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Abstract In this paper we explain the difference between two aspects of semantic

relatedness: taxonomic and thematic relations. We notice the lack of evaluation

tools for measuring thematic relatedness, identify two datasets that can be recom-

mended as thematic benchmarks, and verify them experimentally. In further

experiments, we use these datasets to perform a comprehensive analysis of the

performance of an extensive sample of computational models of semantic related-

ness, classified according to the sources of information they exploit. We report

models that are best at each of the two dimensions of semantic relatedness and those

that achieve a good balance between the two.

Keywords Semantic relatedness � Thematic relations �
Word vector representations � Evaluation datasets

1 Introduction

There are two key dimensions of semantic relatedness. First, concepts can be related

because they share many features (consider mouse and rat), which also implies their

membership of same category. Depending on the theoretical perspective, this type

of relatedness is known as taxonomic relations or similarity. Second, dissimilar

concepts (such as mouse and click) may be perceived as related due to frequent co-

occurrence in some sort of context—for example a temporal, spatial or linguistic

one. The resulting relatedness is often referred to as association. The focus of this
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paper is on one specific type of associative relationship called thematic relatedness.

Thematic relations link concepts playing different, usually complementary roles in

the same situation or setting (Lin and Murphy 2001). There is growing evidence

from cognitive psychology that thematic relations are crucial to cognitive processes,

on a par with taxonomic relations (Jackson et al. 2015).

A taxonomic analysis of a concept is concerned with the inherent features of the

concept whereas a thematic perspective deals with the external relations between

concepts in a unifying event (Lin and Murphy 2001). Taxonomic relations between

concepts are based on a comparison of the concepts’ features; concepts that belong

to a common taxonomic category share properties and/or functions, and therefore

tend to bear physical resemblance. In contrast, thematic relations are formed

between concepts performing complementary roles in a common event or theme,

which often implies having different (albeit complementary) features and functions.

Many researchers studying the domain of semantic memory (McRae and

Boisvert 1998; Jackson et al. 2015) use the term association to refer to non-

taxonomic relations and contrast them with taxonomic relations (labelled by these

authors as featural/conceptual similarity). However, associative relatedness lacks a

precise definition; instead, it is often characterised in terms of free association

norms (Nelson et al. 2004), where the strength of an associative link is measured by

the probability of one concept evoking another concept. Such an operational

definition describes the phenomenon but does not reveal much about the nature of

the relation that underlies the frequent co-occurrence (McRae and Boisvert 1998).

Words or concepts are often associated because of thematic relatedness, but

association may also originate from conventional phrases or idiosyncratic autobi-

ographic memories, or phonological resemblance. For example, when exposed to

the cue coffee, someone could produce strongly associated response beard—
because the image of their bearded father drinking coffee is deeply rooted in their

memory—whereas for another person, the two concepts would appear completely

unrelated.

Moreover, one word may cue another word to come to mind because of

taxonomic relations; therefore defining association in terms of free association

norms blurs the distinction between associative and taxonomic relatedness.

Acknowledging the weakness of the operational definition of association, in this

paper we use the following naming convention:

Semantic
relatedness

the broadest category that comprises any type of semantic

relationship between two concepts.

Taxonomic
relations

a subset of relatedness defined as belonging to the same

taxonomic category, which involves having common features

and functions. In the literature, this type of relatedness is often

referred to as similarity.

Non-taxonomic
relations

relatedness existing by virtue of co-occurrence of concepts in

any sort of context.

Thematic
relations

a subset of non-taxonomic relations defined as co-occurrence

in events or scenarios, which involves performing

complementary roles.
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Figure 1 shows the subsets of semantic relatedness. It should be noted that,

although taxonomic and thematic relations are different and separate types of

relatedness, concepts as such may be both taxonomically and thematically related.

That is, the distinction applies to the types of relatedness (there is little ambiguity in

distinguishing one type of relatedness from the other), but the same pair of concepts

can be connected by two different types of relatedness. For example, doctor and

nurse are taxonomically related because they are both members of health

professionals category, and also thematically related, because of performing

complementary roles, for example during surgery. Which type of relatedness is

more salient for a given concept pair, depends on the context, but also on the

individual preferences of the observer (Lin and Murphy 2001). In Table 1 we

present a few more examples of taxonomic and thematic relations, and explain how

two different types of relatedness can co-exist for the same pair of concepts. Some

of these examples have been mapped onto the relatedness space in Fig. 1.

The fundamental dichotomy between taxonomic and thematic relatedness has

also been recognised in linguistics. For example, in his seminal essay, Jakobson

(1956) describes the bipolar structure of language, distinguishing between two types

of relations: similarity and contiguity. These relations are explained in terms of two

basic operations performed by language users, namely paradigmatic selection and

syntagmatic combination. To construct a message, a ‘‘communication engineer’’

selects (substitutable) language units from the common code store, and combines

them into higher level contexts. Terms joined by a similarity relation share a

substitution set, and thus are subject to selection, whereas members of a contiguity

relation (e.g. spatial or temporal) are combined as the constituents of a context. The

relations of similarity and contiguity can be applied at different levels of

complexity: the constituent parts can be as simple as phonemes within a word

context, or as complex as sentences within a context of a broader speech event. Thus

the thematic relations we explore in this paper can be perceived as a special case of

Fig. 1 Subsets of semantic relatedness. The same concept pairs can be linked by two different
relatedness types (see pairs marked [1] and [2]). The example of a non-taxonomic and non-thematic
relation is an idiosyncratic association produced by one of the authors, whose bearded father is a coffee
devotee
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Jakobsonian contiguity, and the taxonomic relations as a special case of his

similarity, both concerned with words within the context of a phrase or sentence.

To date the majority of computational linguistics research that has been explicit

about its definition of semantic relatedness has focused on taxonomic relations

(Rada et al. 1989; Budanitsky and Hirst 2006; Hill et al. 2015; Faruqui and Dyer

2015). However, there are good reasons to investigate thematic relationships,

including: (a) they are fundamental to cognitive processing, and (b) they are useful

for NLP applications.

Estes et al. (2011) provide an extensive review of cognitive research evidencing the

critical role of thematic relations in recognizing and understanding words, word pairs,

phrases, sentences and whole texts. For example, thematic fit has been shown to

constrain the set of words that may occur following a particular word or context

(McRae andMatsuki 2009). Given the central role of thematic integration in cognitive

processing, including language comprehension, it is worth investigating to what extent

thematic relations are captured by existing computational measures of relatedness.

A natural application of thematically-aware models in NLP would be the domain

of topic modeling which embraces techniques used to identify topics and estimate

their proportion in documents. Thematically-aware models should also be helpful in

any tasks requiring word-sense disambiguation, since the correct meaning of a word

can be established through identifying its thematic context. Furthermore, the ability

to differentiate between taxonomic and thematic relations can lead to enhanced

statistical language models. In this last case, both types of relations are important

but in a different way: thematic relations express high-probability co-occurrences

and thus help to predict the next word, while taxonomic relations indicate which

words can be replaced by other words.

The degree of semantic relatedness between two concepts can be expressed as a

single number, and the goal of numerous computational measures of semantic

relatedness is to produce the best possible estimate of this number. What constitutes

the ‘‘best’’ output depends heavily on the type of relatedness that is measured; it is

therefore essential that evaluation methods distinguish between taxonomic and

thematic relations.

A common way of performing direct intrinsic evaluation of a given semantic

relatedness measure is to compare the produced estimates of relatedness to gold

standards provided by human judges. Despite certain shortcomings of this approach

(comparing words rather than concepts; ratings performed in isolation from

context), gold standard datasets provide valuable quantitative feedback and—at

least in theory—allow objective comparison of the performance across very

different models of semantic relatedness. Yet, many of commonly used evaluation

datasets do not provide direct insight into the nature of the relatedness they measure,

yielding a blurred picture of the performance achieved by various computational

models.

The limitations of existing evaluation resources have been highlighted by Hill

et al. (2015), who have also provided a partial solution to this problem by designing

a reliable taxonomic benchmark, SimLex-9991. The results from benchmarking on

1 http://www.cl.cam.ac.uk/*fh295/simlex.html.
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Simlex diverge from the results of evaluating against datasets measuring general

relatedness, which confirms the claim that targeting specific types of semantic

relations has observable impact on evaluation outcomes. However, to date no

benchmark has been proposed that would target the other key dimension of semantic

relatedness—thematic relations.

In this paper we recommend two datasets that capture thematic relations, yet are

not currently used for evaluation purposes. We use these datasets to assess the

performance (measured in terms of the correlation with human ratings) of a range of

semantic models, including distributional and non-distributional word representa-

tions. The results are then analysed from two angles. The goal of Experiment 1,

‘‘Learning about datasets from the behaviour of models’’, is to find evidence that the

two candidate thematic datasets measure purely non-taxonomic aspects of

relatedness. Our results, together with an analysis of the procedures used when

gathering the human assessments of semantic relatedness in each dataset, indicate

that the collected ratings predominantly reflect thematic relatedness. The goal of

Experiment 2, ‘‘Learning about models by evaluating on specialized datasets’’, is to

make practical use of these newly introduced thematic benchmarks and identify best

candidate models suitable for specific demands arising from various NLP tasks. Our

motivation for the second experiment is fuelled by the assumption that: some

applications would benefit from maximizing accuracy in recognizing thematic

relations; other tasks will rather require possibly error-free detection of taxonomic

relations; yet other applications will need information about both dimensions of

relatedness. Therefore, using the thematic datasets side by side with taxonomically-

oriented benchmark (Simlex-999), we single out models that (a) are best at

capturing thematic relations, (b) are best at capturing taxonomic relations, and (c)

achieve best balance between the ability to recognize the two types of semantic

relatedness. We find that top performers at one type of relatedness achieve at best

mediocre scores at the other dimension; however, exploiting diversified sources of

information fosters more balanced systems, and also enhances performance on

either benchmark. Finally, we identify a candidate general-purpose benchmark, that

is yet another dataset which, according to our evidence, has a good balance between

word pairs representing taxonomic and thematic relations.

