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Abstract

Light fields have been used in computer science research for the better

part of the last three decades, and the range of applications available is

ever-growing. There exist several capturemethods producing output im-

ages with varying characteristics in terms of resolution or baseline, but

the usability of these setups is negatively correlated with the overall qual-

ity of the output. One suchmethod is plenoptic cameras, easy to use and

without a need for complex calibrations, and resulting in images with low

resolution, small baseline, and a number of visual artefacts which are still

partially unaddressed. Some software solutions exist to counteract these

hardware issues, but they are limited, and it has had an impact on the

majority of light field research applications.

In this thesis, we take a closer look at these types of light fields in three

ways, to study ways to enhance their visual quality, to use them for the

purpose of colour editing, and to compare them to more modern light

fieldmethods. First we analyse the images captured by a Lytro Illumcam-

era and the visual artefacts affecting them. Based on this we propose a

set of tools to extract those images from RAW camera data, and perform

demultiplexing, white balance, colour correction and denoising on them.

Second, we use these enhanced images and perform some colour editing

using a method called soft colour segmentation. Third we study the pos-

sibilities of NeRF, a new method to generate light fields, and compare it

with previous traditional light fieldmethods for view synthesis and depth
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estimation, to showcase the benefits it could bring for easier high quality

light field capture.
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Chapter 1

Introduction

In this chapter, we aim to introduce the reader to the domain of Light
Fields and thewonderful applications and opportunities they offer, aswell
as drawbacks and limitations. We additionally discuss the aim of this the-
sis, themotivation behind the presented work, the solutions we offer, and
the structure of this thesis.

1



Figure 1.1: Three devices to capture light fields, the Stanford camera array (left) [11], the
Stanford Lego gantry (centre) [12], and a Lytro Illum camera (right) [13].

1.1 Motivation

What are light fields used for?

Light fields are, broadly put, a way of representing the light information
contained in a finite volume of space [10]. They are an extension of tradi-
tional single view images and are typically represented by the 4D plenop-
tic function with two spatial and two angular dimensions. Themost com-
mon methods of capturing real light field images are camera arrays [11],
single cameras onamovinggantry [12], or consumer-gradeplenoptic cam-
eras [13] (see Figure 1.2). They allow to obtain a representation of the light
field, generally in the form of sub-aperture views. All these concepts will
be explained in further detail in Chapter 2 of this thesis.

A large body of research pertaining directly to light field theory and its
applications exists, the field is vast and covers a wide array of tasks such
as rendering, depth estimation, super-resolution, compression, novel view
synthesis or coding, to name a few. However one field in particular seems
to receive less attention: image editing. We posit that editing could vastly
benefit fromthehigher dimensionality of light fielddata, whencompared
to traditional 2D methods, and this is the context in which we place the
work of the present dissertation.

The reasons light field editing could be useful are three-fold: first we think
it finds uses in professional movie post-production, as this has already
been explored by Trottnow et al. [14]. Secondly, in generating engaging
virtual reality content, and thirdly, perhapsmore pragmatically, as ameth-
od for data augmentation to improve machine learning training.
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What are the current drawbacks?

Traditionally light field research has focused on the more easily captured
data, which also happened to be the more widely available at the time.
For the past decade most of the focus was on Lytro images and the very
popular Stanford gantry dataset [12], both of which produce arrays of sub-
aperture views with relatively low resolution and relatively small baseline
between views. This has severely guided most research applications to-
ward these types of images in particular, and as a result most of it is not
easy to generalise to any light field image with different characteristics,
such as wider baseline for instance. As wemove towardmore easily avail-
able high resolution high baseline light field data, it is paramount to also
ensure the software for existing applications can be used for these equally
well. The work presented here does for the most part, as only colour con-
sistency and accurate depthmaps are needed for the applicationswepro-
pose.

We put in this thesis our gaze toward one of themost easy to capture light
field data, Lytro images. As they are the result of a photograph taken from
a single viewpoint, taken using a unique, albeit advanced, camera, they
suffer from a number of limitations, caused by physical limits in theman-
ufacturing of the camera itself, which affect the visual quality of their out-
put (see Figure 1.1 for a visual example). In particular this affects negatively
the sub-aperture views placed on the outer edges of the light field. There-
fore, and traditionally in Lytro-based research, most teams tend to ignore
those outer sub-views. This usually represents over half of the available
sub-views for a particular image, thus reducing substantially the amount
of information the medium was meant to provide. In the next section we
present a selection of such problems we studied in this thesis.

1.2 Problems of Light Field Images

We particularly look at a few ways to better use light field images, and
focus on quality enhancement, as well as editing applications.

3



Figure 1.2: Two views extracted from an image capture with a Lytro Illum and processed
with the toolbox of Dansereau et al. [5]. Note the natural colours of the flower are pink and
white. The colour and brightness differences between the centre view (left) and a corner
view (right) are flagrant.

Quality enhancement

As mentioned in Section 1.1 we want to look at many of the issues that af-
fect Lytro images, as they are still among the most widely used for light
field research, and as far as we are aware no research has been performed
with the intent to restore the quality of sub-aperture views and therefore
allow their use in research applications. The limited space in which to put
the micro-lens array in the camera leads to distortion artefacts growing
in importance once we reach the edges of the sub-aperture view array.
Lower amounts of light hitting the camera sensor for these views further
enhances these issues, or creates new ones, such as inconsistencies in
brightness or colour informationbetween the views. Additionally, the sen-
sor quality is low, and this results in several types of noise affecting all of
the sub-aperture views, which need to be corrected.

InChapter 3weproposea series ofmeasuresbundled into a singlepipeline
for processing Lytro RAW data, from the demultiplexing to the final de-
noising, while also looking at fixing colour inconsistencies. We thoroughly
explain our process in doing so, compare our output with previously avail-
able tools for extracting Lytro data and showwith a number of application
the benefits that our solutions provide.

Colour Editing

After improving the quality and usability of some of themost widely avail-
able data, we look at some of the applications that were less popular in re-

4



Figure 1.3: Soft colour decomposition of an image using the method of Aksoy et al [17].
Note some of the layers contain pixel information from both the girls’ faces, as well as the
chair. Any attempt at editing that layer would affect all these objects to a certain extent.

search. A survey of light field editing by Jarabo et al. [15] shows that while
efficient, the proposed methods still require a certain degree of user in-
teraction to perform edits. At the same time we were looking at more
recent techniques for 2D image editing, such as soft-colour segmenta-
tion proposed by Aksoy et al. [16]. It extracts colour information of an im-
agebasedona computedpalette andgenerates several semi-transparent
layers containing only the pixel information of those colours. If we look at
Figure 1.3 we notice that several of those layers contain information for
several unrelated objects. Performing a colour edit on one of those layers
will affects all objects equally, which may not be desirable.

In Chapter 4 we look such applications, and attempt to provide some ini-
tial solutions to these problems. In particular we look at the different ways
it is possible to perform colour editing on part of the image or part of an
object. We do so by first performing soft colour segmentation of the en-
tire light field, which allows to retrieve information from even objects oc-
cluded in some views, and before moving on to editing, perform a depth-
based object segmentation task to remove the risk of unwanted editing
artefacts. We also show that both of these tasks take advantage of light
field data to perform better when compared to single view editing.

View synthesis and depth estimation

The majority of the work on light field at the time of starting this thesis
was done using traditional computer vision or computer graphics tech-
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niques. As time went on, machine learning became a dominant force in
research work, and, while not necessarily rendering all previous work ob-
solete, nearly every application saw massive benefits in the use of neural
network. In particular, one of them, Neural Radiance Fields (NeRF) [18]
made its entrance in 2020 andgeneratedplenty of excitement in the field,
for the new possibilities it offered in terms of view synthesis. While this
was a definite step in the direction of higher quality light fields, we felt
the need to ensure that all the previously collected data, from any type of
capture device, could still be used efficiently.

To this end, in Chapter 5, we take a closer look at NeRF and the possi-
bilities it offers. In particular we focus on the tasks of view synthesis and
depth estimation, natively performed by NeRF. The latter was especially
interesting for us as our work in Chapter 4 is highly dependent on having
high quality depthmaps. We compare NeRF to traditional state of the art
light field methods, and apply it to a selection of various light field types,
to evaluate if NeRF could really become an undisputed replacement, or if
the previous research could still have its place in the field.

1.3 Research Question and Contributions

Here we present the contributions developed in this thesis and the ques-
tion that bind them all.

Research Question

We attempt to investigate — “How can we benefit from Light
Field images to perform high quality processing and editing?”.

Three main objectives are explored in this context:
• Lytro Image Quality Enhancement.
• Soft Colour Segmentation on Light Fields.
• Expanding the range of usable data using NeRF.
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Contributions

• We present a pipeline for quality enhancement of Lytro im-
ages. We follow a thorough approach and go from demulti-
plexing the RAWdata into usable sub-aperture views, to colour
correction, hot pixel removal and denoising. We compare our
results, and show definitive improvements upon the previous
state of the art extraction toolbox.

• We present a software solution to apply soft colour segmen-
tation on light field images, for the purpose of colour editing.
We show that by using the multiple views we benefit some-
what in the quality of the palette computing and subsequent
colour layer creation. We also show by using multiple view
points we can extract objects based on their depth to further
segment the images and perform targeted editing in an easier
manner.

• We present a small comparative study between traditional
light fieldmethods andNeRF on the applications of novel view
synthesis anddepth estimation. We show thatwhileNeRFper-
forms well, it comes at the expense of mandatory data manip-
ulation for it to be usable on certain type of light field data.
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1.4 Publications

Publications Based on Thesis Work

• Pierre Matysiak, Mairéad Grogan, Mikaël Le Pendu, Martin
Alain, Aljosa Smolic, A Pipeline for Lenslet Light Field Quality
Enhancement, IEEE International Conference on Image Pro-
cessing, October 2018 (ICIP), Athens. [19]

• Pierre Matysiak, Mairéad Grogan, Mikaël Le Pendu, Martin
Alain, Emin Zerman, Aljosa SmolicHighQuality Light Field Ex-
traction and Post-Processing for Raw Plenoptic Data IEEE
Transactions on Image Processing, 2020. [20]

• Pierre Matysiak, Mairéad Grogan, Weston Aenchbacher, Aljosa
Smolic, Soft Colour Segmentation On Light Fields, IEEE Inter-
national Conference on Image Processing, October 2020 (ICIP),
Abu Dhabi. [21]

Publications To be Submitted

• Pierre Matysiak, Susana Ruano Sainz, Martin Alain, Aljosa
Smolic, A Comparative Study between Traditional Light
Field Methods and NeRF, IEEE International Conference on
Image Processing, October 2022 (ICIP), Bordeaux.

1.5 Dissertation Structure

The thesis is presented as follows, and adopts a fairly classical approach.
We introduced themotivation andproblems in this first chapter, aswell as
laid down the research question and contributions proposed. The second
chapter will detail what light fields are, from its historical form and evolu-
tion down to current state of the art, as well as capture methods, usage,
and modern forms. The third chapter will focus on our first contribution,
a method to enhance the quality of lenslet light field images, from the
decoding step of the RAW images until post-processing improvements
on colour and noise. The fourth chapter explores a method to perform
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soft-colour segmentation on light field images, for the purpose of edit-
ing. The fifth chapter looks at a new technology to generate light fields,
NeRF, and we study its appeal, advantages and drawbacks, and compare
it to traditional light field methods for view synthesis and depth estima-
tion. Finally we conclude in the last chapter with a summary of the thesis,
and a discussing about what it offered, and what venues it opens for fu-
ture work.
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Chapter 2

Background

This chapter is divided in several sections in which we give an overview of
light fields as a concept, and a practical application. In the first sectionwe
go over the history behind the concept of light fields - inception and evo-
lution - and give an overview ofwhatmodern light fields are representing.
Secondly we look at different methods for capturing light fields, and for
each discuss the advantages, downsides, and usability. In the third sec-
tion we look at use cases outside of pure research, prospects, and poten-
tial future applications. Finally we describe briefly a newmethod for cap-
turing or generating light fields, which is transforming the pre-existing
landscape in research, capture and applications.
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2.1 History and description

This section aims to be a introductory guide to light fields, from its incep-
tion to its modern description and formalisation.

Brief History of Light Fields

Thefirst recorded studies on light and its naturedateback to the earlyHel-
lenic period. The most influential theory comes from Plato who posited
that light emanates from our eyes in the form of rays, and allows us to
sense the shape, size and colour of every object surrounding us. While
amusing, this theory still went on to be the dominating one for well over a
thousand years, until it was disproven in the early 11th century by Alhazen,
who not only highlighted the idea that light rays were traveling to the
eye, but also the role of the brain in interpreting these rays as coherent
images [22].

It took another several hundred years, until 1846, for another level of un-
derstanding to be reached. That year Michael Faraday proposed, in a lec-
ture on the structure of the æther named “Thoughts on Ray Vibrations”,
that light should be interpreted as a field occupying not only space but
also time. His idea stemmed from his work onmagnetism and was a the-
orised extension of the notion of gravity [23].

James Clerk Maxwell provided the formalization to this theory three dec-
ades later through his famous set of equations. Others have made major
contributions to our understanding of the properties of light [24]. Pierre
Bouguer was the first to calculate the amount of light loss when pass-
ing through the atmosphere, and discovered what we know today as the
Beer-Lambert law [25]. Johann Lambert further refined the notion that
light wanes with distance and time, and introduced the concept of per-
fect diffusionwhichgave its name toLambertianobjects [26]. Theseworks
andothers generatedwidespread interest in theoretical photometrywork
in the first half of the 20th century, culminating in two major achieve-
ments. The first, published in 1939 byAndrey AleksandrovichGershun and
coining the term, was The Light Field, in which he presented his work on
room lighting [27]. The second, in 1950, is SubrahmanyanChandrasekhar’s
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seminal book, Radiative Transfer, in which he details his theory regarding
polarised light [28, 29, 30].

James Kajiya introduced this work to the computer graphics literature in
1986 in his widely cited paper [31], before others, and most notably Levoy
et al. took a thorough approach to describe light fields and bring them to
the computer graphics field under the name image-based rendering [10].
This interpretation is commonly represented by using a simplification of
theplenoptic functionproposedbyAdelsonet al. [32] into a four-dimensio-
nal functiondescribing spatial andangular dimensions. Through this func-
tion it is now possible to represent with high accuracy the light informa-
tion representing a specific scene, and use that information for a variety
of tasks.

The Plenoptic Function

The plenoptic function described by Adelson et al. [32] assigns a radiance
value to rays propagatingwithin a defined physical space and is the foun-
dation ofmodern light field research. It describes the light rays propagat-
ing in all directions and interactingwith all objects in the 3Dspace, leading
to occlusion, attenuation, diffraction, and all manners of alteration.

The plenoptic function does not rely on an underlyingmodel and is rather
a phenomenological description of the light passing through space. It
accommodates for all the possible variations of light and adopts a high-
dimensional description by assigning arbitrary radiance values at every
position of space, for every possible direction of propagation, for every
wavelength, and for every point in time. This is formalised in the following
equation:

lλ(x, y, z, θ, φ, λ, t) (2.1)

In this function, lλ[W/m2/sr/nm/s] describes spectral radiance per time
unit, (x,y,z) is a spatial position, (θ, φ) is an incident direction, λ is the wave-
length of light, and t is a temporal instance [33].

The plenoptic function is mostly of conceptual interest. It is an idealised
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functionwhich can not be directly expressed in computer vision or graph-
ics terms, and therefore needs to be adapted for the purpose. For in-
stance, since radiant flux - or light - is being delivered in quantised units,
i.e. photons, it needs to be measured during a time average, rather than
an instantaneous snapshot. Similarly, we are physically constrainedby the
physical world and measuring infinitely thin pencils of rays is not pos-
sible without seeing artefacts and wave effects. This reduces the type
of frequencies that can be measured, and restricts the scene to macro-
scopic settings with objects significantly larger than the wavelength of
light [33].

Modern Light fields derive from the plenoptic function by introducing ad-
ditional constraints [33]:

• They are considered to be static, even though video light fields have
been explored [11] and are becoming increasingly feasible. An inte-
gration over the exposure period removes the temporal dimension
of the plenoptic function.

• They were initially considered to bemonochromatic, but the reason-
ing can be applied to each color channels independently. An inte-
gration over the spectral sensitivity of the camera pixels removes the
spectral dimension of the plenoptic function.

• Finally, the “free-space” assumption, that the viewpoints are outside
the convex hull of the scene, introduces a correlation between spatial
positions. Rays are assumed to propagate through a vacuum with-
out objects, except for those contained in an “inside” region of the
space, often called a scene. Without a medium and without occlud-
ing objects, the radiance is constant along the rays in the “outside”
region. This removes one additional dimension from the plenoptic
function [32].

A light field can therefore be described as a four-dimensional (4D) func-
tion, interchangeably called 4D light field by Levoy et al. [10] or Lumigraph
by Gortler et al. [34], and is defined as the radiance along rays in empty
space [10]. Typically in computer graphics this function is parameterised
as L(u, v, s, t) with s and t representing the spatial dimensions, and u and
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Figure 2.1: Alternative parameterisations of the 4D light field. On the left, points on a
curved surface and directions leaving each point. In the middle, pairs of points on the
surface of a sphere. On the right, pairs of points on two planes in general position. [30]

v representing the angular dimensions. Essentially, thismeans we can in-
terpret a 4D light field as a collectionof perspective images on the stplane
taken from a viewpoint on the uv plane, see Figure 2.1. In layman’s terms,
this is similar to taking photographs of a scene from different viewpoints
all situated at an identical distance from the scene. These collections of
images can be processed into obtaining a continuous view of the under-
lying scene, which is the principle behind the concept of image-based
rendering, or in this case, light field rendering.

Light Field Rendering

Image-based rendering is a collection of techniques to represent an ob-
ject or scene on a computer display using images of that scene previously
captured by a camera, rather than by creating a 3D model of the object
manually. The idea was first proposed by Eric Chen [35], in Apple’s soft-
ware QuickTime VR. As seen in Figure 2.2 it is composed of a collection of
images captured all around a centre object, which allows theuser to freely
navigate around the object, though not toward or away from it, at a later
time. However, if the views are captured densely enough, it is possible, by
selecting among the pixels of a small subset of neighbouring views, and
possibly using interpolation among these pixels, to generate novel, per-
spectively accurate views frompositionswhere no observationwasmade.
This is called light field rendering [30].

This allows to generate a potentially infinite number of views around the
object, from any distance so desired, so long as one stays outside of the
convex hull of the object or scene of interest. Formally we can interpret a
light field as a 2D collection of 2D images, or a 4D array of pixels, as illus-
trated in Figures 2.2 and 2.3. Any novel view is simply a correct extraction
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Figure 2.2: QuickTime VR setup (left). Red dots indicate camera positions. If enough real
cameras exist, it is possible to interpolate their pixel information to generate synthetic
views (yellow dot), this is the base of light field rendering. On the right, a light field inter-
preted as a 2D array of 2D images [30].

of a 2D slice from this 4D array. The amount of images necessary to render
a light field depend on the application, but also the level of detail needed,
as well as the locations expected for novel views. If one needs to be able to
turn around all sides of an object, photographs of its back are needed. If
one wants to move very close to the object and analyse its fine structure,
the images necessarily need to have high spatial resolution, to be able to
capture these details. Themethods describing these are called the “sam-
pling” of the light field [30].

Some amount of research has beenmade on light fields sampling [36, 37,
38, 39, 40, 41], and their findings agree on basic principles. If the images
have low spatial resolution, the light field renderings will suffer from blur,
evenmore so as onemoves away from the original positions of capture. If
the number of images is too low, the renderings will suffer from artefacts,
or ghosts, arising from blending different views of an object. This is sum-
marised using the plenoptic sampling curve, seen on Figure 2.4 [36]. On
the other hand, it is possible to increase the quality of the renders by first
generating a 3D model of the scene. In that case, if we take the concept
to an extreme, one can reconstruct an accurate model of the scene and
fly freely around it to render novel views, using potentially only a hand-
ful of images. One such method will be described in more detail in Sec-
tion 2.4.

Now that the basic theoretical foundations of light fields are laid out, in
the next section we will look at the various techniques used to capture
them, and discuss the advantages and issues pertaining to each.
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Figure 2.3: A light field can be interpreted as a 2D collection of 2D images, each captured
from a different viewpoint (left). A different parameterisation of the 4D light field allows
to obtain Epipolar Plane Images (right) in which the angle of the slopes are indicative of
the depth of the corresponding structure.

2.2 Methods of capture

In this section we detail the different type of light field capture methods,
namely the gantry, the camera array, the plenoptic camera, and other
more recent or more niche methods.

