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Abstract

®
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The complex band structure (CBS), although not directly observable, determines many
properties of a material where the periodicity is broken, such at surfaces, interfaces and
defects. Furthermore, its knowledge helps in the interpretation of electronic transport
calculations and in the study of topological materials. Here we extend the transfer matrix
method, often used to compute the complex bands, to electronic structures constructed using
an atomic non-orthogonal basis set. We demonstrate that when the overlap matrix is not the
identity, the non-orthogonal case, spurious features appear in the analytic continuation of the
band structure to the complex plane. The properties of these are studied both numerically and
analytically and discussed in the context of existing literature. Finally, a numerical
implementation to extract the CBS from periodic calculations carried out with the density
functional theory code SIESTA is presented. This is constructed as a simple post-processing
tool, and it is therefore amenable to high-throughput studies of insulators and semiconductors.

Keywords: complex band structure, non-orthogonal basis sets, density functional theory

(Some figures may appear in colour only in the online journal)

1. Introduction

One of the central quantities when studying the elec-
tronic structure of a crystal is the dispersion relation,
E(k), between the energy, E, and the crystal momentum,
k, a property obtained by solving the time-independent
Schrodinger equation for a periodic system. The concept is
rather general and can be extended to other problems associ-
ated to a periodic potential, such as the determination of the
modes of an electromagnetic field in dielectric crystals [1, 2].
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When E and k are real quantities, the E(Kk) relation is known as
the band structure. In this situation for every real energy E, the
allowed real wave-vectors k (if any) describe the propagating
states of the crystal, whose wave function has a mathematical
expression following Bloch’s theorem,

Ui(r) = i (r), (D

where ug(r) is a function with the same periodicity of the
potential.

The wave vector k needs to be real in order to ensure that
the wave functions remain finite over the entire space, but this
is not a requirement of the Schrédinger equation itself. It is
then possible to generalize the dispersion relation E(k) to com-
plex wave vectors. In such case, the wave function, ¥, (r), of
type (1) represents an evanescent state that grows or decays
exponentially from one unit cell to the next. Although such

© 2021 The Author(s). Published by IOP Publishing Ltd
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evanescent states are forbidden by the translational symmetry,
namely they violate Bloch’s theorem, they become important
when the periodicity is broken, for example, at a surface or an
interface.

When one allows k to be complex, E(k) becomes a multi-
valued C — C function that can be studied with the tools of
complex analysis, giving an entirely new prospective to the
understanding of the electronic structure of a crystal. The ana-
lytical properties of E(K) were first derived by Kohn [3] for
strictly 1D situations and then extended by Heine [4] and Pro-
dan [5] to 2D and 3D, where k is allowed to be complex in
one direction only. This is the most interesting situation as it
effectively includes 1D materials, but also 2D/3D ones with
a surface, where the components of k parallel to the surface
remain good quantum numbers (real) and can be treated as
parameters [6, 7].

Even though the study of the complex E(k) relation is of
interest in its entirety, only energies with Jm(E) = 0 hold a
physical meaning. The set of real energies associated to a com-
plex k is what is generally called the complex band structure
(CBS). Heine showed in a pioneering study [4] that the CBS
can be viewed as a collection of ‘line of real energies’ with well
defined behaviors in the complex plane. Kreigher then revised
all the properties of the complex E(K) dispersion and of the
‘lines of real energy’ in the case of finite-band models, where
the electronic wave functions are expanded over a finite basis
set [8]. In this case only algebraic arguments (no complex anal-
ysis) can be used to derive the analytical properties of E(k).
However, a fundamental assumption of Kreigher’s theory is
that the basis set is orthonormal. To the best of our knowledge,
to date there is no generalization to the non-orthogonal case,
despite the fact that non-orthogonal basis sets are often used
in electronic structure theory and in the calculation of the CBS
[9]. Notably in literature there are many examples of computa-
tional techniques and CBS calculations for real materials, but
only recently effort has been dedicated in providing a com-
prehensive and unified prospective to the study of the CBS
[10].

The goal of our paper is twofold. Firstly, we introduce a
simple scheme, based on the transfer matrix technique, for
the calculation of the CBS (section 2). This is implemented
as a general post-processing tool for the density functional
theory (DFT) code SIESTA [11, 12], which uses a local atom-
centered non-orthogonal basis set. Our results pose some ques-
tions related to the properties of the CBS in the presence
of overlapping basis functions, whose analysis, both analyt-
ical and numerical, constitutes the second part of our work
(sections 3-5). As such, our work can also be viewed as a
practical guide to interpret the results of CBS calculations in
presence of a non-orthogonal basis set.

2. CBS calculation: theory and implementation

As in Reuter’s topical review [10] we consider here the sit-
uation in which only one component of the wave vector, k,
is complex. As a matter of notation such complex compo-
nent is denoted with k, while the remaining real space will be
described by the vector Kk (in either 1D or 2D depending on

z=0

Figure 1. Schematic representation of the layered structure for 2D
BN. The z = 0 defines the plane where the translational symmetry is
broken, so that the complex wave vector is associated to the z
direction. The crystal is then periodic in the x direction with lattice
vector d) (d; and d, are the primitive lattice vector for monolayer
BN). Color code: B blue circles, N green circles.

the dimensionality of the crystal). Hence, we are describing the
situation in which the periodicity of the crystal is maintained
only in the plane spanned by k. The first step in the calculation
of the CBS of a crystal consists in defining the desired layered
structure and in writing the system Hamiltonian accordingly
[13, 14]. An example of this procedure is provided in figure 1.
Here a 2D BN crystal is cut across a B-atom plane, defined by
z = 0, so that the periodicity is lost in the z direction, while the
crystal remains periodic with lattice vector @ in the orthogo-
nal x direction. A cell must then be constructed that allows
to create layers perpendicular to the z direction. A layer is
defined by grouping some repetitions of the chosen cell. In our
example we choose the unit cell of BN since it already meets
the requirement to form layers perpendicular to z. Importantly,
itis not necessary that the layer itself repeats periodically in the
z direction. Instead, it is sufficient that the chosen cell can be
used to replicate the entire crystal should the z = 0 surface not
to exist and a subset of the repeated cells can be grouped to
constitute a layer in z direction. With this choice, the complex
component of the wave vector is associated to the z direction.