The paper proceeds as follows: Sect. 2 discusses existing views on representing

different aspects of semantic relatedness in NLP. In Sects. 3 and 4 we provide an

overview of all datasets and all computational measures of relatedness used in our

study. The next three sections focus on experiments, with section 5 outlining data

preparation, and Sects. 6 and 7 reporting and analysing the results. Section 8

concludes the paper.

2 Dimensions of semantic relatedness from the NLP viewpoint

Two main computational approaches to modelling semantic relatedness are

knowledge-based and distributional. In this section we outline how semantic

relatedness and its dimensions are framed in either of these approaches. In the cited

literature, terminology used to refer to aspects of relatedness varies from author to
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author; for simplicity, in the following discussion we maintain consistency with the

naming convention laid out in the Introduction.

2.1 Knowledge-based perspective

Computational lexicons and ontologies, with WordNet (Fellbaum 1998) as the most

prominent example, capture taxonomic relations. Consequently, much of the

research on knowledge-based measures of relatedness has focused on taxonomic

relatedness. Thus, Rada et al. (1989) argue that the hierarchical (‘‘IS-A’’) links in

semantic networks are sufficient to model what they label as conceptual similarity,

because such links are defined based on shared features. The focus on hierarchical

links among concepts has been followed by multiple authors proposing different

variants of WordNet-based similarity measures (Wu and Palmer 1994; Jiang and

Conrath 1997; Lin 1998; Leacock and Chodorow 1998). In these approaches,

taxonomic relations are defined as the inverse of the length of the path connecting

the concepts in WordNet taxonomy, with different ways of normalizing the path.

Resnik (1995) makes a clear distinction between general semantic relatedness

and taxonomic relatedness, later reiterated in Budanitsky (1999) and Budanitsky and

Hirst (2006): semantic relatedness is defined as the collection of all possible

relations between two concepts, and taxonomic relatedness is a subset of these

relations limited to ‘‘IS-A’’ links. Other subsets are not clearly distinguished, and

the measure designed by Resnik focuses on taxonomic relations only.

An approach proposed by Hirst and St-Onge (1998) represents an attempt to

exploit WordNet resources for measuring general semantic relatedness, not

restricted to the taxonomic subset. Their lexical chainer, in addition to walking

hierarchical links, traverses WordNet paths of meronymy, holonymy and antonymy.

However, because of the low proportion of non-taxonomic links in WordNet (see

Fig. 2), the ratings of semantic relatedness produced by the lexical chainer are not

much different from the results returned from taxonomic similarity measures.

Fig. 2 Counts of semantic pointers in WordNet 3.0. Pareto chart based on data from Finlayson (2015).
Bars represent individual counts, and the line represents cumulative total
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The problem with both the low number and insufficient range of non-taxonomic

links in WordNet has been recognized by Boyd-Graber et al. (2006), who postulate

enriching WordNet with non-taxonomic, cross-part-of-speech links. The ‘‘radically

different’’ type of information to be captured in these links has been described by

the authors in terms of evocation—how strongly one concept brings to mind another

concept—and an extensive sample of evocation ratings has been collected from

human judges. The evocation dataset is described in more detail in Sect. 3.1.1. Two

other wide-scale projects aimed to increase connectivity within WordNet by sense-

tagging the glosses (Moldovan and Novischi 2004; Langone et al. 2004)2. Words in

WordNet glosses have been annotated so as to link the glossed synset with synsets

comprising words in the gloss. The resulting gloss relations are cross-part-of-speech

and go beyond taxonomic relations.

Morris and Hirst (2004) analyse WordNet limitations in terms of a distinction

between classical and non-classical relations, building on Lakoff’s concept of

classical categories (Lakoff 1987). The notion of classical and non-classical

relations can be mapped onto the taxonomic vs. thematic distinction outlined in the

Introduction: classical relations are feature-based and well represented in lexical

ontologies, while non-classical relations are context dependent and less structural.

Furthermore, non-classical relations are not captured in WordNet, yet are obvious

for humans and crucial for understanding text.

A number of researchers have noticed the above limitations in WordNet coverage

of links among concepts but took a different approach to overcoming the problem:

instead of trying to extend WordNet with new relations, they apply the original

WordNet-based measures to the Wikipedia hierarchical category graph (Strube and

Ponzetto 2006; Zesch and Gurevych 2010). These researchers share the view that

taxonomic relations are a subset of general relatedness, and that there is a value in

the ability to also recognize non-taxonomic relations that are not encoded in lexical

ontologies. Since the Wikipedia category tree does not form a strictly taxonomic

hierarchy and the relations among the nodes are not restricted to ‘‘IS-A’’ type,

transferring path-based algorithms to Wikipedia should result in modelling broader

aspects of relatedness. The models proposed in the cited studies were evaluated

against several popular evaluation datasets, but no attempt was made to analyse

which aspects of relatedness are captured in these gold standards.

2.2 Distributional perspective

An alternative to knowledge-based measures of semantic relatedness are distribu-

tional or corpus-based methods which exploit word co-occurrence statistics derived

from large text corpora. Distributional models are also referred to as semantic vector

space models, as words extracted from the corpus are represented by a vectors that

keep track of the co-occurrences, and their meaning is distributed across multiple

dimensions. The proximity of vectors, typically measured by cosine similarity, is

interpreted as the relatedness of the words. Vector representations can be

constructed by applying factorization to a word-context matrix, or induced using

2 The Extended Wordnet described in Moldovan and Novischi is available at http://xwn.hlt.utdallas.edu/.
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neural language models (Bengio et al. 2003; Mikolov et al. 2013; Pennington et al.

2014). Regardless the implementation or type of contexts used (documents, sliding

windows, syntactic contexts), the core assumption is that words that frequently

occur in same contexts are taxonomically similar (Harris 1954)—that is, feature

overlap can be induced from context overlap. However, empirical evidence shows

that the ability of vanilla distributional models (i.e. those based on raw corpus data,

not augmented with syntactic or lexical knowledge) to capture taxonomic relations

is limited. In the remainder of this section we review several studies that analysed

the performance of distributional methods at recognizing different aspects of

semantic relatedness.

Agirre et al. (2009) attempted to provide means for evaluating different aspects

of semantic relatedness by splitting one of the existing non-discriminative datasets,

WordSim-353 (Finkelstein et al. 2001), into two subsets: a taxonomic subset and an

non-taxonomic subset. The authors manually classified interword relations from the

original dataset using WordNet-style labels. The taxonomic subset contained all the

word pairs whose semantic relationship was manually classified as synonymy,

antonymy or hypo-/hypernymy. The non-taxonomic subset contained all the word

pairs whose semantic relationship was classified as meronymy/holonymy, and also

those labelled as ‘‘none-of-above’’, provided that these unidentified relations

received human ratings greater than 5 (on a scale from 0 to 10). The need to resort to

the ‘‘none-of-above’’ category illustrates the difficulties with the definition of non-

taxonomic aspects of relatedness, and confirms the observation that WordNet does

not account for many semantic relations that are intuitively obvious for human

language users. The same study reported an analysis of the performance of several

variants of knowledge-based and distributional models of semantic relatedness,

concluding that non-taxonomic relations are best captured by vanilla distributional

models, while taxonomic relations are better measured by models using syntactic

patterns as the features representing the context.

The finding that using syntactic contexts helps to encode taxonomic relations has

been confirmed in a study on neural word embeddings. Levy and Goldberg (2014)

propose a modification of Skip-gram model (Mikolov et al. 2013) in which contexts

are built from words that are syntactically related to the target word, rather than

from all the words surrounding the target word within a given window. The authors

conceptualise aspects of semantic relatedness as topical similarity and functional

(cohyponymous) similarity, which correspond to thematic and taxonomic relations,

respectively. They report their syntactically informed embeddings being less topical

(thematic) and more capable of capturing taxonomic relations than the embeddings

derived from linear contexts.

Hill et al. (2015) draw a clear distinction between taxonomic and non-taxonomic

relations, emphasising the advantages of models that are able to recognize

taxonomic relatedness. Hill et al. argue that top-performing distributional models

are very accurate when measuring general semantic relatedness but these models are

much less capable of recognizing relations defined in terms or shared features or

shared category. Hill et al. created a gold standard dataset designed to strictly

measure taxonomic relations (Simlex-999), which has quickly become popular

among researchers working with word representations. A number of studies have
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attempted to enhance the ability of distributional models to capture taxonomic

relations, often by incorporating additional sources of knowledge, such as

ontologies or syntax. However, while focusing on gains in modelling taxonomic

relatedness, little attention has been paid to the accompanying drop in recognizing

non-taxonomic relations. The tendency to ignore semantic relations beyond

taxonomic ones may have practical reasons: lack of benchmarks targeting non-

taxonomic relatedness, and on a more general level, difficulties with defining non-

taxonomic semantic relatedness. In this paper, we address the first issue by

recommending thematic datasets introduced in Sect. 3.1, and the second issue by

drawing attention to the concept of thematic relations that have been extensively

studied in cognitive psychology and whose definition can be imported into the

domain of natural language processing.

