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Abstract—Emerging network slicing markets promise to boost
the utilization of expensive network resources and to unleash
the potential of over-the-top services. Their success, however,
is conditioned on the service providers (SPs) being able to bid
effectively for the virtualized resources. In this paper we consider
a hybrid advance-reservation and spot slice market and study
how the SPs should reserve slices in order to maximize their
performance while not exceeding their budget. We consider this
problem in its general form, where the SP demand and slice
prices are time-varying and revealed only after the reservations
are decided. We develop a learning-based framework, using the
theory of online convex optimization, that allows the SP to employ
a no-regret reservation policy, i.e., achieve the same performance
with a hypothetical policy that has knowledge of future demand
and prices. We extend our framework for the scenario the SP
decides dynamically its slice orchestration, where it additionally
needs to learn which resource composition is performance -
maximizing; and we propose a mixed-time scale scheme that
allows the SP to leverage any spot-market information revealed
between its reservations. We evaluate our learning framework
and its extensions using a variety of simulation scenarios and
following a detailed parameter sensitivity analysis.

Index Terms—Online convex optimization, network slicing
markets, virtualization, resource reservation, SP utility maxi-
mization, constrained optimization, duality.

I. INTRODUCTION

Motivation. The increasing softwarization of wireless net-
works coupled with the proliferation of over-the-top service
providers (SPs) which rely on network operators’ infrastruc-
ture (NOs), have spurred numerous studies for network slicing
solutions, cf. [1], [2]. For instance, researchers have proposed
embedding algorithms for assisting NOs to accommodate
heterogeneous slices [3]; and pricing mechanisms to maximize
the operators’ revenue from selling slices to different SPs [4].
These schemes are expected to operate in near-real time and
enable the fine-grained (re-)allocation of network resources;
hence, boosting their utilization efficiency. Yet, an aspect that
has received less attention is how the SPs should request slices.

The envisioned network slicing markets draw ideas from
pertinent cloud computing marketplaces [5]–[8], where cloud
providers adapt dynamically their offered prices, and SPs
complement their reservations with on-the-fly bidding in spot
markets. This flexibility compounds the slice-reservation task
of each SP which has to request resources without knowing
the needs of its users; to decide between (lower-cost) advance
reservation and (higher-cost) dynamic reservation; and to
anticipate the future slice prices that, in turn, depend on the
NO’s internal needs and the requests of other SPs. If these
decisions are ineffective, the SPs might over/under-reserve
resources, which will lead to network under-utilization or

induce prohibitively high servicing costs. And these effects
can nullify the anticipated benefits of slicing.

The focus of this paper is to tackle exactly this problem
by studying optimal slice reservation from the perspective of
service providers. Our aim is to design reservation policies
which an SP can employ to maximize the performance of its
service while not exceeding the average monetary budget it has
committed for this purpose. This is a key step for unleashing
the full potential of slicing markets.

Related Work. The design of slice markets is a relatively
new research area. In [9], the authors proposed a mechanism
for the NO to auction its sliced resources; [10] formulated
slicing as a utility maximization problem; and [11] considered
QoS metrics when serving the slices. Similarly, [12] studied
the impact of slice overbooking; [13] employed predictive
capacity allocation for improving the slice composition; and
[14] focused on dynamic slicing via reinforcement learning.
Fewer works consider the problem from the SP’s point of view.
In [15], the authors consider a hybrid reservation/spot market
where the SP reservations are decided by solving a stochastic
problem, and a similar mixed time scale reservation model
was studied in [16]. Our previous work [17] employed demand
and price predictions (via neural networks) to assist the SP’s
reservations, while [18] focused on slice reconfiguration costs.

