given by:

χ =

∑
Ea∑
n gn

· n

√∏

n

p(g|columnn), (3)

where
∑
Ea is the sum of the energies per atom given by

the EAM potential [32, 33],
∑

n gn is the total particle
mass. This cost-function consists of two factors where
the first represents the average energy per atom which
we wish to minimize. The second factor represents the
probability of the candidate solution based on the in-
troduced prior knowledge (Eq.(2)). This factor itself is
based on the geometric mean of the probabilities of each
individual column and needs to be maximized. Since the
average energy per atom is negative, this cost-function is
minimized in order to reconstruct the 3D model.

In order to evaluate the quality of the reconstructions
using the Bayesian genetic algorithm, an extensive simu-
lation study is carried out. For this purpose, the electron
dose is varied between 102 e−/Å2 and 105 e−/Å2 and
30 noise realizations are generated at each electron dose.
Fig. S2 in the Supplementary Material summarizes the
atom-counting results obtained following the methodol-
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Figure 3. Fraction of the surface atoms with the same coordi-
nation number as in the ground truth model with 95% error
bars when including the finite atom-counting precision and
neighbor-mass relations as prior knowledge. As a reference,
the results when using a fixed number of atoms in a column
are also displayed.

ogy illustrated in Fig. 2 and which are used as an input
for our Bayesian genetic algorithm. For each reconstruc-
tion, 25 unique random starting initialization structures
are used in the algorithm. It should be noted that a struc-
ture with a better cost-function might be found when in-
creasing this number. The results of the reconstructions
are quantitatively summarized by comparing the recon-
structed 3D models with the ground truth model. As a
criterion to evaluate the 3D atomic models, we used the
fraction of surface atom positions, i.e. with coordination
number less than 12, that are correctly defined in 3D
and that have the same coordination number as in the
ground truth model. These are the atoms which are of
interest for catalysis. The coordination number serves as
a powerful predictor for surface adsorption strength on
Pt nanoparticles, and hence as a predictor of chemical ac-
tivity [3, 34–36]. Fig. 3 shows this fraction for the recon-
structed atomic models. As a reference, we also included
the fraction following the approach where the number of
atoms is fixed to the outcome of the atom-counting pro-
cedure and where during the reconstruction the atomic
columns are only shifted up and down. A significant, vast
improvement for the reconstructed surface atoms is ob-
served when including the finite atom-counting precision
and the neighbor-mass relations, especially for the lower
incident electron doses.
In order to evaluate the reconstructed 3D atomic models
in a bit more detail, the 4th worst and 4th best recon-
structions of the 30 noise realizations at each dose can
be visualized as a kind of a 80% confidence interval of
the reconstructions. These intervals are shown in Fig. 4.
The colors of the atoms correspond to the coordination

number of the atoms. Even for the lower doses, the shape
is very well reconstructed and a vast improvement is ob-
served when including relevant prior knowledge resulting
in less roughness from the finite atom-counting precision
at the surface.

Figure 4. Visualization of the reconstructed 3D atomic mod-
els represented by the lower bound (red background) and up-
per bound (green background) of a 80% confidence interval for
the reconstructions when using (a) a fixed number of atoms in
the atomic column during the reconstruction and (b) the fi-
nite atom-counting precision and the neighbor-mass relations.
The reconstruction in the box corresponds to the ground truth
model.

As a last part in this Letter, we apply the Bayesian
genetic algorithm to 25 frames of an experimental time
series of a catalyst Pt nanoparticle [26]. The experimen-
tal details and corrections for scan noise and tilt are de-
scribed in the Supplementary Material. To reliably count
the number of atoms from the time series of images, we
used a hidden Markov model which explicitly describes
the possibility of structural changes over time [37, 38].
The atom-counting results from each single frame have
been used as an input for our Bayesian genetic algorithm
in which we employ the finite atom-counting precision
and neighbor-mass relations. For the experimental time
series, we used 100 unique initializations throughout the
reconstruction procedure. The reconstructed models are
schematically represented in Fig. 5. The ADF STEM
images and corresponding reconstructed models for all
frames are shown in Supporting Figs. S3 and S4. This
approach enables a reliable 3D quantification of the struc-
tural changes of the Pt nanoparticle under the electron
beam. From the evaluation of the coordination numbers
(Fig. S5 of the Supplementary Material), we can conclude
that although each image has unique noise and that the
structure is moving under the electron beam, the number
of atoms with the same coordination number is consis-
tent throughout time. Since these coordination numbers
are very important to relate to the catalytic properties,
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it is important to point out here that the small changes
clearly do not change the overall catalysis-relevant infor-
mation that we can extract.

Figure 5. (a) Experimental ADF STEM time series of a Pt
nanoparticle. (b) Reconstructed atomic models for the time
sequence.

