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Abstract: In order to design molecular electronic devices with high 
performance and stability, it is crucial to understand their structure-to-
property relationships. Single-molecule break junction measurements 
yield a large number of conductance-distance traces, which are 
inherently highly stochastic. Here we propose a weakly supervised 
deep learning algorithm to classify and segment these conductance 
traces, a method that is mainly based on transfer learning with the 
pretrain-finetune technique. By exploiting the powerful feature 
extraction capabilities of the pretrained VGG-16 network, our 
convolutional neural network model not only achieves high accuracy 
in the classification of the conductance traces, but also segments 
precisely the conductance plateau from an entire trace with very few 
manually labeled traces. Thus, we can produce a more reliable 
estimation of the junction conductance and quantify the junction 
stability. These findings show that our model has achieved a better 
accuracy-to-manpower efficiency balance, opening up the possibility 
of using weakly supervised deep learning approaches in the studies 
of single-molecule junctions. 

Introduction 

Scanning tunneling microscope-based break junction (STM-BJ) [1-

5] and mechanically controlled-break junction (MCBJ) [5-9] are two 
among the most popular techniques employed to fabricate single-
molecule junctions and to measure their conductance. Both of 
them are statistical methods and create a large quantity of 
conductance-distance traces. Due to the stochastic nature of the 
breaking process, the variable possible binding configurations 
between the molecule and the electrodes, molecular 
conformations, noise and environmental fluctuations, these 
conductance-distance traces exhibit diverse features. When there 
is no molecule bound in the junction, the conductance decays 

exponentially with distance, as expected from direct tunneling 
between the two electrodes. In contrast, when one or a few 
molecules are found in the junction, a conductance plateau 
always appears in the distance trace, indicating the formation of 
a molecular junction. However, the variation in the conductance 
values of the plateaus associated to the same molecule can be 
as large as one order of magnitude. Furthermore, such plateaus 
may break off and re-form within the same trace due to the 
fracture and reconnection of the molecular junctions. Therefore, 
the conductance value, together with the shape and length of 
these plateaus, are vital factors defining the electrical 
characteristics and the device stability of molecular junctions. It is 
highly desirable to develop efficient and effective approaches to 
classify the conductance-distance traces and extract meaningful 
features of the conductance plateaus. 

Recently machine learning has been introduced into 
molecular electronics,[10-27] as a powerful tool to analyze break 
junction data. Supervised and unsupervised learning are the two 
main classes of machine learning algorithms, their main 
difference being whether or not a manually labeled training set is 
needed. Due to limited labor costs and the potential advantage of 
avoiding predefined bias in solving specific problems, many 
previous studies prefer unsupervised learning methods,[10-22] such 
as multi-parameter vector-based classification (MPVC),[10] deep 
auto-encoder K-means (DAK),[11] K-means++,[12] principal 
component analysis (PCA),[13] Alexnet-enhanced autoencoder[14] 
and spectral clustering.[19] In general, the conductance traces 
collected for a certain molecule or different molecules are grouped 
by their mutual similarities to uncover the underlying features. 
However, most of these unsupervised learning methods focus on 
clustering and/or dimensionality reduction tasks. In contrast, 
when we face a definite purpose, such as sorting the traces 
according to some specific localized features, unsupervised 
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Figure 1. (a) chemical structures of the two molecules we investigate in this 
work. (b) typical STM-BJ traces collected for molecule 1, offset by 1.5 nm for 
clarity. Left, blue: conductance trace when there is no molecular junction 
formation; middle, red: conductance trace showing a distinct and smooth 
conductance plateau; right, green: conductance trace with one valley appearing 
in the middle of the plateau. 

learning algorithms may sometimes provide unsatisfactory results.  
At the same time, supervised learning has also been applied 