Similar reservation problems have been considered in the
context of cloud computing, cf. [19], using various reservation
criteria, e.g., costs or task deadlines, [20]. However, all above
reservation solutions make (often strong) assumptions about
knowing the user demands and resource prices, or assume that
these parameters follow stationary stochastic processes. Our
approach is fundamentally different, as we design reservation
policies that do not require the SPs to know in advance their
needs and the charged prices, nor we make any assumptions
about the evolution of these parameters. In essence, we treat
slice reservation as a learning problem for the SP, and rely
on the theory of online convex optimization (OCO) [21] to
design algorithms that adapt the reservations to users’ needs
and the NO’s (potentially arbitrary) pricing decisions. Our
approach adapts recent constrained OCO algorithms, cf. [22],
[23], which are particularly robust and practical.

Contributions. In detail, we consider a hybrid market with
advance-reservation and spot-bidding options, where an SP can
request resources from a network operator in the beginning
of each period and update its reservation at each slot within
every period. The NO is allowed to change arbitrarily both
its reservation and spot prices, where the latter are made
available to the SP only after the bidding is decided. Hence,
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in effect, the provider has to reserve slices without knowing
the needs of its users or the total cost of its reservation. In
this dynamic environment, the SP aims to maximize a general
utility function of the slice resources, which reflects its service
performance, while not violating an average budget constraint.

We formulate this process as a learning problem which
allows the SP to implement a no-regret slice reservation policy.
This means that, as time evolves, the SP is guaranteed to
achieve the same performance with that of an ideal benchmark
policy that one could design only with hindsight, i.e., having
access to all future demand and cost values. Our algorithm
relies on a primal-dual online iteration [22] which minimizes
a Lagrangian function, and controls concurrently for perfor-
mance and budget costs. We extend our framework to allow
the SP determine the composition of its slices (as opposed only
to its size), without even knowing what resource combination
is performance-optimal. This is crucial when the qualitative
features of user demand are volatile and/or unknown. And
finally, we propose a mixed time-scale learning policy that
exploits any price information that is revealed by the NO
during each period, so as to improve the SP reservations.

Our contributions can be thus summarized as follows:
• We consider a general model, where the SP reserves

slices in two time scales; determines the slice size and/or
composition; and is oblivious to the user needs and NO prices.
• We design an online learning framework for slice reser-

vations, that ensures sample-path asymptotically-optimal per-
formance while respecting the SP budget constraints.
• We perform a battery of numerical tests using stationary

and non-stationary parameter patterns. The results verify the
robustness and efficacy of our learning-based algorithms.

Notation. We use bold typeface for vectors, a, and vector
transpose is denoted a>. A sequence of vectors is denoted
with braces, e.g., {at}, and we use sub/superscripts to define
a sequence of certain length, e.g., {at}Tt=1 is the sequence
a1,a2, . . . ,aT . Sets are denoted with calligraphic capital
letters, e.g., M. The projection onto the non-negative orthant
is denoted [·]+, and ‖ · ‖ is the `2 norm.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Network & Market Model. We consider a mixed time-
scale model with long periods that are further divided into
small slots. Namely, each period t includes K slots and we
study the system for t = 1, . . . , T periods or, equivalently,
for k = 1, . . . ,KT slots.1 A network operator (NO) sells
sliced resources to service providers (SPs), and we denote
with H the set of d = |H| different resources that comprise
each slice. For instance H may include wireless spectrum,
backhaul capacity, computing and storage resources (d = 4).
We introduce the bundling vector θ ∈ Rd which determines
the proportion of each resource required to build a slice unit.
If it is θ = (0.5, 0.8, 0.2, 0.1) in the above example, a slice
unit needs 0.5 units of spectrum, 0.8 units of link capacity,
and so on. These values can be normalized or expressed using

1For example, each period can be one day comprising 24 one-hour slots;
or, an hour comprising 60 one-minute slots for more fine-grained models.

the actual physical metrics. We consider first the case that θ
is fixed, but we drop this assumption in Sec. IV.