Camera Gantries

Perhaps themost intuitivemethod consists of using a single camera, and
using it to capture all the images we deemnecessary for obtaining a high
quality light field. Done by hand, this would result in a very chaotic set of
images which, to be processed effectively, would require to know the ex-
act position each image was taken from, a logistical nightmare. To coun-
teract these issues, themost common procedure is to strap a single cam-
era to a rig, robotic armorgantry, in order tohave full control on its position
before capturing each image.

Several examples of such structures exist. One of the first one was the
Stanford Digital Michelangelo Project [42], in Figure 2.5, in which they de-
scribe a complex setup comprising not only of hardware solutions, includ-
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Figure 2.4: The plenoptic sampling curve. In (a) is shown the minimum sampling rate
in image space. In (b) the minimum sampling curve in the joint image and geometry
space (any sampling point above the curve is redundant), (c) minimum sampling curves
at different rendering resolutions [36].

ing a motorised gantry assisted by a laser triangulation scanner to accu-
rately record camera positions, but also software to be able to process the
images. They tried to make capture as repeatable as possible, which al-
lows for “easy” calibration, however physical reality meant that this pro-
cess was much harder than initially anticipated. Another rig, which we
briefly mentioned before, was designed by Apple and involves a camera
looking inward and moving across the surface of a cylinder, which gen-
erated the QuickTime VR datasets [35], see Figure 2.2. Additional circu-
lar rigs include the Stanford Spherical Gantry, in Figure 2.5, based on the
same concept [43], and the Microsoft Research/China rig which has in-
stead a camera pointing outwards, and was developed to construct so-
called “concentric mosaics” [44].

Perhaps the most popular and famous of these contraptions is the Stan-
ford Lego Gantry [12], built using LegoMindstormsmotors, which have ro-
tary encoders, and was made to be very accurate and repeatable, almost
as precise as their first gantry, a seen in Figure 1.2. Here Lego calibration
objects were included in every scene (and then cropped out) to perform
calibration at the time of capture. It resulted in iconic images still widely
used today for a number of light field applications.

One of the drawbacks of such systems, although shared by most meth-
ods, is the calibration. The position in space of the camera related to the
scene has to be known precisely for any processing of the images to be
done. This can result in tedious manipulations before and during shoot-
ing to perform accurate calibration. Additionally, these systems can only
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Figure 2.5: Some light field gantries. From left to right: Stanford Digital Michaelangelo
camera gantry [42], Stanford Spherical gantry [43].

Figure 2.6: Various light field camera arrays. From left to right: Row of camera used for
the slow-motion scenes in the Matrix, Stanford Camera array [11].

be used to capture static scenes, as they use a single camerawhich needs
to be moved to each viewpoint. Capturing videos with such a structure is
therefore impossible, with the exception, perhaps, of stop-motion videos,
in which the motion is obtained as a result of combining a series of static
images where the scenes is carefully and physically manipulated.

Camera arrays

To alleviate some of the constraints of the gantry, it is possible to imagine
putting a number of cameras in series, which would all capture the same
scene at exactly the same time. The concept was introduced by Dayton
Taylor in 1999 in themovieMatrix [30], in which cameras positioned along
a 1D path were used, seen in Figure 2.6, and displaying the image they
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captured in rapid succession allowed to simulate an impressionof orbiting
around a still scene. However, while impressive for the time, this method
was just a visual trick and did not generate true light fields, as these im-
ages were never manipulated to obtain novel views [30].

However, the first attempt to generate a precise light field camera array
wasmade byWilburn et al. [11], seen in Figure 2.6, using a cluster of 100 in-
expensive camerasmounted to a rigid array, where theplacement of cam-
eras can be reconfigured depending on the application. It was designed
to capture synchronised videos in real-time, estimate 3D scene geometry,
and as a novel way to construct multi-perspective panoramas. The spac-
ing between cameras allowed them to either simulate a single-center-of-
projection synthetic camera, a single camera with a large synthetic aper-
ture, or a multiple-center-of-projection camera, which captures a light
field.

Such a system alleviates one of the constraints gantry setups suffered
from, which is the physical calibration of the camera positions. With such
a device, this calibration is built-in and can easily be repeated for several
shoots. The other limit of gantry setups is also solved here, since both
photo and video capture are possible, provided all the cameras are per-
fectly synchronised with one another. The limit here however is the need
to perfectly and equally calibrate each camera in the exact same man-
ner. Failure to do so will result in brightness and colour inconsistencies
between views, which will need to be corrected in post-processing. Us-
ing the same model camera for the entire array reduces those variations,
however it is nearly impossible to negate them altogether.

Another example of camera array was developed by the SAUCE Project
with the intent to use for advanced movie post-production [45, 14], using
state of the art calibration and post-processing tools. They constructed an
array composed of 64 high resolution cameras, allowing them to capture
so-called 5D light fields, (4D rays plus time), since the exposure time of the
cameras can be controlled individually. Here as well the calibration pro-
cess has to be extremely precise, and is done using a long process where
calibration patterns are captured from 150-200 positions, to account from
between-camera occlusions, and consists on individual calibration, aswell

19



Figure 2.7: Various plenoptic devices. From left to right: Lippmann’s integral photogra-
phy device, showing here the front with its twelve lenses [46], Raytrix R11 3D light field
camera [47], (h) K|Lens light field lens [48].

as calibration of each possible camera pair as a stereo camera. One of the
other area where particular attention was needed is the output data pro-
cessing, as this array generates a very large amount of data, around 135
GBit/s. Highly efficient compression schemes were necessarily to make
this output manageable while maintaining good overall image quality.
While of very high quality, the output images, by nature of using differ-
ent cameras, still can exhibit some colour inconsistencies between views
of a single frame, and need to be corrected in post-processing.

Plenoptic Cameras

The two previous methods described are producing high quality images,
of either still or live scenes, but they are bulky, expensive, and impractical
tomanipulate for the average enduser. Additionally, theheavy relianceon
accurate calibration to obtain usable images, and the logistics necessary
to process the large amount of data mean that these setups are reserved
for high-end research or studio use. The only way to counter these issues
would be to offer a single, hand-held device that can still somehow cap-
ture an image frommultiple viewpoints.

Perhaps the first example of this was developed in 1908 by Gabriel Lipp-
mann, inwhat he called “integral photography” [46]. Basedon insect eyes,
his device consisted of a plane array fit with tightly spaced small spherical
lenses, allowing to capture a scene instantaneously from different view-
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points. To view the image, one had to use a similar array of lenses, which
gave the viewer the impression of a “living image”, based on the position
of the eye in respect with the lens array. Theoretical at first, the concept
was limited by the technology of the time, Lippmann achieving by 1911 his
best system using twelve lenses, seen in Figure 2.7), but lacking the de-
sired optical quality [49]. It nevertheless went on to become the basis of
lenticular imagery [50].

Almost a century later saw the emergence of plenoptic cameras, that con-
tain an array of micro-lenses between the main lens and the sensor, the
first of which was proposed by Ng et al. [13], in Figure 1.2. Such a camera
produces very dense light fields, i.e. with many views very close to one
another. Plenoptic cameras have gained interest about a decade ago, af-
ter the release of two models by the Lytro company in 2006 which aimed
at allowing professionals and amateurs alike to capture light fields with a
denseangular sampling,whereeachmicro-lens outputsunfocusedmicro-
images. Unfocused cameras are generally exploited by extracting sub-
aperture images, each with a very wide depth of field and representing
different viewpoints of the scene. These cameraswere soldon thepromise
of easily refocusable images. Shortly after, another similar type of camera
called plenoptic 2.0 was developed by Lumsdaine et al. [47], seen in Fig-
ure 2.7. As opposed to the previous design, here each micro-lens outputs
a focused micro-image. Focused cameras are typically used to render fo-
cused imageswhere the focus canbedynamically adjustedbased onuser
input.

Plenoptic cameras offer a number of advantages, as they are easily car-
ried around, do not necessitate calibration for each scene, and were, at
the time they were still available (the Lytro company has since closed its
doors), affordable to end users and researchers. Thanks to this availability,
the number of datasets available for use in research is very large. More-
over, because the images it produces are small in size, the output data
is relatively convenient to process, compared to high resolution camera
arrays. Finally, since the baseline between resulting views is very small, it
easily lends itself to an array of research applications, such as depth esti-
mation or view synthesis.
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However due to their unique design, plenoptic cameras generate much
more complex RAW data compared to traditional cameras, and the ex-
ploitation of this data is made more difficult as a result. In addition, the
small design of the camera means it hits physical limits of the optics, and
the result, in the case of the Lytro camera, is an output of low resolution
views that also suffer from a number of inconsistencies between views,
notably related to colour, aswell as noise. While someof these issueswere
alleviated by using the provided Lytro software, it is at the time of writ-
ing not available anymore to consumers. Additionally, the Lytro software,
while fixing some of visual artefacts, was unable to provide the user with
sub-aperture images, which are very useful in a number of research appli-
cations. For all these reasons and more, we provide in this thesis a num-
ber of software solutions to palliate the low quality of Lytro images. These
range from RAW image demultiplexing to colour correction and denois-
ing, and are presented in great detail in chapter 3 of this thesis.

Worthy of mention in this section, the K|Lens One [48] is a very recent ad-
dition to the arsenal of tools capable of capturing light fields, and can be
seen in Figure 2.7. It is the first light field lens, and can be used with any
full-frame camera, thus allowing photo and video capture. The lens fea-
tures an “ImageMultiplier”, amirror system, which results in 9 perspective
viewsbeing capturedby the camera sensor. While this technology is really
exciting as it provides with much higher resolution views than plenoptic
cameras, albeit a lower number of them, it was not available to us at the
time of writing this thesis. However we are seriously looking forward to
the possibilities it could offer for casual and professional users.

Other methods

Moremarginally, we can talk aboutmanymodern smartphones, contain-
ing 2, 3 or more cameras, which allow to capture light fields very similar
to a camera array with a very small baseline, some examples in Figure 2.8.
Most of these are used to assist the user into manipulating or improving
the focus or the colour balance of their image, thus resulting in the most
æsthetically pleasing output.
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Figure 2.8: Othermethods to capture light fields. From left to right: smartphone cameras
for the iPhone 12 and Nokia 9, Zeiss/Raytrix light field microscope.

Finally, and to be thorough, we should alsomention the existence of light
field microscopy [51], with an example seen in Figure 2.8. In essence, it
functions the same way a plenoptic camera does, as a microlens array
was added to the optical train of a regular microscope, and allows to gen-
erate perspective views of biological samples or specimens. However, this
method is severely constrained as diffraction puts limits on the combina-
tion of spatial and angular resolution achievable by such systems.

2.3 Usage of Light Fields and Prospects

In this section we discuss some practical applications for light fields, their
potential use in different fields, advances and advantages they could pro-
vide. Two main avenues of applications for light fields outside of pure re-
search are virtual reality and movie post-production, but there also exists
a number of alternative research of industrial uses.

Virtual Reality

In the last few years, virtual reality (VR) has made a resurgence, aided sig-
nificantly by the improvements in computational ability of modern com-
puters. Current generation of VR displays use optical techniques to trick
the user into thinking they are looking at a distant image, video or game
containing depth, when they are in fact only looking at a 2D screen, sat
mere inches from the eyes. For some people, this is not necessarily an
issue, as their brain can accommodate for this discrepancy and mostly
believe what it is shown. However for some, this is not possible and the
outcome is potentially severe side-effects: visual discomfort and fatigue,
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eyestrain, diplopia (double vision), headaches, nausea, compromised im-
age quality, as well as potentially pathologies in the developing visual sys-
tem of children.

In an attempt to reduce these side-effects, VR headsets are armed with
a list of visual depth cues, namely binocular disparity, motion parallax,
binocular occlusions, and vergence. Binocular disparity stems from the
fact both our eyes see slightly different scenes, and as our brain merges
those together, the disparity between the two creates the sensation of
depth. Motion parallax means that, when one moves their head, objects
that are nearer move faster, or more, than objects in the distance. In VR
this is used to make you think some objects are further away than they
actually are, since they are still displayed on the same screen. Binocular
occlusions refers to the fact that foreground objects are nearer, and there-
fore hide parts of background objects, which allows for a simple distance
ranking. If the occlusions are different for each eye, the brain sees this as
depth. Finally vergence refers to the rotation one’s eyes perform to keep
objects close (convergence) or far away (divergence), at the centre of one’s
field of vision. The amount of rotation is used by the brain, to perform sim-
ple triangulation and estimate the distance to the object.

All of these tricks can be put into effect by showing two separate images
to each eye, provided they are properly synced and calibrated, and give
the illusion of depth to the viewer. Despite these efforts, the brain can still
sense that whatever it is shown is not the kind of reality it is used to. The
reason for this is because in the brain, vergence is coupled with an addi-
tional depth cue: focus. Our eyes converge a bit to be able to focus on
nearer objects, and they diverge slightly when attempting to focus on ob-
jects far away. The issue here is that VR displays do not provide any focus
cues, as the entire image is always in focus, for obvious display reasons.
And since our eyes still converge and diverge when they look at different
parts of the scene presented to them, based on their perceived distance,
it creates a perception issue named the “vergence-accommodation con-
flict”.

In an attempt to further improve the quality of use of VR headsets, Huang
et al. [52], improving on the original stereoscope designed by Sir Charles
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Wheatstone in 1832 [53], created a Light Field Stereoscope, by adding a
modern light field display to the classic design. This is an attempt to coun-
teract the vergence-accommodation conflict, inherent to all stereoscopic
display technology. Their model provides high resolution images, as well
as additional focus cues: retinal blur, and accommodation. The light field
display consists of 2 semi-transparent LCD screens over a backlight, and
the combination of these recreates a light field image, which allows near-
correct focus cues. Simply put, the eye naturally focuses on the part of
the image it looks at, while the rest of the image looks blurred, similar to
natural vision. Moreover, as the entire light field is available in the display,
all of this is possible without eye tracking.

Additionally, this method increases the accuracy ofmonocular occlusions
in complex scenes with many objects, and particularly with dark objects
partially occluding bright objects. As it is not possible to block light go-
ing through the LCD displays, this results in those dark objects appearing
semi-transparent, an effect not dissimilar to natural vision.

Overall, this is very promising technology and a clever way to bring light
fields out of its current confines in pure research, as this work suggests
that adding additional layers of displays can augment the depth range
and observer accommodation, thus making the whole experience more
comfortable, natural, and less nausea-inducing for the user.

Movie post-production

One of the other big field of application where light fields can make an
impact is in post-production, as introduced by Ziegler et al. [54]. Among
the first systems designed specifically for this purpose was the Lytro Cin-
ema Camera, released in 2016, a blown up version of the Lytro Illum, fea-
turing very high resolution and framerate, while providing a number of
post-processing tools to assist with editing, storage and general workflow.
It promised easy refocusing on the fly, and the end of green screens in
movieproduction sets, since in a light field objects couldnowbeextracted
based on their depth rather than by using colour information. However,
two years later Lytro and this product were abruptly discontinued. While
their solution failed to find commercial success, themethods and interest
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it created left a lasting mark.

One of the major projects created for a similar purpose is called SAUCE,
which stands for Smart Assets for re-Use in Creative Environments. It is a
EU project combining the expertise of 8 companies and research groups
for creating tools and software for the creative industry. Among thosewas
a light field camera rig which was used for a number of shoots [45], previ-
ously mentioned in the section about camera arrays (section 2.2). It con-
sists of an array of 64 full-HD cameras, adjustable in a variety of config-
urations and distances. By directly capturing a scene using a light field
and without manual intervention, it is possible in post-production to ap-
ply a number of visual effects, such as changing the focus of the scene for
cinematic effect [14]. More broadly, in this context light fields allow more
options for a professional director to simulate physically possible, or even
impossible, lenses [14].

Other benefits of using light fielddata include the creationof depthmaps,
and potentially full geometric reconstructions of the scene. A number
of common movie post-production edits such as colour grading or key-
ing could become easier to perform, or, as mentioned before, done using
depth information to separate between foreground and background ele-
ments [14] and remove the reliance on green screens.

In an attempt to explore the benefits offered by light field data for post-
production, in this thesis we look at two applications that become easier
to perform and show the potential of the concept. These applications are
colour editing and depth-based object separation, and are presented in
chapter 4.

Assisting other fields of research

The Raytrix company still produces 3D light field cameras for industrial
use. Some of the available uses include object inspection, with applica-
tion in self-driving cars, facial recognition, or gesture recognition, or even
plant-research and life science. In these cases themain factor is the com-
putation of an accurate depth map which provide enough additional in-
formation to perform each task with much higher accuracy compared to
using simple 2D cameras.
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Additionally these cameras and solutions find use in robotics, with appli-
cations in assisted surgery, automated sculpture or package handling. Fi-
nally they provide solutions for light microscopy, which allows to capture
3D images of biological structures to better understand themand theway
they interact with one another.

2.4 Emerging technologies

During the year 2020, the fields of computer vision and computer graph-
ics were shaken by a small revolution, Neural Radiance Fields (NeRF). It
was presented in the seminal paper by Mildenhall et al. [18] and allowed
as itsmain sellingpoint to render highquality novel views of a static scene,
using only a handful of input images of the scene. This work is the culmi-
nation of research on “unstructured light fields” which had been studied
by Buehler et al. [55] and Davis et al. [56].

To achieve such results, Mildenhall et al. used a multi-layer perceptron to
understand theunderlying scene. As opposed to a discrete voxel-grid rep-
resentation, this allows to represent the scene using a continuous func-
tion, and to describe it not only for a particular 3D position but also from
any specific viewpoint. Using this representation and classic volume ren-
deringmethods, they couldeasily extract novel viewsat anypositionwithin
the range of input image positions, complete with accurate specularity
depending on the angle of view, as well as the corresponding high quality
disparity map. Both the novel view quality and respective disparity map
were of a much higher quality than all the previous state of the art. As
another advantage, the input views did not necessitate calibration to be
done directly by the user, as it could be obtained automatically using an
off-the-shelf structure from motion method [57]. Anyone with a camera
could capture a few dozen images of their scene of choice, and feed it to
the NeRF network to obtain any number of novel views.

This initial presentation generated a large number of contributions in the
field, some only looking at increasing the speed of NeRF, whether train-
ing [58, 59], or inference [60, 61, 62, 63, 64]. Others looked at generating
deformable NeRFs by allowing to generate novel views of dynamic scenes
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with complex non-rigid geometries, in other terms objectsmovingduring
capture, as opposed to static scenes only [65, 66, 67, 68, 69]. This allows for
instance to add visual effects suchasDolly zoomeffects to selfies [65], or to
create animated avatars of one’s face displaying different expressions [69].
In a similar vein other work looked at generating novel views of captured
videos [70, 71, 72, 73], in which the input is amonocular video of the scene.
By interpolating either between views, or along the time dimension, or
even using both, the resulting novel videos exhibit new characteristics
and allow for a number of visual effects.

Other research looked at the type of information NeRF was capable of
learning, and tried to expand on this. One such subgroup of research was
dedicated to performing shape, reflectance and illumination decompo-
sitions [74, 75, 76, 77]. This is an important application which allows to
perform relighting of the scene, or colour editing of certain objects, while
maintaining realistic output. Others perform the colour editing directly,
while still maintaining high fidelity to the input images [78, 79]. Some
looked at using NeRF information for the task of pose estimation [80, 81,
82]. This involves taking an already computed NeRF render, and converg-
ing toward the pose to estimate by generating a series of guided novel
views and giving them a proximity score.

More exotic, some research has been done on compositionality [83, 84, 85]
which consists of extracting individual objects from the initial rendered
scene, and creating new scenes bymoving those objects around, or trans-
forming their size or shape. Finally some are redefining the way texturing
is done [86, 87]. Instead of looking at surfaces, likemost previous solutions
perform, they generate areas of fuzzy geometry around the object, which
allows the artist to generate an array of available volumetric textures such
as fur, grass, or any kind of fiber, all with adaptable length.

In the last year or so, a wide number of classical computed vision or com-
puter graphics tasks have been revisited using the new power offered by
NeRF, andwhile this new technology and all the new research it spawned
was very exciting, our aimwas still the development of solutions for aiding
high quality image processing and editing using light field information.
To evaluate the advantages brought by NeRF to this idea, we performed a
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comparative study between traditional state of the art light fieldmethods
and NeRF for the applications of novel view synthesis and depth estima-
tion. In addition we looked at the different type of light field data avail-
able for use (fromcamera arrays, gantries, plenoptic cameras, or even syn-
thetic light fields) to see which of the two methods was preferable when
workingwith them. The details of the study will be presented in chapter 5
of this thesis.