to the classification of conductance traces.[23,24] For example, 
Lauritzen et al. trained a recurrent neutral network for classifying 
experimental conductance curves of gold break junctions.[23] 
Moreover, a convolutional neural networks (CNN)-based method 
has been demonstrated to achieve a much higher accuracy in the 
identification of molecular junctions and a striking ability to sort 
conductance traces without relying on average conductance 
information.[24] Unfortunately, an obvious weakness of traditional 
supervised learning methods is that they need a large amount of 
manually labeled training data, leading to excessive manpower 
consumption. So the question we are asking is: can we implement 
supervised deep-learning methods with a few labeled data? 
Weakly supervised learning is a promising approach to handling 
this problem. Finetuning a pretrained neural network such as 
VGG-16[28] has been proved to be an effective strategy for image 
processing tasks, because the first several layers of 
neural networks always extract general features that can be used 
in other datasets.[29] We hope that this strategy may also work well 
in the classification of single-molecule conductance traces. 
Furthermore, we here try to extend the weakly supervised 
learning method to segment the conductance plateau from an 
entire trace, so to make a more accurate analysis of the junction 
conductance and the plateau lengths. In previous studies this is 
often realized through a threshold,[4] but its usefulness and 
accuracy are very limited due to large variations in the shape and 
length of the conductance plateaus. 

Here we develop a weakly supervised learning algorithm that 
is based on a transfer learning methodology combined with 
convolutional neural network. In what follows, we describe our 
computation methodology, including our data pretreatment 
technique, and then present two case studies using our own STM-
BJ data. These illustrate the applicability and advantages of a 
weakly supervised deep learning strategy. In the first case study, 
we show that our model can properly classify the conductance 
traces of the same molecule and segment the conductance 
plateau from an entire trace. As a result, the junction conductance 
can be extracted in a more reliable way and the junction stability 
can be quantified. In the second case study, we use a known data 
mixture to demonstrate that our model can sort conductance 
traces from different molecules with overlapping conductance 
distributions. 

 
Figure 2. (a) General workflow used for the data pretreatment, where the 
matplotlib library transforms the raw traces into (100,100,3) RGB-images. 
These are then input in the VGG-16 network. For our CNN model, the traces 
are converted into (100,100,1) gray-scale images. The first two values encode 
the number of pixels of the images and the last one represents the number of 
color channels. In (b) we show the full algorithm flow chart. 

Experimental Section 

Data collection 
The chemical structures of the two molecules investigated are 
shown in Figure 1(a). Molecules 1 and 2 have similar backbones, 
and their two ends are modified with pyridyl groups to anchor to 
the Au atoms of the substrate and the STM tip. We took 
measurements for the two molecules under the same 
experimental conditions. A solution (10 µl) containing 0.5 mM 
target molecules in the mixture of tetrahydrofuran (THF) and 
mesitylene (TMB, vTHF/vTMB=1:4) was dropped on the gold 
substrate to form the molecular junctions with the gold STM tip. 
With the STM-BJ technique, we obtain 1082 and 627 
conductance-distance traces for molecules 1 and 2, respectively. 
Since the experimental details and the physical interpretation of 
the experimental results have been reported in reference [4], here 
we mainly focus on the data analysis aspects. 
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Data pretreatment 
Data pretreatment is an important step in our method, whose 
entire workflow is shown in Figure 2(a). Each conductance trace 
is converted into a two-dimensional (2D) image as required by the 
VGG-16 network. This has many advantages including that all the 
images have the same size, independent from the number of data 
points in each conductance trace and that the classification 
accuracy is also much improved compared to the direct use of the 
raw data.[12,14,18] One of the key parameters used to construct 
such images is the number of pixels, which is selected by 
considering the accuracy, the computational cost and the 
suitability for the specific task. In our datasets, each conductance-
distance trace contains more than 3000 data points. In order to fit 
these in the VGG-16 input shape dimension, we first plot the 
traces as (224, 224, 3) RGB images, the standard input size of 
VGG-16, but such representation is heavily time-consuming and 
is also inconvenient for the segmentation task. Then we plot them 
as (100,100,3) images [12] and find they can provide satisfied 
results for both the classification and segmentation tasks. Note 
that the fully connected (FC) layers of the original VGG-16 
network are dropped so that it does not require the original input 
shape (3 color channels are still required). As for the input of our 
CNN model, we plot the traces as (100,100,1) gray-scale images, 
because the color information is redundant and such image color 
conversion is also very convenient. 
 
Algorithm  
Our STM-BJ conductance-distance traces have two specific 
characteristics. The first one is simplicity. We find that, after data 
pretreatment, a shallow neural network is enough for the 
classification and segmentation tasks, achieving a high accuracy. 
The second characteristic is similarity. Usually experiments for 
different molecules are conducted under similar experimental 
conditions, so that the measured traces have some similarities 
and it is not necessary to retrain the network completely. 