To summarize and conclude, we introduced a pow-
erful alternative to the initially developed atom-
counting/energy minimization method for the 3D recon-
struction of nanoparticles from a single viewing projec-
tion. This newly designed Bayesian genetic algorithm
takes advantage of the finite atom-counting precision and
neighbor-mass relations during the reconstruction. This
results in more reliable reconstructions of the 3D atomic
structure, especially at lower incident electron doses be-
low 104 e−/Å2. The increased quality of the 3D atomic
models has been validated by a quantitative evaluation
of the coordination numbers of the surface atoms. This
result shows great promise to use these reconstructions
to predict the adsorption properties of catalytic nanopar-
ticles.
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bato, A. Béché, S. Van Aert, and S. Bals, Nanoscale 13,
1770 (2021).

[6] T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata,
L. Zhang, T. Tokunaga, Y. Arai, N. Tanaka, Y. Ishikawa,
N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen,
Nature Materials 11, 775 (2012).

[7] A. B. Yankovich, B. Berkels, W. Dahmen, P. Binev, S. I.
Sanchez, S. A. Bradley, A. Li, I. Szlufarska, and Voy,
Nature Communications 5, 4155 (2014).

[8] L. Jones, K. E. MacArthur, V. T. Fauske, A. T. J. van
Helvoort, and P. D. Nellist, Nano Letters 14, 6336 (2014).

[9] A. De Backer, G. T. Martinez, K. E. MacArthur,
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EFFECTIVE WIDTH OF THE NORMAL
DISTRIBUTIONS IN THE GAUSSIAN MIXTURE

MODEL

In principle, the width is estimated from the decom-
position into overlapping normal distributions σall to the
set of SCSs values. This width takes into account all
uncertainties in the SCSs, including the limited electron
dose and fluctuations in the SCSs from other effects such
as the carbon support, different vertical onset of columns
of the same number of atoms, intensity transfer between
columns, and the influence of neighboring columns of dif-
ferent number of atoms [1]. However, it is known that the
width of the Gaussian distributions might be underesti-
mated for lower electron doses [2]. Here, we will assess
whether the width is underestimated and adjust it when
necessary. This will be done by comparing the estimated
width σall with the expected width for the normal distri-
butions from the limited electron dose σdose. If σdose is
larger than σall, then this indicates an underestimation
from the Gaussian mixture model analysis. The width
σdose can be predicted by [3]:

σdose =
√
µg/d, (1)

where µg corresponds to the expected SCS for a column
containing g atoms and d equals the incident electron
dose. Next, this width σdose is compared to the width
estimated from the decomposition into normal distribu-
tions σall. In order to avoid the underestimation of the
width, an effective width is therefore introduced which is
the maximum of the two contributions:

σeff = max(σdose, σall). (2)

σdose will be dominant when the fluctuations in the SCSs
are mainly dose-limited [3].

EXPERIMENTAL PT SERIES

The ADF STEM images were recorded on a JEOL
ARM200CF fitted with a probe-aberration corrector us-
ing an acceleration voltage of 200 kV, a probe conver-
gence angle of 22.48 mrad, an annular detector ranging
from 52-248 mrad, a dwell time of 4 µs and an incident
electron dose of 1.38 ·104e−/Å2 per frame. The images of
the time series were corrected for drift and other distor-
tions using non-rigid registration [4]. During the time-
series, the Pt nanoparticle tilts slightly away from zone
axis orientation and back, which affects the scattering
cross-sections [5]. Therefore, the scattering cross-sections
of the individual frames need to be compensated for tilt.
This is done by using a linear scaling of the scattering
cross-sections of the individual frames [2], assuming that
the total number of atoms in the nanoparticle remains
constant throughout the time series. This assumption is
valid since the threshold energy for sputtering Pt atoms
from a convex surface with step sites is 379 keV [6], well
above the incident electron energy of 200 keV. We there-
fore do not expect sputtering of atoms from the surface,
only surface diffusion [3].
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Figure 1. Neighbor-mass probability matrix displaying the average mass of the neighboring columns on the x-axis and the
column mass on the y-axis. The colormap illustrates the probabilities.

Figure 2. Estimated total number of atoms in the particle (left axis) and the fraction of atomic columns in which the number of
atoms has been counted correctly (right blue axis). The error bars indicate 95% confidence intervals. For the lowest doses, the
total number of atoms is slightly underestimated and as expected the fraction of correctly counted atomic columns decreases
when the incident electron dose decreases. These atom-counting results are used as an input for our Bayesian genetic algorithm.
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Figure 3. Experimental ADF STEM time-series of the Pt nanoparticle. Time progress along the rows.
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Figure 4. 3D atomic models obtained by the Bayesian genetic algorithm including the finite atom-counting precision and
neighbor-mass relations as prior knowledge for the time series from Figure 2.
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Figure 5. Atomic coordination number analysis for the time series of the Pt nanoparticle.