Let us now assume that the wave function and all the
operators are expanded over an atomic-like basis set. If the
matrix elements are arranged according to the layered struc-
ture defined before, the Hamiltonian will have the following
generic block form,

Hy Hp Hiz Hy

- Hy  Hy Hy; Hxy

Hy = |H3 H3zx Hi Hiy , (2
Hy Hyp Hpz Hy

where the matrix H;; contains all the matrix elements that
couple layer i with layer j. Thus, the Hermitian matrix H;;
describes all the interactions with the ith layer and i = 1 cor-
responds to the surface layer. If one neglects any alteration
of the electronic structure due to the presence of the surface
(e.g. screening, geometrical relaxation, etc), namely if the elec-
tronic structure is defined by a truncated version of the bulk
Hamiltonian, then we have H;; = H) for all the i layers, mean-
ing that the matrices that describe the interaction within a
layer are identical for every layer. This is also the case for the
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matrix describing the interaction of a layer at the position i with
the layer at the position i 4+ n, which we define as H,. Note
that the finite range of the interaction establishes that eventu-
ally H, must vanish for a sufficiently large n. The complete
Hamiltonian can then be written as

Hy, H| H) H]
H, Hp H| H ..

Ho=|H, H Hp H ..|- 3)
H; H, H;

A Hamiltonian of the form (3) can always be written, once
a local basis set is chosen. This is the case, for instance, of
tight-binding models [13] and many local-orbital DFT codes.
In our implementation we extract such matrix elements from
the DFT siestA package, which utilises a numerical multiple-
zetas atom-centered local-orbital basis [11]. One has then to
assume that a SIESTA calculation for the bulk has been per-
formed, so that the fully converged Kohn—Sham Hamilto-
nian is available. Since no self-consistent calculations are fur-
ther required, the problem at this point is completely equiv-
alent to a tight-binding one. However, at variance with many
conventional tight-binding methods, the supplementary com-
plication of using SIESTA is that the basis is strictly non-
orthogonal. Importantly, with the same general argument used
for the Hamiltonian, one can easily realise that also the overlap
matrix, S;, can be written in the block form (3), where now the
matrices Sp and §,, contain the overlap matrix elements within
the layer and between layers i and i + n, respectively. Note that
the range of the overlap matrix is in general shorter than that
of the Hamiltonian, so that S,, may vanish for an n smaller than
the one needed by H;.

Since the periodicity is preserved in the plane orthogonal to
the z direction, k| remains a good quantum number. Bloch’s
theorem can be applied so that, in principle, the infinitely
dimensional Hamiltonian H; can be replaced by a set of k|-

dependent Hamiltonians, H lL(” , where now the submatrices Hp,
Sp, H, and S, are k|-dependent and N x N dimensional, with
N being the number of basis functions describing the in-plane

unit cell (these are now denoted as Hk”, S;”, H:,( I"and Sl,f”). In
what follows we always assume to solve such kj-dependent
problem for some value of k. The corresponding Schrodinger
equation simply writes (for the ease of notation we drop the K,

superscript),

H; UV =ES; ¥, 4
where the wave function W is a column vector
(1, @20+ ooy Py . )T, with ¢, being the N-dimensional

vector describing the ith layer.

In conventional band-structure theory one has to find all real
energies corresponding to a given set of wave vectors, (k, k),
where also k is real. Here we want to achieve the opposite,
namely to compute all real and complex values of k corre-
sponding to a given k| and a given real energy, E. In princi-
ple one can still use equation (4) together with a root-tracking
algorithm and look for the real energies associated to k. This,
however, is expected to be highly inefficient since now k spans

the large C = R x R space. Then, there are two main strate-
gies to compute the (k, k) — E relation, by using either the
wave function (transfer matrix technique) or the Green’s func-
tion [10]. Here we follow the first approach by extending the
strategy proposed in reference [13] to interaction extending
beyond the nearest-neighbour layer [10] and to non-orthogonal
basis sets.

The idea is to associate the Hamiltonian H; to an infi-
nite periodic system and write the wave function U in its
Bloch form, ¥ = ﬁz %o, where a is the separation
between two adjacent layers. The block-diagonal structure of
the Hamiltonian A and of the overlap matrix Sy, is such that
the Schrodinger equation becomes

(o]
Hppi + Z ("™ Hypisn + € "™ Hlp;) %)
n=1

o0
= ESppi + EY (€™ Supiin + ¢ ™ Sipi ) .

n=1

In practice the sums in (5) are finite, since the range of the
Hamiltonian and the overlap matrix is finite, namely H, and
S, are zero matrices for sufficiently large n’s. Then, (5) can be
combined with a series of tautologies ¢; = ¢, and Bloch rela-
tions ¢, = e*y; to give an associated generalized eigen-
value equation, whose eigenvalues are e'“. Assuming that the
interaction extends only to the second layer (H, =0, S, =0
for n > 2) this explicitly writes

Dy Dj 0 0] [pi
oika 0 I 00 i
0 0 I 0] [pi-1
0 0o 0 I ©i-2
0 —Dp —Di —Dy| |piti
0 0 0 || w
“lo 1 0o o |la,l ©
0 0 I 0| |

where D, = H, — ES,,. Equation (6) now can be solved for
real energies E to give the allowed k values (both real and
imaginary).

In general the equation (6) can be solved by inverting the
matrix on the left-hand side and then by solving a standard
eigenvalue problem. However, such matrix is often singu-
lar and alternative numerical strategies need to be designed
to remedy the problem [9, 10]. The simplest approach is to
avoid the matrix inversion and to solve a generalized eigen-
value problem, instead. This is the strategy we adopt in our
implementation. A generalized eigenvalue problem is more
sophisticated than the standard one, since it allows zero and
infinite eigenvalues. Furthermore, in the situation of near-to-
singular matrices, solving the generalized eigenvalue might
yield numerical instabilities by generating large eigenvalues,
hence large k’s. In practice we have rarely encountered this
problem and furthermore, the most relevant states (for instance
to transport) are those with small imaginary k, which are asso-
ciated to slowly decaying states. A second drawback of the
implemented method is that one needs to handle (N - Ng) x
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Figure 2. CBS of MgS along the [111] direction at kH =(0,0)
obtained with our method. The crystal structure is extracted from the
ICSD [19] database (identifier Mg1S1_ICSD_53939). The SIESTA
calculation employs a double-zeta plus polarization basis set and a
k-grid cutoff of 30 A. The vertical axis is divided into two regions.
Pure real bands (PRe(k), obtained when Jm(k) = 0) are reported
below the origin (this is the standard band structure). Imaginary
bands are shown above the origin. The colors encode the real
component of the wave-vector, Jie(k) (pure imaginary bands have
PRe(k) = 0). The units of k are 1/Bohr.