We find that finetuning the VGG-16 network can give us high 
accuracy. However, due to the above-mentioned specific 
characteristics, the direct use of deep pretrained networks, like 
VGG-16, will extract unnecessary features such as color, and will 
require massive computing resources, thus leading to low 
efficiency. Therefore, we propose the algorithm shown in Figure 
2(b): steps 1-3 are for a new experiment and the last step (blue 
dashed box) is for a similar task on different molecules. In our 
algorithm, the pretrained VGG-16 network works as a teacher 
model and helps us to train our CNN model (a student model) with 
few labeled data. The original VGG-16 network is designed for 
1000-classification so that its output layer contains 1000 neurons. 
Therefore, the FC layers must be redesigned.  

For the classification task, we use the 13 convolutional layers 
of VGG-16 with the weight of Imagenet and add 3 redesigned FC 
layers (3 neurons in the output layer) to its end. The complete 
model of this simplified VGG-16 network is shown in Figure S1 of 
the supplementary information (SI). In contrast, our CNN model is 
composed of 4 convolutional layers and 2 FC layers, and the 
activation functions of the last layer and the intermediate layers 
are, respectively, Soft-Max and ReLU. The optimizers and the 
loss functions in both the simplified VGG-16 network and our CNN 
model are Adam [30] and Categorical Cross Entropy. The complete 
model of our CNN is shown in Figure S2. Clearly, this is much 

simpler and shallower than VGG-16 (number of parameters: 212k 
vs 15,313k, see Figures S1 and S2) so that it has a much higher 
efficiency. 

When looking at the segmentation task, the structure of the 
simplified VGG-16 network and our CNN model are the same as 
those used for classification, except for the last FC layers (now 
they both contain only 1 neuron). Moreover, the activation function 
of the last layer and the loss function are changed to Sigmoid and 
Mean Square Error (MSE), respectively.  

Going into more detail, in step 1, we finetune the FC layers 
of the simplified VGG-16 network with a few labeled traces and 
use it to judge a large quantity of unlabeled traces. These are then 
added together in forming a new training set (with soft pseudo 
labels given by the simplified VGG-16 network). Hinton et al. 
suggested that the soft labels given by the teacher model always 
have a higher entropy and carry more information, such as the 
similarity of the different classes.[31] Thus, soft labels improve the 
performance of the student model. In step 2, we train our CNN 
with the so-constructed new training set, so that this can learn the 
“knowledge” reached by VGG-16. In step 3, we use our CNN 
model to label the traces contained in the test set. Step 4 is finally 
used either to classify the traces or to segment the conductance 
plateaus, of a new molecule dataset measured with similar 
experimental settings. The convolutional layers of our CNN model 
can still work well. However, we will need to finetune the FC layers 
with a few labeled traces specific of the new molecule. This is a 
rather numerically cheap operation, which adds little to the global 
computational overheads. 

All the deep learning models are built using the Keras Python 
library running on top of TensorFlow-2.0.0rc2, while other 
methods except for GAL and UMAP are from the Scikit-Learn-
0.23.2 Python library. The GAL method is from a Matlab toolbox 
and the UMAP method is from umap Python library. Data 
pretreatment is implemented with the matplotlib and OpenCV 
libraries. 

Results and Discussion 

Classification of traces collected for the same molecules. We 
start our investigation on the implementation of steps 1-3 on the 
classification of the conductance traces collected for molecule 1. 
As shown in Figure 1(b), there are 3 kinds of typical conductance 
traces, so that this is a tri-classification task: traces without the 
formation of any molecular junctions (class 0), traces with a clear 
and smooth molecular conductance plateau (class 1) and traces 
with one or more valleys appearing within the molecular 
conductance plateau (class 2). The 1082 traces available are 
plotted as (100,100,3) RGB and (100,100,1) gray-scale images 
and are divided into 3 different sets: the training set (20 traces 
with labels, ~2%), the unlabeled set (762 traces without labels, 
~70%) and the test set (300 traces without labels, ~28%). We 
finetune the simplified VGG-16 network with the training set and 
use it to classify all the 782 traces contained in the combined 
unlabeled and the training sets. This latter ensemble forms a new 
training set with pseudo soft labels. After our CNN model is 
trained on such new training set, its performance is evaluated 
against the test set, delivering an overall accuracy of 90.3%. Here 
the classification accuracy is defined as the proportion of correctly  
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Table 1. Comparison of the classification accuracies of different machine learning methods 
 