2.5 Summary

In this chapter, we have given an overview of light fields, from the very
theoretical and nearly philosophical initial descriptions in ancient times,
to the more practical modern approaches. After having detailed some
of the more popular methods of capturing light fields, as well as look-
ing at the different uses they offer, we explored the potential applications
of current light field technologies in the real world, outside of research
labs. Finally we touched on new emerging methods which no doubt will
soon transform how light fields are processed and used, with potential
for a larger number of applications. However exciting all of these meth-
ods are, most of them still suffer from a number of drawbacks, whether in
the need for specific calibrations, very high computing costs, or simply, by
nature of their design, visual flaws that make their output difficult to use
to its full extent. In the next chapter, we look at one such problem, where
the array of images obtained using Lytro cameras has obvious inconsis-
tencies in terms of brightness colour, and generally suffer from different
types of noise. We then present a series of software solutions to attenu-
ate or negate these issues, in the hope to increase the usability of such
data.
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Chapter 3

Lytro Image Enhancement

In this chapter we look in further detail at Lytro images, as extracted from
RAW data using software applications. These sub-aperture views gener-
ally suffer from a number of alterations, whichwe seek to amend and pro-
vide a detailed report of these methods. We show that our methods out-
perform the previous state of the art extraction toolbox using a number
of objective and subjective studies, and highlight the effect of those im-
provements on a number of typical light field applications.
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3.1 Introduction

Plenoptic cameras have gained interest in recent years, after the release
of two models by the Lytro [13] company which aimed at allowing pro-
fessionals and amateurs alike to capture light fields with a dense angular
sampling, where each micro-lens outputs unfocused micro-images. Un-
focused cameras are generally exploited by extracting sub-aperture im-
ages (SAI), each with a very wide depth of field and representing differ-
ent viewpoints of the scene. Shortly after, another similar type of camera
called plenoptic 2.0 was developed by Lumsdaine et al. [47]. As opposed
to the previous design, here each micro-lens outputs a focused micro-
image. Focused cameras are typically used to render focused images
where the focus can be dynamically adjusted based on user input. Due
to their unique design, plenoptic cameras generate muchmore complex
RAW data compared to traditional cameras, and the exploitation of this
data is made more difficult as a result.

Classically, computer vision applications using light field data prefer to
use output in the form of SAIs, as they are more practical to handle. In
this chapter, we focus our attention on these and explain our method to
extract SAIs from unfocused plenoptic camera RAW data. Despite the
different solutions proposed by Cho et al. [1], Xu et al. [2] or Seifi et al. [3],
the light field toolbox presented by Dansereau et al. [5] is themost widely
used in the research community as it offers the most complete pipeline
to extract SAIs. It has for instance played a central role in the standard-
isation effort for light field compression as it is now used as part of the
JPEG PLENO [88] test set. The extraction method comprises four steps
which can be summarised as follows: a devignetting step first compen-
sates for the vignetting effect of the micro-lenses, i.e. darker pixels on the
edges of eachmicro-lens; demosaicing is then applied to retrieve the RGB
colour components of each pixel from the partial colour information ac-
tually captured by camera sensors; a compensation of possible rotation
of the micro-lens array is performed; finally the pixels are rearranged to
compensate for the non-rectangularly aligned hexagonalmicro-lenses, in
order to convert the image into a set of sub-aperture images.

However, the extracted views suffer from several types of artefacts such
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Figure 3.1: Overview of the proposed Light Field Pipeline. The steps in green correspond to
the contributions described in this chapter. The steps in blue are state of the art methods
that we additionally included in our pipeline, but which are not present in the traditional
pipeline [5].

as noise, unnatural horizontal stripes, ghosting effects, colour and bright-
ness inconsistencies on external SAIs, inaccurate colour balance, and sub-
stantial loss of dynamic range. Unfortunately, these defects have a nega-
tive impact on many light field applications including depth estimation,
segmentation, rendering and compression. An overview of these issues
is described by Wu et al. [89]. Because of these distortions, a good por-
tion of the external views are generally ignored for these applications. This
impacts their results, as using less SAIs means potentially missing out on
the critical information they could provide. Although the proprietary Lytro
Desktop software compensates for many of these issues, it is still unsuit-
able for the generation of SAI arrays as itsmain goal is to render refocused
images. Additionally, the software is not officially available anymore, and
as a result many users need to use other software solutions to obtain us-
able images, such as the one presented here.

In this chapter, we propose an improved processing pipeline for lenslet-
based plenoptic cameras. First, in order to take the most advantage of
the captured RAW data, we propose several improvements on the low
level steps of the traditional demultiplexingmethodofDansereau et al. [5],
converting the RAWdata into sub-aperture images. We specifically show
that the previously used devignetting step had a negative impact on the
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image quality, as it tampered with the colour balance and brightness and
caused loss of dynamic range, and we propose ways to correct this.

Additionally, we propose a highlight processing method to compensate
for colour issues related to sensor saturation. In order to reduce the ghost-
ing effect of external SAIs, we recommend theuse ofWhite Image-guided
interpolation following theworkofDavid et al. [90]. Once the sub-aperture
images are extracted, further quality enhancement steps are then pro-
posed as post-processing tools. These include hot pixel removal, correc-
tion of colour inconsistencies between SAIs and denoising.

Finally, we show thebenefits of thedifferent stepsof theproposedpipeline
by conducting a subjective experiment and analysing the impact of our
results on several applications, in comparison with the state of the art
demultiplexing proposed by Dansereau et al. The applications studied
include light field rendering, compression, super-resolution and editing.
Wealso show that our post-processing step for colour consistency alsohas
practical interest for light fields captured with devices other than plenop-
tic cameras (e.g. camera array, gantry).

The purpose of this work was to provide a comprehensive framework to
process plenoptic data from the RAW output of the camera all the way
through various post-processing stages. For clarity, please note that the
sections on demultiplexing (Section 3.4) and denoising (Section 3.7) stem
from research performed by other members of my team, have been pub-
lished on their own, and were included in this document only for the pur-
poseof completion. Mycontributions in this regardare twofold, first bring-
ing the previouslymentioned tools together withmy solutions detailed in
the rest of this chapter (hot pixel removal, colour correction) into a sin-
gle toolbox. Secondly, performing a thorough objective and subjective
comparison of our resulting toolbox with previous state of the art, and its
impact of various light field applications.
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3.2 Related work

3.2.1 Demosaicing

In plenoptic cameras, themicro-lens array forms a specific pattern on the
sensor, which introduces new difficulties when processing the RAWdata.
While the light field toolbox presented by Dansereau et al. [5] is capable
of converting the RAWdata into a set of SAIs, the final images suffer from
various artefacts. Further research on the subject has essentially focused
on adapting the demosaicing step. For instance, a specific demosaicing
method was designed by Yu et al. [91] for focused plenoptic cameras, i.e.
plenoptic 2.0. For the more common case of unfocused plenoptic cam-
eras, different optimisation methods have been employed in the demo-
saicing of Xu et al. [2], Huang et al.[92] and Lian et al.[93]. These methods
perform respectively 4D kernel regression, dictionary learningwith sparse
optimisation, and total variation minimisation. An original approach is
proposed by Seifi et al. [3], where the demosaicing is performed after the
demultiplexing so that a disparity map can be estimated first, and then
used to guide the demosaicing step. Finally, White Image-guided demo-
saicing and interpolation tools are proposed by David et al. [90] to avoid
mixing colour information from different micro-lenses.

However, we believe that a more global analysis of the demultiplexing is
necessary, sincemany inaccuracies canoccur in other stepsof thepipeline,
or during the capture process itself.

3.2.2 Devignetting

Dansereau et al. [5] perform lenslet devignetting first as it results in more
uniform brightness over the sensor array and thus, easier demosaicing.
This step simply consists of a pixel-wise division of the RAW image by a
RAWWhite Image (WI) that exhibits the pattern of micro-lens vignetting.
Note that theWI was previously captured during a calibration step by the
same device as the picture being processed. However, the red, green and
blue filters in the Bayer filter array have different responses to the white
light. For this reason, the Bayer pattern is visible on the WI as shown in
Figure 3.2(a). Therefore, performing the devignetting step using the un-
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processed WI, as in the method of Dansereau et al., interferes with the
white balance of the final result.

3.2.3 Colour Consistency Correction

After RAW demultiplexing, large differences in colour still exist between
the centre and external SAIs, as can be seen in Figure 3.7(b). We refer the
reader to the appendix providing insights on how the colour consistency
is affected by the demosaicing and its interaction with the devignetting
step. To correct this, we chose a recent image recolouring approach pro-
posed by Grogan et al. [94] (described in Section 3.6.1) and adapt it to light
fields. Similar to other colour correction approaches proposed in multi-
view geometry and panorama stitching applications, such as the ones by
Oliveira et al. [95], Park et al. [96], Xia et al. [97] and Hwang et al. [98], this
approach uses colour correspondences between a target and palette im-
age to compute a transfer function thatmaps the colours from the target
image to match those of the palette.

3.2.4 Highlight Processing

Due to the different saturation levels of the red, green and blue pixels
on the sensor, the highlights have unnatural colours. This is a common
problem in digital imaging, observed in over-exposed regions after apply-
ing the white balance. However, in conventional cameras those regions
are typically uniform,making it possible to correct the highlights after the
demosaicing (e.g. [99, 100, 101, 102]). In plenoptic cameras, the micro-lens
vignetting as well as possible inaccuracies in the devignetting (e.g. slight
mismatchbetweenwhite image andRAW image) anddemosaicing steps
may create artefacts in those regions for some of the extracted SAIs (see
Figure 3.3(b)). The simplest approach for solving the issue is to clip the
highlights after the white balance as done by Dansereau et al. [5]. How-
ever, this results in a loss of details in thehighlights (seeFigure 3.3(a)).

3.2.5 Denoising

A trivial approach to light field denoising consists of applying an existing
single image denoising filter (see Dabov et al. [103], Shao et al. [104] or Jain
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et al. [105]) independently to the SAIs. However, better performances are
obtained when taking into account the pixel correlation in-between the
SAIs. SAIs can, for instance, be stacked in a pseudo-video sequence and
denoised using a state of the art video denoiser such as the VBM4D of
Maggioni et al. [106]. The angular correlation can also be exploited along
the epipolar plane images (EPI): Li et al. [107] use a two-stepmethodwhich
first denoises EPIs taken along a given spatial and angular dimension
(e.g. horizontally), and then processes this first estimate using the com-
plementary EPIs (e.g. vertically). Sepas-Moghaddam et al. [108] stack the
EPIs in a pseudo-video sequence and denoise using the video denoiser
of Maggioni et al. However, none of these methods fully takes advantage
of the 4D structure of the light field. Recent improvements in light field
denoising performance are thus based on a better exploitation of the 2D
angular dimensions. Chen et al. [109] use two joint convolutional neural
networks to denoise the light field along the angular and spatial dimen-
sions respectively. Liu et al. [110] denoise light field 4Dpatches first using a
tensor decomposition. The SAIs are then combined into a single high res-
olution image which is further denoised, and finally projected back into
denoised SAIs at the original resolution.

3.3 Overview of the Proposed Pipeline

The essential steps of our pipeline are depicted in Figure 3.1. The input
data consists of the RAW image formed on the plenoptic camera sen-
sor. Due to the Bayer filter array placed on the sensor, each pixel contains
colour information only for one of the RGB components. Another RAW
image, called White Image (WI) is obtained by a preliminary calibration
process involving the capture of a uniform white surface.

First, a RAW demultiplexing method building upon that of Dansereau et
al. [5] is proposed. After a normalisation step, the White Image is used to
remove the vignetting in the inputRAW image. Anovel highlight process-
ing step is then proposed to retrieve natural colours in bright areas where
some pixels reach the sensor’s saturation level. A standard demosaicing
method (Malvar et al. [111]) then recovers the full RGB colour components
at each pixel. Similarly to the work of Dansereau et al., we compensate for
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slightmisalignments between themicrolens array and the sensor. The re-
centWhite Image-guided interpolationmethod of David et al. [90] is used
for that purpose. The last steps in the method of Dansereau et al. are ap-
plied without modification. Pixels are reorganised to convert the lenslet
image into a set of sub-aperture images. Due to the hexagonal lenslet
pattern, this step includes a resampling of each image from a hexagonal
to a square grid of pixels. Finally, white balance andgammacorrection are
performed. The novel aspects of the RAW demultiplexing and the chal-
lenges addressed are presented in Section 3.4, as well as highlight pro-
cessing in Section 3.4.2).

After the RAW demultiplexing, several defects remain to be corrected.
The failure of isolated pixels is a common problem in digital imaging. We
choose to correct these so-called ‘hot pixels’ in apost-processing stagede-
tailed in Section 3.5. A colour correction method is then proposed in Sec-
tion 3.6 to ensure colour consistency between the light field views. Finally,
plenoptic imaging is prone to noise that we remove using the LFBM5D
method of Alain et al. [112] (see Section 3.7).

Furthermore, wepresent a complete evaluationof thepipelinewith a sub-
jective study (Section 3.8) and a study of the effect of our quality enhance-
ment tools on various applications (Section 3.9).

3.4 RAW Light Field Demultiplexing

3.4.1 White Image Normalisation

Wecorrect theWhite Image (WI) related issuementioned in sub-section 3.2.2
by multiplying the red and blue pixels of the WI by normalisation factors
provided as metadata of the camera and accounting for the different re-
sponses of the RGB filters. Note that these factors may also be obtained
by colour calibration of the sensor.

Furthermore, since the pixel values of the WI are lower than 1.0 even at
micro-lens centres, the devignetting of Dansereau et al. also increases
the overall brightness of the light field. Bright areas reaching higher val-
ues than 1.0 after devignetting are considered saturated in the rest of the
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process, and the information is lost. Therefore, we also apply a global nor-
malisation of theWI by dividing all the pixels by its 99.9th percentile (we do
not use the maximum value to exclude possible hot pixels). The effect of
theWhite Image normalisation step on the colours and brightness of the
final result is clearly visible in Figure 3.3. However, by decreasing the over-
all brightness, this normalisation step also reveals unnatural colours in the
highlights (see the pink colour in Figure 3.3(b)). We correct this issue in a
highlight processing step presented in the next subsection.

3.4.2 Highlight Processing

To counter the loss of detail in the highlights resulting from themethod of
Dansereau et al. [5] described in sub-section 3.2.4, we propose a highlight
processing step taking into account the vignetting pattern (i.e. the nor-
malisedWhite Image) and applied before the demosaicing in order to re-
tain thedetails in thehighlightswithout introducingcolour artefacts.

For this step, blocks of four pixels on the RAW image are processed inde-
pendently. Since the highlight processing is performed before demosaic-
ing, each of the four pixels is associated with only one RGB component
organised according to the Bayer pattern. We note the values of these
pixels xr , xg1 , xg2 , xb. Corresponding values in the normalisedWI are noted
wr , wg1 , wg2 , wb. In this step, we also take into account thewhite balance pa-
rameters sr , sg , and sb by which the red, green and blue components will
be respectively multiplied later in the white balance step (see Figure 3.1).

(a) (b) (b)

Figure 3.2: Detail of aWhite Image: (a) unprocessed, (b) after colour normalisation, (c) after
both colour and global normalisation.
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(a) (b) (c)

Figure 3.3: One view of the light field duck: (a) without WI normalisation [5], (b) with WI
normalisation, (c) with WI normalisation and highlight processing.

These values can also be interpreted as the saturation levels of each com-
ponent.

First, we consider saturated pixels such that xc · wc > T , with c ∈ {r, g1, g2, b}

and T is a threshold set to 0.99. Note that xc · wc is the original pixel value
on the sensor before the devignetting.

Two cases are considered. In the case where the four pixels are saturated,
no colour information is present. However, the white balance, applied to
those pixels later in the process, results in an unnatural colour. Hence, we
cancel the effect of the white balance by setting each pixel of index c to
the value xc · ŝ/sc, where ŝ = max(sr, sg, sb). When at least one of the four
pixels is not saturated, we find the indexm of the pixel with lowest value. A
saturated pixel of index c then takes the value xm · sm/sc. However, in prac-
tice, separating these two casesmay cause abrupt changes of brightness.
Therefore, we blend between these two behaviours using the following
formula for modifying a saturated pixel xc into x′c:

x′c = max

(

(1− α)
xm · sm

sc
+ α

xc · ŝ

sc
, xc

)

, (3.1)

where α ∈ [0, 1] is the blending parameter indicating the total amount of
saturation as α = min(1, xm ·

1
4

∑

cwc)
2. The maximum between the modi-

fied and the original value is used since xm · sm/sc may be lower than the
original saturated pixel xc. This operation prevents possible discontinu-
ities with neighbour pixels slightly below the saturation detection thresh-
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old.

Note that after the white balance step, the regions recovered by the high-
light processing may have values above 1. In order to retain those details
in the final imagewithout affecting the overall brightness, we apply a soft
saturation function softSat to eachpixel after thewhite balance step:

softSat(x) = 1−
ln(1 + eR(1−x))

ln(1 + eR)
, (3.2)

where R is a parameter controlling the smoothness of the curve (lower R
resulting in smoother saturation). We set R = 7 in our implementation.
The soft saturation curve is illustrated in Figure 3.4 and the final result is
shown in Figure 3.3(c).

Figure 3.4: Soft saturation function with different parameters R.

3.4.3 White Image-guided Interpolations

Previous analysis by David et al. [90] has shown how standard demosaic-
ing and interpolations introduced both ghosting artefacts and fading of
the colours in the external SAIs. In order to reduce the problem, they

(a) (b) (c)

Figure 3.5: Advantages and limitations of the White Image-guided method of [90]: (a)
standard demosaicing [111] and bicubic interpolations, (b) standard demosaicing [111] and
WI-guided interpolations, (c) WI-guided demosaicing and interpolations.
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adapted those steps byweighting the contribution of each pixel using the
vignetting pattern of the White Image. Two observations can be made
from their results. Firstly, the ghosting effect is essentially reduced by the
adaptation of the interpolation step (see Figure 3.5(b)). Secondly, while
their modified demosaicing improves the overall colour consistency be-
tween SAIs, it may also create colour noise (see Figure 3.5(c)). Hence, we
suggest that only the WI-guided interpolations should be used, and we
propose in Section 3.6 a post-processing step to enforce colour homo-
geneity in the light field.

3.5 Hot Pixel Removal

Hot pixels are isolated pixels taking extreme values due to internal errors
on the camera sensor. Their detection within the RAW demultiplexing
stage is challenging due to the fact that the demosaicing step retrieves
inaccurate colours, not only for the hot pixels, but also for their neigh-
bours, corresponding to angular neighbours in the light field. However,
in the sub-aperture images obtained by the demultiplexing, the spatial
neighbours of the hot pixels are unaffected. Furthermore, hot pixels are
not accurately removed by traditional light field denoisingmethods, such
as the ones presented in Section 3.7. Thus we directly perform hot pixel
removal after RAW demultiplexing.

A typical issue for hot pixels is the fact that they exhibit extreme values
in their colour components, but this in itself is not a sufficient criteria for
detection. Instead, for each SAI I , we identify hot pixels by comparing the
colour values xi of each pixel i to those of its neighbours inΩn×n(i), the n×n
window centred on the pixel i. Based on this, we compute a probabilistic
measure ρi to indicate how likely i is to be a hot pixel and threshold this
value todetect themost likely hot pixels in theSAI.We tested colour values
in both the RGB and CIELAB colour spaces [113], and found that CIELAB
helped us identify hot pixels more easily, so we chose to use this colour
space exclusively. We use Matlab’s rgb2lab function to convert images to
CIELAB d65, with L* taking values between 0 and 100 and a* and b* values
between ±110.
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The procedure we use to detect hot pixels is described in Algorithm 1. For
each pixel colour xi in CIELAB space, if it lies within a colour distance td to
only a small number of pixels (less than tc) in thewindowΩn×n(i), the value
ρi will be high (see Algorithm 1). The distance we use in CIELAB space
is the Euclidean distance. In Figure 3.6(b) we display ρi values for each
pixel in SAI (a), with the red values in (b) showing pixels with the high-
est ρ value. We then threshold these values in order to detect the most
likely hot pixels, with ρi > tρ selected (Figure 3.6(c)). Since hot pixels do
not typically appear as white in an image, we also add a check to make
sure pixels that lie within a distance tw of the colour white (such as small
regions of white highlights on an object) are not incorrectly detected as
hot pixels (see Algo. 1). Here, we can see that our detection method is ro-
bust to colour changes along edges, with very few edges being detected
incorrectly as hot pixels. Finally, we correct the hot pixel i using a 3×3me-
dian filter centred on it, which takes themedian value for the L*, a* and b*
components (ignoring the hot pixel values) and applies it to the hot pixel.
Edge and corner pixels and processed by duplicating the external lines
of pixels before running the filter. While this runs the risk of duplicating
hot pixels and inducing artefacts in theory, our practical application found
no example of this occurring. Figure 3.6(d) shows the final results inwhich
the isolated red and green hot pixels have been successfully detected and
restored via our hot pixel removal.