3 Datasets

In our experiments we evaluate a number of computational measures of relatedness

against three types of datasets: (1) thematic datasets (evocation dataset and thematic

relatedness norms), (2) a dataset known to measure a mixture of taxonomic and

thematic relations (USF Free Association Norms) and (3) a dataset targeting

taxonomic relations (Simlex-999). The remainder of this section presents all four

datasets.

3.1 Thematic datasets

In this subsection we describe two collections of human ratings of thematic

relatedness between pairs of concepts. Created using different methodologies, they

nevertheless target the same type of relations. Common goals underlying the

creation of both datasets include: (1) a focus on non-taxonomic relations, (2) a focus

on semantic connections between concepts (as opposed to non-semantic phonolog-

ical associations between words) and (3) a focus on conventional connotations

(representative for a population).

3.1.1 Evocation dataset

The evocation dataset3 (Boyd-Graber et al. 2006) was created as part of a project

that aimed at broadening the range of relation types captured in WordNet (see

Sect. 2.1). The dataset was designed to address three main shortcomings of

WordNet: (1) the lack of cross-part-of-speech links, (2) the absence of many

meaningful relations that do not fit into any of standard ontological labels and (3)

the lack of weighted arcs to reflect true semantic distance among related pairs. The

three goals underlying the creation of the dataset make it a suitable tool for

measuring thematic relations: the cross-POS, syntagmatic links can capture relations

between events (verbs) and participants (nouns), or entities (nouns) and their

3 http://wordnet.cs.princeton.edu/downloads.html.
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attributes (adjectives); the quest for new, so far unlabelled relations leads to a shift

toward non-taxonomic relations; and adding weights makes the dataset suitable for

use as an evaluation tool.

The authors extracted the 1000 most frequent words from the British National

Corpus (BNC), preserving the distribution of parts of speech in the lexicon (642

nouns, 207 verbs and 151 adjectives). For each word, they manually selected the

most salient or basic synset from WordNet. 120,000 synset pairs were then

randomly picked from all the combinations of these synsets, and every pair was

annotated by at least 3 judges from a group of 20 undergraduates.

The annotators were asked to rate, on a scale from 1 to 100, how much one synset

(or concept) in the pair evokes or brings to mind the other. The instructions stressed

that the ratings should reflect the degree of evocation in the general population, not

idiosyncratic evocations based on personal history. Furthermore, participants were

instructed to only focus on semantic connections and ignore evocations based on

phonetic or orthographic resemblance. It was also indicated that evocative

relationships do not have to be symmetrical.

Most of the pairs (67%) were rated as unrelated, which is not surprising for

random combinations. For the pairs that received at least one non-zero rating, the

standard deviation of annotator’s ratings per word pair was, on average, 9.25, which

is a relatively low value given the scale of ratings (1–100). In our interpretation, the

level of agreement among responses indicates that the participants understood the

instructions and therefore their ratings reflected non-idiosyncratic semantic

relations.

The annotators were not discouraged from assigning high ratings to taxonom-

ically related synset pairs; yet, Boyd-Graber et al. found very poor correlation (0.1

and less) between obtained evocation ratings and selected WordNet-based measures

of semantic relatedness. This led them to the conclusion that ‘‘evocation is an

empirical measure of some aspect of semantic interaction not captured by these

similarity methods’’ (Boyd-Graber et al. 2006).

Since the selected WordNet-based measures rely entirely on hierarchical

(taxonomic) links, the results of the analysis conducted by Boyd-Graber et al.

indicate that evocation dataset captures primarily non-taxonomic relations. This, in

combination with the explicit focus on semantic and non-idiosyncratic aspect of

evocation, makes the dataset a promising candidate for a thematic relatedness

benchmark. In order to verify the hypothesis about non-taxonomic character of the

dataset, we conducted Experiment 1 (see Sect. 6).

3.1.2 Thematic relatedness production norms

The motivation behind Jouravlev and McRae (2015) collecting their datasets was to

address the needs of researchers in cognitive psychology interested in the role of

thematic thinking in language processing and relatedness judgements. The aim was

to identify thematic relations that are conventional, that is salient and well-

established in the semantic memory of an average person. This is important because

thematic relations, by their very nature, are defined via external events or themes,
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and thus are context-dependent and prone to be subjective. The focus on

conventional relations is a way to minimize the subjectivity.

Instead of asking people to rate relationship strength between arbitrarily selected

concept pairs, Jouravlev and McRae decided to use the production norm method, in

which participants are instructed to produce thematically related concepts in

response to cue concepts from the provided list. The production frequency of a

given response to the same cue concept was used as the measure of the strength of

the relation, or the degree of its conventionality.

This methodology is similar to the approach used for collecting free word

association norms (Nelson et al. 2004), but the purpose of thematic production

norms is different. In case of free word associations, there is no focus or

conventionality—idiosyncratic associations are allowed, as well as non-semantic

ones (phonetically or orthographically based). In contrast, Jouravlev and McRae

used specific instructions to target their thematic production norms at semantic

relations that are not based on autobiographical events.

The authors selected 100 concrete concepts commonly used in studies on

thematic relations and presented them to 200 students. The participants were given

the definition of thematic relations and asked to avoid taxonomically related

responses. They were also instructed to respond with nouns only. Several responses

for a single cue were allowed.

The final dataset contains cue-responses pairs together with the frequency counts.

Only responses produced by at least 10 participants have been considered

conventional and included in the dataset, resulting in a collection of 1174 pairs.

3.2 Non-specialised dataset: USF Free Association Norms

USF Free Association Norms database4 has been collected by researchers at

University of South Florida. The dataset consists of over 70,000 cue-response pairs,

with the responses produced ‘‘under conditions of minimal constraint’’. The

participants were asked to respond with the first word that came to their mind that

was meaningfully related to the presented cue. Since they were not restricted to

think of any particular type of relatedness, it is reasonable to assume that their

unconstrained responses represent a wide spectrum of semantic relatedness.

The values of the association strength assigned to the word pairs are the function

of the production frequency. The majority of responses has been normed by a

separate group of participants, and thus over 60,000 word pairs have been annotated

with both forward (cue to response) and backward (response to cue) association

strength. The percentage of nouns, verbs and adjectives is 66%, 17% and 15%,

respectively. One in three word pairs (36%) contains words representing different

parts of speech.

4 http://w3.usf.edu/FreeAssociation/.
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3.3 Taxonomic dataset: Simlex-999

Simlex-999 (Hill et al. 2015) is a specialised benchmark targeting taxonomic

relations. Hill et al. claim that in other evaluation datasets, top-ranked word pairs

tend to be both taxonomically and non-taxonomically related, whereas lowest-

ranked pairs are not related in any way. Hill et al. argue that therefore it is not

possible to identify which aspect of relatedness is captured by computational models

that perform well on these other gold standard datasets. In contrast, the word pairs in

Simlex-999 represent different types of semantic relatedness, including solely

taxonomic (high ranks) and solely non-taxonomic relations (low ranks). Thus, only

models that recognize taxonomic relations and ignore non-taxonomic relations

perform well on Simlex.

The annotators of Simlex-999 received clear instructions to only assign high

ratings to taxonomic relations. The word pairs presented to them originate from

USF association norms (Nelson et al. 2004) and have been selected to cover various

levels of concretedness, and represent nouns, verbs and adjectives in the proportions

consistent with frequencies in the BNC. Given the focus on taxonomic relations, no

cross-POS word pairs were included.

4 Computational models

In our first experiment, we use two types of computational models of semantic

relatedness: knowledge-based and distributional. In the second experiment we

expand the set of investigated models with approaches that go beyond this division

by leveraging insights both from statistics and linguistics. This section outlines the

three groups of models. For clarity, models based on raw corpus data (Sect. 4.2) are

referred to as ‘‘vanilla distributional models’’, to differentiate them from the hybrid

approaches. In the remainder of this paper, we will refer to individual models by

abbreviated names which are provided in parentheses at the end of each description.

An important factor to consider when defining and working with any model of

linguistic semantic relatedness is whether the model (and the dataset it is being

evaluated on) uses words or concepts as the basic unit of analysis. The difference is

significant, since the same concept may be represented by multiple words

(synonymy), and a single word may express multiple meanings (homonymy,

polysemy). Knowledge-based approaches that operate directly on a lexicon

representation—such as path-based algorithms applied to the WordNet graph—

measure semantic relatedness between concepts that were manually distinguished

by the linguists who created the lexicon. In contrast, distributional vector

representations are automatically derived from co-occurrences of word tokens in

text corpora and thus map to unique word forms and not concepts. Knowledge-

based vectors described in 4.1.2 also follow the ‘‘one vector per word’’ approach,

such that a single vector stores information on all the concepts that might be

assigned to the represented word.
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Ignoring polysemy and mapping the meaning to words rather than concepts is a

known problem of vector space models5. On the other hand, referring to words is a

convenient simplification that makes it possible to manipulate word representations

without engaging in the difficult task of identifying the ‘‘right’’ word sense. With the

exception of the evocation dataset (Sect. 3.1.1), datasets described in Sect. 3 are

built up by word forms which do not identify concepts. This is suitable for

evaluating vector word representations but not knowledge-based approaches that

operate on lexical concepts. Since there is typically no information on which

concepts were adopted by judges annotating given word pair, a common

workaround is to compute the degree of semantic relatedness for all combinations

of all senses possible for that word pair, and then select the highest value. We used

this workaround when evaluating WordNet-based measures (Sect. 4.1.1).