(N - Nr) dimensional matrices, where N is the number of
orbital in the unit cell of the layer (the dimension of Hp, H,,
etc.) and Ny is the range of the interaction (the number of lay-
ers a given layer interacts with). This, however, is not a major
issue, since in highly converged SIESTA calculations N is usu-
ally relatively small (as a rule of thumb one has to consider of
the order of 20 basis functions per atom). Furthermore, Ny is
regulated by the range of the interaction, which in turn can be
tuned in SIESTA by an appropriate choice of the radial cutoff
of the basis functions. In our experience for well-converged
calculations we have always found Ng < 5.

Concerning the practical implementation of our method
within SIESTA [11, 12], the Hamiltonian and overlap matrix are
extracted from the. HsX file, while the basis set is contained in
the ORBI_NDX one. Crystal structure information is stored in
the .xv file, which is also extracted. Note that these are all out-
put of a self-consistent calculation. The generalized eigenvalue
problem of equation (6) is solved with the ZGGEV routine of
the LAPACK library [15]. There are no restrictions to the shape
of the cell to compute and the CBS can be extracted along any
of the three directions perpendicular to the planes formed by
the three lattice vectors. Tools for managing the crystal lattice
(PYMATGEN [16] and ASE [17], for instance) can be used to set
a minimal cell exposing a particular surface and allow us to
explore the CBS in any possible direction. The entire algorithm
is implemented in FORTRAN and it is publicly available [18].

An example of CBS computed with our method is reported
in figure 2. This is for MgS, a cubic crystal with rock-salt
structure (space group Fm3m, # 225), and calculated along the
[111] direction atk; = (0, 0). In the plot the energy goes on the
horizontal axis, while the k vector is on the vertical one. The
negative side of the vertical axis reports Jie(k) for states having
Jm(k) = 0, namely the conventional band structure. In con-
trast the positive side contains Jm(k) for complex k, namely
it is the extension of the band structure to the complex plane.
The bands are also color coded according to the magnitude of
PRe(k) (this information is redundant in the case of real k).

Three different kinds of complex bands can be identified
in figure 2. The first type (type-1) consists of semicircular

= 03
£ 0.2
S 01
0
—-0.1
—0.2
—0.3 1 '
= —0.4 [*Siesta-TMM Pure Re(k) 1
= _0.5 *PWCond Jm(k 1
& —0.6 *PWCond Pure Re(k) ‘ ‘ 1
—10 -5 0 5 10

E — Er (eV)

Figure 3. CBS of MgS along the [100] direction at kj = (0, 0).
Here we compare results obtained with our method with those
computed using the plane-wave code PWcoN. The SIESTA basis and
cutoff are the same as those reported in figure 2. The plane-wave
DFT calculation has been performed with plane-wave cutoff of 100
Ry. Pure real bands are reported below the origin, while imaginary
ones are above. In the legends TMM means transfer matrix method
(the one described here).

bands, which connect two points with Jm(k) = 0 (two points
on the real plane). An example of these is the low-lying red
band connecting the edges of the MgS bandgap, between the
energies E ~ —0.6 eV and E ~ 4 eV (energies are measured
with respect to the Fermi energy, Er). Instead, type-2 bands
are those originating from a point on the real plane and grow-
ing toward Jm(k) = oco. These can have rather severe curvature
and one example is provided by the blue band reconnecting
to the Jm(k) = 0O plane just above the bandgap (E ~ 4.3 eV).
Finally our calculation reveals the presence of flat bands (type-
3), characterized by an almost constant Jm(k) value over the
entire energy range. These are well evident in the region at
Jm(k) > 0.2 Bohr~!. While the behavior of the first two types
of bands is consistent with the analytic properties of the CBS
(see next section), the flat bands are not expected.

In order to validate our method we perform additional CBS
calculations with the PWconN package [20]. This implements
Landauer theory for electronic transport within the plane-wave
DFT code QuanTUuM EspPrEsso [21]. In this case the CBS is
obtained with the Green’s function formalism [20] and, most
importantly, with an electronic structure expanded over an
orthogonal basis set (plane-waves). Such comparison is pre-
sented in figure 3 again for MgS, but this time along the [100]
direction at k| = (0,0). We have changed the direction of the
CBS from that of figure 2, since PWCON can support calcula-
tions only for monoclinic cells and the [100] direction allows
us to use a monoclinic cell containing only four atoms. When
comparing results we ensure that the two DFT calculations
are performed at the same level of convergence. As expected,
the real bands match closely, with the small differences being
related to the use of different pseudopotentials and to the var-
ious details of the two codes. Such good agreement is also
found for the complex bands of type 1 and 2, namely for the
complex bands with at least one connection to the real plane. In
contrast the flat bands (type-3) appear to be a feature unique of
our SIESTA implementation and are not present in the PWconN
results. This suggests that type-3 bands may be associated to
the quality of the basis set.

Such hypothesis can be tested by computing the CBS with
our implementation and slightly different choices of basis set.
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Figure 4. CBS of MgS along the [111] direction at k; = (0, 0). The
SIESTA calculation employs a double-zeta plus polarization basis set
and a k-grid cutoff of 30 A. The bands shown on the (right-hand side
panel) are obtained with a basis set having the cutoff radius for the
Mg orbitals 10% larger than those used for the bands shown in the
(left-hand side panel). The colors encode the real component of the
wave-vector, SRe(k). The units of k are 1/Bohr.

This is done in figure 4 again for MgS along the [111] direction
atk; = (0,0), where we compare the original complex bands
of figure 2 (left panel) with those obtained by increasing the
cutoff radius of the Mg orbitals by 10% (right panel). Clearly,
by looking at figure 4, although type-1 and type-2 bands are
almost identical (compare the left- and right-hand panel), the
flat type-3 bands change significantly. In fact, their Jm(k) val-
ues reduce substantially as the cutoff radius is increased. This
calls for a thorough review of the analytical properties of the
CBS, in order to gain more insight on the origin of the type-3
bands.