The market operates using a hybrid model where reserva-
tions can be updated at the beginning of each period and
the SP can lease (additional) resources at the beginning of
each slot in a spot market. We denote with pt ∈ R+ the
t-period reservation price per slice unit, and with qk ∈ R+

the spot price for slot k that are both announced by the NO.
Since θ is given, these scalar prices suffice to model the slice
cost. We also define the vector of spot prices for period t
as qt =

(
qk, k = (t−1)K + 1, . . . , tK

)
. Clearly, prices pt

and qt vary with time and may change in an unpredictable
fashion. For instance, the NO might increase or decrease the
prices based on the requests it received in previous periods; or
based on the available spot resources which are affected by its
own needs. We make no assumptions about these quantities,
other than being uniformly bounded. Moreover, we assume
that the NO can impose upper limits on the slice size each
SP can lease. Such limitations arise naturally due to capacity
constraints, or when the NO reserves resources for its needs.

Reservation Decisions. We focus on one SP and study
its slice reservation policy. This consists of the t-period
reservation of xt∈R+ slice units and the per-slot reservations
yk ∈R+ within t. Note that the actual reserved resources are
xtθ and ykθ respectively, but we drop the bundling vector until
Sec. IV. At the beginning of each period t the SP decides
its t-period reservation plan (xt,yt), where yt =

(
yk, k =

(t−1)K+1, . . . , tK
)
. The SP’s goal is to maximize its service

while not exceeding its monetary budget B. The service
performance is quantified with a concave utility function
increasing on the resources and modulated by parameter ak≥0
that captures the users’ needs in slot k. For example, ak might
represent the total user demand, their willingness to pay, and
so on. We also define at =

(
ak, k = (t−1)K + 1, . . . , tK

)
.

The concavity of the utility models diminishing returns which
arise naturally in these systems.2

Problem Statement. Putting the above together, the ideal
slice reservation policy of the SP for the entire operation of
the system is described with the following convex program:

(P) : max
{xt,yt}Tt=1

T∑
t=1

tK∑
k=(t−1)K+1

ak log(xt + yk + 1) (1)

s.t.
T∑
t=1

(
xtpt + y>t qt

)
≤ BT, (2)

yk ∈ Γ, ∀k = 1, . . . ,KT, (3)
xt ∈ Γ, ∀t = 1, . . . , T. (4)

Objective (1) is the total utility that the SP achieves with its
reservations, after a duration of T periods. Remark there that
if the SP never reserves (xt = 0, ∀t, yk = 0, ∀k), its total
utility equals to 0. Constraint (2) captures the total budget
constraint of the SP; and (3), (4) confine the decision variables
to a convex set that collects upper reservation bounds set by
the NO, minimum slicing requirements set by the SP. For the

2E.g., the data rate is a logarithmic function of the spectrum; the additional
revenue of the SPs from more slice resources are typically diminishing, etc.
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sequel, we define Γ as the segment [0, D], where 0 and D
correspond to the minimum and maximum reservation requests
the SP can make. We assume that the NO always provides
the SP with the whole request xt or yk, as long as the latter
belongs to Γ. This means the NO always has the resources
available to satisfy such requests.

(P) is a convex optimization problem but the SP cannot
tackle it directly due to the following challenges:
• (Ch1): The user needs {ak} are unknown, time-varying and
possibly generated by a non-stationary random process.
• (Ch2): The spot {qk} and reservation prices {pt} are
unknown, time-varying and unpredictable as they depend on
the NO pricing strategy and possibly on other SPs’ demand.
• (Ch3): Finally, parameters qk and ak are revealed after the
slice reservation at the respective slot k has been decided.