For the sake of uniformity, we also simplified the evocation dataset, removing all

the references to the identified concepts and reducing the dataset to word pairs only

(see Sect. 5.1 for the details). This enables evaluation of vector word representa-

tions, although at the cost of discarding valuable information (in principle, semantic

relatedness occurs between concepts, not words). The level of relatedness between

word vectors is measured using cosine similarity, i.e. the cosine of the angle

between two word representations positioned in the semantic vector space.

4.1 Knowledge-based methods

The models included in this group rely on human-engineered lexical resources to

compute the degree of semantic relatedness between concepts or words. Such

resources capture valuable knowledge but are expensive to build. The best-known

computational lexical database is WordNet, in which words are organized into

synsets (sets of synonyms) that represent distinct concepts. Synsets are intercon-

nected to form a network of semantic (mostly taxonomic) and lexical relations.

Other lexical resources propose alternative views on concept’s interrelations

(Roget’s Thesaurus6, FrameNet7) or focus on the linguistic structure of texts

(treebanks).

4.1.1 WordNet-based measures

WordNet-based measures (WNM) are the approaches that leverage the graph

structure of WordNet in order to measure semantic relatedness of two lexical

concepts, as represented by their respective synsets in WordNet. We used modules

from WordNet::Similarity API developed by Pedersen et al. (2004) to implement

the following selection of seven WNMs:

5 The complex problem of word sense disambiguation in vector space models, which is out of the scope

of this paper, is well explained in Schütze (1998) and Reisinger and Mooney (2010).
6 http://www.gutenberg.org/ebooks/10681.
7 https://framenet.icsi.berkeley.edu/fndrupal/.
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• Rada et al. (1989) interpret taxonomic relations as the inverse of the path length

between two synsets (path).

• Wu and Palmer (1994) scale the path length depending on the position of the

‘‘lowest common subsumer’’ of the compared concepts (wup).

• Leacock and Chodorow (1998) normalize the path length with respect to the

maximum depth of the hierarchy (lc).

• Resnik (1995), Jiang and Conrath (1997) and Lin (1998) use frequency statistics

derived from a corpus to estimate the probability of encountering an instance of

a concept, and thus determine its information content. The degree of relatedness

among two concepts is then measured by the amount of information they share

(res, jc, lin).

• Hirst and St-Onge (1998) aim to measure semantic relatedness by using a

complex semantic distance algorithm to exploit information from both

taxonomic and the rare (see Fig. 2) non-taxonomic links existing in WordNet

(hso).

4.1.2 Knowledge-based vectors

Knowledge-based (non-distributional) vectors are vector word representations that

do not make any use of corpus statistics; instead, the features are extracted from

WordNet and other sources of lexical knowledge.

• Linguistic vectors (Faruqui and Dyer 2015) are non-distributional vectors

constructed from linguistic features that have been derived from multiple

knowledge resources, such as WordNet, FrameNet, word-emotion lexicons,

Penn Treebank or Roget’s Thesaurus. For example, features originating from

WordNet are the synsets that a given word belongs to, as well as the related

synsets (hypernyms, hyponyms, holonyms etc.). We experiment both with the

sparse version downloaded from the authors’ repository8 (vectors of the length

of 172,418 dimensions) and with dense versions we obtained by applying SVD

(singular value decomposition) to the linguistic matrix to reduce dimensionality,

following the methodology described in Faruqui and Dyer (2015) (ling-sparse,

ling-svd).

4.2 Vanilla distributional methods

In this group we include word vector representations constructed based on raw

corpus statistics, with minimal amount of linguistic preprocessing. Our focus is

more on the type of information used to extract the features, not on the particular

method of feature extraction; therefore the below list includes both word

representations derived through the counting of contexts, and distributed represen-

tations learned by neural networks (derived from predicting contexts).

8 https://github.com/mfaruqui/non-distributional.
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Table 2 summarizes training corpora details and the dimensionality of vector

representations listed in this and the next section.

• CW (Collobert and Weston 2008; Collobert et al. 2011) are vector represen-

tations learned using a neural language model which takes as an input a

‘‘correct’’ word sequence s observed in the training corpus and a corrupted word

sequence c generated by replacing one of the words in s by a random word, and

calculates output scores for both. The objective is to train the word vectors and

network combination so that the score returned for each s is larger than the score

of corrupted word sequence c. Throughout the training the weights in each word

vector are iteratively adjusted so as to meet this objective. In the experiments we

use off-the-shelf vectors9 trained by Collobert and colleagues using Wikipedia

as a corpus (CW).

• Polyglot10 (Al-Rfou et al. 2013) is a variation on CW embeddings, also trained

on Wikipedia corpus (polyen).

• Turian11 (Turian et al. 2010) is an implementation of the hierarchical log-

bilinear model (Mnih and Hinton 2009)—a probabilistic linear neural model that

learns to predict the last word in a context window by linearly combining vector

Table 2 Training corpora details and dimensionality of vector representations used in experiments

Model Vector size Training corpus Corpus size (# words)

CW 50 Wikipedia 631 M

docNNSE300 300 Clueweb 16 B

ddNNSE300 300 Clueweb 16 B

ddNNSE2500 2500 Clueweb 16 B

glove6B 300 Wikipedia ? Gigaword 5 6 B

glove42B 300 Common Crawl 42 B

glove840B 300 Common Crawl 840 B

hpca100 100 Wikipedia ? Reuters ? WSJ 1.6 B

huang100 50 Wikipedia 1 B

polyen 64 Wikipedia 1.8 B

sg100B 300 Google News 100 B

sg-window5 300 Wikipedia 2 B*

sg-window2 300 Wikipedia 2 B*

sg-deps 300 Wikipedia 2 B*

sp-sparse 9841 Wikipedia ? 3 other corpora 5.6 B

sp-500 500 Wikipedia ? 3 other corpora 5.6 B

turian100 100 Reuters 37 M

Asterisk denotes estimated size of cleaned Wikipedia dumps from 2014 (the authors of the study do not

provide the exact number of words)

9 http://ml.nec-labs.com/senna/.
10 https://sites.google.com/site/rmyeid/projects/polyglot.
11 http://metaoptimize.com/projects/wordreprs/.
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representations of the preceding words. It uses a hierarchy to filter down the

number of performed computations for optimization purposes (turian100).

• Huang et al. (2012) use a combination of window contexts and a document

context, training two neural networks against a joint training objective. The

input to the first network is a context window that scans through the corpus; the

input to the second vector is a weighted average of all the vectors in the

document. The training objective is as in Collobert et al. (2011), with the score

comprising the outputs of both networks. We trained vectors used in our

experiments on Wikipedia corpus, using software shared by the authors12

(huang100).

• Document based NNSE13 (Murphy et al. 2012) vectors were obtained by

applying matrix factorization to a matrix constructed from document co-

occurrence counts. The authors use matrix decomposition algorithm called Non-

Negative Sparse Embedding (NNSE) method, which is a variation on Non-

Negative Sparse Coding (Hoyer 2002) and returns a sparse embedding for each

word (that is, for each row in the input matrix) (docNNSE300).

• SkipGram (Mikolov et al. 2013) is an efficient neural network language

model in which the hidden non-linear layer is removed, simplifying the

architecture and reducing computational complexity. The training objective is

to predict words within a specified window around the input word. Vectors

downloaded from the author’s website14, were trained on 100 billion words of

Google News dataset (sg100B). In the experiments we also use SkipGram

vectors trained by Levy and Goldberg (Levy and Goldberg 2014) on

Wikipedia corpus to provide comparison to their dependcy-based SkipGram

version (described in Sect. 4.3), and to investigate the effect of window size

(sg-window2, sg-window5).
• HPCA (Lebret and Collobert 2014) are word vector representations learned via

Hellinger PCA transformation of word co-occurrence matrix obtained through

simply counting words over a corpus (hpca100).
• GloVe (Pennington et al. 2014) model combines count-based and prediction-

based approaches. It constructs the matrix of ratios of co-occurrence probabil-

ities, and trains a neural language model on these ratios. Thus, the model directly

encodes global corpus statistics. We use off-shelf embeddings trained on corpora

of different sizes (glove840B, glove40B, glove6B).

4.3 Other approaches

The third group is comprised of models that combine distributional and knowledge-

based approaches or incorporate alternative sources of information. Enriching

distributional models with syntactic or ontological information is motivated by more

12 http://ai.stanford.edu/*huang/.
13 http://www.cs.cmu.edu/*bmurphy/NNSE/.
14 https://code.google.com/archive/p/word2vec.
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or less explicitly stated aspiration to enhance their ability to capture taxonomic

relations.

– Dependency-based distributional vectors rely on corpus statistics but in contrast

to models listed in Sect. 4.2, they require information about the linguistic

structure of the corpora text. Co-occurrence is defined in terms of dependency

relations between words, not in terms of a linear window. Syntactic contexts can

be employed both in count-based and in prediction-based approaches. In our

experiments we use dependency-based NNSE—a linguistically informed

version of NNSE model (Murphy et al. 2012) in which the input matrix is

constructed from dependency counts—and dependency-based SkipGram15

(Levy and Goldberg 2014) in which neural network language model is trained

using syntactic contexts (ddNNSE300, ddNNSE2500, sg-deps).