3. Analytical properties of the complex band
structure

Taking from the work of Kohn [3] and Heine [4], here we
review the analytical properties of the complex dispersion rela-
tion, E(K), and of the ‘lines of real energy’. For most of the
proofs we follow Krieger’s work on finite-band models [8],
unless otherwise specified. In the Schrédinger equation for a
periodic system,

Huy(r) = Ey(v), (7)
the Hamiltonian, H , acts on the generic Bloch’s state,
Yi(r) = e u(r), (3

where uy is a function with the same periodicity of the potential
that satisfies

H(K)uy(r) = Eux(r), HEk) =e ®Hek . (9)
From equation (9) one can show that H(k) is always a polyno-
mial function of the components of k, even in the presence of
spin—orbit interaction. If now one expands ux(r) over a set of
basis functions, ¢,(r), (for the moment orthogonal)

u(r) = Y "cigi(r), (10)
!

the Schrodinger equation will translate into a matrix equation
for the coefficients, ¢;’s,

H(k)c = Ec, (11)

where all the matrix elements of H(k) are still polynomial
functions of the components of k.

‘We now allow one component of k to be complex, while the
other two remain real. If H(k) is an N x N matrix, then there
will be N solutions of equation (11), E;(k), which form the
full complex dispersion relation. In complex analysis E;(k) can
be seen as the Riemann surfaces of the complex multi-valued
function, E(k). With this in mind, a number of analytical
properties of E(k) can be demonstrated.

(a) The eigenvalues E;(k) are analytic functions of k except
at a set of isolated singular points corresponding to the
branch points of E(k). At a branch point two Riemann
surfaces connect on the complex plane. To be more for-
mal we can use Needham’s operative definition [22]. A
point g will be a branch point, if for any close loop in k-
space around it, it is not possible to return to the same
E(k). For a generic ¢, if one starts from a point k corre-
sponding to E(k), once a loop around ¢ is concluded, the
energy is still E(k). However, if ¢ is a branch point the
statement is not true. We know that E(k) is a multi-valued
complex function. Therefore, by looping around a branch
point we end up to another value of E(k) for the same k.
In the discussion we have dropped the vector symbol for
k, since we are focusing on the complex component only.
Thus, in general g depends on k. The proof of this first
property is given by Kreigher [8] by observing that the
characteristic polynomial P resulting from equation (11)
is of the form,

P=E"+yKE"" + pKkE"

+ -+ v 1(KE + (k) = 0. (12)

Since the matrix elements of H(k) are polynomial func-
tions of k, then the coefficients ~;(k)’s in (12) are also
polynomials in the components of k. It is important here
to recall the definition of a polynomial: it is an expres-
sion consisting of variables and coefficients, that involves
only the operations of addition, subtraction, multiplica-
tion, and non-negative integer exponents of variables. No
division is allowed in the definition, a fact that will be
important later. Since the E;(k) are solutions of an alge-
braic equation, whose coefficients are polynomials of k,
and a polynomial function is analytic at every point in C,
one can conclude that the E;(k) are analytic functions for
each k, except at a set of singular points, where two E;(k)
connects, namely the branch points of E(k). Kreigher [8]
also showed that these branch point must exist, but this is
less important for our theory. The take-home message at
this point is that there are no singularities other than the
branch points.

(b) E is real for real k and, in general, E(k) = E*(k*), where
the symbol * indicates the complex conjugate. The proof
of the first statement is straightforward, since for real k
the matrix H(k) is Hermitian, hence its eigenvalues E;(K)
must be real. Moreover, the characteristic polynomial (12)
can be written as,

P=[E—-E(K][E - E®)]...[E—-Eyl]=0. (13)
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(©)

(d)

(e)

()

Hence the coefficients ~,(k) are the sum of products of
the E;(k)’s, which are real for real k. This is sufficient to
conclude that for any k, 7/ (k) = 7;(k"). By applying the
latter equality on the complex conjugate of (12), we finally
have E(k) = E*(K").

Along the component of the wave vector allowed to be
complex, k, in the neighborhood of a branch point, k = ¢,
the energy behaves as

E(k) = E(q) + atk — ¢)'?, (14)

where a is a constant (in general g = g(k|)). The proof
of this statement is rooted in interpreting the polynomial
(12) as a function of E and k, expanded as a Taylor series
in two variables around k = g and E = E(gq), namely

P(E, k) = P(E(9), q)

opP opP
+(E — E(q))a? i + (k- Q)ﬁ i
E=E(q) E=E(q)
1 282P
+5E—E@Y g5+ (15)
E=E(q)

By looking at equation (13), P(E(g), g) is zero and so is
the first derivative with respect to the energy evaluated
at E(g). In fact g is the branch point, where two E;(k)
surfaces are equal. This means that (13) is proportional
to (E — E(q))?, whose derivative is zero for E = E(g). In
conclusion, in first approximation one has

oP
PE.K) = (k—q) 5

k=g
E=E(q)
1 O*P
—(E — E(¢)* =— =0, (16
+2( (@) 9E2| e (16)
E=E(q)

leading directly to (14).

Branch points come always in pairs. In fact, if g is a branch
point, also ¢* is. This derives directly from point (b).
The branch points occur always at a complex k. The state-
ment is consequence of the fact that when two bands meet
at a real ¢, this is no longer a branch point of E(k). Take
q approaching the real axis, then also ¢* does approach it.
Hence, the energy can be expanded as,

E(k) = E(q) + atk — )" 2k — ¢)"/* ~ (k— q), (17)

that is not a branch point.

E(Kk) is periodic in k for real k’s and, of course, along
the other two components of the wavevector, k. One can
write,

E(k) = E(k + G), (18)

where G is a reciprocal lattice vector, strictly real. This
means that the entire CBS follows the periodicity in real
k. The proof of this statement in from Heine [4].

So far we focused on the entire complex dispersion relation
E(K) (including complex energy values). The next statements

concern instead the ‘lines of real energy’, namely the lines
forming the CBS of a material. These are the allowed energies
with Jm(E(k)) = O (see figure 2). In this list we focus on the
k component only, with k| being treated just as a parameter.

(9]

(h)

®

A direct consequence of point (b) is that E(Re(k) +
iJm(k)) = E(Re(k) — iJm(k)). This means that, if k&
returns real energies, also its complex conjugate will.
Although not plotted explicitly in figure 2, all bands have
a mirror symmetric at —Jm(k).