3.6 Colour Consistency Correction

In [94], Grogan et al. show that their approach outperforms several lead-
ing colour correction approaches [114, 115, 116, 117, 97, 96] when applied to
imageswith similar content. Overall, their correspondencebasedmethod
is shown to outperform those that do not consider correspondences [114,
115, 116] while their flexible thin plate spline colour transfer function allows
them to correct more non-linear colour differences between images, out-
performing methods whose transfer functions depend on only a small
number of parameters [96, 97]. They also found thatHwanget al’smethod
[117] can introduce visual artefactswhen correspondence outliers are used
to estimate the transfer function, while Grogan et al.’s cost function is
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Result: SAI I with hot pixels removed.
Define thresholds td = 30, tw = 30 and tρ = 0.8, window size n = 7 ;
for i ∈ I do

Compute Ωn×n(i);
/* Compute hot pixels probability map */
Define count = 0;
for i′ ∈ Ωn×n(i) do

if ||xi′ − xi||2 < td then
count← count+ 1;

end
end
ρi = 1− count

n2 ;
/* Filter hot pixels */
if (ρi > tρ and ||white− xi||2 > tw) then

xi ←medianL∗a∗b∗(Ω3×3(i)− {i}) ;
end

end
Algorithm 1: The process used to detect and correct hot pixels in an SAI
I . Here, white = [100, 0, 0] is the colour white in CIELAB space and || · ||2
denotes the Euclidean distance.

shown to be more robust to outlier pairs, with the smooth transfer func-
tion also ensuring that similar colours stay similar after recolouring. For
these reasons, we decided to adapt Grogan et al’s method to light field
data, and in this section give further details about our approach.

3.6.1 Correspondence Estimation

For the colour transfer algorithm to produce good results, we needed to
compute accurate correspondences between both views. We explored
existing methods for correspondence estimation between SAIs following
the example of Chen et al. [9], who used optical flow successfully in their
work on light fields and chose to adapt a similar method. As the colour
transfer algorithm does not require that all the pixels of an image pair are
matched to obtain satisfying results, a preference towards lower compu-
tational complexitywas taken in this step. We therefore used only the first
step of coarse-to-fine patch matching (CPM) developed by Hu et al. [118]
to obtain a set of sparse correspondences between pairs of views.

It is similar to PatchMatch [119] and works by taking n pixels on a regu-
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(a) (b)

(c) (d)

Figure 3.6: (a) Input SAI with zoom clearly showing red and green hot pixels as described
in Section 3.5; (b) heat map showing values ρi for all pixels i; (c) detected hot pixels with
ρi > tρ; (d) our corrected SAI.

lar grid in the target SAI as seed pixels, noted c
(n)
t , and finds their match-

ing pixels, or correspondences, in the palette view, noted c
(n)
p . To com-

pute these correspondences, a candidate set of correspondences is first
found using SIFT features. In the second step, points are sampled around
each candidate correspondence, and if they prove to be more accurate,
replace the original. This process iterates a number of times until a glob-
ally stable set of correspondences is found. Finally, outliers are detected
and removed from the pool, creating the final set of correspondences
{c

(n)
t , c

(n)
p }.

This process provides us with on average 30k correspondences between
two images of size 625 × 434. We extract the colour information of these
pixel pairs to form the colourmodels representing both target and palette
images and pass them on to the colour transfer algorithm.

44



(a) RAW demultiplexing by Dansereau et al. (b) Proposed RAW demultiplexing

(c) Proposed Recolouring step

Figure 3.7: Matrix of sub-aperture images of thebee_2 light field. This view allows to better
perceive the improvement on the fidelity of the colours our demultiplexing (b) offers over
the demultiplexing of Dansereau et al. [5] (a), and highlights the colour inconsistencies on
the external views that we fix (c).

3.6.2 Colour Transfer

Given a set of n colour correspondences (c(k)t , c
(k)
p )k=1...n between the target

and palette image, where the set of colours c
(k)
t from the target image

should correspond to the colours c
(k)
p from the palette after recolouring,

Grogan et al. [94] propose to fit a Gaussian Mixture Model to each set of
correspondences as follows:

pt(x|θ) =
n∑

k=1

1

n
N (x; φ(c

(k)
t , θ), h2I) (3.3)

and

pp(x) =
n∑

k=1

1

n
N (x; c(k)p , h2I) (3.4)

Each Gaussian is associated with an identical isotropic covariance matrix
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h2I, and the vector x ∈ R
3 represents values from a 3D colour space. Trans-

forming the colours c
(k)
t by some transformation φ which depends on θ

creates the colours φ(c(k)t , θ). The goal is to transform the colour distribu-
tion of the target image tomatch that of the palette image by estimating
the transformation φ that registers pt(x|θ) to pp(x). Grogan et al. propose
letting φ be a global parametric thin plate spline transformation:

φ(x, θ) = A x+ o
︸ ︷︷ ︸

Affine

+

m∑

j=1

−wj ‖x− qj‖2

︸ ︷︷ ︸

nonlinear

(3.5)

with θ = {A, o, wj} the parameters to be estimated. Here, A is an affine
matrix, o is a translation offset vector and {wj ∈ R

3} are coefficients con-
trolling the non-linear part of the transformation with {qj}j=1,..,m a set of
control points evenly sampled in the colour space.

Toestimate theparameter θ controllingφ, the following isminimised:

C(θ) = −〈pt|pp〉 =
n∑

k=1

1

n2
N (0; φ(c

(k)
t , θ)− c(k)p , 2h2I) (3.6)

For our application, better results were obtained using the CIELAB colour
space rather than the RGB colour space. Similar to [94], we add a regu-
larisation term to ensure our thin plate spline function is smooth. We also
found that additional steps had to be taken when optimising this cost
function to avoid local minima. Therefore we used a two step process to
estimate θ. The first step computes an initial estimate for θ using a sub-
sample of the correspondences (computed using k-meanswithK = 1000).
In the second step, the parameters A and o are fixed and only the non-
linear parameterswj are refined using the full set of correspondences. We
found that this two step process ensured local minima were avoided and
the correct solution was found.
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3.6.3 Propagation

As an improvement on our previous work [19] we decide here to focus on
the propagation scheme that allows for the best visual quality. Our goal
here is to guarantee two things: firstly that colours be consistent across
the light field, i.e. two consecutive views should not exhibit any visible dif-
ferencebetween them, and secondly that true scene colours bepreserved
as much as possible in all the views.

The propagation scheme we use in this work is twofold. The demultiplex-
ing step of our pipeline ensures we obtain natural colours in all the views,
with the central views displaying the most accurate colours. Therefore,
when recolouring a target SAI T in the light field we first compute corre-
spondences between T and the centre viewM of the light field using the
method described in Section 3.6.1. To ensure T displays similar colours to
its neighbouring images, we also compute correspondences between T

and its inner neighbouring view P . If T lies on the central column of the
light field, its inner neighbouring view P also lies on the central column,
either above or below T depending on which is closest to the centre view
M . Otherwise, P will lie on the same row of the light field as T , again either
to the left or right of T depending on which is closest to the centre view
M . For each target SAI T , this combination of correspondences is then in-
put into Eqs. (3.3) and (3.4), meaning each view will be recoloured using a
function computed using correspondences from the centre view and its
inner neighbour. We recolour each SAI in the light field starting with the
centre column, from the centre view and outward, then in every row, from
themiddle view outward. This procedure is described in Algorithm 2, with
a visual explanation given in Figure 3.8.

The choice to include the previously-recoloured neighbouring views was
made empirically. Whenonly using the centre view, artefacts occur due to
large parallax between external views and the centre view. On the other
hand using only the inner neighbour views can cause a slight fading of
colours as wemove toward the edges of the light field, as each successive
recolouring causes a minor loss of colour intensity. Therefore, the use of
two views simultaneously as palette images helps us ensure that we get
both the most vivid colour in every view, and a reduction in the possible
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artefacts introduced by the method.

Result: Colour corrected Light Field withm×m SAIs.
DefineM = I(⌈m

2
⌉,⌈m

2
⌉);

for j = 0 : (⌊m2 ⌋ − 1) do
/* Centre column, downward direction */
colCorrect(⌈m2 ⌉+ j + 1, ⌈m2 ⌉, ⌈

m
2 ⌉+ j, ⌈m2 ⌉);

/* Centre column, upward direction */
colCorrect(⌈m2 ⌉ − j − 1, ⌈m2 ⌉, ⌈

m
2 ⌉ − j, ⌈m2 ⌉);

end
for k = 0 : ⌊m2 ⌋ do

for j = 0 : (⌊m2 ⌋ − 1) do
/* every row, from centre SAI to right */
colCorrect(⌈m2 ⌉ ± k, ⌈m2 ⌉+ j + 1, ⌈m2 ⌉ ± k, ⌈m2 ⌉+ j));
/* every row, from centre SAI to left */
colCorrect(⌈m2 ⌉ ± k, ⌈m2 ⌉ − j − 1, ⌈m2 ⌉ ± k, ⌈m2 ⌉ − j);

end
end

Function colCorrect(rowT , colT , rowP , colP):
T = I(rowT ,colT );
P = I(rowP ,colP );
(ct, cp) = (cT , cP ) ∪ (cT , cM );
θ̂ = argminθ C(θ);
I(rowT ,colT ) ← φ(T, θ̂);
return;

Algorithm 2: The propagation technique used to recolour the entire
light field. The blue and red regions correspond to the blue and red
arrows in Figure 3.8.

3.7 Denoising

In addition to the colour artefacts addressed previously, lenslet plenop-
tic cameras have by design a lower signal to noise ratio than single lens
cameras, since light rays coming from different angular directions are no
longer averaged on a single pixel sensor. Thus we propose to apply de-
noising as a final step of the pipeline. In conventional photography, it is
sometimespreferred toperformdenoisingeither before or jointlywith the
demosaicing stepwhen theRAWdata is available (e.g. [120, 121, 122]). How-
ever, applying such denoisingmethods on plenoptic RAWdatawould not
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Figure 3.8: Pattern representing our propagation of colours in a light field. The centre
column is processed first, then each row.

exploit the redundancies in the 4 dimensions of the light field. Further-
more, neighbour pixels on the sensormay correspond to different lenslets
and thus belong to diametrically opposed SAIs. Therefore, applying de-
noising in the early stages of the pipeline is likely to produce cross-talk
artefacts on the external SAIs. A similar issuewas observed in Figure 3.5(a)
when using linear interpolation for the lenslet array rotation step. Denois-
ing is then preferably applied at the end of the process, after the colour
correction step, since the latter helps to improve the consistency of the
light field over the angular dimensions. This benefits most existing light
field denoising methods, which rely on the angular redundancy.

Any of the denoising methods cited in Section 3.2.5 could be used in the
proposedpipeline, butwe choose the state of the art LFBM5Dfilter, which
was shown to perform well on lenslet light fields by Alain et al. [112]. The
core idea of this filter is to exploit redundancies over the light field angu-
lar and spatial dimensions, as well as self-similarities occurring in natu-
ral images. As in the BM3D filter of Dabov et al. [103] or the VBM4D fil-
ter of Maggioni et al. [106], the LFBM5D filter exploits the non-local self-
similarities occurring in natural images, in addition to the spatio-angular
redundancies. 5D patches built from similar 2D patches are filtered in
the 5D transform domain, where their spectrum is very sparse and offer
a good decorrelation between the true underlying signal and noise coef-
ficients. Noise can thus be filtered by applying hard-thresholding on the
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5D transform coefficients in a first step, and Wiener filtering in a second
step. The LFBM5D output is then obtained by applying the inverse 5D
transform on the filtered 5D spectrum.

The denoised light field is the output of the proposed pipeline, and we
evaluate the full performance of the pipeline in the next section, as well
as its preprocessing advantages for several light field applications in Sec-
tion 3.9.

3.8 Validation of the Proposed Pipeline

We use a variety of metrics and experiments to validate the effectiveness
of our pipeline. 17 light field sets were chosen from the EPFL [123] and IN-
RIA [124] datasets captured with Lytro Illum cameras, as well as datasets
captured using our own Lytro Illum camera; those include one set fea-
turing non-Lambertian objects, in order to study the effect of these on
selected applications. A metric analysis of 10 light fields from the recent
Stanford dataset [125] can also be found in the appendix.

In order to validate the different steps of the proposed pipeline, we con-
sider the following seven combinations of settings (see Table 3.1) : 1-Da)
demultiplexingofDansereauet al. [5], 2-De)proposeddemultiplexing (Sec-
tion 3.4), 3-DeH)proposeddemultiplexing +Hot Pixel Removal (HPR) (Sec-
tion 3.5), 4-Re)proposed recolouring (Section 3.6), 5-DaN) toolbox of Dans-
ereau et al. + our denoising (Section 3.7), 6-DeN) our demultiplexing + our
denoising, and 7-ReN) our full pipeline (demultiplexing, HPR, recolouring,
denoising).

Note that other demultiplexing methods have been presented in [1, 2,
3]. However, similarly to [5], they do not consider the issues of wrong
white balance and exposure, saturated highlights, colour inconsistencies,
hot pixels and noise. Therefore, this section only presents comparisons
against the method [5] which we have built upon. Nevertheless, further
review and evaluation of the relevant tools in [1, 2, 3] as well as the more
recent PlenoptiCam software [4] are given in the appendix.
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Table 3.1: Details of the processing applied to the different groups of images or videos used
for the validation of the proposed pipeline.

Da De DeH Re DaN DeN ReN

Dansereau et al. [5] X X

Our demultiplexing (Sec. 3.4) X X X X X

HPR (Sec. 3.5) X X X

Recolouring (Sec. 3.6) X X

Denoising (Sec. 3.7) X X X

(a) Dansereau et al. vs Lytro Desktop (b) Our method vs Lytro Desktop

Figure 3.9: Below red line: refocused image from Lytro Desktop proprietary software (us-
ing ‘as shot’ white balance option). Above red line: central SAI of the bee_2 light field
obtained with (a) Dansereau et al.’s method [5], (b) our method. (Standard sRGB gamma
correction is performed in both cases.)

3.8.1 Colour Consistency

We first show in Figure 3.9 the importance of the simple normalisation
steps proposed in Section 3.4.1 for the colour balance and overall bright-
ness. For reference, the bottom right part of each sub-figure shows a refo-
cused imageobtainedby the Lytroproprietary softwarewith the intended
colours, i.e. as displayed by the camerawhen taking the picture. Note that
the results of Dansereau et al. [5] are oftenwrongly assumed to begamma
corrected, leading to exaggerated contrasts and colour saturation. For a
fair comparison, weperformed standard sRGBgammacorrection for both
methods.

We used several metrics to evaluate the colour accuracy of our processed
pipeline results includingPSNR, SSIM [126], S-CIELab [127] and ahistogram
distance metric. For each metric, we use the centre SAI as reference and
compute the distance between it and all other SAIs in the light field, and
averaged the results over all SAIs. We used the centre view as reference
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for these metrics since the colours in the centre view are the most accu-
rate and are not affected by the colour fading artefacts present in the out-
side views. Disparity differences between the centre view and all other
SAIs may affect the evaluation, but since all methods are compared on
the same set of light fields with the same disparity differences, metric val-
ues are still indicative of colour correction accuracy. PSNR and SSIM were
computed per colour channel and averaged. The results can be seen in
Figure 3.10. As PSNR, S-CIELab and SSIM capture local colour differences
between images, their accuracy can be affected by disparity changes be-
tween SAIs. As a result we have also included a global histogram distance
which is more robust to changes in the image. For a pair of images, to
compute this histogram distance we calculated the average chi-square
differences between their L*, a* and b* histograms, each computed on 25
bins.

In Figure 3.10, we compare the colour consistency of results generated
with Da, DeH, Re and ReN. In terms of PSNR, SSIM, and S-CIELab, Da
performs the worst in all cases, followed by DeH, Re and ReN, confirming
that each step of our pipeline improves the consistency of the light field
and its fidelity with the centre SAI. The histogram distance results tell a
similar story, with the initial decoding methods Da and DeH performing
the worst in general, followed by Re and ReN. However, this metric indi-
cates that in some cases, Da and DeH are more consistent than Re and
ReN (raoul and la_guin).

Upon close inspectionwe found that some colour inconsistencies present
after decoding (DeH) were not successfully removed after recolouring (Re)
due to the smooth, global nature of our thin plate spline colour trans-
fer function which ensures that similar colours in the image cannot be-
come very different after recolouring. For example, in the raoul light field,
large portions of the red background were darker in colour in the out-
side SAIs (see Fig 3.11 (a)). After recolouring using our technique, the dark
red regions were brightened to match the centre image, but this also
caused the brown colour of the cats fur, which has pixels similar in colour
to the dark brown in the background, to becomemore red (see Fig 3.11 (b)).
Therefore, although large portions of the recoloured outside and centre
SAIs are similar, other smaller regionsmay still differ slightly in colour. This
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Figure 3.10: Metric comparison, using PSNR, SSIM [126], S-CIELab [127] and histogram dis-
tance. Higher values are better in terms of PSNR and SSIM, and lower are better for S-
CIELab and the histogram distance.

explains the spike in colour consistency appearing in the local histogram
metrics for the raoul and la_guin light fields. However, we found that
these artefacts do not occur regularly, and even when they are present,
our propagation technique ensures colours change gradually across the
light field SAIs, with neighbouring images displaying similar colours with
only slight colour variations. Our subjective experiments also highlight
that even in these cases, the recoloured SAIs aremore pleasing than those
without recolouring (see Table 3.4).

Overall, we see that each step of the proposed pipeline improves colour
consistency and reduces the colour or histogram distances while improv-
ing the structural similarity by bringing brightness and contrast to similar
levels, and overall lowering pixel-wise error.
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(a) (b)

Figure 3.11: The centre SAI in raoul is overlaid in columnblocks onto one of the outside SAIs
before recolouring (a) and after recolouring (b). The colours at the bottom of the images
indicate which SAIs the columns are taken from - the centre SAI (blue), the outside SAI
before recolouring (green) or the outside SAI after recolouring (red). The colour differences
in the redbackgroundbetween the centre andoutsideSAIs in (a) are successfully removed
in (b) but slight reddish tones are introduced into the cat’s fur.

Figure 3.12: Recolouring examples on the cchart and bee_2 light fields. The first column
shows the centre SAI (red and blue lines are used to create the EPIs in Figure 3.13); the
secondcolumn is oneof the external views, notice the apparentwashingout of the colours
compared to the centre view; the third column is the same view after our recolouring,
restoring most of the original colours.
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(a)

(b)

(c) (d) (e) (f)

Figure 3.13: Stacked EPIs showcasing colour differences in the bee_2 (a,b,c) and cchart
(d,e,f) light fields: after our RAW demultiplexing (a,d), after recolouring (b,e), and after de-
noising (c,f). Dark lines in (a,d) are caused by the dark SAIs in the corner of the light field
(see Figure 3.15) which are corrected by our recolouring. Selected lines are shown in Fig-
ure 3.12.

We visually assess the results of our recolouring method in Figures 3.7,
3.12 and 3.13. The results are visually pleasing, with smooth transitions be-
tween consecutive views, seen in Figure 3.7, and the colours overall re-
maining consistent with those in the centre view (see also Figure 3.12).
This is particularly visible when computing EPIs (as seen in Figure 3.13),
which consist of stacks of the same horizontal or vertical line of pixels
taken across all the views of the light field. These images show a clear
improvement in colour consistency over thewhole light field, which is fur-
ther improved after the denoising process.

3.8.2 Noise Analysis

Analysis on a ground truth noise free dataset

Since the light fields captured with the Lytro camera do not have a noise
free ground truth, we propose to quantify the noise level by performing
blind noise level estimation. For that purpose we use themethod of Chen
et al. [128], which estimates thenoise level of an imagebasedon the eigen-
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Table 3.2: Noise level σest estimated using [128] for each light field and each setting combi-
nation described in Table 3.1. The 3 setting combinations including denoising are shown
on the right.