– Symmetric Patterns (Schwartz et al. 2015) are sequences of words and

wildcards (such as ‘‘X and Y’’, ‘‘X of the Y’’), and vector representations of

words have been derived from the co-occurrence of these lexico-syntactic

patterns. Both sparse and dense versions have been made available by the

authors16 (sp-sparse, sp-500).

– RWSGwn17 (Goikoetxea et al. 2015) are word embeddings obtained by applying

neural network algorithm to a pseudo-corpus generated through random walks

over a WordNet graph. The random walk algorithm is based on PageRank, and

the produced pseudo-sentences are fed into SkipGram model to induce vector

representations of words. Importantly, the graph used for generating the pseudo-

corpus is derived from WordNet with gloss relations, which means that final

embeddings encode far richer knowledge than information captured in

taxonomic links in WordNet (RWSGwn).

– Concatenated vectors are constructed as simple concatenation of vector

representations trained using complementary approaches. Faruqui and Dyer

(2015) append their linguistic vectors to SkipGram vectors, reporting improved

performance across several evaluation datasets. In our experiments we test novel

combinations of the best performing distributional models (SkipGram, GloVe

and NNSE) with linguistic vectors, Symmetric Patterns vectors and RWSGwn.

5 Datasets preparation

Three of the four datasets described in Sects. 3.1 and 3.2 have not been specifically

designed for the purpose of evaluating the performance of computational measures

of relatedness, hence some degree of data preprocessing was required. In this

section we describe steps taken to adapt them as evaluation tools.

15 https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/.
16 http://homes.cs.washington.edu/*roysch/papers/sp_embeddings/sp_embeddings.html.
17 http://ixa2.si.ehu.eus/ukb/.
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5.1 Preparing the evocation dataset

In the evocation project, annotators rated relatedness between concepts (synsets)

rather than words: each initial word selected from BNC was presented to them

together with the list of words from the corresponding synset. The original dataset

provides the annotated pairs in two formats: as sense-key pairs and as word-sense

pairs (see two first columns in Table 3). Neither of these formats is suitable for

evaluating distributional word representations which map to word forms in text

corpora rather than to concepts; therefore in our evaluation dataset we only consider

the initial words. Table 3 shows examples of the annotated pairs as provided by

Boyd-Graber et al. (2006) (supercolumns 1 and 2) and after adapting to the

evaluation dataset used in our experiments (supercolumn 3).

From the total 119,668 word pairs we selected the 38,735 pairs annotated by at

least 5 judges, taking the average of the raw ratings assigned by each annotator.

From the resulting set we dropped 25,529 pairs (66%) that have been assessed as

unrelated, as well as 30 pairs whose members were instances of phrasal verbs

written as a WordNet-style collocation (words joined with an underscore). The

remaining 13,176 word pairs are used in our experiments.

5.2 Preparing the thematic relatedness norms dataset

Thematic relatedness production norms consist of cue-responses pairs together with

the counts indicating how often each concept was returned as the first, second or

third response. Synonymous responses to the same cue have been merged in the

original dataset (for example, flight attendant and stewardess returned as the

responses to the cue airplane), and their counts have been added. In such cases, we

take the most frequent word representing the synonymous response and discard the

remaining ones. If the most frequent response is a compound term, we take the

second most frequent word from the synonymous group. If there is no single-word

response for a cue, we discard the whole entry. The final dataset used in our study

comprises 1,122 word pairs.

For each cue-response pair, the final frequency count is weighted by the order of

producing the response. Counts of words produced first are multiplied by 3, and

counts of words given as a second response are multiplied by 2.

5.3 Preparing the USF Free Association dataset

The values of forward and backward association strength provided for word pairs in

USF Free Association database are different. For the purpose of the comparison

with the ratings produced by computational measures presented in Sect. 4, which

assume symmetrical relatedness between words, we take the average of the forward

and backward strength. Thus, out of the total 72,176 cue-response pairs in the

database, we discard 8,557 pairs for which only forward association strength has

been provided. From the remaining set, we remove 2,005 pairs that represent parts

of speech other than nouns, verbs or adjectives. The final dataset consists of 61,526

word pairs.
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6 Experiment 1: learning about datasets from the behaviour of models

In our first experiment we verify whether the two candidate thematic benchmarks

described in Sect. 3.1 indeed capture non-taxonomic relatedness. The idea is to use

the performance patterns of different groups of computational models as the

indicators of the type of relatedness measured by a given dataset. The performance

is defined as the agreement between computed degree of relatedness and human

judgment, expressed with Spearman rank correlation coefficient.

We use two groups of models of semantic relatedness presented in Sect. 4:

knowledge-based and vanilla distributional. As discussed in Sect. 2, models from

the first group (knowledge-based) use information embedded in taxonomic links of

lexical ontologies, and therefore are able to recognize taxonomic relations but not

non-taxonomic relations, such as thematic relations. Models from the second group

derive semantic distance from word co-occurrences in large corpora and, as shown

empirically, capture broader relatedness (Agirre et al. 2009; Hill et al. 2015; Levy

and Goldberg 2014).18

Knowing the capabilities and limitations of each group of computational models,

we expect that if an evaluation dataset assigns high ratings only to non-taxonomic

relations, then knowledge-based measures should score lower on it than distribu-

tional models. A lack of difference between average performance of the two groups

of models would suggest that high ratings in the evaluation dataset are assigned to

both taxonomically and non-taxonomically related pairs of words.

We analyse the difference in performance scores obtained by knowledge-based

and vanilla distributional models against the two candidate thematic benchmarks:

evocation dataset (evoc) and thematic relatedness production norms (themrel). To
gain a more comprehensive picture, we perform similar tests using datasets

representing other profiles of semantic relatedness: a non-specialized dataset

derived from USF Free Association database that presumably captures all types of

relations (usf), and the taxonomically oriented Simlex-999 (simlex).

6.1 Procedure and results

In order to run the experiment using full versions of the four evaluation datasets, it

was necessary to restrict the set of evaluated knowledge-based models to the

linguistic vectors (ling-sparse, ling-svd) and Wordnet hso model, because other

WordNet based measures can only be applied to subsets of word pairs in these

datasets (this issue is discussed in more detail in Sect. 6.2).

To obtain estimates of the degree of relatedness from vector models, we

computed cosine similarity between vectors representing each word pair. For the

WordNet-based measure hso, the degree of relatedness was calculated according to

the algorithm proposed in Hirst and St-Onge (1998). Thus, for each dataset, each

model yielded a list of relatedness ratings. Next, for every model we determined

18 At this point, we do not use models that exploit additional or combined sources of information,

because the profile of relatedness encapsulated in these models is more obscure and their value as

indicators of a dataset’s profile is limited. Their capabilities will be investigated in Sect. 7.
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Spearman correlation between the computed estimates and human ratings in each of

the four datasets.

The resulting performance scores are presented in Table 4. Missing words are

ignored in correlation calculation, that is, each model is evaluated against the word

pairs covered by its vocabulary (average percentage of missing words per dataset is

provided in the table). Since correlation values received for different datasets fall

into different scales, we perform range normalization of results achieved by all the

models on a given dataset, such that the performance scores are scaled in the range

[0,1]. Our further analysis is based on the normalized results, presented on the right

side of the table.
For each dataset, we applied independent samples t-test to compare mean

performance scores obtained by the samples of distributional and knowledge-based

models. F-tests had been run beforehand to determine whether the variances

between the two compared samples are equal or not. Based on the results of F-tests,

usf dataset was tested with Welsch’s adaptation of t-test assuming unequal

variances, and other datasets—with Student’s t-test assuming equal variances and

unequal sample size.

Our null hypothesis assumes no difference between mean scores of distributional

and knowledge-based samples (which is the likely outcome when the evaluation

dataset assigns high ratings for both taxonomically and non-taxonomically related

word-pairs). The alternative hypothesis (Halt) for themrel and evoc claims a

difference in favour of distributional models—the pattern expected for thematically

oriented benchmarks. Halt for simlex predicts a difference in the opposite direction,

i.e. better performance of knowledge-based methods. Finally, Halt for usf is

nondirectional, since we do not have any information suggesting which sample (if

any) might exhibit higher mean scores.

Table 5 summarizes the assumptions and results of the test. With significance

level set to 0.05, the null hypothesis has been rejected for the two thematic datasets

(themrel and evoc) and the taxonomically oriented simlex. As regards usf dataset,
mean score difference was not sufficient for rejecting null hypothesis. Figure 3

shows average performance within each of the two groups of computational

measures of relatedness, illustrating the contrasting behaviour of models and its

dependence on the dataset type they are evaluated against.

6.2 Discussion

The results of the experiment are consistent with the hypothesis that the two

thematic datasets assign high relatedness ratings only to non-taxonomic links.