The real bands (energies associated to k’s with Jm(k) =
0) are, of course, part of the lines of real energy. However,
these have additional properties when going in the com-
plex plane. At every maximum or minimum in a real band,
the energy makes a 90° turn to go into an imaginary plane
(a plane where Re(k) is constant). More precisely, a max-
imum or a minimum of the real bands is a point where
four real energies meet: the two in the real plane com-
ing from the left and the right of the maximum/minimum,
and two in the imaginary plane, one going toward positive
Jm(k) and one going toward negative Jm(k). Both these
branches are necessarily present due to point (g). More-
over, a minimum in the real bands correspond to a max-
imum in the imaginary plane and vice-versa a maximum
in the real bands correspond to a minimum in the imagi-
nary plane. Therefore the point where the four real ener-
gies meet is a saddle point for the full dispersion relation
E(k). The proof of this statement follows from a simple
expansion of E(k) around any point in the real plane, k),

OE
E(k) = E(ko) + (k — ko)%

o
Ok?

k=ko

O 5% e 9

k=kg

For k just outside the real plane, the first derivative must
be real to have real E(k), otherwise (k — ko) would bring
an imaginary contribution. Therefore, only at maxima or
minima one can have real energies coming from complex
k’s. By analyzing now the second order term, we find that
(k — ko)? will be real only if k is real or if Re(k) = ko. In
our example of figure 2 we can observe the behavior just
described. In fact, a complex band leaves the Jm(k) = 0
plane every time a pure real band has a maximum of a
minimum, including wave vectors at the Brillouin zone
boundaries. There is no guarantee that the line remains in
the imaginary plane at every energy. In other words it is
possible to have a line of real energy, where the real and
imaginary parts of k change simultaneously.

Lines of real energy that leave the real plane, return to the
real plane after going around one or more branch points.
The line does not necessarily go into a branch point,
but this happens, for example, when there is a mirror
plane between the layers of the layered structure [4, 10].
A proof of this statement is not presented here, but we
observe that the argument holds for both finite models and
general Hamiltonians. This explains the semicircular-
shaped bands seen in figure 2, the so-called type-1 bands.
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(j) The other behavior of the lines of real energy described
in literature is when a line goes toward £ = —oo, while
Jm(k) goes to Foo. This feature is not mentioned by
Kreigher [8], however it is analyzed extensively by Heine
for the full Hamiltonian [4]. For strictly 1D system, just
two of such lines are present. However in 3D, an infinite
set of such bands is expected. These are the type-2 lines
of figure 2.

(k) Heine proved that the lines of real energy do not split,
begin or terminate [4]. Moreover, their chance of crossing
is vanishing small except for energies on the real plane.

In concluding this section, let us summarize the general pic-
ture. The full dispersion relation is a multi-valued function in
the complex plane formed by Riemann surfaces connected by
branch points. The lines of real energy, forming the CBS of
a material, are expected to have a peculiar behavior: starting
from E = —o0, one can follow a line of real energy winding
up to larger energies and jumping on and off the real plane in
a continuous way. The line leaves the real axis when there is a
maximum or a minimum, and it comes back to it after going
around a branch point. We remark here that, although the ana-
lytical properties just presented naturally explains both type-1
and type-2 bands, they do not cover the behavior of the type-3
ones.

4. Few more insights into finite-band models

All the properties discussed in the previous section are valid
in general and for finite-band models [8]. The only exceptions
are (f), (j) and (k), which deserve further discussion. Point (f)
concerns real bands and it is less relevant for our discussion.
Statement (j) establishes the existence of type-2 bands for
E — —o00, when Jm(k) — d-00. Our numerical results suggest
that in the case of finite-band models the statement needs to
be broadened to the case of bands running to £ = +o00. In
fact, the spectrum of a generic periodic Hamiltonian is not
upper bounded, namely the number of real bands is infinite.
This means that any line of real energy can return to the real
plane to form a type-1 band. In contrast, in finite-band mod-
els the spectrum can be bounded both from below and from
above, opening the possibility of a type-2 band for E — +o0.
This argument is demonstrated in figure 5, where we present
the bands of MgS along [111] at kj = (0,0). The results in
the (upper panel) are for a minimal basis set containing only
a single Mg 3s orbital, one S 2s and the triple-degenerate S
2p’s. One can clearly notice two complex bands diverging at
positive energies. The first one originates just below the Fermi
level (red band) and goes rapidly toward high energies. The
second one starts at about 10 eV above Ef (blue band) and
has a much slower rate of increase. This second band can be
transformed into a type-1 by adding to the basis set an addi-
tional orbital of s symmetry, as shown in the (lower panel) of
figure 5. The inclusion of an additional s orbital generates a
new high-energy real band (starting at about 23 eV above EF),
which offers a point on the real axis where to close its imag-
inary counterpart. In doing so the type-2 band is transformed
in a type-1 going from 10 eV to about 23 eV. Note, however,
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Figure 5. CBS for MgS along the [111] direction at kj = (0, 0). The
(upper panel) displays calculations performed with a minimal basis
set containing 5 orbitals (Mg s, S s, S p), while an additional s orbital
is included in the results shown in the (lower panel). The vertical
axis is divided into two regions. Pure real bands (fie(k), obtained
when Jm(k) = 0) are reported below the origin (this is the standard
band structure). Imaginary bands are shown above the origin. The
colors encode the real component of the wave-vector, Re(k) (pure
imaginary bands have PRe(k) = 0). The units of k are 1/Bohr.

that a new type-2 band (not shown on the scale of figure 5) is
then created at the second band edge of the new high-energy
real one. Note also that the addition of the new orbital does
not affect the runaway complex band starting just below the
Fermi level. This is because the associated real one is doubly
degenerate with O p,—p, character (the orbital directions are
taken here with respect to the M gS [111] crystal direction), and
no new orbitals with p (or p-compatible) symmetry have been
added to the basis set. Demonstration of the fact that the newly
added orbital is of s nature is reported in appendix A, where
the partial density of states of the two calculations is displayed.

Finally, concerning point (k), Heine’s proof [4] based on
the concept of winding number is not easily extensible out-
side complex analysis. In practice, in our calculation we find
that the situations of splitting and merging bands is very rare,
but it is encountered. Similar results were reported before [23]
for CBS constructed with orthogonal basis sets. Therefore, we
conclude that the property (j) is probably not valid when the
band structure is finite.