Directly 
trained 
CNN 

Label 
Propagation 

UMAP 
with 

GMM 

t-SNE 
with 
GAL 

DAK PCA with 
K-means++ 

Spectral 
Clustering 

Our method 

Tri-
classification 

72.3% 65.3% 64.3% 62.0% 61.3% 58.0% 63.7% 90.3% 

Dual-
classification 

91.3% 89.7% 80.0% 84.3%  80.0% 84.3% 82.0% 94.7% 

Figure 3. (a) typical inputs from classes 0, 1 and 2 collected with molecule 1 and the corresponding 1D histograms associated to these classes. (b) the 2D histograms 
of all the traces collected with molecule 1 (upper left) and traces in classes 0 (lower left), 1 (lower right) and 2 (upper right).

classified traces in the test set (by comparing the algorithm-
generated class label of each conductance trace against its 
manual label). For comparison, we also apply alternative models 
to sort the conductance traces in the test set, including five 
unsupervised methods [t-distributed stochastic neighbor 
embedding (t-SNE) combined with graph average linkage 
(GAL),[32-34,18] uniform manifold approximation and projection 
(UMAP) combined with Gaussian mixed model (GMM),[35,36,18] 
DAK,[11] PCA combined with K-means++ [12,13] and spectral 
clustering[19]], one supervised method (directly trained CNN) and 
one semi-supervised method (label propagation[37]). For the 
former two unsupervised methods, the cosine (cos.) distance 
measure approach is used. As listed in Table 1, our method 
performs significantly better than all the others in our task. Since 
the most marked difference between the directly trained CNN 
model and our method is that the former is not combined with the 
simplified VGG-16 network and is trained only on the 20 labeled 
traces included in the training set, the much higher classification 
accuracy of our method with only 20 labeled traces is impressive 
and can be ascribed to the strong feature extraction capabilities 
of the convolutional layers of VGG-16. This is employed to 
generate a larger training set with pseudo soft labels. The VGG-
16 network is trained with the Imagenet dataset and is very 
successful in image recognition.[28] Therefore, the incorporation of 
the VGG-16 network with the transfer learning technique greatly 
enhances the capability of our CNN model and thus significantly 
relaxes the requirement of obtaining large amounts of manually 
labeled traces for network training. In contrast, the directly trained 

CNN model overfits because of the insufficient number of labeled 
traces in the training set. When the training set for the directly 
trained CNN model is increased to 300 labeled traces, its 
classification accuracy on the same test set can be improved to 
85.3%; however, this is still lower than the accuracy of our method.  

In order to discover the reasons behind the poor performance 
of the unsupervised methods in the tri-classification task, we plot 
in Figure S3 the reduced feature vector distribution as well as the 
classification results obtained using PCA and K-means++ (see SI). 
As we can see, it is rather difficult to separate traces between 
class 1 and class 2 and those between class 1 and class 0. This 
means that unsupervised methods may not be suitable for such 
specific task, even when considering the best approach (t-SNE 
combined with GAL) proposed by El Abbassi et al.[18] However, in 
the much simpler dual-classification task where the traces are 
classified according to whether or not one or more molecular 
conductance plateaus appear, we find that all of these methods 
can provide an accuracy higher than 80%, while our method still 
provides the highest accuracy of 94.7%. 

Figures 3a and 3b show one-dimensional (1D) conductance 
and 2D conductance-distance histograms constructed with all the 
unlabeled traces classified by our method. As we can see, there 
is a long distinct conductance plateau in the 2D histogram of class 
1 and the boundary between the molecular conductance plateau 
and the background tail (the break-off from the end of a 
conductance plateau) is also very clear. Note that there is still a 
significant data density just below the main plateau feature, which 
is caused by some of the smooth plateaus being just significantly  
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Table 2. The number of traces in different classes and the junction stability 

 Molecule 1 Molecule 2 

Class 0 288 1 

Class 1 441 473 

Class 2 353 153 

Connection 794 626 

Stable-connection 297 461 

Connection rate 73.4% 99.8% 

Stable-connection rate 27.4% 73.5% 

Figure 4. Typical inputs (a) and the corresponding 1D (b) and 2D (c) histograms 
of classes 1 and 2 collected for molecule 2. 