Knowledge-based methods are unable to detect these links, which explains

extremely low correlation between relatedness ratings returned by theses measures

and gold standard ratings provided in themrel and evoc. Distributional methods

recognize both taxonomic and non-taxonomic relatedness, and therefore their

performance on these datasets is relatively much better (although in absolute terms,

their scores on thematic datasets are still not high).
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Table 4 Performance scores of vanilla distributional and knowledge-based models evaluated against two

thematic datasets (themrel and evoc), non-specialized dataset (usf) and taxonomic dataset (simlex)

Raw results Normalized results

Dataset Themrel Evoc Usf Simlex Themrel Evoc Usf Simlex

Words total 1,122 13,176 61,526 999 1,122 13,176 61,526 999

Missing words 2.6% 0.8% 3.1% 0.8% 2.6% 0.8% 3.1% 0.8%

Distributional:

CW 0.16 0.10 0.25 0.27 0.51 0.44 0.50 0.26

turian100 0.07 0.05 0.12 0.22 0.10 0.18 0.00 0.14

polyen 0.11 0.08 0.22 0.24 0.28 0.33 0.41 0.19

hpca100 0.10 0.00 0.18 0.16 0.22 0.00 0.22 0.00

huang100 0.19 0.15 0.25 0.28 0.61 0.66 0.51 0.28

glove6B 0.24 0.22 0.34 0.37 0.88 0.94 0.88 0.50

glove42B 0.27 0.18 0.34 0.37 1.00 0.79 0.89 0.51

glove840B 0.25 0.23 0.37 0.41 0.92 1.00 0.98 0.59

sg100B 0.22 0.19 0.37 0.44 0.79 0.80 1.00 0.67

docNNSE300 0.19 0.15 0.25 0.27 0.61 0.62 0.52 0.26

sg-window5 0.16 0.21 0.33 0.37 0.48 0.88 0.83 0.49

sg-window2 0.14 0.16 0.32 0.41 0.41 0.69 0.79 0.61

Knowledge based:

ling-svd 0.08 0.06 0.24 0.58 0.12 0.23 0.46 1.00

ling-sparse 0.05 0.01 0.25 0.57 0.00 0.04 0.50 0.97

hso 0.10 0.04 0.24 0.45 0.22 0.14 0.45 0.70

‘‘Words Total’’ is the total number of word pairs in each dataset. ‘‘Missing Words’’ is the average

percentage of missing words per dataset

Fig. 3 Average performance scores obtained by vanilla distributional and knowledge-based models on
thematic relations norms, evocation, free association norms and Simlex-999. Polynomial trendlines
(Poly.) are added to accentuate performance patterns
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When evaluated against usf dataset, which presumably allocates high ratings to

both thematic and taxonomic relations, knowledge-based measures achieve

considerably better scores (comparable to the performance of distributional

methods), as the taxonomic portion of associations captured in the USF database

is visible to them. Finally, the ability of vanilla distributional models to capture

thematic relations becomes a disadvantage when evaluating on simlex, which has

been intentionally designed to penalize models that assign high ratings to non-

taxonomic relations (Hill et al. 2015). As a consequence, knowledge-based

measures outperform distributional models on this dataset.

In another version of this experiment, we broaden the range of knowledge-based

methods to include classical graph-based WordNet-based measures (see 4.1.1)

which travel along hierarchical links in the ontology. Since hierarchical links only

exists for words that share the same part of speech, and moreover, there is no

hierarchical structure for adjectives in WordNet, these methods can only supply

ratings for noun-noun and verb-verb pairs. In order to include WNM in our

comparison, we re-ran the evaluation of all the models against subsets of the

datasets, that is excluding word pairs that are not connected in the WordNet graph.

We found that including graph-based measures did not change the outcome of the t-

test. Interested readers may find full results of evaluating models on pruned versions

of datasets in ‘‘Appendix A’’.

To sum up, our experiment rested on the assumption that knowledge-based

models are capable of capturing taxonomic relations, while distributional methods

capture general semantic relatedness. This assumption is motivated theoretically

given the sources of information utilized in each of these approaches, and also

supported by empirical evidence (Agirre et al. 2009; Hill et al. 2015; Levy and

Goldberg 2014). We harnessed this knowledge to demonstrate that the thematic

relatedness production norms (themrel) and evocation dataset (evoc) could be useful
as specialised benchmarks that selectively capture non-taxonomic relations.

Table 5 T-test results of comparing mean scores obtained by our sample of distributional models (d) and
our sample of knowledge-based models (kb) against four evaluation datasets

Dataset Themrel* Evoc* Usf** Simlex*

Halt d[ kb d[ kb d 6¼ kb d\kb

t-statistics 2.610 2.540 1.703 3.848

p-value 0.011 0.012 0.117 0.001

H0 rejected? Yes Yes No Yes

Null hypothesis assumes no difference between sample means

*One-tailed Student’s t-test assuming equal variances, unequal sample size

**Two-tailed Welch’s t-test assuming unequal variances, unequal sample size
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7 Experiment 2: learning about models by evaluating on specialized
datasets

In Experiment 1 we tested the type of semantic relatedness captured in the thematic

datasets. This test was possible because each of the models selected for the study

could be unambiguously classified as either knowledge-based or distributional.

Based on theoretical and empirical evidence coming from past research, we

consider the relatedness profile of these models as known, which allows us to draw

conclusions about the relatedness encapsulated in evaluation datasets.

However, the range of computational approaches to modelling relatedness is by

no means limited to pure knowledge-bases and distributional methods. Many

approaches use both sources of information (e.g. concatenated vectors) or reach for

additional sources, such as dependency relations (Murphy et al. 2012; Levy and

Goldberg 2014), symmetric patterns (Schwartz et al. 2015) and gloss relations

(Goikoetxea et al. 2015). Based on the evidence coming from Experiment 1, as well

as the description of the procedure of obtaining human ratings of relatedness, we

now consider dataset’s relatedness profile as known, and conduct an experiment to

draw conclusions about the relatedness captured by models whose classification is

not obvious.

Concretely, we use the thematic datasets, along with Simlex-999 as taxonomic

benchmark, to evaluate three aspects of model performance: (a) recognizing

thematic relations; (b) recognizing taxonomic relations; and (c) finding a happy

medium between the ability to detect the two types of relatedness. Each of these

evaluations can be useful for researchers concerned with various applications of

models of semantic relatedness. For example, those studying topic modelling would

be interested in methods that perform best on thematic benchmarks while those

focused on dictionary generation would care mostly about models’ capability to

recognize taxonomic relations. The third evaluation—identifying the model coping

with both types of relatedness—would be valuable for tasks where both taxonomic

and thematic relations matter, and the researchers cannot afford to neglect either

aspect. This evaluation criterion is relevant in multitask learning (Collobert and

Weston 2008), but should be also useful in statistical language modelling.

According to Jakobson (Jakobson 1956), the processes of paradigmatic selection

and syntagmatic combination are both continually active and intertwining in normal

verbal behaviour. The first process requires understanding the internal, structural

relations of similarity, and the second process requires understanding the external,

operational relations of contiguity (see Sect. 1); failing to grasp either pole results in

abnormal speech. The results provided in Table 7 suggest that maximizing accuracy

at one dimension comes at the cost of deteriorated performance at the other

dimension; since it may be impossible to excel at both, we attempt to find a

compromise by identifying best balanced models. We anticipate that acquiring

competencies that are crucial for human language users would be beneficial for

computational language models. Thus, in this paper we propose using harmonic

mean for assessing the level of balance in capturing the two aspects of relatedness.
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7.1 Procedure and results

In Experiment 2 we included all types of vector representations listed in Sect. 4. In

order to produce concatenated vectors, we built on the approach taken by Faruqui

and Dyer (2015) who appended their linguistic vectors to SkipGram embeddings

and observed improved performance on several evaluation tasks. Specifically, for

this experiment we selected the three vanilla distributional word representations that

performed best in Experiment 1 (SkipGram, GloVe and NNSE) and tested their

combinations with vectors that use information beyond raw corpus data: linguistic

vectors, symmetric pattern vectors19 and RWSGwn. As for non-vectorial, graph-

based measures of semantic relatedness, we included hso (Hirst and St-Onge 1998)

which provides relatedness ratings for cross-POS word pairs and can be evaluated

using full versions of the datasets.

All the models were evaluated against themrel, evoc and simlex. To identify

models that find best balance in recognizing taxonomic and thematic relations, we

apply weighted harmonic mean to range-normalized results (as explained in the

previous section, range normalization is necessary when comparing model

performance across datasets, because the range of results obtained on thematic

datasets is not compatible with the scale of scores obtained on simlex). Each of the

two thematically oriented datasets is assigned the weight of 1, and simlex is assigned
the weight of 2:

weighted harmonicmean ¼ 1þ 1þ 2
1

themrel score þ 1
evoc score þ 2

simlex score

ð1Þ

Table 6 shows the results ordered from best to worst with regard to the harmonic

mean. In order to provide the full picture of best achievers across different datasets,

we present a complete list of evaluated models.

7.2 Discussion

According to the ranking by the harmonic mean (Table 6), the best equilibrium in

recognizing thematic and taxonomic relations is achieved by concatenating

RWSGwn and GloVe vectors, which yields a combination of three sources of

information: raw corpus data, lexical ontology, and gloss relations. More generally,

the highest performance in terms of the harmonic mean is observed for concatenated

vectors (marked in the table in italics), which dominate the block of top 13 models.

Combining different sources of information not only contributes to more

balanced systems but also leads to improved ability to capture either aspect of

relatedness. Table 7 shows performance ranks of all the models with respect to each

of the three specialised datasets. With few exceptions, the top three performers on

each dataset are concatenated vectors.