5. The case of non-orthogonal basis sets

In this section we discuss the origin of the type-3 complex
bands, which have been observed several times before but
never investigated in detail. To the best of our knowledge these
do not appear in any review of the analytic properties of the
CBS. We start by considering a simple model describing a 1D
chain containing alternating atoms of different type with lattice
constant a = 1 (see figure 6). Let us consider non-interacting
electrons.
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Figure 6. Diatomic 1D chain model used for the calculation of the
CBS. The system is described by a tight-model with on-site energies
e and e and a single hopping integral 3. The lattice constant is
a=1.

The problem is treated at the level of first nearest-neighbors
tight-binding model with a single hopping parameter 3 and
two different on-site energies, respectively, €4 and eg. The
tight-binding Bloch wave function writes

p(r) = e [eada,(r) + cadni(r)] » (20)
J

where ¢, ;(r) is the atomic orbital of type o (o = A and B) in
the jth cell and the ¢,’s are coefficients. For the moment let
us assume the ¢, j(r) orbitals to be orthonormal. The secular
equation of the model simply reads

€A B +e )] [ea o CA
it -l

and has solution

Ekk) =X+ \/ 22 + 2321 + cos(k)], (22)
where we have defined
EA T €B _ EA —€B
Y= === 23
2 2 (23)

Thus, we have two real bands separated by a bandgap at the
edge of the Brillouin zone proportional to =.

Let us now extend equation (22) to the complex k plane.
One can write cos(k) as a complex quantity

eime(k)—jm(k) + e—ime(k)+3m(k)

cos(k) = > ,

(24)

which is clearly real for Jm(k) = 0, but also when QRe(k) = nm
with n =0,=£1,£2.... One can then distinguish two cases,
namely

e neven (orn = 0)

eZ’Im(k) + e—jm(k)

cos(k) = > = cosh[Jm(k)], (25)
e nodd
_efim(k) _ efﬁm(k)
cos(k) = = —cosh[Jm(k)]. (26)

2

We can then plot the lines of real energy, which are dis-
played in figure 7 for ex = 7, eg = 3 and § = 2.3. Because
of the simplicity of the model, a conventional representation
where E is on the vertical axis, while the wave vector is on
the horizontal one, is adequate. The picture is divided into
three panels: in the (middle) we plot the energy for real k
(the standard band structure), the (left-hand side panel) shows

the allowed energies as a function of Jm(k) when Re(k) = 0
(pure imaginary bands), while the (right-hand side) one is for
NRe(k) = 7. In order to allow a comparison with the complex
bands computed with SIESTA and presented in the previous
section we also re-plot the same bands as an E-vs-k diagram,
where now the real component of the wave-vector is displayed
through a color map. All the properties discussed before for
the lines of real energy, are respected by the model. The line
comes from £ = —oo with pure imaginary k and joins the real
plane at PRe(k) = 0, forming the first real band. At Re(k) = 7
it makes another 90° rotation in the imaginary plane, it reaches
amaximum and then it comes back toward k = 7 + i0™ to join
to the second real band. The finite nature of the model makes
impossible for the line to stay on the real plane, while E — co.
This gives a pure imaginary band (JRe(k) = 0, (left-hand side
panel) of figure 7) that goes to +00. A mirror image of the
(central panel) describes the bands between Re(k) = —m and
NRe(k) = 0 (not depicted), and the negative values of TJm(k)
have the same energy of the corresponding positive values.
Therefore, we have two lines of real energy, as expected for
pure 1D situations [4].

Let us now relax the orthogonality condition and assume
that the basis orbitals on adjacent sites have non-vanishing
inner product, S. The secular equation (21) now becomes

ea B +e )] [ea
B(1 +e*) €B B
_ 1 S(1+e )] [ea
= E(k) {S(l + ey | ] LB] , 27

leading to the energies

¥ — 23S[1 + cos(k)]
1 — 252[1 + cos(k)]

E(k) =

=2 _ _
. \/_ 201+ cosIB = SeA)(B = Sz8) o

[1— 2820 + cos(k)]?

It is now possible to write cos(k) as a function of the energy

and, by taking the inverse, to obtain an analytic expression for

k(E)

(ea — E)(eg — E)
2(8 — ES)?

Finally, equation (29) is inverted numerically to find the (left-
hand side and the right-hand side panels) of figure 8.

The first clear difference between the orthogonal and non-
orthogonal cases is the presence of a divergence (a pole) in the
line of real energy displayed on the (left-hand side panel) of
figure 8. This happens at k = arccos(—1 + 1/25%). If the over-
lap parameteris S > 1/2, the divergence will appear at a real k.
Such condition, however, is never met, since the overlap matrix
must be positive definite. In fact, the overlap matrix is Hermi-
tian for real k and, therefore, it will be positive definite only
if the eigenvalues are positive. These can be calculated to be

>‘5,i =12 +/282[1 + cos(k)].
One then notices that Agy is always positive, but 1 —

\/28?[1 + cos(k)] is positive for every k only when S < 1/2.

KE) = arccos [ )

(30)
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Figure 7. Real (middle panel of the black-and-white figure) and complex (right and left panels of the black-and-white figure) bands

for the two sites, nearest-neighbor, tight-binding model with choice of parameters ¢4 = 7, e = 3, § = 2.3. In the (left panel) of the
black-and-white figure 9ie(k) = 0, thus it reports pure imaginary bands, while in the (right panel) 2ie(k) = 7. The colored figure presents the
same bands, now according to the convention used for other CBSs throughout the paper. Pure real bands (9Re(k), obtained when Jm(k) = 0)
are reported below the origin (this is the standard band structure). Imaginary bands are shown above the origin. The colors encode the real
component of the wave-vector, $ie(k) (pure imaginary bands have SRe(k) = 0).

Re(k) = 0 Jm(k) =0 |Re(k) =7
m
6 * w2 R

Figure 8. Same bands as in figure 7 but now computed for a
non-orthogonal basis with overlap parameter S = 0.2. The gray line
indicates the position of the pole in E(k).

Hence, the fact that the overlap matrix is positive define, pre-
vents the divergence to be in the real bands, but this may still
appear for complex k’s.