σest Da De DeH Re DaN DeN ReN

anky 2.62 1.91 1.90 1.82 0.86 0.48 0.51
cchart 1.92 1.99 1.99 1.53 0.54 0.63 0.65
desk 3.45 3.06 3.11 2.85 1.18 0.97 1.12
friends 3.18 3.02 3.03 2.93 1.96 1.91 1.96
magnets 2.86 2.85 2.85 2.86 1.87 1.89 2.02
bee_1 2.08 2.13 2.13 1.80 0.79 0.89 0.97
bee_2 8.53 5.73 5.69 3.97 6.68 3.42 2.04
chezed 8.20 5.44 5.41 3.72 6.29 3.06 1.55
duck 6.60 5.40 5.49 5.74 5.76 4.66 5.05
fruits 5.87 4.36 4.39 3.48 4.45 3.11 2.50
rose 5.12 3.91 3.92 3.38 3.28 2.29 2.01
la_guin 4.07 3.06 3.06 2.47 1.64 0.88 0.71
chicken 4.90 3.29 3.32 2.86 3.23 1.80 1.69
odette 5.93 4.29 4.20 2.99 3.98 2.25 1.48
raoul 3.94 3.18 3.22 3.09 2.53 2.02 2.03
rodo 8.12 6.26 6.23 3.79 6.21 4.10 1.85
ukulele 4.42 3.43 3.44 3.45 2.94 2.14 2.24
Average 4.81 3.72 3.73 3.10 3.19 2.15 1.79

values of the covariancematrix of the imagepatches, basedonanAdditive
White Gaussian Noise (AWGN) model.

To first validate the assumption that the noise of the Lytro camera follows
the AWGN model, we created a noisy light field dataset consisting of 5
scenes. For each scene, 3 different noise levels were created by chang-
ing the ISO gain and maximising the shutter speed so that the image
is as bright as possible without saturation. For each scene and ISO set-
ting, ~30 noisy instances were captured, and a ground truth noise free
light field was created by averaging the noisy instances. We ensured that
the lighting conditions remained stable. The light field noise can then be
obtained by removing the noise free light field from the noisy instance.
By analysing the histograms of the light field noise, we observed that the
AWGNmodel is validated for each SAI of the light field. By fitting a normal
distribution to the histograms, we then obtained the ground truth noise
level for each colour channel as the standard deviation of the normal dis-
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Figure 3.14: Blind noise level estimation [128] plotted against the ground truth noise level,
averaged over the 5 light fields of the noisy dataset. Although the no-reference metric
from [128] does not estimate the exact noise level, it can be use for relative comparison.

tribution. More details on the dataset are given in the appendix.

Finally, we evaluated the chosen blindmetric [128] by comparing the esti-
mated noise level to the ground truth. The graph of Figure 3.14 shows the
estimated noise level, averaged over all SAIs and all light fields, against
the ground truth noise level. While the blind metric does not evaluate
the exact noise level, a near linear relationship between the ground truth
and estimated noise level can be observed, which validates the use of the
chosen metric for the evaluation of our pipeline.

Noise level estimation of the proposed pipeline

Here we estimate the noise level after each step of the pipeline using the
blind metric [128]. The noise level of the whole light field is computed by
first independently estimating the noise level of each SAI, and then aver-
aging the results. Results are shown in Table 3.2 for all setting combina-
tions described in Table 3.1 and all 17 test light fields.

We observe that our proposed demultiplexing method can slightly re-
duce the noise level compared to Dansereau. The hot pixel removal step
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Figure 3.15: View of the matrix of SAIs with the pattern of progression used to create the
subjective test videos. Black and dark corner images are ignored for comfort to avoid
flickering.

does not impact the noise level significantly, since the hot pixel noise is
very different from AWGN. The noise level is again slightly decreased af-
ter colour correction, but overall the order of magnitude of the noise level
remains unchanged for all these steps. In some cases the noise is even
amplified after the colour correction, which further justifies applying de-
noising last, e.g. cchart, chezed. A clear reduction of the noise level is
observed for all approaches after applying the LFBM5D filter. Overall, our
full pipeline provides the smallest noise level compared to applying de-
noising on the demultiplexing of Dansereau et al. [5] or on our proposed
demultiplexing approach. A visual comparison before and after denoising
is shown in Figure 3.13.

3.8.3 Subjective Evaluation

We evaluated the pipeline using a subjective experiment. For this we
crafted videos showing all SAIs, starting from the centre view and follow-
ing an expanding snail-like pattern going clockwise toward the external
views (see Figure 3.15).

This pattern was chosen instead of a more traditional snake-like pattern
going from line to line because it highlighted ourmodifications of the ex-
ternal viewsmore clearly, and offered smoother transitions. To stay consis-
tent across all methods, and to reduce discomfort, we decided to ignore
the four black and four dark views in each corner. Only our recolouring
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step fixes the dark views and keeping them in the videos causes unneces-
sary flickering for the othermethods. The videos were created with 25 fps
for comfort and were therefore approximately seven seconds long. Using
the datasets described in Section 3.8, this resulted in 119 videos so the full
session lasted approximately 30minutes, including time for explanations,
setup, a short training and comments at the end.

We collected data from 22 voluntary participants (14men, 8 women) who
were tested for visual acuity and colour blindness, and rated these videos
in a traditional side-by-side pairwise comparison experiment. We used
Psychtoolbox for Matlab in order to ensure the videos were properly syn-
chronised. To reduce bias, we asked the participants to rate the videos
basedon their personal appreciation, insteadofguiding themtoward look-
ing for specific artefacts or particular sets of colours. The only emphasis
was put on image quality consistency along the videos. The participants
were then guided through a short training session to ensure they under-
stood the task at hand, and the controls to perform it. The experiment
took place in a dark room as recommended by ITU [129]. The screen was
colour-calibrated beforehand.

The responses were processed using a freely accessible tool performing
Thurstonian Case V scaling for pair-wise comparison experiments devel-
opedbyPerez-Ortiz et al. [130]. After scaling, just-objectionable-difference
scores (JOD), as described by Perez-Ortiz et al., are obtained for each case.
A difference of 1 JODmeans that one option is selected over another with
75%probability (themid-point between randomguess and certainty). The
relationship between thepreferenceprobabilities and the JOD follows the
Gaussian cumulative distribution function, and the exact JOD values are
found through amaximum likelihood estimation as explained in thework
of Perez-Ortiz et al. The outcome is summarised in Table 3.3 and Fig-
ure 3.16.

The results show that ourdemultiplexing is preferredby the subjectsmore
than the one by Dansereau. However, occasionally, some participants
commented that they preferred the over-saturated colours obtainedwith
Dansereau et al.’s [5]methodmore than ours. The results indicate that our
hot pixel removal tool has a positive effect of similar magnitude when ap-
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Table 3.3: Subjective experiment results: just-objectionable-difference (JOD). First column
is 0 we use it as reference for comparison. Negative values indicate the reference (in this
case Da) was preferred over the method, while positive values indicate the method was
preferred over the reference. For explanation and settings details refer to Section 3.8.3 and
Table 3.1.

Da De DeH Re DaN DeN ReN

anky 0 0.64 0.61 2.05 -0.17 0.8 3.07
cchart 0 0.09 1.26 1.95 -0.1 0.38 2.44
desk 0 -0.01 -0.2 0.04 0.14 0.28 1.11

friends 0 0.8 0.7 2.21 0.92 1.31 2.11
magnets 0 0.67 1.25 2.69 0.84 0.94 3.37

bee_1 0 1.35 2.92 3.99 0.7 2.7 4.89
bee_2 0 7.95 8.1 10.03 0.33 8.75 10.14
chezed 0 -0.03 -0.16 1.12 0.41 0.05 1.26
duck 0 0.01 0.22 1.14 1.16 0.1 0.83
fruits 0 0.06 -0.63 1.05 0 -0.72 1.69
rose 0 0.55 0.49 1.5 0.71 0.25 1.63

la_guin 0 0.48 1.13 2.31 0.22 1.53 3.51
chicken 0 0.14 1.37 2.59 1.2 0.96 2.89
odette 0 -0.13 0.23 0.77 1.58 0.13 1.36
raoul 0 0.94 2.82 5.26 1.19 0.84 6.45
rodo 0 0.95 1.24 2.54 -0.44 1.54 1.98

ukulele 0 -1.15 -0.5 0.59 0.84 0.44 1.15
Overall 0 0.32 0.64 1.72 0.55 0.72 2.06

plied to our demultiplexing. The colour correction step has the biggest
effect on the pleasing factor, against all other settings, but even more
significantly when associated with the previous steps of our pipeline. Fi-
nally, our final denoising step, in all scenarios, shows a level of improve-
ment comparable to that of our demultiplexing and hot pixel removal
tool. Overall, we can conclude that SAIs processed using our pipeline are
significantly more appealing than when processed with the toolbox of
Dansereau et al.

The significance of the results were also analysed by the statistical signif-
icance analysis proposed by Perez-Ortiz et al. and reported in Figure 3.16.
In this figure, the face values indicate the JOD difference, JODi − JODj ,
between the ith row and jth column, where positive values indicate that
the settings in the row are better than that in the column and negative
values indicate the opposite. Black boxes indicate this difference is statis-
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Figure 3.16: Overall JOD score differences for all contents and subjects, where the face
value indicates JODi−JODj , between the ith row and jth column. Positive values indicate
the settings of the row are better than that of the column. Black boxes specify that this
difference is statistically significant. Refer to Section 3.8.3 for analysis.

tically significant. The results show that overall, all of the proposed steps
bring a statistically significant difference compared to the previous step.
We can easily see that the whole pipeline (i.e., ReN ) is superior to all cases,
and recolouring is also found to be significantly better than the DaN and
DeN cases, which shows that the effect of recolouring is critical for human
perception.

3.8.4 Aesthetic Appeal

As an additional way to compare our results to the previous state of the
art, we use a recent neural metric by Talebi et al. [131] that focuses on the
aesthetic aspect of images called NIMA. A summary of this analysis can
be found in Table 3.4.

NIMA simulates an estimation of a group of people’s ratings for aesthetic
appeal based on its pleasing factor, and thus gives an average score as
well as standarddeviation for each image. Weobtain our results by testing
each individual SAI, and average the results to get a unique score for each
light field. NIMA can also be used as a metric to measure noise level, but
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Table 3.4: NIMA results. For better reading, indicated in bold black are the best scores,
and in italic blue the worst ones. The values represent for each content the average of
individual views’ scores. For settings details refer to Section 3.8.3 and Table 3.1.

Da De DeH Re DaN DeN ReN

anky 4.67 4.57 4.57 4.81 5.49 5.47 5.56
cchart 5 5.05 5.05 5.07 5.23 5.3 5.32
desk 4.7 4.78 4.78 4.83 4.99 5.05 5.16
friends 5.15 5.4 5.39 5.52 5.25 5.47 5.61
magnets 4.22 4.12 4.12 4.27 4.96 4.85 4.97
bee_1 4.26 4.35 4.35 4.46 4.53 4.77 5.05
bee_2 4.5 4.36 4.36 4.46 4.47 4.46 4.6
chezed 5.27 5.33 5.29 5.32 5.34 5.4 5.47
duck 4.84 4.86 4.85 5 4.96 4.98 5.12
fruits 4.66 4.52 4.52 4.52 4.63 4.46 4.47
rose 4.93 4.88 4.88 4.84 4.75 4.67 4.66
la_guin 4.66 4.3 4.32 4.44 4.92 4.95 5.06
chicken 3.98 4.03 4.02 4.18 4.06 4.73 4.95
odette 4.89 4.78 4.79 4.87 4.97 4.84 4.95
raoul 4.24 4.16 4.16 4.31 4.12 4.19 4.7
rodo 4.38 4.38 4.37 4.36 4.39 4.38 4.37
ukulele 4.55 4.5 4.5 4.58 5.36 5.19 5.33
Average 4.64 4.61 4.61 4.7 4.85 4.89 5.02

since we are interested in the pleasing factor and have more dedicated
metrics for noise analysis, we decided to use it by resizing the images in-
stead. As suggested by the authors, each SAI is resized from 625 × 434 to
224× 224 before being evaluated by the pre-trained network, since this al-
lows for the most accurate results based on aesthetic quality.

From Table 3.4, we can see that, with few exceptions, the results obtained
using our full pipeline garner better scores compared to those processed
by the toolbox of Dansereau et al. [5]. On average, both the recolouring
and denoising step improve the image quality, except in the case of the
fruits and rose light fields in which Dansereau et al.’s method performs
better. Images obtained with Dansereau et al.’s method have brighter,
more saturated colours than those generated using our approach and the
NIMAnetwork can associate these unnatural colourswith better aesthetic
value. This is consistentwith commentsmadeby someparticipants of the
subjective experiment described in Section 3.8.3.
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3.8.5 Computation time

Wereport here theaveragecomputation times for eachpart of thepipeline.
Most of the steps were implemented in Matlab, and the denoising was
implemented in C++. Our demultiplexing step takes ~2’05” per light field,
whereas in comparison thedemultiplexingofDansereauet al. takes ~1’10”.
The difference is essentially explained by the White Image-guided inter-
polation. The HPR step runs in ~1’40”. Correspondences between neigh-
bour views andwith centre view (2 sets per view to recolour) are computed
in ~5’45”. The recolouring step runs in ~234’ (~60” per SAI) and finally the
denoising step takes ~50’.

Possible optimisation includesparallelisationof the colour correction step,
as several rows could be processed at the same time, once the centre col-
umn images are available. GPU implementation would also speed up the
process of the propagation step, or the denoising. Finally, our implemen-
tation of the recolouring uses all the available correspondences, when a
fraction could be selected to reduce the computation time, albeit with re-
duced quality. Finally, in this work we have proposed using CIELAB space
colour values when estimating the colour transfer function to ensure the
best results. Reducing the colour space representation from three chan-
nels to two could also provide significant computational speed up and
would be an interesting avenue for future investigation.

3.9 Applications

3.9.1 Rendering

One of the first light field applications was the ability to synthesise new
images corresponding to novel viewpoints in real time, without requiring
any 3Dmodel of the scene, as described by Levoy et al. [10]. For each pixel
in the novel image, the intersection of the corresponding light ray and
the two light field planes is computed. The intersection with the camera
planes allows the closest available SAIs to be found, while the closest pixel
positions are computed from the intersection with the image plane. The
final value of a pixel in the novel image is then computed by interpolating
between the nearest SAIs and the nearest pixels.
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Figure 3.17: Novel viewpoints rendered from the cchart light field, moving from left to
right. Top: Dansereau et al. [5] (Da). Bottom: ours (ReN ). Colour inconsistencies inside
and across viewpoints are highlighted in red.

In this experiment, we rendered novel views corresponding to a camera
close to the object of interest and moving horizontally from left to right.
We show a few rendered images for the cchart and bee_2 light fields in
Figures 3.17 and 3.18 respectively. On the top row, results obtained for a
light field decoded with the toolbox of Dansereau et al.[5] (Da) are dis-
played, andon thebottomrow results obtainedwithour full pipeline (ReN ).
As rendered images are created frommultiple source SAIs, clear colour in-
consistencies appear in images rendered fromDansereau, but also in be-
tween the different novel viewpoints. In addition, images rendered from
our pipeline are less affected by the dark SAIs in the corners of the light
field.

3.9.2 Compression

Due to the large amount of information contained in light fields, their
compression is essential for a large scale adoption of this image format.
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Figure 3.18: Novel viewpoints rendered fromthebee_2 lightfield,moving from left to right.
Top: Dansereauet al. [5] (Da). Bottom: our full pipeline (ReN ). Colour inconsistencies inside
and across viewpoints are highlighted in red.

However, aforementioned artefacts in existing plenoptic data are likely to
reduce theefficiencyof traditional compressionmethods. In order to eval-
uate the impact of our quality enhancement tools on the compression
performance, we have used a common light field compression method
presented by Liu et al. [132]. This method forms a pseudo video sequence
fromthe lightfield’s SAIs andencodes the sequenceusing theHEVCvideo
coding standard, therefore taking advantage of redundancies between
SAIs.

For this experiment, we have encoded three different versions of each
light field corresponding to Da, De and Re in Table 3.1 (i.e. demultiplexing
of Dansereau et al. [5], our demultiplexing only, and our demultiplexing
followed by hot pixel removal and colour consistency correction). Each
version was encoded several times with different bitrates by varying the
QP parameters in HEVC over the values {12, 16, 20, 24, 28, 32, 36}. In order
to evaluate the quality of the decoded light field, we compute the peak
signal to noise ratio (PSNR) using as a reference, the uncompressed light
field of the corresponding version. The experiment was performed for 12
light fields including 4 from the EPFL dataset, 4 from the INRIA dataset
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Table 3.5: Bitrate savings obtained for light fields extracted with our demultiplexing (De)
and with our hot pixel removal and colour correction (Re). The gains are computed with
the Bjontegaard metric [133] with respect to light fields extracted using the method of
Dansereau et al. [5] (Da). These results assume that similar PSNR for each version (Da, De,
Re) correspond to similar perceived quality.

Source Image De Re

EPFL

bikes -0.9% -29.1%
fountain&vincent_2 8.9% -33.7%
stone_pillars_outside -19.8% -59.2%

vespa 10.8% -50.1%

INRIA

bee_2 -67.7% -92.2%
bumblebee -36.1% -78.1%

duck -52.1% -80.3%
fruits -62.3% -81.1%

V-SENSE

cherry_tree -35.8% -55.4%
chicken -83.1% -98.7%
rodo -51.2% -72.2%

wine_bottles -67.3% -93.4%
Average -38% -68.6%

and 4 from our captures (V-SENSE).

Note that the PSNR is computed from a different uncompressed refer-
ence for eachversion. However, our experiments in Section 3.8have shown
that our modified demultiplexing as well as our additional hot pixel re-
moval andcolour consistency correction steps improve the subjectivequal-
ity in theuncompressed case. Here, we assume that the relative perceived
quality of the three version Da, De and Re are unchanged when they are
altered with similar compression losses. Therefore, we consider that for
the same PSNR scores, the quality of the compressed light fields De and
Rewill not be perceived asworse than that ofDa. Furthermore, the results
in Table 3.5 show that, on average, the light fields in De and Re require re-
spectively 38% and 68.6% less bitrate to be encoded with a similar PSNR as
Da. This clearly demonstrates that the enhanced quality resulting from
both our demultiplexing and post processing steps also has a very bene-
ficial impact on the light field compression.
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3.9.3 Super-Resolution

Light fields captured by lenslet cameras have a poor spatial resolution
due to the multiplexing of both spatial and angular information on a sin-
gle sensor. Spatial super-resolution of light fields captured with a lenslet
camera is thus a common application.

In this experiment, we used the extension of the LFBM5D denoising filter
to spatial super-resolutionpresentedbyAlain et al. [134]. Thismethoduses
the sparse coding of the LFBM5D filter as a prior to solve the ill-posedness
of super-resolution. A two-step iterative algorithm alternating between
a LBM5D filtering step and a back-projection step is used to obtain the
super-resolved light field.

We show results for a single SAI of the raoul light field in Figure 3.19. The
super-resolution result (right) is compared to a simple bicubic upsam-
pling (left). Results obtained with the toolbox of Dansereau et al. [5] (Da)
are displayed on the top row, with results for our full pipeline (ReN ) on
the bottom row. The benefit of our pipeline is clearly visible, especially in
terms of hot pixels and noise removal. This is due to a general side effect
of super-resolution which amplifies the high frequency corresponding to
noise. This is common to all super-resolution methods, not only the one
used here.

3.9.4 Light Field Editing

Light field editing is another important application in light field imaging,
with works by Jarabo et al. [15] or Zhang et al. [135]. To determine whether
our proposed pipeline provides any advantages for light field editing ap-
plications, we applied the recent editing technique of Frigo et al. [136] to
both our processed light fields and those processed with Dansereau et
al.’s method [5]. The technique proposed by Frigo et al. [136] allows the
user to edit the centre SAI of the light field, either via image recolouring
or inpainting, and propagates the edits to the remaining views using a
structure tensor driven diffusion on the EPIs. Some light field editing re-
sults can be seen in Figures 3.20 and 3.21.

Due to the strongcolourdifferencesbetween the centre SAI and theexter-
nal views of light fields obtained usingDansereau et al.’smethod (Da), the
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Figure 3.19: Spatial super-resolution (right) of the raoul light field compared to a simple
bicubic upsampling (left). Top: Dansereau et al. [5] (Da). Bottom: our full pipeline (ReN ).

tensor-driven diffusion becomes inaccurate at the edges of the light field,
causing unwanted warping of the SAIs (Figures 3.20 and 3.21, column 1).
The strong colour differences between SAIs alsomeans that when colours
from the centre SAI are propagated to other SAIs, they donot blend seam-
lessly with the rest of the image, creating strong colour inconsistencies
(Figures 3.20 and 3.21, column 1, see inpainting results). Interestingly, we
also found that when editing light fields generated using our full pipeline,
including denoising (ReN), unwanted warping artefacts are also created
(Figures 3.20 and 3.21, column 3). As with any denoising algorithm, small
image details can also be removed with noise, some of which are needed
by the tensor diffusion step in the edit propagation software proposed by
Frigo et al. Removing these details creates inaccuracies and causes arte-
facts. On the other hand, edit propagation results applied to our pipeline
before denoising (Re) are the best (Figures 3.20 and 3.21, column 2). The
consistent colours across these light fields ensure that the edits are propa-
gated correctly, and that no inconsistent colours can be seen in the edited
SAIs, even towards the outside of the light field. This indicates that if using
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a similar editing approach, edit propagation should be applied after our
recolouring step, with denoising applied as a final step.