19 In an analogous attempt, Schwartz et al. (2015) compute linear combination of relatedness ratings

returned by their symmetric pattern model and Skipgram, and report improved performance on Simlex-

999. However we find that simple concatenation of vectors yields better results (correlation of 0.58 vs.

0.56).
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Table 6 Spearman correlations between relatedness ratings returned by computational models and

human ratings collected in thematic relatedness norms (themrel), evocation (evoc) and Simlex-999

(simlex) datasets

No. Model Type Har-mean Themrel Evoc Simlex

1 RWSGwn?glo a 0.87 0:26ð2Þ 0:26ð1Þ 0.50

2 sp-sparse?sg a 0.80 0.20 0.17 0.58

3 RWSGwn?sg a 0.79 0.21 0.19 0.53

4 RWSGwn?nnse a 0.79 0.20 0.19 0.53

5 RWSGwn rw 0.76 0.19 0.19 0.52

6 sp-sparse?glo a 0.73 0:26ð3Þ 0:23ð2Þ 0.42

7 ling-svds?sg a 0.72 0.23 0.19 0.45

8 ling-svds?glo a 0.71 0.25 0:23ð3Þ 0.41

9 glove840B d 0.71 0.25 0.23 0.41

10 sg100B d 0.70 0.22 0.19 0.44

11 sp-sparse?nnse a 0.69 0.20 0.11 0:59ð1Þ

12 ling-sparse?glo a 0.67 0.15 0.15 0:59ð2Þ

13 ling-svds?nnse a 0.64 0.21 0.11 0.50

14 glove6B d 0.62 0.24 0.22 0.37

15 glove42B d 0.62 0:27ð1Þ 0.18 0.37

16 ddNNSE2500 d 0.59 0.21 0.11 0.46

17 sg-window2 d 0.54 0.14 0.16 0.41

18 sg-window5 d 0.54 0.16 0.21 0.37

19 sp-sparse l 0.53 0.13 0.10 0.54

20 sg-deps l 0.45 0.12 0.10 0.45

21 huang100 d 0.37 0.19 0.15 0.28

22 docNNSE300 d 0.36 0.19 0.15 0.27

23 ddNNSE300 d 0.33 0.11 0.06 0.37

24 CW d 0.32 0.16 0.10 0.27

25 ling-svds kb 0.28 0.08 0.06 0:58ð3Þ
26 hso kb 0.27 0.10 0.04 0.45

27 polyen d 0.23 0.11 0.08 0.24

28 turian100 d 0.14 0.07 0.05 0.22

29 depNNSE300 l 0.13 0.07 0.02 0.40

30 ling-sparse?sg a 0.10 0.06 0.02 0.57

31 ling-sparse kb 0.06 0.05 0.01 0.57

32 ling-sparse?nnse a 0.00 0.05 0.02 0.57
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It is, however, apparent that it is hard to reconcile the ability to capture

taxonomic relations with the ability to recognize thematic relations. The concate-

nated model that scores best on themrel and second best on evoc (No. 1 in Table 6)

is placed at position 13 on simlex. The combination that performs best on simlex
(No. 11) is ranked as 12th on themrel and 19th on evoc.

The lack of balance is exhibited most strongly by models that obtain high scores on

simlex. Comparing the rank by harmonic mean with the ranks by performance on

specialised datasets, we find that the mean values are highly correlated with the scores

obtained on thematically-oriented datasets (Spearman’s rho of 0.88 and 0.83), and

poorly correlated with the scores obtained on taxonomically-oriented Simlex-999

(Spearman’s rho of 0.3).20 This means that best achievers on simlex tend to be

penalized more heavily by the harmonic mean which is the type of average that

unfavours large differences between its arguments (Kelleher et al. 2015).

This is consistent with the notion that knowledge-based models selectively

capture taxonomic relations, and distributional approaches encode general related-

ness and thus are not limited to a single aspect. In other words, it is possible to find

models that are excellent at modelling taxonomic relatedness while being almost

completely blind to thematic relations, but we have not identified models that

selectively detect thematic relatedness without recognizing taxonomic links.

Furthermore, ranks presented in Table 7 reveal that the impact of training

corpora size on the performance of distributional word representations is important

but not ultimately deciding. Sizes of corpora used for training the models under

evaluation vary significantly (see Table 2). In general, vectors trained using massive

amounts of data score better than those using small or medium corpora, at least in

terms of the harmonic mean. However, Glove trained on 840 billion words

(glove840B) is outperformed on simlex by Skipgram vectors induced on 100 billion

words (sg100B) or even just 2 billion (sg-window2). On the other hand, Glove

induced on just 6 billion of words (glove6B) scores better than sg100B on both

20 This asymmetry is present despite adjusting weights (to account for the unequal number of datasets)

and applying range normalization (to neutralise the conservative bias of harmonic mean).

Table 6 continued

No. Model Type Har-mean Themrel Evoc Simlex

33 hpca100 d 0.00 0.10 0.00 0.16

Weighted harmonic mean (har-mean) has been taken after scaling the results in the range [0,1]. Italic

highlights blocks of concatenated vectors. First, second and third best result obtained on each dataset is

marked with a superscript with the respective number

Type symbols:

kb ¼ knowledge-based models

d ¼ vanilla distributional models

l ¼ linguistically informed distributional vectors (dependency-based and symmetric patterns)

a ¼ concatenated vectors

rw ¼ RWSGwn
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Table 7 Computational models of relatedness and their ranks with respect to their performance on three

specialised datasets: thematic relations (themrel), evocation (evoc) and Simlex-999 (simlex) datasets

Model Type Har-mean Themrel Evoc Simlex

RWSGwn?glo a 1 2 1 13

sp-sparse?sg a 2 14 13 4

RWSGwn?sg a 3 11 7 10

RWSGwn?nnse a 4 13 8 9

RWSGwn rw 5 15 9 11

sp-sparse?glo a 6 3 2 19

ling-svds?sg a 7 7 10 15

ling-svds?glo a 8 5 3 21

glove840B d 9 4 4 22

sg100B d 10 8 11 18

sp-sparse?nnse a 11 12 19 1

ling-sparse?glo a 12 20 16 2

ling-svds?nnse a 13 9 18 12

glove6B d 14 6 5 25

glove42B d 15 1 12 24

ddNNSE2500 d 16 10 20 14

sg-window2 d 17 21 14 20

sg-window5 d 18 19 6 27

sp-sparse l 19 22 22 8

sg-deps l 20 23 23 17

huang100 d 21 17 15 28

docNNSE300 d 22 16 17 29

ddNNSE300 d 23 25 25 26

CW d 24 18 21 30

ling-svds kb 25 28 26 3

hso kb 26 26 28 16

polyen d 27 24 24 31

turian100 d 28 29 27 32

depNNSE300 l 29 30 29 23

ling-sparse?sg a 30 31 30 6

ling-sparse kb 31 32 32 7

ling-sparse?nnse a 32 33 31 5

hpca100 d 33 27 33 33

The order of models in the table is by weighted harmonic mean of the results on the three datasets. Bold

font indicates three best results obtained on each dataset

Type symbols:

kb ¼ knowledge-based models

d ¼ vanilla distributional models

l ¼ linguistically informed distributional vectors (dependency-based and symmetric patterns)

a ¼ concatenated vectors

rw ¼ RWSGwn
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thematic datasets. As another example, vectors induced by Collobert and Weston

(CW) on a small corpus of 0.67 billion tokens outperform another implementation

of same network architecture (polyen) trained on 1.8 billion words.

To investigate how the size of the corpus used to train a model impacts its

performance on each of the specialised datasets, we defined two groups of models:

(a) vanilla distributional vectors (based on simple word-count; see Sect. 4.2) and (b)

all co-occurrence based models, i.e. all vanilla distributional models plus

dependency-based vectors and symmetric patterns (Sect. 4.3). For each dataset,

we calculated Spearman correlation between the list of scores obtained on that

dataset by models from group (a), and the list of their training set sizes. The same

procedure was performed using models from group (b). The results are presented in

Table 8.

The results in Table 8 give rise to several observations. First, within group (a),

the impact of training corpus size is higher for the thematic datasets than for the

taxonomic dataset (simlex). Second, the correlation drops for group (b). This is not

surprising, because group (b) includes models that use syntactic information, which

have been shown to improve the ability to capture taxonomic relations (Agirre et al.

2009; Levy and Goldberg 2014; Hill et al. 2015; Schwartz et al. 2015). Even when

trained on relatively small corpora, these models perform ‘‘abnormally’’ well on

simlex, diluting the relationship between training set size and the performance. On

the other hand, since the specialisation in recognizing taxonomies impairs on the

ability to detect thematic relations, these linguistically enriched models perform

‘‘abnormally’’ poorly on the thematic datasets, which also mitigates the impact of

training data size.

More intriguingly, however, the drop in correlation observed for the thematic

datasets is much more radical than for simlex. This might mean that a small

improvement on the taxonomic benchmark comes at the price of a huge

performance loss on the thematic dimension. Although at this stage this discussion

is of a speculative nature, it would be worthwhile to further investigate and verify

our results. A better insight into the interaction between the ability to capture

taxonomic and thematic relations may facilitate more accurate choices of models to

be applied for specific NLP tasks.

Lastly, we notice that the correlations obtained with respect to themrel and

evoc—quite different from correlations calculated for similex—are very similar to

each other, both within group (a) and (b). We interpret it as an additional premise to

support our claim that the thematic datasets consistently capture a meaningful

dimension of semantic relatedness.

Table 8 Spearman correlation between the scores obtained by models at each of the specialized dataset

and the sizes of their training corpora, (a) considering only models trained on raw corpora, (b) including

linguistically informed distributional models

Themrel Evoc Simlex

(a) Vanilla distributional models 0.78 0.77 0.73

(b) All distributional models 0.55 0.58 0.70
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7.3 Most successful embeddings

Although combined models dominate the top positions in all types of rankings (both

by the harmonic mean and by performance on specialized datasets), the winning

combinations tend to be different for each type of semantic relatedness. Below we

identify specific embeddings that are most successful at (a) balancing the ability to

recognize taxonomic and thematic relations, and (b) capturing thematic relations:

(a) Four of the five best balanced models are combinations including RWSGwn

or RWSGwn itself. The feature that distinguishes the RWSGwn from other models

evaluated in our study is the use of gloss relations. Gloss relations are links between

words in synset S and synsets representing words in the gloss of S. A model using

gloss relations receives explicit information about thematic relations (for example,

hospital will be linked to patients and treatment, because its gloss is: a health
facility where patients receive treatment). Our results indicate that combining

taxonomic information from hierarchical links in WordNet with the direct thematic

information from gloss annotations helps to achieve a reasonable trade-off between

capturing two incompatible types of relatedness.