Due to (Ch1-2) (P) cannot be solved at t = 1 since the
evolution of the system parameters is unknown; nor can be
tackled with standard online optimization techniques as some
parameters are revealed after the reservation decisions are
made in each slot (Ch3). This renders imperative the design of
an online learning algorithm that adapts to system and market
dynamics, offering guarantees for achieving a satisfactory per-
formance. Therefore, we aim to solve the convex optimization
problem in an online manner, for each t:

(Pt) : min
{xt,yt}

ft(xt,yt) = −
tK∑

k=(t−1)K+1

ak log(xt + yk + 1), (5)

s.t. gt(xt,yt) = xtpt + y>t qt −B ≤ 0, (6)

{xt,yt} ∈ ΓK+1. (7)

III. ONLINE RESERVATION POLICY

A. Benchmark Policy: What we try to learn

Learning how to reserve slices and solve optimally (P) in
a dynamic fashion is, unfortunately, impossible. Namely, it
was proved in [24] that in the absence of further assumptions
about the price and demand evolution, there is no learning
algorithm that can (asymptotically) maximize the objective
while satisfying constraint (2). In light of this result, we settle
for a weaker benchmark for our learning algorithm.

If the SP knew, at the beginning of each period t, the price
pt, the demand at and the spot price vector qt, it could find
the optimal t-period decision (x∗t ,y

∗
t ) by solving:

min
{xt,yt}∈ΓK+1

ft(xt,yt) s.t. gt(xt,yt) ≤ 0. (8)

Given that in practice this information is unavailable, our goal
is to design an algorithm that finds the t-period reservation
policies (xt,yt) in each period t, such that we achieve a
good enough performance with respect to this benchmark
(8). Formally, we define the dynamic regret and constraint fit
metrics:

RT =
T∑
t=1

(
ft(xt,yt)− ft(x∗t ,y∗t )

)
, VT =

[ T∑
t=1

gt(xt,yt)
]

+
,

which quantify respectively how well our policy {xt,yt} fairs
against {x∗t ,y∗t } and how much the constraints are violated on

average. Note that we project the constraints onto R+as we
are interested to bound the excessive budget consumption.

Following the terminology in online learning, we state that
our reservation algorithm achieves no-regret if both quantities
grow sublinearly, i.e.,

lim
T→∞

RT
T

= 0, lim
T→∞

VT
T

= 0. (9)

It is important to stress that this learning objective is more
challenging than the respective static regret benchmark where
we compare against policy (x∗,y∗) which is designed with
hindsight but remains fixed across time, cf. [22], [23].

B. Online Learning for Reservations (OLR)

We proceed with the design of the online learning algorithm
that implements the SP reservation policy. We collect all
reservation variables in z = (x,y), and define the Lagrangian:

Lt(z, λ) = ft(z) + λgt(z) (10)

where λ ∈ R+ is the Lagrange multiplier associated with
the constraint (6). It is easy to see that, for all t, for all
λ ∈ R+, Lt is convex over z, as it is the sum of a convex
function ft and an affine function gt. Similarly, for all t, for
all z ∈ ΓK+1, Lt is affine hence concave over λ. Therefore,
we opt for a saddle-point methodology where we minimize
the Lagrangian over z and then maximize it over λ, in a
Gauss-Siedel manner. Instead of the online Lagrangian in
(10), we minimize/maximize the modified Lagrangian with
a linearized objective and a Euclidean regularizer with non-
negative parameter ν:

Lt(z, λ) = ∇ft(zt)>(z − zt) + λgt(z) +
‖z − zt‖2

2ν
(11)

In the first-order approximation of ft(z), we omit the term
ft(zt), as it does not depend on either z or λ. We can
now describe our learning policy – please refer to Algorithm
OLR. At the beginning of each period t, the NO reveals the
current reservation price pt (step 2). Then, the SP decides its
reservation policy zt = (xt,yt) by performing a primal update
as follows (step 3):

zt = arg min
z∈Z

Lt−1(z, λt), (12)

where Z = ΓK+1. As explained above, the SP makes this
decision while it does not have access to ft or gt, as is also
evident from the time index of the Lagrangian in (12). After zt
is fixed, the demand and prices are revealed (steps 4-5) and the
SP measures the performance ft(zt) and cost gt(zt). At the
end of the period, the SP has access to the current Lagrangian
(11), and can update its dual variable by executing the dual
gradient ascent with positive step-size µ:

λt+1 = [λt + µ∇λLt(zt, λ)]+ (13)

These are the dual variables (or, shadow prices for (2)) that
will assist the SP to select the new reservation bid. It is worth
stressing that OLR also works if, for instance, the prices pt
are revealed after step 3; this will become clear in the sequel.
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Algorithm OLR: Online Learning for Reservation

Initialize:
λ1 = 0, x0 ∈ Γ,y0 ∈ ΓK , ν = µ = T−1/3

1 for t = 1, . . . , T do
2 Observe the t-period price pt
3 Decide (xt,yt) by solving (12)
4 Observe at and calculate ft(xt,yt)
5 Observe qt and calculate gt(xt,yt)
6 Decide λt+1 by solving (13)

C. Performance Analysis
We start with the necessary model assumptions.

Assumption 1. The NO prices are uniformly bounded and
specifically it holds pt ∈ [0, p],∀t and qk ∈ [0, q],∀k.

Assumption 2. The utility parameters are uniformly bounded
and specifically it holds ak ∈ [0, a], ∀k.

Assumption 3. The set Z = ΓK+1 has bounded diameter E.

For all t, for all zt ∈ Z , we have

∇ft(zt) =


−
∑tK
k=(t−1)K+1

ak
1+xt+yk

− a(t−1)K+1

1+xt+y(t−1)K+1

...
− atK

1+xt+ytK


Using the assumptions and the definition of the gradient, we
can further derive the following bound on the gradient:

‖∇ft(zt)‖ ≤
√
a2K2 +Ka2 = a

√
K(K + 1).

Also, the maximum distance between any two reservation
policies z and z′ is:

‖z − z′‖ ≤ E = D
√
K + 1, ∀z, z′ ∈ Z,

where D is simply the maximum reservation request the SP
can submit. And we can accordingly bound the constraint:

|gt(zt)| ≤ max {D(p+Kq)−B,B} , ∀t, zt ∈ Z, (14)

which follows from the definition of gt(zt) in (6).
For all t, we assume that Problem (Pt) naturally admits a

Slater vector, i.e. there is a vector z̃ such that:

gt(z̃) ≤ −ε, ∀t, (15)

where ε > 0. The Slater constraint qualification is sufficient
to have strong duality. Therefore, if the minimizer zt of the
Lagrangian Lt−1(z, λ∗t ) is primal feasible, it must be primal
optimal (λ∗t is the dual optimal). This ensures that zt is an
optimal point of (Pt−1). In fact, we are interested in the largest
value ε can obtain without violating the Slater condition (15).

Moreover, we need to characterize the variability of the
problem, i.e., how fast the constraints and the dynamic bench-
mark can change among successive periods. First, we define:

UTz =

T∑
t=1

‖z∗t − z∗t−1‖, UTg =
T∑
t=1

max
z∈Z
‖gt(z)− gt−1(z)‖,

which measure this property for each problem realization. We
define as well:

Ug = max
t

max
z∈Z
‖gt(z)− gt−1(z)‖

We see from (6) that it holds Ug ≤ D(p + Kq). However,
in practice we expect Ug to be much smaller as it is not
reasonable for the NO (i.e., practical or acceptable from
a regulatory perspective) to vary so drastically its pricing
strategy in successive periods. As it will become clear below,
Ug affects the ability of the SP to learn the optimal reservation
policy, and the following assumption needs to hold.

Assumption 4. The slack constant ε in the Slater condition
(15) is such that it holds ε > Ug .

Under these assumptions, OLR performs as follows.

Lemma 1. Under Assumptions 1-4, Algorithm OLR achieves
the following regret and constraint violation bounds w.r.t. the
dynamic benchmark policy {x∗t ,y∗t }Tt=1:

RT ≤
EUTz
ν

+
νTa2K(K + 1)

2
+

(T+1)µM2

2
+
E2

2ν
+UTg λ̃

VT ≤M +
(2Ea

√
K(K + 1)/µ) + (E2/2νµ) + (M2/2)

ε− Ug
,

where : M , max{D(p+Kq)−B,B},

λ̃ , µM +
2Ea

√
K(K + 1) + (E2/2ν) + (µM2/2)

ε− Ug

Proof. The expressions for VT and RT follow from Theorems
1 and 2 of [22], respectively, and the contribution of the
Lemma is to quantify the different parameters and the upper
bound of the dual variables, which is a key step in the analysis.