3.9.5 Depth / disparity estimation

We evaluate here the performance of the proposed pipeline on depth
or disparity estimation, which is one of the flagship applications for light
fields. For that purpose we use 4 different methods [6][7][8][9] applied af-
ter every step of the pipeline. For all methods we used the code provided
by the authors. The first method estimated the depth by simply com-
puting the slopes of the EPIs based on the light field gradient [6]. Note
that the codeprovidedby the authors implements thefirst stepdescribed
in the paper and only outputs a sparse estimation. The second method
was designed to be robust to occlusions by analysing the statistics of an-
gular patches of the light field together with refocus cues [7]. The third
method uses the spinning parallelogram operator to estimate the slopes
of the EPIs and provide a robust depth estimate [8]. Finally, the fourth
method adapted optical flow techniques to estimate the disparity on row
or columns of the light field [9].

Figure 3.22 shows the results for the fourmethods on the bee_2 light field.
Results for 7 additional light fields are available in the appendix. For each
method, the depth or disparity was estimated for the centre SAI of the
light field decoded with the toolbox of Dansereau et al. [6] without (Da)
and with denoising (DaN), our demultiplexing (De), and our full pipeline
without (Re) and with denoising (ReN). Note that all results were colour
coded so that closeobjects appearwhite, while far objects appearblack.

Since no ground truth is available for the depth or disparity maps, no
objective evaluation could be conducted. For each method, slight varia-
tions can be observed between the depth or disparity maps correspond-
ing to the different steps, but no step seems to clearly deter or improve
the performances. Note that this is also true after the denoising step, even
though denoising is sometimes not recommended before such applica-
tions. While in general denoising may smooth images, the LFBM5D al-
gorithm chosen for this work can preserve edges, which are useful fea-
tures for most depth or disparity estimationmethods. Thus the proposed
pipeline does not seem to strongly impact the performances of depth or
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Colour Editing
Da Re ReN

Figure 3.20: Light field colour editing results using the edit propagation method of Frigo
et al. [136]. For each light field, the top row shows the user edits made to the centre SAI
of the light field, with red lines indicating themask used during the propagation process.
The second row shows a sample SAI from the light field after the edit propagation.
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Inpainting
Da Re ReN

Figure 3.21: Light field inpainting results using the edit propagation method of Frigo et
al. [136]. As previously, for each light field, the top row shows the user edits made to the
centre SAI of the light field, with red lines indicating the mask used during the propa-
gation process. The second row shows a sample SAI from the light field after the edit
propagation.
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Centre SAI Da DaN De Re ReN

Figure 3.22: Depthmaps estimated for different steps of the pipeline on bee_2 using, from
top to bottom: [6], [7], [8], and [9].

disparity map estimation.

3.10 Conclusion

We presented in this chapter a high quality light field extraction pipeline
aimed at reducing or removing the various artefacts, colour inconsisten-
cies andnoise that areprevalent in the typical output fromplenoptic cam-
eras. We provide and analyse several tools that can be used either on
their own or in conjunction with each other for increased effect, and we
show that each of the steps is necessary to ensure the best possible im-
age quality. We also highlight the importance of the order in which each
step is performed within the pipeline. We have proven, using a number
of metrics, as well as a subjective experiment, that our results outclass
those obtained from the previous state of the art tools, and finally make
the entirety of the sub-aperture views usable by the user. We note that
both the recolouring and denoising steps in our pipeline can be applied
to light fields capturedwith camera arrays or gantries, and are not limited
to plenoptic light fields. Finally we demonstrate that using higher quality
light fields enhances the quality of the results for a number of classic light
field applications, and therefore expect that this improvement will allow
the research community to be keener to use these cameras and data for
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their work.
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Chapter 4

Light Field Soft Colour
Segmentation

In this chapter we detail our second contribution, which looks at perform-
ing soft colour segmentation on the enhanced light field data we obtain
using the methods detailed in the previous chapter. We show that this
segmentation benefits from additional light field images, and detail an-
other contribution, using depth cues to perform object segmentation. Fi-
nally we take look at edited results and show that our contributions help
improving the output quality. Finally we put this in perspective and dis-
cuss how the methods could be improved.

74



4.1 Introduction

Thefieldof research in lightfields is vast andcovers awidearray of applica-
tions such as rendering, depth estimation, or super-resolution, novel view
synthesis, compression, and many more. One field in particular seems to
be less attractive to researchers: image editing, which we theorise could
take advantage of the higher dimensionality of light field data. In this
chapter, we investigate the possibility of applying colour decomposition
algorithms on light fields and detail the advantages and drawbacks of
such methods.

As far as we are aware, this is the first work looking at using these meth-
ods on light field images. Additionally we propose taking advantage of
light fields to counteract one of the drawbacks of decomposition meth-
ods. Since the output of such algorithms is generally a number of colour
layers based on a pre-computed palette, these layers can contain object
andbackground information thathaveno semantic relation to eachother.
As a result any editing done on a single layerwould affect all these objects,
perhaps at the risk of causing unwanted artefacts, e.g. applying unnatural
colours to human skin. In thisworkwepresent an automatic depth-based
object-aware layer separation method to allow for easier colour editing.

4.2 Related work

4.2.1 Soft colour segmentation

Soft colour segmentation is amethodof imagedecompositionwhichcon-
sists of separating the image into several semi-transparent layers contain-
ingpixel information close to a colour fromapre-computedpalette. Initial
works by Aksoy et al. used colour unmixing to satisfy minimisation func-
tions, in which the colour palettes were computed by probability distribu-
tions obtained through pixel voting [16]. Tan et al. obtain a colour palette
by simplifying a RGB convex hull of all observable colours [137]. The sim-
plification can be adjusted to obtain a different number of colours in the
palette.
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Aksoy et al. further improved upon their previous techniques by imple-
menting amore efficient voting scheme [17]. In order to obtainmore con-
sistent colour layers, Tan et al. use spatial coherence by extending their
palette extractionmethod through aRGBXY convex hull [138]. A new tech-
nique by Koyama et al. decomposes images based on editing software
blendingmodes [139]. The resulting layersmay contain colour that do not
appear in the original image and only using the proper blending modes
for reconstruction to ensure a stable result.

One of the drawbacks of Tan et al.’s method [138] is that by simplifying
a RGB convex hull, it is quite possible to obtain palette colours that do
not appear in the image. Feeling that obtaining a palette that would not
be representative enough of the image can make editing work less intu-
itive for the user, Wang et al. use a similar method where a polyhedron
is placed around the image colours in 3D space [140]. However they do
not necessarily compress it to the convex hull and the palette they extract
through an optimisation problem ends up beingmore accurate. Jeong et
al. first sample pure colours, then build a hierarchical model by splitting
each layer, and all the possible colours within it, into two layers where the
colour variance is much smaller and the dominant colours are as distinct
from each other as possible. [141]

4.2.2 Object Segmentation for Light Fields

Object segmentation on light field images has had a variety of techniques
proposed. Mihara et al. propose a graph-cut method that works on sub-
aperture views to find object edges and segments objects by enforcing a
global consistency [142]. Hog et al. developed a method to exploit the re-
dundancy of light fields to reduce the graph size of Markov random fields
by using a ray bundle structure [143]. Their method is interactive and en-
sures stability and consistency across all light field views. Zhu et al. pro-
pose a super-pixel segmentation method which uses ray-tracing in the
light field volumeandaccounts for thedisparity betweeneach super-pixel
to provide a refocus-invariant segmentation [144]. Amore recentmethod
proposed by Khan et al. improves upon the previous one by using a clus-
tering step to enforce better consistency across the light field instead of
simply propagating the results from the central view [145].
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4.2.3 Light Field Editing

Jarabo et al. provided a comprehensive overview of different techniques
used for light field editing, which included colour editing, inpainting, add-
ing objects at various depth layers or drawing on partially occluded sur-
faces [15]. Le Pendu et al. propose a novel method for inpainting using
low rank matrix completion which takes advantage of the redundancy
of light field views [124]. Frigo et al. developed a method using epipolar
planes to propagate edits, colour or inpainting, to the entire light field in
a consistent manner [136]. Zhang et al. created a method allowing ob-
ject manipulation such as resizing or moving through depth planes [146].
They first decompose the central image in different depth layers, allowing
the user to edit any of them. The patch-based method then reconstructs
the image by transforming all possibly affected layers. Finally these edits
are propagated from the centre view to the rest of the light field views. In
this work we wish to provide another level of editing for artists and other
light field users.

4.3 Soft colour segmentation

We base our investigations on our implementation of the more recent
method by Aksoy et al. [17]. This decision was motivated by the output
of the method, providing layers of colours present in the image, which
allows for more intuitive editing. As the method was developed for single
images, we require a new strategy to apply it on light field data in the sub-
aperture image representation, in order to enforce consistency in both the
colour palette and the segmentation between all the views. In this section
we describe some of the methods we used in achieving this goal.

4.3.1 Naive approach

For this initial approach, we apply the entire soft colour segmentation
method to each individual sub-aperture view. Thatmeans a colour palette
is computed for each image and the layer separation is donebased on this
palette. Because of slight variations in colour distribution caused by the
disparity, the computed palette is not consistent across all views. This is
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Figure 4.1: Results of our naive approach to perform soft colour segmentation on two con-
secutive views of images bee_2 and chicken, with associated colour palettes. The original
view is on the left. In both cases, as with most images we studied, the number of lay-
ers can be different across views. In the top row of image bee_2 the last two layers end
up mostly in a single layer in the decomposition of the bottom row, and in the top row
of chicken the additional layer is composed mostly of pixels that end up in layers 2 and 3
in the decomposition on the bottom row. This results in major inconsistencies in these
layers.

visible in Figure 4.1, where we show the layer decomposition of two con-
secutive views in a light field row. In many of the examples we worked
on, the palette size varies by one or even two colours, leading to layers in-
consistent in number and representation. Any kind of editing done with
layers like these would result in erroneous results with flickering between
views and artefacts clearly visible nomatter whichmethod is used to rep-
resent or view the light field.

4.3.2 Global approach

After seeing the output of our firstmethod, we investigatedways of ensur-
ingglobal consistency, especially regarding the computation of the colour
palette. To this end, we first construct a mosaic image containing all the
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Figure 4.2: Results of our global approach to perform soft colour segmentation on the
same consecutive views as in Figure 4.1. Compared to the naive approach here the num-
ber of layers is equal, and the colour distribution within layers is more consistent.

views from the light field, and perform an initial computation of a single
global colourmodel, before applying the soft colour segmentation to each
individual view using that single colour palette. The reasoning behind
this was to ensure all colours from the light field would be represented
in the colour palette, including some that might appear only in specific
views due to occlusions. This method, as we can see in Figure 4.2, pro-
duces more spatially consistent results with less variation between views,
although some minor flickering can still be detected upon closer inspec-
tion (zoom in). The colour distribution in each layer is also generally more
consistent and useful in comparison with the results of the naive method
where we obtain a different number of layers. When using this global
methodwe enforce consistency in both colour palette size andwithin the
composition of each layer.
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Using a global colour model additionally ensures all the views have the
samenumber of layers andallows for situationswhere someobjects could
suffer from occlusion in some views but not others. In the case where
the object is occluded, the layer would simply appear nearly empty. This
is preferable to having the occluded objects appear in unrelated colour
layers because of their low representation ratio.

4.3.3 Epipolar plane images

Weadditionally attempted to perform soft colour segmentation on epipo-
lar plane images (EPI) instead of the sub-aperture views. We compute the
colour palette using information from the whole light field rather than
from a select view. Similar to the global method, the results are much
more consistent globally, since the EPIs contain exactly the same colour
information as the related views, even though the distribution is different.
As this method offers no advantage while adding an extra computational
step to generate the EPIs, we decide to use the method described in sec-
tion 4.3.2 as our base for the rest of this chapter.

4.4 Object-based layer separation

In this section we present a method to separate objects in layers based
on their depth. When analysing the results of traditional soft colour seg-
mentation, it appears that many layers contain information from differ-
ent objects which do not necessarily have a semantic relation. Editing
the entire layer will affect all these objects and may cause some undesir-
able artefacts. Our intuition is to separate some of these layers into se-
mantically relevant ones, which shouldmake some editing tasks easier to
perform.

As light fields give us additional depth information, we chose to use it to
separate objects that may appear in the same colour layers. We use the
Spinning Parallelogram Operator method of Zhang et al. [8] to obtain a
depth map of the light field. Using this information, we compute a his-
togram of the depth values of the image, as in Figure 4.3. Once we obtain
the histogram, we assume each peak represents a specific object, or at
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the least a depth layer containingmostly information froma single object.
Values in and around theminima typically mark the separation. However
toget themost precise splitweuse agradient-basedmethoddescribed in
the next paragraph. For instance in Figure 4.3, it would appear there are
three potential separate objects based on the histogram. Visual inspec-
tion, however, only shows two objects, while the values near zero belong
to the background.

To rectify this as well as cases where there exists some overlap in depth
between separate objects, we use a gradient-basedmetric which looks at
continuity between the approximate centroids of the objects and the rest
of the pixels. Starting from these centroids, we go outward and measure
the difference in depth values until wedetect sudden changes larger than
auser-defined threshold typically chosenbasedon the rangeof depth val-
ues. Experimentation shows that setting this value as half the spread of
depth values for the current object gives satisfying results. If that thresh-
old is exceeded we determine the pixels belong to another object. Some
visual results of layer splittingbasedon this canbeobserved inFigure4.4.

Even though the method splits the layer into separate, semantically co-
herent layers, some artefacts may occur. For instance in the image greek

the layer containing the right statue still contains somebackground infor-
mation. This is due to the depth estimation method incorrectly handling
this boundary. Similarly in the image chicken some information from the
metal boxes end up in the same layer as the background wall, instead of
being in a separate layer, since the depth estimation puts them both on
the same level.

4.5 Experimental results

In this section we briefly detail the run time of the different parts of our
work. We additionally present edited results taking advantage of our con-
tributions. The images in this section have been sampled from the IN-
RIA dataset [124], the HCI dataset [147] and some are our own Lytro im-
ages [20]. All of the Lytro data has been decoded, colour corrected and
denoised using our methods decribed in chapter 3.
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Figure 4.3: Depth map of synthetic image greek (see Figure 4.4). On the right, the his-
togram of depth values, cleaned to ignore the white values around the left statue and the
black values belonging to the background.

Figure 4.4: Examples of layer splitting using depth information on synthetic image greek

and real image chicken The original view is on the left.

4.5.1 Computation time

The computation time for a single light field view using the naive ap-
proach, i.e. computing the colour palette and doing the segmentation,
takes on average 12minutes for our C++ implementation of the method,
which has not been optimised. This needs to be multiplied by the num-
ber of usable views in a light field, which can go up to 209 for Lytro im-
ages.

Computing a colour palette using our global method takes roughly 2.5

minutes on an image tile of size 5000x5000. While long, this step has to be
done only once per light field and the results can be saved for later use. To
put this in perspective, computing the individual palettes takes on aver-
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Figure 4.5: Editing results on the main red layers (the first one in Figure4.1 or 4.2) of sev-
eral sub-aperture images of a light field row; each column represents the same view. On
the top row we use layers obtained using our naive approach, and inconsistencies can be
observed between the views, on the chicken figurine or the background. In the middle
row we use the layers from our global approach, the results are consistent across views
but editing the wall colour results in changes affecting the red portions of the figurine.
The last row shows editing on the global approach layers, done after separating the first
red layer to isolate the wall from the figurine. Here the results are consistent across views,
the figurine is unaltered, and we obtain the effect we were aiming for.

age 14minutes for a Lytro image (4.05 seconds x 209 views) and produces
inconsistent results. However, themore computationally intensive part to
perform the soft colour segmentation on each view still takes 12minutes
on average. An intended future work will look at ways to initialise the seg-
mentation using results from already processed central views and prop-
agate them toward the edges of the light field, in an attempt to reduce
the time needed by the optimisationmethod of the soft segmentation to
reach a solution.

Splitting the layers to contain only one object is done through a MATLAB
script and is a much faster process, taking on average 2 seconds per view,
regardless of the number of objects.

4.5.2 Layer editing

We present results of colour editing on specific colour layers obtained
with both the naive and global methods, before and after splitting them,
shown in Figure 4.5. Here the edit was to change the background colour
to increase the contrast with the foreground object being the centre of
the image. Editing using the layers from our naive approach results, as
expected, in visible inconsistencies between the views. When using the
layers fromourglobal approach, as themain red layer contains pixels from
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Figure 4.6: Example of a failure case (real image guinness), where the pink reflection and
refraction on the glass coming from different objects is difficult to separate from the pen
using ourmethod. For readability not all segmented layers are shown, as many objects in
the image contain shades of pink.

both the background and the chicken figurine, editing the background
without splitting the layer results in unwanted alterations, as it changes
the colour of the object as well. However, when the relevant layer is prop-
erly segmented to contain only the chicken figurine (or the background),
edits are easier to perform and avoid unwanted side-effects. We obtain
the intended effect to increase the colour contrast and enhance the fo-
cus on the object.

4.5.3 Failure cases

Unfortunately there are cases where our method for splitting a layer is
not robust enough. One such case is when non-Lambertian objects are
present, such as glass, see Figure 4.6. Here the pink layer contains pix-
els from the pen, some items in the background, and reflection and re-
fraction from all of these on the glass itself. Splitting the layer using our
method puts both the pen and the glass in the same layer, and the back-
ground objects in their own layer. Editing either of those layers would
result in inconsistencies between the background objects and their re-
fraction in the glass. A future work will be to look at better methods to
handle these cases.

4.6 Conclusion

We presented in this chapter a new method to perform soft colour seg-
mentation on light field data. We have shown that our global approach is
well-suited to create high quality colour layers consistent across all views
of a light field. We also took advantage of light field data to further sep-
arate colour layers based on their content, using depth information, in
order to allow for easier editing while reducing the amount of side ef-
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fects.

We have also explained that these methods are unfortunately very costly
in computing timeand future investigationsmay lookatways tousedisparity-
adjusted layer decomposition results from neighbouring views as an ini-
tialisation step, in order to bring the minimisation algorithm closer to a
solution. This should hopefully lead to a significant reduction in comput-
ing time when the method is applied over the whole light field. Future
work may also include looking at more robust and automatic methods
for object-based layer separation and ways to extend this concept to light
field videos.
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Chapter 5

Comparing Traditional Light
Field methods with NeRF

In this chapter we detail our third contribution, whereby we compare and
detail two classical light field applications, view synthesis and depth esti-
mation, with NeRF, a newcomer in the field, which promises high quality
novel views with a minimal setup. We show that indeed NeRF has the
advantage when looking at the number and the quality of the results,
however we put these in perspective, by detailing the mandatory ma-
nipulation needed to use it with certain type of light field data, as well
as the much higher computational cost, which could be a deterrent to
some.
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5.1 Introduction

NeRF is a recent deep-learning based method [18] that created a small
revolution in how light fields are thought of, constructed, and processed.
While most previous light field data is precisely defined, with specific pa-
rameters, fixedbaselinebetweenviews, andanumberof constraints, NeRF
instead works from using only a relatively small number of images point-
ing at the same scene from different angles. After some training of the
underlyingnetwork, it builds a 3D representation of the scene, fromwhich
additional information can be extracted, such as novel views, or disparity
maps. This is based on the concept of unstructured light fields.

While this new technology seemed almost miraculous when it was first
presented, it also seems to suffer, in away not dissimilar to traditional light
field methods, from some drawbacks in how it can be used, and in par-
ticular the type of data it can be used with. While traditional light field
methods struggle to generalise to data containing a very wide baseline
or very high resolution, NeRF on the other hand requires the principal
point of the images to be centred. This is not the case with data captured
withplenoptic cameras, or digitally synthesised images, and those require
someminor additional processing before being used by NeRF.

This chapter aims at looking in more detail and comparing the respec-
tive output and failure cases and both traditional light field methods and
NeRF when applied to two applications: view synthesis and depth esti-
mation.

5.2 Related work

In this section we briefly describe the current state of the art regarding
traditional light field view synthesis as well as depth estimation, and rele-
vant papers using NeRF for those same applications.

5.2.1 Light Field view synthesis

We first have a brief look at classical computer vision methods. Shi et
al. [148], after observing that the sparsity is much greater in the continu-
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ous Fourier spectrum than the discrete spectrum, proposed an approach
to reconstructing views optimised for sparsity in the continuous Fourier
spectrum, to reduce sampling requirements and improve quality. Chen
et al. [9] produced consistent disparity maps using the combination of a
feature flow method and a spatio-temporal edge-aware filter. Vaghar-
shakyan et al. [149] use the sparse representation of Epipolar Plane Images
(EPI) in the shearlet transform domain and take advantage of the straight
line characteristic of EPIs for reconstruction. In particular their method
handles semi-transparent objects in a scene with a much higher degree
of precision.