(b) The top five performers on both themrel and evoc are combinations of GloVe

vectors or GloVe itself. This consistent advantage of GloVe is only observed on

thematic datasets, not on simlex or when comparing harmonic mean values. This

indicates that the ability of GloVe to capture global corpus statistics may facilitate

recognizing thematic aspect of relatedness.

7.4 The harmonic mean and USF Free Association Norms

In calculating the weighted harmonic mean values shown in Tables 6 and 7, we

have not included results obtained on USF Free Association Norms because we did

not have any pre-existing knowledge about the proportion of taxonomic vs. thematic

relations captured in this dataset. Since the purpose of calculating the harmonic

mean was to find the best-balanced model, we applied weights so as to find a middle

point between scores obtained on the two thematic datasets on one side, and a single

taxonomic benchmark on the other. We did not have enough information to

determine the weight that should be assigned to USF dataset, because its word pairs

were spontaneously generated by participants, and the type of relatedness between a

cue and the response was not controlled in any way. Studies in cognitive science

(Hutchison 2003; Golonka and Estes 2009) confirm that people use both taxonomic

and thematic relations to categorize concepts, but there is no simple answer as to

which type is used more often; rather, it is suggested that people’s preferences in

that regard are influenced by a variety of personal, situational and even cultural

factors. Thus, we could expect usf to be a mixed dataset but make no assumptions as

to whether it is biased toward either type of relatedness.

To shed some light onto the nature of relations gathered in the USF database, we

compared ranks by performance on usf with ranks by the harmonic mean obtained in

Experiment 2. Table 9 shows that the order by scores obtained on usf is strikingly
similar to the rank by harmonic mean, which suggests that the USF database

contains a balanced mixture of taxonomic and non-taxonomic relations. It,
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therefore, could be a useful resource for evaluating general purpose models; rather

than assessing computational measures of relatedness against several specialised

datasets and taking a mean result, it may be simpler to use a single gold standard.

8 Conclusions

This paper focuses on differences between two aspects of semantic relations,

placing them in the context of evaluating computational models of relatedness. In

particular, we highlight the importance of non-taxonomic relations. Traditionally,

NLP literature recognizes taxonomic relations as a subset of general semantic

relatedness, but relations beyond this subset are poorly defined.

We propose taking advantage of research advances in cognitive psychology and

adopting the concept of thematic relatedness, which is well defined, crisply separated

from taxonomic relatedness, and proven to play crucial role in human cognition.

Improved conceptualization of the non-taxonomic portion of semantic relatednessmay

facilitate NLP research on this important type of connection between words/concepts.

The duality of semantic relations has been also investigated by linguists and

semioticians. Although considered from very different perspectives, the picture

emerging from the research across the domains of natural language processing,

cognitive psychology and linguistics is surprisingly consistent: both the internal,

feature-based taxonomic relations, and the external, contextual thematic relations are

equally important for cognitive and linguistic processes, and both are continually used

by humans for organizing concepts or constructing and understanding linguistic

Table 9 Rank by weighted harmonic mean of normalised results (har-mean) as compared to the rank by

performance on USF Free Association Norms dataset (usf)

Model Model type Rank by har-mean Rank by usf

RWSGwn?glo a 1 1

sp-sparse?sg a 2 11

RWSGwn?sg a 3 2

RWSGwn?nnse a 4 3

RWSGwn rw 5 4

sp-sparse?glo a 6 6

ling-svds?sg a 7 5

ling-svds?glo a 8 8

glove840B d 9 9

sg100B d 10 7

Type symbols:

kb ¼ knowledge-based models

d ¼ vanilla distributional models

l ¼ linguistically informed distributional vectors (dependency-based and symmetric patterns)

a ¼ concatenated vectors

rw ¼ RWSGwn
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messages. One thread that runs through these studies is about the inherent difficulty in

defining and interpreting thematic (non-classical, contiguity) relations, which are

context-dependent and somewhat subjective. A related common theme is thatWestern

culture and education system emphasize taxonomic relations, focusing on objects and

attributes, and discouraging thinking in terms of contexts and complementarity. As a

result, thematic relations tend to be neglected or misunderstood. (cf. Jakobson 1956;

Morris and Hirst 2004, 2006; Boyd-Graber et al. 2006;McRae and Boisvert 1998; Lin

and Murphy 2001; Estes et al. 2011).

Hoping to contribute to a better apprehension of the concept of thematic

relations, we demonstrate how this conceptualization can be applied in the

evaluation of computational models of semantic relatedness. We identify two

thematic datasets that so far have not been used by researchers working with word

representations, prepare them for use as evaluation gold standards, and verify their

ability to selectively capture non-taxonomic relations. This form of verification has

limitations, as non-taxonomic relations are a broader concept than thematic

relations; however, the motivation of researchers who designed the two datasets, as

well as the procedures taken during collecting human ratings, indicate that the type

of semantic relatedness measured by these datasets is specifically thematic

relatedness. We recommend them as thematic relatedness benchmarks that

complement the well-known taxonomic benchmark, Simlex-999.

Following the assumption that different NLP tasks may target different aspects of

semantic relatedness, we use the thematic evaluation datasets and Simlex-999 to

analyse the performance of an extensive sample of computational models of

semantic relatedness and identify models that are best at each dimension of

relatedness. Acknowledging that natural language users manipulate both kinds of

relations, and to meet the requirements of applications that need to model that

bipolar structure of language, we propose using harmonic mean as a way of

assessing the level of balance in capturing the two aspects.

We experiment with concatenated vectors, exploring several novel combinations.

Our evaluation provides evidence that combining multiple sources of information

brings about a better balance in recognizing taxonomic and thematic relations, as

measured in terms of the harmonic mean. Interestingly, concatenated vectors also

obtain the highest scores on each of the specialised datasets, albeit different

combinations are required for each dataset. We find that combinations including

RWSGwn (a model utilizing WordNet with gloss relations) yield the best-balanced

systems, while combinations including GloVe (a distributed neural language model

that directly encodes global corpus statistics) are most successful at capturing

thematic relations.

The last contribution of this paper is verification of USF Free Association Norms

dataset, which is not typically employed for evaluation of computational measures

of relatedness. USF Free Association Norms dataset is a huge collection (over

60,000 normed cue-response pairs), and has been supplied with rich metadata that

comprise additional resources available for researchers interested in specific

linguistic tasks. Our results suggest that the USF dataset may be especially useful

for evaluating general purpose models, as it seems to cover taxonomic and thematic

relations in balanced proportions.
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A Supplemental results

See Tables 10, 11 and Fig. 4.

Table 10 Performance scores of vanilla distributional and knowledge-based models evaluated against

subsets of datasets (noun-noun and verb-verb pairs only)

Raw results Normalized results

Dataset Themrel Evoc Usf Simlex Themrel Evoc Usf Simlex

Words total 976 6,629 33,808 888 976 6629 33,808 888

Distributional

CW 0.15 0.20 0.22 0.27 0.46 0.69 0.45 0.30

turian100 0.06 0.10 0.10 0.21 0.08 0.14 0.00 0.16

polyen 0.12 0.16 0.21 0.25 0.32 0.45 0.39 0.24

hpca100 0.09 0.07 0.14 0.15 0.21 0.00 0.15 0.00

huang100 0.18 0.20 0.24 0.28 0.62 0.70 0.51 0.33

glove6B 0.24 0.24 0.34 0.33 0.88 0.90 0.88 0.45

glove42B 0.27 0.20 0.35 0.34 1.00 0.70 0.91 0.48

glove840B 0.25 0.26 0.38 0.37 0.95 1.00 1.00 0.54

sg100B 0.23 0.23 0.37 0.42 0.83 0.87 0.97 0.66

docNNSE300 0.18 0.16 0.26 0.25 0.60 0.50 0.59 0.25

sg-window5 0.16 0.25 0.33 0.35 0.50 0.95 0.82 0.49

sg-window2 0.14 0.21 0.31 0.39 0.41 0.76 0.76 0.59

Knowledge based

ling-svd 0.08 0.08 0.23 0.54 0.17 0.02 0.47 0.96

ling-sparse 0.05 0.11 0.24 0.55 0.00 0.19 0.50 0.98

jc 0.08 0.10 0.21 0.56 0.16 0.13 0.42 1.00

lin 0.06 0.09 0.23 0.55 0.04 0.11 0.49 0.96

res 0.05 0.08 0.23 0.47 0.02 0.05 0.48 0.78

lc 0.07 0.09 0.21 0.55 0.10 0.11 0.40 0.97

path 0.07 0.09 0.20 0.52 0.10 0.11 0.37 0.90

wup 0.07 0.09 0.23 0.52 0.10 0.09 0.49 0.90

hso 0.10 0.10 0.25 0.46 0.25 0.15 0.55 0.75

‘‘Words total’’ is the number of word pairs in a dataset after excluding pairs not supported by WNM
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