First, note that ‖∇ft(xt, yk)‖ ≤ a
√
K(K + 1), for all

t and xt, yk ∈ Γ. Moreover, recall that we showed in
(14) that the upper bound of the constraint is |gt(z)| ≤
max {D(p+Kq)−B,B}. Replacing these quantities in [22]
we obtain the respective bounds of Lemma 1.

Now, let us focus on λ̃. We first define ∆(λt) := (λ2
t+1 −

λ2
t )/2, and use [22, Lemma 1] to upper bounded as follows:

∆(λt+1) ≤ µλt+1(Ug − ε)

+ µ

(
2a
√
K(K + 1)E +

E2

2ν
+
µM2

2

)
(16)

Next, we proceed to prove by contradiction the upper bound
on λt. Let us assume that t + 2 is the first period for which
the dual upper bound λ̃ does not hold. Therefore,

λt+1 ≤ µM+
2a
√
K(K + 1)E + E2/(2ν) + (µM2)/2

ε− Ug
,

and λt+2>µM+
2a
√
K(K+ 1)E+ E2/(2ν) + (µM2)/2

ε− Ug
.
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Working on λt+1, we get:

|λt+1| = |λt+2 − (λt+2 − λt+1)|
≥ |λt+2| − |λt+2 − λt+1|
= |λt+2| − |[λt+1 + µgt+1(zt+1)]+ − λt+1|
= |λt+2| − |µgt+1(zt+1)|
≥ |λt+2| − µM

>
2a
√
K(K + 1)E + E2/(2ν) + (µM2)/2

ε− Ug

(17)

If we multiply both sides with µ(Ug − ε), which is strictly
negative due to Assumption 4, (17) is equivalent to:

µ(Ug − ε)λt+1 < −µ
(

2a
√
K(K + 1)E +

E2

2ν
+
µM2

2

)
Passing all the terms on the left side, we deduce:

∆(λt+1) < 0

which yields |λt+2| < |λt+1| and that contradicts our assump-
tion. As we set λ1 = 0, then |λ2| ≤ µM . Thus, for every
t ≥ 1, |λt| ≤ λ̃ holds.

Discussion. Let us now discuss the implications of this
result. First, note that a key ingredient of Algorithm OLR are
the step sizes (or, learning rates) ν and µ. From the Corollary
1 of [22], if:

ν = µ = max{
√
UTz
T
,

√
UTg
T
}

then:
RT = O(max{

√
UTz T ,

√
UTg T})

. To expect zero-regret, we need RT = o(T ). We can easily
show that if max{UTz , UTg } = o(T ), we have RT = o(T ).

Practically we do not have access to UTz and UTg , as this
would signify that we know the optimal decisions and the
prices beforehand. We can select ν = µ = T−1/3 to obtain
[22]:

RT = O(max{T 1
3UTg , T

1
3UTz , T

2
3 }), VT = O(T

2
3 ).

Another interesting observation is that both the regret and
constraint violation depend on the variability of NO’s pricing
strategy. If the operator changes abruptly the prices among suc-
cessive periods, namely in a superlinear fashion, UTg = O(T β)
with β ≥ 1, then it is impossible for the SP to learn an optimal
reservation strategy. The same holds for the needs of SP. If,
for instance, parameters {at} change so drastically that UTz
grows superlinearly, then RT /T will not diminish. Observe
also that the period length (number of slots K) affects directly
the RT and VT . This is rather expected as the SP makes
bidding decisions only at the beginning of each period. Hence,
for larger K values the bidding depends on more unknown
information – or, equivalently, the SP needs to learn more
information. Finally, we can see that the relation of maximum
prices, p and q, to the available per-period budget B, affect
through parameter M the bounds. These observations reveal
the key factors that shape the learning capability of the SP, and

pave the road for possible regulatory interventions, or, if you
prefer, bilaterally agreed guidelines among the SP and NO so
as to increase the efficiency of the market.