shorter than others and producing plateau break-off features. 
Correspondingly, the conductance peak in the 1D histogram is 
very sharp and well separated from the background. In 
contrast,the conductance plateau (the flat section of a 
conductance trace) in the 2D histogram of class 2 is much shorter. 
In addition to the conductance plateau and the background tail, 
there is also an additional feature due to the fracture and 
reconnection of the molecular junctions. Finally, we do not see a 
peak and a plateau at the conductance value of molecule 1 in the 
1D and 2D histograms of class 0. At the same time, only very faint 
characteristics of class 0 appears in the 2D histograms of classes 
1 and 2, indicating that our method is highly accurate. When we 
construct the 2D histogram with all these conductance traces, the 
conductance plateau becomes very faint and the boundary 
between the conductance plateau and the background tail is also 
blurred by the contributions from traces in classes 0 and 2, 
signifying the importance of the tri-classification. It should be 
noted that only 20 labeled traces are included in the training set 
so that they must be selected with distinguished features of these 
three classes (see Figure S4). However, the classification results 
are not strongly dependent on specific traces. This is illustrated 

with other three different training sets, each of which is composed 
of 20 labeled traces, and the corresponding 2D histograms of 
classes 0, 1 and 2 are shown in Figures S7-S9. In contrast, the 
1D and 2D histograms of the classification results obtained by 
using other methods demonstrate that the accuracies of these 
models are significantly lower (Figures S10-S16). 

Next, we apply our CNN model to characterize the 
conductance data of molecule 2. Since our CNN model has been 
trained over molecule 1 at the steps 1-3, we freeze its 
convolutional layers and only finetune its FC layers with 20 
labeled traces. It should be noted that there are very few traces in 
class 0 for molecule 2 (see Table 2) so that the training set is 
composed of 4 labeled traces in class 0 from molecule 1 and 16 
labeled traces in classes 1 and 2 from molecule 2. Then we use 
the trained CNN model to process 611 unlabeled traces (the test 
set) and generate a class label as output, identifying the molecular 
junction type. The overall classification accuracy is 89.5%, only 
marginally lower than that of molecule 1. Here, we also classify 
the traces of molecule 2 into 3 classes but only show the 1D and 
2D histograms of classes 1 and 2 in Figures 4b and 4c, because 
the number of the traces in class 0 is too small to construct 
appropriate histograms.  

For class 1, both the conductance peak and the background 
peak in the 1D histogram, and the conductance plateau and the 
background tail in the 2D histogram are clearly distinguished from 
each other. In contrast, although a conductance plateau can be 
seen in the 2D histogram of class 2, the boundary between the 
conductance plateau and the background tail is unclear. 
Correspondingly, in the 1D histogram the background peak 
merges into the conductance peak and makes it heavily 
broadened at the left-hand side. The marked differences in both 
the 1D and 2D histograms between class 1 and class 2 
demonstrate the effectiveness and accuracy of our method. 
Moreover, we can easily find that the traces of molecule 2 always 
show a longer conductance plateau than those of molecule 1, 
although these two molecules have identical linker groups and 
similar backbones. This indicates that molecule 2 has a higher 
junction stability, which will be quantitatively discussed in the next 
section. 
Plateau segmentation. As shown in Figures 3 and 4, the 
conductance peaks of molecules 1 and 2 still overlap with the 
peak coming from the background tail. Therefore, it is highly 
desirable to separate the plateau from an entire conductance 
trace so that both the junction conductance and the plateau length 
can be determined accurately.[17] Certainly, this cannot be 
realized using the traditional threshold method, due to large 
variations in the plateau shape and length. Considering the 
powerful pattern recognition ability of the CNN, we implement 
steps 1-3 on the class-1 traces for molecule 1, with the task of 
performing plateau segmentation. Since it is easy to locate the 
starting point of a plateau by setting a threshold or by detecting a 
discontinuity in the trace (see Figure S17), only data points after 
the starting point of the plateau are plotted as a (100,100,3) RGB 
or (100,100,1) gray-scale image in order to simplify the task. Then, 
20 traces with labels and 100 unlabeled traces are respectively 
used as the training set and the test set, while the remaining 321 
traces form the unlabeled set. In this case the end position of a 
plateau is the only output of the model. Since the Sigmoid function 
outputs values in the (0,1) range, all data should be normalized. 
A typical result of the plateau segmentation is shown in Inset 1 of 
Figure 5(a). We then compare the plateau lengths of the 100  
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Figure 5. The 1D conductance histograms constructed with traces of class 1 of 
molecule 1 (a) and molecule 2 (b). Blue solid line: data points of the entire 
traces; green solid line: data points of the conductance plateaus; Orange solid 
line: data points of the background tails; Red dashed line: Gaussian fitting. Insert 
1: typical result of the conductance plateau (labeled in RED) segmented with 
our CNN model. Insert 2: the 1D histogram of the lengths of the segmented 
conductance plateaus. 

