dc.contributor.author | Jennings, Brian | |
dc.contributor.author | Mokarian, Parvaneh | |
dc.contributor.author | Gatensby, Riley | |
dc.contributor.author | Giraud, Elsa C. | |
dc.contributor.author | Selkirk, Andrew | |
dc.contributor.author | Mir, Sajjad Husain | |
dc.date.accessioned | 2022-08-31T16:14:03Z | |
dc.date.available | 2022-08-31T16:14:03Z | |
dc.date.issued | 2022 | |
dc.date.submitted | 2022 | en |
dc.identifier.citation | Jennings, Brian D., Gatensby, Riley, Giraud, Elsa C., Selkirk, Andrew, Mir, Sajjad Husain, Mokarian-Tabari, Parvaneh, Large-area patterning for broadband, quasi-omnidirectional low-reflectance glass, Journal of Micromechanics and Microengineering, 2022, 32, 8, 085009 | en |
dc.identifier.other | Y | |
dc.description | PUBLISHED | en |
dc.description.abstract | A method for producing large-area, broadband, quasi-omnidirectional low-reflectivity glass surfaces
is presented. Using block copolymer (BCP) patterning and inductively coupled plasma etching, near-
periodic arrays of pillars are formed in glass. The patterned surface has reflectivity <0.5%—almost
an order of magnitude smaller than plain glass—with a bandwidth of ~300 nm. Substrates etched
on both sides transmit >99.5% across the wavelength range 850–1200 nm, with >99% down to λ =
650 nm. The process is demonstrated on a 5 cm diameter fused silica wafer and high transmittance is maintained up to at least 70◦ incidence. The resulting substrates might find application as lab optics (windows, lenses, etc.) display screens for televisions, computers, phones, and as encapsulants for optoelectronic devices. | en |
dc.format.extent | 085009 | en |
dc.language.iso | en | en |
dc.relation.ispartofseries | Journal of Micromechanics and Microengineering; | |
dc.relation.ispartofseries | 32; | |
dc.relation.ispartofseries | 8; | |
dc.rights | Y | en |
dc.subject | Nanostructures | en |
dc.subject | Self-assembled structures | en |
dc.subject | Nanophotonics | en |
dc.subject | Nanofabrication | en |
dc.title | Large-area patterning for broadband, quasi-omnidirectional low-reflectance glass | en |
dc.type | Journal Article | en |
dc.type.supercollection | scholarly_publications | en |
dc.type.supercollection | refereed_publications | en |
dc.identifier.peoplefinderurl | http://people.tcd.ie/brjennin | |
dc.identifier.peoplefinderurl | http://people.tcd.ie/mokariap | |
dc.identifier.peoplefinderurl | http://people.tcd.ie/gatensr | |
dc.identifier.rssinternalid | 245422 | |
dc.identifier.doi | https://doi.org/10.1088/1361-6439/ac7bd0 | |
dc.rights.ecaccessrights | openAccess | |
dc.subject.TCDTheme | Nanoscience & Materials | en |
dc.subject.TCDTag | Nanofabrication,Nanotechnology | en |
dc.subject.TCDTag | Nanostructures | en |
dc.subject.TCDTag | Physics | en |
dc.identifier.orcid_id | 0000-0002-9915-5453 | |
dc.status.accessible | N | en |
dc.contributor.sponsor | Enterprise Ireland | en |
dc.contributor.sponsorGrantNumber | CF-2017-0638 | en |
dc.contributor.sponsor | Marie Curie | en |
dc.contributor.sponsorGrantNumber | 713567 | en |
dc.contributor.sponsor | Science Foundation Ireland (SFI for RF) | en |
dc.contributor.sponsorGrantNumber | 12/RC/2278_P2 | en |
dc.identifier.uri | http://hdl.handle.net/2262/101104 | |