IV. MODEL & ALGORITHM EXTENSIONS

We consider two practical extensions which demonstrate the
modeling power of our framework: (i) when the SP decides
the slice composition where the benefit from each resource
is time-varying; and (ii) mixed-time scale bidding where the
SP updates its per-slot reservations during each period as it
acquires information for the demand and spot prices.

Slice Orchestration (SO). The SP makes multi-dimensional
reservations using xt,yk ∈ Rd, where d is the number of
resources comprising the slice. The benefit from each reserva-
tion xt is quantified by the scalar θ>t xt (θ>t yk, respectively),
where the elements of θt ∈ Rd measure the contribution of
each resource on performance. And, we allow this vector to
change with time, and be unknown when the reservations are
decided. Consider, e.g., an SP that is unaware of the optimal
computation, storage and bandwidth mix, as this depends on
the type of user requests. Our analysis can be extended to
handle this richer scenario. Namely, we need to update the
objective and cost functions defined in (5), (6) by:

ft(xt, {yk}tKk=(t−1)K+1) = −
tK∑

k=(t−1)K+1

ak log(θ>t xt + θ>t yk + 1),

(18)

gt(xt, {yk}tKk=(t−1)K+1) = x>t pt +
tK∑

k=(t−1)K+1

y>k qk −B. (19)

Then, Algorithm OLR needs to be slightly modified by re-
placing the primal update (step 3) with a similar update that
finds the multidimensional reservations xt,yk ∈ Rd; change
the step 4 so as to observe both the at and the θt vectors; and
perform the dual update (13) using gt(xt, {yk}).

Mixed-time-scale reservation (MTS). Our second exten-
sion is a mixed time scale reservation model, where the SP can
update the slot reservations yt of each period t, based on the
demand at and spot prices qt it observes during that period.
The functions fk and gk for this slot-decision instance, are:

fk(yk) = −ak log(xt + yk + 1), gk(yk) = ykqk −Bslot,

where note that xt is a parameter here, as it has been fixed in
the beginning of t, and we have defined Bslot = (B−xtpt)/K.
Finally, the per-slot Lagrangian is:

Lk(y, λ̂) = ∇fk(yk)(y − yk) + λ̂gk(y)

+
(y − yk)2

2ν̂
(20)

where λ̂∈R+ is the new dual variable. Then, the SP updates
its reservation yk for each slot k, and its dual variable after
observing ak and qk, by executing:

yk = arg min
y∈Γ

Lk−1(y, λ̂k), λ̂k+1 = [λ̂k + µ̂∇Lk(yk, λ̂)]+.

ν̂ and µ̂ are the steps for the intra-period decisions. We set in
the next section ν̂ = ν and µ̂ = µ. Algorithm OLR can be
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amended with these updates (for all slot k) after step 3. We
do not provide theoretical guarantees but we do verify next
the performance gains of this refined approach.

V. NUMERICAL RESULTS

Simulation setup. We evaluate the performance of Al-
gorithm OLR and its extensions in different scenarios. We
consider a slicing market where the NO manages B cellular
base stations connected through a backhaul network of 100
paths to N =20 core nodes with data processing and storage
capabilities. Hence, the SP reserves slices with wireless and
backhaul bandwidth, storage and CPU capacity, i.e., d = 4.
The maximum slice size of D units is determined by the most
scarce of these resources. We study two scenarios based on
the demand and price evolution:
• Case 1: Parameters {ak}k, {pt}t, {qk}k are random vari-

ables following a uniform distribution in the interval [0, 1].
• Case 2: Parameters {ak}k, {pt}t, {qk}k are drawn from

a non-stationary process. Namely, ak = sin(2πk/K) + nk
with i.i.d. noise nk uniformly distributed in [1, 2]; pt =
sin(2πt/10) + εt, with εt uniformly distributed in [1, 2];
qk = sin(2πk/K)+ ιk, with ιk uniformly distributed in [1, 2].