Kalantari et al. [150] were among the first to usemachine learning tomiti-
gate theusual trade-off between spatial and angular resolution of plenop-
tic cameras. They break down the view synthesis process into disparity
and colour estimation components trained simultaneously to obtain high
quality reconstruction. Wang et al. [151] present a 4DCNN network com-
bining convolutions on stacked EPIs, and detail-restoration 3DCNNs to ef-
fectively synthesise 4D light fields from a sparse selection of views. Yeung
et al. [152] use a coarse to fine scheme to extrapolate high-dimensional
spatio-angular features in a two-step method first generating interme-
diate coarse novel views which are later refined using guided residual
learning and 4D convolutions. More recently, Chen et al. [153] look at the
data collection drawback of other learning-based approaches, and pro-
pose a self-supervised framework. Theyfirst train their network onnatural
videos, and use that prior knowledge combined with a cycle consistency
constraint tobuild abidirectionalmappingandgenerate input-consistent
views.

Predating NeRF in concept, a new technique was developed by Zhou et
al. [154], calledmulti-plane images (MPI) and generated some interest as
a new representation of light fields. MPIs approximate a light field by
generating a stack of semi-transparent coloured layers organised at vari-
ous depth levels, which allows for real-time synthesis of novel views. Early
work was constructing MPIs from dense sets of views, but this was soon
generalised to sparser sets of real-life images [155, 156, 57].
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5.2.2 Light Field depth estimation

Depth estimation on light fields is an extremely rich and still active field of
research. Startingwith classical computer vision approaches, Yu et al. [157]
analysed the geometric structure of 3D lines in a light field image and
obtained depthmaps bymatching those lines between sub-aperture im-
ages (SAI). Tosic et al. [158] formulated a method to construct light field
scale-depth spaces, indicating regions of constant depth, before solving
thefiner depth estimation in each space separately. This allowed toobtain
good results in both highly textured and uniform regions. Zhang et al. [8]
provided a solution to deal with occlusion artefacts, by implementing a
spinning parallelogram operator to divide EPIs into regions and locating
depth lines by maximising distribution distances of those regions.

After the advent of deep learning, several new methods were developed.
Based on the EPI or epipolar geometry property, Luo et al. [159] proposed
to formulate the depth estimation as a classification problem, in which
a standard CNN-architecture is employed on horizontal and vertical EPI
patches. Since a shallowCNN is inadequate toguaranteeproper accuracy,
a global optimisation with traditional approach is utilised. Feng et al. [160]
presented a similar approach in which a shallower CNN is considered and
the output of the fully-connected layer is more than one pixel. Jiang et
al. [161] proposed to estimate initial depths by afine-tuned flow-basednet-
work and then refine these initial results using amulti-view stereo refine-
mentnetwork. Shin et al [162] presentedEpinet, an end-to-endnetwork to
predict depth, which takes as inputs the horizontal, vertical, left diagonal
and right diagonal camera views, instead of EPI patches. With richer infor-
mation of light fields, Epinet achieves a better accuracy. Khan et al. [163]
used the idea that depth edges and more sensitive than texture edges
to local constraints, and tell the two apart using a bidirectional diffusion
process. Someof themost recentwork is lookingat usingattention-based
models, providingabetter selectionof features even is complex and texture-
rich scenes, and leading to more accurate disparity (Tsai et al. [164]) or
depth maps (Chen et al. [165]).
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5.2.3 NeRF

The seminal paper by Mildenhall et al. [18] is intended to be a novel view
synthesis method, and does so by rendering and optimising a continu-
ous volumetric scene using a sparse set of input views. The input to their
fully-connected non-convolutional network is a single continuous 5D co-
ordinate (spatial location and viewingdirection), whichoutput the volume
density and view-dependent emitted radiance at that location. While in-
tended for novel view synthesis, as the network performs a dense 3D re-
construction of the scene, it can also be used for accurate high-resolution
depth estimation, generated concurrently with novel views. Building on
this foundation, and lookingmore specifically at the problem of depth es-
timationon indoor scenes,Wei et al. [166] combine structure-from-motion
(SfM) and learning-based priors and plug them into a NeRF network to
obtain high-resolution depth estimation. The sparse SfM reconstruction
is fine-tuned using a monocular depth network, and use those priors to
fix the inherent shape-radiance ambiguity of NeRF. Finally they further
improve the results by using a per-pixel confidence map.

5.3 Comparing novel view synthesis

We first describe the data used in this section. We selected three images
from the HCI synthetic dataset (boardgames, rosemary, table) [147], and five
images from Lytro datasets: INRIA (fruits) [124], EPFL (bikes) [123], and our
own (guinness, frog, cards), the latter two containing full camera calibration
data [167]). These two types of images pose a challenge to NeRF because
the principal point of these images is not centered, which is expected by
NeRF. To counter this issue we modify the original SAIs to shift the focal
plane to infinity. While this centres the principal view by simulating the
images being taken by a single camera, it comes at the price of a small
loss of resolution. In addition we use one image from the Stanford gantry
dataset (lego knights) [12], and four high resolution images from the Tech-
nicolor (birthday, painter) [168] and SAUCE datasets (cellist, fire_dancer) [45,
14]. These high resolution images, with a wider baseline, pose some dif-
ficulty for traditional light field methods which are not designed for such
sets. The gantry and high resolution set, having been captured by a sin-
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gle camera, do not suffer from the aforementioned issue, and NeRF can
handle them directly.

5.3.1 Methods

There are many traditional methods for light field novel view synthesis,
who were initially all depth-based, but some novel methods were pro-
posed to increase theaccuracyof the reconstruction. For exampleVaghar-
shakyan et al. [149] use the EPI representation of light fields, and perform
inpainting in the shearlet transform domain to generate novel views be-
tween two existing views.

Those methods were soon replaced with machine learning approaches,
themain drawback ofwhich is the need for large amounts of labelled data
to train any network. Chen et al. [153] bypass this issue and instead first
train their network on labelled video data, more widely available, and use
in turn a self-supervised network guidedby a cycle consistency constraint,
used to build bidirectional mapping and enforce the generated views to
be consistent with input views.

On the other hand, NeRF works by approximating a continuous 5D scene
representation with an MLP network, whose input is a 3D location (x, y, z)

and a 2D viewing direction (θ, φ). Its output is an emitted colour (r, g, b) and
volume density σ. Theweights obtained encode the volume of the under-
lying scene by mapping each input 5D coordinate to its volume density
and emitted colour. Thismodel is view dependent, which allows it to han-
dle non-Lambertian effects and realistic specularity while rendering novel
views.

5.3.2 Visual results

Looking first at large baseline images, NeRF seems to have offer better
accuracy of reconstruction, see Figure 5.1. Several points must be noted.
First of all, NeRF can work on the full resolution image, while most tradi-
tional light field methods work better with square (cropped) views, and
as a result there is necessarily loss of information in the second case. On
top of that, the difference in quality between the reconstructed views is

91



(a) (b) (c) (d)
Figure 5.1: View synthesis on image birthday (detail) and lego knights obtained using the
method of [153] (a, c) and NeRF output (b, d).

pretty obvious, NeRF comes out with high quality and high resolution
novel views, capturing most of the minute details of the scene, even in
complex ones like in Figure 5.1 (a&b), despite the high number of occlu-
sionspresent. Traditional lightfieldmethodshowever comeoutwithnois-
ier results, as if motion was present.

Comparison on smaller baseline images shows both approaches seem to
have their issues, and it is more difficult to determine which is preferable,
see Figure 5.1 (c&d). While traditional light field methods seem to work
fairly well, on some depth levels it is still possible to see some reconstruc-
tion artefacts, as if motion occurred, however those issues are not gener-
alised: notice how the shield in the corner has high detail, but the rest of
the image suffers from artefacts akin to motion blur. NeRF on the other
hand seems to handle some parts of the image fairly well (helmet, spear,
wall), but suffers from reconstruction artefacts in many places which de-
tracts from the details in the rest of the image. In particular those arte-
facts seem to occur on the edges of the image, however it is not limited
to that (sword in the centre).

One thing to note, even though possibly obvious, is that both methods
can only render novel viewswithin the angular space defined by the input
views.

5.3.3 Objective comparison

For objective comparisonweuse twoclassicmetrics, PSNRandSSIM. They
are properly representative as both traditional light field methods and
NeRF generate views that are directly aligned with existing views, used
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Table 5.1: Metric results (PSNR and SSIM) on novel views, comparing method of [153] and
NeRF.

P − LF P −NF S − LF S −NF

boardg 34.83 43.13 0.912 0.993
rosemary 34.23 41.28 0.904 0.983
table 33.91 39.19 0.895 0.954
E_bikes 32.36 32.45 0.862 0.963
I_fruits 31.63 30.29 0.856 0.948
V_guinn 32.92 33.21 0.848 0.940
V_cards 32.47 33.17 0.861 0.957
V_frog 35.69 41.63 0.873 0.982
legoK 21.61 24.67 0.711 0.849
birthday 19.29 23.69 0.542 0.750
painter 23.24 28.08 0.563 0.786
cellist 27.18 35.70 0.632 0.970
fire_danc 27.25 30.82 0.625 0.972
Mean 29.74 33.64 0.714 0.927

as ground truth. As we can see in Tab. 5.1, NeRF performs better on all
datasets. This is not surprising as it renders the scene in a continuous un-
derlying 3D model, which is then used to generate novel views and thus
does not have to approximate parts of the scene. Both methods seem
to fare better with smaller baseline data, however when looking at wider
baseline there is a large discrepancy between the images used. We posit
that since the birthday image is rife with minuscule details, it is more diffi-
cult to generate novel views that fool themetric well, even though it fools
the eye, whereas the cellist image contains a large uniform area and lim-
ited number of elements in the scene.

5.4 Comparing depth estimation

While both traditional light field methods and NeRF allow to obtain ac-
curate results in their preferred environment, neither method truly gen-
eralises to all types of data. For this comparison, since we need ground
truth depth estimation to properly use the selectedmetrics, the only data
for whichwe have objective comparison are the synthetic images. For the
others, visual comparison will be used instead.
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Table 5.2: Metric comparison results (MSE + Bad Pixel Count) on depth estimation per-
formed on synthetic images, between method of [9] and NeRF.

M − LF M −NF B2− LF B2−NF

boardg 4.513 0.602 15.41 3.57
rosemary 7.135 1.916 17.84 5.12
table 6.205 1.931 17.12 5.86
Mean 5.951 1.483 16.79 4.85

5.4.1 Methods

When it comes to traditional light fields methods we used here [9], and
their process follows a three-step approach. First they extract a 3D volume
of the light field by selecting views along a single angular dimension. Sec-
ond they perform an optical flow estimation to obtain disparity estimates
between the selected views. Finally the last aggregation step allows to ob-
tain depthmaps from themultiple disparity map estimates. This process
is relatively fast and runs in about 20 seconds for a whole row or column
of the light field.

NeRF on the other hand is providing with ‘direct’ disparity estimation,
which can then be converted to depth estimation, as the network first
trains to obtain a 3D representation of the scene, from which each new
view is rendered, as well as the corresponding depth. As a result the ac-
curacy of the latter is very high, at the cost of higher computational time.
For example, generating a single novel view of resolution 512x512 takes an
average of 18 seconds, while the same for a view of resolution 2048x1080

takes an average of 3minutes.

5.4.2 Visual comparison

From the images selected the differences are clear between both approa-
ches. On high quality, high baseline images (see Figure 5.2) NeRF has a
clear advantage. By generating a comprehensive 3D render of the scene,
it has access to fine features and details from the scene. Considering that
representation, it also has detailed information regarding cameraposition
and its distance to every single point of the scene, which, at the same time
as it allows the generation of high quality novel views, also helps gener-
ating a corresponding high quality disparity map. Some artefacts can be
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Figure 5.2: Depthmaps obtained usingmethod of [9] (middle) and NeRF output (bottom)
on the birthday (left) and cellist (right) images.

visible on the edges of the image, which we posit could be explained by
the lower number of views in which those parts are present, which lowers
the quality of the rendering in these parts. Traditional light fieldmethods
on the other hand fail to accurately obtain a proper depth estimation, in
part due to the higher baseline, the absence of camera parameters, and
the fact that the input views are not aligned on a perfect grid - as the data
we used was unstructured - which is one of the expectations thosemeth-
ods have.

When it comes to smaller baseline images, the advantage is still on the
side of NeRF, however there are counter-examples, see Figure 5.3. We
posit this image in particular is tricky for NeRF as only parts of small ob-
jects come into view on the sides of the images and potentially make a
3D representation of the scene, this already led to artefacts visible in Fig-
ure 5.1.
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Figure 5.3: Depthmaps obtained usingmethod of [9] (centre) and NeRF output (right) on
Lego Knights image.

5.4.3 Objective comparison

For comparison on depth estimation, we use again twometrics, MSE and
Bad Pixel Count (2.0), see Table 5.2. Comparison for synthetic images is
fairly straightforward as ground truth exists, and in this case we notice
that NeRF does perform much better compared to traditional methods.
However when it comes to comparing natural images, whether Lytro or
otherwise, ground truth depthmaps do not exist, making objective com-
parisons less relevant. We therefore only use visual comparison for these
images.

5.5 Conclusion

Wehavepresented in this chapter a comparative studybetween thenewly
developedNeRFwith regards to view synthesis anddepthestimation, and
traditional light field methods, which it aimed to replace. While very im-
pressive, NeRFhas shownaminor limitation in thedata type it canprocess
directly, and tricks need to be used tomake it usable with either synthetic
or Lytro image. In general, we can say that both schemes have their ad-
vantages for the specific type of data they target, but do not directly gen-
eralise to any type of light field, which leaves traditional light field research
some opportunities for higher quality applications. Some possible future
work related to this chapter include adapting some editingmethods that
use traditional light fields to using NeRF instead, and analysing the qual-
ity of those results. In particular using NeRF for the work presented in
Chapter 4 would be of particular interest.
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Chapter 6

Conclusion

Weapproach the end of this dissertation, wherewe looked at the possibil-
ities offered by light field for high quality editing. We take in this chapter
some time to reflect on the contributions made in this thesis through a
summary of the work, and follow by considering the future applications
of this work, as well as the avenues opened by it.

6.1 Summary

In Chapter 1, we presented light fields and discussed the vast array of ap-
plications available, before shifting our focus on editing. We showed that
light fields data are far from perfect and suffer from a number of draw-
backs, most of which stem from physical and technical constraints that
are built-in the capture devices. Nevertheless we explain that this data is
important and deserves to be restored and enhanced.

In Chapter 2, wewent on a journey through the history of light fields, from
ancient to current days. We also formalised light fields through defin-
ing the plenoptic function, and the concept of light field rendering. We
described in detail the different methods of capture and the advantages
each bring, as well as their limitations. We looked beyond the theoreti-
cal work that light fields offer, and discussed a few of themost prominent
fields of application it offers. Finallywe stopped for amoment on themost
modern technique to generate light fields, and the large body of research
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it created.

In Chapter 3 we presented our solution to restore and enhance the qual-
ity of Lytro images. We showed that even through software applications
it is possible to mitigate many of the hardware-generated artefacts in-
herent to this type of camera, namely distortions, brightness and colour
balance, and noise. We also showed, using both objective and subjective
analysis, that our solution performs better than the previous state of the
art, showing that every part of our pipeline is necessary for optimal effect.
Additionally we provide a number of examples of typical light field appli-
cations performing better using our enhanced data.

In Chapter 4 we took the improved Lytro images we produced in the pre-
vious chapter, and used them to apply soft colour segmentation, with the
intent on using the layers for colour editing. This was motivated both by
the idea of performing better colour segmentation using light field data,
notably to account for occlusions, but also to perform better editing by
separating the objects in the colour layers using depth cues. We showed
that these tasksperformadequately onmost images, anddiscussed some
limitations, specifically regarding non-Lambertian objects.

In Chapter 5 we looked at a new promising technology, NeRF, and at-
tempted to compare it with traditional methods in the applications of
view synthesis and depth estimation, in which it excels. Nevertheless we
put this in the broader context and expressed limitations regarding the
type of light field data it can process, or the need to manually transform
certain data into becoming compatible with it, and the computational
power and time it requires. We show that it is still a very promising venue
for the future of light field rendering and its many applications.
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6.2 Outlook and Future Work

Research Question Revisited

We attempted to investigate — “How can we benefit from Light
Field images to perform high quality processing and editing?”.

Three main objectives are explored in this context:
• Lytro Image Quality Enhancement.
• Soft Colour Segmentation on Light Fields.
• Expanding the range of usable data using NeRF.

On the topic of light field for editing

Throughout this thesis, we have attempted to use widely available light
field data to perform a series of tasks, among which editing, and the re-
sults we showcased are quite satisfactory. While we have accomplished
our initial goal to rid original plenoptic data of most of its defects, we find
ourselves with low resolution images having a very small baseline, cap-
turing mostly static scenes. This was a necessary first step toward better
acceptance of light fields as a medium to perform editing, and this effort
will need to be explored further.

While Lytro images could be replaced by other types in the future, we still
learned valuable lessons by using them and they certainly benefited light
field in immeasurable ways. Looking back at our contributions, themeth-
ods we provide for denoising, clearing sensor-induced hot pixel noise, or
fixing colour imbalance between light field views, are all very relevant as
we move on to using more advanced, higher quality images captured
from contemporary rigs. Camera calibration is a very sensitive topic, and
has still not been fully solved. Even with the most advanced setup, using
two different models of the same camera is going to yield two different
photographs. Perhaps this difference is near-imperceptible to the eye,
but if these imperfections are spread on large camera arrays, and their
output used on very colour-sensitive applications, it is likely to lead to pro-
cessing artefacts. These need to be corrected before moving on to the
editing tasks, and the methods we proposed in Chapter 3 will still be rel-
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evant provided they are properly adapted.

Similarly, we presented in Chapter 4 methods that can easily be trans-
posed to be used on higher quality data, captured not just from Lytro
cameras, but any type of light field capture setup. Using depth informa-
tion for segmenting objects should become the obvious solution when
performing fine editing using light field data. As well, even if soft colour
segmentationwas used only as an example in our case, the benefit of hav-
ing light field data of a scene for solving occlusions is invaluable and could
be translated to many other editing tasks.

On the future of light fields in industry

Widespread adhesion to light field imagery in under way in a number
of fields of application, and a number of avenues for use are opening, in
movie post-production owing to the pioneering work described in Sec-
tion 2.3 by the groups engaged in the SAUCE project [45, 14] or in virtual
reality by Huang et al. [52], among others. However some limitations still
exist; the setups are in general cumbersome and not very portable, re-
quire large amounts of additional calibration to work optimally, and data
storage and processing is made challenging by the sheer amount gener-
ated by the most recent light field setups. For many, these are going to
be overwhelming drawbacks and they will prefer to use more traditional
setups instead.

However, as is very often the case in computer science, these issues may
only be temporary. Computational power and storage abilities are only
going to grow, and it is possible than even within the next few years, light
field solutions will become affordable and attractive to some production
studios. Seeing thepossibilities for imageprocessingofferedby lightfields,
it is almost certain that we will see them used more in the future.

6.2.1 Future work in the short term

Taking a step back to look at our own work, there are clear advantages
brought out by the work presented in this thesis. However, there is still
room for further improvements. For instance, some lens-induced distor-
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tion are still visible on some of the outer Lytro sub-aperture views, and
could benefit from being corrected. However, do they really need to be?
It is possible that, as time goes, low resolution small baseline light fields
are going to become less common. This makes solving these artefacts
interesting for theoretical research, but perhaps less so for industrial or
popular applications.

Similarly, on the subject of editing, the scope for future work is still wide.
We showed in Chapter 4 that the computation time of ourmethods is still
very high, despite processing low resolution images. This cost is mostly
the product of the sheer amount of images representing a single light
field, and this amountof data canonlygoupas technologyevolves. There-
fore it is important to find solutions to these software limitations, poten-
tially by initialisingdecompositionof sub-viewsusingpreviously processed
results from their neighbours, thereby reaching convergence to an opti-
mal solution faster.

Additionally itwill benecessary to refineour object-based layer separation
method. It is currently still very coarse andwould need to be reformulated
when working withmore challenging scenes full of small objects and de-
tails. Finally these last two contributions could be studied in the temporal
domain. If it is possible to easily propagate edits spatially along the light
field, the process should also work between video frames, provided there
is no cut in the shot and the main scene retains its colour properties, i.e.
no object of unknown colour entering the scene, or one leaving it.