traces in the test set determined by the algorithm with those 
determined manually and find that the mean absolute error is 0.05 
nm. The same task is also applied for the class-1 conductance 
traces of molecule 2, but only by performing step 4. Now 20 traces  
with labels and 453 traces without labels are respectively used as 
the training set and the test set, and the mean absolute error is 
calculated to be 0.04 nm. The 1D conductance histograms 
constructed with the data points from the extracted conductance 
plateaus and the background tails of the unlabeled traces of 
molecules 1 and 2 are shown in Figures 5a and 5b, respectively. 
Clearly, the peaks of the molecular conductance and the 
background tail are now well separated and there is also no 
significant reduction of the peak height compared to the raw data. 
This demonstrates that our segmentation method has extracted 
nearly all of the molecular signatures contained in the 
conductance traces. We find that the first 0.1 nm segment of the 
conductance plateaus is greatly affected by the shrink of the gold 
STM tip or the gold substrate when the single-atom point contact 

is broken, so that these data points are not included in the 1D 
conductance histogram.  

After the tri-classification of the conductance traces and the 
plateau segmentation, the 1D histograms of these two molecules 
show conductance peaks having a simple shape, which can be 
fitted with an unrestricted single Gaussian. Furthermore, the most 
probable junction conductance [log (G/G0)] of molecule 1 is 
determined to be -4.9±1.5, while that of molecule 2 is -4.7±1.2. 
Here G0=2e2/h is the conductance quantum. Now, both the peak 
value and the confidence can be obtained from unrestricted 
Gaussian fitting. The peak value of molecule 1 is slightly larger (-
5.0) than that obtained from fitting the raw data to a restricted 
Gaussian, while it is the same for molecule 2.[4] Moreover, there 
is another potential advantage of our method: if other junction 
configurations exist, we can easily find them in the 1D 
conductance histogram. 

The numbers of the conductance traces in the three classes 
of molecules 1 and 2 are listed in Table 2. Now we can 
quantitatively estimate the connection rate and the stable 
connection rate of the molecular junctions. The connection rate, 
or junction formation probability, is defined as the ratio between 
the sum of the numbers of traces belonging to classes 1 and 2 
and the total number of traces collected for one type of molecule. 
When the conductance plateau of one class-1 trace is long 
enough, this molecular junction can be considered as a stable 
connection. Since the lengths of these two molecules are both 
~1.5 nm, the lower limit of the plateau length of a stable 
connection is chosen to be 1.0 nm. Thus, the stable connection 
rate is defined as the ratio of the number of stable connections to 
the total number of all traces. As we can see in Table 2, both the 
connection rate and the stable connection rate of molecule 2 are 
much higher than those of molecule 1. The reduction in junction 
formation probability and the stable connection rate of molecule 1 
may be attributed to the increasing steric hindrance due to the F- 
anion coordinated to the B atom of the B-N bond. Therefore, 
compared to molecule 1, molecule 2 can easily bind to the gold 
electrodes and form stable molecular junctions.   