The presence of a divergence brings a major concern, since
it is in contrast with the analytical property (a) of E(K) (see
section 3). In fact, it is not true that the dispersion relation is
analytic for each point in k-space except the branch points.
There is the possibility of a singularity that is a pole. Look-
ing back at the derivation from Kreigher [8], we have found
that an important issue has not been stressed. In equation (12)
E;(k) are analytic because the ~,(k)’s coefficient are polyno-
mial functions, but also because the leading term, EN, is one.
This is an essential condition. If it is relaxed, the E;(K) might
only be identified as meromorphic functions. An easy example
is sufficient to prove this statement. Take two polynomial func-
tions a(k) and b(k); a relation of the type a(k) = b(k) leads to
a (k) with a pole at ¢ anytime b(k) has a zero at g.

The Schrodinger equation (11) in the case of non-
orthogonal basis set becomes a generalized eigenvalue
problem

H(k)e = ES(K)c. 3D

The characteristic polynomial is now the determinant of (H —
ES), which leads to an equation similar to (12), where the
coefficient of the leading power is not one. If this coefficient
depends on k and has a zero, then E;(k) may have a pole.
Alternatively, one could invert the overlap matrix to return to
a standard eigenvalue problem. In our model the Schrédinger

equation will become

(B — Sep)[1 +e7%]

1 |ea —28S[1 + cos(k)] CA
e — 28S[1 + cos(k)]| |cB

Nk) | (B—Sea) +e*)

= E( [iﬂ : (32)

with N(k) = 1 — 28*[1 + cos(k)]. Now, the matrix elements
are not polynomials because of the denominator, N(k), so that
the pole is still present.

We have then proved that the presence of a pole in the dis-
persion relation, E(k), is admissible when a non-orthogonal
basis set is employed. This gives rise to the flat (when k(E)
is plotted) complex bands, here termed type-3, and observed
in the past. In fact the pole value is an asymptote (gray line
in figure 8) that the complex bands approach and never reach,
giving origin to the flat behavior. This singularity cannot affect
the real bands, since the overlap matrix is positive definite.
However, it can be seen for complex values of k.

6. Discussion and conclusion

In conclusion we have implemented the transfer matrix tech-
nique to compute the complex bands of electronic structures
obtained from density functional theory. The method is imple-
mented in the DFT package SIESTA and allows one to calculate
the complex bands along an arbitrary crystalline direction and
particular transverse k point. The method is conceived as a
post-processing tool and therefore it is amenable to be used
for high-throughput studies.

Three types of complex bands are identified depending on
their behavior on the complex plane. Type-1 bands have a
semicircular shape with their edges connected at real-band
band-edges on the real axis. These are the most frequently
founded in literature. In contrast type-2 bands originate also at
a band edge on the real axis but then they diverge. The diver-
gence to E — —oo is a direct consequence of the fact that the
spectrum is bounded from below, while the one to £ — +o00
is found only for finite-band models (as in our case), where
the spectrum is also bounded from above. Type-1 and type-2
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bands are expected from the known analytic properties of the
band structure, which we have here reviewed.

When computing the complex bands with SIESTA a third
type appears. These bands do not originate from a point on
the real axis and they run flat at a constant energy. Bands of
these types have been reported in the past in numerical exer-
cises, but their origin has never been discussed. In fact, their
features appear to lie outside the analytic properties of the band
structure. Our numerical investigation proves that those bands
are the result of the non-orthogonality of the basis set, which
creates poles in the CBS. A simple analysis, conducted over
a model 1D structure, reveals that the actual position of such
poles depends solely on the overlap matrix elements, so that
the bands have to be considered an artifact of the basis set
choice. Crucially, their presence does not affect the curvature
of the remaining type-1 and type-2 complex bands and of the
conventional real ones. Thus, if one is interested just in under-
standing the CBS of a material, type-3 bands can simply be
neglected.

The problem, however, will be much more severe if the
complex bands enter in calculations determining other materi-
als properties. Electron transport in tunnel junctions is a clear
example of this situation. In the tunneling regime the decay of
the wave function across the tunnel barrier is determined by
the CBS of the insulator. For most insulators the relevant com-
plex band is a type-1 connecting the band edges across the gap
(these may vary depending on the relative k) [6]. If a spurious
type-3 band is present due to the non-orthogonality of the basis
and this is associated to Jm(k) values smaller than those of the
genuine type-1 band, then the tunneling rates will be deter-
mined by such type-3 band, clearly an unphysical situation.
The standard practice in those cases is to fine-tune the basis set,
for instance by changing the cutoff radii, so to push the spuri-
ous type-3 bands well above the genuine type-1 ones [24, 25].
This solution, although practical, is not ideal, since the conver-
gence of the DFT calculations itself becomes constrained by
the need of keeping the cutoff radii short so to minimize the
non-orthogonality.

A more elegant solution would be that of performing basis
orthogonalization. This is not expected to affect the real part
of the band structure, but may remove the type-3 complex
band. We have investigated in great detail this possibility in
appendix B for the simple 1D model. Indeed basis orthog-
onalization eliminates the type-3 band and transform it into
a type-2, but unfortunately the actual curvature of this new
type-2 band seems to converge in a somewhat non-trivial way
with the truncation done to approximate the orthogonalization
matrix. Thus, probably the most effective strategy to eliminate
spurious type-3 bands still remain that of fine-tune the origi-
nal basis set, perhaps by compromising the cutoff of the radial
component of the basis function with the number of zetas.
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Figure A1. Partial density of states (PDoS) for MgS. The (upper
panel) displays calculations performed with a minimal basis set
containing 5 orbitals (Mg s, S s, S p), while an additional s orbital is
included in the results shown in the (lower panel). The added orbital
shows s nature.
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Appendix A. MgS partial density of states

In this appendix we report the partial density of states (PDoS)
for the calculations reported in figure 5. The (upper and lower
panels) of figure Al refer to the (upper and lower panels) of
figure 5 respectively. It is evident that the band added in the
calculation reported in the (lower panel) has an s nature. In
particular it can be assigned to the 3s orbital of S.