Performance Convergence. We start by evaluating the con-
vergence of Algorithm OLR; see Fig. 1. We set the value of D
so as to limit the reservations through the budget constraint.3

We have observed that UTg and UTz gradually increase with
D. High UTg and UTz can severely affect the performance and
we are certain that RT = o(T ) if max{UTg , UTz } = o(T ). For
Case 1 and Case 2, we have selected D = 15 and D = 5
respectively to satisfy the latter condition on UTg and UTz .
We observe that indeed the average regret RT /T gradually
diminishes to zero, and similarly the constraint violation VT
remains consistently below zero. Note that we do not project
on R+ in order to provide a clearer view of the constraints.

Impact of parameter K. In Fig. 2, we compare Algorithm
OLR with its mixed-time scale extension (OLR-MTS) for Case
1 and Case 2, for different values of K, at a fixed time point.
We observe a perceptible performance improvement for the
MTS version, which is rather expected since the SP updates
its decisions as new information becomes available. Indeed,
the final RT /T are significantly lower (especially in Case 1),
and for the VT /T we have better convergence. Moreover, we
see that as K increases, so does the regret and violation, since
the SP needs to tackle larger amounts of unknown information.

Evaluation of Slice Orchestration (SO). Next, we focus
on the OLR-SO extension where the provider decides the slice
composition. We model each of the d resource prices, i.e., the
components of vectors pt and qk, independently and according
to the assumptions in Case 1 and Case 2. The vector θt is
uniformly drawn from [0, 1]3 and updated at each t. In Fig. 3
we observe the convergence of the algorithm. Furthermore, we
explore the sensitivity of OLR on K, in Fig. 4. We observe
an increasing final regret against K. The final fit, which is
negative, approaches 0 with rising K in Case 1. This means
that the final budget savings are lower for longer periods.

3Note that if D limits the reservation, then the best strategy simplifies to
constantly over-provision the slice (z = [D,D, ...,D]).
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Fig. 1: Evolution of RT /T and VT /T . Simulation parameters are
set to T =1000, K =5, B=10. (1a): D = 15, ν = 0.8, µ=0.08.
(1b): D = 5, ν= 0.1,µ=0.01
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Fig. 2: Sensitivity of RT /T and VT /T on K. We plot the values
of RT /T and VT /T at T = 1000 while K changes. (2a): B = 10,
D=30, ν= 0.12,µ=0.04. (2b): B=10, D=20, ν= 0.6,µ=0.06.
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Fig. 3: Evolution of RT /T and VT /T for OLR-SO. We use T =
1000, K=5, B=10 and d=3. (3a): d = [20, 20, 20], ν=0.9 and
µ=0.03. (3b): d = [5, 5, 5], ν=0.1 and µ=0.01.
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Fig. 4: Sensitivity of OLR-SO on K. We used T = 1000, B = 10.
(4a): d = [20, 20, 20], ν = 0.9 and µ = 0.03. (4b): d = [5, 5, 5],
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In Case 2, asymptotic violations are very small and tend to
increase with rising K.

VI. CONCLUSIONS

The potential of network slicing markets can be only
unleashed if service providers are able to reserve resources
effectively. To that end, we proposed a set of slice reservation
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policies, based on the theory of online convex optimization,
which enable the SP to learn how to reserve resources op-
timally. Our policies are robust to arbitrary changes of the
resource prices, oblivious to lack of this information when
the reservations are made, and can achieve optimal slice
orchestration even when the SP needs are unknown and time-
varying. These key elements build a practical and general
slicing framework with performance and budget guarantees.
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