Moving to the lengths of the conductance plateaus of the two 
molecules, our statistical results are shown in Insert 2 of Figures 
5(a) and (b). It should be noted that the plateau lengths have been 
increased by 0.5 nm to take into account the snap-back distance 
(0.5±0.1 nm) caused by the abrupt Au-Au rupture.[4] The plateau-
length distribution of molecule 1 shows a Gaussian-like profile. 
Indeed, Gaussian fitting is often used to analyze the lengths of 
molecular conductance plateaus in most of the previous studies.[3-

5,11,13] In contrast, the plateau-length histogram of molecule 2 
significantly deviates from a Gaussian distribution, showing a 
rapid decline at the right-hand side of the peak. Considering that 
the lengths of these two molecules are very close due to their 
similar backbones, this striking difference is remarkable and can 
be ascribed to the quite different stabilities of these two types of 
Au-molecule-Au junctions. The fracture of a molecular junction 
can be categorized into two types: 1) random fractures happening 
during the pulling process, 2) molecular junctions extending to the 
maximum length of the molecule and breaking off at the gold-
pyridine interfaces. As listed in Table 2, junctions made of 
molecule 2 are much more stable than those formed with 
molecule 1. For molecule 1, due to the lower stability, most of the 
molecular junctions fracture during the pulling process and cannot 
reach the maximum length (see Figure 3b). Furthermore, the 
stochastic nature of these fractures leads to a Gaussian-like  
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Figure 6. The 1D histogram of the conductance traces of the mixed data. blue: 
all traces collected for molecules 1 and 2; Orange: the traces judged to be 
molecule 2; Green: the traces judged to be molecule1; Red: the traces judged 
to be direct tunneling (without the formation of any molecular junctions) 

distribution with a peak value of 1.1 nm. In contrast, junctions 
made of molecule 2 have a much higher stability and many of 
them can approach the maximum length (see Figure 4c), so that 
the length distribution of the conductance plateaus has a peak 
with a higher value of 1.4 nm and a rapid decay at the right side 
of the peak. 
Classification of traces collected for different molecules. 
Now we demonstrate that our method can also work well in the 
classification of the conductance traces collected for different 
molecules, investigated previously in many studies.[11,13,14,17,21] 
Now, we merge the conductance traces collected for molecules 1 
and 2 and train our CNN model to classify these traces with the 
steps 1-3. All the procedures are the same as those in the tri-
classification task of molecule 1. There are still 3 classes of traces 
in the dataset, namely molecules 1, 2 and those without the 
formation of any molecular junctions. A total of 1709 traces are 
divided into 3 different sets: the training set (20 traces with labels, 
~1%), the unlabeled set (980 traces without labels, ~57%) and the 
test set (709 traces without labels, ~42%). The overall accuracy 
of the model here is as high as 92.9% on the test set. The 1D 
histogram constructed with all of the unlabeled conductance 
traces is shown in Figure 6. In the raw data, there is only one 
broad peak corresponding to the molecular conductance, since 
the conductance values of these two types of molecular junctions 
are too close and heavily overlapping with each other. However, 
with the help of our network, these three classes of traces can be 
accurately separated. Moreover, the conductance peaks of 
molecules 1 (green) and 2 (orange) cannot be fitted with an 
unrestricted single Gaussian like the one shown in Figures 5a and 
5b for class 1, highlighting the necessity of the tri-classification for 
conductance traces of the same type of molecule. 

We also observe another interesting phenomenon in Figure 
6. Compared to the traces corresponding to junctions not 
presenting a molecular bridge, the background tails of the traces 
of actual molecular junctions show a peak with a higher 
conductance value. One possible explanation for this observation 
is that the molecule may still bind to the STM tip or the gold 
substrate after the molecular junction breaks off, leading to the 
observed large conductance. 

Conclusion 

We have developed a weakly supervised deep learning method, 
mainly based on transfer learning from the pretrain-finetune 
technique. With the help of the VGG16 network, our CNN model 
can perform classification of the conductance traces collected 
with the STM-BJ technique and the segmentation of the 
conductance plateaus. These tasks are delivered with a very high 
accuracy, and require only very few manually labeled data. As a 
result, we can make a more reliable estimation of the junction 
conductance after removing the complex background signatures 
originating from tunneling and from junction rupture and re-
formation (broken plateaus in the conductance trace). In addition 
we can extract information concerning the junction formation 
probability and stability, properties that are highly correlated to the 
distribution of the lengths of the conductance plateaus. Our 
findings demonstrate that weakly supervised deep learning 
methods can be used to efficiently analyze break-junction data 
and thus are helpful for the establishment of structure-property 
relationships in single-molecule electronic devices. 
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By classifying and segmenting the conductance-distance traces with a weakly supervised deep learning algorithm, we can produce a 
more reliable estimation of the junction conductance and quantify the junction stability. 

 