Appendix B. Orthogonalization

In this appendix we discuss how basis set orthonormalization
can act on removing the poles of the CBS (type-3 bands). This
is applied specifically to the two-band model introduced in
section 5. In particular we use the symmetric Lowdin orthog-
onalization process. Consider the generic wave function,
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p(r) = i), (B.1)
J

where now the index j runs on both the A and B sites. Let us
denote with ¢ the vector (infinite) containing all the basis func-
tions, ¢;’s. An orthogonal basis ¢’ is then obtained by applying
the following linear transformation

¢/ — §—l/2¢,

where S is the overlap matrix. Note that the orthogonalization
process concerns the entire basis so that S is an infinite matrix.
Assuming, as before, that the non-vanishing overlap matrix
elements concern only nearest-neighbour orbitals, this reads

(B.2)

il

(B.3)

cooun~—:
cour~un:
cCt—uno:!
n— o o:
—tooo:

Given S, the matrix S~!/2 can be obtained numerically with

a number of techniques. Here we will investigate two options.
The first one is Schur’s algorithm [26], which approximates the
infinite S~'/2 matrix with large finite ones, while the second
consists in constructing a Taylor expansion for S~!/2. In this
case one writes S as

S=1+AS, (B.4)
where 1 is the infinite identity matrix and AS = § — 1. The

Taylor expansion of S~!/2 is then constructed around S = 1
(AS —0)

S A
RAS + .-

(B.5)
the approximation then consists in where to truncate the expan-
sion. The benefits of this second approach are that there is a
simple analytic expression for the power of AS (see appendix
C) and that, at least at the lower orders, one can write an ana-
lytic expression for the dispersion relation. In what follows we
will show results for both Schur’s algorithm and truncated Tay-
lor expansions. Once AS~!/2 has been computed the matrix
Schrodinger equation will simply write

_ _ 1= 3. =
STP=(1+AS)P=1- 5AS + gAS2 —

S12HS 1% = Ee, (B.6)

where H is the infinite matrix representing the Hamiltonian
over the non-orthogonal basis,

A B0 0 0

- B e B 0 0

= 0 B en B 0 (B.7)
0 0 B e B
0 0 0 B e

1
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Figure B1. Real (middle panel) and complex (right and left panels)
bands for the two sites, nearest-neighbor, tight-binding model
constructed over a non-orthogonal basis set. The model parameters
areep = 7,eg = 3, f = 2.3 and S = 0.2. In the (left-hand side
panel) SRe(k) = O (pure imaginary bands). In the (right-hand side
panel) Re(k) = 7. The black line is for the non-orthogonal model,
while the colored dots are the bands obtained after Schur’s
orthonormalization procedure, where the S~!/2 is approximated with
either a 20 x 20 (red dots) or a 50 x 50 matrix (green dots).
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Figure B2. Real (middle panel) and complex (right and left panels)
bands for the two sites, nearest-neighbor, tight-binding model
constructed over a non-orthogonal basis set. The model parameters
areep = 7,eg = 3, f = 2.3 and S = 0.2. In the (left-hand side
panel) SRe(k) = O (pure imaginary bands). In the (right-hand side
panel) Re(k) = 7. The black line is for the non-orthogonal model,
while the colored dots are the bands obtained after
orthonormalization using a Taylor expansion of S~!/2: red = third
order, green = fourth order and blue = fifth order.

At this point Bloch’s theorem can be applied to obtain
the final band structure.

Our numerical results for the Schur’s algorithm are pre-
sented in figure B1, while those obtained through the Taylor
expansion are in figure B2.

Let us first consider figure B1. Clearly the orthonormaliza-
tion process leaves unchanged both the real and the complex
semicircular (type-1) bands. In contrast, the CBS at Re(k) = 0
is drastically modified by the orthogonalization. The complex
band going to a finite wave vector for E — —oo is similar to
the non-orthogonal case, however, in the approximation that
we consider, this band does not present the same asymptote
of the non-orthogonal case. It is not clear whether this is just
an approximation effect or it would stand also for the exact
solution. In fact, increasing the precision we can see the band
flattening out and resembling more and more the asymptotic
behavior of the non-orthogonal case. A similar discussion can
be done for the second branch at PRe(k) = O (the one going to
E — +00). The band appears to remain relatively flat at any
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level of approximation and to approach an asymptotic behav-
ior when increasing the precision of the numerical calculation.
For this branch, however, the asymptote would be reached
from below and not from above, a feature that distinguish the
orthogonal from the non-orthogonal case. We conclude that the
orthogonalization procedure with the Schur’s algorithm [26],
which approximates the infinite S~!'/?> matrix with large finite
ones, transforms the type-3 bands of the non-orthogonal case
in type-2 bands with heavy curvature. However it is not possi-
ble to conclude whether this effect is due to the approximations
taken or it is maintained for an exact orthogonalization.

It is also interesting to see how the Taylor expansion
approach works, figure B2. Also in this case the real bands are
well described and they become indistinguishable from those
computed with the non-orthogonal model as the order of the
Taylor expansion grows. A very similar feature is found for the
type-1 complex band, which in fact converges already at low
order. The behavior of the $Re(k) = 0 part of the complex bands
is somehow different. On the one hand, the £ — —oo branch
appears to slowly converge to the non-orthogonal band as the
order of the Taylor expansion gets higher. This is similar to
what we found for the Schur’s orthonormalization procedure.
On the other hand, the E — +o0 branch turns from type-3
to type-2-like, although the change in the actual shape of the
band depends on the level of approximation in a non-trivial
way. Once again it is not clear whether or not an asymptotic
behavior would appear for the full expansion.

In conclusion, our numerical analysis has shown that stan-
dard orthogonalization can be used to remove the poles of
the CBS originating from the non-orthogonality of the basis
set (type-3 bands). The two techniques shown here reproduce
well both the real bands and the complex type-1 ones, even
at a rather low level of approximation. Furthermore, type-3
bands are transformed in type-2 ones. However, such new type-
2 bands appear to have an heavy curvature that makes them
almost flat, lessening the utility of the orthogonalization in
practical cases.

Appendix C. Power expansion of AS

We report here the analytic expression of the powers of AS
used in appendix B

0 S 0 0 0
B s 0 S 0 0
AS = 0 S 0 S 0 (C.1)
0o 0 s 0 S
0 0 0 S 0
22 0 §2 0 0
B .0 282 0 §* 0
ASP=1|... & 0 28 o0 ¢ (C.2)
0 S 0 28 0
0o o0 S§* o0 28

0 3% 0 $ 0
_ .38 0 38 o §°
AS=1... 0 38 0 38 o0 (C.3)
$ 0 38 0 38
0 S 0 38 o0
65t 0 48 o st
B 0 65 0 48 0
AS* = 48 0 68* 0 45 (C.4)
0 48* 0 6s* 0
st 0 48 0 68t
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