Lastly regarding the use of NeRF for light field editing, we need to come
up with smart solutions to perform our soft colour segmentation. Follow-
ing the example of Zhang et al. [77], it should be possible to plugin into
their framework a module dedicated to learning how to compute soft
colour segmentation, and obtain NeRFs in which the colour information
can be split easily to create renders of individual layers. This could allow to
directly generate editednovel views, only by editing theunderlyingmodel
once.
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6.2.2 Future work in the long term

It is our opinion that in the future the focus will shift from low-resolution
plenoptic images towards using higher quality images, as thismovement
is already well under way. Learning to deal with the additional amount of
data is going to be one of the main challenges to future light field pro-
cessing, and while our methods can be adapted for those, the solutions
for this are outside the scope of this thesis.

It would also be interesting to see a study comparing the output of the
more advanced derivations of NeRF networks against some of the high-
end light field camera arrays used nowadays in movie post-production.
The ease of capture in the first case is amajor advantage, but if the output
finds itself being limited in its resolution and detail quality by the need
to produce views through a machine-learning based render, perhaps it is
not themost desirablemethod for high-endmovie productions, although
it could be appealing to regular users and photographers interested in
expanding their processing options.

The work presented here is a small but useful iteration in a broad field
of research. We have showcased some advances in light field processing
and editing, and we hope that our methods will prove useful to future
explorations.
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Appendix A

Review of other light field
extraction methods

A.1 Barycentric interpolation [1]

Because of the hexagonal lenslet pattern, the conversion step from the
lenslet image to sub-aperture images must include a resampling of each
SAI fromahexagonal to a squarepixel grid. For this purpose, the light field
toolbox of Dansereau et al. [5] performs a fast 1D interpolation in each
row of each SAI. Instead, the demultiplexing method in [1] introduces a
barycentric interpolationmethod that produces higher resolution images
(by a factor ~2.6). Figure A.1 presents a comparison of our demultiplexing
usingeither theoriginalmethod (1D interpolation from [5]) or thebarycen-
tric interpolation in [1]. For the comparison, bicubic upsampling was ap-
plied to our original demultiplexing. Although the difference is subtle, the
barycentric interpolation slightly reduces the resampling artefacts. How-
ever it also multiplies the number of pixels by ~6.75 which would signifi-
cantly increase the complexity of the next steps of the pipeline. Hence, we
have kept the 1D interpolation from [5] in our paper. Furthermore,modern
light field super-resolution techniques (e.g. [134]) significantly outperform
the bicubic upsampling used in Figure A.1 (a), which is expected to further
reduce the advantage of the barycentric interpolation.
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(a) (b)

Figure A.1: Light field Bikes demultiplexed with (a) our original demultiplexing (followed
by bicubic upsampling), (b) our modified demultiplexing using barycentric interpolation
[1] for the hexagonal to square SAI resampling.

A.2 Demosaicingbasedon4DKernel Regression [2]

The demultiplexing approach in [2] uses kernel regression in the 4D light
field space in order to perform the demosaicing instead of applying a
2D demosaicing of the RAW image. The method simultaneously per-
forms the demosaicing with the other interpolation step of the pipeline
(i.e. lenslet image rotation and hexagonal to square resampling). How-
ever, unlike traditional demosaicing methods, the RGB colour compo-
nents are processed separately, hence the correlations between compo-
nents are not exploited. For the comparison with our method, we have
implemented the 4D Kernel Regression demosaicing within our pipeline.
The results are presented in Figure A.2. Using a small kernel produces
strong colour artefacts. Although these artefacts are reduced with larger
kernel sizes, they remain more visible than with the 2D demosaicing in
Figure A.2(a), and the result is blurred.
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(a) (b)

(c) (d)

Figure A.2: Demultiplexing results with (a) our original demultiplexing (using 2D demo-
saicing from [111]), (b, c, d) our modified demultiplexing using 4D Kernel Regression de-
mosaicing [2] with a gaussian kernel of standard deviation of respectively σ = 0.45, σ = 0.6,
σ = 0.8.
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(a) (b)

Figure A.3: Demultiplexing results where the lenslet array alignment step is performed
using (a) bilinear interpolation, (b) nearest interpolation. In both cases, 2D demosaicing
was performed before the alignment.

A.3 Demosaicingbasedondisparity estimation [3]

Theauthors in [3] proposeadifferentdemultiplexingapproachwhere sub-
aperture images are extracted before applying demosaicing. This results
in a set ofmosaiced images with an irregular colour pattern instead of the
traditional Bayer pattern. Disparity maps estimated from the incomplete
SAIs are then used to fill the missing colour components of the pixels in
each SAI with known pixel’s component in other SAIs. However, the issue
of performing the demosaicing at the end of the process is that the mis-
alignment between the microlens array and the sensor cannot be com-
pensated using interpolations with sub-pixel accuracy, since the colour
data is incomplete. Hence only interpolation to the nearest pixel is ap-
plied. This may cause aliasing artefacts, especially in the regions that are
not in focus in the original capture (i.e. with high frequencies within each
lenslet, which corresponds to an angular patch). The effect of using near-
est interpolation is shown in Figure A.3.

106



A.4 Plenopticam software [4]

Similarly to the Light Field toolbox of Dansereau et al. [5], Plenopticam
is a publicly available software that provides a complete pipeline for ex-
tracting the light field views fromplenoptic camera RAWdata. Figure A.4
shows an example of result using the current version of Plenopticam1.
Note that the viewpoints extractedwith thePlenopticamandourmethod
may slightly differ. Hence, for a fair comparison of external views, we have
selected the view extracted with our approach (Figure A.4 (c)) that is the
closest to the external view shown for Plenopticam in Figure A.4 (d). Sim-
ilarly to our method, the views extracted with Plenopticam keep globally
consistent colours. However, their colour consistency processing reveals
strong artifacts on the external views. Furthermore, the results have exag-
gerated colour saturation and contrasts compared to the reference image
from the Lytro Desktop proprietary software. Note that gamma correc-
tion is already applied, but is performed directly on the RAW data, before
devignetting. This may cause inaccurate devignetting further explaining
the artifacts on external views. Finally, some details are lost in the high-
lights. On the other hand, our method recovers these details thanks to
the highlight processing step.

1accessed from https://github.com/hahnec/plenopticam on the 09/12/2019.
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(a) (b)

(c) (d)

Figure A.4: Comparisons of our method (including post-processing) in (a) and (c) with the
Plenopticamresults in (b) and (d). For (a) and (b), the extracted central view is shownabove
the red line, and a refocused image with Lytro Desktop proprietary software is shown be-
low the red line to indicate the reference colours. The images in (c), (d) correspond to an
external view of the light field.

108



Appendix B

Study of colour
inconsistencies

While the vignetting phenomenon reduces the brightness on the bor-
ders of each lenslet, it should not affect the chromatic information in the-
ory. However, in order to compensate for the microlens vignetting effect,
the devignetting step applies a large gain to the pixels on the border of a
lenslet, thus increasing any possible source of error for external SAIs. This
results in more noise (see Section D), but also also causes colour inconsis-
tencies in the light field.

We show in Figure B.1 that the colours of external SAIs essentially depend
on the order in which the devignetting and demosaicing steps are per-
formed. Unlike our approach in Figure B.1(a), no colour loss is observed
when the devignetting step is performed after the demosaicing (see Fig-
ure B.1 (b) and (c)). Note that in this case, more reliable colours are ob-
tained when the demosaicing is applied to both the RAW image and the
White Image used for the devignetting as shown in Figure B.1(c). Demo-
saicing the white image results in a slightly coloured signal that compen-
sates for some colours errors (e.g. green colour on the top-corner and red
tones on the left side of Figure B.1(b)). These errors can be explained by
the fact that the colour responses of the red green and blue pixels on the
Bayer filter array are not perfectly uniform over the sensor.
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(a) (b)

(c) (d)

Figure B.1: Effect of the order of the devignetting and demosaicing steps on the demulti-
plexing for an external SAI: (a) devignetting first (i.e. proposed approach), (b) devignetting
after demosaicing of the RAW image, (c) devignetting after demosaicing of both the RAW
image and the White Image, (d) centre SAI with intended colours (identical for each vari-
ant).

However, because of the high frequency vignetting pattern, performing
the demosaicing before the devignetting also results in stronger high fre-
quency artefacts (e.g. horizontal lines in Figure B.1 (b) and (c)). Therefore,
we have preferred the approach in which the devignetting is applied first.
Although the demosaicing causes a loss of colours on external SAIs in this
case, this can be corrected with our post-processing recolouring step, un-
like the artefacts in Figure B.1(c).
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Appendix C

Results on Stanford dataset

In this section we show some results of objective metric evaluation for 10
light fields from the new Stanford 3-view dataset [125]. For this experi-
ment 8 light fields were selected from the outdoor captures and 2 from
the indoor captures. Although each capture consists of 3 light fields taken
with a rig of 3 Lytro cameras, we have only used the central one here. The
selected light fields are referenced in the results by their number as given
in the dataset of RAW light fields.

Colour consistency

In this section, we present the results of the colour consistency metrics
on the selected light fields from the Stanford dataset. In Figure C.1 we
present the results of the PSNR, SSIM, S-CIELab and histogram distance
metrics, similar to Figure 3.10 in Chapter 3. We compare the results of
Dansereau et al. (Da) with our decoding results (De) and the results we
get after recolouring (Re).

Similar to thepaper, we can see that (Re) performs thebestwith respect to
PSNR, SSIMandS-CIELab, followedby (De) and (Da). Again, thehistogram
distance metric is showing some cases in which our algorithm does not
remove all of the colour consistencies that appear across the light field.
We have also included visual results in Figure C.2, which highlight that al-
though the recolouring fixes themajority of colour changes to the outside
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Figure C.1: Metric comparison, using PSNR, SSIM [126], S-CIELab [127] and histogram dis-
tance. Higher values are better in terms of PSNR and SSIM, and lower are better for S-
CIELab and the histogram distance.

SAIs, some small differences remain. For example, in Figure C.2(b), small
colour differences are still visible in the sky between the recoloured out-
side andcentre SAIs, althougha lot less visible thanFigureC.2(a) before re-
colouring. In Figure C.2(f) the blue rectangle hasn’t been completely cor-
rected. This is due to the nature of our thin plate spline transfer function,
which finds the best global, smooth transfer function to fix the colours in
the image, and while this prevents severe artefacts changing the struc-
ture of the image, small local differences between the centre and outside
SAIs can remain after recolouring. This is discussed in detail in Section
VII-A of the paper.
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Figure C.2: Recolouring results for the light fields out_7482, out_7503, out_7506, and
out_7545 (from top to bottom). The centre SAI is overlaid in column blocks onto one of
the outside SAIs before recolouring (left) and after recolouring (right). The colours at the
bottom of the images indicate which SAIs the columns are taken from - the centre SAI
(blue), the outside SAI before recolouring (green) or the outside SAI after recolouring (red).
Zoom in for more clarity.
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Table C.1: Noise level σest estimated using [128] for the new Stanford dataset [125] and each
setting combination described in Table I of the main paper. The 3 setting combinations
including denoising are shown on the right.

σest Da De DeH Re

in_6706 3.84 2.67 2.65 2.26
in_7014 3.33 2.20 2.19 1.86
out_7040 6.49 5.68 5.66 5.21
out_7357 4.42 3.74 3.71 3.49
out_7385 5.85 5.15 5.14 4.74
out_7409 4.33 3.76 3.75 3.46
out_7482 4.70 4.06 4.05 3.80
out_7503 3.70 3.26 3.25 2.66
out_7506 2.50 2.31 2.29 1.93
out_7545 3.47 2.99 2.96 2.78
Average 4.26 3.58 3.56 3.22

Noise level estimation

Here we estimate the noise level after each step of the pipeline using the
blind metric. As for the other datasets, the noise is estimated on each
individual SAI and the averaged result gives a score for a light field. These
can be seen in Table C.1. A similar analysis can be done compared to the
results of the other data. The demultiplexing step improves slightly on the
output of Dansereau et al. [5], the hot pixel removal tool has little impact as
hot pixel noise differs from the AWGN. The recolouring step again lowers
the noise slightly.
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Appendix D

Analysis of the noise profile

To perform a more in depth analysis of the noise of light fields captured
with the Lytro Illum camera, we created a noisy light field dataset con-
sisting of 5 scenes, shown in the top row of Figures D.2 to D.6. For each
scene, 3 different noise levels were created by setting the ISO to 80, 250,
and 640, The shutter speedwas thenmanually adjusted so that the image
is as bright as possible without saturation, using the Lytro Illum built-in
real time saturation detection. For each scene and ISO setting, ~30 noisy
instances were captured. We use the Genie Mini1 rotating platform to
automatically trigger the capture, without having to physically press the
camera trigger, which could cause misalignment issues (the camera was
notmounted on the platform). However, the automatic trigger sometime
failed, resulting in 29 instances instead of 30 for a few scenes and ISO set-
tings. While we used a white backdrop in the scenes, the dataset was
captured in a green screen studio with stable LED lights, which ensured
stable lighting conditions. The setup used is shown in Figure D.1.

A ground truth noise free light field was then created for every scene and
ISO setting by averaging the noisy instances. For validation purpose we
also created noise free light fields by computing the median of the noisy
instances, which was found to be very close to the mean light field, at
least ensuring the distribution of the noise is not skewed. The light field
noise can then be obtained by removing the noise free light field from

1https://syrp.co/discovery-product/genie-mini/
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Genie 

mini

Saturation 

detection

Figure D.1: Setup used to create the noisy light field dataset. The Genie Mini rotating
platform seen next to the Lytro Illum camera was used to automatically trigger the shots.
For each ISO setting, shutter speed was adjusted to maximise image brightness while
avoiding saturation.

116



the noisy instances. For each scene and ISO setting, we then analysed the
noise histogram per SAI. We show in Figures D.2 to D.6, noise histograms
for the less noisy (left) and noisiest (right) SAI, together with a fitted nor-
mal distribution. The results show that the AWGNmodel is valid for each
SAI, but SAIs of a same light field can exhibit different noise level. We
used the standard deviation of the fitted normal distribution as a ground
truth for the noise level per SAI. The last row of Figures D.2 to D.6 shows
the noise level per SAI, normalised over the colour channels and the 3 ISO
settings. As expected the overall noise level increases with the ISO, and
we can clearly observe that the noise level is higher for outer SAIs due to
vignetting.

Finally, we evaluated the blind metric used in the paper [128] by compar-
ing the estimated noise level to the ground truth. Figure D.7 shows the
graphs of estimated noise level, averaged over all SAIs, against the ground
truth noise level for each scene. The last graph on bottom right shows the
results averaged over all light fields. While the blindmetric does not eval-
uate the exact noise level, a near linear relationship between the ground
truth and estimated noise level can be observed, which validates the use
of the chosen metric for the evaluation of our pipeline.
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ISO 80 ISO 250 ISO 640

Figure D.2: Light field color_chart from the new noisy light field dataset. On top row, one
of the 30 instance of noisy light field captured, noise increasing with ISO gain from left to
right. On middle row we show the histogram of the less (left) and most (right) noisy SAI,
together with the fitted normal distribution. On bottom row, we show the noise level per
SAI, normalised over the colour channels and the 3 ISO settings.
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ISO 80 ISO 250 ISO 640

Figure D.3: Light field godzi from the new noisy light field dataset. On top row, one of
the 30 instance of noisy light field captured, noise increasing with ISO gain from left to
right. On middle row we show the histogram of the less (left) and most (right) noisy SAI,
together with the fitted normal distribution. On bottom row, we show the noise level per
SAI, normalised over the colour channels and the 3 ISO settings.
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ISO 80 ISO 250 ISO 640

Figure D.4: Light field godzi and lego building from the new noisy light field dataset. On
top row, one of the 30 instance of noisy light field captured, noise increasingwith ISO gain
from left to right. Onmiddle rowwe show the histogram of the less (left) andmost (right)
noisy SAI, together with the fitted normal distribution. On bottom row, we show the noise
level per SAI, normalised over the colour channels and the 3 ISO settings.
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ISO 80 ISO 250 ISO 640

Figure D.5: Light field mug from the new noisy light field dataset. On top row, one of
the 30 instance of noisy light field captured, noise increasing with ISO gain from left to
right. On middle row we show the histogram of the less (left) and most (right) noisy SAI,
together with the fitted normal distribution. On bottom row, we show the noise level per
SAI, normalised over the colour channels and the 3 ISO settings.

121



ISO 80 ISO 250 ISO 640

Figure D.6: Light field polly from the new noisy light field dataset. On top row, one of
the 30 instance of noisy light field captured, noise increasing with ISO gain from left to
right. On middle row we show the histogram of the less (left) and most (right) noisy SAI,
together with the fitted normal distribution. On bottom row, we show the noise level per
SAI, normalised over the colour channels and the 3 ISO settings.
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Figure D.7: Blind noise level estimation [128] plotted against the ground truth noise level.
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Appendix E

Disparity / depth estimation

We evaluate here the performance of the proposed pipeline on depth
or disparity estimation, which is one of the flagship applications for light
fields. For that purpose we use 4 different methods [6][7][8][9] applied af-
ter every step of the pipeline. For all methods we used the code provided
by the authors. The first method estimated the depth by simply comput-
ing the slopes of the EPIs based on the light field gradient [6]. Note that
weused the codeprovidedby theauthorswhich implements thefirst step
described in the paper and only outputs a sparse estimation. The second
method was designed to be robust to occlusions by analysing the statis-
tics of angular patches of the light field together with refocus cues [7].
The third method uses the spinning parallelogram operator to estimate
the slopes of the EPIs and provide a robust depth estimate [8]. Finally, the
fourth method adapted optical flow techniques to estimate the disparity
on row or columns of the light field [9].

Figures E.1 to E.32 show the results for the 4methods and 8 different light
fields. For eachmethod, the depth or disparity was estimated for the cen-
tre SAI of the light field decoded with the toolbox of Dansereau et al. [6]
without (Da) and with denoising (DaN), our demultiplexing (De), and our
full pipeline without (Re) and with denoising (ReN). Note that all results
were colour coded so that close objects appear in white, while far objects
appear black.
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Since no ground truth is available for the depth or disparity maps, no
objective evaluation could be conducted. For each method, slight varia-
tions can be observed between the depth or disparity maps correspond-
ing to the different steps, but no step seems to clearly deter or improve
the performances. Note that this is also true after the denoising step, even
though denoising is sometimes not recommended before such applica-
tion. While in general denoising may smooth images, the LFBM5D algo-
rithm chosen in this paper can preserve edges, which are useful features
for the depth or disparity estimation. Thus the proposed pipeline does
not seem to strongly impact the performances of depth or disparity map
estimation.
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FigureE.1: Depthmapestimatedwith [6] onbee_1. From top tobottom, left to right: centre
SAI, Da, DaN, De, Re, ReN.

Figure E.2: Depth map estimated with [7] on bee_1. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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Figure E.3: Depth map estimated with [8] on bee_1. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.4: Disparity map estimated with [9] on bee_1. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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Figure E.5: Depth map estimated with [6] on bee_2. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.6: Depth map estimated with [7] on bee_2. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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Figure E.7: Depth map estimated with [8] on bee_2. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.8: Disparity map estimated with [9] on bee_2. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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Figure E.9: Depth map estimated with [6] on vespa. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.10: Depth map estimated with [7] on vespa. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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Figure E.11: Depth map estimated with [8] on vespa. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.12: Disparity map estimated with [9] on vespa. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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Figure E.13: Depth map estimated with [6] on glasses1. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.14: Depth map estimated with [7] on glasses1. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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Figure E.15: Depth map estimated with [8] on glasses1. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.16: Disparitymap estimatedwith [9] on glasses1. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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Figure E.17: Depth map estimated with [6] on guinness. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.18: Depth map estimated with [7] on guinness. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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Figure E.19: Depth map estimated with [8] on guinness. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.20: Disparity map estimated with [9] on guinness. From top to bottom, left to
right: centre SAI, Da, DaN, De, Re, ReN.
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Figure E.21: Depth map estimated with [6] on odette. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.22: Depth map estimated with [7] on odette. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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Figure E.23: Depth map estimated with [8] on odette. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.24: Disparity map estimated with [9] on odette. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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Figure E.25: Depth map estimated with [6] on raoul. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.26: Depth map estimated with [7] on raoul. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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Figure E.27: Depth map estimated with [8] on raoul. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.28: Disparity map estimated with [9] on raoul. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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Figure E.29: Depth map estimated with [6] on ukulele. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.30: Depth map estimated with [7] on ukulele. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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Figure E.31: Depth map estimated with [8] on ukulele. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.

Figure E.32: Disparitymap estimatedwith [9] on ukulele. From top to bottom, left to right:
centre SAI, Da, DaN, De, Re, ReN.
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